WO2011093172A1 - Light-guiding plate and lighting device - Google Patents

Light-guiding plate and lighting device Download PDF

Info

Publication number
WO2011093172A1
WO2011093172A1 PCT/JP2011/050753 JP2011050753W WO2011093172A1 WO 2011093172 A1 WO2011093172 A1 WO 2011093172A1 JP 2011050753 W JP2011050753 W JP 2011050753W WO 2011093172 A1 WO2011093172 A1 WO 2011093172A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light guide
pattern
convex portion
Prior art date
Application number
PCT/JP2011/050753
Other languages
French (fr)
Japanese (ja)
Inventor
一範 植木
啓介 塚田
敏朗 鈴木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2011093172A1 publication Critical patent/WO2011093172A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer

Definitions

  • the present invention relates to a light guide plate and a lighting device including the same.
  • a side-ride type backlight device that introduces light from a light source from a side surface of a light guide plate and emits the light from a light extraction surface located on the front surface or the back surface of the light guide plate It has been known.
  • the sidelight type backlight device has an advantage that it can be formed thinner than a direct type backlight device.
  • adoption of a thinner light guide plate is being studied in order to meet the demand for further thinning of the device.
  • Patent Documents 1 and 2 discuss the thin light guide plate.
  • minute irregularities may be formed on the front and back surfaces of the light guide plate.
  • the number of reflections of the introduced light tends to increase significantly compared to a thick light guide plate.
  • it is difficult to extract light uniformly on the light extraction surface Specifically, as the number of times of light reflection increases, the light is easily emitted near the light source, and the light emitted from the terminal portion far from the light source tends to decrease.
  • the luminance of the light extraction surface increases in a region close to the side surface where light is introduced, and decreases in a distant region, resulting in luminance unevenness.
  • the light extraction unevenness is designed to be the same size as the thick light guide plate, there is a problem that a pattern can be seen, interference fringes are generated, and luminance is not increased.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a thin light guide plate that suppresses luminance unevenness and an illumination device that can suppress luminance unevenness.
  • the present inventor has determined that the occupancy ratio (pattern occupancy ratio) of the unevenness formed on the front surface or the back surface of the light guide plate is within a predetermined range in relation to the thickness of the light guide plate.
  • a light guide plate having a light introduction surface for introducing light, a light extraction surface for extracting light introduced from the light introduction surface, and a back surface located on the opposite side of the light extraction surface,
  • the light guide plate has a thickness of 0.020 mm to 0.500 mm;
  • At least one of the light extraction surface and the back surface has a pattern consisting of at least one of a concave portion and a convex portion, The light guide plate whose occupation rate of the pattern is 0.02 to 0.2 times the thickness (mm) of the light guide plate.
  • the concave portion or the convex portion included in the pattern extends in a predetermined direction, and a cross-sectional shape thereof is a triangular shape or a partial shape of a circle or an ellipse,
  • the width of the concave portion or the convex portion is 0.02 to 0.5 times the thickness of the light guide plate,
  • the light guide plate according to [1], wherein the height of the concave portion or the convex portion is 0.01 times or more and 0.25 times or less the thickness of the light guide plate.
  • the shape of the concave portion or the convex portion included in the pattern is a shape selected from the group consisting of a partial shape of a sphere, a triangular pyramid, a quadrangular pyramid, and a cylinder,
  • the maximum length of the bottom of the concave or convex portion is 0.02 to 0.5 times the thickness of the light guide plate,
  • the light guide plate according to [1], wherein the height of the concave portion or the convex portion is 0.01 times or more and 0.25 times or less the thickness of the light guide plate.
  • [4] The light guide plate according to any one of [1] to [3], wherein an arithmetic average roughness Ra of a portion of the light extraction surface and the back surface where the pattern is not formed is 0.05 ⁇ m or less. .
  • [5] The light guide plate according to any one of [1] to [4], wherein an occupation density of the pattern increases continuously or stepwise as the distance from the light introduction surface increases.
  • An illumination device comprising: the light guide plate according to any one of [1] to [5]; and a point light source that irradiates light to a light introduction surface of the light guide plate.
  • the thickness can be reduced, and luminance unevenness on the light extraction surface can be suppressed.
  • luminance unevenness can be suppressed.
  • FIG. 1 is a perspective view schematically showing an outline of an illumination device as an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing an enlarged portion surrounded by an ellipse II in FIG.
  • FIG. 3 is a perspective view schematically showing an example of the shape of the convex portion included in the pattern.
  • FIG. 4 is a perspective view schematically showing an example of the shape of the convex portion included in the pattern.
  • FIG. 5 is a perspective view schematically showing an example of the shape of the convex portion included in the pattern.
  • FIG. 6 is a perspective view schematically showing an example of the shape of the convex portion included in the pattern.
  • FIG. 7 is a perspective view schematically showing an example of the shape of the convex portion included in the pattern.
  • FIG. 8 is a perspective view schematically showing an example of the shape of the convex portion included in the pattern.
  • FIG. 9 is a cross-sectional view illustrating simulation conditions set in the simulation performed in the first
  • the present invention will be described in detail with reference to embodiments and examples, but the present invention is not limited to the following embodiments and examples, and the claims of the present invention and equivalents thereof. Any change can be made without departing from the scope.
  • the directions of the components are “parallel” and “orthogonal” unless otherwise specified, including errors within a range that does not impair the effects of the present invention, for example, within ⁇ 5 °. May be.
  • “along” in a certain direction means “in parallel” in a certain direction.
  • “near” refers to a position close to the light introduction surface
  • “back” refers to a position far from the light introduction surface.
  • FIG. 1 is a perspective view schematically showing an outline of an illumination device as an embodiment of the present invention.
  • the illumination device 1 as an embodiment of the present invention includes a light guide plate 100 and a light source 200.
  • the light guide plate 100 includes a light introduction surface 110 that introduces light into the light guide plate 100, a light extraction surface 120 that extracts light introduced from the light introduction surface 110 to the outside of the light guide plate 100, and a light extraction surface 120. And a back surface 130 located on the opposite side.
  • this light guide plate 100 light introduced into the light guide plate 100 from the light introduction surface 110 is guided through the light guide plate 100 while being internally reflected by the light extraction surface 120 and the back surface 130, and is extracted from the light extraction surface 120. It is like that.
  • the thickness direction of the light guide plate 100 is defined as the Z-axis direction. Further, in a plane orthogonal to the Z-axis direction, a direction along one side of the light guide plate 100 is defined as an X-axis direction, and a direction orthogonal to the X-axis direction is defined as a Y-axis direction.
  • the Z-axis direction is orthogonal to the light extraction surface 120 and the back surface 130
  • the X-axis direction is orthogonal to the light introduction surface 110.
  • the thickness T of the light guide plate 100 is usually 0.020 mm or more, preferably 0.05 mm or more, more preferably 0.10 mm or more, and usually 0.500 mm or less, preferably 0.4 mm or less, more preferably 0.3 mm. It is as follows. Since the light guide plate 100 of the present embodiment can be reduced in thickness as described above, the thickness of the unit when the unit is incorporated into a lighting device or a liquid crystal display device can be reduced. Furthermore, the light extraction from the light extraction surface 120 can be made uniform, and uneven brightness can be suppressed. However, if the thickness T of the light guide plate 100 is excessively thin, it may be difficult to manufacture or the handling property may be impaired. Therefore, the thickness T has a preferable lower limit as described above.
  • the thickness T of the light-guide plate 100 is the area
  • FIG. 2 is a diagram schematically showing an enlarged portion surrounded by an ellipse II in FIG.
  • the light extraction surface 120 and the back surface 130 are main surfaces of the light guide plate 100, and are generally parallel to each other. As shown in FIG. 2, the light guide plate 100 has a light extraction pattern 140 on at least one of the light extraction surface 120 and the back surface 130.
  • the pattern 140 is a minute concavo-convex structure for extracting light that is composed of at least one of a concave portion and a convex portion.
  • the pattern 140 may be formed by a recessed portion that is recessed from the surroundings, may be formed by a protruding portion that is protruded from the surroundings, or may be formed by both a recessed portion and a protruding portion.
  • the pattern 140 is a portion where the surface roughness Ra is larger than 0.05 ⁇ m when the surface roughness Ra is measured in a direction orthogonal to the light introduction surface 110 (X-axis direction in the present embodiment). .
  • Such a pattern 140 exhibits an effect of extracting light guided through the light guide plate 100 from the light extraction surface 120.
  • the pattern 140 preferably has a convex portion.
  • the occupation ratio of the pattern 140 (hereinafter referred to as “pattern occupation ratio” as appropriate.
  • the unit of the pattern occupation ratio is dimensionless) is the same as that of the light guide plate 100.
  • the thickness T (unit: “mm”) is usually 0.02 times or more, preferably 0.04 times or more, more preferably 0.06 times or more, and usually 0.2 times or less, preferably 0. .18 times or less, more preferably 0.15 times or less.
  • the pattern occupancy exceeds the upper limit of the above range, the light introduced from the light introduction surface 110 is not guided to the back and may be extracted entirely in the near area near the light introduction surface 110.
  • the pattern occupancy is below the lower limit of the above range, most of the light introduced from the light introduction surface 110 is not extracted from the light extraction surface 120 but is emitted from the side surface opposite to the light introduction surface 110, There is a possibility that the utilization efficiency of will be low.
  • the pattern occupancy rate refers to the ratio of the area of the portion where the pattern 140 is formed to the area of the surface where the pattern 140 is formed (that is, one or both of the light extraction surface 120 and the back surface 130). Further, the area of the portion where the pattern 140 is formed refers to the area of the bottom surface of the concave portion or the convex portion included in the pattern 140.
  • the pattern 140 does not necessarily exist uniformly on the surface on which the pattern 140 is formed. Therefore, when the pattern 140 does not exist uniformly, the ratio of the area of the portion where the pattern 140 is formed to the total area of the surface where the pattern 140 is formed is defined as the pattern occupation ratio.
  • the ratio of the area of the portion where the pattern is formed to the area of the one surface is defined as the pattern occupation ratio.
  • the ratio of the total area of the portion where the pattern 140 is formed to the total area of the light extraction surface 120 and the back surface 130 is determined as the pattern occupancy rate.
  • the concave portion and the convex portion constituting the pattern 140 is arbitrary as long as the effects of the present invention are not significantly impaired. Therefore, the concave portion and the convex portion may be, for example, a concave portion or a convex portion extending in a predetermined direction.
  • the cross-sectional shape (the shape of a cross section cut by a plane perpendicular to the extending direction) is arbitrary.
  • the concave or convex portion is a concave or convex portion extending in a predetermined direction
  • the extending direction is also arbitrary, and the extending directions of the concave and convex portions may be aligned or intersect. May be.
  • the recessed part and the convex part may be formed in a dot shape, for example.
  • the convex portion may be, for example, a convex portion 141 that extends in a predetermined direction and has a triangular cross section as shown in FIG.
  • this shape is referred to as “triangular prism shape” as appropriate.
  • the convex portion may be a convex portion 142 that extends in a predetermined direction and whose cross-sectional shape is a partial shape of a circle or an ellipse.
  • the convex portion may be, for example, a convex portion 143 having a shape of a part of a sphere as shown in FIG. Further, the convex portion may be, for example, a triangular pyramid-shaped convex portion 144 as shown in FIG. Further, the convex portion may be, for example, a quadrangular pyramid-shaped convex portion 145 as shown in FIG. Further, the convex portion may be, for example, a cylindrical convex portion 146 as shown in FIG. On the other hand, when the pattern 140 includes a recess, the shape of the recess may be, for example, a recess having the same shape as the protrusion shown in FIGS.
  • the length (W) and the height H of the bottom of the cross section obtained by cutting the convex portion by a plane perpendicular to the extending direction preferably satisfy the following conditions. That is, the width W of the concave portion or the convex portion is preferably 0.02 times or more, more preferably 0.04 times or more, particularly preferably 0.06 times or more of the thickness T of the light guide plate 100, and 0.5.
  • the height H of the concave portion or the convex portion is preferably 0.01 times or more, more preferably 0.02 times or more, and particularly preferably 0.03 times or more of the thickness T of the light guide plate 100. 25 times or less is preferable, 0.20 times or less is more preferable, and 0.18 times or less is particularly preferable. If the width W and the height H are too small, the extracted light may interfere with the light extraction surface 120 to generate interference fringes. If it is too large, the light extraction efficiency from the light extraction surface 120 will not be sufficiently high. there is a possibility.
  • the concave portion or the convex portion included in the pattern 140 is a shape selected from the group consisting of a partial shape of a sphere, a triangular pyramid, a quadrangular pyramid, and a cylinder as shown in FIGS.
  • the maximum length N and the height H of the base preferably satisfy the following conditions. That is, the maximum length N of the bottom of the concave portion or the convex portion is preferably 0.02 times or more, more preferably 0.04 times or more, and particularly preferably 0.06 times or more of the thickness T of the light guide plate 100. 0.5 times or less is preferable, 0.4 times or less is more preferable, and 0.3 times or less is particularly preferable.
  • the height H of the concave portion or the convex portion is preferably 0.01 times or more, more preferably 0.02 times or more, and particularly preferably 0.03 times or more of the thickness T of the light guide plate 100. 25 times or less is preferable, 0.20 times or less is more preferable, and 0.18 times or less is particularly preferable. If the maximum length N and the height H are too small, the extracted light may interfere with the light extraction surface 120 to cause interference fringes. If it is too large, the light extraction efficiency from the light extraction surface 120 is sufficiently high. It may disappear.
  • the pattern 140 may be formed uniformly on each of the light extraction surface 120 and the back surface 130, but may be formed non-uniformly.
  • the occupation density of the pattern 140 in the light extraction surface 120 and the back surface 130 is preferably increased continuously or stepwise as the distance from the light introduction surface 110 increases. That is, in the present embodiment, it is preferable that the occupation density of the pattern 140 is lowered in a region close to the light guide plate 110 in the X-axis direction, and the occupation density of the pattern 140 is lowered in a far region. As a result, the light can be extracted more efficiently by the pattern 140 as the distance from the light introduction surface 110 increases.
  • the occupation density of the pattern 140 is set so that the light can be extracted with higher extraction efficiency as the distance from the light introduction surface 110 increases. Light can be extracted more uniformly from the surface 120.
  • the occupation density of the pattern 140 is the area of the light extraction surface 120 and the back surface 130 in each region where the pattern 140 is formed, and the pattern 140 formed on the light extraction surface 120 and the back surface 130 in the region. It means the ratio. Therefore, the pattern occupancy indicates the ratio to the total area of the light extraction surface 120 and the back surface 130 where the pattern 140 is formed, whereas the occupation density is the light extraction surface 120 in each region where the pattern 140 is formed. And the ratio with respect to the area of each of the back surface 130 is pointed out.
  • the light extraction surface 120 and the back surface 130 have a portion 121 where the pattern 140 is not formed.
  • the part in which the pattern is not formed can be made into a flat surface.
  • the arithmetic mean roughness Ra of the portion 121 where the pattern 140 is not formed is usually 0.05 ⁇ m or less, preferably 0.02 ⁇ m or less, more preferably 0.01 ⁇ m or less.
  • arithmetic mean roughness Ra is small, the emission of light from the portion 121 where the pattern 140 is not formed can be suppressed. Therefore, unintentional extraction of light from the portion 121 where the pattern 140 is not formed can be prevented, and luminance unevenness can be more reliably suppressed.
  • arithmetic average roughness Ra of the portion 121 where the pattern 140 is not formed is measured in a direction orthogonal to the light introduction surface 110, and the method defined in JIS B601-2001 is used for the measurement.
  • a light source 200 illustrated in FIG. 1 is a device that irradiates light to a light introduction surface 110 of a light guide plate 100.
  • the light source 200 is usually installed such that its axis (that is, the direction of the principal ray of emitted light) is parallel to the X-axis direction.
  • a surface light source, a point light source, or the like may be used, but a point light source is preferably used. This is because when a point light source is used, the light source can be designed to be small. This is because if the light source cannot be made small, the light incident efficiency will deteriorate.
  • the point light source examples include an LED (Light Emitting Diode). LEDs are high light emission efficiency and are excellent light sources from the viewpoint of energy saving. In the present embodiment, it is assumed that an LED is used as the light source 200.
  • the light source 200 is supplied with electric power from a power source (not shown), and can individually emit light by the supplied electric power.
  • the lighting device 1 as an embodiment of the present invention is configured as described above.
  • the light source 200 emits light and the light guide surface 110 is irradiated with light.
  • the light irradiated on the light guide surface 110 enters the light introduction surface 110 and is introduced into the light guide plate 100.
  • the introduced light is guided through the light guide plate 100 while repeating internal reflection on the surfaces of the light extraction surface 120 and the back surface 130.
  • the guided light is extracted by being emitted from the light extraction surface 120 to the outside by the pattern 140.
  • the illuminating device 1 functions as a surface light emitting device having the light extraction surface 120 as a light emitting surface.
  • the thin light guide plate 100 has the pattern 140 on at least one of the light extraction surface 120 and the back surface 130 and the pattern occupancy is within a predetermined range.
  • the light can be uniformly extracted from the light extraction surface 120 while using. Therefore, the illuminating device 1 can achieve both reduction in size and thickness and suppression of luminance unevenness.
  • the light guide plate 100 may have a shape other than the rectangle as shown in FIG.
  • the light introduction surface 110 may not be a surface orthogonal to the X-axis direction.
  • the light introduction surface 110 may be not only one surface but also two or more surfaces.
  • a side surface 150 other than the light introduction surface 110 of the light guide plate 100 may be used as the light introduction surface. In particular, it is useful to set the side surface opposite to the light introduction surface 110 as the light introduction surface.
  • the shape, size, occupation density, and the like of the pattern 140 may be the same on the light extraction surface 120 and the back surface 130, but may be different. Further, for example, two or more types of patterns 140 having different shapes and sizes may be combined on each of the light extraction surface 120 and the back surface 130. Further, for example, the pattern 140 need not be provided on the light extraction surface 120 or the back surface 130 in the entire region of the light guide plate 100. Therefore, the pattern 140 may be provided only on a part of the light extraction surface 120 and the back surface 130 as long as it is provided on the light extraction surface 120 or the back surface 130 in at least a desired region where light is to be extracted. In addition, for example, a metal may be vapor-deposited or a white scattering plate (white reflection plate) may be disposed in close contact with the surface of the back surface 130 in order to increase internal reflection efficiency on the back surface 130.
  • a white scattering plate white reflection plate
  • Light guide plate materials and manufacturing method Hereinafter, the material and manufacturing method of the light guide plate will be described.
  • the material of the light guide plate include glass and transparent resin.
  • the material of a light-guide plate may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the transparent resin examples include propylene-ethylene copolymer, polystyrene, (meth) acrylic acid ester-aromatic vinyl compound copolymer, polyethylene terephthalate, terephthalic acid-ethylene glycol-cyclohexanedimethanol copolymer, polycarbonate. , Methacrylic resin, and resin having an alicyclic structure (for example, norbornene-based resin). Among these, resins having an alicyclic structure, methacrylic resins, and (meth) acrylic acid ester-aromatic vinyl compound copolymer resins are preferable, and resins having an alicyclic structure are particularly preferable.
  • a resin having an alicyclic structure has good fluidity of the molten resin. Therefore, for example, when a light guide plate is manufactured by injection molding, the mold cavity can be filled with a low injection pressure, so that a thin light guide plate can be formed relatively easily and weld lines are not easily generated. Moreover, when manufacturing a light-guide plate by extrusion molding, for example, there is little thickness nonuniformity at the time of shaping
  • the resin having an alicyclic structure examples include polymer resins having an alicyclic structure in the main chain or side chain. Among them, a polymer resin having an alicyclic structure in the main chain is particularly suitable because it has good mechanical strength and heat resistance.
  • the alicyclic structure is preferably a saturated cyclic hydrocarbon structure.
  • the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less.
  • the ratio of the repeating unit having an alicyclic structure in the polymer resin having an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, and 90% by weight or more. More preferably.
  • Examples of the resin having an alicyclic structure include a ring-opening polymer or a ring-opening copolymer of a norbornene monomer or a hydrogenated product thereof; an addition polymer or an addition copolymer of a norbornene monomer; Polymers of monocyclic olefin monomers or their hydrogenated products; Polymers of cyclic conjugated diene monomers or their hydrogenated products; Vinyl alicyclic hydrocarbon monomers Or a hydrogenated product thereof; a polymer of a vinyl aromatic hydrocarbon monomer or a hydrogenated product of an unsaturated bond part containing an aromatic ring of the copolymer; and the like.
  • hydrogenated products of norbornene-based monomer polymers and hydrogenated products of unsaturated bonds including aromatic rings of vinyl aromatic hydrocarbon-based monomer polymers have mechanical strength and heat resistance. It is particularly suitable because of its excellent properties.
  • methacrylic resins are excellent in transparency, strong and resistant to cracking, and therefore can be suitably used.
  • the methacrylic resin include a methacrylic resin molding material containing 80% or more of a methyl methacrylate polymer defined in JIS K6717.
  • methacrylic resins specified in this standard methacrylic resins having a specified classification code 100-120 having a Vicat softening point temperature of 96 to 100 ° C. and a melt flow rate of 8 to 16 have appropriate fluidity and strength. Is preferred.
  • An antioxidant may be included in the light guide plate molding material in order to prevent oxidative degradation and thermal degradation during molding.
  • the antioxidant include a phenolic antioxidant, a phosphorus antioxidant, and a sulfur antioxidant. Of these, phenolic antioxidants are preferred, and alkyl-substituted antioxidants are particularly preferred.
  • an antioxidant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. The amount of the antioxidant is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, preferably 2 parts by weight or less, more preferably 1 part by weight with respect to 100 parts by weight of the resin component. It is as follows.
  • a light resistance stabilizer may be included in order to improve the light resistance of the light guide plate.
  • the light resistance stabilizer include hindered amine light resistance stabilizer (HALS) and benzoate light resistance stabilizer. Among these, hindered amine light resistance stabilizers are preferred.
  • a light-resistant stabilizer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the light-resistant stabilizer is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, particularly preferably 0.05 parts by weight or more, preferably 2 parts by weight with respect to 100 parts by weight of the resin component.
  • the amount is not more than parts by weight, more preferably not more than 1 part by weight, particularly preferably not more than 0.5 parts by weight.
  • the molding material for the light guide plate may further contain an optional additive as necessary.
  • Optional additives include, for example, stabilizers such as heat stabilizers, ultraviolet absorbers, near infrared absorbers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments; antistatic agents, light Examples include diffusing agents.
  • arbitrary additives may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the dimensions of the main surface of the light guide plate (in the above embodiment, the dimensions in the X-axis direction and the Y-axis direction) are usually set according to the size of the effective surface of the liquid crystal panel of the liquid crystal display device in which the light guide plate is used.
  • the Further, the thickness of the light guide plate (in the above embodiment, the dimension in the Z-axis direction) is as described above.
  • the light guide plate for example, one having a refractive index of 1.533 (critical angle 40.7 °) can be used.
  • the light guide plate When the light guide plate is made of resin, the light guide plate may cause a dimensional change (elongation or warpage) due to moisture absorption. If a dimensional change occurs, wrinkles and the like may occur, and optical characteristics may be impaired.
  • the size of the light guide plate is large (for example, 40 inches)
  • the relative positional relationship between the light source and the light introduction surface changes in the lighting device due to the change in size, and the light utilization efficiency tends to decrease. .
  • the water absorption rate of the light guide plate is preferably set to 0.50% or less, more preferably 0.25% or less, and even more preferably 0.05% or less.
  • the water absorption rate in this specification is a desiccator after drying a test piece having a disk shape of 50 mm in diameter or a square of 50 mm on a side at 50 ° C. for 24 hours in accordance with JIS K7209 A method. It can be obtained from the weight increase when it is allowed to cool in water and immersed in water at 23 ° C. for 24 hours.
  • the material for forming the light guide plate is preferably excellent in heat resistance.
  • the Vicat softening temperature is preferably 90 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 110 ° C. or higher. If the heat resistance of the light guide plate forming material is low, the light guide plate may be melted or deformed by heat generated from a light source or the like, and optical characteristics may be impaired.
  • the Vicat softening temperature can be measured by the method defined in JIS K7206B.
  • a light-guide plate when forming a light-guide plate with resin, it can manufacture by the injection molding method and the extrusion molding method.
  • a flat light guide plate may be prepared in advance, and a pattern may be formed later on the surface of the light guide plate.
  • a method of forming a pattern on the light extraction surface and the back surface of the flat light guide plate for example, a method by cutting using a tool capable of forming a pattern of a desired shape, a desired method by applying a photocurable resin The method of hardening in the state which transferred the type
  • the pattern may be formed simultaneously with the formation of the light guide plate.
  • profile extrusion can be performed using a profile die having a shape corresponding to a desired pattern.
  • prism rows may be formed by embossing after extrusion.
  • a casting mold capable of forming a desired uneven shape may be prepared, and a light guide plate may be produced by casting using this casting mold, and a pattern may be formed simultaneously with the molding of the light guide plate.
  • a mold capable of forming a desired pattern may be used.
  • the mold used for processing such as mold shape transfer to the photo-curing resin, extrusion processing with a deformed die, embossing, casting, or injection molding is, for example, a metal mold using a tool capable of forming a desired pattern. It can be obtained by cutting a member or electroforming on a member having a desired shape.
  • the pattern may be formed by printing with white ink or metal vapor deposition.
  • the light source examples include an LED, a laser diode, a cold cathode tube (CCFL, EEFL), a hot cathode tube (HCFL), and a point light source is preferably used. Any point light source may be used as long as it can obtain a sufficient amount of light so that light can reach the end surface from the light introduction surface.
  • a semiconductor laser or the like may be used.
  • the LED include a blue-yellow pseudo white light emitting diode, a three-color (RGB) type white light emitting diode, and the like.
  • the LED for example, a side-emitting LED, a surface-mounted LED, or a bullet-type LED is used.
  • the dimension of the light emitting part of the LED can be set according to the light distribution characteristic of the LED. Usually, the width and height of the light emitting part of the LED are made equal. However, when the LED has an elliptical or oval cross section, the LED having a different width and height may be used. Good.
  • a general high dome type LED has a Lambertian light distribution and emits a relatively large divergent light having a half-value angle (full-width at half maximum) of about 120 °.
  • the full width at half maximum of the LED is preferably 80 ° or less, more preferably 70 ° or less, and particularly preferably 60 ° or less.
  • LEDs that emit as close to parallel light as possible are preferred.
  • the full width at half maximum of the LED is preferably 90 ° or more, more preferably 100 ° or more, and particularly preferably 110 ° or more. .
  • a light source you may use combining light emitting elements, such as LED, and optical elements, such as a lens.
  • light emitting elements such as LED
  • optical elements such as a lens.
  • a light source that emits light at a full width at half maximum within the above-described preferable range can be realized by combining the LED and the lens.
  • the illumination device of the present invention is suitable as a backlight device that supplies light to a liquid crystal panel of a liquid crystal display device, for example.
  • the liquid crystal panel is a member in which, for example, an alignment film, a transparent electrode, a glass plate, a color filter, a polarizing plate, and the like are stacked and arranged at appropriate positions with a liquid crystal layer interposed therebetween.
  • the lighting device of the present invention is usually provided on the back side of the liquid crystal panel so that light can be supplied to the liquid crystal panel from the back side. Furthermore, you may make it provide arbitrary optical sheets between a liquid crystal panel and an illuminating device as needed.
  • a light-diffusion sheet from a viewpoint of improving the uniformity of the light irradiated to a liquid crystal panel.
  • a prism sheet, a brightness enhancement film, or the like may be provided from the viewpoint of increasing brightness.
  • the lighting device of the present invention can be integrated so as to include the above-described optical sheet and polarizing plate.
  • integrated means that a plurality of elements are fixed so as not to be dispersed, and not only a mode in which the integrated elements are joined to each other, but also any element or gap between the integrated elements. The aspect in which is interposed is also included.
  • FIG. 9 is a cross-sectional view illustrating simulation conditions set in the simulation performed in the first embodiment.
  • an optical model was created and simulated under the conditions described later using optical simulation software “LightTools” (manufactured by Cybernet Co., Ltd.).
  • a thermoplastic alicyclic structure-containing resin (trade name: ZEONOR1420, manufactured by Nippon Zeon Co., Ltd., refractive index: 1.533, critical angle: 40.7 °, water absorption: 0.01%) was set.
  • a rectangular flat light guide plate was set as the light guide plate 301.
  • the dimensions of the light guide plate 301 were 250 mm in length, 50 mm in width, and 0.5 mm in thickness (dimension in the Z-axis direction).
  • the light extraction surface 302 corresponding to one main surface of the light guide plate 301 has a hemispherical convex portion as a pattern 303 on the entire surface.
  • the maximum length N (diameter) of the bottom of the convex portion was 0.05 mm, the height H was 0.025 mm, and the pitch P was 0.198 mm.
  • the pattern occupation ratio on the light extraction surface 302 was set to 0.05 (that is, 5%).
  • the back surface 304 corresponding to the other main surface of the light guide plate 301 is a flat surface.
  • the arithmetic average roughness Ra of the portion 305 where the pattern 303 of the light extraction surface 302 is not formed and the back surface 304 was 0.02 ⁇ m.
  • the light source 307 is provided at a position in front of the light introduction surface 306 corresponding to the side surface of the light guide plate 301.
  • a substrate 308 having a width of 5 mm and 10 LEDs 309 (2.5 mm in length, 1.5 mm in width, 0.5 mm in thickness) arranged in the Y-axis direction along the light introduction surface 306 is set. did.
  • the distance L from the light introduction surface 306 to the light emitting portion of the LED 309 was 2.5 mm. Note that the absorption of the light emitting portion of the LED 309 was 15%, and the full width at half maximum was 120 °.
  • the illuminance (Lumen) of (i) to (iv) below was calculated by simulation when the light introduction surface 306 was irradiated with light from the light source 307 in the above configuration. The results are shown in Table 1.
  • Illuminance on a surface perpendicular to the Z-axis direction at a position immediately outside the light extraction surface 302 that is, a position outside the light guide plate 301 away from the light extraction surface 302 by 0 mm.
  • This illuminance is hereinafter referred to as “emergence illuminance” as appropriate.
  • Example 2 The maximum length N of the base of the hemispherical convex portion set as the pattern 303 is changed to 0.1 mm, the height H is changed to 0.05 mm, the pitch P is changed to 0.627 mm, and the pattern occupancy is changed.
  • the incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation in the same manner as in Example 1 except that it was changed to 0.02 (that is, 2%). The results are shown in Table 1.
  • Example 3 The incident illuminance, emitted illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation in the same manner as in Example 1 except that the pattern 303 was changed to exist on the back surface 304 instead of the light extraction surface 302. The results are shown in Table 1.
  • Example 4 The maximum length N of the base of the hemispherical convex portion set as the pattern 303 is changed to 0.1 mm, the height H is changed to 0.05 mm, the pitch P is changed to 0.295 mm, and the pattern occupancy is changed. Except for the change to 0.09 (that is, 9%), the incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 The thickness of the light guide plate 301 is changed to 0.2 mm, the pitch P of the hemispherical convex portion set as the pattern 303 is changed to 0.313 mm, and the pattern occupation ratio is changed to 0.02 (ie, 2%). Except that, the incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation in the same manner as in Example 1. The results are shown in Table 1.
  • the pattern 303 is a triangular prism-shaped convex portion extending in parallel with the Y-axis direction.
  • the apex angle of the triangular prism-shaped cross section was 90 °.
  • the width W of the convex part was 0.01 mm
  • the height H was 0.005 mm
  • the pitch P was 0.333 mm.
  • the pattern occupation ratio on the light extraction surface 302 was set to 0.03 (that is, 3%).
  • the thickness of the light guide plate 301 was 0.2 mm. Except for the above matters, the incident illuminance, outgoing illuminance, intermediate illuminance and terminal illuminance were calculated by simulation in the same manner as in Example 1. The results are shown in Table 2.
  • Example 7 The pattern 303 has a quadrangular pyramid shape. Further, the height H of the convex portions was 0.04 mm, and the pitch P was 0.354 mm. In addition, the pattern occupation ratio on the light extraction surface 302 was set to 0.01 (that is, 1%). Furthermore, the thickness of the light guide plate 301 was 0.2 mm. Except for the above matters, the incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation in the same manner as in Example 1. The results are shown in Table 2.
  • Example 8 The thickness of the light guide plate 301 is changed to 0.02 mm, the maximum length N of the hemispherical convex portion set as the pattern 303 is changed to 0.002 mm, the height H is changed to 0.001 mm, and the pitch
  • P was changed to 0.032 mm and the pattern occupation ratio was changed to 0.003 (that is, 0.3%), the incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were changed. Calculated by simulation. The results are shown in Table 2.
  • Example 9 The pattern 303 is changed to exist on both the light extraction surface 302 and the back surface 304, the maximum length N of the base of the hemispherical convex portion set as the pattern 303 is changed to 0.1 mm, and the height H is set to 0. .05 mm, the pitch P is changed to 0.443 mm, and the pattern occupancy is changed to 0.08 (that is, 8%) on both sides.
  • the intermediate illuminance and terminal illuminance were calculated by simulation. The results are shown in Table 2.
  • Example 10 Example except that the maximum length N of the base of the hemispherical convex portion set as the pattern 303 is changed to 0.3 mm, the height H is changed to 0.15 mm, and the pitch P is changed to 1.189 mm.
  • the incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation. The results are shown in Table 2.
  • Example 11 In the same manner as in Example 1, except that a triangular prism-shaped convex portion (vertical angle 90 °, pitch 100 ⁇ m) extending in the X-axis direction so as to be orthogonal to the light introduction surface is disposed on the back surface.
  • Light illuminance, light emission illuminance, intermediate illuminance and terminal illuminance were calculated by simulation. The results are shown in Table 2. In Example 11, a pattern appearance that does not affect luminance unevenness was confirmed.
  • the pattern 303 is changed to exist on both the light extraction surface 302 and the back surface 304, the maximum length N of the base of the hemispherical convex portion set as the pattern 303 is changed to 0.1 mm, and the height H is set to 0. .05 mm, the pitch P is changed to 1.253 mm, and the pattern occupancy is changed to 0.005 (that is, 0.5%).
  • the intermediate illuminance and terminal illuminance were calculated by simulation. The results are shown in Table 3.
  • ⁇ Consideration ⁇ In Tables 1 to 3, a value ⁇ 1 obtained by dividing the pattern occupancy by the thickness of the light guide plate, a value ⁇ 2 obtained by dividing the width W or the maximum length N of the bottom by the thickness of the light guide plate, and the height H of the pattern A value ⁇ 3 obtained by dividing by the thickness of the light guide plate is also shown. Further, a value obtained by dividing the light emission illuminance by the light incident illuminance is shown as “light emission ratio”, and a value obtained by dividing the intermediate illuminance by the light incident illuminance is shown as “intermediate illuminance ratio”.
  • the ratio of light emission is high and the ratio of intermediate illuminance is also high.
  • the light emission ratio is an index indicating how much of the light introduced from the light introduction surface is extracted from the light extraction surface. Therefore, a high light emission ratio indicates that light emitted from the light source can be used more effectively.
  • the intermediate illuminance ratio is an index indicating how much light is introduced from the light introduction surface to the back of the intermediate point in the X-axis direction of the light guide plate. Therefore, a high intermediate illuminance ratio indicates that the introduced light is difficult to be extracted from the light extraction surface near the light introduction surface.
  • the luminance at the position near the light introduction surface of the light extraction surface is not excessively increased, and luminance unevenness can be suppressed. Therefore, it can be confirmed from the above embodiments that the light guide plate and the lighting device of the present invention can both reduce the thickness of the light guide plate and suppress luminance unevenness.
  • Comparative Example 1 shows good results. Since the comparative example 1 has a thick light guide plate, such a result is obtained.
  • Comparative Examples 2 and 3 are examples in which the pattern occupancy is high. In these comparative examples 2 and 3, although the light emission ratio is high, the intermediate illuminance ratio is low. Therefore, most of the light introduced from the light introduction surface is extracted at a position near the light introduction surface of the light extraction surface, and almost no light is emitted at a far position. Therefore, in Comparative Example 2, the near side in the X-axis direction becomes brighter and darker, and luminance unevenness occurs. Comparative example 4 is an example with a low pattern occupancy, and comparative example 5 is an example without a pattern.
  • the light emission ratio is not 100% in any of the above-mentioned examples and comparative examples. This is presumably because the light component guided in the light guide plate includes parallel light traveling parallel to the light extraction surface and the back surface. In consideration of the parallel light, it can be determined that the light emitted from the light source can be sufficiently utilized if the light emission ratio is as high as that achieved in the above embodiment.
  • the light guide plate of the present invention can be arbitrarily applied to optical applications, and is particularly suitable for an illumination device capable of surface light emission.
  • the illumination device of the present invention is suitable for use in a liquid crystal display device.
  • the lighting device of the present invention can also be used for applications other than the backlight of a liquid crystal display device, for example, as a lighting device such as a show window.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

Disclosed is a light-guiding plate (100) comprising a light introduction face (110) that introduces light; a light extraction face (120) that extracts light that is introduced via the light introduction face (110); and a rear face (130) that is located on the opposite side from the light extraction face (120). The thickness of the light-guiding plate is 0.020mm-0.500mm, at least one of either the light introduction face (120) or the rear face (130) further comprises a pattern of at least either depressions or protrusions; and the share of the pattern is between 0.02 and 0.2 times the thickness of the light-guiding plate (100), inclusive.

Description

導光板及び照明装置Light guide plate and lighting device
 本発明は、導光板およびそれを備えた照明装置に関する。 The present invention relates to a light guide plate and a lighting device including the same.
 液晶表示装置に用いられるバックライト装置として、光源からの光を導光板の側面から導入して、導光板のおもて面又は裏面に位置する光取出面から出射させるサイドライド型のバックライト装置が知られている。サイドライト型のバックライト装置は、直下型のバックライト装置と比較して薄型に構成できるという利点を有している。このようなサイドライト型のバックライト装置においては、装置のさらなる薄型化の要請に応えるため、より薄い導光板の採用が検討されている。薄型の導光板については、例えば、特許文献1,2などにおいて検討がなされている。 As a backlight device used in a liquid crystal display device, a side-ride type backlight device that introduces light from a light source from a side surface of a light guide plate and emits the light from a light extraction surface located on the front surface or the back surface of the light guide plate It has been known. The sidelight type backlight device has an advantage that it can be formed thinner than a direct type backlight device. In such a sidelight type backlight device, adoption of a thinner light guide plate is being studied in order to meet the demand for further thinning of the device. For example, Patent Documents 1 and 2 discuss the thin light guide plate.
特開2005-228612号公報JP 2005-228612 A 特開2006-21018号公報JP 2006-21018 A
 導光板のおもて面及び裏面には、光の取出効率を向上させる観点から、微小な凹凸を形成する場合がある。しかしながら、薄型の導光板の場合、導入された光の反射回数が厚い導光板にくらべて大幅に増える傾向がある。このため、従来の厚い導光板と同じような配置及び大きさの光取り出し用の凹凸を薄型の導光板に形成すると、光取出面において均一に光を取り出すことが難しかった。具体的には、光の反射回数が増えることで、光源近くで光が簡単に出光してしまい、光源から遠い端末部分では出光する光が少なくなる傾向があった。この結果、薄型の導光板では、光取出面の輝度が、光を導入する側面に近い領域で大きくなり、遠い領域では小さくなって、輝度ムラが生じていた。これにより、光を導入する側面からの距離が遠い領域における光取出面でも高い輝度で光を取り出せるようにして、輝度ムラを抑制する技術の開発が望まれていた。
 さらに、薄型の導光板では、光取り出し用の凹凸を厚い導光板と同じ大きさで設計すると、パターンが見えたり、干渉縞の発生、輝度が上がらなかったりする課題もあった。
From the viewpoint of improving the light extraction efficiency, minute irregularities may be formed on the front and back surfaces of the light guide plate. However, in the case of a thin light guide plate, the number of reflections of the introduced light tends to increase significantly compared to a thick light guide plate. For this reason, when unevenness for light extraction having the same arrangement and size as the conventional thick light guide plate is formed on the thin light guide plate, it is difficult to extract light uniformly on the light extraction surface. Specifically, as the number of times of light reflection increases, the light is easily emitted near the light source, and the light emitted from the terminal portion far from the light source tends to decrease. As a result, in the thin light guide plate, the luminance of the light extraction surface increases in a region close to the side surface where light is introduced, and decreases in a distant region, resulting in luminance unevenness. As a result, it has been desired to develop a technique for suppressing luminance unevenness by allowing light to be extracted with high luminance even on a light extraction surface in a region far from the side where light is introduced.
Further, in the thin light guide plate, when the light extraction unevenness is designed to be the same size as the thick light guide plate, there is a problem that a pattern can be seen, interference fringes are generated, and luminance is not increased.
 本発明は上記の課題に鑑みて創案されたもので、輝度ムラを抑制した薄型の導光板、および輝度ムラを抑制できる照明装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a thin light guide plate that suppresses luminance unevenness and an illumination device that can suppress luminance unevenness.
 本発明者は上述した課題を解決するため鋭意検討した結果、導光板のおもて面又は裏面に形成する凹凸の占有率(パターン占有率)を、導光板の厚みとの関係で所定の範囲に収めることで、薄型の導光板であっても光取出面から均一に光を取り出すことができ、パターン見えや干渉縞が発生しないことを見出し、本発明を完成させた。
 すなわち、本発明によれば、以下の〔1〕~〔6〕が提供される。
As a result of intensive studies to solve the above-described problems, the present inventor has determined that the occupancy ratio (pattern occupancy ratio) of the unevenness formed on the front surface or the back surface of the light guide plate is within a predetermined range in relation to the thickness of the light guide plate. Thus, even when a thin light guide plate is used, it is found that light can be extracted uniformly from the light extraction surface, and no pattern appearance or interference fringes are generated, and the present invention has been completed.
That is, according to the present invention, the following [1] to [6] are provided.
 〔1〕 光を導入する光導入面、前記光導入面から導入された光を取り出す光取出面、および、前記光取出面の反対側に位置する裏面を有する導光板であって、
 前記導光板の厚みが0.020mm~0.500mmであり、
 前記光取出面及び前記裏面の少なくとも一方に、凹部及び凸部のうち少なくとも一方からなるパターンを有し、
 前記パターンの占有率が、前記導光板の厚み(mm)の0.02倍以上0.2倍以下である、導光板。
 〔2〕 前記パターンに含まれる前記凹部又は前記凸部が、所定の方向に延在し、その断面形状が三角形状又は円若しくは楕円の一部の形状であり、
 前記凹部又は前記凸部の幅が、前記導光板の厚みの0.02倍以上0.5倍以下であり、
 前記凹部又は前記凸部の高さが、前記導光板の厚みの0.01倍以上0.25倍以下である、〔1〕記載の導光板。
 〔3〕 前記パターンに含まれる前記凹部又は凸部の形状が、球の一部の形状、三角錐、四角錐及び円柱からなる群より選ばれる形状であり、
 前記凹部又は凸部の底辺の最大長が、前記導光板の厚みの0.02倍以上0.5倍以下であり、
 前記凹部又は前記凸部の高さが、前記導光板の厚みの0.01倍以上0.25倍以下である、〔1〕記載の導光板。
 〔4〕 前記光取出面及び前記裏面の前記パターンが形成されていない部分の算術平均粗さRaが0.05μm以下である、〔1〕~〔3〕のいずれか一項に記載の導光板。
 〔5〕 前記パターンの占有密度が、前記光導入面から離れるに従って連続的又は段階的に大きくなるようになっている、〔1〕~〔4〕のいずれか一項に記載の導光板。
 〔6〕 〔1〕~〔5〕のいずれか一項に記載の導光板と、前記導光板の光導入面に光を照射する点光源とを備える、照明装置。
[1] A light guide plate having a light introduction surface for introducing light, a light extraction surface for extracting light introduced from the light introduction surface, and a back surface located on the opposite side of the light extraction surface,
The light guide plate has a thickness of 0.020 mm to 0.500 mm;
At least one of the light extraction surface and the back surface has a pattern consisting of at least one of a concave portion and a convex portion,
The light guide plate whose occupation rate of the pattern is 0.02 to 0.2 times the thickness (mm) of the light guide plate.
[2] The concave portion or the convex portion included in the pattern extends in a predetermined direction, and a cross-sectional shape thereof is a triangular shape or a partial shape of a circle or an ellipse,
The width of the concave portion or the convex portion is 0.02 to 0.5 times the thickness of the light guide plate,
The light guide plate according to [1], wherein the height of the concave portion or the convex portion is 0.01 times or more and 0.25 times or less the thickness of the light guide plate.
[3] The shape of the concave portion or the convex portion included in the pattern is a shape selected from the group consisting of a partial shape of a sphere, a triangular pyramid, a quadrangular pyramid, and a cylinder,
The maximum length of the bottom of the concave or convex portion is 0.02 to 0.5 times the thickness of the light guide plate,
The light guide plate according to [1], wherein the height of the concave portion or the convex portion is 0.01 times or more and 0.25 times or less the thickness of the light guide plate.
[4] The light guide plate according to any one of [1] to [3], wherein an arithmetic average roughness Ra of a portion of the light extraction surface and the back surface where the pattern is not formed is 0.05 μm or less. .
[5] The light guide plate according to any one of [1] to [4], wherein an occupation density of the pattern increases continuously or stepwise as the distance from the light introduction surface increases.
[6] An illumination device comprising: the light guide plate according to any one of [1] to [5]; and a point light source that irradiates light to a light introduction surface of the light guide plate.
 本発明の導光板によれば、厚みを薄くでき、且つ、光取出面における輝度ムラを抑制できる。
 本発明の照明装置によれば、輝度ムラを抑制できる。
According to the light guide plate of the present invention, the thickness can be reduced, and luminance unevenness on the light extraction surface can be suppressed.
According to the illumination device of the present invention, luminance unevenness can be suppressed.
図1は、本発明の一実施形態としての照明装置の概要を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an outline of an illumination device as an embodiment of the present invention. 図2は、図1の楕円IIで囲まれた部分を拡大して模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an enlarged portion surrounded by an ellipse II in FIG. 図3は、パターンに含まれる凸部の形状の例を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing an example of the shape of the convex portion included in the pattern. 図4は、パターンに含まれる凸部の形状の例を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing an example of the shape of the convex portion included in the pattern. 図5は、パターンに含まれる凸部の形状の例を模式的に示す斜視図である。FIG. 5 is a perspective view schematically showing an example of the shape of the convex portion included in the pattern. 図6は、パターンに含まれる凸部の形状の例を模式的に示す斜視図である。FIG. 6 is a perspective view schematically showing an example of the shape of the convex portion included in the pattern. 図7は、パターンに含まれる凸部の形状の例を模式的に示す斜視図である。FIG. 7 is a perspective view schematically showing an example of the shape of the convex portion included in the pattern. 図8は、パターンに含まれる凸部の形状の例を模式的に示す斜視図である。FIG. 8 is a perspective view schematically showing an example of the shape of the convex portion included in the pattern. 図9は、実施例1で行ったシミュレーションにおいて設定したシミュレーション条件を説明する断面図である。FIG. 9 is a cross-sectional view illustrating simulation conditions set in the simulation performed in the first embodiment.
 以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下の実施形態及び例示物等に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施できる。
 なお、以下の説明において、構成要素の方向が「平行」及び「直交」とは、特に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。また、ある方向に「沿って」とは、ある方向に「平行に」との意味である。さらに、特に断らない限り、導光板の位置の説明で「手前」という場合は光導入面に近い位置をいい、「奥」という場合は光導入面に遠い位置をいう。
Hereinafter, the present invention will be described in detail with reference to embodiments and examples, but the present invention is not limited to the following embodiments and examples, and the claims of the present invention and equivalents thereof. Any change can be made without departing from the scope.
In the following description, the directions of the components are “parallel” and “orthogonal” unless otherwise specified, including errors within a range that does not impair the effects of the present invention, for example, within ± 5 °. May be. Further, “along” in a certain direction means “in parallel” in a certain direction. Further, unless otherwise specified, in the description of the position of the light guide plate, “near” refers to a position close to the light introduction surface, and “back” refers to a position far from the light introduction surface.
〔実施形態〕
 図1は、本発明の一実施形態としての照明装置の概要を模式的に示す斜視図である。図1に示すように、本発明の一実施形態としての照明装置1は、導光板100と光源200とを備える。
Embodiment
FIG. 1 is a perspective view schematically showing an outline of an illumination device as an embodiment of the present invention. As shown in FIG. 1, the illumination device 1 as an embodiment of the present invention includes a light guide plate 100 and a light source 200.
 導光板100は、導光板100内に光を導入する光導入面110と、光導入面110から導入された光を導光板100の外部へと取り出す光取出面120と、光取出面120とは反対側に位置する裏面130とを備える。この導光板100では、光導入面110から導光板100内に導入された光が、光取出面120及び裏面130で内部反射されながら導光板100中を導光され、光取出面120から取り出されるようになっている。 The light guide plate 100 includes a light introduction surface 110 that introduces light into the light guide plate 100, a light extraction surface 120 that extracts light introduced from the light introduction surface 110 to the outside of the light guide plate 100, and a light extraction surface 120. And a back surface 130 located on the opposite side. In this light guide plate 100, light introduced into the light guide plate 100 from the light introduction surface 110 is guided through the light guide plate 100 while being internally reflected by the light extraction surface 120 and the back surface 130, and is extracted from the light extraction surface 120. It is like that.
 ここで、導光板100の厚み方向をZ軸方向とする。また、Z軸方向に直交する面内において、導光板100の一辺に沿う方向をX軸方向とし、X軸方向に直交する方向をY軸方向とする。本実施形態の導光板100においては、Z軸方向は光取出面120及び裏面130と直交し、X軸方向は光導入面110と直交する。 Here, the thickness direction of the light guide plate 100 is defined as the Z-axis direction. Further, in a plane orthogonal to the Z-axis direction, a direction along one side of the light guide plate 100 is defined as an X-axis direction, and a direction orthogonal to the X-axis direction is defined as a Y-axis direction. In the light guide plate 100 of the present embodiment, the Z-axis direction is orthogonal to the light extraction surface 120 and the back surface 130, and the X-axis direction is orthogonal to the light introduction surface 110.
 導光板100の厚みTは、通常0.020mm以上、好ましくは0.05mm以上、より好ましくは0.10mm以上であり、通常0.500mm以下、好ましくは0.4mm以下、より好ましくは0.3mm以下である。本実施形態の導光板100は、このように厚みを薄くできるため、照明装置や液晶表示装置等にユニット化して組み込む際のユニットの厚みを薄くできる。さらに、光取出面120からの光の取り出しを均一にして、輝度ムラを抑制できる。ただし、導光板100の厚みTが過度に薄いと製造が困難になったりハンドリング性が損なわれたりすることがあるため、前記のように厚みTには好ましい下限がある。
 なお、導光板100の光取出面120又は裏面130には後述するように凹部又は凸部からなるパターン140を形成するが、導光板100の厚みTは、前記のパターン140が形成されていない領域における導光板100のZ軸方向の寸法を意味する。
The thickness T of the light guide plate 100 is usually 0.020 mm or more, preferably 0.05 mm or more, more preferably 0.10 mm or more, and usually 0.500 mm or less, preferably 0.4 mm or less, more preferably 0.3 mm. It is as follows. Since the light guide plate 100 of the present embodiment can be reduced in thickness as described above, the thickness of the unit when the unit is incorporated into a lighting device or a liquid crystal display device can be reduced. Furthermore, the light extraction from the light extraction surface 120 can be made uniform, and uneven brightness can be suppressed. However, if the thickness T of the light guide plate 100 is excessively thin, it may be difficult to manufacture or the handling property may be impaired. Therefore, the thickness T has a preferable lower limit as described above.
In addition, although the pattern 140 which consists of a recessed part or a convex part is formed in the light extraction surface 120 or the back surface 130 of the light-guide plate 100 so that it may mention later, the thickness T of the light-guide plate 100 is the area | region in which the said pattern 140 is not formed. Means the dimension of the light guide plate 100 in the Z-axis direction.
 図2は、図1の楕円IIで囲まれた部分を拡大して模式的に示す図である。光取出面120及び裏面130は導光板100の主面であり、通常は互いに平行な面である。図2に示すように、導光板100は、これらの光取出面120及び裏面130の少なくとも一方の面に、光取り出し用のパターン140を有する。 FIG. 2 is a diagram schematically showing an enlarged portion surrounded by an ellipse II in FIG. The light extraction surface 120 and the back surface 130 are main surfaces of the light guide plate 100, and are generally parallel to each other. As shown in FIG. 2, the light guide plate 100 has a light extraction pattern 140 on at least one of the light extraction surface 120 and the back surface 130.
 パターン140は、凹部及び凸部のうち少なくとも一方からなる光取り出し用の微小な凹凸構造である。このパターン140は、周囲よりも凹んだ凹部により形成されていてもよく、周囲よりも凸に形成された凸部により形成されていてもよく、凹部及び凸部の両方により形成されていてもよい。ただし、パターン140は、光導入面110と直交する方向(本実施形態ではX軸方向)に表面粗さRaを測定した場合に表面粗さRaが0.05μmよりも大きくなる部分のことをいう。このようなパターン140は、導光板100内を導光される光を光取出面120から取り出す作用を発揮する。ただし、パターン140を有する面(光取出面120及び裏面130の一方又は両方)の傷付きを防ぐ観点から、パターン140は凸部を有することが好ましい。 The pattern 140 is a minute concavo-convex structure for extracting light that is composed of at least one of a concave portion and a convex portion. The pattern 140 may be formed by a recessed portion that is recessed from the surroundings, may be formed by a protruding portion that is protruded from the surroundings, or may be formed by both a recessed portion and a protruding portion. . However, the pattern 140 is a portion where the surface roughness Ra is larger than 0.05 μm when the surface roughness Ra is measured in a direction orthogonal to the light introduction surface 110 (X-axis direction in the present embodiment). . Such a pattern 140 exhibits an effect of extracting light guided through the light guide plate 100 from the light extraction surface 120. However, from the viewpoint of preventing the surface having the pattern 140 (one or both of the light extraction surface 120 and the back surface 130) from being damaged, the pattern 140 preferably has a convex portion.
 ただし、本実施形態の導光板100においては、前記のパターン140の占有率(以下、適宜「パターン占有率」という。なお、パターン占有率の単位は無次元である。)が、導光板100の厚みT(単位は「mm」とする。)の、通常0.02倍以上、好ましくは0.04倍以上、より好ましくは0.06倍以上であり、通常0.2倍以下、好ましくは0.18倍以下、より好ましくは0.15倍以下である。パターン占有率を前記の範囲に収めることにより、光取出面120から光を均一に取り出すことができるようになるので、輝度ムラを抑制できる。パターン占有率が前記範囲の上限を上回ると、光導入面110から導入された光が奥の方まで導光されず、光導入面110に近い手前の領域で全て取り出される可能性がある。また、パターン占有率が前記範囲の下限を下回ると、光導入面110から導入された光の大部分が光取出面120から取り出されずに光導入面110とは反対側の側面から出射し、光の利用効率が低くなる可能性がある。 However, in the light guide plate 100 of the present embodiment, the occupation ratio of the pattern 140 (hereinafter referred to as “pattern occupation ratio” as appropriate. The unit of the pattern occupation ratio is dimensionless) is the same as that of the light guide plate 100. The thickness T (unit: “mm”) is usually 0.02 times or more, preferably 0.04 times or more, more preferably 0.06 times or more, and usually 0.2 times or less, preferably 0. .18 times or less, more preferably 0.15 times or less. By keeping the pattern occupancy within the above range, it becomes possible to uniformly extract light from the light extraction surface 120, so that uneven brightness can be suppressed. When the pattern occupancy exceeds the upper limit of the above range, the light introduced from the light introduction surface 110 is not guided to the back and may be extracted entirely in the near area near the light introduction surface 110. When the pattern occupancy is below the lower limit of the above range, most of the light introduced from the light introduction surface 110 is not extracted from the light extraction surface 120 but is emitted from the side surface opposite to the light introduction surface 110, There is a possibility that the utilization efficiency of will be low.
 ここでパターン占有率とは、パターン140が形成された面(即ち、光取出面120及び裏面130の一方又は両方)の面積に対する、パターン140が形成された部分の面積の割合のことをいう。また、パターン140が形成された部分の面積とは、パターン140が含む凹部又は凸部の底面の面積をいう。
 パターン140が形成された面においてパターン140は必ずしも均一に存在していない。そこで、パターン140が均一に存在していない場合には、パターン140が形成された面の全面積に対する、パターン140が形成された部分の面積の割合を、前記のパターン占有率とする。したがって、光取出面120及び裏面130の一方の面にパターン140が存在する場合には、当該一方の面の面積に対するパターンが形成された部分の面積の割合をパターン占有率とする。また、光取出面120及び裏面130の両方の面にパターン140が存在する場合には、光取出面120及び裏面130の合計面積に対するパターン140が形成された部分の合計面積の割合をパターン占有率とする。
Here, the pattern occupancy rate refers to the ratio of the area of the portion where the pattern 140 is formed to the area of the surface where the pattern 140 is formed (that is, one or both of the light extraction surface 120 and the back surface 130). Further, the area of the portion where the pattern 140 is formed refers to the area of the bottom surface of the concave portion or the convex portion included in the pattern 140.
The pattern 140 does not necessarily exist uniformly on the surface on which the pattern 140 is formed. Therefore, when the pattern 140 does not exist uniformly, the ratio of the area of the portion where the pattern 140 is formed to the total area of the surface where the pattern 140 is formed is defined as the pattern occupation ratio. Therefore, when the pattern 140 exists on one surface of the light extraction surface 120 and the back surface 130, the ratio of the area of the portion where the pattern is formed to the area of the one surface is defined as the pattern occupation ratio. When the pattern 140 exists on both the light extraction surface 120 and the back surface 130, the ratio of the total area of the portion where the pattern 140 is formed to the total area of the light extraction surface 120 and the back surface 130 is determined as the pattern occupancy rate. And
 パターン140を構成する凹部及び凸部の形状は、本発明の効果を著しく損なわない限り任意である。
 したがって、凹部及び凸部は、例えば、所定の方向に延在する凹部又は凸部であってもよい。凹部又は凸部が所定の方向に延在する凹部又は凸部である場合、その断面形状(延在方向に垂直な平面で切った断面の形状)は任意である。さらに、凹部又は凸部が所定の方向に延在する凹部又は凸部である場合、その延在方向も任意であり、各凹部及び凸部の延在方向は揃っていてもよく、交差していてもよい。また、凹部及び凸部は、例えば、点状に形成されたものであってもよい。
The shape of the concave portion and the convex portion constituting the pattern 140 is arbitrary as long as the effects of the present invention are not significantly impaired.
Therefore, the concave portion and the convex portion may be, for example, a concave portion or a convex portion extending in a predetermined direction. When the concave portion or the convex portion is a concave portion or a convex portion extending in a predetermined direction, the cross-sectional shape (the shape of a cross section cut by a plane perpendicular to the extending direction) is arbitrary. Furthermore, when the concave or convex portion is a concave or convex portion extending in a predetermined direction, the extending direction is also arbitrary, and the extending directions of the concave and convex portions may be aligned or intersect. May be. Moreover, the recessed part and the convex part may be formed in a dot shape, for example.
 以下、好ましいパターン140の形状について、例を挙げて説明する。
 図3~図8は、いずれもパターン140に含まれる凸部の形状の例を模式的に示す斜視図である。パターン140が凸部を含む場合、当該凸部は、例えば、図3に示すように、所定の方向に延在し、その断面形状が三角形状である凸部141であってもよい。なお、以下、適宜、この形状を「三角プリズム形状」という。また、当該凸部は、例えば、図4に示すように、所定の方向に延在し、その断面形状が円若しくは楕円の一部の形状である凸部142であってもよい。なお、以下、適宜、この形状を「レンチキュラー形状」という。また、当該凸部は、例えば、図5に示すように、球の一部の形状を有する凸部143であってもよい。また、当該凸部は、例えば、図6に示すように、三角錐状の凸部144であってもよい。また、当該凸部は、例えば、図7に示すように、四角錐状の凸部145であってもよい。また、当該凸部は、例えば、図8に示すように、円柱状の凸部146であってもよい。他方、パターン140が凹部を含む場合、当該凹部の形状は、例えば、図3~図8で示した凸部と同形状の凹部であってもよい。
Hereinafter, the preferable shape of the pattern 140 will be described with an example.
3 to 8 are perspective views schematically showing examples of the shape of the protrusions included in the pattern 140. FIG. When the pattern 140 includes a convex portion, the convex portion may be, for example, a convex portion 141 that extends in a predetermined direction and has a triangular cross section as shown in FIG. Hereinafter, this shape is referred to as “triangular prism shape” as appropriate. In addition, for example, as shown in FIG. 4, the convex portion may be a convex portion 142 that extends in a predetermined direction and whose cross-sectional shape is a partial shape of a circle or an ellipse. Hereinafter, this shape is referred to as a “lenticular shape” as appropriate. Further, the convex portion may be, for example, a convex portion 143 having a shape of a part of a sphere as shown in FIG. Further, the convex portion may be, for example, a triangular pyramid-shaped convex portion 144 as shown in FIG. Further, the convex portion may be, for example, a quadrangular pyramid-shaped convex portion 145 as shown in FIG. Further, the convex portion may be, for example, a cylindrical convex portion 146 as shown in FIG. On the other hand, when the pattern 140 includes a recess, the shape of the recess may be, for example, a recess having the same shape as the protrusion shown in FIGS.
 ただし、パターン140に含まれる凹部又は凸部が、図3は図4に示すように三角プリズム形状又はレンチキュラー形状である場合、その凹部又は凸部が有する形状の寸法のうち、幅(すなわち、凹部又は凸部を、その延在方向に垂直な平面で切った断面の底辺の長さ)Wおよび高さHは、以下の条件を満たすことが好ましい。
 すなわち、凹部又は凸部の幅Wは、導光板100の厚みTの、0.02倍以上が好ましく、0.04倍以上がより好ましく、0.06倍以上が特に好ましく、また、0.5倍以下が好ましく、0.4倍以下がより好ましく、0.3倍以下が特に好ましい。さらに、凹部又は凸部の高さHは、導光板100の厚みTの、0.01倍以上が好ましく、0.02倍以上がより好ましく、0.03倍以上が特に好ましく、また、0.25倍以下が好ましく、0.20倍以下がより好ましく、0.18倍以下が特に好ましい。前記の幅W及び高さHが小さすぎると光取出面120において取り出し光が干渉して干渉縞が生じる可能性があり、大きすぎると光取出面120からの光の取出効率が十分に高くなくなる可能性がある。
However, when the concave portion or the convex portion included in the pattern 140 is a triangular prism shape or a lenticular shape as shown in FIG. 3 in FIG. 4, the width (that is, the concave portion) among the dimensions of the shape of the concave portion or the convex portion. Alternatively, the length (W) and the height H of the bottom of the cross section obtained by cutting the convex portion by a plane perpendicular to the extending direction preferably satisfy the following conditions.
That is, the width W of the concave portion or the convex portion is preferably 0.02 times or more, more preferably 0.04 times or more, particularly preferably 0.06 times or more of the thickness T of the light guide plate 100, and 0.5. Is preferably not more than twice, more preferably not more than 0.4 times, and particularly preferably not more than 0.3 times. Further, the height H of the concave portion or the convex portion is preferably 0.01 times or more, more preferably 0.02 times or more, and particularly preferably 0.03 times or more of the thickness T of the light guide plate 100. 25 times or less is preferable, 0.20 times or less is more preferable, and 0.18 times or less is particularly preferable. If the width W and the height H are too small, the extracted light may interfere with the light extraction surface 120 to generate interference fringes. If it is too large, the light extraction efficiency from the light extraction surface 120 will not be sufficiently high. there is a possibility.
 また、パターン140に含まれる凹部又は凸部が、図5~図8に示すように球の一部の形状、三角錐、四角錐及び円柱からなる群より選ばれる形状である場合、その凹部又は凸部が有する形状の寸法のうち、底辺の最大長Nおよび高さHは、以下の条件を満たすことが好ましい。
 すなわち、凹部又は凸部の底辺の最大長Nは、導光板100の厚みTの、0.02倍以上が好ましく、0.04倍以上がより好ましく、0.06倍以上が特に好ましく、また、0.5倍以下が好ましく、0.4倍以下がより好ましく、0.3倍以下が特に好ましい。さらに、凹部又は凸部の高さHは、導光板100の厚みTの、0.01倍以上が好ましく、0.02倍以上がより好ましく、0.03倍以上が特に好ましく、また、0.25倍以下が好ましく、0.20倍以下がより好ましく、0.18倍以下が特に好ましい。前記の最大長N及び高さHが小さすぎると光取出面120において取り出し光が干渉して干渉縞が生じる可能性があり、大きすぎると光取出面120からの光の取出効率が十分に高くなくなる可能性がある。
In addition, when the concave portion or the convex portion included in the pattern 140 is a shape selected from the group consisting of a partial shape of a sphere, a triangular pyramid, a quadrangular pyramid, and a cylinder as shown in FIGS. Among the dimensions of the shape of the convex portion, the maximum length N and the height H of the base preferably satisfy the following conditions.
That is, the maximum length N of the bottom of the concave portion or the convex portion is preferably 0.02 times or more, more preferably 0.04 times or more, and particularly preferably 0.06 times or more of the thickness T of the light guide plate 100. 0.5 times or less is preferable, 0.4 times or less is more preferable, and 0.3 times or less is particularly preferable. Further, the height H of the concave portion or the convex portion is preferably 0.01 times or more, more preferably 0.02 times or more, and particularly preferably 0.03 times or more of the thickness T of the light guide plate 100. 25 times or less is preferable, 0.20 times or less is more preferable, and 0.18 times or less is particularly preferable. If the maximum length N and the height H are too small, the extracted light may interfere with the light extraction surface 120 to cause interference fringes. If it is too large, the light extraction efficiency from the light extraction surface 120 is sufficiently high. It may disappear.
 光取出面120及び裏面130それぞれにおいて、パターン140は均一に形成されていてもよいが、不均一に形成されていてもよい。不均一である場合、光取出面120及び裏面130それぞれにおいて、面内でのパターン140の占有密度は、光導入面110から離れるに従って連続的又は段階的に大きくなることが好ましい。すなわち、本実施形態では、X軸方向において導光板110に近い領域ではパターン140の占有密度を低くし、遠い領域ではパターン140の占有密度を低くすることが好ましい。これにより、光導入面110から離れるほどパターン140によって光をより効率よく取り出せるようになる。通常、光導入面110から離れる位置ほど導光される光の量が少ないため、光導入面110から離れるほど高い取出効率で光を取り出せるようにパターン140の占有密度を設定することで、光取出面120から更に均一に光を取り出せるようになる。 The pattern 140 may be formed uniformly on each of the light extraction surface 120 and the back surface 130, but may be formed non-uniformly. In the case of non-uniformity, the occupation density of the pattern 140 in the light extraction surface 120 and the back surface 130 is preferably increased continuously or stepwise as the distance from the light introduction surface 110 increases. That is, in the present embodiment, it is preferable that the occupation density of the pattern 140 is lowered in a region close to the light guide plate 110 in the X-axis direction, and the occupation density of the pattern 140 is lowered in a far region. As a result, the light can be extracted more efficiently by the pattern 140 as the distance from the light introduction surface 110 increases. Usually, since the amount of light guided is smaller as the distance from the light introduction surface 110 is smaller, the occupation density of the pattern 140 is set so that the light can be extracted with higher extraction efficiency as the distance from the light introduction surface 110 increases. Light can be extracted more uniformly from the surface 120.
 なお、パターン140の占有密度とは、当該パターン140が形成された各領域における光取出面120及び裏面130それぞれの面積に対する、当該領域における光取出面120及び裏面130それぞれに形成されたパターン140の割合のことをいう。したがって、パターン占有率が、当該パターン140が形成された光取出面120及び裏面130の全面積に対する割合を指すのに対し、占有密度は、当該パターン140が形成された各領域における光取出面120及び裏面130それぞれの面積に対する割合を指す。 Note that the occupation density of the pattern 140 is the area of the light extraction surface 120 and the back surface 130 in each region where the pattern 140 is formed, and the pattern 140 formed on the light extraction surface 120 and the back surface 130 in the region. It means the ratio. Therefore, the pattern occupancy indicates the ratio to the total area of the light extraction surface 120 and the back surface 130 where the pattern 140 is formed, whereas the occupation density is the light extraction surface 120 in each region where the pattern 140 is formed. And the ratio with respect to the area of each of the back surface 130 is pointed out.
 図2に示すように、光取出面120及び裏面130には、パターン140が形成されていない部分121が存在する。このように、本発明において、パターンが形成されていない部分は、平坦な面とすることができる。かかる平坦な部分である、パターン140が形成されていない部分121の算術平均粗さRaは、通常0.05μm以下、好ましくは0.02μm以下、より好ましくは0.01μm以下である。このように算術平均粗さRaが小さいことにより、パターン140が形成されていない部分121からの光の出射を抑制できる。したがって、パターン140が形成されていない部分121から光が意図せず取り出されることを防止し、輝度ムラを更に確実に抑制できる。また、下限に制限は無いが、通常0.001μm以上である。
 パターン140が形成されていない部分121の算術平均粗さRaは、光導入面110と直交する方向に測定し、測定にはJIS B601-2001に規定された方法を用いる。
As shown in FIG. 2, the light extraction surface 120 and the back surface 130 have a portion 121 where the pattern 140 is not formed. Thus, in this invention, the part in which the pattern is not formed can be made into a flat surface. The arithmetic mean roughness Ra of the portion 121 where the pattern 140 is not formed is usually 0.05 μm or less, preferably 0.02 μm or less, more preferably 0.01 μm or less. Thus, since arithmetic mean roughness Ra is small, the emission of light from the portion 121 where the pattern 140 is not formed can be suppressed. Therefore, unintentional extraction of light from the portion 121 where the pattern 140 is not formed can be prevented, and luminance unevenness can be more reliably suppressed. Moreover, although there is no restriction | limiting in a lower limit, it is 0.001 micrometer or more normally.
The arithmetic average roughness Ra of the portion 121 where the pattern 140 is not formed is measured in a direction orthogonal to the light introduction surface 110, and the method defined in JIS B601-2001 is used for the measurement.
 図1に示す光源200は、導光板100の光導入面110に光を照射する装置である。光源200は、通常、その軸線(即ち、出射する光の主光線の方向)がX軸方向に平行になるように設置される。
 光源200としては、面光源、点光源などを用いてもよいが、点光源を用いることが好ましい。それは、点光源を使用すると、光源を小さく設計できるからである。なぜなら光源を小さくできないと入光効率が悪くなるからである。
A light source 200 illustrated in FIG. 1 is a device that irradiates light to a light introduction surface 110 of a light guide plate 100. The light source 200 is usually installed such that its axis (that is, the direction of the principal ray of emitted light) is parallel to the X-axis direction.
As the light source 200, a surface light source, a point light source, or the like may be used, but a point light source is preferably used. This is because when a point light source is used, the light source can be designed to be small. This is because if the light source cannot be made small, the light incident efficiency will deteriorate.
 点光源としては、例えば、LED(Light Emitting Diode)が挙げられる。LEDは、発光効率が高く、省エネルギーの観点から優れた光源である。本実施形態においては光源200としてLEDを用いているものとする。光源200には図示しない電源から電力が供給され、供給された電力により個別に発光可能となっている。 Examples of the point light source include an LED (Light Emitting Diode). LEDs are high light emission efficiency and are excellent light sources from the viewpoint of energy saving. In the present embodiment, it is assumed that an LED is used as the light source 200. The light source 200 is supplied with electric power from a power source (not shown), and can individually emit light by the supplied electric power.
 本発明の一実施形態としての照明装置1は上述したように構成されている。このため、使用時には、光源200を発光させ、導光面110に光を照射する。導光面110に照射された光は、光導入面110に入射して導光板100内に導入される。導入された光は、光取出面120及び裏面130の表面で内部反射を繰り返しながら導光板100内を導光される。導光された光は、パターン140により光取出面120から外部へと出射することにより、取り出される。これにより、照明装置1は光取出面120を発光面とする面発光装置として機能する。 The lighting device 1 as an embodiment of the present invention is configured as described above. For this reason, in use, the light source 200 emits light and the light guide surface 110 is irradiated with light. The light irradiated on the light guide surface 110 enters the light introduction surface 110 and is introduced into the light guide plate 100. The introduced light is guided through the light guide plate 100 while repeating internal reflection on the surfaces of the light extraction surface 120 and the back surface 130. The guided light is extracted by being emitted from the light extraction surface 120 to the outside by the pattern 140. Thereby, the illuminating device 1 functions as a surface light emitting device having the light extraction surface 120 as a light emitting surface.
 さらに、本実施形態の照明装置1では、光取出面120及び裏面130の少なくとも一方の面にパターン140を有し、且つ、パターン占有率が所定の範囲に収まっているため、薄型の導光板100を用いながらも、光取出面120から光を均一に取り出すことができる。したがって、照明装置1は小型化及び薄型化と、輝度ムラの抑制とを両立できる。 Furthermore, in the lighting device 1 of the present embodiment, the thin light guide plate 100 has the pattern 140 on at least one of the light extraction surface 120 and the back surface 130 and the pattern occupancy is within a predetermined range. The light can be uniformly extracted from the light extraction surface 120 while using. Therefore, the illuminating device 1 can achieve both reduction in size and thickness and suppression of luminance unevenness.
 以上、本発明の一実施形態について具体的に説明したが、上述した実施形態は更に変更して実施してもよい。
 例えば、導光板100は図1に示すような矩形以外の形状にしてもよい。
 また、例えば、光導入面110は、X軸方向と直交する面でなくてもよい。
 また、例えば、光導入面110は1面だけでなく、2面以上でもよい。具体例を挙げると、光導入面110に加え、導光板100の光導入面110以外の側面150も光導入面として用いるようにしてもよい。特に光導入面110とは反対側の側面を光導入面とすることは有用である。
 また、例えば、パターン140の形状、寸法、占有密度等は、光取出面120と裏面130とで同じでもよいが、異なるようにしてもよい。
 また、例えば、光取出面120及び裏面130それぞれにおいて、2種類以上の異なる形状及び寸法のパターン140を組み合わせるようにしてもよい。
 また、例えば、パターン140は、導光板100の全領域における光取出面120又は裏面130に設ける必要はない。したがって、少なくとも光を取り出そうとする所望の領域における光取出面120又は裏面130に設けてあれば、光取出面120及び裏面130のうちの一部にだけパターン140を設けるようにしてもよい。
 また、例えば、裏面130の表面には、裏面130での内部反射効率を高めるために、金属を蒸着させたり白色散乱板(白色反射板)を密着配置させたりしてもよい。
The embodiment of the present invention has been specifically described above, but the above-described embodiment may be further modified.
For example, the light guide plate 100 may have a shape other than the rectangle as shown in FIG.
For example, the light introduction surface 110 may not be a surface orthogonal to the X-axis direction.
Further, for example, the light introduction surface 110 may be not only one surface but also two or more surfaces. As a specific example, in addition to the light introduction surface 110, a side surface 150 other than the light introduction surface 110 of the light guide plate 100 may be used as the light introduction surface. In particular, it is useful to set the side surface opposite to the light introduction surface 110 as the light introduction surface.
In addition, for example, the shape, size, occupation density, and the like of the pattern 140 may be the same on the light extraction surface 120 and the back surface 130, but may be different.
Further, for example, two or more types of patterns 140 having different shapes and sizes may be combined on each of the light extraction surface 120 and the back surface 130.
Further, for example, the pattern 140 need not be provided on the light extraction surface 120 or the back surface 130 in the entire region of the light guide plate 100. Therefore, the pattern 140 may be provided only on a part of the light extraction surface 120 and the back surface 130 as long as it is provided on the light extraction surface 120 or the back surface 130 in at least a desired region where light is to be extracted.
In addition, for example, a metal may be vapor-deposited or a white scattering plate (white reflection plate) may be disposed in close contact with the surface of the back surface 130 in order to increase internal reflection efficiency on the back surface 130.
[導光板の材料及び製法等]
 以下、前記の導光板の材料及び製造方法等について説明する。
 導光板の材料としては、例えば、ガラス、透明樹脂等が挙げられる。なお、導光板の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[Light guide plate materials and manufacturing method]
Hereinafter, the material and manufacturing method of the light guide plate will be described.
Examples of the material of the light guide plate include glass and transparent resin. In addition, the material of a light-guide plate may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 前記の透明樹脂としては、例えば、プロピレン-エチレン共重合体、ポリスチレン、(メタ)アクリル酸エステル-芳香族ビニル化合物共重合体、ポリエチレンテレフタレート、テレフタル酸-エチレングリコール-シクロヘキサンジメタノール共重合体、ポリカーボネート、メタクリル樹脂、脂環式構造を有する樹脂(例えば、ノルボルネン系の樹脂)などが挙げられる。これらの中で、脂環式構造を有する樹脂、メタクリル樹脂および(メタ)アクリル酸エステル-芳香族ビニル化合物共重合体樹脂が好適であり、脂環式構造を有する樹脂が特に好ましい。 Examples of the transparent resin include propylene-ethylene copolymer, polystyrene, (meth) acrylic acid ester-aromatic vinyl compound copolymer, polyethylene terephthalate, terephthalic acid-ethylene glycol-cyclohexanedimethanol copolymer, polycarbonate. , Methacrylic resin, and resin having an alicyclic structure (for example, norbornene-based resin). Among these, resins having an alicyclic structure, methacrylic resins, and (meth) acrylic acid ester-aromatic vinyl compound copolymer resins are preferable, and resins having an alicyclic structure are particularly preferable.
 脂環式構造を有する樹脂は、溶融樹脂の流動性が良好である。したがって、例えば射出成形により導光板を製造する場合、低い射出圧力で金型のキャビティを充填することができるため、薄い導光板を比較的成形しやすく、ウエルドラインが発生しにくい。また、例えば押し出し成形により導光板を製造する場合、成形時の厚みムラが少なく、成形後の形状付与が容易である。さらに、脂環式構造を有する樹脂は吸湿性が極めて低いので、寸法安定性に優れ、導光板に反りを生じにくい。さらに、脂環式構造を有する樹脂は比重が小さいので、導光板を軽量化することができる。 A resin having an alicyclic structure has good fluidity of the molten resin. Therefore, for example, when a light guide plate is manufactured by injection molding, the mold cavity can be filled with a low injection pressure, so that a thin light guide plate can be formed relatively easily and weld lines are not easily generated. Moreover, when manufacturing a light-guide plate by extrusion molding, for example, there is little thickness nonuniformity at the time of shaping | molding, and the shaping | molding after shaping | molding is easy. Furthermore, since the resin having an alicyclic structure has extremely low hygroscopicity, it has excellent dimensional stability and hardly warps the light guide plate. Furthermore, since the specific gravity of the resin having an alicyclic structure is small, the light guide plate can be reduced in weight.
 脂環式構造を有する樹脂としては、主鎖または側鎖に脂環式構造を有する重合体樹脂が挙げられる。中でも、主鎖に脂環式構造を有する重合体樹脂は、機械的強度と耐熱性が良好なので、特に好適である。
 前記の脂環式構造は、飽和環状炭化水素構造であることが好ましい。
 脂環式構造を構成する炭素数は、好ましくは4以上、より好ましくは5以上であり、好ましくは30以下、より好ましくは20以下、特に好ましくは15以下である。
 脂環式構造を有する重合体樹脂中の脂環式構造を有する繰り返し単位の割合は、50重量%以上であることが好ましく、70重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。
Examples of the resin having an alicyclic structure include polymer resins having an alicyclic structure in the main chain or side chain. Among them, a polymer resin having an alicyclic structure in the main chain is particularly suitable because it has good mechanical strength and heat resistance.
The alicyclic structure is preferably a saturated cyclic hydrocarbon structure.
The number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less.
The ratio of the repeating unit having an alicyclic structure in the polymer resin having an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, and 90% by weight or more. More preferably.
 脂環式構造を有する樹脂としては、例えば、ノルボルネン系単量体の開環重合体若しくは開環共重合体またはそれらの水素添加物;ノルボルネン系単量体の付加重合体若しくは付加共重合体またはそれらの水素添加物;単環の環状オレフィン系単量体の重合体またはその水素添加物;環状共役ジエン系単量体の重合体またはその水素添加物;ビニル脂環式炭化水素系単量体の重合体若しくは共重合体またはそれらの水素添加物;ビニル芳香族炭化水素系単量体の重合体または共重合体の芳香環を含む不飽和結合部分の水素添加物;などが挙げられる。これらの中で、ノルボルネン系単量体の重合体の水素添加物およびビニル芳香族炭化水素系単量体の重合体の芳香環を含む不飽和結合部分の水素添加物は、機械的強度と耐熱性に優れるので、特に好適である。 Examples of the resin having an alicyclic structure include a ring-opening polymer or a ring-opening copolymer of a norbornene monomer or a hydrogenated product thereof; an addition polymer or an addition copolymer of a norbornene monomer; Polymers of monocyclic olefin monomers or their hydrogenated products; Polymers of cyclic conjugated diene monomers or their hydrogenated products; Vinyl alicyclic hydrocarbon monomers Or a hydrogenated product thereof; a polymer of a vinyl aromatic hydrocarbon monomer or a hydrogenated product of an unsaturated bond part containing an aromatic ring of the copolymer; and the like. Among these, hydrogenated products of norbornene-based monomer polymers and hydrogenated products of unsaturated bonds including aromatic rings of vinyl aromatic hydrocarbon-based monomer polymers have mechanical strength and heat resistance. It is particularly suitable because of its excellent properties.
 さらに、前記の透明樹脂のなかでも、メタクリル樹脂は、透明性に優れ、強靭でひびが入りにくいので、好適に用いることができる。メタクリル樹脂としては、例えば、JISK6717に規定されるメタクリル酸メチル重合物を80%以上含むメタクリル樹脂成形材料を挙げられる。この規格に規定されるメタクリル樹脂の中で、ビカット軟化点温度96~100℃、メルトフローレート8~16の指定分類コード100-120のメタクリル樹脂は、適度な流動性と強度を有するので、特に好適である。 Furthermore, among the above transparent resins, methacrylic resins are excellent in transparency, strong and resistant to cracking, and therefore can be suitably used. Examples of the methacrylic resin include a methacrylic resin molding material containing 80% or more of a methyl methacrylate polymer defined in JIS K6717. Among the methacrylic resins specified in this standard, methacrylic resins having a specified classification code 100-120 having a Vicat softening point temperature of 96 to 100 ° C. and a melt flow rate of 8 to 16 have appropriate fluidity and strength. Is preferred.
 導光板の成形材料には、成形時における酸化劣化や熱劣化を防止するために、酸化防止剤を含ませてもよい。酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられる。これらの中で、フェノール系酸化防止剤が好適であり、中でもアルキル置換酸化防止剤が特に好ましい。なお、酸化防止剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。酸化防止剤の量は、樹脂成分100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.02重量部以上であり、好ましくは2重量部以下、より好ましくは1重量部以下である。 An antioxidant may be included in the light guide plate molding material in order to prevent oxidative degradation and thermal degradation during molding. Examples of the antioxidant include a phenolic antioxidant, a phosphorus antioxidant, and a sulfur antioxidant. Of these, phenolic antioxidants are preferred, and alkyl-substituted antioxidants are particularly preferred. In addition, an antioxidant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. The amount of the antioxidant is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, preferably 2 parts by weight or less, more preferably 1 part by weight with respect to 100 parts by weight of the resin component. It is as follows.
 導光板の成形材料には、導光板の耐光性などを向上させるために、耐光安定剤を含ませてもよい。耐光安定剤としては、例えば、ヒンダードアミン系耐光安定剤(HALS)、ベンゾエート系耐光安定剤などが挙げられる。これらの中で、ヒンダードアミン系耐光安定剤が好ましい。なお、耐光安定剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。耐光安定剤の量は、樹脂成分100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.02重量部以上、特に好ましくは0.05重量部以上であり、好ましくは2重量部以下、より好ましくは1重量部以下、特に好ましくは0.5重量部以下である。 In the molding material for the light guide plate, a light resistance stabilizer may be included in order to improve the light resistance of the light guide plate. Examples of the light resistance stabilizer include hindered amine light resistance stabilizer (HALS) and benzoate light resistance stabilizer. Among these, hindered amine light resistance stabilizers are preferred. In addition, a light-resistant stabilizer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. The amount of the light-resistant stabilizer is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, particularly preferably 0.05 parts by weight or more, preferably 2 parts by weight with respect to 100 parts by weight of the resin component. The amount is not more than parts by weight, more preferably not more than 1 part by weight, particularly preferably not more than 0.5 parts by weight.
 導光板の成形材料には、必要に応じて、さらに任意の添加剤を含ませてもよい。任意の添加剤としては、例えば、熱安定剤、紫外線吸収剤、近赤外線吸収剤などの安定剤;滑剤、可塑剤などの樹脂改質剤;染料、顔料などの着色剤;帯電防止剤、光拡散剤などが挙げられる。なお、任意の添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The molding material for the light guide plate may further contain an optional additive as necessary. Optional additives include, for example, stabilizers such as heat stabilizers, ultraviolet absorbers, near infrared absorbers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments; antistatic agents, light Examples include diffusing agents. In addition, arbitrary additives may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 導光板の主面の寸法(前記の実施形態では、X軸方向及びY軸方向の寸法)は、通常、その導光板が用いられる液晶表示装置の液晶パネルの有効面のサイズに応じて設定される。また、導光板の厚み(前記の実施形態では、Z軸方向の寸法)は、上述したとおりである。 The dimensions of the main surface of the light guide plate (in the above embodiment, the dimensions in the X-axis direction and the Y-axis direction) are usually set according to the size of the effective surface of the liquid crystal panel of the liquid crystal display device in which the light guide plate is used. The Further, the thickness of the light guide plate (in the above embodiment, the dimension in the Z-axis direction) is as described above.
 導光板としては、例えば、その屈折率が1.533(臨界角40.7°)のものを用いることができる。 As the light guide plate, for example, one having a refractive index of 1.533 (critical angle 40.7 °) can be used.
 導光板が樹脂で形成されている場合、導光板が吸湿により寸法変化(伸びや反り)を生じる可能性がある。寸法変化を生じると、しわ等が発生し、光学特性を損なうおそれがある。また、特に導光板の寸法が大きい場合(例えば、40インチ)には、当該寸法変化により、照明装置において光源と光導入面との相対位置関係が変化し、光利用効率が低下する傾向もある。このため、導光板の吸水率は、0.50%以下に設定することが好ましく、0.25%以下がより好ましく、0.05%以下がさらに好ましい。なお、本願明細書中における吸水率は、JIS K7209 A法に準拠して、厚み3mmで、直径50mmの円板形または一辺50mmの正方形の試験片を50℃で24時間乾燥したのちデシケ一ター中で放冷し、23℃の水に24時間浸漬したときの重量増から求めることができる。 When the light guide plate is made of resin, the light guide plate may cause a dimensional change (elongation or warpage) due to moisture absorption. If a dimensional change occurs, wrinkles and the like may occur, and optical characteristics may be impaired. In particular, when the size of the light guide plate is large (for example, 40 inches), the relative positional relationship between the light source and the light introduction surface changes in the lighting device due to the change in size, and the light utilization efficiency tends to decrease. . For this reason, the water absorption rate of the light guide plate is preferably set to 0.50% or less, more preferably 0.25% or less, and even more preferably 0.05% or less. In addition, the water absorption rate in this specification is a desiccator after drying a test piece having a disk shape of 50 mm in diameter or a square of 50 mm on a side at 50 ° C. for 24 hours in accordance with JIS K7209 A method. It can be obtained from the weight increase when it is allowed to cool in water and immersed in water at 23 ° C. for 24 hours.
 導光板の形成材料は、耐熱性に優れることが好ましい。具体的には、ビカット軟化温度が、90℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることが特に好ましい。導光板の形成材料の耐熱性が低いと、光源等から発せられる熱によって導光板が溶けたり変形したりして、光学特性を損なう可能性がある。なお、前記のビカット軟化温度は、JIS K7206 Bに規定された方法により測定できる。 The material for forming the light guide plate is preferably excellent in heat resistance. Specifically, the Vicat softening temperature is preferably 90 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 110 ° C. or higher. If the heat resistance of the light guide plate forming material is low, the light guide plate may be melted or deformed by heat generated from a light source or the like, and optical characteristics may be impaired. The Vicat softening temperature can be measured by the method defined in JIS K7206B.
 導光板の製造方法に制限は無いが、例えば樹脂により導光板を形成する場合には、射出成形法、押出成形法により製造できる。 Although there is no restriction | limiting in the manufacturing method of a light-guide plate, For example, when forming a light-guide plate with resin, it can manufacture by the injection molding method and the extrusion molding method.
 また、パターンを形成する方法にも特に制限は無い。例えば、予め平板状の導光板を用意し、当該導光板の表面に後からパターンを形成するようにしてもよい。この場合、平板状の導光板の光取出面及び裏面にパターンを形成する方法としては、例えば、所望の形状のパターンを形成できる工具を用いた切削加工による方法、光硬化樹脂を塗布して所望の形状の型を転写した状態で硬化させる方法、などが挙げられる。 Also, there is no particular limitation on the method for forming the pattern. For example, a flat light guide plate may be prepared in advance, and a pattern may be formed later on the surface of the light guide plate. In this case, as a method of forming a pattern on the light extraction surface and the back surface of the flat light guide plate, for example, a method by cutting using a tool capable of forming a pattern of a desired shape, a desired method by applying a photocurable resin The method of hardening in the state which transferred the type | mold of this shape etc. is mentioned.
 パターンを形成する方法としては、例えば、導光板の成形と同時にパターンを形成するようにしてもよい。この場合には、例えば、所望のパターンに対応した形状を有する異形ダイを用いて異形押出しうる。また、例えば、押出後にエンボス加工によりプリズム条列を形成するようにしてもよい。さらに、例えば、所望の凹凸形状を形成できるキャスティング型を用意し、このキャスティング型を用いて導光板をキャスティングにより作製して、導光板の成形と同時にパターンを形成するようにしてもよい。また、導光板を射出成形により作製し、同時にパターンを形成する場合は、所望のパターンを形成できる金型を用いてもよい。 As a method of forming the pattern, for example, the pattern may be formed simultaneously with the formation of the light guide plate. In this case, for example, profile extrusion can be performed using a profile die having a shape corresponding to a desired pattern. Further, for example, prism rows may be formed by embossing after extrusion. Furthermore, for example, a casting mold capable of forming a desired uneven shape may be prepared, and a light guide plate may be produced by casting using this casting mold, and a pattern may be formed simultaneously with the molding of the light guide plate. Further, when the light guide plate is manufactured by injection molding and the pattern is formed at the same time, a mold capable of forming a desired pattern may be used.
 なお、前記の光硬化樹脂への型形状転写、異形ダイによる押出し加工、エンボス加工、キャスティング、もしくは射出成形などの加工に用いる型は、例えば、所望のパターンを形成できる工具を用いた型の金属部材への切削加工、もしくは所望の形状が形成された部材上への電鋳加工などにより得ることができる。 In addition, the mold used for processing such as mold shape transfer to the photo-curing resin, extrusion processing with a deformed die, embossing, casting, or injection molding is, for example, a metal mold using a tool capable of forming a desired pattern. It can be obtained by cutting a member or electroforming on a member having a desired shape.
 さらに、パターンは、白色インクの印刷や金属蒸着等により形状を形成してもよい。 Furthermore, the pattern may be formed by printing with white ink or metal vapor deposition.
〔光源〕
 以下、光源について説明する。
 光源としては、例えば、LED、レーザーダイオード、冷陰極管(CCFL、EEFL)、熱陰極管(HCFL)等が挙げられるが、点光源を用いることが好ましい。点光源としては、光導入面より端面まで光が届くよう、十分な光量を得られる方式であればどのようなものでもよく、例えば半導体レーザー等を用いてもよい。ただし、通常は、前記の実施形態で説明したようにLEDを用いることが好ましい。LEDとしては、例えば、青黄色系擬似白色発光ダイオード、3色(RGB)方式の白色発光ダイオード等が挙げられる。
〔light source〕
Hereinafter, the light source will be described.
Examples of the light source include an LED, a laser diode, a cold cathode tube (CCFL, EEFL), a hot cathode tube (HCFL), and a point light source is preferably used. Any point light source may be used as long as it can obtain a sufficient amount of light so that light can reach the end surface from the light introduction surface. For example, a semiconductor laser or the like may be used. However, it is usually preferable to use an LED as described in the above embodiment. Examples of the LED include a blue-yellow pseudo white light emitting diode, a three-color (RGB) type white light emitting diode, and the like.
 LEDとしては、例えば、サイドエミット型LEDや表面実装型LED、砲弾型LEDを用いる。LEDの発光部の寸法は、LEDの配光特性に応じて設定しうる。通常、LEDの発光部の幅及び高さは等しくなるようにするが、LEDとして断面が楕円形または長円形等のものを用いる場合には、幅と高さとが異なる寸法のものを用いてもよい。 As the LED, for example, a side-emitting LED, a surface-mounted LED, or a bullet-type LED is used. The dimension of the light emitting part of the LED can be set according to the light distribution characteristic of the LED. Usually, the width and height of the light emitting part of the LED are made equal. However, when the LED has an elliptical or oval cross section, the LED having a different width and height may be used. Good.
 一般的なハイドーム型のLEDは配光がランバーシアンであり、半値角(半値全角)が120°程度の比較的に大きい発散光を出射する。ただし、光源から照射される光のうちより多くを導光板に導入する観点から、LEDとしては、半値全角は80°以下が好ましく、70°以下がより好ましく、60°以下が特に好ましい。理想的には、可能な限り平行光に近い光を発するLEDが好ましい。導光体の手前部分でLED間に相当する部分が暗くなることを抑制する観点からは、LEDとしては、半値全角は90°以上が好ましく、100°以上がより好ましく、110°以上が特に好ましい。 A general high dome type LED has a Lambertian light distribution and emits a relatively large divergent light having a half-value angle (full-width at half maximum) of about 120 °. However, from the viewpoint of introducing more of the light emitted from the light source into the light guide plate, the full width at half maximum of the LED is preferably 80 ° or less, more preferably 70 ° or less, and particularly preferably 60 ° or less. Ideally, LEDs that emit as close to parallel light as possible are preferred. From the viewpoint of suppressing darkening of the portion corresponding to the LEDs in the front portion of the light guide, the full width at half maximum of the LED is preferably 90 ° or more, more preferably 100 ° or more, and particularly preferably 110 ° or more. .
 なお、光源としては、LED等の発光素子と、レンズ等の光学素子とを組み合わせて用いてもよい。例えば、半値全角が広いLEDを用いる場合であっても、当該LEDとレンズとを組み合わせれば、上記のような好ましい範囲の半値全角で光を照射する光源を実現できる。 In addition, as a light source, you may use combining light emitting elements, such as LED, and optical elements, such as a lens. For example, even when an LED having a wide full width at half maximum is used, a light source that emits light at a full width at half maximum within the above-described preferable range can be realized by combining the LED and the lens.
〔用途〕
 本発明の照明装置は、例えば、液晶表示装置の液晶パネルに光を供給するバックライト装置として好適である。
 液晶パネルは、例えば、液晶層を挟んで、配向膜、透明電極、ガラス板、カラーフィルタ、偏光板等を適切な位置に積層配置した部材である。本発明の照明装置を液晶表示装置に適用する場合、通常は、本発明の照明装置を液晶パネルの背面側に設け、液晶パネルに背面から光を供給できるようにする。
 さらに、必要に応じて液晶パネルと照明装置との間には、任意の光学シートを設けるようにしてもよい。例えば、液晶パネルに照射される光の均一性を向上させる観点から、光拡散シートを設けてもよい。また、例えば、輝度を高める観点から、プリズムシート、輝度向上フィルム等を設けてもよい。
 加えて、本発明の照明装置は上記の光学シート及び偏光板などの部材を備えるように一体化することも可能である。ここで「一体化」とは、複数の要素を離散しないように固定することをいい、一体化された要素同士が接合された態様だけでなく、一体化された要素間に任意の要素又は空隙が介在している態様も含む。一体化する方法は、粘着、接着、融着、さらには、任意のシートを用いて複数の光学部材を包み込むことなどが可能であり、特に限定はされない。ただし、導光板内を全反射によって光源から伝播している光が、一体化された部材に必要以上に移行することを避けるため、一体化された部材と導光板との間には接合面の空気層などの低屈折率層を多く介していることが好ましい。
[Use]
The illumination device of the present invention is suitable as a backlight device that supplies light to a liquid crystal panel of a liquid crystal display device, for example.
The liquid crystal panel is a member in which, for example, an alignment film, a transparent electrode, a glass plate, a color filter, a polarizing plate, and the like are stacked and arranged at appropriate positions with a liquid crystal layer interposed therebetween. When the lighting device of the present invention is applied to a liquid crystal display device, the lighting device of the present invention is usually provided on the back side of the liquid crystal panel so that light can be supplied to the liquid crystal panel from the back side.
Furthermore, you may make it provide arbitrary optical sheets between a liquid crystal panel and an illuminating device as needed. For example, you may provide a light-diffusion sheet from a viewpoint of improving the uniformity of the light irradiated to a liquid crystal panel. For example, a prism sheet, a brightness enhancement film, or the like may be provided from the viewpoint of increasing brightness.
In addition, the lighting device of the present invention can be integrated so as to include the above-described optical sheet and polarizing plate. Here, “integrated” means that a plurality of elements are fixed so as not to be dispersed, and not only a mode in which the integrated elements are joined to each other, but also any element or gap between the integrated elements. The aspect in which is interposed is also included. There are no particular limitations on the method of integration, such as adhesion, adhesion, fusion, and the use of any sheet to wrap a plurality of optical members. However, in order to prevent the light propagating from the light source by total reflection in the light guide plate from moving more than necessary to the integrated member, there is a bonding surface between the integrated member and the light guide plate. It is preferable that many low refractive index layers such as an air layer are interposed.
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施できる。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and may be arbitrarily set within the scope of the claims of the present invention and its equivalents. You can change it to
〔実施例1〕
 図9は、実施例1で行ったシミュレーションにおいて設定したシミュレーション条件を説明する断面図である。以下の実施例では、光学シミュレーションソフト「LightTools」(サイバネット株式会社製)を用いて、後述する条件で光学モデルを作成し、シミュレーションを行った。なお、導光板の材質としては、熱可塑性脂環構造含有樹脂(商品名ZEONOR1420、日本ゼオン社製、屈折率1.533、臨界角40.7°、吸水率0.01%)を用いたものと設定した。
[Example 1]
FIG. 9 is a cross-sectional view illustrating simulation conditions set in the simulation performed in the first embodiment. In the following examples, an optical model was created and simulated under the conditions described later using optical simulation software “LightTools” (manufactured by Cybernet Co., Ltd.). As the material of the light guide plate, a thermoplastic alicyclic structure-containing resin (trade name: ZEONOR1420, manufactured by Nippon Zeon Co., Ltd., refractive index: 1.533, critical angle: 40.7 °, water absorption: 0.01%) Was set.
 図9に示すように、導光板301として、矩形の平板状の導光板を設定した。この導光板301の寸法は、縦250mm、横50mm、厚み(Z軸方向の寸法)0.5mmとした。
 この導光板301の一方の主面に相当する光取出面302には、その全面に、パターン303として半球状の凸部が存在するものとした。凸部の底辺の最大長N(直径)は0.05mmとし、高さHは0.025mmとし、ピッチPは0.198mmとした。また、光取出面302におけるパターン占有率は0.05(即ち、5%)とした。
 また、導光板301の他方の主面に相当する裏面304は平坦な平面であるとした。
 なお、光取出面302のパターン303が形成されていない部分305及び裏面304の算術平均粗さRaは0.02μmとした。
As shown in FIG. 9, a rectangular flat light guide plate was set as the light guide plate 301. The dimensions of the light guide plate 301 were 250 mm in length, 50 mm in width, and 0.5 mm in thickness (dimension in the Z-axis direction).
The light extraction surface 302 corresponding to one main surface of the light guide plate 301 has a hemispherical convex portion as a pattern 303 on the entire surface. The maximum length N (diameter) of the bottom of the convex portion was 0.05 mm, the height H was 0.025 mm, and the pitch P was 0.198 mm. In addition, the pattern occupation ratio on the light extraction surface 302 was set to 0.05 (that is, 5%).
The back surface 304 corresponding to the other main surface of the light guide plate 301 is a flat surface.
The arithmetic average roughness Ra of the portion 305 where the pattern 303 of the light extraction surface 302 is not formed and the back surface 304 was 0.02 μm.
 前記の導光板301の側面に相当する光導入面306の正面の位置に、光源307を設けたこととした。光源307としては、幅5mmの基板308にLED309(縦2.5mm、横1.5mm、厚み0.5mm。)を10個、光導入面306に沿ってY軸方向に並べて実装したものを設定した。また、光導入面306からLED309の発光部までの距離Lは2.5mmとした。なお、前記LED309の発光部の吸収は15%とし、半値全角が120°であるとした。 The light source 307 is provided at a position in front of the light introduction surface 306 corresponding to the side surface of the light guide plate 301. As the light source 307, a substrate 308 having a width of 5 mm and 10 LEDs 309 (2.5 mm in length, 1.5 mm in width, 0.5 mm in thickness) arranged in the Y-axis direction along the light introduction surface 306 is set. did. The distance L from the light introduction surface 306 to the light emitting portion of the LED 309 was 2.5 mm. Note that the absorption of the light emitting portion of the LED 309 was 15%, and the full width at half maximum was 120 °.
 導光板301の光導入面306の端部から光源307の基板308の端部にかけては、ランプカバー310により覆ったものとして設定した。なお、ランプカバー310の内側表面311の反射は反射率98%のランバート反射であるとした。 From the end of the light introduction surface 306 of the light guide plate 301 to the end of the substrate 308 of the light source 307, it was set as covered with the lamp cover 310. The reflection on the inner surface 311 of the lamp cover 310 is assumed to be Lambert reflection with a reflectance of 98%.
 前記の構成において光源307から光導入面306に光を照射した場合における、下記(i)~(iv)の照度(Lumen)をシミュレーションにより算出した。結果を表1に示す。
 (i)光導入面306の直ぐ内側の位置(即ち、光導入面306から0mm離れた導光板301内の位置)にある、X軸方向に垂直な面における照度。この照度を、以下、適宜「入光照度」という。
 (ii)光取出面302の直ぐ外側の位置(即ち、光取出面302から0mm離れた導光板301の外側の位置)にある、Z軸方向に垂直な面における照度。この照度を、以下、適宜「出光照度」という。
 (iii)光導入面306から、導光板301の寸法の半分だけ奥に進んだ位置(即ち、光導入面306からX軸方向に125mm離れた導光板301内の位置)にある、X軸方向に垂直な面における照度。この照度を、以下、適宜「中間照度」という。
 (iv)光導入面306とは反対側の側面の直ぐ外側の位置(即ち、光導入面306から250mm離れた導光板301の外側の位置)にある、X軸方向に垂直な面における照度。この照度を、以下、適宜「端末照度」という。
The illuminance (Lumen) of (i) to (iv) below was calculated by simulation when the light introduction surface 306 was irradiated with light from the light source 307 in the above configuration. The results are shown in Table 1.
(I) Illuminance on a surface perpendicular to the X-axis direction at a position immediately inside the light introduction surface 306 (that is, a position in the light guide plate 301 that is 0 mm away from the light introduction surface 306). This illuminance is hereinafter referred to as “incident illuminance” as appropriate.
(Ii) Illuminance on a surface perpendicular to the Z-axis direction at a position immediately outside the light extraction surface 302 (that is, a position outside the light guide plate 301 away from the light extraction surface 302 by 0 mm). This illuminance is hereinafter referred to as “emergence illuminance” as appropriate.
(Iii) X-axis direction at a position advanced from the light introduction surface 306 by half the dimension of the light guide plate 301 (that is, a position within the light guide plate 301 that is 125 mm away from the light introduction surface 306 in the X-axis direction) Illuminance on a plane perpendicular to This illuminance is hereinafter referred to as “intermediate illuminance” as appropriate.
(Iv) Illuminance on a surface perpendicular to the X-axis direction at a position just outside the side surface opposite to the light introduction surface 306 (that is, a position outside the light guide plate 301 away from the light introduction surface 306 by 250 mm). This illuminance is hereinafter referred to as “terminal illuminance” as appropriate.
〔実施例2〕
 パターン303として設定された半球状の凸部の底辺の最大長Nを0.1mmに変更し、高さHを0.05mmに変更し、ピッチPを0.627mmに変更し、パターン占有率を0.02(即ち、2%)に変更したこと以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表1に示す。
[Example 2]
The maximum length N of the base of the hemispherical convex portion set as the pattern 303 is changed to 0.1 mm, the height H is changed to 0.05 mm, the pitch P is changed to 0.627 mm, and the pattern occupancy is changed. The incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation in the same manner as in Example 1 except that it was changed to 0.02 (that is, 2%). The results are shown in Table 1.
〔実施例3〕
 パターン303が光取出面302ではなく裏面304に存在するように変更したこと以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表1に示す。
Example 3
The incident illuminance, emitted illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation in the same manner as in Example 1 except that the pattern 303 was changed to exist on the back surface 304 instead of the light extraction surface 302. The results are shown in Table 1.
〔実施例4〕
 パターン303として設定された半球状の凸部の底辺の最大長Nを0.1mmに変更し、高さHを0.05mmに変更し、ピッチPを0.295mmに変更し、パターン占有率を0.09(即ち、9%)に変更したこと以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表1に示す。
Example 4
The maximum length N of the base of the hemispherical convex portion set as the pattern 303 is changed to 0.1 mm, the height H is changed to 0.05 mm, the pitch P is changed to 0.295 mm, and the pattern occupancy is changed. Except for the change to 0.09 (that is, 9%), the incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation in the same manner as in Example 1. The results are shown in Table 1.
〔実施例5〕
 導光板301の厚みを0.2mmに変更し、パターン303として設定された半球状の凸部のピッチPを0.313mmに変更し、パターン占有率を0.02(即ち、2%)に変更したこと以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表1に示す。
Example 5
The thickness of the light guide plate 301 is changed to 0.2 mm, the pitch P of the hemispherical convex portion set as the pattern 303 is changed to 0.313 mm, and the pattern occupation ratio is changed to 0.02 (ie, 2%). Except that, the incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation in the same manner as in Example 1. The results are shown in Table 1.
〔実施例6〕
 パターン303に形状を、Y軸方向と平行に延在する三角プリズム形状の凸部とした。なお、三角プリズム形状の断面の頂角は90°とした。また、凸部の幅Wは0.01mmとし、高さHは0.005mmとし、ピッチPは0.333mmとした。また、光取出面302におけるパターン占有率は0.03(即ち、3%)とした。さらに、導光板301の厚みは0.2mmとした。以上の事項以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表2に示す。
Example 6
The pattern 303 is a triangular prism-shaped convex portion extending in parallel with the Y-axis direction. The apex angle of the triangular prism-shaped cross section was 90 °. Moreover, the width W of the convex part was 0.01 mm, the height H was 0.005 mm, and the pitch P was 0.333 mm. In addition, the pattern occupation ratio on the light extraction surface 302 was set to 0.03 (that is, 3%). Furthermore, the thickness of the light guide plate 301 was 0.2 mm. Except for the above matters, the incident illuminance, outgoing illuminance, intermediate illuminance and terminal illuminance were calculated by simulation in the same manner as in Example 1. The results are shown in Table 2.
〔実施例7〕
 パターン303に形状を四角錐状の凸部とした。また、凸部の高さHは0.04mmとし、ピッチPは0.354mmとした。また、光取出面302におけるパターン占有率は0.01(即ち、1%)とした。さらに、導光板301の厚みは0.2mmとした。以上の事項以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表2に示す。
Example 7
The pattern 303 has a quadrangular pyramid shape. Further, the height H of the convex portions was 0.04 mm, and the pitch P was 0.354 mm. In addition, the pattern occupation ratio on the light extraction surface 302 was set to 0.01 (that is, 1%). Furthermore, the thickness of the light guide plate 301 was 0.2 mm. Except for the above matters, the incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation in the same manner as in Example 1. The results are shown in Table 2.
〔実施例8〕
 導光板301の厚みを0.02mmに変更し、パターン303として設定された半球状の凸部の底辺の最大長Nを0.002mmに変更し、高さHを0.001mmに変更し、ピッチPを0.032mmに変更し、パターン占有率を0.003(即ち、0.3%)に変更したこと以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表2に示す。
Example 8
The thickness of the light guide plate 301 is changed to 0.02 mm, the maximum length N of the hemispherical convex portion set as the pattern 303 is changed to 0.002 mm, the height H is changed to 0.001 mm, and the pitch In the same manner as in Example 1 except that P was changed to 0.032 mm and the pattern occupation ratio was changed to 0.003 (that is, 0.3%), the incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were changed. Calculated by simulation. The results are shown in Table 2.
〔実施例9〕
 パターン303が光取出面302及び裏面304の両方に存在するように変更し、パターン303として設定された半球状の凸部の底辺の最大長Nを0.1mmに変更し、高さHを0.05mmに変更し、ピッチPを0.443mmに変更し、パターン占有率を両面で0.08(即ち、8%)に変更したこと以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表2に示す。
Example 9
The pattern 303 is changed to exist on both the light extraction surface 302 and the back surface 304, the maximum length N of the base of the hemispherical convex portion set as the pattern 303 is changed to 0.1 mm, and the height H is set to 0. .05 mm, the pitch P is changed to 0.443 mm, and the pattern occupancy is changed to 0.08 (that is, 8%) on both sides. The intermediate illuminance and terminal illuminance were calculated by simulation. The results are shown in Table 2.
〔実施例10〕
 パターン303として設定された半球状の凸部の底辺の最大長Nを0.3mmに変更し、高さHを0.15mmに変更し、ピッチPを1.189mmに変更したこと以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表2に示す。
Example 10
Example except that the maximum length N of the base of the hemispherical convex portion set as the pattern 303 is changed to 0.3 mm, the height H is changed to 0.15 mm, and the pitch P is changed to 1.189 mm. In the same manner as in 1, the incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation. The results are shown in Table 2.
〔実施例11〕
 裏面に、光導入面と直交するようにX軸方向に延在する三角プリズム形状の凸部(頂角90°、ピッチ100μm)を全面に配置した以外は、実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表2に示す。なお、この実施例11では、輝度ムラには影響しないパターン見えが確認された。
Example 11
In the same manner as in Example 1, except that a triangular prism-shaped convex portion (vertical angle 90 °, pitch 100 μm) extending in the X-axis direction so as to be orthogonal to the light introduction surface is disposed on the back surface. Light illuminance, light emission illuminance, intermediate illuminance and terminal illuminance were calculated by simulation. The results are shown in Table 2. In Example 11, a pattern appearance that does not affect luminance unevenness was confirmed.
〔比較例1〕
 導光板301の厚みを4mmに変更し、パターン303として設定された半球状の凸部の底辺の最大長Nを0.1mmに変更し、高さHを0.05mmに変更し、ピッチPを0.162mmに変更し、パターン占有率を0.30(即ち、30%)に変更したこと以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表3に示す。
[Comparative Example 1]
The thickness of the light guide plate 301 is changed to 4 mm, the maximum length N of the base of the hemispherical projection set as the pattern 303 is changed to 0.1 mm, the height H is changed to 0.05 mm, and the pitch P is changed. The incident illuminance, outgoing illuminance, intermediate illuminance and terminal illuminance were calculated by simulation in the same manner as in Example 1 except that the pattern occupancy was changed to 0.162 mm and the pattern occupation ratio was changed to 0.30 (ie, 30%). . The results are shown in Table 3.
〔比較例2〕
 パターン303として設定された半球状の凸部の底辺の最大長Nを0.1mmに変更し、高さHを0.05mmに変更し、ピッチPを0.162mmに変更し、パターン占有率を0.30(即ち、30%)に変更したこと以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表3に示す。
[Comparative Example 2]
The maximum length N of the base of the hemispherical convex portion set as the pattern 303 is changed to 0.1 mm, the height H is changed to 0.05 mm, the pitch P is changed to 0.162 mm, and the pattern occupancy is changed. The incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation in the same manner as in Example 1 except that the value was changed to 0.30 (that is, 30%). The results are shown in Table 3.
〔比較例3〕
 パターン303として設定された半球状の凸部の底辺の最大長Nを0.1mmに変更し、高さHを0.05mmに変更し、ピッチPを0.229mmに変更し、パターン占有率を0.15(即ち、15%)に変更したこと以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表3に示す。
[Comparative Example 3]
The maximum length N of the base of the hemispherical convex portion set as the pattern 303 is changed to 0.1 mm, the height H is changed to 0.05 mm, the pitch P is changed to 0.229 mm, and the pattern occupancy is changed. The incident light illuminance, outgoing light illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation in the same manner as in Example 1 except that it was changed to 0.15 (that is, 15%). The results are shown in Table 3.
〔比較例4〕
 パターン303が光取出面302及び裏面304の両方に存在するように変更し、パターン303として設定された半球状の凸部の底辺の最大長Nを0.1mmに変更し、高さHを0.05mmに変更し、ピッチPを1.253mmに変更し、パターン占有率を0.005(即ち、0.5%)に変更したこと以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表3に示す。
[Comparative Example 4]
The pattern 303 is changed to exist on both the light extraction surface 302 and the back surface 304, the maximum length N of the base of the hemispherical convex portion set as the pattern 303 is changed to 0.1 mm, and the height H is set to 0. .05 mm, the pitch P is changed to 1.253 mm, and the pattern occupancy is changed to 0.005 (that is, 0.5%). The intermediate illuminance and terminal illuminance were calculated by simulation. The results are shown in Table 3.
〔比較例5〕
 光取出面302及び裏面304のいずれにもパターン303を形成しなかったこと以外は実施例1と同様にして、入光照度、出光照度、中間照度および端末照度をシミュレーションにより算出した。結果を表3に示す。
[Comparative Example 5]
The incident illuminance, outgoing illuminance, intermediate illuminance, and terminal illuminance were calculated by simulation in the same manner as in Example 1 except that the pattern 303 was not formed on any of the light extraction surface 302 and the rear surface 304. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
〔検討〕
 表1~表3においては、パターン占有率を導光板の厚みで割った値α1、パターンの幅W又は底辺の最大長Nを導光板の厚みで割った値α2、及び、パターンの高さHを導光板の厚みで割った値α3も示した。また、出光照度を入光照度で割った値を「出光割合」として示し、中間照度を入光照度で割った値を「中間照度割合」として示した。
〔Consideration〕
In Tables 1 to 3, a value α1 obtained by dividing the pattern occupancy by the thickness of the light guide plate, a value α2 obtained by dividing the width W or the maximum length N of the bottom by the thickness of the light guide plate, and the height H of the pattern A value α3 obtained by dividing by the thickness of the light guide plate is also shown. Further, a value obtained by dividing the light emission illuminance by the light incident illuminance is shown as “light emission ratio”, and a value obtained by dividing the intermediate illuminance by the light incident illuminance is shown as “intermediate illuminance ratio”.
 表1及び表2から、実施例1~11では、出光割合が高く、且つ、中間照度割合も高いことがわかる。
 出光割合は、光導入面から導入された光のうち、どれだけの光が光取出面から取り出されているかを示す指標である。したがって、出光割合が高いことは、光源から照射された光をより有効に活用できることを表す。
 また、中間照度割合は、光導入面から導入された光のうち、どれだけの光が導光板のX軸方向の中間地点よりも奥にまで導光されているかを表す指標である。したがって、中間照度割合が高いことは、導入された光が光導入面近傍の光取出面から取り出され難いことを表す。すなわち、光取出面の光導入面に近い位置の輝度が過剰に高くならず、輝度ムラを抑制できることを表す。
 したがって、上記の実施例から、本発明の導光板及び照明装置では、導光板の厚みを薄くすることと、輝度ムラを抑制することとの両方を実現できることが確認できる。
From Tables 1 and 2, it can be seen that in Examples 1 to 11, the ratio of light emission is high and the ratio of intermediate illuminance is also high.
The light emission ratio is an index indicating how much of the light introduced from the light introduction surface is extracted from the light extraction surface. Therefore, a high light emission ratio indicates that light emitted from the light source can be used more effectively.
Further, the intermediate illuminance ratio is an index indicating how much light is introduced from the light introduction surface to the back of the intermediate point in the X-axis direction of the light guide plate. Therefore, a high intermediate illuminance ratio indicates that the introduced light is difficult to be extracted from the light extraction surface near the light introduction surface. That is, the luminance at the position near the light introduction surface of the light extraction surface is not excessively increased, and luminance unevenness can be suppressed.
Therefore, it can be confirmed from the above embodiments that the light guide plate and the lighting device of the present invention can both reduce the thickness of the light guide plate and suppress luminance unevenness.
 他方、表3を見ると、比較例1では良好な結果が得られている。比較例1は導光板の厚みが厚いため、このような結果が得られている。
 比較例2,3は、パターン占有率が高い例である。これらの比較例2,3では、出光割合は高いものの、中間照度割合は低い。したがって、光導入面から導入された光の大部分は、光取出面の光導入面に近い位置で取り出され、遠い位置ではほとんど光が発せられていない。したがって、比較例2ではX軸方向の手前が明るく奥に行くほど暗くなり、輝度ムラが生じる。
 比較例4はパターン占有率が低い例であり、比較例5はパターンが無い例である。これらの比較例4,5では、中間照度割合は高いものの、出光割合は低い。したがって、光導入面から導入された光の大部分は、光取出面から取り出されず、大部分が無駄になる。なお、端末照度が高いことから、光取出面から取り出されなかった光は、光導入面とは反対側の側面から取り出されることがわかる。
On the other hand, when Table 3 is seen, in Comparative Example 1, good results are obtained. Since the comparative example 1 has a thick light guide plate, such a result is obtained.
Comparative Examples 2 and 3 are examples in which the pattern occupancy is high. In these comparative examples 2 and 3, although the light emission ratio is high, the intermediate illuminance ratio is low. Therefore, most of the light introduced from the light introduction surface is extracted at a position near the light introduction surface of the light extraction surface, and almost no light is emitted at a far position. Therefore, in Comparative Example 2, the near side in the X-axis direction becomes brighter and darker, and luminance unevenness occurs.
Comparative example 4 is an example with a low pattern occupancy, and comparative example 5 is an example without a pattern. In these comparative examples 4 and 5, although the intermediate illuminance ratio is high, the light emission ratio is low. Therefore, most of the light introduced from the light introduction surface is not extracted from the light extraction surface, and most is wasted. Since the terminal illuminance is high, it can be seen that light that has not been extracted from the light extraction surface is extracted from the side surface opposite to the light introduction surface.
 ところで、前記の実施例及び比較例のいずれにおいても出光割合は100%となっていない。これは、導光板内を導光される光の成分には、光取出面及び裏面と平行に進む平行光が含まれているためと推察される。前記の平行光のことを考慮すれば、上記実施例で実現されている程度に出光割合が高ければ、光源から照射された光を充分に活用できていると判断できる。 By the way, the light emission ratio is not 100% in any of the above-mentioned examples and comparative examples. This is presumably because the light component guided in the light guide plate includes parallel light traveling parallel to the light extraction surface and the back surface. In consideration of the parallel light, it can be determined that the light emitted from the light source can be sufficiently utilized if the light emission ratio is as high as that achieved in the above embodiment.
 本発明の導光板は、光学用途に任意に適用でき、中でも面発光可能な照明装置に好適である。
 本発明の照明装置は、液晶表示装置に用いて好適である。また、本発明の照明装置は、例えばショーウィンドウ等の照明装置として用いるなど、液晶表示装置のバックライト以外の用途に用いることも可能である。
The light guide plate of the present invention can be arbitrarily applied to optical applications, and is particularly suitable for an illumination device capable of surface light emission.
The illumination device of the present invention is suitable for use in a liquid crystal display device. The lighting device of the present invention can also be used for applications other than the backlight of a liquid crystal display device, for example, as a lighting device such as a show window.
 1 照明装置
 100 導光板
 110 光導入面
 120 光取出面
 121 光取出面及び裏面130の、パターンが形成されていない部分
 130 裏面
 140 パターン
 141~146 凸部
 150 側面
 200 光源
 301 導光板
 302 光取出面
 303 パターン
 304 裏面
 305 光取出面のパターンが形成されていない部分
 306 光導入面
 307 光源
 308 基板
 309 LED
 310 ランプカバー
 311 ランプカバーの内面
DESCRIPTION OF SYMBOLS 1 Illuminating device 100 Light guide plate 110 Light introduction surface 120 Light extraction surface 121 The part where the pattern is not formed of the light extraction surface and the back surface 130 Back surface 140 Pattern 141-146 Convex part 150 Side surface 200 Light source 301 Light guide plate 302 Light extraction surface 303 pattern 304 back surface 305 portion where light extraction surface pattern is not formed 306 light introduction surface 307 light source 308 substrate 309 LED
310 Lamp cover 311 Inner surface of lamp cover

Claims (6)

  1.  光を導入する光導入面、前記光導入面から導入された光を取り出す光取出面、および、前記光取出面の反対側に位置する裏面を有する導光板であって、
     前記導光板の厚みが0.020mm~0.500mmであり、
     前記光取出面及び前記裏面の少なくとも一方に、凹部及び凸部のうち少なくとも一方からなるパターンを有し、
     前記パターンの占有率が、前記導光板の厚み(mm)の0.02倍以上0.2倍以下である、導光板。
    A light guide plate having a light introduction surface for introducing light, a light extraction surface for extracting light introduced from the light introduction surface, and a back surface located on the opposite side of the light extraction surface;
    The light guide plate has a thickness of 0.020 mm to 0.500 mm;
    At least one of the light extraction surface and the back surface has a pattern consisting of at least one of a concave portion and a convex portion,
    The light guide plate whose occupation rate of the pattern is 0.02 to 0.2 times the thickness (mm) of the light guide plate.
  2.  前記パターンに含まれる前記凹部又は前記凸部が、所定の方向に延在し、その断面形状が三角形状又は円若しくは楕円の一部の形状であり、
     前記凹部又は前記凸部の幅が、前記導光板の厚みの0.02倍以上0.5倍以下であり、
     前記凹部又は前記凸部の高さが、前記導光板の厚みの0.01倍以上0.25倍以下である、請求項1記載の導光板。
    The concave portion or the convex portion included in the pattern extends in a predetermined direction, and a cross-sectional shape thereof is a triangular shape or a partial shape of a circle or an ellipse,
    The width of the concave portion or the convex portion is 0.02 to 0.5 times the thickness of the light guide plate,
    The light guide plate according to claim 1, wherein a height of the concave portion or the convex portion is 0.01 to 0.25 times the thickness of the light guide plate.
  3.  前記パターンに含まれる前記凹部又は凸部の形状が、球の一部の形状、三角錐、四角錐及び円柱からなる群より選ばれる形状であり、
     前記凹部又は凸部の底辺の最大長が、前記導光板の厚みの0.02倍以上0.5倍以下であり、
     前記凹部又は前記凸部の高さが、前記導光板の厚みの0.01倍以上0.25倍以下である、請求項1記載の導光板。
    The shape of the concave portion or the convex portion included in the pattern is a shape selected from the group consisting of a partial shape of a sphere, a triangular pyramid, a quadrangular pyramid, and a cylinder,
    The maximum length of the bottom of the concave or convex portion is 0.02 to 0.5 times the thickness of the light guide plate,
    The light guide plate according to claim 1, wherein a height of the concave portion or the convex portion is 0.01 to 0.25 times the thickness of the light guide plate.
  4.  前記光取出面及び前記裏面の前記パターンが形成されていない部分の算術平均粗さRaが0.05μm以下である、請求項1記載の導光板。 The light guide plate according to claim 1, wherein the arithmetic average roughness Ra of the portion where the pattern on the light extraction surface and the back surface is not formed is 0.05 μm or less.
  5.  前記パターンの占有密度が、前記光導入面から離れるに従って連続的又は段階的に大きくなるようになっている、請求項1記載の導光板。 The light guide plate according to claim 1, wherein an occupation density of the pattern increases continuously or stepwise as the distance from the light introduction surface increases.
  6.  請求項1記載の導光板と、前記導光板の光導入面に光を照射する点光源とを備える、照明装置。 An illumination device comprising: the light guide plate according to claim 1; and a point light source that irradiates light to a light introduction surface of the light guide plate.
PCT/JP2011/050753 2010-01-29 2011-01-18 Light-guiding plate and lighting device WO2011093172A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010019721 2010-01-29
JP2010-019721 2010-01-29
JP2010-143070 2010-06-23
JP2010143070 2010-06-23

Publications (1)

Publication Number Publication Date
WO2011093172A1 true WO2011093172A1 (en) 2011-08-04

Family

ID=44319164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050753 WO2011093172A1 (en) 2010-01-29 2011-01-18 Light-guiding plate and lighting device

Country Status (2)

Country Link
TW (1) TW201131224A (en)
WO (1) WO2011093172A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050726A1 (en) * 2012-09-26 2014-04-03 シャープ株式会社 Light source apparatus and display apparatus provided with same
JP2018037419A (en) * 2011-08-08 2018-03-08 クォークスター・エルエルシー Lighting device with plurality of light emitting elements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011599A (en) * 2003-06-17 2005-01-13 Omron Corp Surface light source device, and apparatus using the same
WO2005090855A1 (en) * 2004-03-22 2005-09-29 System-Lab For K.G. Light guide plate
WO2009001802A1 (en) * 2007-06-28 2008-12-31 Zeon Corporation Lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011599A (en) * 2003-06-17 2005-01-13 Omron Corp Surface light source device, and apparatus using the same
WO2005090855A1 (en) * 2004-03-22 2005-09-29 System-Lab For K.G. Light guide plate
WO2009001802A1 (en) * 2007-06-28 2008-12-31 Zeon Corporation Lighting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037419A (en) * 2011-08-08 2018-03-08 クォークスター・エルエルシー Lighting device with plurality of light emitting elements
WO2014050726A1 (en) * 2012-09-26 2014-04-03 シャープ株式会社 Light source apparatus and display apparatus provided with same

Also Published As

Publication number Publication date
TW201131224A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
JP4552563B2 (en) Direct backlight unit
TW201202800A (en) Apparatus for fabricating light guide panel and backlight unit having the light guide panel
KR20050010822A (en) Planar light source and light guide for use therein
WO2011093173A1 (en) Light-guiding plate, lighting device, and liquid-crystal display device
JP2012043671A (en) Planar light source device
JPWO2008050763A1 (en) Direct backlight unit
JP5424901B2 (en) Surface light source device and light guide used therefor
JP2012212612A (en) Light guide member and backlight device
CN108474876B (en) Optical sheet for backlight unit and backlight unit
JP2012234117A (en) Prism sheet, surface light source device, and liquid crystal display
CN203082714U (en) Backlight module and display device
JP2012089467A (en) In-vehicle illumination device
WO2011093172A1 (en) Light-guiding plate and lighting device
JP2011138698A (en) Surface light source device and liquid crystal display device
JP2011033643A (en) Optical path changing sheet, backlight unit and display device
US7954983B2 (en) Optical component, manufacturing method of the same and backlight module
JP2011216203A (en) Light source device, backlight device, and liquid crystal display device
JP2011134650A (en) Light source device and liquid crystal display device
JP2012204192A (en) Backlight device
WO2011093262A1 (en) Light-guiding plate and lighting device
WO2017104677A1 (en) Optical sheet for backlight unit and backlight unit
JP2011138699A (en) Surface light source apparatus and liquid crystal display device
KR20130118160A (en) Serration light guide plate for liquid crystal display device and back light unit using the same
KR101211726B1 (en) Pattern Light Guiding Plate Integrated Reflector and Method of Manufacture The Same
KR101250374B1 (en) Back light unit having sag control patterns

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP