WO2011093173A1 - Light-guiding plate, lighting device, and liquid-crystal display device - Google Patents

Light-guiding plate, lighting device, and liquid-crystal display device Download PDF

Info

Publication number
WO2011093173A1
WO2011093173A1 PCT/JP2011/050754 JP2011050754W WO2011093173A1 WO 2011093173 A1 WO2011093173 A1 WO 2011093173A1 JP 2011050754 W JP2011050754 W JP 2011050754W WO 2011093173 A1 WO2011093173 A1 WO 2011093173A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
prism
light extraction
concavo
Prior art date
Application number
PCT/JP2011/050754
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 塚田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2011093173A1 publication Critical patent/WO2011093173A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity

Definitions

  • the present invention relates to a light guide, an illumination device including the same, and a liquid crystal display device.
  • Liquid crystal display devices are widely used as display units for liquid crystal televisions, personal computers, mobile phones and the like.
  • the liquid crystal display device generally includes a liquid crystal panel and an illumination device called a backlight device that supplies light to the back surface of the liquid crystal panel.
  • the backlight device examples include a lighting device that combines a plate-like light guide (hereinafter, referred to as “light guide plate” as appropriate) and a light source that emits light from the side to the light guide plate.
  • a lighting device that combines a plate-like light guide (hereinafter, referred to as “light guide plate” as appropriate) and a light source that emits light from the side to the light guide plate.
  • Patent Documents 1 to 3 can be cited as references describing such a type of lighting device.
  • light emitted from a light source is introduced into a light guide plate from a light introduction surface located on a side surface of the light guide plate, and the introduced light is light located on the front surface or the back surface of the light guide plate. By emitting from the extraction surface, surface light emission is performed.
  • Local dimming is, for example, a technique that does not irradiate light evenly over the entire surface of the liquid crystal panel, but irradiates light only in a desired region or changes the light irradiation intensity for each region. Local dimming is expected to improve the image quality of liquid crystal display devices (for example, improve contrast and reduce afterimages) and save energy.
  • the light to be guided is guided so as to spread over a wide area of the light guide plate, so that the light guided outside the desired area is not used for irradiation of the liquid crystal panel and is wasted. On the contrary, there was a possibility that it would be a factor of image quality degradation.
  • a plurality of light guide plates having a small size are arranged, and a space or a partition is provided at the boundary portion.
  • a space or a partition is provided at the boundary portion.
  • light leakage from the boundary portion or dark portion may occur, preventing uniform illumination, and high optical performance may not be realized.
  • the number of processes and cost tend to increase in terms of manufacturing.
  • the present invention has been made in view of the above problems, and a light guide capable of selectively extracting light from a light extraction surface in a desired region, and illumination capable of realizing local dimming using the light guide.
  • An object is to provide a device and a liquid crystal display device.
  • the present inventor has at least one of the light extraction surface of the light guide and the back surface located on the opposite side of the light extraction surface to have a shape viewed from the light extraction direction.
  • the light guiding direction can be controlled by internal reflection on the surface of the concavo-convex structure, so that light can be selectively extracted from a light extraction surface in a desired region.
  • the present invention has been completed. That is, according to the present invention, the following [1] to [18] are provided.
  • a light introduction surface for introducing light, a light extraction surface for extracting light introduced from the light introduction surface, and a back surface positioned on the opposite side of the light extraction surface, and introduced from the light introduction surface A light guide that guides the light in a predetermined direction, As seen from a direction parallel to the light extraction direction, the concavo-convex structure A having an anisotropic shape in which the dimension in the predetermined direction is larger than the dimension in the direction orthogonal to the predetermined direction is formed on the light extraction surface and the back surface.
  • the light guide has a light extraction structure for extracting light guided through the light guide from the light extraction surface at a portion having the uneven structure A.
  • the light guide according to one item. [7] The light guide according to [6], wherein the light extraction structure is a concavo-convex structure B having a main axis of the anisotropic shape in a direction intersecting with the main axis of the anisotropic shape of the concavo-convex structure A.
  • the anisotropic main axis of the concavo-convex structure A is orthogonal to the anisotropic main axis of the concavo-convex structure B.
  • An illumination device comprising: the light guide according to any one of [1] to [14]; and a light source that irradiates light to a light introduction surface of the light guide.
  • a plurality of the light sources are provided, The lighting device according to [15], wherein the plurality of light sources are dimmable individually or in groups.
  • the light guide of the present invention light can be selectively extracted from the light extraction surface in a desired region. According to the illumination device and the liquid crystal display device of the present invention, local dimming is possible.
  • FIG. 1 is a perspective view schematically showing an outline of a lighting apparatus as a first embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a state in which a part of the light guide according to the first embodiment of the present invention is cut out and viewed from the light extraction surface side.
  • FIG. 3 is a plan view of one of the prisms formed on the light extraction surface of the light guide according to the first embodiment of the present invention, viewed from the light extraction surface side in the Z-axis direction.
  • FIG. 4 is a perspective view schematically showing a state in which a part of the light guide according to the first embodiment of the present invention is cut out and viewed from the back side.
  • FIG. 1 is a perspective view schematically showing an outline of a lighting apparatus as a first embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a state in which a part of the light guide according to the first embodiment of the present invention is cut out and viewed from the light extraction surface side.
  • FIG. 5 is a plan view of one of the prisms formed on the back surface of the light guide according to the first embodiment of the present invention as viewed from the back surface side in the Z-axis direction.
  • FIG. 6 is an enlarged view of a cross section obtained by cutting the light guide along a plane perpendicular to the X-axis direction in order to explain the state of internal reflection of light guided through the light guide according to the first embodiment of the present invention.
  • FIG. FIG. 7 is a perspective view schematically showing an outline of a lighting apparatus as a second embodiment of the present invention.
  • FIG. 8 is a perspective view schematically showing a state in which a part of the light guide according to the second embodiment of the present invention is cut out and viewed from the light extraction surface side.
  • FIG. 9 is a plan view of one of the prisms formed on the light extraction surface of the light guide according to the second embodiment of the present invention, as viewed from the light extraction surface side in the Z-axis direction.
  • FIG. 10 is a perspective view schematically showing a state in which a part of the light guide according to the second embodiment of the present invention is cut out and viewed from the back side.
  • FIG. 11 is a plan view of one of the prisms formed on the back surface of the light guide according to the second embodiment of the present invention as viewed from the back surface side in the Z-axis direction.
  • FIG. 12 is a perspective view schematically showing an outline of a lighting apparatus as a third embodiment of the present invention.
  • FIG. 13 is a perspective view which shows typically a mode that a part of light guide which concerns on 3rd embodiment of this invention was cut out, and it saw from the light extraction surface side.
  • FIG. 14 is a plan view of two adjacent prisms as the concavo-convex structure A formed on the light extraction surface of the light guide according to the third embodiment of the present invention, as viewed from the light extraction surface side in the Z-axis direction.
  • FIG. FIG. 15: is sectional drawing which shows typically the cross section which cut the light guide which concerns on 3rd embodiment of this invention with the surface perpendicular
  • FIG. 16 is a perspective view which shows typically a mode that a part of light guide which concerns on three embodiment of this invention was cut out, and it saw from the back surface side.
  • FIG. 17 is a plan view of two adjacent prisms as the concavo-convex structure A formed on the back surface of the light guide according to the third embodiment of the present invention, as viewed from the back surface side in the Z-axis direction.
  • FIG. 18 is an enlarged view of a cross section obtained by cutting the light guide along a plane perpendicular to the Y-axis direction in order to explain how light guided through the light guide according to the third embodiment of the present invention is extracted. It is sectional drawing shown typically.
  • FIG. 17 is a plan view of two adjacent prisms as the concavo-convex structure A formed on the back surface of the light guide according to the third embodiment of the present invention, as viewed from the back surface side in the Z-axis direction.
  • FIG. 18 is an enlarged view of a cross section obtained by cutting the light
  • FIG. 19 is a perspective view schematically showing an outline of a lighting apparatus as a fourth embodiment of the present invention.
  • FIG. 20 is a perspective view schematically showing a state where a part of the light guide according to the fourth embodiment of the present invention is cut out and viewed from the light extraction surface side.
  • FIG. 21 is a perspective view schematically showing a state in which a part of the light guide according to the fourth embodiment of the present invention is cut out and viewed from the back surface side.
  • FIG. 22 is a perspective view schematically showing an outline of a lighting apparatus as a fifth embodiment of the present invention.
  • FIG. 23 is a cross-sectional view schematically showing a cross section of the light guide according to the fifth embodiment of the present invention cut along a plane perpendicular to the Y-axis direction.
  • FIG. 24 is a perspective view schematically showing an outline of a lighting apparatus as a sixth embodiment of the present invention.
  • FIG. 25 is a perspective view schematically showing a state where a part of the light guide according to the sixth embodiment of the present invention is cut out and viewed from the light extraction surface side.
  • FIG. 26 is a perspective view schematically showing a state in which a part of the light guide according to the sixth embodiment of the present invention is cut out and viewed from the back side.
  • FIG. 27 is an enlarged view of a cross section of the light guide cut along a plane perpendicular to the X-axis direction in order to explain the internal reflection of light guided through the light guide according to the sixth embodiment of the present invention.
  • FIG. 28 is a perspective view schematically showing an outline of a liquid crystal display device as a seventh embodiment of the present invention.
  • FIG. 29 is a diagram schematically showing an illumination device as a modification of the first embodiment.
  • FIG. 30 is a perspective view schematically showing a state in which a part of a light guide as a modification of the third embodiment is cut out and viewed from the light extraction surface side.
  • FIG. 31 is a perspective view schematically showing a state in which a part of the light guide according to an embodiment of the present invention is cut out and viewed from the light extraction surface 120 side.
  • FIG. 32 is a plan view of one of the concavo-convex structures A formed on the light extraction surface of the light guide according to the embodiment of the present invention, as viewed from the light extraction surface side in the Z-axis direction.
  • FIG. 33 is a plan view for explaining simulation conditions set in the simulation performed in the first embodiment.
  • FIG. 34 shows the light spread width W 50 measured in Examples 1 to 4, 7 to 23 of the present invention and Comparative Example 1, and the inclination angles of the prisms formed on the light extraction surface and the back surface of the light guide. It is a graph showing the relationship.
  • FIG. 35 shows the light spread width W 5 measured in Examples 1 to 4, 7 to 23 of the present invention and Comparative Example 1, and the inclination angles of the prisms formed on the light extraction surface and the back surface of the light guide. It is a graph showing the relationship.
  • FIG. 1 is a perspective view schematically showing an outline of a lighting apparatus as a first embodiment of the present invention.
  • the illuminating device 1 as 1st embodiment of this invention is equipped with the plate-shaped light guide 101, the some light source 201, and the light modulation apparatus 301 which light-modulates the light source 201.
  • the light modulation apparatus 301 which light-modulates the light source 201.
  • the light guide 101 includes a light introduction surface 110 that introduces light into the light guide 101, a light extraction surface 120 that extracts the light introduced from the light introduction surface 110 to the outside of the light guide 101, and a light extraction surface. 120 and a back surface 130 located on the opposite side to 120.
  • the light introduced into the light guide body 101 from the light introduction surface 110 is guided in a predetermined direction while being internally reflected by the light extraction surface 120 and the back surface 130, and is guided there.
  • a reflection sheet can be installed on the back surface 130 side of the light guide 101, and the extracted light can be reflected and guided to the light extraction surface 120.
  • the direction in which light is guided (hereinafter referred to as “light guiding direction” as appropriate) including the predetermined direction is within the light guide 101 when viewed from the light extraction direction unless otherwise specified. Indicates the direction in which light is guided. Therefore, when referring to the light guide direction, the Z-axis direction described later is not a problem unless otherwise specified.
  • the direction parallel to the predetermined direction is defined as the X-axis direction.
  • the direction orthogonal to the X-axis direction is taken as the Y-axis direction.
  • the normal direction of the light extraction surface 120 is taken as the Z-axis direction.
  • the light guide 101 has a rectangular plate shape
  • the X-axis direction is parallel to the short side direction of the light extraction surface 120 of the light guide 101
  • the Y-axis direction is the light guide.
  • the Z-axis direction is parallel to the thickness direction of the light guide 101
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are orthogonal to each other.
  • the light introduction surface 110 is a side surface of the light guide 101 and is a surface located at the ends of the light extraction surface 120 and the back surface 130.
  • This light introduction surface 110 is a surface orthogonal to the X-axis direction. That is, the light introduction surface 110 is set to be orthogonal to a predetermined direction in which light is guided.
  • reflection on the light introduction surface 110 can be suppressed and light introduction efficiency can be increased.
  • refraction at the light introduction surface 110 at the time of introduction can be suppressed, and the traveling direction of light can be stably directed in a desired light guide direction (that is, the X-axis direction).
  • the light introduction surface 110 may be provided with irregularities such as a lens in order to increase the light introduction efficiency and further suppress the spread of light in the Y-axis direction. Good.
  • the light introduction surface 110 may be an irregular rough surface (a surface on which minute irregularities are randomly formed) or a bowl-shaped rough surface. Good.
  • the light introduction surface 110 will be described as a flat plane.
  • the light extraction surface 120 is one of the main surfaces of the light guide body 101.
  • light is emitted from the light extraction surface 120 in a predetermined extraction direction.
  • the light extraction direction from the light extraction surface 120 is a direction inclined from the normal direction of the light extraction surface 120 in the direction opposite to the light source 201, but here is parallel to the normal direction of the light extraction surface 120.
  • the description will be made assuming that the light extraction direction from the light extraction surface 120 is parallel to the Z-axis direction, which is the normal direction of the light extraction surface 120.
  • FIG. 2 is a perspective view schematically showing a state in which a part of the light guide body 101 according to the first embodiment of the present invention is cut out and viewed from the light extraction surface 120 side.
  • a plurality of prisms 121 are formed on the light extraction surface 120 as the concavo-convex structure A.
  • Each prism 121 is a bowl-shaped convex portion extending in the X-axis direction, and a plurality of prisms 121 are formed side by side in the Y-axis direction.
  • a plurality of prisms 121 are formed on the entire light extraction surface 120 side by side in the Y-axis direction. Thereby, the entire surface of the light extraction surface 120 has the concavo-convex structure A.
  • Each prism 121 is a prism having a triangular section in which a section cut by a plane perpendicular to the X-axis direction is a triangle. Therefore, the prism 121 has two inclined surfaces 122 and 123 that are not parallel to the Y-axis direction (that is, intersect with the Y-axis). Such inclined surfaces 122 and 123 can internally reflect light guided in the light guide 101 so as not to spread in the Y-axis direction.
  • the average inclination angle ⁇ of the slopes 122 and 123 of the prism 121 is preferably 15 ° or more, more preferably 25 ° or more, and particularly preferably 30 ° or more. The upper limit is less than 90 °.
  • the average inclination angle ⁇ of the slopes 122 and 123 is an average value of the inclination angles of the slopes 122 and 123 with respect to the light extraction surface 120 (see FIG. 6). Since the light extraction surface 120 has a concavo-convex structure A, it is not a flat plane when viewed microscopically.
  • the concavo-convex structure A has a small dimension in the Z-axis direction, when viewed macroscopically, the light extraction surface 120 is It can be handled as a flat plane. Therefore, the average inclination angle ⁇ can be understood as an average value of angles formed between the inclined surfaces 122 and 123 and the light extraction surface 120 when viewed macroscopically.
  • the average inclination angle ⁇ in the above range, the light guided in the light guide 101 is effectively prevented from spreading in the Y-axis direction, and the light guide direction can be controlled efficiently. .
  • FIG. 3 is a view of one of the prisms 121 formed on the light extraction surface 120 of the light guide 101 according to the first embodiment of the present invention, as viewed from the light extraction surface side in the Z-axis direction. That is, FIG. 3 shows a state in which one of the prisms 121 is viewed from a direction parallel to the light extraction direction. As shown in FIG. 3, when viewed from the light extraction surface side in the Z-axis direction, the prism 121 has an anisotropic shape. Specifically, the length (the dimension in the X-axis direction) Lx of the prism 121 is larger than the width (the dimension in the Y-axis direction in this embodiment) Ly.
  • the prism 121 has an anisotropic shape in which the dimension Lx in the X-axis direction, which is a predetermined direction in which light is guided, is larger than the dimension in the Y-axis direction orthogonal to the X-axis direction. This increases the frequency of internal reflection that inverts the direction of the Y-axis direction component of the light on the inclined surfaces 122 and 123 of the light guided through the light guide 101, and thereby increases the Y-axis direction. The above action of suppressing the spread of light can be effectively exhibited. Therefore, it is possible to effectively suppress the light guided in the light guide 101 from spreading in the Y-axis direction.
  • the specific length Lx of the prism 121 is assumed to be the same as the dimension of the light guide 101 in the X-axis direction in the light guide 101 of the present embodiment.
  • the entire light extraction surface 120 can exhibit the effect of suppressing the spread of light in the Y-axis direction due to internal reflection at the inclined surfaces 122 and 123.
  • the recessed part (valley part) 124 (refer FIG. 2, FIG. 6) formed between the prisms 121 will be continuously formed in the whole X-axis direction of the light guide 101, a light guide.
  • the width Ly of the prism 121 is usually 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and usually 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less. If it is too small, there is a tendency that light is scattered due to a diffraction phenomenon or that the production becomes difficult. If it is too large, the brightness and darkness of the portion from which light is extracted and the portion from which light is not extracted can be visually recognized, which may cause an optical defect.
  • the ratio of Lx to width Ly (Lx / Ly) can be determined as appropriate depending on the number of light sources 201, the arrangement and emission intensity, the shape and dimensions of the light extraction surface 120, and the like.
  • Such a ratio is usually 1.5 or more, preferably 2.0 or more, more preferably 5.0 or more, and usually 200000 or less, more preferably 100000 or less, and more preferably 50000 or less.
  • the length Lx depends on the length of the light guide body 101, but if the ratio is too large, the width Ly becomes small and it is difficult to manufacture.
  • the height H of the prism 121 (in this embodiment, the dimension in the Z-axis direction; see FIG. 6) H is usually 1.0 ⁇ m or more, preferably 2.0 ⁇ m or more, more preferably 3.0 ⁇ m or more. Usually, it is 500 micrometers or less, Preferably it is 400 micrometers or less, More preferably, it is 300 micrometers or less. If it is too small, production becomes difficult due to the limit of processing accuracy, and if it is too large, it can be visually recognized and may cause an optical defect.
  • the principal axis PA of the anisotropic shape of the prism 121 when viewed from the light extraction surface side in the Z-axis direction, the principal axis PA of the anisotropic shape of the prism 121 is parallel to the X-axis direction.
  • the principal axis PA of the anisotropic shape of the prism 121 refers to an axis along the longitudinal direction in the shape of the prism 121 viewed from the Z-axis direction. Since the prism 121 exhibits the effect of guiding light along the principal axis PA by internal reflection at the inclined surfaces 122 and 123, the anisotropic principal axis PA of the prism 121 is parallel to the X-axis direction. Light can be stably guided along the X-axis direction.
  • the back surface 130 is one of the main surfaces of the light guide 101 and is a surface parallel to the light extraction surface 120. On the back surface 130, light guided through the light guide 101 is internally reflected. For this reason, the back surface 130 may be called a reflective surface. In addition, in order to stably reflect light internally on the back surface 130, the back surface 130 may be provided with a reflective layer such as a metal layer, a resin-made scattering layer, or a combination thereof.
  • FIG. 4 is a perspective view schematically showing a state in which a part of the light guide body 101 according to the first embodiment of the present invention is cut out and viewed from the back surface 130 side.
  • FIG. 5 is a view of one of the prisms 131 formed on the back surface 130 of the light guide body 101 according to the first embodiment of the present invention as viewed from the back surface side in the Z-axis direction.
  • a prism 131 is formed on the back surface 130 as the concavo-convex structure A.
  • the prism 131 is formed in the same manner as the prism 121 on the light extraction surface 120. That is, the prism 131 is formed on the entire back surface 130.
  • Each prism 131 is a prism having a triangular cross section, and has two inclined surfaces 132 and 133, respectively. Furthermore, as shown in FIG. 5, when viewed from the back side in the Z-axis direction, the length of the prism 131 (in this embodiment, the dimension in the X-axis direction) Lx is the width of the prism 131 (in this embodiment, It is larger than the dimension Y in the Y-axis direction. In addition, concave portions (valley portions) 134 (see FIGS. 4 and 6) formed between the prisms 131 are continuously formed in the entire X-axis direction of the light guide 101.
  • the principal axis PA of the anisotropic shape of the prism 131 is parallel to the X-axis direction.
  • the back surface 130 can suppress the spread of the guided light in the Y-axis direction.
  • the average inclination angle ⁇ of the inclined surfaces 132 and 133 of the prism 131 is preferably 15 ° or more, more preferably 25 ° or more, and particularly preferably 30 ° or more.
  • the upper limit is less than 90 °.
  • the light source 201 shown in FIG. 1 is a device that irradiates light to the light introduction surface 110 of the light guide 101.
  • the light source 201 is usually installed such that its axis (that is, the direction of the principal ray of emitted light) is parallel to the X-axis direction.
  • an LED Light Emitting Diode
  • LEDs are high light emission efficiency and are excellent light sources from the viewpoint of energy saving.
  • the LED is supplied with electric power from a power source (not shown), and can be individually dimmed by the supplied electric power.
  • the illumination device 1 of the present embodiment has the following configuration. That is, the light guide 101 is divided into a plurality of regions 101a to 101h when viewed from the Z-axis direction, and each of the regions 101a to 101h has a rectangular shape extending along the X-axis direction.
  • the light introduction surface 110 is divided into regions 110a to 110h located on the front side in the X-axis direction of the regions 101a to 101h. Note that the regions 101a to 101h and the regions 110a to 110h are virtually set for controlling the light emission position of the lighting device 1, and are not usually separated by physical boundaries.
  • the lighting device 1 includes a plurality of light sources 201, and the light sources 201 are provided at positions in front of the regions 110a to 110h of the light introduction surface 110.
  • Each light source 201 is connected to a light control device 301 that controls the light source 201.
  • the light control device 301 is a device that adjusts the presence / absence and supply amount of power to the light source 201. Therefore, the light control device 301 adjusts the power supplied to each light source 201 so that light can be selectively irradiated from each light source 201 to the regions 110a to 110h of the light introduction surface 110 with desired brightness. It has become.
  • the dimming device 301 includes, in terms of hardware, an arithmetic device such as a CPU (Central Processing Unit), a memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), and an interface unit such as an AD conversion unit. These are composed of variable resistors and the like, and these function as the above-mentioned dimmers.
  • arithmetic device such as a CPU (Central Processing Unit)
  • a memory such as a RAM (Random Access Memory), a ROM (Read Only Memory)
  • an interface unit such as an AD conversion unit.
  • the illuminating device 1 as the first embodiment of the present invention is configured as described above, the light emitted from the light source 201 enters the light introduction surface 110 and is introduced into the light guide 101 to be guided. After being guided through the light body 101, the light is extracted from the light extraction surface 120 to the outside. Further, local dimming can be efficiently performed by controlling the light emission of the light source 201.
  • a mechanism capable of performing efficient local dimming will be described by taking as an example a case where light is selectively extracted from the light extraction surface 120 in the region 101a.
  • the light control device 301 adjusts the amount of power supplied to the light source 201, so that the light source positioned in front of the region 110a of the light introduction surface 110 is adjusted.
  • Light is selectively emitted from 201.
  • the irradiated light enters the region 110 a of the light introduction surface 110 and is introduced into the light guide 101.
  • the light introduced into the light guide body 101 is guided toward the back along the X-axis direction while repeating internal reflection on the light extraction surface 120 and the back surface 130.
  • FIG. 6 is a cross-sectional view of the light guide 101 taken along a plane perpendicular to the X-axis direction in order to explain the state of internal reflection of light guided through the light guide 101 according to the first embodiment of the present invention. It is sectional drawing which expands and shows typically.
  • an arrow A indicates a component perpendicular to the X-axis direction among light vectors guided through the light guide 101.
  • the light A guided in the light guide 101 repeats internal reflection on the inclined surfaces 122 and 123 of the light extraction surface 120 and the inclined surfaces 132 and 133 of the back surface 130. Due to internal reflection, the light A that has traveled to the right in the figure proceeds to the left in the figure.
  • the light A since the light A is incident on the back surface 130 at a small incident angle, the light A appears to be extracted from the back surface 130 to the outside.
  • the light A has a component in the X-axis direction larger than a component perpendicular to the X-axis direction. Therefore, as shown in FIG. 6, even when the incident angle of the component perpendicular to the X-axis direction in the light vector is small, the incident angle of the light to the back surface 130 is actually large and the light can be internally reflected. There is. The same applies to the internal reflection at the light extraction surface 120.
  • the light guided in the region 101a of the light guide body 101 along the X-axis direction is extracted from the light extraction surface 120 in the region 101a.
  • the light since the guided light does not spread in the Y-axis direction, the light is not extracted from the light extraction surfaces 120 in the regions 101b to 101h other than the region 101a, or the extraction amount even if it is extracted. Becomes a small amount. In this way, local dimming is realized by selectively extracting light from the light extraction surface 120 in the desired region 101a among the regions 101a to 101h.
  • the prism 121 and the prism 131 corresponding to the concavo-convex structure A are provided on both the light extraction surface 120 and the back surface 130, the light to be guided spreads in the Y-axis direction only on one side. In comparison, it can be further suppressed.
  • the principal axis PA of the anisotropic shape of the prism 121 and the prism 131 is parallel to the X-axis direction, light can be stably guided along the X-axis direction.
  • the recesses 124 and 134 of the concavo-convex structure A are continuous along the X-axis direction, the light guided in the light guide 101 can be more effectively suppressed from spreading in the Y-axis direction, It is possible to prevent the light guide 101 from being in close contact with the optical sheet disposed close to the light guide 101, or to suppress the light guide 101 from being scratched by rubbing with the optical sheet disposed close to the light guide 101.
  • FIG. 7 is a perspective view schematically showing an outline of a lighting apparatus as a second embodiment of the present invention.
  • FIG. 8 is a perspective view schematically illustrating a state in which a part of the light guide according to the second embodiment of the present invention is cut out and viewed from the light extraction surface side.
  • FIG. 9 is a view of one of the prisms formed on the light extraction surface of the light guide according to the second embodiment of the present invention, viewed from the light extraction surface side in the Z-axis direction.
  • FIG. 10 is a perspective view schematically showing a state in which a part of the light guide according to the second embodiment of the present invention is cut out and viewed from the back side.
  • FIG. 10 is a perspective view schematically showing a state in which a part of the light guide according to the second embodiment of the present invention is cut out and viewed from the back side.
  • FIG. 11 is a view of one of the prisms formed on the back surface of the light guide according to the second embodiment of the present invention as viewed from the back surface side in the Z-axis direction. 7 to 11, the same reference numerals as those in FIGS. 1 to 6 denote the same parts as those in FIGS. 1 to 6.
  • the illuminating device 2 as 2nd embodiment of this invention is equipped with the plate-shaped light guide 102, the some light source 201, and the light control apparatus 301 which light-modulates the light source 201.
  • the light source 201 and the light control device 301 are the same as in the first embodiment.
  • the light guide 102 is the same as the light guide 101 of the first embodiment except for the shapes of the prism 121 and the prism 131 that the light extraction surface 120 and the back surface 130 have.
  • the prism 121 according to the second embodiment is the same as the prism 121 of the first embodiment, except that the prism 121 has a flat portion 125 having a flat surface orthogonal to the Z-axis direction. It has become.
  • the prism 131 according to the second embodiment is the same as the prism 131 of the first embodiment except that the prism 131 has a flat portion 135 having a flat surface orthogonal to the Z-axis direction. It is the same. That is, the prism 121 according to the second embodiment has a trapezoidal cross section, and has a flat portion 125 between the slope 122 and the slope 123.
  • the prism 131 according to the second embodiment has a trapezoidal cross section, and has a flat portion 135 between the slope 132 and the slope 133. Since the inclined surfaces 122 and 123 and the inclined surfaces 132 and 133 are provided, the light guided through the light guide 102 is also internally reflected by the prism 121 and the prism 131 according to the second embodiment so as not to spread in the Y-axis direction. Be able to. Furthermore, since the flat portion 125 and the flat portion 135 are provided, it is possible to easily remove the light guide 102 from the mold at the time of manufacturing the light guide 102, and to reduce the number of steps for manufacturing the mold.
  • the illuminating device 2 as the second embodiment of the present invention is configured as described above, it can be used similarly to the illuminating device 1 according to the first embodiment, and the same advantages can be obtained. Furthermore, in the illuminating device 2 according to the second embodiment, the light guide 102 can be easily taken out from the mold, and the number of steps for producing the mold can be reduced.
  • FIG. 12 is a perspective view schematically showing an outline of a lighting apparatus as a third embodiment of the present invention.
  • FIG. 13 is a perspective view which shows typically a mode that a part of light guide which concerns on 3rd embodiment of this invention was cut out, and it saw from the light extraction surface side.
  • FIG. 14 is a diagram of two adjacent prisms as the concavo-convex structure A formed on the light extraction surface of the light guide according to the third embodiment of the present invention, viewed from the light extraction surface side in the Z-axis direction. It is.
  • FIG. 15: is sectional drawing which shows typically the cross section which cut the light guide which concerns on 3rd embodiment of this invention with the surface perpendicular
  • FIG. 16 is a perspective view which shows typically a mode that a part of light guide which concerns on three embodiment of this invention was cut out, and it saw from the back surface side.
  • FIG. 17 is a view of two adjacent prisms as the concavo-convex structure A formed on the back surface of the light guide according to the third embodiment of the present invention, as viewed from the back surface side in the Z-axis direction. 12 to 17, the same reference numerals as those in FIGS. 1 to 11 denote the same parts as those in FIGS.
  • the illuminating device 3 as 3rd embodiment of this invention is equipped with the plate-shaped light guide 103, the several light source 201, and the light modulation apparatus 301 which light-modulates the light source 201.
  • the light source 201 and the light control device 301 are the same as in the first embodiment.
  • the light guide 103 has a prism 141 in addition to the prism 121 on the light extraction surface 120, which is a part having the prism 121, and a prism 151 in addition to the prism 131 on the back surface 130, which is a part having the prism 131. Except this, it is the same as the light guide 101 of the first embodiment.
  • a prism 141 is formed on the light extraction surface 120 of the light guide 103 so as to overlap the prism 121.
  • the prism 141 is a light extraction structure that extracts light guided through the light guide 103 from the light extraction surface 120, and is formed by a hook-shaped protrusion extending in a predetermined direction. Therefore, the prism 141 has a concavo-convex structure B having an anisotropic shape when viewed from the Z-axis direction, which is a direction parallel to the light extraction direction.
  • Each prism 141 is the same as the prism 121 in that it has a triangular cross section. However, as shown in FIG. 14, when viewed from the light extraction surface side in the Z-axis direction, the anisotropic main axis PB of the prism 141 extends in a direction intersecting the anisotropic main axis PA of the prism 121. It is supposed to be. Since the prism 121 has the effect of guiding light along the main axis PA, the direction of the anisotropic main axis PB of the prism 141 is set so as to intersect the anisotropic main axis PA of the prism 121. As a result, light can be easily extracted by the slopes 142 and 143 of the prism 141. Among these, from the viewpoint of further increasing the light extraction efficiency, it is preferable that the anisotropic main axis PA of the prism 121 and the anisotropic main axis PB of the prism 141 are orthogonal to each other.
  • the prism 141 is formed side by side with a predetermined distance D between adjacent prisms 141 as shown in FIG.
  • the interval D between the prisms 141 is set so as to become narrower from the front in the X-axis direction toward the back. Accordingly, the formation density of the prism 141 increases as the distance from the light introduction surface 110 increases, and the light can be efficiently extracted by the prism 141 as the distance from the light introduction surface 110 increases.
  • a light extraction structure here, the prism 141 that can extract light with higher extraction efficiency as the distance from the light introduction surface 110 is provided. Thus, light can be extracted uniformly from the light extraction surface 120 in the X-axis direction.
  • the specific interval D of the prism 141 is usually 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and usually 10,000 ⁇ m or less, preferably 5000 ⁇ m or less, more preferably 3000 ⁇ m or less. If it is too small, there is a tendency that light is scattered due to a diffraction phenomenon or that the production becomes difficult. If it is too large, the brightness and darkness of the portion from which light is extracted and the portion from which light is not extracted can be visually recognized, which may cause an optical defect.
  • the width of the prism 141 (in this embodiment, the dimension in the X-axis direction, see FIG. 14) lx is usually 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and usually 300 ⁇ m or less, preferably 200 ⁇ m or less. More preferably, it is 100 ⁇ m or less. If it is too small, there is a tendency that light is scattered due to a diffraction phenomenon or that the production becomes difficult. If it is too large, the brightness and darkness of the portion from which light is extracted and the portion from which light is not extracted can be visually recognized, which may cause an optical defect.
  • the height of the prism 141 (in this embodiment, the dimension in the Z-axis direction; see FIG. 15) h is usually 1.0 ⁇ m or more, preferably 2.0 ⁇ m or more, more preferably 3.0 ⁇ m or more, and usually 500 ⁇ m. Hereinafter, it is preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less.
  • the height of the prism 141 is preferably set to be equal to or less than the height of the prism 121 from the viewpoint of preventing light guided in the light guide 103 from spreading in the Y-axis direction.
  • the prism 121 is partitioned by the prism 141 on the light extraction surface 120 as shown in FIG.
  • the prism 121 has an anisotropic shape even when the prism 121 is viewed from the Z-axis direction in each section.
  • the length Ly of the prism 121 is larger than the width Lx of the prism 121 so that the light guided through the light guide 103 is guided along the X axis direction without spreading in the Y axis direction. It is preferable to do so.
  • the length Lx of the divided prisms 121 is equal to the interval D of the prisms 141. From the above viewpoint, the interval D of the prisms 141 is preferably larger than the width Ly of the prisms 121.
  • a prism 151 is formed on the back surface 130 of the light guide 103 so as to overlap the prism 131.
  • the prism 151 is a light extraction structure that extracts light guided through the light guide 103 from the light extraction surface 120, and is formed in the same manner as the prism 141 on the light extraction surface 120. That is, the prism 151 is a prism having a triangular cross section having slopes 152 and 153.
  • the anisotropic main axis PB of the prism 151 extends in a direction (preferably a direction orthogonal to the main axis PA of the prism 131, see FIG. 17).
  • the prisms 151 are formed side by side with a predetermined interval D between the adjacent prisms 151, and the interval D between the prisms 151 is set to be shorter from the near side to the back side in the X-axis direction. (See FIG. 15).
  • FIG. 18 illustrates a cross section of the light guide 103 taken along a plane perpendicular to the Y-axis direction in order to explain how light guided through the light guide 103 according to the third embodiment of the present invention is extracted. It is sectional drawing which expands and shows typically.
  • the light 141 is formed with the prism 141 and the prism 151 as the light extraction structure, and thus the light A is emitted from the light extraction surface 120. It can be taken out efficiently.
  • FIG. 19 is a perspective view schematically showing an outline of a lighting apparatus as a fourth embodiment of the present invention.
  • FIG. 20 is a perspective view schematically showing a state where a part of the light guide according to the fourth embodiment of the present invention is cut out and viewed from the light extraction surface side.
  • FIG. 21 is a perspective view schematically showing a state in which a part of the light guide according to the fourth embodiment of the present invention is cut out and viewed from the back surface side.
  • the same reference numerals as those in FIGS. 1 to 18 indicate the same parts as those in FIGS. 1 to 18.
  • the illuminating device 4 as 4th embodiment of this invention is provided with the plate-shaped light guide 104, the some light source 201, and the light modulation apparatus 301 which light-modulates the light source 201.
  • the light source 201 and the light control device 301 are the same as in the first embodiment.
  • the light guide 104 has a fine unevenness 144 in addition to the prism 121 on the light extraction surface 120 which is a part having the prism 121, and is fine in addition to the prism 131 on the back surface 130 which is a part having the prism 131. Except having the unevenness 154, it is the same as the light guide 101 of the first embodiment.
  • the light extraction surface 120 of the light guide 104 has a large number of irregularities 144 so as to overlap the surface of the prism 121.
  • the unevenness 144 is a light extraction structure that extracts light guided through the light guide 104 from the light extraction surface 120.
  • corrugation 144 should just be one or both of a recessed part and a convex part, and the example which provided the convex part as the unevenness
  • the shape of the unevenness 144 for example, a polygonal cylinder, a cylinder, a polygonal pyramid, a shape lacking the top of the polygonal cone, a cone, a shape lacking the top of the cone, an elliptical cone, a shape lacking the top of the elliptical cone, Or a part of ellipsoid rotary body etc. are mentioned.
  • the width of the unevenness 144 is usually 1.0 ⁇ m or more, preferably 2.0 ⁇ m or more, more preferably 3.0 ⁇ m or more, and usually 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the height of the unevenness 144 is usually 0.5 ⁇ m or more, preferably 1.0 ⁇ m or more, more preferably 1.5 ⁇ m or more, and usually 25 ⁇ m or less, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the interval (pitch) between the projections and depressions 144 is set so as to become narrower from the front in the X-axis direction toward the back. Accordingly, the formation density of the unevenness 144 increases as the distance from the light introduction surface 110 increases, and the light can be efficiently extracted by the unevenness 144 as the distance from the light introduction surface 110 increases. Therefore, similarly to the third embodiment, light can be uniformly extracted from the light extraction surface 120 in the X-axis direction.
  • the specific interval between the irregularities 144 is usually 1.0 ⁇ m or more, preferably 2.0 ⁇ m or more, more preferably 3.0 ⁇ m or more, and is usually 100,000 ⁇ m or less, preferably 50000 ⁇ m or less, more preferably 30000 ⁇ m or less.
  • irregularities 154 are formed on the back surface 130 of the light guide 104 so as to overlap the surface of the prism 131.
  • the unevenness 154 is a light extraction structure that extracts light guided through the light guide 104 from the light extraction surface 120, and is formed in the same manner as the unevenness 144 of the light extraction surface 120.
  • the illuminating device 4 as 4th embodiment of this invention is comprised as mentioned above, it can be used similarly to the illuminating device 1 which concerns on 1st embodiment, and the same advantage is acquired. Moreover, in the illuminating device 4 according to the fourth embodiment of the present invention, since the unevenness 144 and the unevenness 154 are formed in the light guide 104 as the light extraction structure, light can be efficiently extracted from the light extraction surface 120. .
  • FIG. 22 is a perspective view schematically showing an outline of a lighting apparatus as a fifth embodiment of the present invention.
  • FIG. 23 is a cross-sectional view schematically showing a cross section of the light guide according to the fifth embodiment of the present invention cut along a plane perpendicular to the Y-axis direction. 22 and 23, the same reference numerals as those in FIGS. 1 to 21 denote the same parts as those in FIGS.
  • the illumination device 5 as the fifth embodiment of the present invention includes a plate-shaped light guide 105, a plurality of light sources 201, and a light control device 301 that adjusts the light source 201.
  • the light source 201 and the light control device 301 are the same as in the first embodiment.
  • the light guide 105 is the same as the light guide 101 of the first embodiment, except that the light guide 105 includes the light diffusing agent 145 in its entirety including the portion where the prism 121 and the prism 131 are formed. is there.
  • the light diffusing agent 145 is present in the light guide 105.
  • the light diffusing agent 145 is a particle having a property of diffusing light, and functions as a light extraction structure that extracts light guided through the light guide 105 from the light extraction surface 120.
  • the types of light diffusing agent 145 can be broadly classified into inorganic fillers and organic fillers.
  • the inorganic filler include glass, silica, aluminum hydroxide, aluminum oxide, titanium oxide, zinc oxide, barium sulfate, magnesium silicate, and a mixture thereof.
  • the organic filler include acrylic resin, polyurethane resin, polyvinyl chloride resin, polystyrene resin, polyacrylonitrile resin, polyamide resin, polysiloxane resin, melamine resin, benzoguanamine resin, fluorine resin, polycarbonate resin, silicone resin, polyethylene resin, Examples thereof include an ethylene-vinyl acetate copolymer, acrylonitrile, and a cross-linked product thereof.
  • an acrylic resin, a polystyrene resin, a polysiloxane resin, and fine particles made of a crosslinked product thereof are preferable in terms of high dispersibility, high heat resistance, and no coloration (yellowing) during molding. .
  • fine particles made of a cross-linked product of polysiloxane resin are more preferable in that they have few volatile components during molding.
  • what consists of 2 or more types of raw materials as a light-diffusion agent 145 may be used, and 2 or more types of light-diffusion agents may be mixed and used.
  • the shape of the light diffusing agent 145 There is no limitation on the shape of the light diffusing agent 145.
  • a spherical shape, a cubic shape, a needle shape, a rod shape, a spindle shape, a plate shape, a scale shape, a fiber shape, and the like can be given.
  • the light diffusing agent 145 may be used in one shape or in combination of two or more shapes in an arbitrary ratio.
  • the diameter of the light diffusing agent 145 is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the diameter here is substituted by the diameter of a sphere having the same volume.
  • a diameter of a circle having the same area as the cross-sectional area of the cross section perpendicular to the direction is substituted.
  • the concentration of the light diffusing agent 145 is preferably set so as to increase from the near side to the far side in the X-axis direction. Accordingly, the amount of the light diffusing agent 145 increases as the distance from the light introduction surface 110 increases, and the light diffusing agent 145 can efficiently extract light as the distance from the light introduction surface 110 increases. Therefore, similarly to the third and fourth embodiments, light can be extracted uniformly from the light extraction surface 120 in the X-axis direction.
  • the specific concentration of the light diffusing agent 145 can be set according to the thickness of the light guide 105 or the like.
  • the content of the light diffusing agent 145 in the entire light guide 105 is preferably 0.0001% by weight or more, more preferably 0.0005% by weight or more, preferably 0.1% by weight or less, more preferably 0. 0.05% by weight or less. If the amount is too small, there is a possibility that light cannot be extracted. If the amount is too large, light is emitted too much at the front position and the brightness uniformity tends to decrease.
  • the illuminating device 5 as the fifth embodiment of the present invention is configured as described above, it can be used similarly to the illuminating device 1 according to the first embodiment, and the same advantages can be obtained. Moreover, in the illuminating device 5 which concerns on 5th embodiment of this invention, since the light diffusing agent 145 is included in the light guide 105 as a light extraction structure, light can be efficiently extracted from the light extraction surface 120.
  • FIG. 24 is a perspective view schematically showing an outline of a lighting apparatus as a sixth embodiment of the present invention.
  • the same reference numerals as those in FIGS. 1 to 23 denote the same parts as those in FIGS.
  • the illuminating device 6 as 6th embodiment of this invention is equipped with the plate-shaped light guide 106, the some light source 201, and the light modulation apparatus 301 which light-modulates the light source 201.
  • the light source 201 and the light control device 301 are the same as in the first embodiment.
  • the light guide 106 has a lenticular 126 instead of the prism 121 as the concavo-convex structure A on the light extraction surface 120 and a lenticular 136 instead of the prism 131 as the concavo-convex structure A on the back surface 130. It is the same as the light guide 101 of the embodiment.
  • FIG. 25 is a perspective view schematically showing a state in which a part of the light guide body 106 according to the sixth embodiment of the present invention is cut out and viewed from the light extraction surface 120 side.
  • FIG. 26 is a perspective view schematically showing a state in which a part of the light guide body 106 according to the sixth embodiment of the present invention is cut out and viewed from the back surface 130 side.
  • FIG. 27 illustrates the light guide 106 cut along a plane perpendicular to the X-axis direction in order to explain the internal reflection of the light guided through the light guide 106 according to the sixth embodiment of the present invention. It is sectional drawing which expands and shows the cross section typically. 25 to 27, the same reference numerals as those in FIGS. 1 to 24 denote the same parts as those in FIGS.
  • the lenticular 126 and the lenticular 136 are the same as the prism 121 and the prism 131, respectively, except for the cross-sectional shape.
  • a cross section obtained by cutting the lenticular 126 and the lenticular 136 along a plane perpendicular to the X-axis direction has a curved shape such as a partial shape of a circle or an ellipse (for example, a semicircular shape or a semielliptical shape), as shown in FIG. ing.
  • the surfaces 127 and 137 of the lenticular 126 and the lenticular 136 are formed with smooth curved surfaces, and gradually incline with respect to the light extraction surface 120 from the center to the end in the Y-axis direction. Since the surface 127 of the lenticular 126 and the surface 137 of the lenticular 136 are inclined as described above, the surface 127 and the surface 137 each have a portion that is not parallel to the Y-axis direction (that is, intersects with the Y-axis).
  • the light guide 101 is guided by the surface 127 of the lenticular 126 and the surface 137 of the lenticular 136 as well as the inclined surfaces 122 and 123 of the prism 121 and the inclined surfaces 132 and 133 of the prism 131 in the first embodiment.
  • the light A can be internally reflected so as not to spread in the Y-axis direction.
  • the illumination device 6 as the sixth embodiment of the present invention is configured as described above, it can be used in the same manner as the illumination device 1 according to the first embodiment, and the same advantages can be obtained.
  • FIG. 28 is a perspective view schematically showing an outline of a liquid crystal display device as a seventh embodiment of the present invention.
  • the same reference numerals as in FIGS. 1 to 27 denote the same parts as in FIGS.
  • a liquid crystal display device 7 as a seventh embodiment of the present invention includes a lighting device 1 and a liquid crystal panel 401.
  • liquid crystal panel 401 liquid crystal panels of various known display modes can be used. For example, twisted nematic (TN) mode, super twisted nematic (STN) mode, hybrid alignment nematic (HAN) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, in-plane switching (IPS) mode, optical A liquid crystal panel with a display mode such as a curry-compensated birefringence (OCB) mode can be employed.
  • a display mode such as a curry-compensated birefringence (OCB) mode
  • OBC in-plane switching
  • an image can be displayed on the display surface 410 by light supplied to the side opposite to the display surface 410 (that is, the back side).
  • the lighting device 1 is the same as the device described in the first embodiment.
  • the illumination device 1 is provided on the back side of the liquid crystal panel 401 and irradiates the liquid crystal panel 401 with light.
  • the liquid crystal display device 7 as the seventh embodiment of the present invention is configured as described above, light is irradiated from the illumination device 1 to the liquid crystal panel 401 when in use. At this time, since the light guide 101 can selectively extract light from the light extraction surface 120 in a desired region, the lighting device 1 can selectively irradiate the desired region of the liquid crystal panel 401 with light. it can. Therefore, in the liquid crystal display device 7 as the seventh embodiment, efficient local dimming can be realized, and advantages such as improved image quality and energy saving can be obtained.
  • the light guides 101 to 106 may have a shape other than a plate shape. Therefore, the light extraction surface 120 and the back surface 130 are not necessarily parallel. Even when the light guides 101 to 106 are plate-shaped, the shape of the main surface may not be rectangular. Further, the thicknesses of the light guides 101 to 106 may be nonuniform if necessary.
  • the light introduction surface 110 may not be a surface orthogonal to the X-axis direction. Further, the light introduction surface 110 may be not only one surface but also two or more surfaces.
  • the illumination device 8 as a modification to the first embodiment as an example, as shown in FIG. 29, the side surface 140 on the opposite side of the light introduction surface 110 of the light guide body 101 is also a light introduction surface, and the front surface of the side surface 140.
  • the light source 201 may be provided.
  • FIG. 29 is a diagram schematically showing a lighting device 8 as a modification of the first embodiment, and the same reference numerals as in FIGS. 1 to 28 indicate the same parts as in FIGS.
  • the cross-sectional shapes of the prisms 121 and 131 may be shapes other than the triangle and the trapezoid. For example, it may be a quadrangle other than a trapezoid, or may be a pentagon or more polygon.
  • the direction of the principal axis of the anisotropic shape (prisms 121 and 131 and lenticulars 126 and 136) of the concavo-convex structure A intersects the predetermined direction unless the direction is perpendicular to the predetermined direction in which light is guided. It may be a direction.
  • the extending direction can be set to any direction as long as it is not a direction orthogonal to the predetermined direction.
  • it is preferable that the intersection angle between the anisotropic main axis of the concavo-convex structure A and the predetermined direction is small.
  • FIG. 30 is a perspective view schematically showing a state in which a part of the light guide 107 as a modified example of the third embodiment is cut out and viewed from the light extraction surface 120 side.
  • Like reference numerals denote like parts as in FIGS.
  • the concavo-convex structure A may be a structure other than the ridge-shaped convex portions such as the prisms 121 and 131 and the lenticulars 126 and 136.
  • FIG. 31 is a perspective view schematically showing a state in which a part of the light guide 108 according to the embodiment of the present invention is cut out and viewed from the light extraction surface 120 side.
  • FIG. 32 is a view of one of the concavo-convex structures A formed on the light extraction surface 120 of the light guide 108 according to an embodiment of the present invention, as viewed from the light extraction surface side in the Z-axis direction. is there. 31 and 32, the same reference numerals as those in FIGS.
  • the concavo-convex structure A may be a convex portion 128 having a shape of a part of an ellipsoid.
  • a convex portion 128 is also a surface in which at least a part of the surface 129 is not parallel to the Y-axis direction (that is, intersects with the Y-axis). Therefore, similarly to the slopes 122 and 123 of the prism 121 and the slopes 132 and 133 of the prism 131 in the first embodiment, the light guided in the light guide 101 is also guided in the Y-axis direction by the surface 129 of the convex portion 128. Can be internally reflected so as not to spread.
  • the convex portion 128 when viewed from the Z-axis direction, has an anisotropic shape. Specifically, the length (here, the dimension in the X-axis direction) Lx of the convex portion 128 is larger than the width (here, the dimension in the Y-axis direction) Ly of the convex portion 128.
  • the frequency of internal reflection that reverses the direction of the Y-axis direction component of light is increased, and the above-described effect of suppressing the spread of light in the Y-axis direction is effective. Can be demonstrated.
  • the concavo-convex structure A is not necessarily formed on at least one of the light extraction surface 120 and the back surface 130 as long as it is formed on both surfaces.
  • the uneven structure A may employ
  • the concavo-convex structure A may be provided with only one type of structure within the light extraction surface 120 and the back surface 130 as in the above-described embodiment, but two or more types of structures are combined within the same surface. You may do it. Further, the concavo-convex structure A need not be provided on the light extraction surface 120 or the back surface 130 in all the regions 101a to 101h of the light guide 101.
  • the concavo-convex structure A is provided only on a part of the light extraction surface 120 and the back surface 130. Also good.
  • a lenticular may be used as a bowl-shaped unevenness as the light extraction structure. Even when a lenticular is used as the light extraction structure, advantages similar to those obtained when the prism 141 is used (see the third embodiment) can be obtained. At this time, the interval, width, height, extending direction, etc. of the lenticular can be the same as those of the prism 141.
  • the light extraction structure is formed on one of the light extraction surface 120 and the back surface 130, it does not necessarily have to be formed on both. Further, as the light extraction structure, the same structure may be adopted for the light extraction surface 120 and the back surface 130 as in the above-described embodiment, but different structures may be adopted. In addition, as for the light extraction structure, only one type of structure may be provided within the surfaces of the light extraction surface 120 and the back surface 130 as in the above-described embodiment, but two or more types of structures are combined within the same surface. You may do it.
  • the light extraction structure may be configured such that the density increases as the distance from the light introduction surface 110 increases as in the above-described embodiment, but the size of the light extraction structure increases as the distance from the light introduction surface 110 increases. However, light can be extracted uniformly from the light extraction surface 120 in the X-axis direction.
  • the light source 201 is individually dimmed by the dimming device 301, but may be dimmed for each group.
  • a group of two or more light sources 201 is set corresponding to each of the regions 101a to 101h of the light guide 101, and the group of light sources 201 corresponding to the desired regions 101a to 101h from which light is to be extracted.
  • the light source 201 can be dimmed to emit light.
  • the illumination device combined with the liquid crystal panel 401 is not limited to the illumination device 1 according to the first embodiment. Further, the liquid crystal display device 7 may be provided with components other than the liquid crystal panel 401 and the lighting device 1. Examples of the component include a brightness enhancement film, a light collecting film, a prism sheet, a light diffusion plate, an optical compensation film, a diffusion sheet, and a reflection sheet.
  • the material and manufacturing method of the light guide will be described.
  • the material for the light guide include glass and transparent resin.
  • the material of a light guide may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the transparent resin examples include propylene-ethylene copolymer, polystyrene, (meth) acrylic acid ester-aromatic vinyl compound copolymer, polyethylene terephthalate, terephthalic acid-ethylene glycol-cyclohexanedimethanol copolymer, polycarbonate. , Methacrylic resin, and resin having an alicyclic structure (for example, norbornene-based resin). Among these, resins having an alicyclic structure, methacrylic resins, and (meth) acrylic acid ester-aromatic vinyl compound copolymer resins are preferable, and resins having an alicyclic structure are particularly preferable.
  • a resin having an alicyclic structure has good fluidity of the molten resin. Therefore, for example, when a light guide is manufactured by injection molding, the mold cavity can be filled with a low injection pressure, and a weld line is hardly generated. For example, when manufacturing a light guide by extrusion molding, there is little thickness unevenness at the time of molding, and shape formation after molding is easy. Furthermore, since the resin having an alicyclic structure has extremely low hygroscopicity, it has excellent dimensional stability and is less likely to warp the light guide. Furthermore, since the specific gravity of the resin having an alicyclic structure is small, the light guide can be reduced in weight.
  • the resin having an alicyclic structure examples include polymer resins having an alicyclic structure in the main chain or side chain. Among them, a polymer resin having an alicyclic structure in the main chain is particularly suitable because it has good mechanical strength and heat resistance.
  • the alicyclic structure is preferably a saturated cyclic hydrocarbon structure.
  • the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less.
  • the ratio of the repeating unit having an alicyclic structure in the polymer resin having an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, and 90% by weight or more. More preferably.
  • Examples of the resin having an alicyclic structure include a ring-opening polymer or a ring-opening copolymer of a norbornene monomer or a hydrogenated product thereof; an addition polymer or an addition copolymer of a norbornene monomer; Polymers of monocyclic olefin monomers or their hydrogenated products; Polymers of cyclic conjugated diene monomers or their hydrogenated products; Vinyl alicyclic hydrocarbon monomers Or a hydrogenated product thereof; a polymer of a vinyl aromatic hydrocarbon monomer or a hydrogenated product of an unsaturated bond part containing an aromatic ring of the copolymer; and the like.
  • hydrogenated products of norbornene-based monomer polymers and hydrogenated products of unsaturated bonds including aromatic rings of vinyl aromatic hydrocarbon-based monomer polymers have mechanical strength and heat resistance. It is particularly suitable because of its excellent properties.
  • methacrylic resins are excellent in transparency, strong and resistant to cracking, and therefore can be suitably used.
  • the methacrylic resin include a methacrylic resin molding material containing 80% or more of a methyl methacrylate polymer defined in JIS K6717.
  • methacrylic resins specified in this standard methacrylic resins having a specified classification code 100-120 having a Vicat softening point temperature of 96 to 100 ° C. and a melt flow rate of 8 to 16 have appropriate fluidity and strength. Is preferred.
  • the molding material for the light guide may contain an antioxidant in order to prevent oxidative degradation and thermal degradation during molding.
  • the antioxidant include a phenolic antioxidant, a phosphorus antioxidant, and a sulfur antioxidant. Of these, phenolic antioxidants are preferred, and alkyl-substituted antioxidants are particularly preferred.
  • an antioxidant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the amount of the antioxidant is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, preferably 2 parts by weight or less, more preferably 1 part by weight with respect to 100 parts by weight of the resin component. It is as follows.
  • a light stabilizer may be included in order to improve the light resistance of the light guide.
  • the light resistance stabilizer include hindered amine light resistance stabilizer (HALS) and benzoate light resistance stabilizer. Among these, hindered amine light resistance stabilizers are preferred.
  • a light-resistant stabilizer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the light-resistant stabilizer is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, particularly preferably 0.05 parts by weight or more, preferably 2 parts by weight with respect to 100 parts by weight of the resin component.
  • the amount is not more than parts by weight, more preferably not more than 1 part by weight, particularly preferably not more than 0.5 parts by weight.
  • the light guide body may further contain other additives as required.
  • additives include stabilizers such as heat stabilizers, ultraviolet absorbers, and near infrared absorbers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments; antistatic agents, and fluorescence. Examples include brighteners and light diffusing agents.
  • another additive may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the dimensions of the main surface of the light guide usually depend on the size of the effective surface of the liquid crystal panel of the liquid crystal display device in which the light guide is used. Is set. Further, when the thickness of the light guide (in the above embodiment, the dimension in the Z-axis direction) is smaller than the height of the light-emitting portion of the light source (in the above-described embodiment, the dimension in the Z-axis direction), the liquid crystal From the viewpoint of thinning and weight reduction of the panel, a large value is preferable from the viewpoint that light from the light source can be easily taken into the light guide.
  • the thickness of the light guide is preferably 0.02 mm or more, more preferably 0.1 mm or more, and thinning and weight reduction can be realized. It is preferably 5 mm or less, more preferably 4 mm or less, and particularly preferably 3 mm or less.
  • the light guide for example, one having a refractive index of 1.533 (critical angle 40.7 °) can be used.
  • the water absorption rate of the light guide is preferably set to 0.50% or less, more preferably 0.25% or less, and even more preferably 0.05% or less.
  • the water absorption rate in the present specification is determined according to JIS K7209 A method after drying a test piece having a thickness of 3 mm and a disk shape having a diameter of 50 mm or a square having a side of 50 mm at 50 ° C. for 24 hours. It can be determined from the increase in weight when it is allowed to cool in a filter and immersed in water at 23 ° C. for 24 hours.
  • a light guide when forming a light guide with resin, it can manufacture by the injection molding method, the extrusion molding method, and the casting method.
  • a flat light guide may be prepared in advance, and a concavo-convex structure may be formed later on the surface of the light guide.
  • a method for forming the concavo-convex structure on the surface of the flat light guide for example, a method by cutting using a tool capable of forming a concavo-convex structure of a desired shape, a desired method by applying a photo-curing resin A method of curing the transferred shape mold, a method of applying dot printing by screen printing, a method of forming a concavo-convex structure by laser processing, and forming a concavo-convex structure by applying a photo-curing resin or a thermosetting resin by an inkjet method. Method, etc.
  • the uneven structure may be formed simultaneously with the formation of the light guide.
  • profile extrusion can be performed using a profile die having a shape corresponding to a desired uneven structure.
  • prism rows may be formed by embossing after extrusion.
  • a casting mold capable of forming a desired concavo-convex shape is prepared, and a light guide is produced by casting using this casting mold, and the concavo-convex structure is formed simultaneously with the formation of the light guide. .
  • a mold capable of forming a desired concavo-convex structure may be used.
  • the mold used for the mold shape transfer to the photo-curing resin, the extrusion process using a deformed die, the embossing, the casting, or the injection molding is a metal member of a mold using a tool capable of forming a desired concavo-convex structure, for example. It can be obtained by cutting or forming on a member on which a desired shape is formed.
  • the light source examples include a point light source such as an LED and a laser diode, and a line light source such as a cold cathode tube (CCFL, EEFL) and a hot cathode tube (HCFL), and a point light source is preferably used.
  • a point light source such as an LED and a laser diode
  • a line light source such as a cold cathode tube (CCFL, EEFL) and a hot cathode tube (HCFL)
  • a point light source is preferably used.
  • Any point light source may be used as long as it can at least turn on / off and control the amount of emitted light with desired responsiveness.
  • a semiconductor laser may be used.
  • the LED include a blue-yellow pseudo white light emitting diode, a three-color (RGB) type white light emitting diode, and the like.
  • the LED for example, a side-emitting LED, a surface-mounted LED, or a bullet-type LED is used.
  • the dimension of the light emitting part of the LED can be set according to the light distribution characteristic of the LED. Usually, the width and height of the light emitting part of the LED are made equal. However, when the LED has an elliptical or oval cross section, the LED having a different width and height may be used. Good.
  • a general high dome type LED has a Lambertian light distribution and emits a relatively large divergent light having a half-value angle (full-width at half maximum) of about 120 °.
  • the LED has a full width at half maximum of preferably 80 ° or less, more preferably 70 ° or less, and particularly preferably 60 ° or less.
  • LEDs that emit as close to parallel light as possible are preferred.
  • the full width at half maximum of the LED is preferably 90 ° or more, more preferably 100 ° or more, and 110 ° or more. Particularly preferred.
  • a light source you may use combining light emitting elements, such as LED, and optical elements, such as a lens.
  • a light source that emits light at a full width at half maximum within the above-described preferable range can be realized by combining the LED and the lens.
  • a light source capable of turning on / off and adjusting the amount of light may be combined by combining a light source that always emits light and an optical shutter (for example, a liquid crystal panel) provided between the light source and the light introduction surface.
  • FIG. 33 is a diagram for explaining simulation conditions set in the simulation performed in the first embodiment.
  • an optical model was created and simulated under the conditions described later using optical simulation software “LightTools” (manufactured by Cybernet Co., Ltd.).
  • a thermoplastic alicyclic structure-containing resin (trade name: ZEONOR1420, manufactured by Nippon Zeon Co., Ltd., refractive index: 1.533, critical angle: 40.7 °, water absorption: 0.01%) was used. It was set as a thing.
  • the light guide was a rectangular flat light guide having a long side of 700 mm, a short side of 250 mm, and a thickness of 2 mm.
  • an uneven structure A is provided on the entire surface of the light extraction surface corresponding to one main surface of the light guide so as to have a prism extending along the short side direction of the light guide.
  • the shape of the cross section cut by a plane perpendicular to the short side direction is an isosceles triangle, and the apex angle of the isosceles triangle of the cross section is 60 °.
  • the height of the prism on the light extraction surface was 50 ⁇ m and the width was 57.7 ⁇ m. Further, as shown in FIG.
  • the entire surface of the back surface corresponding to the other main surface of the light guide has a concavo-convex structure A having a prism extending along the short side direction of the light guide.
  • the prism on the back surface has an isosceles triangle shape in a cross section cut by a plane perpendicular to the short side direction, and the apex angle of the isosceles triangle of the cross section is 90 °.
  • the height of the prism on the back surface was 50 ⁇ m and the width was 100 ⁇ m.
  • the light source was an LED having an outer diameter of 2.5 mm long side, 1.5 mm short side, and 0.5 mm thickness. Moreover, the dimension of the light emission part of LED was made into 2 mm of long sides, and 1 mm of short sides. Further, the absorption of the light emitting part of the LED was 15%, and the full width at half maximum was 120 °.
  • an LED 503 is provided at the center in the long-side direction Y of the light introduction surface 502, which is one of the long sides of the light guide body 501, and the light A is irradiated from the LED 503 to the light introduction surface 502 of the light guide body 501. I was able to do it. At this time, the distance between the LED 503 and the light introduction surface 502 of the light guide 501 was 2 mm.
  • the periphery of the LED 503 is covered with a lamp cover (model E6SL lamp cover set in the software used) 504. Further, the light irradiation from the LED 503 is such that the axis of the light is parallel to the short side direction X of the light guide body 501, and the predetermined direction in which the light is guided is parallel to the short side direction X.
  • the measurement position immediately inside the side surface 505 opposite to the light introduction surface 502 that is, the light guide that is 250 mm away from the light introduction surface 502 along the short side direction X.
  • the light is detected on a surface in the direction 501 and parallel to the light introduction surface 502. From the detected light, the intensity of the light integrated at the measurement position at the measurement position intersecting the line extending perpendicularly from the center of the LED 503 to the light introduction surface 502 in the Z-axis direction is 100%. and when the width W 50 of the light intensity of the light in the long-side direction Y to be 50% spread, measure the width W 5 of the spread of light in the longitudinal direction Y in which the intensity of light of 5% did. The results are shown in Table 1.
  • the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35. 34 and 35, the horizontal axis represents the inclination angle of the inclined surface of the prism on the back surface.
  • the inclination angle of the prism of the light extraction surface is plotted with a “cross mark” when the inclination angle is 60 °, and plotted with a “black circle mark” when the inclination angle is 35 °.
  • Example 2 The prism setting on the light extraction surface of the light guide 501 is changed, except that the apex angle of the isosceles triangle in the section of the prism is 110 °, the height of the prism is 50 ⁇ m, and the width is 142.8 ⁇ m.
  • the light spread widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 3 The prism setting on the light extraction surface of the light guide 501 is changed, except that the apex angle of the isosceles triangle of the section of the prism is 120 °, the prism height is 50 ⁇ m, and the width is 173.2 ⁇ m.
  • the light spread widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 4 Other than changing the prism setting of the light extraction surface of the light guide 501, the apex angle of the isosceles triangle of the section of the prism is 140 °, the prism height is 50 ⁇ m, and the width is 274.7 ⁇ m.
  • the light spread widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 5 The light spreading widths W 50 and W 5 were measured in the same manner as in Example 4 except that the prism on the back surface of the light guide 501 was changed to lenticular.
  • the cross-sectional shape of the lenticular cut by a plane perpendicular to the short side direction X of the light guide 501 was a semicircle, the height of the lenticular was 50 ⁇ m, and the width was 100 ⁇ m. The results are shown in Table 1.
  • Example 6 Example 4 except that the light extraction surface of the light guide 501 has a prism as the concavo-convex structure B as shown in FIG. 13 in addition to the prism as the concavo-convex structure A as in Example 4. Similarly, light spreading widths W 50 and W 5 were measured.
  • the prism as the concavo-convex structure B is a prism extending along the long-side direction Y of the light guide 501, and the shape of the cross section taken along a plane perpendicular to the long-side direction Y of the light guide 501 is an isosceles triangle It was. Further, the apex angle of the isosceles triangle of the cross section was 150 ° and the height was 50 ⁇ m.
  • Example 6 the light extracted from the light extraction surface at a measurement position 250 mm away from the light introduction surface 502 along the short side direction X also in the long side direction Y where the light intensity is 50% or more.
  • the width of the light spread was measured. The results are shown in Table 1.
  • Example 7 In the same manner as in Example 1 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle in the cross section of the prism is 120 °, and the width is 173.2 ⁇ m.
  • the spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 8 In the same manner as in Example 2 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle in the cross section of the prism is 120 °, and the width is 173.2 ⁇ m.
  • the spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 9 In the same manner as in Example 3 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle of the cross section of the prism is 120 °, and the width is 173.2 ⁇ m.
  • the spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 10 In the same manner as in Example 4 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle of the cross section of the prism is 120 °, and the width is 173.2 ⁇ m.
  • the spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 11 Other than changing the settings of the prisms on the light extraction surface and the back surface of the light guide 501 so that the apex angle of the isosceles triangles of the cross sections of both the light extraction surface and the back surface is 130 ° and the width is 214.5 ⁇ m in the same manner as in example 1, it was measured width W 50 and W 5 for the spread of light. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 12 Other than changing the settings of the prisms on the light extraction surface and the back surface of the light guide 501 so that the apex angle of the isosceles triangles of the cross sections of the prisms on both the light extraction surface and the back surface is 140 ° and the width is 274.7 ⁇ m in the same manner as in example 1, it was measured width W 50 and W 5 for the spread of light. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 13 In the same manner as in Example 1 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle of the cross section of the prism is 150 °, and the width is 373.2 ⁇ m.
  • the spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 14 In the same manner as in Example 2 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle of the cross section of the prism is 150 °, and the width is 373.2 ⁇ m.
  • the spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 15 In the same manner as in Example 3 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle of the cross section of the prism is 150 °, and the width is 373.2 ⁇ m.
  • the spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 16 In the same manner as in Example 4 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle of the cross section of the prism is 150 °, and the width is 373.2 ⁇ m.
  • the spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 17 Other than changing the prism settings of the light extraction surface and the back surface of the light guide 501 so that the apex angle of the isosceles triangles of the cross sections of both the light extraction surface and the back surface is 150 ° and the width is 373.2 ⁇ m in the same manner as in example 1, it was measured width W 50 and W 5 for the spread of light. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 18 Other than changing the setting of the prisms on the light extraction surface and the back surface of the light guide 501 so that the apex angle of the isosceles triangles of the cross sections of the prisms on both the light extraction surface and the back surface is 160 ° and the width is 567.1 ⁇ m in the same manner as in example 1, it was measured width W 50 and W 5 for the spread of light. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 19 The light extraction surface of the light guide 501 was a flat surface without unevenness. Further, the setting of the prism on the back surface was changed so that the apex angle of the isosceles triangle in the cross section of the prism was 30 °, the height of the prism was 50 ⁇ m, and the width was 26.8 ⁇ m. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 1. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 20 The light extraction surface of the light guide 501 was a flat surface without unevenness. Also, the setting of the prism on the back surface was changed so that the apex angle of the isosceles triangle in the cross section of the prism was 60 °, the height of the prism was 50 ⁇ m, and the width was 57.7 ⁇ m. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 1. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 21 The light extraction surface of the light guide 501 was a flat surface without unevenness. Also, the setting of the prism on the back surface was changed so that the apex angle of the isosceles triangle in the cross section of the prism was 90 °, the height of the prism was 50 ⁇ m, and the width was 100.0 ⁇ m. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 1. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 22 The light extraction surface of the light guide 501 was a flat surface without unevenness. Also, the setting of the prism on the back surface was changed so that the apex angle of the isosceles triangle in the cross section of the prism was 120 °, the height of the prism was 50 ⁇ m, and the width was 173.2 ⁇ m. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 1. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 23 The light extraction surface of the light guide 501 was a flat surface without unevenness.
  • the setting of the prism on the back surface was changed so that the apex angle of the isosceles triangle in the cross section of the prism was 150 °, the height of the prism was 50 ⁇ m, and the width was 373.2 ⁇ m.
  • the light spread widths W 50 and W 5 were measured in the same manner as in Example 1. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
  • Example 24 Except that the light output surface of the light guide 501 has a flat surface with no unevenness in the same manner as in Example 5 was measured width W 50 and W 5 for the spread of light. The results are shown in Table 1.
  • Example 25 The light extraction surface of the light guide 501 was a flat surface without unevenness.
  • the setting of the prism on the back surface is changed so that the apex angle of the isosceles triangle of the section of the prism is 90 °, the height of the prism is 50 ⁇ m, the width is 100.0 ⁇ m, and a flat portion is formed in the concave portion of each prism.
  • a width of 10 ⁇ m was provided (see FIG. 30). Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 26 The light extraction surface of the light guide 501 was a flat surface without unevenness. Further, the setting of the lenticular on the back surface was changed, and the cross-sectional shape of the lenticular cut by a plane perpendicular to the short side direction X of the light guide 501 was a semicircle, the height of the lenticular was 50 ⁇ m, and the width was 100 ⁇ m. And a flat portion having a width of 10 ⁇ m was provided between the lenticulars. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 5. The results are shown in Table 1.
  • Example 27 The light extraction surface of the light guide 501 was a flat surface without unevenness. Also, the setting of the lenticular on the back surface was changed, and the cross-sectional shape of the lenticular cut along a plane perpendicular to the short side direction X of the light guide 501 was an arc shape obtained by cutting a circle with a radius of 51 ⁇ m, and its height was 38 ⁇ m. The width was 100 ⁇ m. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 5. The results are shown in Table 1.
  • Example 28 The light extraction surface of the light guide 501 was a flat surface without unevenness. Also, the setting of the lenticular on the back surface was changed, and the cross-sectional shape of the lenticular cut along a plane perpendicular to the short side direction X of the light guide 501 was an arc shape obtained by cutting a circle with a radius of 51 ⁇ m, and its height was 38 ⁇ m. The width was 100 ⁇ m, and a flat portion was provided between each lenticular with a width of 10 ⁇ m. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 5. The results are shown in Table 1.
  • Example 29 The prism setting on the back surface of the light guide 501 is changed so that the apex angle of the isosceles triangle of the cross section of the prism is 90 °, the height of the prism is 50 ⁇ m, the width is 100.0 ⁇ m, and the concave portion of each prism is A flat portion was provided at 10 ⁇ m. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 4. The results are shown in Table 1.
  • Example 30 The setting of the lenticular on the back surface of the light guide 501 was changed, and the cross-sectional shape of the lenticular cut along a plane perpendicular to the short side direction X of the light guide 501 was an arcuate shape obtained by cutting a circle with a radius of 51 ⁇ m.
  • the thickness was 38 ⁇ m
  • the width was 100 ⁇ m
  • a flat portion was provided between each lenticular with a width of 10 ⁇ m.
  • the light spread widths W 50 and W 5 were measured in the same manner as in Example 5. The results are shown in Table 1.
  • the light guide of the present invention can guide light more in a desired light guide direction by providing concave and convex structures on both the light extraction surface and the back surface, and more It can be confirmed that the spread of the guided light can be suppressed. From the results of the above embodiments, it can be understood that according to the present invention, an illumination device and a liquid crystal display device capable of local dimming can be realized.
  • the light guide of the present invention can be arbitrarily applied to optical applications, and is particularly suitable for a lighting device capable of surface emission. Such an illuminating device is suitable for use in a liquid crystal display device. Further, the lighting device of the present invention can be used for purposes other than the backlight of a liquid crystal display device, for example, as lighting for a show window or the like.
  • Illumination device 7 Liquid crystal display device 101 to 08
  • Light guide 110 Light introduction surface 120
  • Lenticular (concave structure A, bowl-shaped convex portions) 127,137 Surface of lenticular 128 Convex part (concavo-convex structure A) 129 Surface of convex portion 130 Back surface 140
  • Light diffusing agent (light extraction structure) 201 light source 301
  • light control device 401 liquid crystal panel 501 light guide 502 light introduction surface 503

Abstract

Disclosed is a light-guiding plate (101) that guides light in a prescribed direction (X), and comprises a light introduction face (110) that introduces light; a light extraction face (120) that extracts light that is introduced via the light introduction face (110); and a rear face (130) that is located on the opposite side from the light extraction face (120). At least one of the light extraction face (120) or the rear face (130) further comprises an uneven structure (A), further comprising an anisotropic shape wherein the dimension in the prescribed direction (X) is greater than the dimension of a direction (Y) that is orthogonal to the prescribed direction (X), as seen from a parallel direction (Z) in the direction of the extraction of the light.

Description

導光体、照明装置及び液晶表示装置Light guide, illumination device, and liquid crystal display device
 本発明は、導光体並びにそれを備えた照明装置及び液晶表示装置に関する。 The present invention relates to a light guide, an illumination device including the same, and a liquid crystal display device.
 液晶表示装置は、液晶テレビ、パーソナルコンピュータ、携帯電話等の表示部として広く使用されている。液晶表示装置は、通常、液晶パネルと、前記液晶パネルの背面に光を供給するバックライト装置と呼ばれる照明装置とを備える。 Liquid crystal display devices are widely used as display units for liquid crystal televisions, personal computers, mobile phones and the like. The liquid crystal display device generally includes a liquid crystal panel and an illumination device called a backlight device that supplies light to the back surface of the liquid crystal panel.
 バックライト装置としては、例えば、板状の導光体(以下、適宜「導光板」という。)と、前記導光板へ側方から光を照射する光源とを組み合わせた照明装置が挙げられる。このようなタイプの照明装置について記載された文献を挙げると、例えば、特許文献1~3が挙げられる。このタイプの照明装置では、光源から照射された光が導光板の側面に位置する光導入面から導光板内に導入され、導入された光が導光板のおもて面又は裏面に位置する光取出面から取り出されることにより、面発光が行われるようになっている。 Examples of the backlight device include a lighting device that combines a plate-like light guide (hereinafter, referred to as “light guide plate” as appropriate) and a light source that emits light from the side to the light guide plate. For example, Patent Documents 1 to 3 can be cited as references describing such a type of lighting device. In this type of lighting device, light emitted from a light source is introduced into a light guide plate from a light introduction surface located on a side surface of the light guide plate, and the introduced light is light located on the front surface or the back surface of the light guide plate. By emitting from the extraction surface, surface light emission is performed.
特開2001-92370号公報JP 2001-92370 A 特開2003-114432号公報JP 2003-114432 A 特開2009-224030号公報JP 2009-224030 A
 近年、液晶表示装置の分野においてはローカルディミングが注目されている。ローカルディミングとは、例えば、液晶パネルの全面に均等に光を照射するのではなく、所望の領域にだけ光を照射したり、領域ごとに光の照射強度を変化させたりする技術である。ローカルディミングにより、液晶表示装置の画質の向上(例えば、コントラストの向上、残像の低減等)及び省エネルギーを実現できるようになることが期待されている。 In recent years, local dimming has attracted attention in the field of liquid crystal display devices. Local dimming is, for example, a technique that does not irradiate light evenly over the entire surface of the liquid crystal panel, but irradiates light only in a desired region or changes the light irradiation intensity for each region. Local dimming is expected to improve the image quality of liquid crystal display devices (for example, improve contrast and reduce afterimages) and save energy.
 そこで、前記タイプの照明装置でも、ローカルディミングを実現する技術の開発が望まれる。前記タイプの照明装置でローカルディミングを実現するには、導光板の所望の領域における光取出面から選択的に光を取り出すことが要求され、他の領域からは光を取り出さないようにしたり取出量を抑制したりすることが要求される。ところが、従来の導光板は、その全領域から均等に光を取り出すことを目的として開発されてきたものであり、所望の領域から選択的に光を取り出すことは困難であった。特に、従来の導光板では導光される光が導光板の広範な領域に広がるように導光されるため、所望の領域以外に導光された光は液晶パネルの照射に活用されず無駄となり、かえって画質低下の要因となる可能性があった。 Therefore, it is desired to develop a technique for realizing local dimming even in the above-described type of lighting device. In order to realize local dimming with the above-mentioned type of lighting device, it is required to selectively extract light from a light extraction surface in a desired region of the light guide plate, and to prevent light from being extracted from other regions. Is required to be suppressed. However, the conventional light guide plate has been developed for the purpose of extracting light evenly from the entire area, and it has been difficult to selectively extract light from a desired area. In particular, in the conventional light guide plate, the light to be guided is guided so as to spread over a wide area of the light guide plate, so that the light guided outside the desired area is not used for irradiation of the liquid crystal panel and is wasted. On the contrary, there was a possibility that it would be a factor of image quality degradation.
 また、従来は、導光される光を広がらないようにするために、小さい大きさの複数の導光板を並べてその境界部分に空間や仕切りを設けることがあった。ところが、境界部分から光洩れを生じたり暗部を生じたりして、均一な照明の妨げとなり、高い光学的性能を実現できないことがあった。また、前記の場合、小さい大きさの複数の導光板を並べると、製造面でその工数やコストが増大する傾向があった。 Conventionally, in order to prevent the light guided from spreading, a plurality of light guide plates having a small size are arranged, and a space or a partition is provided at the boundary portion. However, light leakage from the boundary portion or dark portion may occur, preventing uniform illumination, and high optical performance may not be realized. In the above case, when a plurality of light guide plates having a small size are arranged, the number of processes and cost tend to increase in terms of manufacturing.
 本発明は上記の課題を鑑みて創案されたものであって、所望の領域における光取出面から選択的に光を取り出せる導光体、並びに、前記導光体を用いてローカルディミングを実現できる照明装置及び液晶表示装置を提供することを目的とする。 The present invention has been made in view of the above problems, and a light guide capable of selectively extracting light from a light extraction surface in a desired region, and illumination capable of realizing local dimming using the light guide. An object is to provide a device and a liquid crystal display device.
 本発明者は上記課題を解決するべく鋭意検討した結果、導光体の光取出面及び前記光取出面の反対側に位置する裏面の少なくとも一方の面に、光の取出方向から見た形状が所定の異方性を有する凹凸構造を設けることにより、前記凹凸構造の表面における内部反射によって光の導光方向を制御できるので、所望の領域における光取出面から選択的に光を取り出せるようになることを見出し、本発明を完成させた。
 すなわち、本発明によれば以下の〔1〕~〔18〕が提供される。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has at least one of the light extraction surface of the light guide and the back surface located on the opposite side of the light extraction surface to have a shape viewed from the light extraction direction. By providing a concavo-convex structure having a predetermined anisotropy, the light guiding direction can be controlled by internal reflection on the surface of the concavo-convex structure, so that light can be selectively extracted from a light extraction surface in a desired region. As a result, the present invention has been completed.
That is, according to the present invention, the following [1] to [18] are provided.
 〔1〕 光を導入する光導入面、前記光導入面から導入された光を取り出す光取出面、および、前記光取出面の反対側に位置する裏面を有し、前記光導入面から導入された光を所定方向へ導光する導光体であって、
 光の取出方向に平行な方向から見て、前記所定方向の寸法が、前記所定方向に直交する方向の寸法よりも大きい異方性形状を有する凹凸構造Aを、前記光取出面及び前記裏面のうち少なくとも一方の面に有する、導光体。
 〔2〕 前記凹凸構造Aを前記光取出面及び前記裏面の両方に有する、〔1〕記載の導光体。
 〔3〕 光の取出方向に平行な方向から見た前記凹凸構造Aの異方性形状の主軸が、前記所定方向と平行である、〔1〕又は〔2〕記載の導光体。
 〔4〕 前記凹凸構造Aの凹部が連続している、〔1〕~〔3〕のいずれか一項に記載の導光体。
 〔5〕 前記凹凸構造Aの凹部及び凸部の少なくとも一方に平坦部を有する、〔1〕~〔4〕のいずれか一項に記載の導光体。
 〔6〕 前記導光体の前記凹凸構造Aを有する部位に、前記導光体内を導光される光を前記光取出面から取り出す光取出構造を有する、〔1〕~〔5〕のいずれか一項に記載の導光体。
 〔7〕 前記光取出構造が、前記凹凸構造Aの異方性形状の主軸と交差する方向にその異方性形状の主軸を有する凹凸構造Bである、〔6〕記載の導光体。
 〔8〕 前記凹凸構造Aの異方性形状の主軸と前記凹凸構造Bの異方性形状の主軸とが直交する、〔7〕記載の導光体。
 〔9〕 前記光取出構造が、前記凹凸構造Aの表面に形成された凹凸である、〔6〕記載の導光体。
 〔10〕 前記光取出構造が、前記光導入面から離れるに従って密度または大きさが大きくなる、〔6〕~〔9〕のいずれか一項に記載の導光体。
 〔11〕 前記光取出構造が、前記導光体中に存在する光拡散剤である、〔6〕記載の導光体。
 〔12〕 前記凹凸構造Aが畝状の凸部を有する〔1〕~〔11〕のいずれか一項に記載の導光体。
 〔13〕 前記凹凸構造Bが畝状の凸部を有する、〔7〕又は〔8〕記載の導光体。
 〔14〕 前記畝状の凸部が、断面三角形状のプリズム、またはレンチキュラーを有する、〔12〕又は〔13〕記載の導光体。
 〔15〕 〔1〕~〔14〕のいずれか一項に記載の導光体と、前記導光体の光導入面に光を照射する光源とを備える、照明装置。
 〔16〕 前記光源を複数個備え、
 前記複数個の光源は、個別又はグループごとに調光可能である、〔15〕記載の照明装置。
 〔17〕 前記光源がLEDである〔15〕又は〔16〕記載の照明装置。
 〔18〕 液晶パネルと、
 前記液晶パネルの背面側に設けられた〔15〕~〔17〕のいずれか一項に記載の照明装置とを備える、液晶表示装置。
[1] A light introduction surface for introducing light, a light extraction surface for extracting light introduced from the light introduction surface, and a back surface positioned on the opposite side of the light extraction surface, and introduced from the light introduction surface A light guide that guides the light in a predetermined direction,
As seen from a direction parallel to the light extraction direction, the concavo-convex structure A having an anisotropic shape in which the dimension in the predetermined direction is larger than the dimension in the direction orthogonal to the predetermined direction is formed on the light extraction surface and the back surface. A light guide having at least one of the surfaces.
[2] The light guide according to [1], wherein the uneven structure A is provided on both the light extraction surface and the back surface.
[3] The light guide according to [1] or [2], wherein the main axis of the anisotropic shape of the concavo-convex structure A viewed from a direction parallel to the light extraction direction is parallel to the predetermined direction.
[4] The light guide according to any one of [1] to [3], wherein the concave portions of the concave-convex structure A are continuous.
[5] The light guide according to any one of [1] to [4], wherein at least one of the concave portion and the convex portion of the concavo-convex structure A has a flat portion.
[6] Any one of [1] to [5], wherein the light guide has a light extraction structure for extracting light guided through the light guide from the light extraction surface at a portion having the uneven structure A. The light guide according to one item.
[7] The light guide according to [6], wherein the light extraction structure is a concavo-convex structure B having a main axis of the anisotropic shape in a direction intersecting with the main axis of the anisotropic shape of the concavo-convex structure A.
[8] The light guide according to [7], wherein the anisotropic main axis of the concavo-convex structure A is orthogonal to the anisotropic main axis of the concavo-convex structure B.
[9] The light guide according to [6], wherein the light extraction structure is unevenness formed on a surface of the uneven structure A.
[10] The light guide according to any one of [6] to [9], wherein the density or size of the light extraction structure increases with distance from the light introduction surface.
[11] The light guide according to [6], wherein the light extraction structure is a light diffusing agent present in the light guide.
[12] The light guide according to any one of [1] to [11], wherein the concavo-convex structure A has a bowl-shaped convex portion.
[13] The light guide according to [7] or [8], wherein the concavo-convex structure B has a bowl-shaped convex portion.
[14] The light guide according to [12] or [13], wherein the bowl-shaped convex portion includes a prism having a triangular cross section or a lenticular.
[15] An illumination device comprising: the light guide according to any one of [1] to [14]; and a light source that irradiates light to a light introduction surface of the light guide.
[16] A plurality of the light sources are provided,
The lighting device according to [15], wherein the plurality of light sources are dimmable individually or in groups.
[17] The illumination device according to [15] or [16], wherein the light source is an LED.
[18] A liquid crystal panel;
A liquid crystal display device comprising: the illumination device according to any one of [15] to [17] provided on a back side of the liquid crystal panel.
 本発明の導光体によれば、所望の領域における光取出面から選択的に光を取り出せる。
 本発明の照明装置及び液晶表示装置によれば、ローカルディミングが可能となる。
According to the light guide of the present invention, light can be selectively extracted from the light extraction surface in a desired region.
According to the illumination device and the liquid crystal display device of the present invention, local dimming is possible.
図1は、本発明の第一実施形態としての照明装置の概要を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an outline of a lighting apparatus as a first embodiment of the present invention. 図2は、本発明の第一実施形態に係る導光体の一部を切り取り、光取出面側から見た様子を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing a state in which a part of the light guide according to the first embodiment of the present invention is cut out and viewed from the light extraction surface side. 図3は、本発明の第一実施形態に係る導光体の光取出面に形成されたプリズムのうちの一つを、Z軸方向の光取出面側から見た平面図である。FIG. 3 is a plan view of one of the prisms formed on the light extraction surface of the light guide according to the first embodiment of the present invention, viewed from the light extraction surface side in the Z-axis direction. 図4は、本発明の第一実施形態に係る導光体の一部を切り取り、裏面側から見た様子を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a state in which a part of the light guide according to the first embodiment of the present invention is cut out and viewed from the back side. 図5は、本発明の第一実施形態に係る導光体の裏面に形成されたプリズムのうちの一つを、Z軸方向の裏面側から見た平面図である。FIG. 5 is a plan view of one of the prisms formed on the back surface of the light guide according to the first embodiment of the present invention as viewed from the back surface side in the Z-axis direction. 図6は、本発明の第一実施形態に係る導光体内を導光される光の内部反射の様子を説明するため、導光体をX軸方向に垂直な面で切った断面を拡大して模式的に示す断面図である。FIG. 6 is an enlarged view of a cross section obtained by cutting the light guide along a plane perpendicular to the X-axis direction in order to explain the state of internal reflection of light guided through the light guide according to the first embodiment of the present invention. FIG. 図7は、本発明の第二実施形態としての照明装置の概要を模式的に示す斜視図である。FIG. 7 is a perspective view schematically showing an outline of a lighting apparatus as a second embodiment of the present invention. 図8は、本発明の二実施形態に係る導光体の一部を切り取り、光取出面側から見た様子を模式的に示す斜視図である。FIG. 8 is a perspective view schematically showing a state in which a part of the light guide according to the second embodiment of the present invention is cut out and viewed from the light extraction surface side. 図9は、本発明の第二実施形態に係る導光体の光取出面に形成されたプリズムのうちの一つを、Z軸方向の光取出面側から見た平面図である。FIG. 9 is a plan view of one of the prisms formed on the light extraction surface of the light guide according to the second embodiment of the present invention, as viewed from the light extraction surface side in the Z-axis direction. 図10は、本発明の第二実施形態に係る導光体の一部を切り取り、裏面側から見た様子を模式的に示す斜視図である。FIG. 10 is a perspective view schematically showing a state in which a part of the light guide according to the second embodiment of the present invention is cut out and viewed from the back side. 図11は、本発明の第二実施形態に係る導光体の裏面に形成されたプリズムのうちの一つを、Z軸方向の裏面側から見た平面図である。FIG. 11 is a plan view of one of the prisms formed on the back surface of the light guide according to the second embodiment of the present invention as viewed from the back surface side in the Z-axis direction. 図12は、本発明の第三実施形態としての照明装置の概要を模式的に示す斜視図である。FIG. 12 is a perspective view schematically showing an outline of a lighting apparatus as a third embodiment of the present invention. 図13は、本発明の第三実施形態に係る導光体の一部を切り取り、光取出面側から見た様子を模式的に示す斜視図である。FIG. 13: is a perspective view which shows typically a mode that a part of light guide which concerns on 3rd embodiment of this invention was cut out, and it saw from the light extraction surface side. 図14は、本発明の第三実施形態に係る導光体の光取出面に形成された凹凸構造Aとしてのプリズムのうち隣り合う二つを、Z軸方向の光取出面側から見た平面図である。FIG. 14 is a plan view of two adjacent prisms as the concavo-convex structure A formed on the light extraction surface of the light guide according to the third embodiment of the present invention, as viewed from the light extraction surface side in the Z-axis direction. FIG. 図15は、本発明の第三実施形態に係る導光体をY軸方向に垂直な面で切った断面を模式的に示す断面図である。FIG. 15: is sectional drawing which shows typically the cross section which cut the light guide which concerns on 3rd embodiment of this invention with the surface perpendicular | vertical to the Y-axis direction. 図16は、本発明の三実施形態に係る導光体の一部を切り取り、裏面側から見た様子を模式的に示す斜視図である。FIG. 16: is a perspective view which shows typically a mode that a part of light guide which concerns on three embodiment of this invention was cut out, and it saw from the back surface side. 図17は、本発明の第三実施形態に係る導光体の裏面に形成された凹凸構造Aとしてのプリズムのうち隣り合う二つを、Z軸方向の裏面側から見た平面図である。FIG. 17 is a plan view of two adjacent prisms as the concavo-convex structure A formed on the back surface of the light guide according to the third embodiment of the present invention, as viewed from the back surface side in the Z-axis direction. 図18は、本発明の第三実施形態に係る導光体内を導光された光が取り出される様子を説明するため、導光体をY軸方向に垂直な面で切った断面を拡大して模式的に示す断面図である。FIG. 18 is an enlarged view of a cross section obtained by cutting the light guide along a plane perpendicular to the Y-axis direction in order to explain how light guided through the light guide according to the third embodiment of the present invention is extracted. It is sectional drawing shown typically. 図19は、本発明の第四実施形態としての照明装置の概要を模式的に示す斜視図である。FIG. 19 is a perspective view schematically showing an outline of a lighting apparatus as a fourth embodiment of the present invention. 図20は、本発明の第四実施形態に係る導光体の一部を切り取り、光取出面側から見た様子を模式的に示す斜視図である。FIG. 20 is a perspective view schematically showing a state where a part of the light guide according to the fourth embodiment of the present invention is cut out and viewed from the light extraction surface side. 図21は、本発明の第四実施形態に係る導光体の一部を切り取り、裏面側から見た様子を模式的に示す斜視図である。FIG. 21 is a perspective view schematically showing a state in which a part of the light guide according to the fourth embodiment of the present invention is cut out and viewed from the back surface side. 図22は、本発明の第五実施形態としての照明装置の概要を模式的に示す斜視図である。FIG. 22 is a perspective view schematically showing an outline of a lighting apparatus as a fifth embodiment of the present invention. 図23は、本発明の第五実施形態に係る導光体をY軸方向に垂直な面で切った断面を模式的に示す断面図である。FIG. 23 is a cross-sectional view schematically showing a cross section of the light guide according to the fifth embodiment of the present invention cut along a plane perpendicular to the Y-axis direction. 図24は、本発明の第六実施形態としての照明装置の概要を模式的に示す斜視図である。FIG. 24 is a perspective view schematically showing an outline of a lighting apparatus as a sixth embodiment of the present invention. 図25は、本発明の第六実施形態に係る導光体の一部を切り取り、光取出面側から見た様子を模式的に示す斜視図である。FIG. 25 is a perspective view schematically showing a state where a part of the light guide according to the sixth embodiment of the present invention is cut out and viewed from the light extraction surface side. 図26は、本発明の第六実施形態に係る導光体の一部を切り取り、裏面側から見た様子を模式的に示す斜視図である。FIG. 26 is a perspective view schematically showing a state in which a part of the light guide according to the sixth embodiment of the present invention is cut out and viewed from the back side. 図27は、本発明の第六実施形態に係る導光体内を導光される光の内部反射の様子を説明するため、導光体をX軸方向に垂直な面で切った断面を拡大して模式的に示す断面図である。FIG. 27 is an enlarged view of a cross section of the light guide cut along a plane perpendicular to the X-axis direction in order to explain the internal reflection of light guided through the light guide according to the sixth embodiment of the present invention. FIG. 図28は、本発明の第七実施形態としての液晶表示装置の概要を模式的に示す斜視図である。FIG. 28 is a perspective view schematically showing an outline of a liquid crystal display device as a seventh embodiment of the present invention. 図29は第一実施形態の変形例としての照明装置を模式的に示す図である。FIG. 29 is a diagram schematically showing an illumination device as a modification of the first embodiment. 図30は第三実施形態の変形例としての導光体の一部を切り取り、光取出面側から見た様子を模式的に示す斜視図である。FIG. 30 is a perspective view schematically showing a state in which a part of a light guide as a modification of the third embodiment is cut out and viewed from the light extraction surface side. 図31は、本発明の一実施形態に係る導光体の一部を切り取り、光取出面120側から見た様子を模式的に示す斜視図である。FIG. 31 is a perspective view schematically showing a state in which a part of the light guide according to an embodiment of the present invention is cut out and viewed from the light extraction surface 120 side. 図32は、本発明の一実施形態に係る導光体の光取出面に形成された凹凸構造Aのうちの一つを、Z軸方向の光取出面側から見た平面図である。FIG. 32 is a plan view of one of the concavo-convex structures A formed on the light extraction surface of the light guide according to the embodiment of the present invention, as viewed from the light extraction surface side in the Z-axis direction. 図33は、実施例1で行ったシミュレーションにおいて設定したシミュレーション条件を説明する平面図である。FIG. 33 is a plan view for explaining simulation conditions set in the simulation performed in the first embodiment. 図34は、本発明の実施例1~4、7~23及び比較例1で測定された光の広がりの幅W50と、導光体の光取出面及び裏面に形成されたプリズムの傾斜角との関係を表すグラフである。FIG. 34 shows the light spread width W 50 measured in Examples 1 to 4, 7 to 23 of the present invention and Comparative Example 1, and the inclination angles of the prisms formed on the light extraction surface and the back surface of the light guide. It is a graph showing the relationship. 図35は、本発明の実施例1~4、7~23及び比較例1で測定された光の広がりの幅Wと、導光体の光取出面及び裏面に形成されたプリズムの傾斜角との関係を表すグラフである。FIG. 35 shows the light spread width W 5 measured in Examples 1 to 4, 7 to 23 of the present invention and Comparative Example 1, and the inclination angles of the prisms formed on the light extraction surface and the back surface of the light guide. It is a graph showing the relationship.
 以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下の実施形態及び例示物等に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施できる。
 なお、以下の説明において、「凹凸構造A」の符号「A」、「凹凸構造B」の符号「B」は、当該符号が付された要素を他の要素から区別するために付した符号であり、要素の区別以外に意味を有さない。また、構成要素の方向が「平行」及び「直交」とは、特に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。また、ある方向に「沿って」とは、ある方向に「平行に」との意味である。さらに、導光体の位置の説明で「手前」という場合は光導入面に近い位置をいい、「奥」という場合は光導入面に遠い位置をいう。「凹凸構造」とは、「凹の構造及び/又は凸の構造」のことであり、「凹凸」とは、「凹及び/又は凸」のことである。
Hereinafter, the present invention will be described in detail with reference to embodiments and examples, but the present invention is not limited to the following embodiments and examples, and the claims of the present invention and equivalents thereof. Any change can be made without departing from the scope.
In the following description, the symbol “A” of “concave / convex structure A” and the symbol “B” of “concavo-convex structure B” are the symbols appended to distinguish the element to which the symbol is attached from other elements. Yes, it has no meaning other than element distinction. Moreover, unless the direction of the component is “parallel” and “orthogonal”, unless otherwise specified, an error may be included within a range that does not impair the effects of the present invention, for example, within a range of ± 5 °. Further, “along” in a certain direction means “in parallel” in a certain direction. Furthermore, in the description of the position of the light guide, “front” refers to a position close to the light introduction surface, and “back” refers to a position far from the light introduction surface. “Uneven structure” means “concave structure and / or convex structure”, and “uneven structure” means “concave and / or convex”.
〔第一実施形態〕
 図1は、本発明の第一実施形態としての照明装置の概要を模式的に示す斜視図である。図1に示すように、本発明の第一実施形態としての照明装置1は、板状の導光体101と、複数の光源201と、光源201を調光する調光装置301とを備える。
[First embodiment]
FIG. 1 is a perspective view schematically showing an outline of a lighting apparatus as a first embodiment of the present invention. As shown in FIG. 1, the illuminating device 1 as 1st embodiment of this invention is equipped with the plate-shaped light guide 101, the some light source 201, and the light modulation apparatus 301 which light-modulates the light source 201. As shown in FIG.
 導光体101は、導光体101内に光を導入する光導入面110と、光導入面110から導入された光を導光体101の外部へと取り出す光取出面120と、光取出面120とは反対側に位置する裏面130とを備える。この導光体101では、光導入面110から導光体101内に導入された光が、光取出面120及び裏面130で内部反射しながら所定方向へ導光され、導光された先の領域において光取出面120から取り出されるようになっている。ここで、光が裏面130から取り出される場合は、導光体101の裏面130側に反射シートを設置し、取り出された光を反射して、光取出面120へ導光することもできる。なお、前記の所定方向を含め、光が導光される方向(以下、適宜「導光方向」という。)とは、特に断らない限り、光の取出方向から見た場合に導光体101内で光が導光される方向を指す。したがって、導光方向という場合、特に断らない限り、後述するZ軸方向については問題としない。 The light guide 101 includes a light introduction surface 110 that introduces light into the light guide 101, a light extraction surface 120 that extracts the light introduced from the light introduction surface 110 to the outside of the light guide 101, and a light extraction surface. 120 and a back surface 130 located on the opposite side to 120. In this light guide body 101, the light introduced into the light guide body 101 from the light introduction surface 110 is guided in a predetermined direction while being internally reflected by the light extraction surface 120 and the back surface 130, and is guided there. Are extracted from the light extraction surface 120. Here, when light is extracted from the back surface 130, a reflection sheet can be installed on the back surface 130 side of the light guide 101, and the extracted light can be reflected and guided to the light extraction surface 120. Note that the direction in which light is guided (hereinafter referred to as “light guiding direction” as appropriate) including the predetermined direction is within the light guide 101 when viewed from the light extraction direction unless otherwise specified. Indicates the direction in which light is guided. Therefore, when referring to the light guide direction, the Z-axis direction described later is not a problem unless otherwise specified.
 ここで、光取出面120と平行な方向のうち、前記の所定方向と平行な方向をX軸方向とする。また、光取出面120と平行な方向のうち、X軸方向と直交する方向をY軸方向とする。さらに、光取出面120の法線方向をZ軸方向とする。本実施形態においては、導光体101は矩形板状となっていて、前記のX軸方向は導光体101の光取出面120の短辺方向と平行であり、Y軸方向は導光体101の光取出面120の長辺方向と平行であり、Z軸方向は導光体101の厚み方向と平行であり、X軸方向とY軸方向とZ軸方向とは互いに直交しているものとする。 Here, among the directions parallel to the light extraction surface 120, the direction parallel to the predetermined direction is defined as the X-axis direction. Of the directions parallel to the light extraction surface 120, the direction orthogonal to the X-axis direction is taken as the Y-axis direction. Further, the normal direction of the light extraction surface 120 is taken as the Z-axis direction. In the present embodiment, the light guide 101 has a rectangular plate shape, the X-axis direction is parallel to the short side direction of the light extraction surface 120 of the light guide 101, and the Y-axis direction is the light guide. 101 is parallel to the long side direction of the light extraction surface 120, the Z-axis direction is parallel to the thickness direction of the light guide 101, and the X-axis direction, the Y-axis direction, and the Z-axis direction are orthogonal to each other. And
 光導入面110は、導光体101の側面であり、光取出面120及び裏面130の端部に位置する面である。この光導入面110はX軸方向に直交する面である。すなわち、光導入面110は、光が導光される所定方向と直交するように設定されている。このような光導入面110に対し、光源201から垂直に光を照射すると、光導入面110における反射を抑制して、光の導入効率を高めることができる。また、導入時の光導入面110における屈折を抑制して、光の進行方向を安定して所望の導光方向(即ち、X軸方向)に向けることが可能となり、Y軸方向への光の広がりを安定して抑制できる。
 光導入面110には、光の導入効率を高めたり、更にY軸方向への光の広がりを抑制したりするためにレンズ等の凹凸を形成してもよいが、平坦な平面であってもよい。また、光源201に由来する光導入面110近傍の輝線等の抑制のために、光導入面110を不定形の粗面(ランダムに微小な凹凸を形成した面)や畝状の粗面としてもよい。本実施形態では、光導入面110は平坦な平面であるものとして説明する。
The light introduction surface 110 is a side surface of the light guide 101 and is a surface located at the ends of the light extraction surface 120 and the back surface 130. This light introduction surface 110 is a surface orthogonal to the X-axis direction. That is, the light introduction surface 110 is set to be orthogonal to a predetermined direction in which light is guided. When light is irradiated perpendicularly from the light source 201 to such a light introduction surface 110, reflection on the light introduction surface 110 can be suppressed and light introduction efficiency can be increased. In addition, refraction at the light introduction surface 110 at the time of introduction can be suppressed, and the traveling direction of light can be stably directed in a desired light guide direction (that is, the X-axis direction). Spreading can be stably suppressed.
The light introduction surface 110 may be provided with irregularities such as a lens in order to increase the light introduction efficiency and further suppress the spread of light in the Y-axis direction. Good. In addition, in order to suppress bright lines in the vicinity of the light introduction surface 110 derived from the light source 201, the light introduction surface 110 may be an irregular rough surface (a surface on which minute irregularities are randomly formed) or a bowl-shaped rough surface. Good. In the present embodiment, the light introduction surface 110 will be described as a flat plane.
 光取出面120は、導光体101の主面の一つである。導光体101では、この光取出面120から所定の取出方向へ向けて光が出射するようになっている。通常、光取出面120からの光の取出方向は、光取出面120の法線方向から光源201とは反対方向に傾いた方向となるが、ここでは光取出面120の法線方向と平行とする。本実施形態でも、光取出面120からの光の取出方向は、光取出面120の法線方向であるZ軸方向と平行であるものとして説明する。 The light extraction surface 120 is one of the main surfaces of the light guide body 101. In the light guide 101, light is emitted from the light extraction surface 120 in a predetermined extraction direction. Normally, the light extraction direction from the light extraction surface 120 is a direction inclined from the normal direction of the light extraction surface 120 in the direction opposite to the light source 201, but here is parallel to the normal direction of the light extraction surface 120. To do. Also in this embodiment, the description will be made assuming that the light extraction direction from the light extraction surface 120 is parallel to the Z-axis direction, which is the normal direction of the light extraction surface 120.
 図2は、本発明の第一実施形態に係る導光体101の一部を切り取り、光取出面120側から見た様子を模式的に示す斜視図である。図2に示すように、光取出面120には、凹凸構造Aとして複数本のプリズム121が形成されている。
 各プリズム121は、X軸方向に延在する畝状の凸部であり、Y軸方向に並んで複数本形成されている。
 また、プリズム121は光取出面120の全体に、Y軸方向に並んで複数本形成されている。これにより、光取出面120の全面が凹凸構造Aを有するようになっている。
FIG. 2 is a perspective view schematically showing a state in which a part of the light guide body 101 according to the first embodiment of the present invention is cut out and viewed from the light extraction surface 120 side. As shown in FIG. 2, a plurality of prisms 121 are formed on the light extraction surface 120 as the concavo-convex structure A.
Each prism 121 is a bowl-shaped convex portion extending in the X-axis direction, and a plurality of prisms 121 are formed side by side in the Y-axis direction.
In addition, a plurality of prisms 121 are formed on the entire light extraction surface 120 side by side in the Y-axis direction. Thereby, the entire surface of the light extraction surface 120 has the concavo-convex structure A.
 各プリズム121は、X軸方向に垂直な面で切った断面が三角形となる断面三角形状のプリズムである。したがって、プリズム121は、それぞれY軸方向と平行でない(すなわち、Y軸と交差する)2つの斜面122,123を有している。このような斜面122,123は、導光体101内を導光される光を、Y軸方向に広がらないように内部反射できるようになっている。すなわち、光が斜面122,123で内部反射を繰り返すことにより、その光のY軸方向成分の向きは反転を繰り返すことになるので、導光される光のうち大部分はY軸方向の一方又は他方に連続して進行し続けることができず、Y軸方向に広がらないようになっている。 Each prism 121 is a prism having a triangular section in which a section cut by a plane perpendicular to the X-axis direction is a triangle. Therefore, the prism 121 has two inclined surfaces 122 and 123 that are not parallel to the Y-axis direction (that is, intersect with the Y-axis). Such inclined surfaces 122 and 123 can internally reflect light guided in the light guide 101 so as not to spread in the Y-axis direction. That is, when the light repeats internal reflection at the inclined surfaces 122 and 123, the direction of the Y-axis direction component of the light repeats reversal, so that most of the guided light is in one of the Y-axis directions or On the other hand, it cannot continue continuously and does not spread in the Y-axis direction.
 プリズム121の斜面122,123の平均傾斜角度θは、15°以上が好ましく、25°以上がより好ましく、30°以上が特に好ましい。なお、上限は90°未満である。ここで、斜面122,123の平均傾斜角度θとは、光取出面120に対する斜面122,123の傾斜角度の平均値である(図6参照)。光取出面120は凹凸構造Aを有するため微視的に見ると平坦な平面ではないが、凹凸構造AはZ軸方向の寸法が小さいため、巨視的に見た場合には光取出面120は平坦な平面として取り扱うことができる。したがって、前記の平均傾斜角度θは、斜面122,123と巨視的に見た場合の光取出面120とがなす角度の平均値として理解できる。平均傾斜角度θを前記の範囲にすることにより、導光体101内を導光される光がY軸方向に広がることを効果的に抑制して、光の導光方向を効率的に制御できる。 The average inclination angle θ of the slopes 122 and 123 of the prism 121 is preferably 15 ° or more, more preferably 25 ° or more, and particularly preferably 30 ° or more. The upper limit is less than 90 °. Here, the average inclination angle θ of the slopes 122 and 123 is an average value of the inclination angles of the slopes 122 and 123 with respect to the light extraction surface 120 (see FIG. 6). Since the light extraction surface 120 has a concavo-convex structure A, it is not a flat plane when viewed microscopically. However, since the concavo-convex structure A has a small dimension in the Z-axis direction, when viewed macroscopically, the light extraction surface 120 is It can be handled as a flat plane. Therefore, the average inclination angle θ can be understood as an average value of angles formed between the inclined surfaces 122 and 123 and the light extraction surface 120 when viewed macroscopically. By setting the average inclination angle θ in the above range, the light guided in the light guide 101 is effectively prevented from spreading in the Y-axis direction, and the light guide direction can be controlled efficiently. .
 図3は、本発明の第一実施形態に係る導光体101の光取出面120に形成されたプリズム121のうちの一つを、Z軸方向の光取出面側から見た図である。すなわち、図3は、プリズム121の一つを光の取出方向と平行な方向から見た様子を表す。図3に示すように、Z軸方向の光取出面側から見た場合、プリズム121は異方性形状を有する。具体的には、プリズム121の長さ(本実施形態では、X軸方向の寸法)Lxが、プリズム121の幅(本実施形態では、Y軸方向の寸法)Lyよりも大きくなっている。したがって、プリズム121は、光が導光される所定方向であるX軸方向の寸法Lxが、X軸方向に直交するY軸方向の寸法よりも大きい異方性形状を有することになる。これにより、導光体101内を導光される光の斜面122,123での内部反射のうち、光のY軸方向成分の向きを反転させる内部反射の頻度を増やして、Y軸方向への光の広がりを抑制する前記の作用を効果的に発揮させることができる。したがって、導光体101内を導光される光がY軸方向に広がることを、効果的に抑制できる。 FIG. 3 is a view of one of the prisms 121 formed on the light extraction surface 120 of the light guide 101 according to the first embodiment of the present invention, as viewed from the light extraction surface side in the Z-axis direction. That is, FIG. 3 shows a state in which one of the prisms 121 is viewed from a direction parallel to the light extraction direction. As shown in FIG. 3, when viewed from the light extraction surface side in the Z-axis direction, the prism 121 has an anisotropic shape. Specifically, the length (the dimension in the X-axis direction) Lx of the prism 121 is larger than the width (the dimension in the Y-axis direction in this embodiment) Ly. Therefore, the prism 121 has an anisotropic shape in which the dimension Lx in the X-axis direction, which is a predetermined direction in which light is guided, is larger than the dimension in the Y-axis direction orthogonal to the X-axis direction. This increases the frequency of internal reflection that inverts the direction of the Y-axis direction component of the light on the inclined surfaces 122 and 123 of the light guided through the light guide 101, and thereby increases the Y-axis direction. The above action of suppressing the spread of light can be effectively exhibited. Therefore, it is possible to effectively suppress the light guided in the light guide 101 from spreading in the Y-axis direction.
 具体的なプリズム121の長さLxは、本実施形態の導光体101では、導光体101のX軸方向の寸法と同寸法になっているものとする。これにより、斜面122,123での内部反射によりY軸方向への光の広がりを抑制する作用を、光取出面120の全体で発揮させることができるようになっている。また、プリズム121間に形成される凹部(谷部)124(図2、図6参照。)が導光体101のX軸方向の全体に連続して形成されることになるので、導光体101内を導光される光がY軸方向に広がることを効果的に抑制できたり、導光体101に近接配置される光学シートとの密着を防止できたり、導光体101に近接配置される光学シートとの擦れによる導光体101のキズ付きが抑制できたりする。 The specific length Lx of the prism 121 is assumed to be the same as the dimension of the light guide 101 in the X-axis direction in the light guide 101 of the present embodiment. As a result, the entire light extraction surface 120 can exhibit the effect of suppressing the spread of light in the Y-axis direction due to internal reflection at the inclined surfaces 122 and 123. Moreover, since the recessed part (valley part) 124 (refer FIG. 2, FIG. 6) formed between the prisms 121 will be continuously formed in the whole X-axis direction of the light guide 101, a light guide. It is possible to effectively suppress the light guided in the Y-axis direction from spreading in the Y-axis direction, to prevent close contact with the optical sheet disposed in the vicinity of the light guide 101, or to be disposed in the vicinity of the light guide 101. The scratch of the light guide 101 due to rubbing with the optical sheet can be suppressed.
 他方、プリズム121の幅Lyは、通常10μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、通常300μm以下、好ましくは200μm以下、より好ましくは100μm以下である。小さすぎると、回折現象により光が散乱したり、作製が困難になる傾向がある。大きすぎると、光を取り出している部分と取り出していない部分との明暗を目視で視認可能となり、光学的な欠陥となる可能性がある。 On the other hand, the width Ly of the prism 121 is usually 10 μm or more, preferably 20 μm or more, more preferably 30 μm or more, and usually 300 μm or less, preferably 200 μm or less, more preferably 100 μm or less. If it is too small, there is a tendency that light is scattered due to a diffraction phenomenon or that the production becomes difficult. If it is too large, the brightness and darkness of the portion from which light is extracted and the portion from which light is not extracted can be visually recognized, which may cause an optical defect.
 本発明において、光の取出方向に平行な方向から見た、凹凸構造Aの、導光方向の寸法と所定方向に直交する方向の寸法との比(プリズム121の例では、プリズム121の長さLxと幅Lyとの比(Lx/Ly))は、光源201の数、配置及び発光強度、並びに光取出面120の形状及び寸法等により適宜定めることができる。かかる比は、通常1.5以上、好ましくは2.0以上、より好ましくは5.0以上であり、通常200000以下、より好ましくは100000以下、より好ましくは50000以下である。小さすぎると導光体101内を導光する光がY軸方向に広がることを抑制できなくなる可能性がある。また、長さLxは導光体101の長さによるが、比が大きすぎると幅Lyが小さくなり作製が困難である。 In the present invention, the ratio of the dimension of the concavo-convex structure A to the dimension of the light guide direction and the dimension orthogonal to the predetermined direction as viewed from the direction parallel to the light extraction direction (in the example of the prism 121, the length of the prism 121). The ratio of Lx to width Ly (Lx / Ly) can be determined as appropriate depending on the number of light sources 201, the arrangement and emission intensity, the shape and dimensions of the light extraction surface 120, and the like. Such a ratio is usually 1.5 or more, preferably 2.0 or more, more preferably 5.0 or more, and usually 200000 or less, more preferably 100000 or less, and more preferably 50000 or less. If it is too small, it may not be possible to prevent the light guided in the light guide 101 from spreading in the Y-axis direction. Further, the length Lx depends on the length of the light guide body 101, but if the ratio is too large, the width Ly becomes small and it is difficult to manufacture.
 さらに、プリズム121の高さ(本実施形態では、Z軸方向の寸法。図6参照。)Hは、通常1.0μm以上、好ましくは2.0μm以上、より好ましくは3.0μm以上であり、通常500μm以下、好ましくは400μm以下、より好ましくは300μm以下である。小さすぎると加工精度の限界から作製が困難となり、大きすぎると目視で視認可能となり光学的な欠陥となる可能性がある。 Further, the height H of the prism 121 (in this embodiment, the dimension in the Z-axis direction; see FIG. 6) H is usually 1.0 μm or more, preferably 2.0 μm or more, more preferably 3.0 μm or more. Usually, it is 500 micrometers or less, Preferably it is 400 micrometers or less, More preferably, it is 300 micrometers or less. If it is too small, production becomes difficult due to the limit of processing accuracy, and if it is too large, it can be visually recognized and may cause an optical defect.
 図3に示すように、Z軸方向の光取出面側から見て、プリズム121の異方性形状の主軸PAはX軸方向と平行になっている。ここでプリズム121の異方性形状の主軸PAとは、Z軸方向から見たプリズム121の形状における長手方向に沿った軸のことを指す。プリズム121は斜面122,123での内部反射により主軸PAに沿って光を導光する作用を発揮することから、プリズム121の異方性形状の主軸PAがX軸方向と平行になることにより、光を安定してX軸方向に沿って導光することができるようになる。 As shown in FIG. 3, when viewed from the light extraction surface side in the Z-axis direction, the principal axis PA of the anisotropic shape of the prism 121 is parallel to the X-axis direction. Here, the principal axis PA of the anisotropic shape of the prism 121 refers to an axis along the longitudinal direction in the shape of the prism 121 viewed from the Z-axis direction. Since the prism 121 exhibits the effect of guiding light along the principal axis PA by internal reflection at the inclined surfaces 122 and 123, the anisotropic principal axis PA of the prism 121 is parallel to the X-axis direction. Light can be stably guided along the X-axis direction.
 裏面130は、導光体101の主面の一つであり、光取出面120と平行な面となっている。裏面130では、導光体101内を導光される光を内部反射させるようになっている。このため、裏面130は反射面と呼ばれることがある。なお、裏面130で光を安定して内部反射させるようにするために、裏面130には必要に応じて金属層、樹脂製の散乱層、またはそれらの組み合わせ等の反射層を設けてもよい。 The back surface 130 is one of the main surfaces of the light guide 101 and is a surface parallel to the light extraction surface 120. On the back surface 130, light guided through the light guide 101 is internally reflected. For this reason, the back surface 130 may be called a reflective surface. In addition, in order to stably reflect light internally on the back surface 130, the back surface 130 may be provided with a reflective layer such as a metal layer, a resin-made scattering layer, or a combination thereof.
 図4は、本発明の第一実施形態に係る導光体101の一部を切り取り、裏面130側から見た様子を模式的に示す斜視図である。また、図5は、本発明の第一実施形態に係る導光体101の裏面130に形成されたプリズム131のうちの一つを、Z軸方向の裏面側から見た図である。
 図4に示すように、裏面130には、凹凸構造Aとしてプリズム131が形成されている。プリズム131は、光取出面120のプリズム121と同様に形成されている。すなわち、プリズム131は裏面130の全体に形成されている。また、各プリズム131は断面三角形状のプリズムであり、それぞれ2つの斜面132,133を有している。さらに、図5に示すように、Z軸方向の裏面側から見た場合、プリズム131の長さ(本実施形態では、X軸方向の寸法)Lxが、プリズム131の幅(本実施形態では、Y軸方向の寸法)Lyよりも大きくなっている。また、プリズム131間に形成される凹部(谷部)134(図4、図6参照。)が導光体101のX軸方向の全体に連続して形成されている。さらに、Z軸方向から見て、プリズム131の異方性形状の主軸PAはX軸方向と平行になっている。これらの構成により、裏面130においても、光取出面120と同様に、導光される光のY軸方向への広がりを抑制できるようになっている。プリズム131の斜面132,133の平均傾斜角度θは、15°以上が好ましく、25°以上がより好ましく、30°以上が特に好ましい。なお、上限は90°未満である。プリズム121及びプリズム131のうち、少なくとも一方がこの条件を満たすことで、導光される光のY軸方向への広がりを抑制できる。
FIG. 4 is a perspective view schematically showing a state in which a part of the light guide body 101 according to the first embodiment of the present invention is cut out and viewed from the back surface 130 side. FIG. 5 is a view of one of the prisms 131 formed on the back surface 130 of the light guide body 101 according to the first embodiment of the present invention as viewed from the back surface side in the Z-axis direction.
As shown in FIG. 4, a prism 131 is formed on the back surface 130 as the concavo-convex structure A. The prism 131 is formed in the same manner as the prism 121 on the light extraction surface 120. That is, the prism 131 is formed on the entire back surface 130. Each prism 131 is a prism having a triangular cross section, and has two inclined surfaces 132 and 133, respectively. Furthermore, as shown in FIG. 5, when viewed from the back side in the Z-axis direction, the length of the prism 131 (in this embodiment, the dimension in the X-axis direction) Lx is the width of the prism 131 (in this embodiment, It is larger than the dimension Y in the Y-axis direction. In addition, concave portions (valley portions) 134 (see FIGS. 4 and 6) formed between the prisms 131 are continuously formed in the entire X-axis direction of the light guide 101. Furthermore, as viewed from the Z-axis direction, the principal axis PA of the anisotropic shape of the prism 131 is parallel to the X-axis direction. With these configurations, similarly to the light extraction surface 120, the back surface 130 can suppress the spread of the guided light in the Y-axis direction. The average inclination angle θ of the inclined surfaces 132 and 133 of the prism 131 is preferably 15 ° or more, more preferably 25 ° or more, and particularly preferably 30 ° or more. The upper limit is less than 90 °. When at least one of the prism 121 and the prism 131 satisfies this condition, the spread of the guided light in the Y-axis direction can be suppressed.
 図1に示す光源201は、導光体101の光導入面110に光を照射する装置である。光源201は、通常、その軸線(即ち、出射する光の主光線の方向)がX軸方向に平行になるように設置される。光源201としては、例えば、LED(Light Emitting Diode)を用いる。LEDは、発光効率が高く、省エネルギーの観点から優れた光源である。LEDには図示しない電源から電力が供給され、供給された電力により個別に調光可能となっている。 The light source 201 shown in FIG. 1 is a device that irradiates light to the light introduction surface 110 of the light guide 101. The light source 201 is usually installed such that its axis (that is, the direction of the principal ray of emitted light) is parallel to the X-axis direction. As the light source 201, for example, an LED (Light Emitting Diode) is used. LEDs are high light emission efficiency and are excellent light sources from the viewpoint of energy saving. The LED is supplied with electric power from a power source (not shown), and can be individually dimmed by the supplied electric power.
 ただし、ローカルディミングを実現する観点から、光源201は、光導入面110の所望の領域に選択的に光を照射できるようにする。そこで本実施形態の照明装置1では、以下のような構成となっている。
 すなわち、導光体101は、Z軸方向から見て複数の領域101a~101hに区分され、各領域101a~101hはいずれもX軸方向に沿って延在する矩形状となっている。また、光導入面110は、各領域101a~101hのX軸方向手前側に位置する領域110a~110hごとに区分されている。なお、前記の領域101a~101h及び領域110a~110hは照明装置1の発光位置の制御のために仮想的に設定されたものであり、通常、物理的な境界により区分されるものではない。
However, from the viewpoint of realizing local dimming, the light source 201 can selectively irradiate a desired region of the light introduction surface 110 with light. Therefore, the illumination device 1 of the present embodiment has the following configuration.
That is, the light guide 101 is divided into a plurality of regions 101a to 101h when viewed from the Z-axis direction, and each of the regions 101a to 101h has a rectangular shape extending along the X-axis direction. The light introduction surface 110 is divided into regions 110a to 110h located on the front side in the X-axis direction of the regions 101a to 101h. Note that the regions 101a to 101h and the regions 110a to 110h are virtually set for controlling the light emission position of the lighting device 1, and are not usually separated by physical boundaries.
 この場合、照明装置1は光源201を複数個備え、光導入面110の各領域110a~110hの正面の位置に光源201を設けるようにしている。また、各光源201は、各光源201を調光する調光装置301に接続されている。調光装置301は、光源201への電力の供給の有無及び供給量を調節する装置である。したがって、調光装置301が各光源201へ供給される電力を調節することにより、各光源201から光導入面110の領域110a~110hに、所望の明るさで選択的に光を照射できるようになっている。 In this case, the lighting device 1 includes a plurality of light sources 201, and the light sources 201 are provided at positions in front of the regions 110a to 110h of the light introduction surface 110. Each light source 201 is connected to a light control device 301 that controls the light source 201. The light control device 301 is a device that adjusts the presence / absence and supply amount of power to the light source 201. Therefore, the light control device 301 adjusts the power supplied to each light source 201 so that light can be selectively irradiated from each light source 201 to the regions 110a to 110h of the light introduction surface 110 with desired brightness. It has become.
 なお、前記の調光装置301は、ハードウェア的にはCPU(Central Processing Unit)等の演算装置、RAM(Random Access Memory)、ROM(Read Only Memory)等のメモリ、AD変換部等のインターフェース部、可変抵抗器などから構成されていて、これらが上記の各調光装置としての機能を発揮するようになっている。 The dimming device 301 includes, in terms of hardware, an arithmetic device such as a CPU (Central Processing Unit), a memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), and an interface unit such as an AD conversion unit. These are composed of variable resistors and the like, and these function as the above-mentioned dimmers.
 本発明の第一実施形態としての照明装置1は上述したように構成されているので、光源201から発せられた光が、光導入面110に入射して導光体101内に導入され、導光体101内を導光された後、光取出面120から外部へと出射することにより取り出されるようになっている。また、光源201の発光を制御することにより、ローカルディミングを効率的に実施できるようになっている。以下、効率的なローカルディミングが実施できる仕組みを、領域101aにおける光取出面120から選択的に光を取り出す場合を例に挙げて説明する。 Since the illuminating device 1 as the first embodiment of the present invention is configured as described above, the light emitted from the light source 201 enters the light introduction surface 110 and is introduced into the light guide 101 to be guided. After being guided through the light body 101, the light is extracted from the light extraction surface 120 to the outside. Further, local dimming can be efficiently performed by controlling the light emission of the light source 201. Hereinafter, a mechanism capable of performing efficient local dimming will be described by taking as an example a case where light is selectively extracted from the light extraction surface 120 in the region 101a.
 領域101aにおける光取出面120から選択的に光を取り出そうとする場合、調光装置301が光源201への電力の供給量を調節することにより、光導入面110の領域110aの正面に位置する光源201から選択的に光を照射させる。照射された光は、光導入面110の領域110aに入射し、導光体101の内部に導入される。導光体101の内部に導入された光は、光取出面120及び裏面130で内部反射を繰り返しながら、X軸方向に沿って奥に向けて導光される。 When light is selectively extracted from the light extraction surface 120 in the region 101a, the light control device 301 adjusts the amount of power supplied to the light source 201, so that the light source positioned in front of the region 110a of the light introduction surface 110 is adjusted. Light is selectively emitted from 201. The irradiated light enters the region 110 a of the light introduction surface 110 and is introduced into the light guide 101. The light introduced into the light guide body 101 is guided toward the back along the X-axis direction while repeating internal reflection on the light extraction surface 120 and the back surface 130.
 図6は、本発明の第一実施形態に係る導光体101内を導光される光の内部反射の様子を説明するため、導光体101をX軸方向に垂直な面で切った断面を拡大して模式的に示す断面図である。なお、図6において、矢印Aは、導光体101内を導光される光のベクトルのうちX軸方向に垂直な成分を示す。図6に示すように、導光体101内を導光される光Aは、光取出面120の斜面122,123及び裏面130の斜面132,133で内部反射を繰り返す。内部反射により、図中右方へと進行していた光Aは図中左方へ進行するようになる。同様に、図中左方へと進行していた光は図中右方へと進行するようになる。このため、導光体101内を導光される光の大部分はY軸方向の一方向又は他方向に連続的に進行し続けることができなくなる。したがって、導光体101内を導光される光はY軸方向に広がらずに、導光体101の領域101a中をX軸方向に沿って導光されることになる。 FIG. 6 is a cross-sectional view of the light guide 101 taken along a plane perpendicular to the X-axis direction in order to explain the state of internal reflection of light guided through the light guide 101 according to the first embodiment of the present invention. It is sectional drawing which expands and shows typically. In FIG. 6, an arrow A indicates a component perpendicular to the X-axis direction among light vectors guided through the light guide 101. As shown in FIG. 6, the light A guided in the light guide 101 repeats internal reflection on the inclined surfaces 122 and 123 of the light extraction surface 120 and the inclined surfaces 132 and 133 of the back surface 130. Due to internal reflection, the light A that has traveled to the right in the figure proceeds to the left in the figure. Similarly, light that has traveled to the left in the figure proceeds to the right in the figure. For this reason, most of the light guided in the light guide 101 cannot continue to proceed continuously in one direction or the other direction in the Y-axis direction. Therefore, the light guided in the light guide 101 does not spread in the Y-axis direction but is guided in the region 101a of the light guide 101 along the X-axis direction.
 なお、図6においては、一見、光Aが裏面130に対して小さい入射角で入射しているため、光Aは裏面130から外部に取り出されるようにも見える。しかし、実際には光Aは、そのX軸方向成分が、そのX軸方向に垂直な成分よりも大きい。このため、図6に示すように光のベクトルのうちX軸方向に垂直な成分の入射角が小さい場合でも、実際には裏面130への光の入射角が大きくなり、光が内部反射できる場合がある。光取出面120における内部反射についても同様である。 In FIG. 6, since the light A is incident on the back surface 130 at a small incident angle, the light A appears to be extracted from the back surface 130 to the outside. However, in reality, the light A has a component in the X-axis direction larger than a component perpendicular to the X-axis direction. Therefore, as shown in FIG. 6, even when the incident angle of the component perpendicular to the X-axis direction in the light vector is small, the incident angle of the light to the back surface 130 is actually large and the light can be internally reflected. There is. The same applies to the internal reflection at the light extraction surface 120.
 導光体101の領域101a中をX軸方向に沿って導光された光は、領域101aにおける光取出面120から取り出される。この際、導光される光がY軸方向に広がらないようになっているため、領域101a以外の領域101b~101hにおける光取出面120からは光は取り出されないか、取り出されるとしても取出量が少量となる。このようにして、領域101a~101hのうち、所望の領域101aにおける光取出面120から選択的に光が取り出されるようにすることによって、ローカルディミングが実現されている。 The light guided in the region 101a of the light guide body 101 along the X-axis direction is extracted from the light extraction surface 120 in the region 101a. At this time, since the guided light does not spread in the Y-axis direction, the light is not extracted from the light extraction surfaces 120 in the regions 101b to 101h other than the region 101a, or the extraction amount even if it is extracted. Becomes a small amount. In this way, local dimming is realized by selectively extracting light from the light extraction surface 120 in the desired region 101a among the regions 101a to 101h.
 この際、凹凸構造Aに相当するプリズム121及びプリズム131を光取出面120及び裏面130の両方に有するようにしたため、導光される光がY軸方向に広がることを、片方のみに有する場合と比較して、更に抑制できる。
 また、プリズム121及びプリズム131の異方性形状の主軸PAをX軸方向と平行にしたため、光を安定してX軸方向に沿って導光することができる。
 さらに、凹凸構造Aの凹部124,134がX軸方向に沿って連続しているため、導光体101内を導光される光がY軸方向に広がることをより効果的に抑制できたり、導光体101に近接配置される光学シートとの密着を防止できたり、導光体101に近接配置される光学シートとの擦れによる導光体101のキズ付きが抑制できたりする。
At this time, since the prism 121 and the prism 131 corresponding to the concavo-convex structure A are provided on both the light extraction surface 120 and the back surface 130, the light to be guided spreads in the Y-axis direction only on one side. In comparison, it can be further suppressed.
In addition, since the principal axis PA of the anisotropic shape of the prism 121 and the prism 131 is parallel to the X-axis direction, light can be stably guided along the X-axis direction.
Furthermore, since the recesses 124 and 134 of the concavo-convex structure A are continuous along the X-axis direction, the light guided in the light guide 101 can be more effectively suppressed from spreading in the Y-axis direction, It is possible to prevent the light guide 101 from being in close contact with the optical sheet disposed close to the light guide 101, or to suppress the light guide 101 from being scratched by rubbing with the optical sheet disposed close to the light guide 101.
〔第二実施形態〕
 図7は、本発明の第二実施形態としての照明装置の概要を模式的に示す斜視図である。図8は、本発明の第二実施形態に係る導光体の一部を切り取り、光取出面側から見た様子を模式的に示す斜視図である。図9は、本発明の第二実施形態に係る導光体の光取出面に形成されたプリズムのうちの一つを、Z軸方向の光取出面側から見た図である。図10は、本発明の第二実施形態に係る導光体の一部を切り取り、裏面側から見た様子を模式的に示す斜視図である。図11は、本発明の第二実施形態に係る導光体の裏面に形成されたプリズムのうちの一つを、Z軸方向の裏面側から見た図である。なお、図7~11において、図1~図6と同様の符号は、図1~図6と同様の部位を示す。
[Second Embodiment]
FIG. 7 is a perspective view schematically showing an outline of a lighting apparatus as a second embodiment of the present invention. FIG. 8 is a perspective view schematically illustrating a state in which a part of the light guide according to the second embodiment of the present invention is cut out and viewed from the light extraction surface side. FIG. 9 is a view of one of the prisms formed on the light extraction surface of the light guide according to the second embodiment of the present invention, viewed from the light extraction surface side in the Z-axis direction. FIG. 10 is a perspective view schematically showing a state in which a part of the light guide according to the second embodiment of the present invention is cut out and viewed from the back side. FIG. 11 is a view of one of the prisms formed on the back surface of the light guide according to the second embodiment of the present invention as viewed from the back surface side in the Z-axis direction. 7 to 11, the same reference numerals as those in FIGS. 1 to 6 denote the same parts as those in FIGS. 1 to 6.
 図7に示すように、本発明の第二実施形態としての照明装置2は、板状の導光体102と、複数の光源201と、光源201を調光する調光装置301とを備える。ここで、光源201及び調光装置301は、第一実施形態と同様である。また、導光体102は、光取出面120及び裏面130が有するプリズム121及びプリズム131の形状以外は、第一実施形態の導光体101と同様である。 As shown in FIG. 7, the illuminating device 2 as 2nd embodiment of this invention is equipped with the plate-shaped light guide 102, the some light source 201, and the light control apparatus 301 which light-modulates the light source 201. As shown in FIG. Here, the light source 201 and the light control device 301 are the same as in the first embodiment. The light guide 102 is the same as the light guide 101 of the first embodiment except for the shapes of the prism 121 and the prism 131 that the light extraction surface 120 and the back surface 130 have.
 図8及び図9に示すように、第二実施形態に係るプリズム121は、Z軸方向に直交する平坦な面を有する平坦部125を有すること以外は、第一実施形態のプリズム121と同様となっている。また、図10及び図11に示すように、第二実施形態に係るプリズム131は、Z軸方向に直交する平坦な面を有する平坦部135を有すること以外は、第一実施形態のプリズム131と同様となっている。すなわち、第二実施形態に係るプリズム121は断面台形状となっていて、斜面122と斜面123との間に平坦部125を有する。また、第二実施形態に係るプリズム131は断面台形状となっていて、斜面132と斜面133との間に平坦部135を有する。斜面122,123及び斜面132,133を有するので、第二実施形態に係るプリズム121及びプリズム131によっても、導光体102内を導光される光をY軸方向に広がらないように内部反射させることができるようになっている。さらに、平坦部125及び平坦部135を有するため、導光体102の製造時に導光体102を金型から容易に取り外したり、金型の作製工数を減らすことが可能となる。 As shown in FIGS. 8 and 9, the prism 121 according to the second embodiment is the same as the prism 121 of the first embodiment, except that the prism 121 has a flat portion 125 having a flat surface orthogonal to the Z-axis direction. It has become. As shown in FIGS. 10 and 11, the prism 131 according to the second embodiment is the same as the prism 131 of the first embodiment except that the prism 131 has a flat portion 135 having a flat surface orthogonal to the Z-axis direction. It is the same. That is, the prism 121 according to the second embodiment has a trapezoidal cross section, and has a flat portion 125 between the slope 122 and the slope 123. The prism 131 according to the second embodiment has a trapezoidal cross section, and has a flat portion 135 between the slope 132 and the slope 133. Since the inclined surfaces 122 and 123 and the inclined surfaces 132 and 133 are provided, the light guided through the light guide 102 is also internally reflected by the prism 121 and the prism 131 according to the second embodiment so as not to spread in the Y-axis direction. Be able to. Furthermore, since the flat portion 125 and the flat portion 135 are provided, it is possible to easily remove the light guide 102 from the mold at the time of manufacturing the light guide 102, and to reduce the number of steps for manufacturing the mold.
 本発明の第二実施形態としての照明装置2は上述したように構成されているので、第一実施形態に係る照明装置1と同様に使用でき、同様の利点が得られる。
 さらに、第二実施形態に係る照明装置2では、導光体102を製造する際の金型からの取り出しが容易となり、また、金型の作製工数を減らすことが可能となる。
Since the illuminating device 2 as the second embodiment of the present invention is configured as described above, it can be used similarly to the illuminating device 1 according to the first embodiment, and the same advantages can be obtained.
Furthermore, in the illuminating device 2 according to the second embodiment, the light guide 102 can be easily taken out from the mold, and the number of steps for producing the mold can be reduced.
〔第三実施形態〕
 図12は、本発明の第三実施形態としての照明装置の概要を模式的に示す斜視図である。図13は、本発明の第三実施形態に係る導光体の一部を切り取り、光取出面側から見た様子を模式的に示す斜視図である。図14は、本発明の第三実施形態に係る導光体の光取出面に形成された凹凸構造Aとしてのプリズムのうち隣り合う二つを、Z軸方向の光取出面側から見た図である。図15は、本発明の第三実施形態に係る導光体をY軸方向に垂直な面で切った断面を模式的に示す断面図である。図16は、本発明の三実施形態に係る導光体の一部を切り取り、裏面側から見た様子を模式的に示す斜視図である。図17は、本発明の第三実施形態に係る導光体の裏面に形成された凹凸構造Aとしてのプリズムのうち隣り合う二つを、Z軸方向の裏面側から見た図である。なお、図12~17において、図1~図11と同様の符号は、図1~図11と同様の部位を示す。
[Third embodiment]
FIG. 12 is a perspective view schematically showing an outline of a lighting apparatus as a third embodiment of the present invention. FIG. 13: is a perspective view which shows typically a mode that a part of light guide which concerns on 3rd embodiment of this invention was cut out, and it saw from the light extraction surface side. FIG. 14 is a diagram of two adjacent prisms as the concavo-convex structure A formed on the light extraction surface of the light guide according to the third embodiment of the present invention, viewed from the light extraction surface side in the Z-axis direction. It is. FIG. 15: is sectional drawing which shows typically the cross section which cut the light guide which concerns on 3rd embodiment of this invention with the surface perpendicular | vertical to the Y-axis direction. FIG. 16: is a perspective view which shows typically a mode that a part of light guide which concerns on three embodiment of this invention was cut out, and it saw from the back surface side. FIG. 17 is a view of two adjacent prisms as the concavo-convex structure A formed on the back surface of the light guide according to the third embodiment of the present invention, as viewed from the back surface side in the Z-axis direction. 12 to 17, the same reference numerals as those in FIGS. 1 to 11 denote the same parts as those in FIGS.
 図12に示すように、本発明の第三実施形態としての照明装置3は、板状の導光体103と、複数の光源201と、光源201を調光する調光装置301とを備える。ここで、光源201及び調光装置301は、第一実施形態と同様である。また、導光体103は、プリズム121を有する部位である光取出面120にプリズム121に加えてプリズム141を有し、プリズム131を有する部位である裏面130にプリズム131に加えてプリズム151を有すること以外は、第一実施形態の導光体101と同様である。 As shown in FIG. 12, the illuminating device 3 as 3rd embodiment of this invention is equipped with the plate-shaped light guide 103, the several light source 201, and the light modulation apparatus 301 which light-modulates the light source 201. As shown in FIG. Here, the light source 201 and the light control device 301 are the same as in the first embodiment. The light guide 103 has a prism 141 in addition to the prism 121 on the light extraction surface 120, which is a part having the prism 121, and a prism 151 in addition to the prism 131 on the back surface 130, which is a part having the prism 131. Except this, it is the same as the light guide 101 of the first embodiment.
 図13に示すように、導光体103の光取出面120には、プリズム121に重畳するようにしてプリズム141が形成されている。プリズム141は導光体103内を導光される光を光取出面120から取り出す光取出構造であり、所定の方向に延在する畝状の凸部により形成されている。したがって、プリズム141は光の取出方向に平行な方向であるZ軸方向から見た場合に異方性形状を有する凹凸構造Bとなっている。 As shown in FIG. 13, a prism 141 is formed on the light extraction surface 120 of the light guide 103 so as to overlap the prism 121. The prism 141 is a light extraction structure that extracts light guided through the light guide 103 from the light extraction surface 120, and is formed by a hook-shaped protrusion extending in a predetermined direction. Therefore, the prism 141 has a concavo-convex structure B having an anisotropic shape when viewed from the Z-axis direction, which is a direction parallel to the light extraction direction.
 各プリズム141は断面三角形状となっている点ではプリズム121と同様である。ただし、図14に示すように、Z軸方向の光取出面側から見て、プリズム141の異方性形状の主軸PBは、プリズム121の異方性形状の主軸PAと交差する方向に延在するようになっている。プリズム121が主軸PAに沿って光を導光する作用を発揮することから、プリズム121の異方性形状の主軸PAと交差するようにプリズム141の異方性形状の主軸PBの方向を設定することにより、プリズム141の斜面142,143で光を取り出しやすくできる。中でも、光の取出効率を更に高める観点から、プリズム121の異方性形状の主軸PAとプリズム141の異方性形状の主軸PBとは直交することが好ましい。 Each prism 141 is the same as the prism 121 in that it has a triangular cross section. However, as shown in FIG. 14, when viewed from the light extraction surface side in the Z-axis direction, the anisotropic main axis PB of the prism 141 extends in a direction intersecting the anisotropic main axis PA of the prism 121. It is supposed to be. Since the prism 121 has the effect of guiding light along the main axis PA, the direction of the anisotropic main axis PB of the prism 141 is set so as to intersect the anisotropic main axis PA of the prism 121. As a result, light can be easily extracted by the slopes 142 and 143 of the prism 141. Among these, from the viewpoint of further increasing the light extraction efficiency, it is preferable that the anisotropic main axis PA of the prism 121 and the anisotropic main axis PB of the prism 141 are orthogonal to each other.
 さらに、プリズム141は、プリズム121とは異なり、図15に示すように、隣り合うプリズム141間に所定の間隔Dを空けて並んで形成されている。ここで、プリズム141間の間隔Dは、X軸方向の手前から奥に行くに従って狭くなるように設定されている。これにより、プリズム141の形成密度が光導入面110から離れるに従って大きくなり、光導入面110から離れるほどプリズム141によって光を効率よく取り出せるようになる。通常、光導入面110から離れる位置ほど導光される光の量が少ないため、光導入面110から離れるほど高い取出効率で光を取り出せる光取出構造(ここではプリズム141)を設けるようにすることにより、光取出面120からX軸方向において均一に光を取り出せるようになる。 Further, unlike the prism 121, the prism 141 is formed side by side with a predetermined distance D between adjacent prisms 141 as shown in FIG. Here, the interval D between the prisms 141 is set so as to become narrower from the front in the X-axis direction toward the back. Accordingly, the formation density of the prism 141 increases as the distance from the light introduction surface 110 increases, and the light can be efficiently extracted by the prism 141 as the distance from the light introduction surface 110 increases. Usually, since the amount of light guided is smaller as the position is farther from the light introduction surface 110, a light extraction structure (here, the prism 141) that can extract light with higher extraction efficiency as the distance from the light introduction surface 110 is provided. Thus, light can be extracted uniformly from the light extraction surface 120 in the X-axis direction.
 具体的なプリズム141の間隔Dは、通常10μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、通常10000μm以下、好ましくは5000μm以下、より好ましくは3000μm以下である。小さすぎると、回折現象により光が散乱したり、作製が困難になる傾向がある。大きすぎると、光を取り出している部分と取り出していない部分との明暗を目視で視認可能となり、光学的な欠陥となる可能性がある。 The specific interval D of the prism 141 is usually 10 μm or more, preferably 20 μm or more, more preferably 30 μm or more, and usually 10,000 μm or less, preferably 5000 μm or less, more preferably 3000 μm or less. If it is too small, there is a tendency that light is scattered due to a diffraction phenomenon or that the production becomes difficult. If it is too large, the brightness and darkness of the portion from which light is extracted and the portion from which light is not extracted can be visually recognized, which may cause an optical defect.
 プリズム141の幅(本実施形態では、X軸方向の寸法。図14参照。)lxは、通常10μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、通常300μm以下、好ましくは200μm以下、より好ましくは100μm以下である。小さすぎると、回折現象により光が散乱したり、作製が困難になる傾向がある。大きすぎると、光を取り出している部分と取り出していない部分との明暗を目視で視認可能となり、光学的な欠陥となる可能性がある。 The width of the prism 141 (in this embodiment, the dimension in the X-axis direction, see FIG. 14) lx is usually 10 μm or more, preferably 20 μm or more, more preferably 30 μm or more, and usually 300 μm or less, preferably 200 μm or less. More preferably, it is 100 μm or less. If it is too small, there is a tendency that light is scattered due to a diffraction phenomenon or that the production becomes difficult. If it is too large, the brightness and darkness of the portion from which light is extracted and the portion from which light is not extracted can be visually recognized, which may cause an optical defect.
 プリズム141の高さ(本実施形態では、Z軸方向の寸法。図15参照。)hは、通常1.0μm以上、好ましくは2.0μm以上、より好ましくは3.0μm以上であり、通常500μm以下、好ましくは400μm以下、より好ましくは300μm以下である。ただし、導光体103内を導光される光がY軸方向に広がることを防止する観点から、プリズム141の高さは、プリズム121の高さ以下に設定することが好ましい。 The height of the prism 141 (in this embodiment, the dimension in the Z-axis direction; see FIG. 15) h is usually 1.0 μm or more, preferably 2.0 μm or more, more preferably 3.0 μm or more, and usually 500 μm. Hereinafter, it is preferably 400 μm or less, more preferably 300 μm or less. However, the height of the prism 141 is preferably set to be equal to or less than the height of the prism 121 from the viewpoint of preventing light guided in the light guide 103 from spreading in the Y-axis direction.
 ところで、プリズム141がプリズム121と重畳するように形成されていることから、図14に示すように、光取出面120ではプリズム121がプリズム141により区切られることになる。この場合、区切られた各区間でプリズム121をZ軸方向から見た場合でも、プリズム121は異方性形状を有することが好ましい。中でも、導光体103内を導光される光がY軸方向に広がらずにX軸方向に沿って導光される程度に、プリズム121の長さLyがプリズム121の幅Lxよりも大きくなるようにすることが好ましい。通常は区切られたプリズム121の長さLxはプリズム141の間隔Dに一致するため、前記の観点からは、プリズム141の間隔Dをプリズム121の幅Lyよりも大きくすることが好ましい。 Incidentally, since the prism 141 is formed so as to overlap the prism 121, the prism 121 is partitioned by the prism 141 on the light extraction surface 120 as shown in FIG. In this case, it is preferable that the prism 121 has an anisotropic shape even when the prism 121 is viewed from the Z-axis direction in each section. In particular, the length Ly of the prism 121 is larger than the width Lx of the prism 121 so that the light guided through the light guide 103 is guided along the X axis direction without spreading in the Y axis direction. It is preferable to do so. Usually, the length Lx of the divided prisms 121 is equal to the interval D of the prisms 141. From the above viewpoint, the interval D of the prisms 141 is preferably larger than the width Ly of the prisms 121.
 他方、図16に示すように、導光体103の裏面130には、プリズム131に重畳するようにしてプリズム151が形成されている。プリズム151は導光体103内を導光される光を光取出面120から取り出す光取出構造であり、光取出面120のプリズム141と同様に形成されている。すなわち、プリズム151は斜面152,153を有する断面三角形状のプリズムである。また、プリズム151の異方性形状の主軸PBは、プリズム131の異方性形状の主軸PAと交差する方向(好ましくは直交する方向。図17参照。)に延在するようになっている。さらに、プリズム151は、隣り合うプリズム151間に所定の間隔Dを空けて並んで形成され、プリズム151間の間隔Dは、X軸方向の手前から奥に行くに従って短くなるように設定されている(図15参照)。 On the other hand, as shown in FIG. 16, a prism 151 is formed on the back surface 130 of the light guide 103 so as to overlap the prism 131. The prism 151 is a light extraction structure that extracts light guided through the light guide 103 from the light extraction surface 120, and is formed in the same manner as the prism 141 on the light extraction surface 120. That is, the prism 151 is a prism having a triangular cross section having slopes 152 and 153. In addition, the anisotropic main axis PB of the prism 151 extends in a direction (preferably a direction orthogonal to the main axis PA of the prism 131, see FIG. 17). Furthermore, the prisms 151 are formed side by side with a predetermined interval D between the adjacent prisms 151, and the interval D between the prisms 151 is set to be shorter from the near side to the back side in the X-axis direction. (See FIG. 15).
 本発明の第三実施形態としての照明装置3は上述したように構成されているので、第一実施形態に係る照明装置1と同様に使用でき、同様の利点が得られる。
 図18は、本発明の第三実施形態に係る導光体103内を導光された光が取り出される様子を説明するため、導光体103をY軸方向に垂直な面で切った断面を拡大して模式的に示す断面図である。図18に示すように、本発明の第三実施形態に係る照明装置3では、導光体103に光取出構造としてプリズム141及びプリズム151が形成されているため、光取出面120から光Aを効率よく取り出すことができる。
Since the illuminating device 3 as 3rd embodiment of this invention is comprised as mentioned above, it can be used similarly to the illuminating device 1 which concerns on 1st embodiment, and the same advantage is acquired.
FIG. 18 illustrates a cross section of the light guide 103 taken along a plane perpendicular to the Y-axis direction in order to explain how light guided through the light guide 103 according to the third embodiment of the present invention is extracted. It is sectional drawing which expands and shows typically. As shown in FIG. 18, in the illumination device 3 according to the third embodiment of the present invention, the light 141 is formed with the prism 141 and the prism 151 as the light extraction structure, and thus the light A is emitted from the light extraction surface 120. It can be taken out efficiently.
〔第四実施形態〕
 図19は、本発明の第四実施形態としての照明装置の概要を模式的に示す斜視図である。図20は、本発明の第四実施形態に係る導光体の一部を切り取り、光取出面側から見た様子を模式的に示す斜視図である。図21は、本発明の第四実施形態に係る導光体の一部を切り取り、裏面側から見た様子を模式的に示す斜視図である。なお、図19~図21において、図1~図18と同様の符号は、図1~図18と同様の部位を示す。
[Fourth embodiment]
FIG. 19 is a perspective view schematically showing an outline of a lighting apparatus as a fourth embodiment of the present invention. FIG. 20 is a perspective view schematically showing a state where a part of the light guide according to the fourth embodiment of the present invention is cut out and viewed from the light extraction surface side. FIG. 21 is a perspective view schematically showing a state in which a part of the light guide according to the fourth embodiment of the present invention is cut out and viewed from the back surface side. 19 to 21, the same reference numerals as those in FIGS. 1 to 18 indicate the same parts as those in FIGS. 1 to 18.
 図19に示すように、本発明の第四実施形態としての照明装置4は、板状の導光体104と、複数の光源201と、光源201を調光する調光装置301とを備える。ここで、光源201及び調光装置301は、第一実施形態と同様である。また、導光体104は、プリズム121を有する部位である光取出面120にプリズム121に加えて微細な凹凸144を有し、プリズム131を有する部位である裏面130にプリズム131に加えて微細な凹凸154を有すること以外は、第一実施形態の導光体101と同様である。 As shown in FIG. 19, the illuminating device 4 as 4th embodiment of this invention is provided with the plate-shaped light guide 104, the some light source 201, and the light modulation apparatus 301 which light-modulates the light source 201. As shown in FIG. Here, the light source 201 and the light control device 301 are the same as in the first embodiment. Further, the light guide 104 has a fine unevenness 144 in addition to the prism 121 on the light extraction surface 120 which is a part having the prism 121, and is fine in addition to the prism 131 on the back surface 130 which is a part having the prism 131. Except having the unevenness 154, it is the same as the light guide 101 of the first embodiment.
 図20に示すように、導光体104の光取出面120には、プリズム121の表面に重畳するようにして凹凸144が多数形成されている。凹凸144は導光体104内を導光される光を光取出面120から取り出す光取出構造である。なお、凹凸144は、凹部及び凸部の一方又は両方であればよく、図20では凹凸144として凸部を設けた例を示す。
 凹凸144の形状に制限は無く、例えば、多角柱、円柱、多角錐、多角錐の頂部が欠けた形状、円錐、円錐の頂部が欠けた形状、楕円錐、楕円錐の頂部が欠けた形状、又は楕円回転体の一部などが挙げられる。
As shown in FIG. 20, the light extraction surface 120 of the light guide 104 has a large number of irregularities 144 so as to overlap the surface of the prism 121. The unevenness 144 is a light extraction structure that extracts light guided through the light guide 104 from the light extraction surface 120. In addition, the unevenness | corrugation 144 should just be one or both of a recessed part and a convex part, and the example which provided the convex part as the unevenness | corrugation 144 in FIG.
There is no limitation on the shape of the unevenness 144, for example, a polygonal cylinder, a cylinder, a polygonal pyramid, a shape lacking the top of the polygonal cone, a cone, a shape lacking the top of the cone, an elliptical cone, a shape lacking the top of the elliptical cone, Or a part of ellipsoid rotary body etc. are mentioned.
 凹凸144の幅は、通常1.0μm以上、好ましくは2.0μm以上、より好ましくは3.0μm以上であり、通常50μm以下、好ましくは40μm以下、より好ましくは30μm以下である。
 凹凸144の高さは、通常0.5μm以上、好ましくは1.0μm以上、より好ましくは1.5μm以上であり、通常25μm以下、好ましくは20μm以下、より好ましくは15μm以下である。
The width of the unevenness 144 is usually 1.0 μm or more, preferably 2.0 μm or more, more preferably 3.0 μm or more, and usually 50 μm or less, preferably 40 μm or less, more preferably 30 μm or less.
The height of the unevenness 144 is usually 0.5 μm or more, preferably 1.0 μm or more, more preferably 1.5 μm or more, and usually 25 μm or less, preferably 20 μm or less, more preferably 15 μm or less.
 凹凸144同士の間隔(ピッチ)は、X軸方向の手前から奥に行くに従って狭くなるように設定されている。これにより、凹凸144の形成密度が光導入面110から離れるに従って大きくなり、光導入面110から離れるほど凹凸144によって光を効率よく取り出せるようになる。したがって、第三実施形態と同様に、光取出面120からX軸方向において均一に光を取り出せるようになる。
 具体的な凹凸144の間隔は、通常1.0μm以上、好ましくは2.0μm以上、より好ましくは3.0μm以上であり、通常100000μm以下、好ましくは50000μm以下、より好ましくは30000μm以下である。
The interval (pitch) between the projections and depressions 144 is set so as to become narrower from the front in the X-axis direction toward the back. Accordingly, the formation density of the unevenness 144 increases as the distance from the light introduction surface 110 increases, and the light can be efficiently extracted by the unevenness 144 as the distance from the light introduction surface 110 increases. Therefore, similarly to the third embodiment, light can be uniformly extracted from the light extraction surface 120 in the X-axis direction.
The specific interval between the irregularities 144 is usually 1.0 μm or more, preferably 2.0 μm or more, more preferably 3.0 μm or more, and is usually 100,000 μm or less, preferably 50000 μm or less, more preferably 30000 μm or less.
 他方、図21に示すように、導光体104の裏面130には、プリズム131の表面に重畳するようにして凹凸154が形成されている。凹凸154は導光体104内を導光される光を光取出面120から取り出す光取出構造であり、光取出面120の凹凸144と同様に形成されている。 On the other hand, as shown in FIG. 21, irregularities 154 are formed on the back surface 130 of the light guide 104 so as to overlap the surface of the prism 131. The unevenness 154 is a light extraction structure that extracts light guided through the light guide 104 from the light extraction surface 120, and is formed in the same manner as the unevenness 144 of the light extraction surface 120.
 本発明の第四実施形態としての照明装置4は上述したように構成されているので、第一実施形態に係る照明装置1と同様に使用でき、同様の利点が得られる。
 また、本発明の第四実施形態に係る照明装置4では、導光体104に光取出構造として凹凸144及び凹凸154が形成されているため、光取出面120から光を効率よく取り出すことができる。
Since the illuminating device 4 as 4th embodiment of this invention is comprised as mentioned above, it can be used similarly to the illuminating device 1 which concerns on 1st embodiment, and the same advantage is acquired.
Moreover, in the illuminating device 4 according to the fourth embodiment of the present invention, since the unevenness 144 and the unevenness 154 are formed in the light guide 104 as the light extraction structure, light can be efficiently extracted from the light extraction surface 120. .
〔第五実施形態〕
 図22は、本発明の第五実施形態としての照明装置の概要を模式的に示す斜視図である。図23は、本発明の第五実施形態に係る導光体をY軸方向に垂直な面で切った断面を模式的に示す断面図である。なお、図22及び図23において、図1~図21と同様の符号は、図1~図21と同様の部位を示す。
[Fifth embodiment]
FIG. 22 is a perspective view schematically showing an outline of a lighting apparatus as a fifth embodiment of the present invention. FIG. 23 is a cross-sectional view schematically showing a cross section of the light guide according to the fifth embodiment of the present invention cut along a plane perpendicular to the Y-axis direction. 22 and 23, the same reference numerals as those in FIGS. 1 to 21 denote the same parts as those in FIGS.
 図22に示すように、本発明の第五実施形態としての照明装置5は、板状の導光体105と、複数の光源201と、光源201を調光する調光装置301とを備える。ここで、光源201及び調光装置301は、第一実施形態と同様である。また、導光体105は、プリズム121及びプリズム131が形成された部位を含めた導光体105の全体に光拡散剤145を含むこと以外は、第一実施形態の導光体101と同様である。 As shown in FIG. 22, the illumination device 5 as the fifth embodiment of the present invention includes a plate-shaped light guide 105, a plurality of light sources 201, and a light control device 301 that adjusts the light source 201. Here, the light source 201 and the light control device 301 are the same as in the first embodiment. The light guide 105 is the same as the light guide 101 of the first embodiment, except that the light guide 105 includes the light diffusing agent 145 in its entirety including the portion where the prism 121 and the prism 131 are formed. is there.
 図23に示すように、導光体105中には、光拡散剤145が存在している。光拡散剤145は光を拡散させる性質を有する粒子であり、導光体105内を導光される光を光取出面120から取り出す光取出構造として機能する。 23, the light diffusing agent 145 is present in the light guide 105. The light diffusing agent 145 is a particle having a property of diffusing light, and functions as a light extraction structure that extracts light guided through the light guide 105 from the light extraction surface 120.
 光拡散剤145の種類としては、無機フィラーと有機フィラーとに大別できる。無機フィラーとしては、例えば、ガラス、シリカ、水酸化アルミニウム、酸化アルミニウム、酸化チタン、酸化亜鉛、硫酸バリウム、マグネシウムシリケート、およびこれらの混合物が挙げられる。有機フィラーとしては、例えば、アクリル樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂、ポリシロキサン樹脂、メラミン樹脂、ベンゾグアナミン樹脂、フッ素樹脂、ポリカーボネート樹脂、シリコーン樹脂、ポリエチレン樹脂、エチレン-酢酸ビニル共重合体、アクリロニトリル、及びこれらの架橋物等が挙げられる。これらの中でも、有機フィラーとしては、アクリル樹脂、ポリスチレン樹脂、ポリシロキサン樹脂、及びこれらの架橋物からなる微粒子が、高分散性、高耐熱性、成形時の着色(黄変)がない点で好ましい。これらの中でも、成形加工時の揮発成分が少ない点でポリシロキサン樹脂の架橋物からなる微粒子がより好ましい。なお、光拡散剤145として2種類以上の素材からなるものを用いてもよいし、2種類以上の光拡散剤を混合して用いてもよい。 The types of light diffusing agent 145 can be broadly classified into inorganic fillers and organic fillers. Examples of the inorganic filler include glass, silica, aluminum hydroxide, aluminum oxide, titanium oxide, zinc oxide, barium sulfate, magnesium silicate, and a mixture thereof. Examples of the organic filler include acrylic resin, polyurethane resin, polyvinyl chloride resin, polystyrene resin, polyacrylonitrile resin, polyamide resin, polysiloxane resin, melamine resin, benzoguanamine resin, fluorine resin, polycarbonate resin, silicone resin, polyethylene resin, Examples thereof include an ethylene-vinyl acetate copolymer, acrylonitrile, and a cross-linked product thereof. Among these, as the organic filler, an acrylic resin, a polystyrene resin, a polysiloxane resin, and fine particles made of a crosslinked product thereof are preferable in terms of high dispersibility, high heat resistance, and no coloration (yellowing) during molding. . Among these, fine particles made of a cross-linked product of polysiloxane resin are more preferable in that they have few volatile components during molding. In addition, what consists of 2 or more types of raw materials as a light-diffusion agent 145 may be used, and 2 or more types of light-diffusion agents may be mixed and used.
 光拡散剤145の形状に制限は無い。例えば球状、立方状、針状、棒状、紡錘形状、板状、鱗片状、繊維状などが挙げられる。なお、光拡散剤145は、1種類の形状のものを用いてもよく、2種類以上の形状のものを任意の比率で組み合わせて用いてもよい。 There is no limitation on the shape of the light diffusing agent 145. For example, a spherical shape, a cubic shape, a needle shape, a rod shape, a spindle shape, a plate shape, a scale shape, a fiber shape, and the like can be given. In addition, the light diffusing agent 145 may be used in one shape or in combination of two or more shapes in an arbitrary ratio.
 光拡散剤145の直径は、好ましくは0.2μm以上、より好ましくは0.5μm以上であり、好ましくは50μm以下、より好ましくは10μm以下である。なお、ここでいう直径は、光拡散剤145が完全な球状ではない場合は、同一体積の球の直径で代用される。針状のような一方向に著しく寸法の異なるフィラーの場合は、その方向に垂直な断面の断面積と同一面積の円の直径で代用する。 The diameter of the light diffusing agent 145 is preferably 0.2 μm or more, more preferably 0.5 μm or more, preferably 50 μm or less, more preferably 10 μm or less. In addition, when the light-diffusion agent 145 is not a perfect sphere, the diameter here is substituted by the diameter of a sphere having the same volume. In the case of a filler having a significantly different size in one direction such as a needle shape, a diameter of a circle having the same area as the cross-sectional area of the cross section perpendicular to the direction is substituted.
 光拡散剤145の濃度は、X軸方向の手前から奥に行くに従って高くなるように設定することが好ましい。これにより、光拡散剤145の存在量が光導入面110から離れるに従って大きくなり、光導入面110から離れるほど光拡散剤145によって光を効率よく取り出せるようになる。したがって、第三及び第四実施形態と同様に、光取出面120からX軸方向において均一に光を取り出せるようになる。
 具体的な光拡散剤145の濃度は、導光体105の厚さなどに応じて設定しうる。導光体105の全体における光拡散剤145の含有率は、好ましくは0.0001重量%以上、より好ましくは0.0005重量%以上であり、好ましくは0.1重量%以下、より好ましくは0.05重量%以下である。少なすぎると、光を取り出すことができない可能性があり、多すぎると、手前の位置で光が出すぎて輝度均斉度が低下する傾向がある。
The concentration of the light diffusing agent 145 is preferably set so as to increase from the near side to the far side in the X-axis direction. Accordingly, the amount of the light diffusing agent 145 increases as the distance from the light introduction surface 110 increases, and the light diffusing agent 145 can efficiently extract light as the distance from the light introduction surface 110 increases. Therefore, similarly to the third and fourth embodiments, light can be extracted uniformly from the light extraction surface 120 in the X-axis direction.
The specific concentration of the light diffusing agent 145 can be set according to the thickness of the light guide 105 or the like. The content of the light diffusing agent 145 in the entire light guide 105 is preferably 0.0001% by weight or more, more preferably 0.0005% by weight or more, preferably 0.1% by weight or less, more preferably 0. 0.05% by weight or less. If the amount is too small, there is a possibility that light cannot be extracted. If the amount is too large, light is emitted too much at the front position and the brightness uniformity tends to decrease.
 本発明の第五実施形態としての照明装置5は上述したように構成されているので、第一実施形態に係る照明装置1と同様に使用でき、同様の利点が得られる。
 また、本発明の第五実施形態に係る照明装置5では、導光体105に光取出構造として光拡散剤145を含むため、光取出面120から光を効率よく取り出すことができる。
Since the illuminating device 5 as the fifth embodiment of the present invention is configured as described above, it can be used similarly to the illuminating device 1 according to the first embodiment, and the same advantages can be obtained.
Moreover, in the illuminating device 5 which concerns on 5th embodiment of this invention, since the light diffusing agent 145 is included in the light guide 105 as a light extraction structure, light can be efficiently extracted from the light extraction surface 120.
〔第六実施形態〕
 図24は、本発明の第六実施形態としての照明装置の概要を模式的に示す斜視図である。なお、図24において、図1~図23と同様の符号は、図1~図23と同様の部位を示す。
 図24に示すように、本発明の第六実施形態としての照明装置6は、板状の導光体106と、複数の光源201と、光源201を調光する調光装置301とを備える。ここで、光源201及び調光装置301は、第一実施形態と同様である。また、導光体106は、光取出面120に凹凸構造Aとしてプリズム121の代わりにレンチキュラー126を有し、裏面130に凹凸構造Aとしてプリズム131の代わりにレンチキュラー136を有すること以外は、第一実施形態の導光体101と同様である。
[Sixth embodiment]
FIG. 24 is a perspective view schematically showing an outline of a lighting apparatus as a sixth embodiment of the present invention. 24, the same reference numerals as those in FIGS. 1 to 23 denote the same parts as those in FIGS.
As shown in FIG. 24, the illuminating device 6 as 6th embodiment of this invention is equipped with the plate-shaped light guide 106, the some light source 201, and the light modulation apparatus 301 which light-modulates the light source 201. As shown in FIG. Here, the light source 201 and the light control device 301 are the same as in the first embodiment. The light guide 106 has a lenticular 126 instead of the prism 121 as the concavo-convex structure A on the light extraction surface 120 and a lenticular 136 instead of the prism 131 as the concavo-convex structure A on the back surface 130. It is the same as the light guide 101 of the embodiment.
 図25は、本発明の第六実施形態に係る導光体106の一部を切り取り、光取出面120側から見た様子を模式的に示す斜視図である。また、図26は、本発明の第六実施形態に係る導光体106の一部を切り取り、裏面130側から見た様子を模式的に示す斜視図である。さらに、図27は、本発明の第六実施形態に係る導光体106内を導光される光の内部反射の様子を説明するため、導光体106をX軸方向に垂直な面で切った断面を拡大して模式的に示す断面図である。なお、図25~27において、図1~図24と同様の符号は、図1~図24と同様の部位を示す。 FIG. 25 is a perspective view schematically showing a state in which a part of the light guide body 106 according to the sixth embodiment of the present invention is cut out and viewed from the light extraction surface 120 side. FIG. 26 is a perspective view schematically showing a state in which a part of the light guide body 106 according to the sixth embodiment of the present invention is cut out and viewed from the back surface 130 side. Further, FIG. 27 illustrates the light guide 106 cut along a plane perpendicular to the X-axis direction in order to explain the internal reflection of the light guided through the light guide 106 according to the sixth embodiment of the present invention. It is sectional drawing which expands and shows the cross section typically. 25 to 27, the same reference numerals as those in FIGS. 1 to 24 denote the same parts as those in FIGS.
 図25及び図26に示すように、レンチキュラー126及びレンチキュラー136は、断面形状以外はプリズム121及びプリズム131とそれぞれ同様である。レンチキュラー126及びレンチキュラー136をX軸方向に垂直な面で切った断面は、図27に示すように、円又は楕円の一部の形状(例えば、半円形又は半楕円形)等の曲線形状となっている。したがって、レンチキュラー126及びレンチキュラー136の表面127及び137は滑らかな曲面で形成され、その中央部からY軸方向端部にいくに従い光取出面120に対して次第に傾斜している。レンチキュラー126の表面127及びレンチキュラー136の表面137が前記のように傾斜するため、表面127及び表面137はそれぞれY軸方向と平行でない(すなわち、Y軸と交差する)部分を有することになる。このため、第一実施形態におけるプリズム121の斜面122,123及びプリズム131の斜面132,133と同様に、レンチキュラー126の表面127及びレンチキュラー136の表面137によっても、導光体101内を導光される光AをY軸方向に広がらないように内部反射できるようになっている。 25 and 26, the lenticular 126 and the lenticular 136 are the same as the prism 121 and the prism 131, respectively, except for the cross-sectional shape. A cross section obtained by cutting the lenticular 126 and the lenticular 136 along a plane perpendicular to the X-axis direction has a curved shape such as a partial shape of a circle or an ellipse (for example, a semicircular shape or a semielliptical shape), as shown in FIG. ing. Accordingly, the surfaces 127 and 137 of the lenticular 126 and the lenticular 136 are formed with smooth curved surfaces, and gradually incline with respect to the light extraction surface 120 from the center to the end in the Y-axis direction. Since the surface 127 of the lenticular 126 and the surface 137 of the lenticular 136 are inclined as described above, the surface 127 and the surface 137 each have a portion that is not parallel to the Y-axis direction (that is, intersects with the Y-axis). Therefore, the light guide 101 is guided by the surface 127 of the lenticular 126 and the surface 137 of the lenticular 136 as well as the inclined surfaces 122 and 123 of the prism 121 and the inclined surfaces 132 and 133 of the prism 131 in the first embodiment. The light A can be internally reflected so as not to spread in the Y-axis direction.
 本発明の第六実施形態としての照明装置6は上述したように構成されているので、第一実施形態に係る照明装置1と同様に使用でき、同様の利点が得られる。 Since the illumination device 6 as the sixth embodiment of the present invention is configured as described above, it can be used in the same manner as the illumination device 1 according to the first embodiment, and the same advantages can be obtained.
[第七実施形態]
 図28は、本発明の第七実施形態としての液晶表示装置の概要を模式的に示す斜視図である。なお、図28において、図1~図27と同様の符号は、図1~図27と同様の部位を示す。図28に示すように、本発明の第七実施形態としての液晶表示装置7は、照明装置1と液晶パネル401とを備える。
[Seventh embodiment]
FIG. 28 is a perspective view schematically showing an outline of a liquid crystal display device as a seventh embodiment of the present invention. In FIG. 28, the same reference numerals as in FIGS. 1 to 27 denote the same parts as in FIGS. As shown in FIG. 28, a liquid crystal display device 7 as a seventh embodiment of the present invention includes a lighting device 1 and a liquid crystal panel 401.
 液晶パネル401としては、既知の種々の表示モードの液晶パネルを用いることができる。例えば、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、ハイブリッドアラインメントネマチック(HAN)モード、バーティカルアラインメント(VA)モード、マルチドメインバーティカルアラインメント(MVA)モード、インプレーンスイッチング(IPS)モード、オプティカリーコンペンセイテッドバイリフジエンス(OCB)モードなどの表示モードによる液晶パネルを採用できる。この液晶パネル401では、その表示面410とは反対側(すなわち、背面側)に供給される光によって、表示面410に映像を表示できるようになっている。 As the liquid crystal panel 401, liquid crystal panels of various known display modes can be used. For example, twisted nematic (TN) mode, super twisted nematic (STN) mode, hybrid alignment nematic (HAN) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, in-plane switching (IPS) mode, optical A liquid crystal panel with a display mode such as a curry-compensated birefringence (OCB) mode can be employed. In the liquid crystal panel 401, an image can be displayed on the display surface 410 by light supplied to the side opposite to the display surface 410 (that is, the back side).
 照明装置1は、第一実施形態で説明した装置と同様である。この照明装置1は、液晶パネル401の背面側に設けられ、液晶パネル401へ光を照射するようになっている。 The lighting device 1 is the same as the device described in the first embodiment. The illumination device 1 is provided on the back side of the liquid crystal panel 401 and irradiates the liquid crystal panel 401 with light.
 本発明の第七実施形態としての液晶表示装置7は上述したように構成されているので、使用時には、照明装置1から液晶パネル401へと光を照射する。この際、導光体101では所望の領域における光取出面120から選択的に光が取り出すことができるため、照明装置1は、液晶パネル401の所望の領域に選択的に光を照射することができる。したがって、第七実施形態としての液晶表示装置7では効率的なローカルディミングが実現でき、画質の向上、省エネルギー等の利点が得られる。 Since the liquid crystal display device 7 as the seventh embodiment of the present invention is configured as described above, light is irradiated from the illumination device 1 to the liquid crystal panel 401 when in use. At this time, since the light guide 101 can selectively extract light from the light extraction surface 120 in a desired region, the lighting device 1 can selectively irradiate the desired region of the liquid crystal panel 401 with light. it can. Therefore, in the liquid crystal display device 7 as the seventh embodiment, efficient local dimming can be realized, and advantages such as improved image quality and energy saving can be obtained.
[その他の実施形態]
 以上、本発明の第一実施形態~第七実施形態について詳述したが、本発明は更に変更して実施してもよい。
 例えば、上述した実施形態の構成は、任意に組み合わせて実施してもよい。
[Other Embodiments]
The first embodiment to the seventh embodiment of the present invention have been described in detail above. However, the present invention may be further modified.
For example, the configurations of the above-described embodiments may be implemented in any combination.
 例えば、導光体101~106の形状に関しては、導光体101~106は板状以外の形状であってもよい。したがって、光取出面120と裏面130とは必ずしも平行でなくてもよい。また、導光体101~106が板状である場合でも、その主面の形状は矩形でなくてもよい。さらに、導光体101~106の厚みは、必要に応じて不均一にしてもよい。 For example, regarding the shapes of the light guides 101 to 106, the light guides 101 to 106 may have a shape other than a plate shape. Therefore, the light extraction surface 120 and the back surface 130 are not necessarily parallel. Even when the light guides 101 to 106 are plate-shaped, the shape of the main surface may not be rectangular. Further, the thicknesses of the light guides 101 to 106 may be nonuniform if necessary.
 例えば、光導入面110に関しては、光導入面110は、X軸方向と直交する面でなくてもよい。また、光導入面110は1面だけでなく、2面以上でもよい。第一実施形態に対する変形例としての照明装置8を例に挙げると、図29に示すように、導光体101の光導入面110の反対側の側面140も光導入面とし、側面140の正面にも光源201を設けるようにしてもよい。なお、図29は第一実施形態の変形例としての照明装置8を模式的に示す図であって、図1~図28と同様の符号は、図1~図28と同様の部位を示す。 For example, for the light introduction surface 110, the light introduction surface 110 may not be a surface orthogonal to the X-axis direction. Further, the light introduction surface 110 may be not only one surface but also two or more surfaces. Taking the illumination device 8 as a modification to the first embodiment as an example, as shown in FIG. 29, the side surface 140 on the opposite side of the light introduction surface 110 of the light guide body 101 is also a light introduction surface, and the front surface of the side surface 140. Alternatively, the light source 201 may be provided. FIG. 29 is a diagram schematically showing a lighting device 8 as a modification of the first embodiment, and the same reference numerals as in FIGS. 1 to 28 indicate the same parts as in FIGS.
 例えば、凹凸構造Aに関しては、プリズム121,131の断面形状は、前記の三角形及び台形以外の形状でもよい。例えば台形以外の四角形であってもよく、五角形以上の多角形であってもよい。
 また、凹凸構造Aが有する異方性形状(プリズム121,131及びレンチキュラー126,136)の主軸の方向は、光が導光される所定方向と直交する方向でなければ、前記所定方向と交差する方向であってもよい。したがって、凹凸構造Aが畝状の凸部である場合、その延在方向は、前記所定方向と直交する方向でなければ、任意の方向に設定できる。ただし、凹凸構造Aが有する異方性形状の主軸と前記所定方向との交差角は小さいことが好ましい。
For example, regarding the concavo-convex structure A, the cross-sectional shapes of the prisms 121 and 131 may be shapes other than the triangle and the trapezoid. For example, it may be a quadrangle other than a trapezoid, or may be a pentagon or more polygon.
Further, the direction of the principal axis of the anisotropic shape ( prisms 121 and 131 and lenticulars 126 and 136) of the concavo-convex structure A intersects the predetermined direction unless the direction is perpendicular to the predetermined direction in which light is guided. It may be a direction. Therefore, when the concavo-convex structure A is a bowl-shaped convex part, the extending direction can be set to any direction as long as it is not a direction orthogonal to the predetermined direction. However, it is preferable that the intersection angle between the anisotropic main axis of the concavo-convex structure A and the predetermined direction is small.
 また、凹凸構造Aが平坦部125,135を有する場合、その位置は任意である。第三実施形態に対する変形例を例に挙げると、図30に示すように、凹部124に平坦部125を設けるようにしてもよい。さらに、プリズム121等の凸部及び凹部124の両方に平坦部125を設けるようにしてもよい。なお、図30は第三実施形態の変形例としての導光体107の一部を切り取り、光取出面120側から見た様子を模式的に示す斜視図であって、図1~図29と同様の符号は、図1~図29と同様の部位を示す。 Further, when the concavo-convex structure A has the flat portions 125 and 135, the positions thereof are arbitrary. Taking a modification to the third embodiment as an example, a flat portion 125 may be provided in the recess 124 as shown in FIG. Furthermore, the flat portion 125 may be provided on both the convex portion and the concave portion 124 of the prism 121 or the like. 30 is a perspective view schematically showing a state in which a part of the light guide 107 as a modified example of the third embodiment is cut out and viewed from the light extraction surface 120 side. Like reference numerals denote like parts as in FIGS.
 また、凹凸構造Aは、プリズム121,131及びレンチキュラー126,136のような畝状の凸部以外の構造であってもよい。その具体例を、図を示して説明する。
 図31は、本発明の一実施形態に係る導光体108の一部を切り取り、光取出面120側から見た様子を模式的に示す斜視図である。また、図32は、本発明の一実施形態に係る導光体108の光取出面120に形成された凹凸構造Aのうちの一つを、Z軸方向の光取出面側から見た図である。なお、図31及び図32において、図1~図30と同様の符号は、図1~図30と同様の部位を示す。
 図31に示すように、凹凸構造Aは、楕円体の一部分の形状を有する凸部128としてもよい。このような凸部128も、その表面129の少なくとも一部はY軸方向と平行でない(すなわち、Y軸と交差する)面となる。したがって、第一実施形態におけるプリズム121の斜面122,123及びプリズム131の斜面132,133と同様に、凸部128の表面129によっても、導光体101内を導光される光をY軸方向に広がらないように内部反射できる。
 また、図32に示すように、Z軸方向から見た場合、凸部128は異方性形状を有する。具体的には、凸部128の長さ(ここでは、X軸方向の寸法)Lxが、凸部128の幅(ここでは、Y軸方向の寸法)Lyよりも大きくなっている。これにより、凸部128の表面129における内部反射のうち、光のY軸方向成分の向きを反転させる内部反射の頻度を増やして、Y軸方向への光の広がりを抑制する前記の作用を効果的に発揮させることができる。
Further, the concavo-convex structure A may be a structure other than the ridge-shaped convex portions such as the prisms 121 and 131 and the lenticulars 126 and 136. A specific example will be described with reference to the drawings.
FIG. 31 is a perspective view schematically showing a state in which a part of the light guide 108 according to the embodiment of the present invention is cut out and viewed from the light extraction surface 120 side. FIG. 32 is a view of one of the concavo-convex structures A formed on the light extraction surface 120 of the light guide 108 according to an embodiment of the present invention, as viewed from the light extraction surface side in the Z-axis direction. is there. 31 and 32, the same reference numerals as those in FIGS. 1 to 30 denote the same parts as those in FIGS.
As shown in FIG. 31, the concavo-convex structure A may be a convex portion 128 having a shape of a part of an ellipsoid. Such a convex portion 128 is also a surface in which at least a part of the surface 129 is not parallel to the Y-axis direction (that is, intersects with the Y-axis). Therefore, similarly to the slopes 122 and 123 of the prism 121 and the slopes 132 and 133 of the prism 131 in the first embodiment, the light guided in the light guide 101 is also guided in the Y-axis direction by the surface 129 of the convex portion 128. Can be internally reflected so as not to spread.
Further, as shown in FIG. 32, when viewed from the Z-axis direction, the convex portion 128 has an anisotropic shape. Specifically, the length (here, the dimension in the X-axis direction) Lx of the convex portion 128 is larger than the width (here, the dimension in the Y-axis direction) Ly of the convex portion 128. As a result, among the internal reflections on the surface 129 of the convex portion 128, the frequency of internal reflection that reverses the direction of the Y-axis direction component of light is increased, and the above-described effect of suppressing the spread of light in the Y-axis direction is effective. Can be demonstrated.
 また、凹凸構造Aは、光取出面120と裏面130とのいずれか少なくとも一方の面に形成しておけば、必ずしも両方に形成しなくてもよい。
 また、凹凸構造Aは、上述した実施形態のように光取出面120と裏面130とで同じ構造を採用してもよいが、異なる構造を採用してもよい。
 また、凹凸構造Aは、上述した実施形態のように光取出面120及び裏面130の面内で1種類の構造だけを設けるようにしてもよいが、同じ面内で2種類以上の構造を組み合わせるようにしてもよい。
 また、凹凸構造Aは、導光体101の全領域101a~101hにおける光取出面120又は裏面130に設ける必要はない。したがって、少なくとも光を取り出そうとする所望の領域101a~101hにおける光取出面120又は裏面130に設けてあれば、光取出面120及び裏面130のうちの一部にだけ凹凸構造Aを設けるようにしてもよい。
In addition, the concavo-convex structure A is not necessarily formed on at least one of the light extraction surface 120 and the back surface 130 as long as it is formed on both surfaces.
Moreover, although the uneven structure A may employ | adopt the same structure by the light extraction surface 120 and the back surface 130 like embodiment mentioned above, you may employ | adopt a different structure.
In addition, the concavo-convex structure A may be provided with only one type of structure within the light extraction surface 120 and the back surface 130 as in the above-described embodiment, but two or more types of structures are combined within the same surface. You may do it.
Further, the concavo-convex structure A need not be provided on the light extraction surface 120 or the back surface 130 in all the regions 101a to 101h of the light guide 101. Therefore, if the light extraction surface 120 or the back surface 130 is provided in at least the desired regions 101a to 101h from which light is to be extracted, the concavo-convex structure A is provided only on a part of the light extraction surface 120 and the back surface 130. Also good.
 例えば、光取出構造に関しては光取出構造としての畝状の凹凸として、レンチキュラーを用いてもよい。光取出構造としてレンチキュラーを用いた場合でも、プリズム141を用いた場合(第三実施形態参照。)と同様の利点が得られる。この際、レンチキュラーの間隔、幅、高さ、延在方向等はプリズム141と同様としうる。 For example, regarding the light extraction structure, a lenticular may be used as a bowl-shaped unevenness as the light extraction structure. Even when a lenticular is used as the light extraction structure, advantages similar to those obtained when the prism 141 is used (see the third embodiment) can be obtained. At this time, the interval, width, height, extending direction, etc. of the lenticular can be the same as those of the prism 141.
 また、光取出構造は、光取出面120と裏面130とのいずれか一方に形成しておけば、必ずしも両方に形成しなくてもよい。
 また、光取出構造は、上述した実施形態のように光取出面120と裏面130とで同じ構造を採用してもよいが、異なる構造を採用してもよい。
 また、光取出構造は、上述した実施形態のように光取出面120及び裏面130の面内で1種類の構造だけを設けるようにしてもよいが、同じ面内で2種類以上の構造を組み合わせるようにしてもよい。
 また、光取出構造は、上述した実施形態のように光導入面110から離れるに従って密度が大きくなるようにしてもよいが、光導入面110から離れるに従って光取出構造の大きさが大きくなるようにしても、光取出面120からX軸方向において均一に光を取り出せる。
Further, if the light extraction structure is formed on one of the light extraction surface 120 and the back surface 130, it does not necessarily have to be formed on both.
Further, as the light extraction structure, the same structure may be adopted for the light extraction surface 120 and the back surface 130 as in the above-described embodiment, but different structures may be adopted.
In addition, as for the light extraction structure, only one type of structure may be provided within the surfaces of the light extraction surface 120 and the back surface 130 as in the above-described embodiment, but two or more types of structures are combined within the same surface. You may do it.
The light extraction structure may be configured such that the density increases as the distance from the light introduction surface 110 increases as in the above-described embodiment, but the size of the light extraction structure increases as the distance from the light introduction surface 110 increases. However, light can be extracted uniformly from the light extraction surface 120 in the X-axis direction.
 例えば、光源201に関しては、上述した実施形態では光源201は調光装置301によって個別に調光されるようにしたが、グループごとに調光されるようにしてもよい。その場合、例えば、導光体101の領域101a~101hそれぞれに対応して2個以上の光源201からなるグループを設定し、光を取り出したい所望の領域101a~101hに対応したグループの光源201を発光させるように、光源201を調光しうる。 For example, with regard to the light source 201, in the above-described embodiment, the light source 201 is individually dimmed by the dimming device 301, but may be dimmed for each group. In this case, for example, a group of two or more light sources 201 is set corresponding to each of the regions 101a to 101h of the light guide 101, and the group of light sources 201 corresponding to the desired regions 101a to 101h from which light is to be extracted. The light source 201 can be dimmed to emit light.
 例えば、液晶表示装置7に関しては、液晶パネル401と組み合わせる照明装置は、第一実施形態に係る照明装置1に限定されるものではない。
 また、液晶表示装置7には、液晶パネル401及び照明装置1以外の構成要素を設けてもよい。前記の構成要素としては、例えば、輝度向上フィルム、集光フィルム、プリズムシート、光拡散板、光学補償フィルム、拡散シート、反射シート、等が挙げられる。
For example, regarding the liquid crystal display device 7, the illumination device combined with the liquid crystal panel 401 is not limited to the illumination device 1 according to the first embodiment.
Further, the liquid crystal display device 7 may be provided with components other than the liquid crystal panel 401 and the lighting device 1. Examples of the component include a brightness enhancement film, a light collecting film, a prism sheet, a light diffusion plate, an optical compensation film, a diffusion sheet, and a reflection sheet.
[導光体の材料及び製法等]
 以下、前記の導光体の材料及び製造方法等について説明する。
 導光体の材料としては、例えば、ガラス、透明樹脂等が挙げられる。なお、導光体の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[Light guide material and manufacturing method]
Hereinafter, the material and manufacturing method of the light guide will be described.
Examples of the material for the light guide include glass and transparent resin. In addition, the material of a light guide may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 前記の透明樹脂としては、例えば、プロピレン-エチレン共重合体、ポリスチレン、(メタ)アクリル酸エステル-芳香族ビニル化合物共重合体、ポリエチレンテレフタレート、テレフタル酸-エチレングリコール-シクロヘキサンジメタノール共重合体、ポリカーボネート、メタクリル樹脂、脂環式構造を有する樹脂(例えば、ノルボルネン系の樹脂)などが挙げられる。これらの中で、脂環式構造を有する樹脂、メタクリル樹脂および(メタ)アクリル酸エステル-芳香族ビニル化合物共重合体樹脂が好適であり、脂環式構造を有する樹脂が特に好ましい。 Examples of the transparent resin include propylene-ethylene copolymer, polystyrene, (meth) acrylic acid ester-aromatic vinyl compound copolymer, polyethylene terephthalate, terephthalic acid-ethylene glycol-cyclohexanedimethanol copolymer, polycarbonate. , Methacrylic resin, and resin having an alicyclic structure (for example, norbornene-based resin). Among these, resins having an alicyclic structure, methacrylic resins, and (meth) acrylic acid ester-aromatic vinyl compound copolymer resins are preferable, and resins having an alicyclic structure are particularly preferable.
 脂環式構造を有する樹脂は、溶融樹脂の流動性が良好である。したがって、例えば射出成形により導光体を製造する場合、低い射出圧力で金型のキャビティを充填することができ、ウエルドラインが発生しにくい。また、例えば押し出し成形により導光体を製造する場合、成形時の厚みムラが少なく、成形後の形状付与が容易である。さらに、脂環式構造を有する樹脂は吸湿性が極めて低いので、寸法安定性に優れ、導光体に反りを生じにくい。さらに、脂環式構造を有する樹脂は比重が小さいので、導光体を軽量化することができる。 A resin having an alicyclic structure has good fluidity of the molten resin. Therefore, for example, when a light guide is manufactured by injection molding, the mold cavity can be filled with a low injection pressure, and a weld line is hardly generated. For example, when manufacturing a light guide by extrusion molding, there is little thickness unevenness at the time of molding, and shape formation after molding is easy. Furthermore, since the resin having an alicyclic structure has extremely low hygroscopicity, it has excellent dimensional stability and is less likely to warp the light guide. Furthermore, since the specific gravity of the resin having an alicyclic structure is small, the light guide can be reduced in weight.
 脂環式構造を有する樹脂としては、主鎖または側鎖に脂環式構造を有する重合体樹脂が挙げられる。中でも、主鎖に脂環式構造を有する重合体樹脂は、機械的強度と耐熱性が良好なので、特に好適である。
 前記の脂環式構造は、飽和環状炭化水素構造であることが好ましい。
 脂環式構造を構成する炭素数は、好ましくは4以上、より好ましくは5以上であり、好ましくは30以下、より好ましくは20以下、特に好ましくは15以下である。
 脂環式構造を有する重合体樹脂中の脂環式構造を有する繰り返し単位の割合は、50重量%以上であることが好ましく、70重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。
Examples of the resin having an alicyclic structure include polymer resins having an alicyclic structure in the main chain or side chain. Among them, a polymer resin having an alicyclic structure in the main chain is particularly suitable because it has good mechanical strength and heat resistance.
The alicyclic structure is preferably a saturated cyclic hydrocarbon structure.
The number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less.
The ratio of the repeating unit having an alicyclic structure in the polymer resin having an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, and 90% by weight or more. More preferably.
 脂環式構造を有する樹脂としては、例えば、ノルボルネン系単量体の開環重合体若しくは開環共重合体またはそれらの水素添加物;ノルボルネン系単量体の付加重合体若しくは付加共重合体またはそれらの水素添加物;単環の環状オレフィン系単量体の重合体またはその水素添加物;環状共役ジエン系単量体の重合体またはその水素添加物;ビニル脂環式炭化水素系単量体の重合体若しくは共重合体またはそれらの水素添加物;ビニル芳香族炭化水素系単量体の重合体または共重合体の芳香環を含む不飽和結合部分の水素添加物;などが挙げられる。これらの中で、ノルボルネン系単量体の重合体の水素添加物およびビニル芳香族炭化水素系単量体の重合体の芳香環を含む不飽和結合部分の水素添加物は、機械的強度と耐熱性に優れるので、特に好適である。 Examples of the resin having an alicyclic structure include a ring-opening polymer or a ring-opening copolymer of a norbornene monomer or a hydrogenated product thereof; an addition polymer or an addition copolymer of a norbornene monomer; Polymers of monocyclic olefin monomers or their hydrogenated products; Polymers of cyclic conjugated diene monomers or their hydrogenated products; Vinyl alicyclic hydrocarbon monomers Or a hydrogenated product thereof; a polymer of a vinyl aromatic hydrocarbon monomer or a hydrogenated product of an unsaturated bond part containing an aromatic ring of the copolymer; and the like. Among these, hydrogenated products of norbornene-based monomer polymers and hydrogenated products of unsaturated bonds including aromatic rings of vinyl aromatic hydrocarbon-based monomer polymers have mechanical strength and heat resistance. It is particularly suitable because of its excellent properties.
 さらに、前記の透明樹脂のなかでも、メタクリル樹脂は、透明性に優れ、強靭でひびが入りにくいので、好適に用いることができる。メタクリル樹脂としては、例えば、JISK6717に規定されるメタクリル酸メチル重合物を80%以上含むメタクリル樹脂成形材料を挙げられる。この規格に規定されるメタクリル樹脂の中で、ビカット軟化点温度96~100℃、メルトフローレート8~16の指定分類コード100-120のメタクリル樹脂は、適度な流動性と強度を有するので、特に好適である。 Furthermore, among the above transparent resins, methacrylic resins are excellent in transparency, strong and resistant to cracking, and therefore can be suitably used. Examples of the methacrylic resin include a methacrylic resin molding material containing 80% or more of a methyl methacrylate polymer defined in JIS K6717. Among the methacrylic resins specified in this standard, methacrylic resins having a specified classification code 100-120 having a Vicat softening point temperature of 96 to 100 ° C. and a melt flow rate of 8 to 16 have appropriate fluidity and strength. Is preferred.
 導光体の成形材料には、成形時における酸化劣化や熱劣化を防止するために、酸化防止剤を含ませてもよい。酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられる。これらの中で、フェノール系酸化防止剤が好適であり、中でもアルキル置換酸化防止剤が特に好ましい。なお、酸化防止剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。酸化防止剤の量は、樹脂成分100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.02重量部以上であり、好ましくは2重量部以下、より好ましくは1重量部以下である。 The molding material for the light guide may contain an antioxidant in order to prevent oxidative degradation and thermal degradation during molding. Examples of the antioxidant include a phenolic antioxidant, a phosphorus antioxidant, and a sulfur antioxidant. Of these, phenolic antioxidants are preferred, and alkyl-substituted antioxidants are particularly preferred. In addition, an antioxidant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. The amount of the antioxidant is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, preferably 2 parts by weight or less, more preferably 1 part by weight with respect to 100 parts by weight of the resin component. It is as follows.
 導光体の成形材料には、導光体の耐光性などを向上させるために、耐光安定剤を含ませてもよい。耐光安定剤としては、例えば、ヒンダードアミン系耐光安定剤(HALS)、ベンゾエート系耐光安定剤などが挙げられる。これらの中で、ヒンダードアミン系耐光安定剤が好ましい。なお、耐光安定剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。耐光安定剤の量は、樹脂成分100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.02重量部以上、特に好ましくは0.05重量部以上であり、好ましくは2重量部以下、より好ましくは1重量部以下、特に好ましくは0.5重量部以下である。 In the molding material for the light guide, a light stabilizer may be included in order to improve the light resistance of the light guide. Examples of the light resistance stabilizer include hindered amine light resistance stabilizer (HALS) and benzoate light resistance stabilizer. Among these, hindered amine light resistance stabilizers are preferred. In addition, a light-resistant stabilizer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. The amount of the light-resistant stabilizer is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, particularly preferably 0.05 parts by weight or more, preferably 2 parts by weight with respect to 100 parts by weight of the resin component. The amount is not more than parts by weight, more preferably not more than 1 part by weight, particularly preferably not more than 0.5 parts by weight.
 導光体の成形材料には、必要に応じて、さらに他の添加剤を含ませてもよい。他の添加剤としては、例えば、熱安定剤、紫外線吸収剤、近赤外線吸収剤などの安定剤;滑剤、可塑剤などの樹脂改質剤;染料、顔料などの着色剤;帯電防止剤、蛍光増白剤、光拡散剤などが挙げられる。なお、他の添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The light guide body may further contain other additives as required. Examples of other additives include stabilizers such as heat stabilizers, ultraviolet absorbers, and near infrared absorbers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments; antistatic agents, and fluorescence. Examples include brighteners and light diffusing agents. In addition, another additive may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 導光体の主面の寸法(前記の実施形態では、X軸方向及びY軸方向の寸法)は、通常、その導光体が用いられる液晶表示装置の液晶パネルの有効面の大きさに応じて設定される。また、導光体の厚み(前記の実施形態では、Z軸方向の寸法)は、光源の発光部の高さ(前記の実施形態では、Z軸方向の寸法)よりも、小さい値とすると液晶パネルの薄型化や軽量化の観点から好ましく、大きい値とすると光源からの光を導光体に取り込みやすいという観点から好ましい。なかでも、導光体の厚さは、製造と取り扱いを容易にできることから、0.02mm以上であることが好ましく、0.1mm以上であることがより好ましく、薄型化と軽量化を実現できることから、5mm以下であることが好ましく、4mm以下であることがより好ましく、3mm以下であることが特に好ましい。 The dimensions of the main surface of the light guide (in the above embodiment, the dimensions in the X-axis direction and the Y-axis direction) usually depend on the size of the effective surface of the liquid crystal panel of the liquid crystal display device in which the light guide is used. Is set. Further, when the thickness of the light guide (in the above embodiment, the dimension in the Z-axis direction) is smaller than the height of the light-emitting portion of the light source (in the above-described embodiment, the dimension in the Z-axis direction), the liquid crystal From the viewpoint of thinning and weight reduction of the panel, a large value is preferable from the viewpoint that light from the light source can be easily taken into the light guide. Especially, since the thickness of the light guide can be easily manufactured and handled, it is preferably 0.02 mm or more, more preferably 0.1 mm or more, and thinning and weight reduction can be realized. It is preferably 5 mm or less, more preferably 4 mm or less, and particularly preferably 3 mm or less.
 導光体としては、例えば、その屈折率が1.533(臨界角40.7°)のものを用いることができる。 As the light guide, for example, one having a refractive index of 1.533 (critical angle 40.7 °) can be used.
 導光体が樹脂で形成されている場合、導光体が吸湿により寸法変化(伸びや反り)を生じる可能性がある。特に導光体の寸法が大きい場合(例えば、40インチ)には、当該寸法変化により、照明装置において光源と光導入面との相対位置関係が変化し、光利用効率が低下する傾向がある。このため、導光体の吸水率は、0.50%以下に設定することが好ましく、0.25%以下がより好ましく、0.05%以下がさらに好ましい。なお、本願明細書中における吸水率は、JIS K7209 A法に準拠して、厚さ3mmで、直径50mmの円板形または一辺50mmの正方形の試験片を50℃で24時間乾燥したのちデシケ一ター中で放冷し、23℃の水に24時間浸漬したときの重量増から求めることができる。 When the light guide is made of resin, there is a possibility that the light guide will undergo dimensional changes (elongation or warpage) due to moisture absorption. In particular, when the size of the light guide is large (for example, 40 inches), the relative positional relationship between the light source and the light introduction surface changes in the lighting device due to the change in size, and the light utilization efficiency tends to decrease. For this reason, the water absorption rate of the light guide is preferably set to 0.50% or less, more preferably 0.25% or less, and even more preferably 0.05% or less. The water absorption rate in the present specification is determined according to JIS K7209 A method after drying a test piece having a thickness of 3 mm and a disk shape having a diameter of 50 mm or a square having a side of 50 mm at 50 ° C. for 24 hours. It can be determined from the increase in weight when it is allowed to cool in a filter and immersed in water at 23 ° C. for 24 hours.
 導光体の製造方法に制限は無いが、例えば樹脂により導光体を形成する場合には、射出成形法、押出成形法、キャスト法により製造できる。 Although there is no restriction | limiting in the manufacturing method of a light guide, For example, when forming a light guide with resin, it can manufacture by the injection molding method, the extrusion molding method, and the casting method.
 また、導光体の表面に凹凸構造を形成する方法にも特に制限は無い。例えば、予め平板状の導光体を用意し、当該導光体の表面に後から凹凸構造を形成するようにしてもよい。この場合、平板状の導光体の表面に凹凸構造を形成する方法としては、例えば、所望の形状の凹凸構造を形成できる工具を用いた切削加工による方法、光硬化樹脂を塗布して所望の形状の型を転写した状態で硬化させる方法、スクリーン印刷によるドット印刷を付与する方法、レーザー加工で凹凸構造を形成する方法、光硬化樹脂や熱硬化樹脂をインクジェット方式で塗布し凹凸構造を形成する方法、などが挙げられる。 Also, there is no particular limitation on the method for forming the uneven structure on the surface of the light guide. For example, a flat light guide may be prepared in advance, and a concavo-convex structure may be formed later on the surface of the light guide. In this case, as a method for forming the concavo-convex structure on the surface of the flat light guide, for example, a method by cutting using a tool capable of forming a concavo-convex structure of a desired shape, a desired method by applying a photo-curing resin A method of curing the transferred shape mold, a method of applying dot printing by screen printing, a method of forming a concavo-convex structure by laser processing, and forming a concavo-convex structure by applying a photo-curing resin or a thermosetting resin by an inkjet method. Method, etc.
 導光体の表面に凹凸構造を形成する方法としては、例えば、導光体の成形と同時に凹凸構造を形成するようにしてもよい。この場合には、例えば、所望の凹凸構造に対応した形状を有する異形ダイを用いて異形押出しうる。また、例えば、押出後にエンボス加工によりプリズム条列を形成するようにしてもよい。さらに、例えば、所望の凹凸形状を形成できるキャスティング型を用意し、このキャスティング型を用いて導光体をキャスティングにより作製して、導光体の成形と同時に凹凸構造を形成するようにしてもよい。また、導光体を射出成形により作製し、同時に凹凸構造を形成する場合は、所望の凹凸構造を形成できる金型を用いてもよい。 As a method for forming the uneven structure on the surface of the light guide, for example, the uneven structure may be formed simultaneously with the formation of the light guide. In this case, for example, profile extrusion can be performed using a profile die having a shape corresponding to a desired uneven structure. Further, for example, prism rows may be formed by embossing after extrusion. Further, for example, a casting mold capable of forming a desired concavo-convex shape is prepared, and a light guide is produced by casting using this casting mold, and the concavo-convex structure is formed simultaneously with the formation of the light guide. . Moreover, when producing a light guide by injection molding and simultaneously forming a concavo-convex structure, a mold capable of forming a desired concavo-convex structure may be used.
 なお、前記の光硬化樹脂への型形状転写、異形ダイによる押出し加工、エンボス加工、キャスティング、もしくは射出成形などに用いる型は、例えば、所望の凹凸構造を形成できる工具を用いた型の金属部材への切削加工、もしくは所望の形状が形成された部材上への電鋳加工などにより得ることができる。 In addition, the mold used for the mold shape transfer to the photo-curing resin, the extrusion process using a deformed die, the embossing, the casting, or the injection molding is a metal member of a mold using a tool capable of forming a desired concavo-convex structure, for example. It can be obtained by cutting or forming on a member on which a desired shape is formed.
〔光源〕
 以下、光源について説明する。
 光源としては、例えば、LED、レーザーダイオード等の点光源、冷陰極管(CCFL、EEFL)、熱陰極管(HCFL)等の線光源などが挙げられるが、点光源を用いることが好ましい。点光源としては、少なくとも点灯/消灯、発光量の制御が所望の応答性をもって行えるものであればどのようなものでもよく、例えば半導体レーザー等を用いてもよい。ただし、通常は、前記の実施形態で説明したようにLEDを用いることが好ましい。LEDとしては、例えば、青黄色系擬似白色発光ダイオード、3色(RGB)方式の白色発光ダイオード等が挙げられる。
〔light source〕
Hereinafter, the light source will be described.
Examples of the light source include a point light source such as an LED and a laser diode, and a line light source such as a cold cathode tube (CCFL, EEFL) and a hot cathode tube (HCFL), and a point light source is preferably used. Any point light source may be used as long as it can at least turn on / off and control the amount of emitted light with desired responsiveness. For example, a semiconductor laser may be used. However, it is usually preferable to use an LED as described in the above embodiment. Examples of the LED include a blue-yellow pseudo white light emitting diode, a three-color (RGB) type white light emitting diode, and the like.
 LEDとしては、例えば、サイドエミット型LED、表面実装型LED、砲弾型LEDを用いる。LEDの発光部の寸法は、LEDの配光特性に応じて設定しうる。通常、LEDの発光部の幅及び高さは等しくなるようにするが、LEDとして断面が楕円形または長円形等のものを用いる場合には、幅と高さとが異なる寸法のものを用いてもよい。 As the LED, for example, a side-emitting LED, a surface-mounted LED, or a bullet-type LED is used. The dimension of the light emitting part of the LED can be set according to the light distribution characteristic of the LED. Usually, the width and height of the light emitting part of the LED are made equal. However, when the LED has an elliptical or oval cross section, the LED having a different width and height may be used. Good.
 一般的なハイドーム型のLEDは配光がランバーシアンであり、半値角(半値全角)が120°程度の比較的に大きい発散光を出射する。ただし、光の広がりを抑制する観点からは、LEDとしては、半値全角は80°以下が好ましく、70°以下がより好ましく、60°以下が特に好ましい。理想的には、可能な限り平行光に近い光を発するLEDが好ましい。また、導光体の手前部分でLED間に相当する部分が暗くなることを抑制する観点からは、LEDとしては、半値全角は90°以上が好ましく、100°以上がより好ましく、110°以上が特に好ましい。 A general high dome type LED has a Lambertian light distribution and emits a relatively large divergent light having a half-value angle (full-width at half maximum) of about 120 °. However, from the viewpoint of suppressing the spread of light, the LED has a full width at half maximum of preferably 80 ° or less, more preferably 70 ° or less, and particularly preferably 60 ° or less. Ideally, LEDs that emit as close to parallel light as possible are preferred. Further, from the viewpoint of suppressing darkening of the portion corresponding to the LEDs in the front portion of the light guide, the full width at half maximum of the LED is preferably 90 ° or more, more preferably 100 ° or more, and 110 ° or more. Particularly preferred.
 なお、光源としては、LED等の発光素子と、レンズ等の光学素子とを組み合わせて用いてもよい。例えば、半値全角が広いLEDを用いる場合であっても、当該LEDとレンズとを組み合わせれば、上記のような好ましい範囲の半値全角で光を照射する光源を実現できる。また、常時発光する光源と、当該光源と光導入面との間に設けた光学的シャッター(例えば、液晶パネル等)とを組み合わせて、点灯、消灯及び光量の調節が可能な光源としてもよい。 In addition, as a light source, you may use combining light emitting elements, such as LED, and optical elements, such as a lens. For example, even when an LED having a wide full width at half maximum is used, a light source that emits light at a full width at half maximum within the above-described preferable range can be realized by combining the LED and the lens. Alternatively, a light source capable of turning on / off and adjusting the amount of light may be combined by combining a light source that always emits light and an optical shutter (for example, a liquid crystal panel) provided between the light source and the light introduction surface.
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施できる。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and may be arbitrarily set within the scope of the claims of the present invention and its equivalents. You can change it to
〔実施例1〕
 図33は、実施例1で行ったシミュレーションにおいて設定したシミュレーション条件を説明する図である。以下の実施例では、光学シミュレーションソフト「LightTools」(サイバネット株式会社製)を用いて、後述する条件で光学モデルを作成し、シミュレーションを行った。なお、導光体の材質としては、熱可塑性脂環構造含有樹脂(商品名ZEONOR1420、日本ゼオン社製、屈折率1.533、臨界角40.7°、吸水率0.01%)を用いたものと設定した。
[Example 1]
FIG. 33 is a diagram for explaining simulation conditions set in the simulation performed in the first embodiment. In the following examples, an optical model was created and simulated under the conditions described later using optical simulation software “LightTools” (manufactured by Cybernet Co., Ltd.). In addition, as a material of the light guide, a thermoplastic alicyclic structure-containing resin (trade name: ZEONOR1420, manufactured by Nippon Zeon Co., Ltd., refractive index: 1.533, critical angle: 40.7 °, water absorption: 0.01%) was used. It was set as a thing.
 導光体は、長辺700mm、短辺250mm、厚み2mmの矩形の平板状の導光体であるとした。
 この導光体の一方の主面に相当する光取出面の全面に、図2に示すように、凹凸構造Aとして、導光体の短辺方向に沿って延在するプリズムを有するようにした。この光取出面のプリズムは、短辺方向に垂直な平面で切った断面の形状が二等辺三角形であり、前記断面の二等辺三角形の頂角を60°とした。また、光取出面のプリズムの高さは50μmとし、幅は57.7μmとした。
 さらに、この導光体の他方の主面に相当する裏面の全面に、図4に示すように、凹凸構造Aとして、導光体の短辺方向に沿って延在するプリズムを有するようにした。この裏面のプリズムは、短辺方向に垂直な平面で切った断面の形状が二等辺三角形であり、前記断面の二等辺三角形の頂角を90°とした。また、裏面のプリズムの高さは50μmとし、幅は100μmとした。
The light guide was a rectangular flat light guide having a long side of 700 mm, a short side of 250 mm, and a thickness of 2 mm.
As shown in FIG. 2, an uneven structure A is provided on the entire surface of the light extraction surface corresponding to one main surface of the light guide so as to have a prism extending along the short side direction of the light guide. . In the prism of this light extraction surface, the shape of the cross section cut by a plane perpendicular to the short side direction is an isosceles triangle, and the apex angle of the isosceles triangle of the cross section is 60 °. The height of the prism on the light extraction surface was 50 μm and the width was 57.7 μm.
Further, as shown in FIG. 4, the entire surface of the back surface corresponding to the other main surface of the light guide has a concavo-convex structure A having a prism extending along the short side direction of the light guide. . The prism on the back surface has an isosceles triangle shape in a cross section cut by a plane perpendicular to the short side direction, and the apex angle of the isosceles triangle of the cross section is 90 °. The height of the prism on the back surface was 50 μm and the width was 100 μm.
 光源は、外径の長辺2.5mm、短辺1.5mm、厚み0.5mmのLEDとした。また、LEDの発光部の寸法は長辺2mm、短辺1mmとした。さらに、LEDの発光部の吸収は15%とし、半値全角が120°であるとした。 The light source was an LED having an outer diameter of 2.5 mm long side, 1.5 mm short side, and 0.5 mm thickness. Moreover, the dimension of the light emission part of LED was made into 2 mm of long sides, and 1 mm of short sides. Further, the absorption of the light emitting part of the LED was 15%, and the full width at half maximum was 120 °.
 図33に示すように、導光体501の長側面の一つである光導入面502の長辺方向Y中央にLED503を設け、LED503から導光体501の光導入面502に光Aを照射できるようにした。この際、LED503と導光体501の光導入面502との距離は2mmとした。また、LED503の周囲はランプカバー(使用ソフトウェア内に設定されたモデルE6SLのランプカバー)504で覆うようにした。さらに、LED503からの光の照射は、光の軸線が導光体501の短辺方向Xに平行になり、ひいては光が導光される所定方向が短辺方向Xと平行になるようにした。 As shown in FIG. 33, an LED 503 is provided at the center in the long-side direction Y of the light introduction surface 502, which is one of the long sides of the light guide body 501, and the light A is irradiated from the LED 503 to the light introduction surface 502 of the light guide body 501. I was able to do it. At this time, the distance between the LED 503 and the light introduction surface 502 of the light guide 501 was 2 mm. The periphery of the LED 503 is covered with a lamp cover (model E6SL lamp cover set in the software used) 504. Further, the light irradiation from the LED 503 is such that the axis of the light is parallel to the short side direction X of the light guide body 501, and the predetermined direction in which the light is guided is parallel to the short side direction X.
 前記の構成においてLED503から光を照射した場合に、光導入面502の反対側の側面505の直ぐ内側の測定位置(即ち、光導入面502から短辺方向Xに沿って250mm離れた導光体501内にあり、光導入面502と並行となる面)で光を検出するようにした。検出された光から、前記の測定位置において、LED503の中心から光導入面502に対して垂直に伸ばした線と交差する測定位置で検出した光をZ軸方向に積分した光の強度を100%としたときに、光の強度が50%となる長辺方向Yへの光の広がりの幅W50、光の強度が5%となる長辺方向Yへの光の広がりの幅Wを測定した。結果を表1に示す。 When light is emitted from the LED 503 in the above-described configuration, the measurement position immediately inside the side surface 505 opposite to the light introduction surface 502 (that is, the light guide that is 250 mm away from the light introduction surface 502 along the short side direction X). The light is detected on a surface in the direction 501 and parallel to the light introduction surface 502. From the detected light, the intensity of the light integrated at the measurement position at the measurement position intersecting the line extending perpendicularly from the center of the LED 503 to the light introduction surface 502 in the Z-axis direction is 100%. and when the width W 50 of the light intensity of the light in the long-side direction Y to be 50% spread, measure the width W 5 of the spread of light in the longitudinal direction Y in which the intensity of light of 5% did. The results are shown in Table 1.
 また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。なお、図34及び図35において、横軸は裏面のプリズムの斜面の傾斜角を表す。また、光取出面のプリズムの斜面の傾斜角については、その傾斜角が60°のものは「十字印」でプロットし、その傾斜角が35°のものは「黒丸印」でプロットし、その傾斜角が30°のものは「黒三角印」でプロットし、その傾斜角が25°のものは「黒四角印」でプロットし、その傾斜角が20°のものは「X印」でプロットし、その傾斜角が15°のものは「白丸印」でプロットし、その傾斜角が10°のものは「白三角印」でプロットし、光取出面を凹凸のない平坦面としたものは「白四角印」でプロットした。 Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35. 34 and 35, the horizontal axis represents the inclination angle of the inclined surface of the prism on the back surface. The inclination angle of the prism of the light extraction surface is plotted with a “cross mark” when the inclination angle is 60 °, and plotted with a “black circle mark” when the inclination angle is 35 °. Plots with an inclination of 30 ° are plotted with “black triangles”, those with an inclination of 25 ° are plotted with “black squares”, and those with an inclination of 20 ° are plotted with “X” When the angle of inclination is 15 °, it is plotted with “white circles”. When the angle of inclination is 10 °, it is plotted with “white triangles”. Plotted with “white squares”.
〔実施例2〕
 導光体501の光取出面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を110°とし、プリズムの高さを50μmとし、幅を142.8μmとしたこと以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
[Example 2]
The prism setting on the light extraction surface of the light guide 501 is changed, except that the apex angle of the isosceles triangle in the section of the prism is 110 °, the height of the prism is 50 μm, and the width is 142.8 μm. In the same manner as in Example 1, the light spread widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例3〕
 導光体501の光取出面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を120°とし、プリズムの高さを50μmとし、幅を173.2μmとしたこと以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 3
The prism setting on the light extraction surface of the light guide 501 is changed, except that the apex angle of the isosceles triangle of the section of the prism is 120 °, the prism height is 50 μm, and the width is 173.2 μm. In the same manner as in Example 1, the light spread widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例4〕
 導光体501の光取出面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を140°とし、プリズムの高さを50μmとし、幅を274.7μmとしたこと以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 4
Other than changing the prism setting of the light extraction surface of the light guide 501, the apex angle of the isosceles triangle of the section of the prism is 140 °, the prism height is 50 μm, and the width is 274.7 μm. In the same manner as in Example 1, the light spread widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例5〕
 導光体501の裏面のプリズムをレンチキュラーに変更したこと以外は実施例4と同様にして、光の広がりの幅W50とWを測定した。なお、レンチキュラーを導光体501の短辺方向Xに垂直な平面で切った断面の形状は半円であり、レンチキュラーの高さは50μmとし、幅は100μmとした。結果を表1に示す。
Example 5
The light spreading widths W 50 and W 5 were measured in the same manner as in Example 4 except that the prism on the back surface of the light guide 501 was changed to lenticular. The cross-sectional shape of the lenticular cut by a plane perpendicular to the short side direction X of the light guide 501 was a semicircle, the height of the lenticular was 50 μm, and the width was 100 μm. The results are shown in Table 1.
〔実施例6〕
 導光体501の光取出面に、実施例4と同様の凹凸構造Aとしてのプリズムに加え、図13に示すように、凹凸構造Bとしてのプリズムを有するようにしたこと以外は実施例4と同様にして、光の広がりの幅W50とWを測定した。
 凹凸構造Bとしてのプリズムは、導光体501の長辺方向Yに沿って延在するプリズムであり、導光体501の長辺方向Yに垂直な平面で切った断面の形状は二等辺三角形とした。また、前記断面の二等辺三角形の頂角を150°、高さを50μmとした。さらに、凹凸構造Bのプリズム間の間隔D(図15参照。)はグラデーション状に設定した。具体的には、図33に示すように、光導入面502からの距離が0mm~9.6mmの領域IではD=2400μmとし、光導入面502からの距離が9.6mm~34.8mmの領域IIではD=1800μmとし、光導入面502からの距離が34.8mm~94.8mmの領域IIIではD=1200μmとし、光導入面502からの距離が94.8mm~249.6mmの領域IVではD=600μmとした。
Example 6
Example 4 except that the light extraction surface of the light guide 501 has a prism as the concavo-convex structure B as shown in FIG. 13 in addition to the prism as the concavo-convex structure A as in Example 4. Similarly, light spreading widths W 50 and W 5 were measured.
The prism as the concavo-convex structure B is a prism extending along the long-side direction Y of the light guide 501, and the shape of the cross section taken along a plane perpendicular to the long-side direction Y of the light guide 501 is an isosceles triangle It was. Further, the apex angle of the isosceles triangle of the cross section was 150 ° and the height was 50 μm. Further, the interval D (see FIG. 15) between the prisms of the concavo-convex structure B was set to a gradation. Specifically, as shown in FIG. 33, in region I where the distance from the light introduction surface 502 is 0 mm to 9.6 mm, D = 2400 μm and the distance from the light introduction surface 502 is 9.6 mm to 34.8 mm. In the region II, D = 1800 μm, and in the region III where the distance from the light introduction surface 502 is 34.8 mm to 94.8 mm, D = 1200 μm and the distance from the light introduction surface 502 is 94.8 mm to 249.6 mm. Then, D = 600 μm.
 また、実施例6においては、光導入面502から短辺方向Xに沿って250mm離れた測定位置において光取出面から取り出される光についても、光の強度が50%以上となる長辺方向Yへの光の広がりの幅を測定した。結果を表1に示す。 Further, in Example 6, the light extracted from the light extraction surface at a measurement position 250 mm away from the light introduction surface 502 along the short side direction X also in the long side direction Y where the light intensity is 50% or more. The width of the light spread was measured. The results are shown in Table 1.
〔実施例7〕
 導光体501の裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を120°とし、幅を173.2μmとしたこと以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 7
In the same manner as in Example 1 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle in the cross section of the prism is 120 °, and the width is 173.2 μm. The spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例8〕
 導光体501の裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を120°とし、幅を173.2μmとしたこと以外は実施例2と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 8
In the same manner as in Example 2 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle in the cross section of the prism is 120 °, and the width is 173.2 μm. The spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例9〕
 導光体501の裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を120°とし、幅を173.2μmとしたこと以外は実施例3と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 9
In the same manner as in Example 3 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle of the cross section of the prism is 120 °, and the width is 173.2 μm. The spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例10〕
 導光体501の裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を120°とし、幅を173.2μmとしたこと以外は実施例4と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 10
In the same manner as in Example 4 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle of the cross section of the prism is 120 °, and the width is 173.2 μm. The spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例11〕
 導光体501の光取出面及び裏面のプリズムの設定を変更し、光取出面及び裏面の両方のプリズムの断面の二等辺三角形の頂角を130°とし、幅を214.5μmとしたこと以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 11
Other than changing the settings of the prisms on the light extraction surface and the back surface of the light guide 501 so that the apex angle of the isosceles triangles of the cross sections of both the light extraction surface and the back surface is 130 ° and the width is 214.5 μm in the same manner as in example 1, it was measured width W 50 and W 5 for the spread of light. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例12〕
 導光体501の光取出面及び裏面のプリズムの設定を変更し、光取出面及び裏面の両方のプリズムの断面の二等辺三角形の頂角を140°とし、幅を274.7μmとしたこと以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 12
Other than changing the settings of the prisms on the light extraction surface and the back surface of the light guide 501 so that the apex angle of the isosceles triangles of the cross sections of the prisms on both the light extraction surface and the back surface is 140 ° and the width is 274.7 μm in the same manner as in example 1, it was measured width W 50 and W 5 for the spread of light. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例13〕
 導光体501の裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を150°とし、幅を373.2μmとしたこと以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 13
In the same manner as in Example 1 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle of the cross section of the prism is 150 °, and the width is 373.2 μm. The spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例14〕
 導光体501の裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を150°とし、幅を373.2μmとしたこと以外は実施例2と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 14
In the same manner as in Example 2 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle of the cross section of the prism is 150 °, and the width is 373.2 μm. The spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例15〕
 導光体501の裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を150°とし、幅を373.2μmとしたこと以外は実施例3と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 15
In the same manner as in Example 3 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle of the cross section of the prism is 150 °, and the width is 373.2 μm. The spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例16〕
 導光体501の裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を150°とし、幅を373.2μmとしたこと以外は実施例4と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 16
In the same manner as in Example 4 except that the setting of the prism on the back surface of the light guide 501 is changed, the apex angle of the isosceles triangle of the cross section of the prism is 150 °, and the width is 373.2 μm. The spreading widths W 50 and W 5 were measured. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例17〕
 導光体501の光取出面及び裏面のプリズムの設定を変更し、光取出面及び裏面の両方のプリズムの断面の二等辺三角形の頂角を150°とし、幅を373.2μmとしたこと以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 17
Other than changing the prism settings of the light extraction surface and the back surface of the light guide 501 so that the apex angle of the isosceles triangles of the cross sections of both the light extraction surface and the back surface is 150 ° and the width is 373.2 μm in the same manner as in example 1, it was measured width W 50 and W 5 for the spread of light. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例18〕
 導光体501の光取出面及び裏面のプリズムの設定を変更し、光取出面及び裏面の両方のプリズムの断面の二等辺三角形の頂角を160°とし、幅を567.1μmとしたこと以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 18
Other than changing the setting of the prisms on the light extraction surface and the back surface of the light guide 501 so that the apex angle of the isosceles triangles of the cross sections of the prisms on both the light extraction surface and the back surface is 160 ° and the width is 567.1 μm in the same manner as in example 1, it was measured width W 50 and W 5 for the spread of light. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例19〕
 導光体501の光取出面を凹凸の無い平坦面とした。また、裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を30°とし、プリズムの高さを50μmとし、幅を26.8μmとした。以上の事項以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 19
The light extraction surface of the light guide 501 was a flat surface without unevenness. Further, the setting of the prism on the back surface was changed so that the apex angle of the isosceles triangle in the cross section of the prism was 30 °, the height of the prism was 50 μm, and the width was 26.8 μm. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 1. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例20〕
 導光体501の光取出面を凹凸の無い平坦面とした。また、裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を60°とし、プリズムの高さを50μmとし、幅を57.7μmとした。以上の事項以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 20
The light extraction surface of the light guide 501 was a flat surface without unevenness. Also, the setting of the prism on the back surface was changed so that the apex angle of the isosceles triangle in the cross section of the prism was 60 °, the height of the prism was 50 μm, and the width was 57.7 μm. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 1. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例21〕
 導光体501の光取出面を凹凸の無い平坦面とした。また、裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を90°とし、プリズムの高さを50μmとし、幅を100.0μmとした。以上の事項以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 21
The light extraction surface of the light guide 501 was a flat surface without unevenness. Also, the setting of the prism on the back surface was changed so that the apex angle of the isosceles triangle in the cross section of the prism was 90 °, the height of the prism was 50 μm, and the width was 100.0 μm. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 1. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例22〕
 導光体501の光取出面を凹凸の無い平坦面とした。また、裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を120°とし、プリズムの高さを50μmとし、幅を173.2μmとした。以上の事項以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
[Example 22]
The light extraction surface of the light guide 501 was a flat surface without unevenness. Also, the setting of the prism on the back surface was changed so that the apex angle of the isosceles triangle in the cross section of the prism was 120 °, the height of the prism was 50 μm, and the width was 173.2 μm. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 1. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例23〕
 導光体501の光取出面を凹凸の無い平坦面とした。また、裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を150°とし、プリズムの高さを50μmとし、幅を373.2μmとした。以上の事項以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
Example 23
The light extraction surface of the light guide 501 was a flat surface without unevenness. In addition, the setting of the prism on the back surface was changed so that the apex angle of the isosceles triangle in the cross section of the prism was 150 °, the height of the prism was 50 μm, and the width was 373.2 μm. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 1. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
〔実施例24〕
 導光体501の光取出面を凹凸の無い平坦面としたこと以外は実施例5と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。
Example 24
Except that the light output surface of the light guide 501 has a flat surface with no unevenness in the same manner as in Example 5 was measured width W 50 and W 5 for the spread of light. The results are shown in Table 1.
〔実施例25〕
 導光体501の光取出面を凹凸の無い平坦面とした。また、裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を90°とし、プリズムの高さを50μmとし、幅を100.0μmとし、各プリズムの凹部に平坦部を幅10μmで設けた(図30参照)。以上の事項以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。
Example 25
The light extraction surface of the light guide 501 was a flat surface without unevenness. In addition, the setting of the prism on the back surface is changed so that the apex angle of the isosceles triangle of the section of the prism is 90 °, the height of the prism is 50 μm, the width is 100.0 μm, and a flat portion is formed in the concave portion of each prism. A width of 10 μm was provided (see FIG. 30). Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 1. The results are shown in Table 1.
〔実施例26〕
 導光体501の光取出面を凹凸の無い平坦面とした。また、裏面のレンチキュラーの設定を変更し、前記レンチキュラーを導光体501の短辺方向Xに垂直な平面で切った断面の形状は半円であり、レンチキュラーの高さは50μmとし、幅は100μmとし、各レンチキュラー間に平坦部を幅10μmで設けた。以上の事項以外は実施例5と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。
Example 26
The light extraction surface of the light guide 501 was a flat surface without unevenness. Further, the setting of the lenticular on the back surface was changed, and the cross-sectional shape of the lenticular cut by a plane perpendicular to the short side direction X of the light guide 501 was a semicircle, the height of the lenticular was 50 μm, and the width was 100 μm. And a flat portion having a width of 10 μm was provided between the lenticulars. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 5. The results are shown in Table 1.
〔実施例27〕
 導光体501の光取出面を凹凸の無い平坦面とした。また、裏面のレンチキュラーの設定を変更し、前記レンチキュラーを導光体501の短辺方向Xに垂直な平面で切った断面の形状は半径51μmの円を切断した弓形であり、その高さは38μm、幅は100μmとした。以上の事項以外は実施例5と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。
Example 27
The light extraction surface of the light guide 501 was a flat surface without unevenness. Also, the setting of the lenticular on the back surface was changed, and the cross-sectional shape of the lenticular cut along a plane perpendicular to the short side direction X of the light guide 501 was an arc shape obtained by cutting a circle with a radius of 51 μm, and its height was 38 μm. The width was 100 μm. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 5. The results are shown in Table 1.
〔実施例28〕
 導光体501の光取出面を凹凸の無い平坦面とした。また、裏面のレンチキュラーの設定を変更し、前記レンチキュラーを導光体501の短辺方向Xに垂直な平面で切った断面の形状は半径51μmの円を切断した弓形であり、その高さは38μm、幅は100μmとし、各レンチキュラー間に平坦部を幅10μmで設けた。以上の事項以外は実施例5と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。
Example 28
The light extraction surface of the light guide 501 was a flat surface without unevenness. Also, the setting of the lenticular on the back surface was changed, and the cross-sectional shape of the lenticular cut along a plane perpendicular to the short side direction X of the light guide 501 was an arc shape obtained by cutting a circle with a radius of 51 μm, and its height was 38 μm. The width was 100 μm, and a flat portion was provided between each lenticular with a width of 10 μm. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 5. The results are shown in Table 1.
〔実施例29〕
 導光体501の裏面のプリズムの設定を変更し、前記プリズムの断面の二等辺三角形の頂角を90°とし、プリズムの高さを50μmとし、幅を100.0μmとし、各プリズムの凹部に平坦部を10μm設けた。以上の事項以外は実施例4と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。
Example 29
The prism setting on the back surface of the light guide 501 is changed so that the apex angle of the isosceles triangle of the cross section of the prism is 90 °, the height of the prism is 50 μm, the width is 100.0 μm, and the concave portion of each prism is A flat portion was provided at 10 μm. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 4. The results are shown in Table 1.
〔実施例30〕
 導光体501の裏面のレンチキュラーの設定を変更し、前記レンチキュラーを導光体501の短辺方向Xに垂直な平面で切った断面の形状は半径51μmの円を切断した弓形であり、その高さは38μm、幅は100μmとし、各レンチキュラー間に平坦部を幅10μmで設けた。以上の事項以外は実施例5と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。
Example 30
The setting of the lenticular on the back surface of the light guide 501 was changed, and the cross-sectional shape of the lenticular cut along a plane perpendicular to the short side direction X of the light guide 501 was an arcuate shape obtained by cutting a circle with a radius of 51 μm. The thickness was 38 μm, the width was 100 μm, and a flat portion was provided between each lenticular with a width of 10 μm. Except for the above items, the light spread widths W 50 and W 5 were measured in the same manner as in Example 5. The results are shown in Table 1.
〔比較例1〕
 導光体501の光取出面及び裏面を凹凸の無い平坦面としたこと以外は実施例1と同様にして、光の広がりの幅W50とWを測定した。結果を表1に示す。また、光取出面及び裏面のそれぞれにおいて、プリズムの頂角の角度から斜面の傾斜角を算出し、当該傾斜角と光の広がりの幅W50との関係を図34に示し、当該傾斜角と光の広がりの幅Wとの関係を図35に示した。
[Comparative Example 1]
Except that the light output surface and the back surface of the light guide 501 has a flat surface with no unevenness in the same manner as in Example 1, was measured width W 50 and W 5 for the spread of light. The results are shown in Table 1. Further, the inclination angle of the inclined surface is calculated from the apex angle of the prism on each of the light extraction surface and the back surface, and the relationship between the inclination angle and the light spread width W 50 is shown in FIG. the relationship between the width W 5 of the spread of the light shown in FIG. 35.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔検討〕
 表1より、実施例では比較例よりもW50が狭くなることがわかる。したがって、これらの実施例によれば、本発明の導光体が、光を所望の導光方向へと導光できること、及び、導光される光の広がりを抑制できることが確認できる。
 特に、実施例6の結果から、光取出面から取り出される光の分布が狭い範囲に収まることがわかる。したがって、本発明の導光体によれば、所望の領域における光取出面から選択的に光を取り出せることがわかる。
 また、図34及び図35より、凹凸構造Aとしてのプリズムの斜面の傾斜角度には好適な範囲が存在することが確認できる。
 また、実施例24、26、27及び28の結果から、レンチキュラーも好適であることが確認できる。
 また、実施例4、5、21及び24と実施例25~30の結果から、生産性を上げる為に凹凸構造の間に平坦部を設けてもほぼ同等の抑制効果を得ることが可能であることが分かる。
 また、実施例1~18及び25~28と実施例19~24、29及び30の結果から、光取出面と裏面の両方に凹凸構造を設けたほうが、一方の面につけた場合に比べ、W5が狭くなることがわかる。したがって、これらの実施例によれば、本発明の導光体が、光取出面と裏面の両方に凹凸構造を設けることで、より光を所望の導光方向へと導光できること、及び、より導光される光の広がりを抑制できることが確認できる。
 前記の実施例の結果から、本発明によれば、ローカルディミングが可能な照明装置及び液晶表示装置を実現できることが理解できる。
〔Consideration〕
From Table 1, it can be seen that W 50 is narrower in the example than in the comparative example. Therefore, according to these examples, it can be confirmed that the light guide of the present invention can guide light in a desired light guide direction and can suppress the spread of the light guided.
In particular, the results of Example 6 show that the distribution of light extracted from the light extraction surface falls within a narrow range. Therefore, according to the light guide of this invention, it turns out that light can be selectively extracted from the light extraction surface in a desired area | region.
34 and 35, it can be confirmed that there is a suitable range for the inclination angle of the slope of the prism as the concavo-convex structure A. FIG.
Further, from the results of Examples 24, 26, 27 and 28, it can be confirmed that the lenticular is also suitable.
Further, from the results of Examples 4, 5, 21, and 24 and Examples 25 to 30, it is possible to obtain substantially the same suppression effect even if a flat portion is provided between the concavo-convex structures in order to increase productivity. I understand that.
Further, from the results of Examples 1 to 18 and 25 to 28 and Examples 19 to 24, 29 and 30, it is more W5 when the concave and convex structure is provided on both the light extraction surface and the back surface than when it is attached to one surface. It turns out that becomes narrow. Therefore, according to these embodiments, the light guide of the present invention can guide light more in a desired light guide direction by providing concave and convex structures on both the light extraction surface and the back surface, and more It can be confirmed that the spread of the guided light can be suppressed.
From the results of the above embodiments, it can be understood that according to the present invention, an illumination device and a liquid crystal display device capable of local dimming can be realized.
 本発明の導光体は、光学用途に任意に適用でき、中でも面発光可能な照明装置に好適である。このような照明装置は、液晶表示装置に用いて好適である。また、本発明の照明装置は、例えばショーウィンドウ等の照明として用いるなど、液晶表示装置のバックライト以外の用途に用いることも可能である。 The light guide of the present invention can be arbitrarily applied to optical applications, and is particularly suitable for a lighting device capable of surface emission. Such an illuminating device is suitable for use in a liquid crystal display device. Further, the lighting device of the present invention can be used for purposes other than the backlight of a liquid crystal display device, for example, as lighting for a show window or the like.
 1~6、8 照明装置
 7 液晶表示装置
 101から08 導光体
 110 光導入面
 120 光取出面
 121,131 プリズム(凹凸構造A、畝状の凸部)
 122,123,132,133 プリズムの斜面
 124,134 プリズム間の凹部
 125,135 平坦部
 126,136 レンチキュラー(凹凸構造A、畝状の凸部)
 127,137 レンチキュラーの表面
 128 凸部(凹凸構造A)
 129 凸部の表面
 130 裏面
 140 導光体の側面
 141,151 プリズム(光取出構造、凹凸構造B)
 142,143,152,153 プリズムの斜面
 144,154 凹凸(光取出構造)
 145 光拡散剤(光取出構造)
 201 光源
 301 調光装置
 401 液晶パネル
 501 導光体
 502 光導入面
 503 LED
 504 ランプカバー
 505 導光体の側面
1 to 6, 8 Illumination device 7 Liquid crystal display device 101 to 08 Light guide 110 Light introduction surface 120 Light extraction surface 121,131 Prism (concave / convex structure A, bowl-shaped convex portion)
122, 123, 132, 133 Inclined surfaces of prisms 124, 134 Concavities between prisms 125, 135 Flat portions 126, 136 Lenticular (concave structure A, bowl-shaped convex portions)
127,137 Surface of lenticular 128 Convex part (concavo-convex structure A)
129 Surface of convex portion 130 Back surface 140 Side surface of light guide 141, 151 Prism (light extraction structure, uneven structure B)
142, 143, 152, 153 Prism slope 144, 154 Concavity and convexity (light extraction structure)
145 Light diffusing agent (light extraction structure)
201 light source 301 light control device 401 liquid crystal panel 501 light guide 502 light introduction surface 503 LED
504 Lamp cover 505 Side surface of light guide

Claims (18)

  1.  光を導入する光導入面、前記光導入面から導入された光を取り出す光取出面、および、前記光取出面の反対側に位置する裏面を有し、前記光導入面から導入された光を所定方向へ導光する導光体であって、
     光の取出方向に平行な方向から見て、前記所定方向の寸法が、前記所定方向に直交する方向の寸法よりも大きい異方性形状を有する凹凸構造Aを、前記光取出面及び前記裏面のうち少なくとも一方の面に有する、導光体。
    A light introduction surface for introducing light, a light extraction surface for extracting light introduced from the light introduction surface, and a back surface located on the opposite side of the light extraction surface, and the light introduced from the light introduction surface A light guide for guiding light in a predetermined direction,
    As seen from a direction parallel to the light extraction direction, the concavo-convex structure A having an anisotropic shape in which the dimension in the predetermined direction is larger than the dimension in the direction orthogonal to the predetermined direction is formed on the light extraction surface and the back surface. A light guide having at least one of the surfaces.
  2.  前記凹凸構造Aを前記光取出面及び前記裏面の両方に有する、請求項1記載の導光体。 The light guide according to claim 1, wherein the concavo-convex structure A is provided on both the light extraction surface and the back surface.
  3.  光の取出方向に平行な方向から見た前記凹凸構造Aの異方性形状の主軸が、前記所定方向と平行である、請求項1記載の導光体。 The light guide according to claim 1, wherein a main axis of the anisotropic shape of the concavo-convex structure A viewed from a direction parallel to a light extraction direction is parallel to the predetermined direction.
  4.  前記凹凸構造Aの凹部が連続している、請求項1記載の導光体。 The light guide according to claim 1, wherein the concave portion of the concave-convex structure A is continuous.
  5.  前記凹凸構造Aの凹部及び凸部の少なくとも一方に平坦部を有する、請求項1記載の導光体。 The light guide according to claim 1, wherein the light guide has a flat portion in at least one of a concave portion and a convex portion of the concave-convex structure A.
  6.  前記導光体の前記凹凸構造Aを有する部位に、前記導光体内を導光される光を前記光取出面から取り出す光取出構造を有する、請求項1記載の導光体。 The light guide according to claim 1, wherein the light guide has a light extraction structure for extracting light guided through the light guide from the light extraction surface at a portion having the uneven structure A of the light guide.
  7.  前記光取出構造が、前記凹凸構造Aの異方性形状の主軸と交差する方向にその異方性形状の主軸を有する凹凸構造Bである、請求項6記載の導光体。 The light guide according to claim 6, wherein the light extraction structure is a concavo-convex structure B having a main axis of the anisotropic shape in a direction intersecting with the main axis of the anisotropic shape of the concavo-convex structure A.
  8.  前記凹凸構造Aの異方性形状の主軸と前記凹凸構造Bの異方性形状の主軸とが直交する、請求項7記載の導光体。 The light guide according to claim 7, wherein the anisotropic main axis of the concavo-convex structure A is orthogonal to the anisotropic main axis of the concavo-convex structure B.
  9.  前記光取出構造が、前記凹凸構造Aの表面に形成された凹凸である、請求項6記載の導光体。 The light guide according to claim 6, wherein the light extraction structure is an unevenness formed on a surface of the uneven structure A.
  10.  前記光取出構造が、前記光導入面から離れるに従って密度または大きさが大きくなる、請求項6記載の導光体。 The light guide according to claim 6, wherein the density or size of the light extraction structure increases as the distance from the light introduction surface increases.
  11.  前記光取出構造が、前記導光体中に存在する光拡散剤である、請求項6記載の導光体。 The light guide according to claim 6, wherein the light extraction structure is a light diffusing agent present in the light guide.
  12.  前記凹凸構造Aが畝状の凸部を有する請求項1記載の導光体。 The light guide according to claim 1, wherein the concavo-convex structure A has a ridge-like convex portion.
  13.  前記凹凸構造Bが畝状の凸部を有する、請求項7記載の導光体。 The light guide according to claim 7, wherein the concavo-convex structure B has a bowl-shaped convex portion.
  14.  前記畝状の凸部が、断面三角形状のプリズム、またはレンチキュラーを有する、請求項12又は13記載の導光体。 The light guide according to claim 12 or 13, wherein the bowl-shaped convex part includes a prism having a triangular cross section or a lenticular.
  15.  請求項1記載の導光体と、前記導光体の光導入面に光を照射する光源とを備える、照明装置。 An illumination device comprising: the light guide according to claim 1; and a light source that irradiates light to a light introduction surface of the light guide.
  16.  前記光源を複数個備え、
     前記複数個の光源は、個別又はグループごとに調光可能である、請求項15記載の照明装置。
    A plurality of the light sources;
    The lighting device according to claim 15, wherein the plurality of light sources are dimmable individually or in groups.
  17.  前記光源がLEDである請求項15記載の照明装置。 The lighting device according to claim 15, wherein the light source is an LED.
  18.  液晶パネルと、
     前記液晶パネルの背面側に設けられた請求項15記載の照明装置とを備える、液晶表示装置。
    LCD panel,
    A liquid crystal display device comprising: the illumination device according to claim 15 provided on a back side of the liquid crystal panel.
PCT/JP2011/050754 2010-01-29 2011-01-18 Light-guiding plate, lighting device, and liquid-crystal display device WO2011093173A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-019722 2010-01-29
JP2010019722 2010-01-29
JP2010217707 2010-09-28
JP2010-217707 2010-09-28

Publications (1)

Publication Number Publication Date
WO2011093173A1 true WO2011093173A1 (en) 2011-08-04

Family

ID=44319165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050754 WO2011093173A1 (en) 2010-01-29 2011-01-18 Light-guiding plate, lighting device, and liquid-crystal display device

Country Status (2)

Country Link
TW (1) TW201131225A (en)
WO (1) WO2011093173A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177881A (en) * 2011-02-02 2012-09-13 Japan Display East Co Ltd Display device
WO2013064675A1 (en) * 2011-11-04 2013-05-10 Breyer Gmbh Maschinenfabrik Lighting device
JP2014063722A (en) * 2012-09-19 2014-04-10 Samsung Display Co Ltd Backlight unit and display having the same
WO2018056247A1 (en) * 2016-09-20 2018-03-29 シャープ株式会社 Surface light source device and liquid crystal display device
CN113960711A (en) * 2021-10-21 2022-01-21 合肥泰沃达智能装备有限公司 Method for manufacturing light guide plate with double-sided structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485453B (en) 2014-01-02 2015-05-21 Radiant Opto Electronics Corp Light guide plate
US9442240B2 (en) 2012-03-16 2016-09-13 Radiant Opto-Electronics Corporation Light guide plate and light source module
TWI481915B (en) 2013-08-20 2015-04-21 Radiant Opto Electronics Corp Light guide plate with multidirectional structures
US9507072B2 (en) * 2012-10-26 2016-11-29 Mitsubishi Rayon Co., Ltd. Light guide, manufacturing method of light guide, optical shutter, and planar light-source device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1124586A (en) * 1997-06-30 1999-01-29 Sanyo Electric Co Ltd Back light device and light transmission plate
JP2003021727A (en) * 2001-07-10 2003-01-24 Yuka Denshi Co Ltd Light guide body and surface light source device and liquid crystal display device both using the body
JP2004193051A (en) * 2002-12-13 2004-07-08 Sanyo Electric Co Ltd Surface light source device
JP2005071610A (en) * 2003-06-26 2005-03-17 Toyota Industries Corp Light guide plate and plane light source device
JP2005085671A (en) * 2003-09-10 2005-03-31 Toyota Industries Corp Light guide plate and plane light source device
JP2009139931A (en) * 2007-11-13 2009-06-25 Mitsumi Electric Co Ltd Backlight device and liquid crystal display device using the same
JP2009266819A (en) * 2008-04-24 2009-11-12 Samsung Electronics Co Ltd Backlight assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1124586A (en) * 1997-06-30 1999-01-29 Sanyo Electric Co Ltd Back light device and light transmission plate
JP2003021727A (en) * 2001-07-10 2003-01-24 Yuka Denshi Co Ltd Light guide body and surface light source device and liquid crystal display device both using the body
JP2004193051A (en) * 2002-12-13 2004-07-08 Sanyo Electric Co Ltd Surface light source device
JP2005071610A (en) * 2003-06-26 2005-03-17 Toyota Industries Corp Light guide plate and plane light source device
JP2005085671A (en) * 2003-09-10 2005-03-31 Toyota Industries Corp Light guide plate and plane light source device
JP2009139931A (en) * 2007-11-13 2009-06-25 Mitsumi Electric Co Ltd Backlight device and liquid crystal display device using the same
JP2009266819A (en) * 2008-04-24 2009-11-12 Samsung Electronics Co Ltd Backlight assembly

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177881A (en) * 2011-02-02 2012-09-13 Japan Display East Co Ltd Display device
KR101312196B1 (en) 2011-02-02 2013-09-27 가부시키가이샤 재팬 디스프레이 Display device
US8992062B2 (en) 2011-02-02 2015-03-31 Japan Display Inc. Display device with light guide plate having irregularities on front light exit surface
WO2013064675A1 (en) * 2011-11-04 2013-05-10 Breyer Gmbh Maschinenfabrik Lighting device
JP2014063722A (en) * 2012-09-19 2014-04-10 Samsung Display Co Ltd Backlight unit and display having the same
WO2018056247A1 (en) * 2016-09-20 2018-03-29 シャープ株式会社 Surface light source device and liquid crystal display device
CN113960711A (en) * 2021-10-21 2022-01-21 合肥泰沃达智能装备有限公司 Method for manufacturing light guide plate with double-sided structure
CN113960711B (en) * 2021-10-21 2024-03-15 合肥泰沃达智能装备有限公司 Manufacturing method of light guide plate with double-sided structure

Also Published As

Publication number Publication date
TW201131225A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
WO2011093173A1 (en) Light-guiding plate, lighting device, and liquid-crystal display device
KR100912260B1 (en) Optical prism sheet having a certain roughness thereon
WO2007032469A1 (en) Directly downward type backlight device
US20080303777A1 (en) Optical adjusting member, and illumination device and liquid crystal display device including the same
WO2006022270A1 (en) Direct-under backlight
JP4552563B2 (en) Direct backlight unit
JPWO2007049618A1 (en) Light diffusion plate and direct type backlight device
KR20080077105A (en) Directly-below type backlight device
US20170329066A1 (en) Optical sheet for liquid crystal display device, backlight unit for liquid crystal display device and production method of optical sheet for liquid crystal display device
TW201604602A (en) Light guide plate, method for fabricating the same, backlight unit, and liquid crystal display
WO2013121914A1 (en) Lighting device and display device
JP2009168961A (en) Light diffusing plate, direct backlight device, and liquid crystal display
WO2008050763A1 (en) Direct backlight device
JP2006195276A (en) Direct-type backlight
JP2006310150A (en) Direct backlight device
JP2007095386A (en) Direct backlight device
JP2007163810A (en) Light diffusion plate and direct backlight device
JP6974004B2 (en) Optical sheet for backlight unit and backlight unit
JP2010066664A (en) Light diffusion plate, direct backlight device, and liquid crystal display device
JP2012204192A (en) Backlight device
JP2011033643A (en) Optical path changing sheet, backlight unit and display device
US11175533B2 (en) Light redirecting film, backlight, and display system
WO2009096293A1 (en) Direct backlighting device
JP2010256869A (en) Diffusion sheet, light control unit, and light source unit
WO2010104051A1 (en) Diffusion sheet, light control unit, and light source unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP