WO2011093262A1 - Light-guiding plate and lighting device - Google Patents

Light-guiding plate and lighting device Download PDF

Info

Publication number
WO2011093262A1
WO2011093262A1 PCT/JP2011/051302 JP2011051302W WO2011093262A1 WO 2011093262 A1 WO2011093262 A1 WO 2011093262A1 JP 2011051302 W JP2011051302 W JP 2011051302W WO 2011093262 A1 WO2011093262 A1 WO 2011093262A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
region
guide plate
light extraction
regions
Prior art date
Application number
PCT/JP2011/051302
Other languages
French (fr)
Japanese (ja)
Inventor
敏朗 鈴木
啓介 塚田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2011093262A1 publication Critical patent/WO2011093262A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide

Definitions

  • the present invention relates to a light guide plate and a lighting device including the same.
  • Liquid crystal display devices are widely used as display units for liquid crystal televisions, personal computers, mobile phones and the like.
  • the liquid crystal display device usually includes a liquid crystal panel and an illumination device called a backlight device that illuminates the liquid crystal panel from the back.
  • Examples of the backlight device include a lighting device that combines a light guide plate and a light source that irradiates light to the light guide plate from the side.
  • a lighting device that combines a light guide plate and a light source that irradiates light to the light guide plate from the side.
  • patent document 1 will be mentioned, for example.
  • this type of lighting device light emitted from a light source is introduced into a light guide plate from a light introduction surface located on a side surface of the light guide plate, and the introduced light is light located on the front surface or the back surface of the light guide plate. By emitting from the extraction surface, surface light emission is performed.
  • Local dimming is, for example, a technique that does not irradiate light evenly over the entire surface of the liquid crystal panel, but irradiates light only in a desired region or changes the light irradiation intensity for each region. Local dimming is expected to improve the image quality of liquid crystal display devices (for example, improve contrast and reduce afterimages) and save energy.
  • the present invention was devised in view of the above problems, and a light guide plate that can selectively extract light from a light extraction surface in a desired region, and local dimming with a simple configuration using the light guide plate.
  • An object of the present invention is to provide a lighting device that can be used.
  • a light guide plate having a light introduction surface for introducing light, a light extraction surface from which light introduced from the light introduction surface is extracted, and a back surface located on the opposite side of the light extraction surface, The light guide plate is divided into a plurality of regions as seen from the light extraction direction, Light that is guided in a direction in which a plurality of regions out of the divided regions are guided in parallel with a predetermined virtual axis parallel to the light extraction surface and intersects the virtual axis.
  • the light introduction surface has at least one light introduction region corresponding to each of the anisotropic light extraction regions;
  • the position of at least one of the anisotropic light extraction regions is such that light introduced from the corresponding light introduction region into the light guide plate passes through another anisotropic light extraction region having a different virtual axis direction.
  • the light guide plate is divided into a ⁇ b regions in a matrix of a rows and b columns (a and b are each an integer of 2 or more) when viewed from the light extraction direction,
  • the light is guided to the at least one of the light extraction surface and the back surface in parallel with the virtual axis of the anisotropic light extraction region.
  • Light diffusion that functions as a light extraction pattern for emitting light from the light extraction surface of the extraction region and prevents the light from diffusing with respect to light guided in a direction intersecting the virtual axis of the anisotropic light extraction region.
  • the light guide plate according to any one of [1] to [4], wherein the light guide plate is a region where a pattern functioning as a prevention pattern is formed.
  • the illumination device further comprising a light source capable of adjusting light for each of the anisotropic light extraction regions that irradiates light independently to each of the light introduction regions.
  • a light guide plate provided by stacking two or more sheets, The light guide plate has a light introduction surface for introducing light, a light extraction surface from which light introduced from the light introduction surface is extracted, and a back surface located on the opposite side of the light extraction surface, and extracts light. Divided into multiple areas as seen from the direction, A plurality of regions among the divided regions are guided in a direction intersecting with the virtual axis, and light extraction efficiency is guided in a direction parallel to a predetermined virtual axis parallel to the light extraction surface.
  • An anisotropic light extraction area that is higher than the light extraction efficiency
  • the light introduction surface has light introduction regions provided at least one place corresponding to each of the anisotropic light extraction regions from which light is extracted;
  • the position of at least one of the anisotropic light extraction regions is such that light introduced from the corresponding light introduction region into the light guide plate passes through another anisotropic light extraction region having a different virtual axis direction.
  • the position is adjusted to reach the isotropic light extraction area,
  • Each of the light guide plates is divided into a ⁇ b regions in a matrix of a rows and b columns (a and b are each an integer of 2 or more) as viewed from the light extraction direction,
  • the bowl-shaped pattern includes a plurality of prism-like V-groove patterns parallel to each other.
  • the bowl-shaped pattern includes a plurality of parallel lenticular groove patterns.
  • the light guide plate of the present invention light can be selectively extracted from the light extraction surface in a desired region. According to the illumination device of the present invention, local dimming can be realized with a simple configuration.
  • FIG. 1 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region.
  • FIG. 2 is a cross-sectional view schematically showing an enlarged cross section of the light guide plate taken along a plane perpendicular to the Y-axis direction in order to explain how the light guided in the light guide plate travels.
  • FIG. 3 is a cross-sectional view schematically showing an enlarged cross section of the light guide plate taken along a plane perpendicular to the X-axis direction in order to explain how light guided in the light guide plate travels.
  • FIG. 1 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region.
  • FIG. 2 is a cross-sectional view schematically showing an enlarged cross section of the light guide plate taken along a plane perpendicular to the Y-axis direction in order to explain how the light guided in the light guide plate travels.
  • FIG. 3 is a cross-sectional view schematically showing an
  • FIG. 4 is a cross-sectional view schematically showing an enlarged cross section of the light guide plate taken along a plane perpendicular to the Y-axis direction in order to explain how the light guided in the light guide plate travels.
  • FIG. 5 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region.
  • FIG. 6 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region.
  • FIG. 7 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region.
  • FIG. 8 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region.
  • FIG. 5 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region.
  • FIG. 6 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region.
  • FIG. 7 is a perspective view schematic
  • FIG. 9 is a perspective view schematically showing the illumination device according to the first embodiment of the present invention.
  • FIG. 10 is a front view schematically showing the illumination device according to the first embodiment of the present invention as viewed from the light extraction surface side in the Z-axis direction.
  • FIG. 11 is a front view schematically showing a state in which the illumination device according to the second embodiment of the present invention is viewed from the light extraction surface side in the Z-axis direction.
  • FIG. 12 is a front view schematically showing a state in which the illumination device according to the third embodiment of the present invention is viewed from the light extraction surface side in the Z-axis direction.
  • FIG. 13 is a perspective view schematically showing an illumination apparatus according to the fourth embodiment of the present invention.
  • FIG. 10 is a front view schematically showing the illumination device according to the first embodiment of the present invention as viewed from the light extraction surface side in the Z-axis direction.
  • FIG. 11 is a front view schematically showing a state in which the illumination device according to the second embodiment
  • FIG. 14 is an exploded perspective view schematically showing an exploded state of the illumination device according to the fourth embodiment of the present invention.
  • FIG. 15 schematically shows a light guide plate in a lighting device according to a fourth embodiment of the present invention and a light source that irradiates light on the side surface of the light guide plate as viewed from the light extraction surface side in the Z-axis direction.
  • FIG. 16 schematically shows a light guide plate in a lighting device according to a fourth embodiment of the present invention and a light source that irradiates light on the side surface of the light guide plate as viewed from the light extraction surface side in the Z-axis direction.
  • FIG. FIG. 17 is a perspective view schematically showing an illumination apparatus according to the fifth embodiment of the present invention.
  • FIG. 18 is a cross-sectional view schematically showing the vicinity of the light source of the illumination device configured in the example.
  • the present invention will be described in detail with reference to embodiments and examples, but the present invention is not limited to the following embodiments and examples, and the claims of the present invention and equivalents thereof. Any change can be made without departing from the scope.
  • the directions of the components are “parallel” and “orthogonal” unless otherwise specified, including errors within a range that does not impair the effects of the present invention, for example, within ⁇ 5 °. May be.
  • “along” in a certain direction means “in parallel” in a certain direction.
  • “near” means a position close to the light introduction area corresponding to the area
  • “back” means a position far from the light introduction area corresponding to the area.
  • the light guide plate of the present invention has a light introduction surface for introducing light, a light extraction surface from which light introduced from the light introduction surface is extracted, and a back surface located on the opposite side of the light extraction surface.
  • the light guide plate of the present invention has an “anisotropic light extraction region”.
  • An anisotropic light extraction region is an extraction efficiency of light guided in a direction parallel to a predetermined virtual axis parallel to the light extraction surface, more than the extraction efficiency of light guided in a direction intersecting the virtual axis. It means the high area.
  • region of a light-guide plate means the area
  • the light extraction direction refers to a direction in which the light intensity is the highest among the traveling directions of the light extracted from the light extraction surface of the light guide plate, unless otherwise specified.
  • the direction of light extracted from the light guide plate is not perpendicular to the light extraction surface but has a certain angle. For this reason, the lights that have entered from different light guiding directions and are extracted by a pattern that will be described later are usually not parallel to each other.
  • “light extraction direction” is described as the Z-axis direction, which is the normal direction of the light extraction surface.
  • to divide the light guide plate into a plurality of regions means to divide the light guide plate into a plurality of regions on a plane parallel to the light extraction direction.
  • the direction in which light is guided refers to the direction in which light is guided in the light guide plate when viewed from the light extraction direction, unless otherwise specified. Point to. Therefore, when referring to the light guide direction, the Z-axis direction described later is not a problem unless otherwise specified. For this reason, in the anisotropic light extraction region, the direction intersecting with the predetermined virtual axis of the anisotropic light extraction region indicates the light guide direction, and therefore is a direction parallel to the light extraction surface and intersecting the virtual axis. Means that.
  • an anisotropic light extraction region according to the present invention will be described with reference to the drawings.
  • FIG. 1 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region.
  • the light guide plate 100 of this example has a rectangular plate shape.
  • the light guide plate 100 has a light extraction surface 101 and a back surface 102 located on the opposite side of the light extraction surface 101 as its main surface.
  • the light guide plate 100 has side surfaces 103 and 104 that are orthogonal to each other at the ends of the light extraction surface 101 and the back surface 102.
  • the thickness direction of the light guide plate 100 is defined as the Z-axis direction.
  • the direction parallel to one side of the rectangle of the light extraction surface 101 is defined as the X-axis direction
  • the direction orthogonal to the X-axis direction is defined as the Y-axis direction.
  • the light extraction surface 101 and the back surface 102 are both surfaces perpendicular to the Z-axis direction
  • the side surface 103 is a surface perpendicular to the X-axis direction
  • the side surface 104 is a surface perpendicular to the Y-axis direction.
  • the light extraction direction from the light extraction surface 101 is parallel to the Z-axis direction.
  • the light extraction surface 101 Since the light extraction surface 101 has a pattern 105 as will be described later, it is not a flat plane when viewed microscopically. However, since the pattern 105 has a small size, the light extraction surface 101 is It can be handled as a flat plane. Therefore, the light extraction surface 101 being perpendicular to the Z-axis direction means that a plane when the light extraction surface 101 is viewed macroscopically is perpendicular to the Z-axis direction.
  • the back surface 102, the side surface 103, and the side surface 104 are flat planes.
  • the light extraction surface 101 has a plurality of bowl-shaped patterns 105 formed extending in the Y-axis direction on the entire surface.
  • the pattern 105 is a prism-like V-groove pattern parallel to each other. That is, the grooves whose cross sections are V-shaped are formed in parallel to each other. Therefore, the pattern 105 has the slope 106 and the slope 107 which consist of a plane parallel to a Y-axis direction, respectively.
  • the slope 106 and the slope 107 are inclined in directions opposite to each other with respect to the light extraction surface 101 (as described above, it is a flat surface when viewed macroscopically). Further, on the light extraction surface 101, the slopes 106 and the slopes 107 are alternately present in the X-axis direction.
  • the slope 106 and the slope 107 are not parallel to the X-axis direction. That is, the slope 106 and the slope 107 each intersect the X-axis direction. Therefore, the pattern 105 having the slope 106 and the slope 107 functions as a light extraction pattern for emitting light from the light exit surface 101 for light guided in parallel with the X-axis direction. It does not function as a light extraction pattern for light guided in parallel.
  • a pattern in which the light extraction efficiency differs depending on the light guide direction is referred to as an “anisotropic pattern” as appropriate.
  • FIG. 2 is a cross-sectional view schematically showing an enlarged cross section of the light guide plate 100 taken along a plane perpendicular to the Y-axis direction in order to explain how light guided in the light guide plate 100 in this example travels.
  • the same reference numerals as those in FIG. 1 indicate the same elements as those in FIG. 1.
  • an arrow A ⁇ b> 103 indicates a component perpendicular to the Y-axis direction among light vectors guided through the light guide plate 100.
  • the side surface 103 is a light introduction region and the light A 103 is introduced from the side surface 103 to the light guide plate 100.
  • the introduced light A103 is guided along the X-axis direction while repeating internal reflection on the light extraction surface 101 and the back surface 102 as shown in FIG. While repeating internal reflection, the light A103 is incident on the slope 106 or slope 107 of the pattern 105 at a small incident angle.
  • the light A 103 is incident on the inclined surface 106 or the inclined surface 107 at an incident angle that is small enough to prevent internal reflection, the light A 103 is extracted from the inclined surface 106 or the inclined surface 107 to the outside of the light guide plate 100.
  • the pattern 105 functions as a light extraction pattern for the light A103 guided in parallel with the X-axis direction.
  • the light A103 guided in the right light guide direction in the drawing has been described.
  • the pattern 105 similarly applies to the light guided in the left light guide direction in the drawing. Function as.
  • FIG. 3 is a cross-sectional view schematically showing an enlarged cross section of the light guide plate 100 taken along a plane perpendicular to the X-axis direction in order to explain how light guided in the light guide plate 100 in this example travels.
  • the same reference numerals as those in FIG. 1 denote the same elements as those in FIG.
  • an arrow A ⁇ b> 104 indicates a component perpendicular to the X-axis direction among light vectors guided through the light guide plate 100.
  • the side surface 104 is a light introduction region and the light A 104 is introduced from the side surface 104 to the light guide plate 100.
  • the introduced light A104 is guided along the Y-axis direction while repeating internal reflection on the light extraction surface 101 and the back surface 102 as shown in FIG.
  • the light vector of the light A104 is decomposed into an X-axis direction component parallel to the X-axis direction, a Y-axis direction component parallel to the Y-axis direction, and a Z-axis direction component parallel to the Z-axis direction.
  • the Y-axis direction component tends to be larger than the X-axis direction component and the Z-axis direction component.
  • the pattern 105 having the slope 106 and the slope 107 does not function as a light extraction pattern with respect to the light A 104 guided in parallel with the Y-axis direction. That is, even if the pattern 105 does not exhibit the function of extracting the light A104 or exhibits the function, the degree is smaller than the light A103 guided in parallel with the X-axis direction.
  • the light A104 guided in the right light guide direction in the drawing has been described.
  • the pattern 105 similarly applies to the light guided in the left light guide direction in the drawing. Does not function as.
  • the pattern 105 functions as an anisotropic pattern. Therefore, in the light guide plate 100, the extraction efficiency of the light A103 guided in the light guide direction parallel to the X axis direction is guided in the light guide direction parallel to the Y axis direction, which is a direction intersecting the X axis direction. The extraction efficiency of the light A104 is higher.
  • an X axis extending in the X axis direction is assumed as one virtual axis (predetermined virtual axis) parallel to the light extraction surface 101.
  • the X-axis direction that is the light guide direction of the light A103 is a light guide direction parallel to the X-axis (that is, a predetermined virtual axis parallel to the light extraction surface 101).
  • the Y-axis direction that is the light guide direction of the light A 104 is parallel to the light extraction surface 101 and is a light guide direction that intersects the X axis that is the virtual axis.
  • the extraction efficiency of the light A103 guided in parallel with the predetermined virtual axis (X axis) parallel to the light extraction surface 101 is guided so as to intersect the virtual axis (X axis). This is higher than the extraction efficiency of the light A104 guided in the light direction (Y-axis direction).
  • the region of the light guide plate 100 having anisotropy in the light extraction efficiency corresponds to the anisotropic light extraction region.
  • the light guide plate has a plurality of anisotropic light extraction regions
  • the light guide direction in which the light extraction efficiency is high is usually set for each anisotropic light extraction region. Therefore, the virtual axis is usually set for each anisotropic light extraction region.
  • the pattern 105 functions as a light diffusion prevention pattern for preventing the light A104 from being diffused in the X-axis direction with respect to the light A104 guided in the Y-axis direction. Therefore, the pattern 105 can prevent the light A104 from being guided so as to spread in the X-axis direction. This will be described with reference to the drawings.
  • FIG. 4 is a cross-sectional view schematically showing an enlarged cross section of the light guide plate 100 taken along a plane perpendicular to the Y-axis direction in order to explain how light guided in the light guide plate 100 in this example travels.
  • the same reference numerals as those in FIG. 1 indicate the same elements as those in FIG. 1.
  • an arrow A ⁇ b> 104 indicates a component perpendicular to the Y-axis direction among light vectors guided through the light guide plate 100.
  • the light A104 guided in parallel with the Y-axis direction has a tendency that the X-axis direction component and the Z-axis direction component are smaller than the Y-axis direction component.
  • the pattern 105 prevents the light A104 guided in the Y-axis direction (light guide direction intersecting the virtual axis) from being spread and guided in the X-axis direction (light guide direction parallel to the virtual axis). It demonstrates its function. In this way, the pattern 105 functions as a light diffusion prevention pattern that suppresses the diffusion of the light A104 in the X-axis direction. In addition, although FIG. 4 demonstrated the light A104 guided in the right light guide direction in the drawing, the pattern 105 similarly prevents light diffusion for the light guided in the left light guide direction in the drawing. Acts as a pattern.
  • the pattern formed in the anisotropic light extraction region of the light guide plate is usually an anisotropic pattern having different light extraction efficiency depending on the light guide direction as described above. Further, the pattern formed in the anisotropic light extraction region of the light guide plate is preferably an anisotropic pattern that functions as a light diffusion prevention pattern, like the pattern 105. By functioning as a light diffusion prevention pattern, the guided light can be prevented from being guided to a region other than the desired region. As a result, it is also possible to prevent light from being extracted from the light extraction surface in a region other than the desired region. Therefore, advantages such as image quality improvement and energy saving of the liquid crystal display device including the light guide plate can be obtained.
  • the anisotropic pattern that also functions as a light diffusion prevention pattern as described above can be realized by, for example, a bowl-shaped pattern formed on the surface of the light guide plate.
  • the hook-shaped pattern is usually formed so as to extend in a direction orthogonal to the virtual axis of the anisotropic light extraction region where the hook-shaped pattern is formed.
  • the saddle-like pattern has a triangular cross-sectional shape cut by a plane perpendicular to the extending direction of the pattern 105 (Y-axis direction in FIG. 1). The shape which becomes may be sufficient.
  • a hook-shaped pattern is called a triangular cross-sectional pattern.
  • the apex angle of the triangular cross section is preferably 30 ° to 120 ° as a diffusion preventing function, and more preferably 60 ° to 90 °.
  • FIG. 5 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region.
  • the hook-shaped patterns may be formed side by side without a gap as shown in FIG. 1, but may be formed side by side with a predetermined gap.
  • a pattern in which V-grooves are formed at a predetermined interval such as a pattern 108 shown in FIG.
  • the pattern 108 having such a shape also corresponds to a prism-like V-groove pattern.
  • the bowl-shaped pattern 108 having such a shape is called a cross-sectional trapezoidal pattern.
  • the pattern 108 When the bowl-shaped pattern 108 is a trapezoidal cross-sectional pattern, the pattern 108 has a slope 106 and a slope 107, respectively.
  • the pattern 108 has a flat surface 109 perpendicular to the Z-axis direction between the slope 106 and the slope 107. Since it has the slopes 106 and 107, the pattern 108 which is a trapezoidal cross-sectional pattern functions as an anisotropic pattern and also functions as a light diffusion prevention pattern like the pattern 105 shown in FIG.
  • the bowl-shaped pattern may be, for example, a shape in which a cross-sectional shape cut by a plane perpendicular to the extending direction of the pattern is a triangle or more. Even in the case of such a bowl-shaped pattern, since it has an inclined surface, it functions as an anisotropic pattern and also functions as a light diffusion prevention pattern, similar to the pattern 105 shown in FIG.
  • FIG. 6 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region.
  • the saddle-like pattern may be a lenticular groove pattern, for example, like a pattern 110 shown in FIG.
  • the lenticular groove pattern is, for example, a shape of a cross section cut by a plane perpendicular to the extending direction of the pattern 110 (Y-axis direction in FIG. 6), or a partial shape of a circle or an ellipse (for example, a semicircle, A semi-elliptical shape.
  • the surface 111 of the pattern 110 is formed as a smooth curved surface, and gradually inclines with respect to the light extraction surface 101 from the center to the end in the X-axis direction. To go.
  • the surface 111 of the pattern 110 is inclined as described above, the surface 111 has a portion that is not parallel to the X-axis direction (that is, intersects with the X-axis). Portions that are not parallel to the X-axis direction of the surface 111 function in the same manner as the slopes 106 and 107 of the V-shaped groove patterns 105 and 108.
  • the pattern 110 which is a lenticular groove pattern also functions as an anisotropic pattern and also functions as a light diffusion prevention pattern, like the patterns 105 and 108 shown in FIGS.
  • the groove pattern of the lenticular may be a shape obtained by cutting off a part of a circle or an ellipse.
  • the height / radius ratio is preferably 1/3 or more, more preferably 1/2 or more, More preferably, it is 1/1 or more, but from the viewpoint of creating the shape, a shape of 3/1 or less is preferable.
  • the patterns 105, 108, and 110 may be formed on at least one of the light extraction surface 101 and the back surface 102 of the light guide plate 100. Therefore, the patterns 105, 108, and 110 may be formed on the back surface 102 in addition to being formed on the light extraction surface 101 as shown in FIGS. 1, 5, and 6. You may make it form in both the back surfaces 102.
  • FIG. When the patterns 105, 108, and 110 are formed on both the light extraction surface 101 and the back surface 102, the patterns 105, 108, and 110 may adopt the same pattern on the light extraction surface 101 and the back surface 102, but are different. A pattern may be adopted. Furthermore, the patterns 105, 108, and 110 may form only one type of structure in the region where the patterns 105, 108, and 110 are formed, but two or more types of structures may be combined in the region. Also good.
  • FIG. 7 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region.
  • the same reference numerals as those in FIGS. 1 to 6 denote the same elements as those in FIGS.
  • Functions similar to the anisotropic pattern and the light diffusion prevention pattern can be realized by a configuration other than the pattern formed on the light extraction surface 101 or the back surface 102.
  • the light guide plate 100 may have a shape having a swell extending only in one direction (the Y-axis direction in FIG. 7).
  • the light guided in the light guide direction parallel to the X-axis direction is incident on the light extraction surface 101 at an incident angle that is small enough to prevent partial internal reflection during the light guide process. 101 is taken out.
  • light guided in the light guide direction parallel to the Y-axis direction is difficult to be incident on the light extraction surface 101 at a small incident angle, and thus is difficult to be extracted from the light extraction surface 101.
  • the anisotropic light extraction region can be implemented in various modes.
  • a diffusion material having a refractive index difference and an anisotropic shape with a material of a light guide plate material (hereinafter referred to as “base material” as appropriate) is prepared, and this diffusion agent is included in the base material.
  • base material a material of a light guide plate material
  • an anisotropic light extraction region by orienting the diffusing agent by applying processes such as shearing and stretching.
  • a hollow hole is formed in one direction in the base material by profile extrusion or the like, and this can be used as an anisotropic light extraction region. It is possible to form the light guide plate according to the present invention by cutting them into appropriate sizes and optically bonding them.
  • the anisotropic light extraction region By the way, in the anisotropic light extraction region, light tends to be extracted with higher brightness usually at a position closer to the light introduction region. For this reason, when an anisotropic light extraction area
  • both the width of the outgoing light line and the width of the gap are preferably about 0.3 mm or less, and more preferably 0.1 mm or less. preferable.
  • the light guide plate of the present invention is divided into a plurality of regions when viewed from the light extraction direction, and a plurality of regions among the divided regions are anisotropic light extraction regions.
  • the light introduction surface of the light guide of the present invention has at least one light introduction region corresponding to each anisotropic light extraction region from which light is to be extracted.
  • at least one position of the anisotropic light extraction region is such that light introduced from the corresponding light introduction region into the light guide plate is guided through another anisotropic light extraction region having a different virtual axis direction, The position is adjusted so as to reach the anisotropic light extraction region.
  • this position adjustment will be described with reference to the drawings.
  • FIG. 8 is a perspective view schematically showing an example of the light guide plate 200 having an anisotropic light extraction region.
  • the light guide plate 200 of this example has a rectangular plate shape.
  • the light guide plate 200 has a light extraction surface 201 and a back surface 202 located on the opposite side of the light extraction surface 201 as its main surface.
  • the light guide plate 200 has side surfaces 203 and 204 that are orthogonal to each other at the ends of the light extraction surface 201 and the back surface 202.
  • the thickness direction of the light guide plate 200 is defined as the Z-axis direction.
  • the direction parallel to one side of the rectangle of the light extraction surface 201 is defined as the X-axis direction
  • the direction orthogonal to the X-axis direction is defined as the Y-axis direction.
  • the light extraction surface 201 and the back surface 202 are both surfaces perpendicular to the Z-axis direction
  • the side surface 203 is a surface perpendicular to the X-axis direction
  • the side surface 204 is a surface perpendicular to the Y-axis direction.
  • the light extraction direction from the light extraction surface 201 is parallel to the Z-axis direction.
  • the light extraction surface 201 has a pattern 207 and a pattern 208, which will be described later, and is not a flat plane when viewed microscopically, but can be handled as a flat plane when viewed macroscopically.
  • the light guide plate 200 is divided into two regions 205 and 206 as viewed from the light extraction direction (in FIG. 8, the light extraction surface side in the Z-axis direction).
  • the region 205 and the region 206 are arranged side by side in the X-axis direction as shown in FIG.
  • a pattern 207 that functions as an anisotropic pattern and a light diffusion prevention pattern is formed on the light extraction surface 201 in the region 205.
  • the pattern 207 is an anisotropic pattern in which the X axis parallel to the X axis direction is a predetermined virtual axis. Therefore, the pattern 207 functions as a light extraction pattern for light guided in parallel with the X-axis direction.
  • the pattern 207 does not function as a light extraction pattern for light guided in parallel with the Y-axis direction but functions as a light diffusion prevention pattern.
  • a pattern 208 that functions as an anisotropic pattern and a light diffusion prevention pattern is formed on the light extraction surface 201 in the region 206.
  • the pattern 208 is an anisotropic pattern having a Y axis parallel to the Y axis direction as a predetermined virtual axis. Therefore, the pattern 208 functions as a light extraction pattern for light guided in parallel with the Y-axis direction.
  • the pattern 208 does not function as a light extraction pattern for light guided in parallel with the X-axis direction, but functions as a light diffusion prevention pattern.
  • the side surface 203 and the side surface 204 are light introduction surfaces. Of these, the entire side surface 203 is a light introduction region corresponding to the region 205. Further, a portion 209 of the side surface 204 located on the near side in the Y-axis direction of the region 206 is a light introduction region of the region 206.
  • the region 205 passes through a region 206 (another anisotropic light extraction region) in which the light introduced from the side surface 203 (the light introduction region corresponding to the region 205) has a different virtual axis direction.
  • the light is guided and the position is adjusted so as to reach the region 205. Therefore, when light is introduced from the side surface 203 into the light guide plate 200, the introduced light is guided through the region 206 and then reaches the region 205.
  • the pattern 208 does not function as a light extraction pattern with respect to light introduced from the side surface 203, light passing through the region 206 is not extracted from the light extraction surface 201 in the region 206.
  • the pattern 208 functions as a light diffusion prevention pattern for the light passing through the region 206, diffusion of light in the Y-axis direction is prevented in the region 206.
  • the light that has passed through the region 206 is subsequently guided in parallel with the X-axis direction and reaches the region 205. Since diffusion of light in the region 206 is prevented, most of the light introduced from the side surface 203 efficiently reaches the region 205. The reached light is extracted from the light extraction surface 201 in the region 205 when the pattern 207 functions as a light extraction pattern.
  • the position of at least one of the plurality of anisotropic light extraction regions is adjusted as in the region 205.
  • the light introduction region is irradiated with light from a light source (not shown).
  • the direction of light emitted from the light source is preferably a direction parallel to the virtual axis of the anisotropic light extraction region corresponding to the light introduction region and a direction parallel to the light extraction surface. This is to effectively take out the light and prevent diffusion.
  • FIG. 9 is a perspective view schematically showing the illumination device according to the first embodiment of the present invention.
  • the illumination device 1 according to the first embodiment of the present invention includes a single light guide plate 300 and light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444.
  • the light guide plate 300 has a rectangular plate shape.
  • the light guide plate 300 has a light extraction surface 301 and a back surface 302 located on the opposite side of the light extraction surface 301 as its main surface. Further, the light guide plate 300 has four side surfaces 303 to 306 as light introduction surfaces at the ends of the light extraction surface 301 and the back surface 302.
  • the thickness direction of the light guide plate 300 is defined as the Z-axis direction.
  • the direction parallel to one side of the rectangle of the light extraction surface 301 is defined as the X-axis direction
  • the direction orthogonal to the X-axis direction is defined as the Y-axis direction.
  • the light extraction surface 301 and the back surface 302 are both surfaces perpendicular to the Z-axis direction
  • the side surface 303 and the side surface 305 are surfaces perpendicular to the X-axis direction
  • the side surface 304 and the side surface 306 are perpendicular to the Y-axis direction.
  • it is a surface.
  • the light extraction direction from the light extraction surface 301 is parallel to the Z-axis direction.
  • the light guide plate 300 is divided into 16 regions in a matrix of 4 rows and 4 columns as viewed from the light extraction direction (in FIG. 9, the light extraction surface side in the Z-axis direction). Specifically, as shown in FIG. 9, it is divided into four rows at equal intervals in the X-axis direction, and is divided into four columns at equal intervals in the Y-axis direction.
  • the light guide plate 300 has regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 having four rows in the X-axis direction and four columns in the Y-axis direction.
  • the above-mentioned areas 311 to 314, 321 to 324, 331 to 334, and 341 to 344 are set to control the position from which light is extracted, and each area is physically separated by barriers and disconnection. It does not have to be.
  • the code of the region in the a-th row and the b-th column is indicated by “3ab”.
  • the code of the region located in the second column of the first row is “312”.
  • FIG. 10 is a front view schematically showing the illumination device 1 according to the first embodiment of the present invention as viewed from the light extraction surface side in the Z-axis direction.
  • the same reference numerals as those in FIG. 9 indicate the same elements as those in FIG.
  • the above-mentioned regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 are all anisotropic light extraction regions.
  • the positions of the regions 312, 322, 323, 324, 331, 332, 333 and 343, which are anisotropic light extraction regions, indicate that the light introduced into the light guide plate 300 from the corresponding light introduction region has the direction of the virtual axis
  • the position is adjusted so that the light is guided through another different anisotropic light extraction region and then reaches the region 312, 322, 323, 324, 331, 332, 333, 343.
  • the positions of the regions 312, 322, 323, 324, 331, 332, 333, and 343, which are anisotropic light extraction regions are introduced into the light guide plate 300 from the corresponding light introduction regions.
  • the position is adjusted so as to reach the regions 312, 322, 323, 324, 331, 332, 333, and 343 without passing through other anisotropic light extraction regions having parallel virtual axis directions.
  • one or both of the light extraction surface 301 and the back surface 302 in the regions 312, 314, 321, 323, 332, 334, 341, and 343 is directed to the light guided in parallel in the X-axis direction.
  • Functions as a light extraction pattern and does not function as a light extraction pattern for light guided in parallel to the Y-axis direction, but forms a pattern that functions as a light diffusion prevention pattern.
  • the regions 312, 314, 321, 323, 332, 334, 341, 343, the light guided in parallel to the X-axis direction is extracted from the light extraction surface 301 and guided in parallel to the Y-axis direction. Light is guided along the Y-axis direction without being extracted.
  • one or both of the light extraction surface 301 and the back surface 302 in the regions 311, 313, 322, 324, 331, 333, 342, and 344 are light extraction for light guided parallel to the Y-axis direction.
  • a pattern that functions as a pattern and does not function as a light extraction pattern for light guided parallel to the X-axis direction, but functions as a light diffusion prevention pattern is formed. Therefore, in the regions 311, 313, 322, 324, 331, 333, 342, and 344, the light guided in parallel to the Y-axis direction is extracted from the light extraction surface 301 and guided in parallel to the X-axis direction. Light is guided along the X-axis direction without being extracted.
  • the illumination device 1 In the illumination device 1 according to the present embodiment, light is extracted from the light extraction surfaces 301 in all the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 of the light guide plate 300. Therefore, as shown in FIG. 10, the side surfaces 303 to 306 that are the light introduction surfaces of the light guide plate 300 correspond to the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344, respectively, from which light is to be extracted. And at least one light introduction region.
  • the light introduction regions 303a to 303d are formed by dividing the side surface 303 at equal intervals in the Y-axis direction. As shown in FIG. 10, the light introduction region 303a is a region located on the left side of the region 311 in the drawing, the light introduction region 303b is a region located on the left side of the region 321 in the drawing, and the light introduction region 303c is a region 331.
  • the light introduction region 303d is a region located on the left side of the region 341 in the drawing.
  • the light introduction regions 304a to 304d are formed by dividing the side surface 304 at equal intervals in the X-axis direction. As shown in FIG. 10, the light introduction region 304a is a region located below the region 341 in the drawing, the light introduction region 304b is a region located below the region 342 in the drawing, and the light introduction region 304c is The region 343 is a region located on the lower side in the drawing, and the light introduction region 304d is a region located on the lower side of the region 344 in the drawing.
  • the light introduction regions 305a to 305d are formed by dividing the side surface 305 at equal intervals in the Y-axis direction. As illustrated in FIG. 10, the light introduction region 305 a is a region located on the right side of the region 314 in the drawing, the light introduction region 305 b is a region located on the right side of the region 324 in the drawing, and the light introduction region 305 c is the region 334.
  • the light introduction region 305d is a region located on the right side of the region 344 in the drawing. Accordingly, the light introduction regions 305a to 305d are located on the opposite sides of the light introduction regions 303a to 303d, respectively.
  • the light introduction regions 306a to 306d are formed by dividing the side surface 306 at equal intervals in the X-axis direction. As illustrated in FIG. 10, the light introduction region 306 a is a region located on the upper side of the region 311 in the drawing, the light introduction region 306 b is a region located on the upper side of the region 312 in the drawing, and the light introduction region 306 c is the region 313.
  • the light introduction region 306d is a region located on the upper side of the region 314 in the drawing. Therefore, the light introduction regions 306a to 306d are located on the opposite sides of the light introduction regions 304a to 304d, respectively.
  • the light introduction areas 303a to 303d, 304a to 304d, 305a to 305d, and 306a to 306d are set for controlling the light emission position of the lighting device 1, and are usually physically separated by boundaries. It is not something.
  • the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 are devices that irradiate light to the side surfaces 303 to 306 that are light introduction surfaces of the light guide plate 300.
  • As the light sources 411 to 414, 421 to 424, 431 to 434, 441 to 444 for example, LEDs (Light Emitting Diode) are used. LEDs are high light emission efficiency and are excellent light sources from the viewpoint of energy saving. The LED is supplied with electric power from a power source (not shown), and can be individually dimmed by the supplied electric power.
  • the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 emit light independently to the light introduction regions 303a to 303d, 304a to 304d, 305a to 305d, and 306a to 306d, respectively. It is provided so that can be irradiated. As a result, the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 can be dimmed for each of the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344. .
  • the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 correspond to the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344, respectively, from which light is to be extracted. It may be provided, or a group of groups including two or more light sources may be provided. However, in any case, the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 are individually or grouped for each of the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 from which light is to be extracted. It is preferable to be dimmable every time.
  • the light introduction region 306a on the side surface 306 corresponds to the region 311 and a light source 411 is provided in front of the region 306a.
  • the light introduction region 303a on the side surface 303 corresponds to the region 312 and a light source 412 is provided in front of the region 303a.
  • a light introduction region 306c on the side surface 306 corresponds to the region 313, and a light source 413 is provided in front of the region 306c.
  • a light introduction region 305a on the side surface 305 corresponds to the region 314, and a light source 414 is provided in front of the region 305a.
  • a light introduction region 303b on the side surface 303 corresponds to the region 321 and a light source 421 is provided in front of the region 303b.
  • a light introduction region 306b on the side surface 306 corresponds to the region 322, and a light source 422 is provided in front of the region 306b.
  • a light introduction region 305b on the side surface 305 corresponds to the region 323, and a light source 423 is provided in front of the region 305b.
  • a light introduction region 306d on the side surface 306 corresponds to the region 324, and a light source 424 is provided in front of the region 306d.
  • a light introduction region 304a on the side surface 304 corresponds to the region 331, and a light source 431 is provided in front of the region 304a.
  • the light introduction region 303c on the side surface 303 corresponds to the region 332, and a light source 432 is provided in front of the region 303c.
  • a light introduction region 304c on the side surface 304 corresponds to the region 333, and a light source 433 is provided in front of the region 304c.
  • a light introduction region 305c on the side surface 305 corresponds to the region 334, and a light source 434 is provided in front of the region 305c.
  • the light introduction region 303d on the side surface 303 corresponds to the region 341, and a light source 441 is provided in front of the region 303d.
  • a light introduction region 304b on the side surface 304 corresponds to the region 342, and a light source 442 is provided in front of the region 304b.
  • a light introduction region 305d on the side surface 305 corresponds to the region 343, and a light source 443 is provided in front of the region 305d. Further, the light introduction region 304d on the side surface 304 corresponds to the region 344, and a light source 444 is provided in front of the region 304d.
  • the dimming of the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 only needs to change at least the intensity of light emission. Therefore, as the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444, those that can normally be turned off are used, but they can be used if they are not completely extinguished and can adjust the brightness. It is.
  • the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 are connected to a power source (not shown) so that light can be emitted with a desired brightness by adjusting the supplied power.
  • the lighting device 1 is configured as described above. Therefore, in use, the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 corresponding to the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 from which light is to be extracted have a desired brightness. Select to emit light.
  • the light source 411 when light is to be extracted from the light extraction surface 301 in the region 311, the light source 411 is caused to emit light.
  • the light introduction region 306a on the side surface 306 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 306a.
  • the introduced light is extracted from the light extraction surface 301 in the region 311.
  • the light source 412 when light is to be extracted from the light extraction surface 301 in the region 312, the light source 412 is caused to emit light.
  • the light introduction region 303a of the side surface 303 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 303a.
  • the introduced light is guided through the region 311, reaches the region 312, and is extracted from the light extraction surface 301 in the region 312.
  • the light source 413 when light is to be extracted from the light extraction surface 301 in the region 313, the light source 413 is caused to emit light.
  • the light introduction region 306c on the side surface 306 is irradiated with light, and the light is introduced into the light guide plate 300 from the light introduction region 306c.
  • the introduced light is extracted from the light extraction surface 301 in the region 313.
  • the light source 414 when light is to be extracted from the light extraction surface 301 in the region 314, the light source 414 is caused to emit light.
  • the light introduction region 305a on the side surface 305 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 305a.
  • the introduced light is extracted from the light extraction surface 301 in the region 314.
  • the light source 421 when light is to be extracted from the light extraction surface 301 in the region 321, the light source 421 is caused to emit light.
  • the light source 421 emits light
  • light is irradiated to the light introduction region 303b of the side surface 303, and light is introduced into the light guide plate 300 from the light introduction region 303b.
  • the introduced light is extracted from the light extraction surface 301 in the region 321.
  • the light source 422 when light is to be extracted from the light extraction surface 301 in the region 322, the light source 422 is caused to emit light.
  • the light introduction region 306b of the side surface 306 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 306b.
  • the introduced light is guided through the region 312, reaches the region 322, and is extracted from the light extraction surface 301 in the region 322.
  • the light source 423 when light is to be extracted from the light extraction surface 301 in the region 323, the light source 423 is caused to emit light.
  • the light introduction region 305b of the side surface 305 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 305b.
  • the introduced light is guided through the region 324, reaches the region 323, and is extracted from the light extraction surface 301 in the region 323.
  • the light source 424 when light is to be extracted from the light extraction surface 301 in the region 324, the light source 424 is caused to emit light.
  • the light introduction region 306d on the side surface 306 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 306d.
  • the introduced light is guided through the region 314, reaches the region 324, and is extracted from the light extraction surface 301 in the region 324.
  • the light source 431 when light is to be extracted from the light extraction surface 301 in the region 331, the light source 431 is caused to emit light.
  • the light introduction region 304a of the side surface 304 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 304a.
  • the introduced light is guided through the region 341, reaches the region 331, and is extracted from the light extraction surface 301 in the region 331.
  • the light source 432 when light is to be extracted from the light extraction surface 301 in the region 332, the light source 432 is caused to emit light.
  • the light source 432 emits light
  • light is irradiated to the light introduction region 303c of the side surface 303, and light is introduced into the light guide plate 300 from the light introduction region 303c.
  • the introduced light is guided through the region 331, reaches the region 332, and is extracted from the light extraction surface 301 in the region 332.
  • the light source 433 when light is to be extracted from the light extraction surface 301 in the region 333, the light source 433 is caused to emit light.
  • the light introduction region 304c on the side surface 303 is irradiated with light, and the light is introduced into the light guide plate 300 from the light introduction region 304c.
  • the introduced light is guided through the region 343, reaches the region 333, and is extracted from the light extraction surface 301 in the region 333.
  • the light source 434 when light is to be extracted from the light extraction surface 301 in the region 334, the light source 434 is caused to emit light.
  • the light introduction region 305c on the side surface 305 is irradiated with light, and the light is introduced into the light guide plate 300 from the light introduction region 305c.
  • the introduced light is extracted from the light extraction surface 301 in the region 334.
  • the light source 441 when light is to be extracted from the light extraction surface 301 in the region 341, the light source 441 is caused to emit light.
  • the light introduction region 303d on the side surface 303 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 303d.
  • the introduced light is extracted from the light extraction surface 301 in the region 341.
  • the light source 442 when light is to be extracted from the light extraction surface 301 in the region 342, the light source 442 is caused to emit light.
  • the light introduction region 304b of the side surface 304 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 304b.
  • the introduced light is extracted from the light extraction surface 301 in the region 342.
  • the light source 443 when light is to be extracted from the light extraction surface 301 in the region 343, the light source 443 is caused to emit light.
  • the light introduction region 305d on the side surface 305 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 305d.
  • the introduced light is guided through the region 344, reaches the region 343, and is extracted from the light extraction surface 301 in the region 343.
  • the light source 444 when light is to be extracted from the light extraction surface 301 in the region 344, the light source 444 is caused to emit light.
  • the light introduction region 304d of the side surface 304 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 304d.
  • the introduced light is extracted from the light extraction surface 301 in the region 344.
  • one or a group of light sources 411 to 414 and 421 is provided for one region 311 to 314, 321 to 324, 331 to 334, and 341 to 344.
  • 424, 431 to 434, 441 to 444 are allocated, and the assigned areas 311 to 314 and 321 are simply adjusted by dimming the light source 411 to 414, 421 to 424, 431 to 434, and 441 to 444.
  • Light can be selectively extracted from the light extraction surfaces 301 in ⁇ 324, 331 ⁇ 334, 341 ⁇ 344.
  • the selective light extraction is easy. Further, since the assignment of the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 is simple, the configuration of the lighting device 1 can be simplified. Furthermore, the amount of light to be taken out can be easily adjusted by adjusting the brightness of light emission of the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444.
  • local dimming can be easily realized because light can be selectively extracted from the light extraction surface 301 in the desired regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344. it can.
  • the present invention may be further modified.
  • the shape of the light guide plate 300 the light extraction surface 301 and the back surface 302 do not necessarily have to be parallel.
  • the shape of the main surface of the light guide plate 300 may not be rectangular.
  • the thickness of the light guide plate 300 may be non-uniform as necessary.
  • each of the side surfaces 303 to 306 which are light introduction surfaces may be a flat surface or an uneven surface having unevenness.
  • unevenness such as a lens or a prism may be formed in order to increase the light introduction efficiency.
  • the guided light can be converted into parallel light.
  • parallel light the diffusion of light can be prevented more stably, so that the phenomenon that light is guided to a region other than the desired region can be prevented stably.
  • the guided light can be intentionally diffused. It is preferable from the viewpoint of preventing eyeballs to diffuse the guided light to a predetermined degree.
  • the eyeball refers to a periodic light and dark pattern derived from the arrangement of the light sources, which occurs in the vicinity of the light introduction surface of the light extraction surface.
  • the installation interval of the light sources tends to be widened, and an eyeball tends to be generated near the light introduction surface.
  • the regions 311 to 314 are formed.
  • 321 to 324, 331 to 334, and 341 to 344 are anisotropic light extraction regions, but may be made anisotropic light extraction regions by other means.
  • the direction of the virtual axis for each of the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344, and the light introduction region corresponding to each of the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 may be further changed.
  • a light-shielding part between adjacent areas as needed.
  • the entire region of the light guide plate may not be an anisotropic light extraction region. Therefore, in a part of the light guide plate, a region having a light extraction pattern for extracting light in any light guide direction on one or both of the light extraction surface and the back surface, so that light in any light guide direction is not extracted. A region where both the extraction surface and the back surface are smooth surfaces may be provided. However, at least a plurality of regions of the light guide are set as anisotropic light extraction regions.
  • the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 of the light guide plate 300 are preferably divided at equal intervals in both the X-axis direction and the Y-axis direction as in the above-described embodiment. , It does not have to be divided at equal intervals. When not divided at equal intervals, the area of the light extraction surface in each region is different. In that case, it is preferable to adjust the amount of light emitted from the light source corresponding to each region.
  • the number of regions of the light guide plate and the number of rows and columns when dividing into a matrix are not limited to the numbers in the above-described embodiment.
  • the numbers a and b described above are used. It is preferable that b satisfies 2a + 2b ⁇ a ⁇ b.
  • the light guide plate is divided into a ⁇ b regions in a matrix of a rows and b columns as viewed from the light extraction direction as described above, more than half of the a ⁇ b regions are different.
  • the isotropic light extraction region is preferable. By having anisotropy in the region from which light is extracted, a larger number of sections can be realized.
  • At least one light introduction region corresponds to one region of the light guide plate.
  • the number of light introducing regions is equal to or greater than the number of regions of the light guide plate.
  • two or more light introduction regions may be assigned to one region of the light guide plate.
  • the lighting device may include components other than the light source and the light guide plate.
  • an optical sheet may be provided. If the example of an optical sheet is given, a condensing sheet will be mentioned.
  • the condensing sheet is usually provided on the light extraction surface side of the light guide plate.
  • the light extracted from the light extraction surface tends to have different light components for each region depending on the light guide direction in the light guide plate. That is, the extracted light includes light having a wide light emission angle in the X-axis direction and light having a wide light emission angle in the Y-axis direction, and both tend to be different for each region. Therefore, if a light collecting sheet is provided in the illumination device, the difference in the light output angle can be reduced by aligning the light output direction of the extracted light.
  • Such a light collecting sheet examples include UTE-1 (manufactured by Miraitech), BEF (manufactured by 3M), and the like.
  • UTE-1 manufactured by Miraitech
  • BEF manufactured by 3M
  • the optical sheet examples include a diffusion sheet.
  • a diffusion sheet When a diffusion sheet is provided between the light guide plate and the light collecting sheet, moire can be hardly generated.
  • a diffusion sheet is provided on the side opposite to the light guide plate of the light collecting sheet, a sudden change in front luminance can be suppressed and the screen glare can be suppressed if the observation angle of the observer changes. it can.
  • a recursive optical sheet having a polarization separation function may be provided for the purpose of improving the front luminance.
  • a reflection sheet such as a white reflection sheet may be provided on the back surface of the light guide plate.
  • FIG. 11 is a front view schematically showing a state in which the illumination device according to the second embodiment of the present invention is viewed from the light extraction surface side in the Z-axis direction.
  • the same reference numerals as those in FIGS. 9 and 10 indicate the same elements as those in FIGS. 9 and 10.
  • the illumination device 2 according to the second embodiment of the present invention includes one light guide plate 300 and light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444.
  • the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 of the light guide plate 300 have different anisotropic directions, and the regions 311 to 314, 321 to 324 have different orientations.
  • one or both of the light extraction surface 301 and the back surface 302 in the regions 312, 313, 323, 324, 331, 334, 341, 342 are guided in parallel with the X-axis direction.
  • a pattern that functions as a light extraction pattern and functions as a light diffusion prevention pattern does not function as a light extraction pattern for light guided parallel to the Y-axis direction.
  • light guided in parallel to the X-axis direction is extracted from the light extraction surface 301 and guided in parallel to the Y-axis direction. Light is guided along the Y-axis direction without being extracted.
  • one or both of the light extraction surface 301 and the back surface 302 in the regions 311, 314, 321, 322, 333, 343, and 344 is light extraction for light guided parallel to the Y-axis direction.
  • a pattern that functions as a pattern and does not function as a light extraction pattern for light guided parallel to the X-axis direction, but functions as a light diffusion prevention pattern is formed. Therefore, in the regions 311, 314, 321, 322, 332, 333, 343, and 344, light guided in parallel to the Y-axis direction is extracted from the light extraction surface 301 and guided in parallel to the X-axis direction. Light is guided along the X-axis direction without being extracted.
  • the light introduction region 306a on the side surface 306 corresponds to the region 311 and the light source 411 is provided in front of the region 306a.
  • the light introduction region 303a on the side surface 303 corresponds to the region 312 and a light source 412 is provided in front of the region 303a.
  • the light introduction region 305a on the side surface 305 corresponds to the region 313, and a light source 413 is provided in front of the region 305a.
  • a light introduction region 306d on the side surface 306 corresponds to the region 314, and a light source 414 is provided in front of the region 306d.
  • a light introduction region 304a on the side surface 304 corresponds to the region 321 and a light source 421 is provided in front of the region 304a.
  • a light introduction region 306b on the side surface 306 corresponds to the region 322, and a light source 422 is provided in front of the region 306b.
  • a light introduction region 303b on the side surface 303 corresponds to the region 323, and a light source 423 is provided in front of the region 303b.
  • a light introduction region 305b on the side surface 305 corresponds to the region 324, and a light source 424 is provided in front of the region 305b.
  • the light introduction region 303c on the side surface 303 corresponds to the region 331, and a light source 431 is provided in front of the region 303c.
  • a light introduction region 304b on the side surface 303 corresponds to the region 332, and a light source 432 is provided in front of the region 304b.
  • a light introduction region 306c on the side surface 306 corresponds to the region 333, and a light source 433 is provided in front of the region 306c.
  • a light introduction region 305c on the side surface 305 corresponds to the region 334, and a light source 434 is provided in front of the region 305c.
  • the light introduction region 303d on the side surface 303 corresponds to the region 341, and a light source 441 is provided in front of the region 303d.
  • a light introduction region 305d on the side surface 305 corresponds to the region 342, and a light source 442 is provided in front of the region 305d.
  • the light introduction region 304c on the side surface 304 corresponds to the region 343, and a light source 443 is provided in front of the region 304c. Further, the light introduction region 304d on the side surface 304 corresponds to the region 344, and a light source 444 is provided in front of the region 304d.
  • the lighting device 2 is configured as described above. Therefore, in use, the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 corresponding to the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 from which light is to be extracted have a desired brightness. Select to emit light. Accordingly, in the same manner as the illumination device 1 according to the first embodiment, the corresponding regions 311 to 314, 321 to 324, and 331 from the emitted light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 are provided. The light is guided to 334 to 341 to 344, and the light is extracted from the light extraction surfaces 301 in the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344.
  • the illuminating device 2 which concerns on 2nd embodiment of this invention can be used similarly to the illuminating device 1 which concerns on 1st embodiment, and the same advantage is acquired. Moreover, you may change and implement the illuminating device 2 which concerns on 2nd embodiment of this invention similarly to the illuminating device 1 which concerns on 1st embodiment.
  • the region 332 and the region 333 of the light guide plate 300 are adjacent to each other, and the direction of the imaginary axis is parallel to the Y-axis direction.
  • the full width at half maximum of the light source 432 corresponding to the region 332 is wide, part of the light that should be extracted from the light extraction surface 301 in the region 332 is also guided to the region 333, and the light extraction surface 301 in the region 333 is obtained.
  • light leakage is a phenomenon in the light leakage.
  • a condensing member such as a lens in the region 304b of the side surface 304 corresponding to the region 332 so that the light introduced from the region 304b which is a light introduction region is close to parallel light.
  • a lens or the like it is preferable to attach a lens or the like to the light source 432 so that the light emitted from the light source 432 approaches parallel light.
  • a light shielding portion may be provided between the region 332 and the region 333.
  • FIG. 12 is a front view schematically showing a state in which the illumination device according to the third embodiment of the present invention is viewed from the light extraction surface side in the Z-axis direction.
  • the same reference numerals as those in FIGS. 9 to 11 denote the same elements as in FIGS.
  • the illumination device 3 according to the third embodiment of the present invention includes one light guide plate 300 and light sources 411 to 416, 421 to 426, and 431 to 436.
  • the light guide plate 300 has three rows in the X-axis direction in which the size in the X-axis direction of the light guide plate 300 is longer than the size in the Y-axis direction. , Divided in six rows in the Y-axis direction at equal intervals, the anisotropic directions in the regions 311 to 316, 321 to 326, 331 to 336 of the light guide plate 300 are different, and the regions 311 to 316, 321 to 326 , 331 to 336 and the light introduction regions 303a to 303c, 304a to 304f, 305a to 305c, and 306a to 306f, and the light sources corresponding to the regions 311 to 316, 321 to 326, 331 to 336 Except that the positions of 411 to 416, 421 to 426, and 431 to 436 are different, it is the same as the illumination device 1 according to the first embodiment.
  • one or both of the light extraction surface 301 and the back surface 302 in the regions 312, 314, 321, 326, 333 and 335 are guided by light guided in parallel in the X-axis direction.
  • a pattern that functions as a light extraction pattern and does not function as a light extraction pattern for light guided parallel to the Y-axis direction but functions as a light diffusion prevention pattern. Accordingly, in the regions 312, 314, 321, 326, 333, and 335, light guided in parallel to the X-axis direction is extracted from the light extraction surface 301, and light guided in parallel to the Y-axis direction is not extracted. The light is guided along the Y-axis direction.
  • one or both of the light extraction surface 301 and the back surface 302 in the regions 311, 313, 315, 316, 322, 323, 324, 325, 331, 332, 334, 336 are guided in parallel with the Y-axis direction.
  • a pattern that functions as a light extraction pattern and functions as a light diffusion prevention pattern without functioning as a light extraction pattern for light guided parallel to the X-axis direction is formed.
  • the light guided in parallel to the Y-axis direction is extracted from the light extraction surface 301, and the X-axis Light guided in parallel to the direction is guided along the X-axis direction without being extracted.
  • the side surfaces 303 to 306 which are light introduction surfaces of the light guide plate 300 have at least one location corresponding to each of the regions 311 to 316, 321 to 326 and 331 to 336 where light is to be extracted. There are light introduction regions provided one by one.
  • the light introduction regions 303a to 303c are formed by dividing the side surface 303 at equal intervals in the Y-axis direction. As shown in FIG. 12, the light introduction region 303a is a region located on the left side of the region 311 in the drawing, the light introduction region 303b is a region located on the left side of the region 321 in the drawing, and the light introduction region 303c is a region 331. This is an area located on the left side of FIG.
  • the light introduction regions 304a to 304f are formed by dividing the side surface 304 at equal intervals in the X-axis direction. As shown in FIG. 12, the light introduction region 304a is a region located below the region 331 in the drawing, the light introduction region 304b is a region located below the region 332 in the drawing, and the light introduction region 304c is The region 333 is a region located on the lower side in the drawing, the light introduction region 304d is a region located on the lower side of the region 334 in the drawing, and the light introduction region 304e is a region located on the lower side of the region 335 in the drawing. The light introduction region 304f is a region located below the region 336 in the drawing.
  • the light introduction regions 305a to 305c are formed by dividing the side surface 305 at equal intervals in the Y-axis direction. 12, the light introduction region 305a is a region located on the right side of the region 316 in the drawing, the light introduction region 305b is a region located on the right side of the region 326 in the drawing, and the light introduction region 305c is a region 336. It is the area
  • the light introduction regions 306a to 306f are formed by dividing the side surface 306 at equal intervals in the X-axis direction. As shown in FIG. 12, the light introduction region 306a is a region located on the upper side of the region 311 in the drawing, the light introduction region 306b is a region located on the upper side of the region 312 in the drawing, and the light introduction region 306c is the region 313.
  • the light introduction region 306d is a region located above the region 314 in the figure, and the light introduction region 306e is a region located above the region 315 in the figure, and the light introduction region.
  • Reference numeral 306f denotes an area located above the area 316 in the drawing. Accordingly, the light introduction regions 306a to 306f are located on the opposite sides of the light introduction regions 304a to 304f, respectively.
  • the light introduction region 306a on the side surface 306 corresponds to the region 311 and the light source 411 is provided in front of the region 306a.
  • the light introduction region 303a on the side surface 303 corresponds to the region 312 and a light source 412 is provided in front of the region 303a.
  • a light introduction region 306c on the side surface 306 corresponds to the region 313, and a light source 413 is provided in front of the region 306c.
  • a light introduction region 305a on the side surface 305 corresponds to the region 314, and a light source 414 is provided in front of the region 305a.
  • a light introduction region 306e on the side surface 306 corresponds to the region 315, and a light source 415 is provided in front of the region 306e.
  • a light introduction region 306f on the side surface 306 corresponds to the region 316, and a light source 416 is provided in front of the region 306f.
  • a light introduction region 303b on the side surface 303 corresponds to the region 321 and a light source 421 is provided in front of the region 303b.
  • a light introduction region 306b on the side surface 306 corresponds to the region 322, and a light source 422 is provided in front of the region 306b.
  • a light introduction region 304c on the side surface 304 corresponds to the region 323, and a light source 423 is provided in front of the region 304c.
  • a light introduction region 306d on the side surface 306 corresponds to the region 324, and a light source 424 is provided in front of the region 306d.
  • a light introduction region 304e on the side surface 304 corresponds to the region 325, and a light source 425 is provided in front of the region 304e.
  • a light introduction region 305b on the side surface 305 corresponds to the region 326, and a light source 426 is provided in front of the region 305b.
  • a light introduction region 304a on the side surface 304 corresponds to the region 331, and a light source 431 is provided in front of the region 304a.
  • the light introduction region 304b on the side surface 304 corresponds to the region 332, and a light source 432 is provided in front of the region 304b.
  • the light introduction region 303c on the side surface 303 corresponds to the region 333, and a light source 433 is provided in front of the region 303c.
  • a light introduction region 304d on the side surface 304 corresponds to the region 334, and a light source 434 is provided in front of the region 304d.
  • a light introduction region 305c on the side surface 305 corresponds to the region 335, and a light source 435 is provided in front of the region 305c.
  • the light introduction region 304f on the side surface 304 corresponds to the region 336, and a light source 436 is provided in front of the region 304f.
  • the lighting device 3 is configured as described above. Accordingly, in use, the light sources 411 to 416, 421 to 426, and 431 to 436 corresponding to the regions 311 to 316, 321 to 326, and 331 to 336 from which light is to be extracted are selectively emitted with desired brightness. As a result, in the same manner as the illumination device 1 according to the first embodiment, the emitted light sources 411 to 416, 421 to 426, 431 to 436 are changed to the corresponding regions 311 to 316, 321 to 326, 331 to 336. Light is guided, and light is extracted from the light extraction surface 301 in the regions 311 to 316, 321 to 326, and 331 to 336.
  • the illuminating device 3 which concerns on 3rd embodiment of this invention can be used similarly to the illuminating devices 1 and 2 which concern on 1st embodiment and 2nd embodiment, and the same advantage is acquired. Moreover, you may change and implement the illuminating device 3 which concerns on 3rd embodiment of this invention similarly to the illuminating devices 1 and 2 which concern on 1st embodiment and 2nd embodiment.
  • FIG. 13 is a perspective view schematically showing an illumination apparatus according to the fourth embodiment of the present invention.
  • FIG. 14 is an exploded perspective view schematically showing an exploded state of the illumination device according to the fourth embodiment of the present invention.
  • the illuminating device 4 according to the fourth embodiment of the present invention includes a multi-layer light guide plate 700 in which two light guide plates 500 and 600 having the same size are stacked, and light sources 812 to 816, 821. , 824, 825, 836, 911, 922, 923, 926, 931 to 935.
  • the multilayer light guide plate 700 is a member in which the light guide plate 500 and the light guide plate 600 are stacked. As shown in FIG. 14, each of the light guide plate 500 and the light guide plate 600 has a rectangular plate shape.
  • the light guide plate 500 has a light extraction surface 501 and a back surface 502 located on the opposite side of the light extraction surface 501 as its main surface.
  • the light guide plate 500 has four side surfaces 503 to 506 at the ends of the light extraction surface 501 and the back surface 502, of which the side surfaces 503 and 506 are used as light introduction surfaces.
  • the light guide plate 600 has a light extraction surface 601 and a back surface 602 located on the opposite side of the light extraction surface 601 as its main surface.
  • the light guide plate 600 has four side surfaces 603 to 606 at the ends of the light extraction surface 601 and the back surface 602, and the side surfaces 603 and 606 are used as light introduction surfaces.
  • the light guide plate 500 and the light guide plate 600 are stacked such that the back surface 502 of the light guide plate 500 and the light extraction surface 601 of the light guide plate 600 face each other, thereby forming a multilayer light guide plate 700.
  • the thickness direction of the multilayer light guide plate 700 is defined as the Z-axis direction.
  • the direction parallel to one side of the rectangle of the light extraction surface 501 is defined as the X-axis direction
  • the direction perpendicular to the X-axis direction is defined as the Y-axis direction.
  • the light extraction surface 501 and the back surface 502 of the light guide plate 500 and the light extraction surface 601 and the back surface 602 of the light guide plate 600 are all surfaces perpendicular to the Z-axis direction.
  • the side surface 503 and the side surface 505 of the light guide plate 500 and the side surface 603 and the side surface 605 of the light guide plate 600 are surfaces perpendicular to the X-axis direction, and the side surface 504 and the side surface 506 of the light guide plate 500 and the side surface 604 and the side surface of the light guide plate 600.
  • Reference numeral 606 denotes a plane perpendicular to the Y-axis direction. Furthermore, it is assumed that the light extraction direction from the light extraction surface 501 and the light extraction surface 601 is parallel to the Z-axis direction.
  • the light guide plate 500 and the light guide plate 600 are each divided into 18 regions in a matrix of 3 rows and 6 columns as viewed from the light extraction direction (in FIG. 14, the light extraction surface side in the Z-axis direction). . Specifically, as shown in FIG. 14, it is divided into three rows at equal intervals in the X-axis direction, and is divided into six columns at equal intervals in the Y-axis direction.
  • the light guide plate 500 has regions 511 to 516, 521 to 526, and 531 to 536 in three rows in the X-axis direction and six columns in the Y-axis direction.
  • the light guide plate 600 has regions 611 to 616, 621 to 626, and 631 to 636 in three rows in the X-axis direction and six columns in the Y-axis direction. However, the regions 511 to 516, 521 to 526, 531 to 536 and the regions 611 to 616, 621 to 626, and 631 to 636 are set to control the position where light is extracted. It does not have to be physically separated by disconnection or the like.
  • FIG. 15 shows the light guide plate 500 and the light source for irradiating light on the side surfaces 503 and 506 of the light guide plate 500 as viewed from the light extraction surface side in the Z-axis direction in the illumination device 4 according to the fourth embodiment of the present invention.
  • FIG. 15 the same reference numerals as those in FIGS. 13 and 14 denote the same elements as those in FIGS.
  • the areas 512 to 516, 521 to 525, and 531 to 536 are all anisotropic light extraction areas.
  • the positions of the regions 514, 524, 525, and 536, which are anisotropic light extraction regions, are compared with other anisotropic light extraction regions in which light introduced from the corresponding light introduction regions into the light guide plate 500 has different virtual axis directions.
  • the position is adjusted so as to reach the regions 514, 524, 525, and 536 after being guided through.
  • the positions of the regions 514, 524, 525, and 536, which are anisotropic light extraction regions indicate that the light introduced into the light guide plate 500 from the corresponding light introduction region is parallel to the direction of the virtual axis.
  • the position is adjusted so as to reach the region 514, 524, 525, 536 without passing through the anisotropic light extraction region.
  • one or both of the light extraction surface 501 and the back surface 502 in the regions 514, 525, and 536 of the light guide plate 500 function as a light extraction pattern for light guided parallel to the X-axis direction.
  • the light guided parallel to the Y-axis direction does not function as a light extraction pattern, but a pattern that functions as a light diffusion prevention pattern is formed. Therefore, in the regions 514, 525, and 536, the light guided in parallel to the X-axis direction is extracted from the light extraction surface 501, and the light guided in parallel to the Y-axis direction is not extracted and is along the Y-axis direction. The light is guided.
  • one or both of the light extraction surface 501 and the back surface 502 in the regions 512, 513, 515, 516, 521 to 524, 531 to 535 of the light guide plate 500 is directed to the light guided in parallel in the Y-axis direction.
  • a pattern that functions as a light extraction pattern and does not function as a light extraction pattern for light guided parallel to the X-axis direction is formed. Therefore, in the regions 512, 513, 515, 516, 521 to 524, 531 to 535, light guided in parallel to the Y-axis direction is extracted from the light extraction surface 501 and guided in parallel to the X-axis direction. Light is guided along the X-axis direction without being extracted.
  • region 511 and the region 526 are regions where both the light extraction surface 501 and the back surface 502 are smooth planes. In these regions 511 and 526, neither the light guided in parallel to the X-axis direction nor the light guided in parallel to the Y-axis direction is extracted from the light extraction surface 501, and the X-axis direction and the Y-axis direction respectively. The light is guided along.
  • the irradiated light is the regions 511 to 516, 521 to 526, and 531 to 536 and extracted from the light extraction surface 501.
  • the light introduced from the side surfaces 503 and 506 that are the light introduction surfaces of the light guide plate 500 is used as partial regions 512 to 516, 521, and 524 of the light guide plate 500.
  • the light is extracted from the light extraction surface 501 at 525 and 536. Therefore, as shown in FIG. 15, the side surfaces 503 and 506 have at least one light introduction region corresponding to each of the regions 512 to 516, 521, 524, 525 and 536 from which light is to be extracted. .
  • the light introduction regions 503a to 503c are formed by dividing the side surface 503 at equal intervals in the Y-axis direction. As shown in FIG. 15, the light introduction region 503a is a region located on the left side of the region 511 in the drawing, the light introduction region 503b is a region located on the left side of the region 521 in the drawing, and the light introduction region 503c is a region 531. This is an area located on the left side of FIG.
  • the light introduction regions 506a to 506f are formed by dividing the side surface 506 at equal intervals in the X-axis direction. As shown in FIG. 15, the light introduction region 506 a is a region located on the upper side of the region 511 in the drawing, the light introduction region 506 b is a region located on the upper side of the region 512 in the drawing, and the light introduction region 506 c is the region 513.
  • the light introduction region 506d is a region located above the region 514 in the drawing, and the light introduction region 506e is a region located above the region 515 in the figure, and the light introduction region.
  • Reference numeral 506f denotes an area located above the area 516 in the drawing.
  • FIG. 16 shows the light guide plate 600 and the light source that irradiates light to the side surfaces 603 and 606 of the light guide plate 600 as viewed from the light extraction surface side in the Z-axis direction in the illumination device 4 according to the fourth embodiment of the present invention.
  • FIG. 16 the same reference numerals as those in FIGS. 13 to 15 denote the same elements as those in FIGS.
  • the regions 611 to 616, 622 to 626 and 631 to 635 are all anisotropic light extraction regions.
  • the positions of the regions 623, 626, 631 to 635, which are anisotropic light extraction regions are compared with other anisotropic light extraction regions in which light introduced from the corresponding light introduction regions into the light guide plate 500 has different virtual axis directions.
  • the position is adjusted so as to reach the regions 623, 626, 631 to 635 after being guided through.
  • the positions of the regions 623, 626, 631 to 635 which are anisotropic light extraction regions are set so that the light introduced into the light guide plate 500 from the corresponding light introduction region is parallel to the direction of the virtual axis.
  • the position is adjusted so as to reach the regions 623, 626, 631 to 635 without passing through the anisotropic light extraction region.
  • one or both of the light extraction surface 601 and the back surface 602 in the regions 611 to 616, 622, 624, 625, and 633 of the light guide plate 600 is directed to the light guided in parallel in the X-axis direction.
  • Functions as a light extraction pattern and does not function as a light extraction pattern for light guided in parallel to the Y-axis direction, but forms a pattern that functions as a light diffusion prevention pattern. Therefore, in the regions 611 to 616, 622, 624, 625, and 633, light guided in parallel to the X-axis direction is extracted from the light extraction surface 601 and light guided in parallel to the Y-axis direction is not extracted. The light is guided along the Y-axis direction.
  • one or both of the light extraction surface 601 and the back surface 602 in the regions 623, 626, 631, 632, 634, and 635 of the light guide plate 600 is light extraction for light guided parallel to the Y-axis direction.
  • a pattern that functions as a pattern and does not function as a light extraction pattern for light guided parallel to the X-axis direction, but functions as a light diffusion prevention pattern is formed. Therefore, in the regions 623, 626, 631, 632, 634, and 635, light guided in parallel to the Y-axis direction is extracted from the light extraction surface 601, and light guided in parallel to the X-axis direction is not extracted. The light is guided along the X-axis direction.
  • region 621 and the region 636 are regions in which both the light extraction surface 601 and the back surface 602 are smooth planes. In these areas 621 and 636, neither the light guided in parallel to the X-axis direction nor the light guided in parallel to the Y-axis direction is extracted from the light extraction surface 601, and the X-axis direction and the Y-axis direction respectively. The light is guided along.
  • the light introduced from the side surfaces 603 and 606 that are the light introduction surfaces of the light guide plate 600 is used as part of the regions 611, 622, 623, 626 of the light guide plate 600.
  • the light is extracted from the light extraction surface 501 at 631 to 635. Therefore, as shown in FIG. 16, the side surfaces 603 and 606 have at least one light introduction region corresponding to each of the regions 611, 622, 623, 626, 631 to 635 from which light is to be extracted. .
  • the light introduction regions 603a to 603c are formed by dividing the side surface 603 at equal intervals in the Y-axis direction.
  • the light introduction region 603a is a region located on the left side of the region 611 in the drawing
  • the light introduction region 603b is a region located on the left side of the region 621 in the drawing
  • the light introduction region 603c is a region 631. This is an area located on the left side of FIG.
  • the light introduction regions 606a to 606f are formed by dividing the side surface 606 at equal intervals in the X-axis direction. As illustrated in FIG. 16, the light introduction region 606 a is a region located on the upper side of the region 611 in the drawing, the light introduction region 606 b is a region located on the upper side of the region 612 in the drawing, and the light introduction region 606 c is the region 613.
  • the light introduction region 606d is a region located above the region 614 in the figure, and the light introduction region 606e is a region located above the region 615 in the figure, and is a light introduction region.
  • Reference numeral 606f denotes an area located above the area 616 in the drawing.
  • the light introduction regions 503a to 503c and 506a to 506f of the light guide plate 500 and the light introduction regions 603a to 603c and 606a to 606f of the light guide plate 600 are set for controlling the light emission position of the illumination device 4. Yes, usually not physically separated by boundaries.
  • the light sources 812 to 816, 821, 824, 825, and 836 shown in FIG. 15 are devices that irradiate light to the side surfaces 503 and 506 that are light introduction surfaces of the light guide plate 500. From the viewpoint of realizing local dimming, the light sources 812 to 816, 821, 824, 825 and 836 are provided so that the light introduction regions 503 a to 503 c and 506 a to 506 f can be irradiated with light independently. As a result, the light sources 812 to 816, 821, 824, 825, and 836 can be dimmed for each of the light extraction regions 512 to 516, 521, 524, 525, and 536.
  • the light introduction region 506b on the side surface 506 corresponds to the region 512, and a light source 812 is provided in front of the region 506b.
  • a light introduction region 506c on the side surface 506 corresponds to the region 513, and a light source 813 is provided in front of the region 506c.
  • a light introduction region 503a on the side surface 503 corresponds to the region 514, and a light source 814 is provided in front of the region 503a.
  • a light introduction region 506e on the side surface 506 corresponds to the region 515, and a light source 815 is provided in front of the region 506e.
  • a light introduction region 506f on the side surface 506 corresponds to the region 516, and a light source 816 is provided in front of the region 506f.
  • a light introduction region 506a on the side surface 506 corresponds to the region 521, and a light source 821 is provided in front of the region 506a.
  • a light introduction region 506d on the side surface 506 corresponds to the region 524, and a light source 824 is provided in front of the region 506d.
  • a light introduction region 503b on the side surface 503 corresponds to the region 525, and a light source 825 is provided in front of the region 503b.
  • the light introduction region 503c on the side surface 503 corresponds to the region 536, and a light source 836 is provided in front of the region 503c.
  • the 16 are devices that irradiate light to the side surfaces 603 and 606 which are light introduction surfaces of the light guide plate 600.
  • the light introduction region 603a on the side surface 603 corresponds to the region 611, and a light source 911 is provided in front of the region 603a.
  • a light introduction region 603b on the side surface 603 corresponds to the region 622, and a light source 922 is provided in front of the region 603b.
  • a light introduction region 606c on the side surface 606 corresponds to the region 623, and a light source 923 is provided in front of the region 606c.
  • a light introduction region 606f on the side surface 606 corresponds to the region 626, and a light source 926 is provided in front of the region 606f.
  • a light introduction region 606a on the side surface 606 corresponds to the region 631, and a light source 931 is provided in front of the region 606a.
  • a light introduction region 606b on the side surface 606 corresponds to the region 632, and a light source 932 is provided in front of the region 606b.
  • a light introduction region 603c on the side surface 603 corresponds to the region 633, and a light source 933 is provided in front of the region 603c.
  • a light introduction region 606d on the side surface 606 corresponds to the region 634, and a light source 934 is provided in front of the region 606d.
  • the light introduction region 606e on the side surface 606 corresponds to the region 635, and a light source 935 is provided in front of the region 606e.
  • the lighting device 4 is configured as described above.
  • the light extraction surface 501 of the light guide plate 500 functions as the light extraction surface of the multilayer light guide plate 700. Accordingly, in use, the light sources 812 to 816, 821, 824, 825, and 836 and the light sources 911, 922, 923, 926, and 931 to 935 are provided for each of the regions 511 to 516, 521 to 526, and 531 to 536 from which light is to be extracted. Selectively emit light at a desired brightness.
  • the light source 911 when light is to be extracted from the light extraction surface 501 in the region 511, the light source 911 is caused to emit light.
  • the light source 911 emits light
  • light is irradiated to the light introduction region 603a of the side surface 603 of the light guide plate 600, and light is introduced into the light guide plate 600 from the light introduction region 603a.
  • the introduced light is extracted from the light extraction surface 601 in the region 611 of the light guide plate 600.
  • the extracted light is applied to the back surface 502 of the region 511 of the light guide plate 500, passes through the region 511, and is extracted from the light extraction surface 501.
  • the light source 812 when light is to be extracted from the light extraction surface 501 in the region 512, the light source 812 is caused to emit light.
  • the light source 812 emits light
  • light is irradiated to the light introduction region 506b on the side surface 506 of the light guide plate 500, and light is introduced into the light guide plate 500 from the light introduction region 506b.
  • the introduced light is extracted from the light extraction surface 501 in the region 512 of the light guide plate 500.
  • the light source 813 when light is to be extracted from the light extraction surface 501 in the region 513, the light source 813 is caused to emit light.
  • the light source 813 emits light
  • light is irradiated to the light introduction region 506c on the side surface 506 of the light guide plate 500, and light is introduced into the light guide plate 500 from the light introduction region 506c.
  • the introduced light is extracted from the light extraction surface 601 in the region 513 of the light guide plate 500.
  • the light source 814 when light is to be extracted from the light extraction surface 501 in the region 514, the light source 814 is caused to emit light.
  • the light source 814 emits light
  • light is irradiated to the light introduction region 503a on the side surface 503 of the light guide plate 500, and light is introduced into the light guide plate 500 from the light introduction region 503a.
  • the introduced light is guided through the regions 511 to 513 of the light guide plate 500, reaches the region 514, and is extracted from the light extraction surface 501 in the region 514.
  • the light source 815 when light is to be extracted from the light extraction surface 501 in the region 515, the light source 815 is caused to emit light.
  • the light source 815 emits light
  • light is irradiated to the light introduction region 506e on the side surface 506 of the light guide plate 500, and light is introduced into the light guide plate 500 from the light introduction region 506e.
  • the introduced light is extracted from the light extraction surface 501 in the region 515 of the light guide plate 500.
  • the light source 816 when light is to be extracted from the light extraction surface 501 in the region 516, the light source 816 is caused to emit light.
  • the light source 816 emits light
  • light is irradiated to the light introduction region 506f on the side surface 506 of the light guide plate 500, and light is introduced into the light guide plate 500 from the light introduction region 506f.
  • the introduced light is extracted from the light extraction surface 501 in the region 516 of the light guide plate 500.
  • the light source 821 when light is to be extracted from the light extraction surface 501 in the region 521, the light source 821 is caused to emit light.
  • the light source 821 emits light
  • light is irradiated to the light introduction region 506a on the side surface 506 of the light guide plate 500, and light is introduced into the light guide plate 500 from the light introduction region 506a.
  • the introduced light is guided through the region 511 of the light guide plate 500, reaches the region 521, and is extracted from the light extraction surface 501 in the region 521.
  • the light source 922 when light is to be extracted from the light extraction surface 501 in the region 522, the light source 922 is caused to emit light.
  • the light source 922 emits light
  • light is applied to the light introduction region 603b of the side surface 603 of the light guide plate 600, and light is introduced into the light guide plate 600 from the light introduction region 603b.
  • the introduced light is guided through the region 621 of the light guide plate 600, reaches the region 622, and is extracted from the light extraction surface 601 in the region 622.
  • the extracted light is applied to the back surface 502 of the region 522 of the light guide plate 500, passes through the region 522, and is extracted from the light extraction surface 501.
  • the light source 923 when light is to be extracted from the light extraction surface 501 in the region 523, the light source 923 is caused to emit light.
  • the light source 923 emits light
  • light is applied to the light introduction region 606c on the side surface 606 of the light guide plate 600, and light is introduced into the light guide plate 600 from the light introduction region 606c.
  • the introduced light is guided through the region 613 of the light guide plate 600, reaches the region 623, and is extracted from the light extraction surface 601 in the region 623.
  • the extracted light is applied to the back surface 502 of the region 523 of the light guide plate 500, passes through the region 523, and is extracted from the light extraction surface 501.
  • the light source 824 when light is to be extracted from the light extraction surface 501 in the region 524, the light source 824 is caused to emit light.
  • the light source 824 emits light
  • light is irradiated to the light introduction region 506d of the side surface 506 of the light guide plate 500, and light is introduced into the light guide plate 600 from the light introduction region 506d.
  • the introduced light is guided through the region 514 of the light guide plate 500, reaches the region 524, and is extracted from the light extraction surface 501 in the region 524.
  • the light source 825 when light is to be extracted from the light extraction surface 501 in the region 525, the light source 825 is caused to emit light.
  • the light introduction region 503b on the side surface 503 of the light guide plate 500 is irradiated with light, and the light is introduced into the light guide plate 500 from the light introduction region 503b.
  • the introduced light is guided through the regions 521 to 524 of the light guide plate 500, reaches the region 525, and is extracted from the light extraction surface 501 in the region 525.
  • the light source 926 when light is to be extracted from the light extraction surface 501 in the region 526, the light source 926 is caused to emit light.
  • the light introduction region 606f of the side surface 606 of the light guide plate 600 is irradiated with light, and the light is introduced into the light guide plate 600 from the light introduction region 606f.
  • the introduced light is guided through the region 616 of the light guide plate 600, reaches the region 626, and is extracted from the light extraction surface 601 in the region 626.
  • the extracted light is applied to the back surface 502 of the region 526 of the light guide plate 500, passes through the region 526, and is extracted from the light extraction surface 501.
  • the light source 931 when light is to be extracted from the light extraction surface 501 in the region 531, the light source 931 is caused to emit light.
  • the light introduction region 606a on the side surface 606 of the light guide plate 600 is irradiated with light, and the light is introduced into the light guide plate 600 from the light introduction region 606a.
  • the introduced light is guided through the region 611 and the region 621 of the light guide plate 600, then reaches the region 631, and is extracted from the light extraction surface 601 in the region 631.
  • the extracted light is applied to the back surface 502 of the region 531 of the light guide plate 500, passes through the region 531, and is extracted from the light extraction surface 501.
  • the light source 932 when light is to be extracted from the light extraction surface 501 in the region 532, the light source 932 is caused to emit light.
  • the light introduction region 606b on the side surface 606 of the light guide plate 600 is irradiated with light, and the light is introduced into the light guide plate 600 from the light introduction region 606b.
  • the introduced light is guided through the region 612 and the region 622 of the light guide plate 600, then reaches the region 632, and is extracted from the light extraction surface 601 in the region 632.
  • the extracted light is applied to the back surface 502 of the region 532 of the light guide plate 500, passes through the region 532, and is extracted from the light extraction surface 501.
  • the light source 933 when light is to be extracted from the light extraction surface 501 in the region 533, the light source 933 is caused to emit light.
  • the light introduction region 603c on the side surface 603 of the light guide plate 600 is irradiated with light, and the light is introduced into the light guide plate 600 from the light introduction region 603c.
  • the introduced light is guided through the region 631 and the region 632 of the light guide plate 600, then reaches the region 633, and is extracted from the light extraction surface 601 in the region 633.
  • the extracted light is applied to the back surface 502 of the region 533 of the light guide plate 500, passes through the region 533, and is extracted from the light extraction surface 501.
  • the light source 934 when light is to be extracted from the light extraction surface 501 in the region 534, the light source 934 is caused to emit light.
  • the light introduction region 606d on the side surface 606 of the light guide plate 600 is irradiated with light, and the light is introduced into the light guide plate 600 from the light introduction region 606d.
  • the introduced light is guided through the region 614 and the region 624 of the light guide plate 600, reaches the region 634, and is extracted from the light extraction surface 601 in the region 634.
  • the extracted light is applied to the back surface 502 of the region 534 of the light guide plate 500, passes through the region 534, and is extracted from the light extraction surface 501.
  • the light source 935 when light is to be extracted from the light extraction surface 501 in the region 535, the light source 935 is caused to emit light.
  • the light introduction region 606e on the side surface 606 of the light guide plate 600 is irradiated with light, and the light is introduced into the light guide plate 600 from the light introduction region 606e.
  • the introduced light is guided through the region 615 and the region 625 of the light guide plate 600, then reaches the region 635, and is extracted from the light extraction surface 601 in the region 635.
  • the extracted light is applied to the back surface 502 of the region 535 of the light guide plate 500, passes through the region 535, and is extracted from the light extraction surface 501.
  • the light source 836 when light is to be extracted from the light extraction surface 501 in the region 536, the light source 836 is caused to emit light.
  • the light introduction region 503c on the side surface 503 of the light guide plate 500 is irradiated with light, and the light is introduced into the light guide plate 500 from the light introduction region 503c.
  • the introduced light is guided through the regions 531 to 535 of the light guide plate 500, reaches the region 536, and is extracted from the light extraction surface 501 in the region 536.
  • the illumination device 4 according to the fourth embodiment of the present invention can also easily realize local dimming with a simple configuration as in the first to third embodiments. Further, the same advantages as those of the lighting device 1 according to the first to third embodiments can be obtained. Furthermore, the illuminating device 4 according to the fourth embodiment of the present invention may be modified and implemented in the same manner as the illuminating device 1 according to the first to third embodiments.
  • the two light guide plates 500 and the light guide plate 600 are stacked.
  • three or more light guide plates may be stacked.
  • the size and shape of the overlapping light guide plates are usually the same, but may be different.
  • the number of superimposed light guide plates is n (n is an integer of 2 or more), and the overlapped light guide plates are a rows and b columns (a and b are integers of 2 or more, respectively) when viewed from the light extraction direction. .)) Is preferably divided into a ⁇ b regions, preferably 2 ⁇ n ⁇ a + 2 ⁇ n ⁇ b ⁇ a ⁇ b.
  • an optical sheet or the like may be provided between the overlapped light guide plates.
  • FIG. 17 is a perspective view schematically showing an illumination apparatus according to the fifth embodiment of the present invention.
  • the same reference numerals as those in FIGS. 13 to 16 denote the same elements as those in FIGS.
  • the lighting device 5 according to the fifth embodiment of the present invention is a combination of four lighting devices that can extract light from each region in the same manner as the lighting device 4 according to the fourth embodiment. Have a configuration.
  • the portions 5A to 5D of the cut illuminating device 5 are respectively the fourth embodiment of the present invention.
  • the light can be extracted from the light extraction surface 501 in each region in the same manner as the illumination device 4 according to the embodiment.
  • the portion 5A of the illuminating device 5 light can be extracted for each of the regions 511 to 516, 521 to 526, and 531 to 536 by dimming the corresponding light source.
  • the portions 5A to 5D of the illumination device 5 are usually plane-symmetric with respect to the plane that cuts the illumination device 5.
  • the illumination device 5 according to the fifth embodiment of the present invention can also easily implement local dimming with a simple configuration as in the first to fourth embodiments. Further, the same advantages as those of the lighting device 1 according to the first to fourth embodiments can be obtained. Furthermore, according to the illuminating device according to the fifth embodiment of the present invention, it is possible to realize the illuminating device 5 capable of dimming independently in each of a large number of areas of 72 locations of 6 divisions ⁇ 12 divisions. More precise local dimming is possible.
  • the illumination device 5 according to the fifth embodiment of the present invention may be modified and implemented in the same manner as the illumination devices 1 to 4 according to the first to fourth embodiments.
  • the multilayer light guide plate 700 according to the fifth embodiment may be formed separately for each of the portions 5A to 5D of the lighting device 5, or may be formed integrally. .
  • Light guide plate materials and manufacturing method Hereinafter, the material and manufacturing method of the light guide plate will be described.
  • the material of the light guide plate include glass and transparent resin.
  • the material of a light-guide plate may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the transparent resin examples include propylene-ethylene copolymer, polystyrene (PS), (meth) acrylic ester-aromatic vinyl compound copolymer, polyethylene terephthalate, terephthalic acid-ethylene glycol-cyclohexanedimethanol copolymer.
  • examples thereof include a coalescence, a polycarbonate, a methacrylic resin, and a resin having an alicyclic structure (for example, a norbornene resin).
  • resins having an alicyclic structure, methacrylic resins, and (meth) acrylic acid ester-aromatic vinyl compound copolymer resins are preferable, and resins having an alicyclic structure are particularly preferable.
  • a resin having an alicyclic structure has good fluidity of the molten resin. Therefore, for example, when the light guide plate is manufactured by injection molding, the cavity of the mold can be filled with a low injection pressure, and a weld line is hardly generated. Moreover, when manufacturing a light-guide plate by extrusion molding, for example, there is little thickness nonuniformity at the time of shaping
  • the resin having an alicyclic structure examples include polymer resins having an alicyclic structure in the main chain or side chain. Among them, a polymer resin having an alicyclic structure in the main chain is particularly suitable because it has good mechanical strength and heat resistance.
  • the alicyclic structure is preferably a saturated cyclic hydrocarbon structure.
  • the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less.
  • the ratio of the repeating unit having an alicyclic structure in the polymer resin having an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, and 90% by weight or more. More preferably.
  • Examples of the resin having an alicyclic structure include a ring-opening polymer or a ring-opening copolymer of a norbornene monomer or a hydrogenated product thereof; an addition polymer or an addition copolymer of a norbornene monomer; Polymers of monocyclic olefin monomers or their hydrogenated products; Polymers of cyclic conjugated diene monomers or their hydrogenated products; Vinyl alicyclic hydrocarbon monomers Or a hydrogenated product thereof; a polymer of a vinyl aromatic hydrocarbon monomer or a hydrogenated product of an unsaturated bond part containing an aromatic ring of the copolymer; and the like.
  • hydrogenated products of norbornene-based monomer polymers and hydrogenated products of unsaturated bonds including aromatic rings of vinyl aromatic hydrocarbon-based monomer polymers have mechanical strength and heat resistance. It is particularly suitable because of its excellent properties.
  • methacrylic resins are excellent in transparency, strong and resistant to cracking, and therefore can be suitably used.
  • the methacrylic resin include a methacrylic resin molding material containing 80% by weight or more of a methyl methacrylate polymer specified in JIS K6717.
  • methacrylic resins specified in this standard methacrylic resins having a specified classification code 100-120 having a Vicat softening point temperature of 96 to 100 ° C. and a melt flow rate of 8 to 16 have appropriate fluidity and strength. Is preferred.
  • An antioxidant may be included in the light guide plate molding material in order to prevent oxidative degradation and thermal degradation during molding.
  • the antioxidant include a phenolic antioxidant, a phosphorus antioxidant, and a sulfur antioxidant. Of these, phenolic antioxidants are preferred, and alkyl-substituted antioxidants are particularly preferred.
  • an antioxidant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. The amount of the antioxidant is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, preferably 2 parts by weight or less, more preferably 1 part by weight with respect to 100 parts by weight of the resin component. It is as follows.
  • a light resistance stabilizer may be included in order to improve the light resistance of the light guide plate.
  • the light resistance stabilizer include hindered amine light resistance stabilizer (HALS) and benzoate light resistance stabilizer. Among these, hindered amine light resistance stabilizers are preferred.
  • a light-resistant stabilizer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the light-resistant stabilizer is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, particularly preferably 0.05 parts by weight or more, preferably 2 parts by weight with respect to 100 parts by weight of the resin component.
  • the amount is not more than parts by weight, more preferably not more than 1 part by weight, particularly preferably not more than 0.5 parts by weight.
  • the molding material for the light guide plate may further contain an optional additive as necessary.
  • optional additives include stabilizers such as heat stabilizers, ultraviolet absorbers and near infrared absorbers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments; fluorescent brighteners; Examples thereof include an antistatic agent and a light diffusing agent.
  • arbitrary additives may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the dimensions of the main surface of the light guide plate are usually set according to the size of the effective surface of the liquid crystal panel of the liquid crystal display device in which the light guide plate is used.
  • the thickness of the light guide plate (in the embodiment described above, the dimension in the Z-axis direction) is usually equal to or less than the height of the light source (in the above-described embodiment, the dimension in the Z-axis direction).
  • the thickness of the light guide plate is preferably thin from the viewpoint of reducing the product weight.
  • the thickness of the light guide plate is preferably 0.5 mm to 5 mm from the viewpoint of imparting the shape of the light introduction surface and moldability.
  • the thickness of the light guide plate becomes excessively thin, the pressure rise during injection molding becomes remarkable, and the light guide plate that can be molded by the molding machine of the same size tends to be limited to a small one.
  • the thickness of the light guide plate becomes excessively thick, it takes time for the cooling process at the time of manufacture, and productivity may deteriorate.
  • the light guide plate for example, one having a refractive index of 1.533 (critical angle 40.7 °) can be used.
  • the light guide plate When the light guide plate is made of resin, the light guide plate may cause a dimensional change (elongation or warpage) due to moisture absorption.
  • the size of the light guide plate is large (for example, 40 inches)
  • the relative positional relationship between the light source and the light introduction surface changes in the lighting device due to the change in the size, and the light utilization efficiency decreases or local dimming occurs. It may cause problems.
  • the water absorption rate of the light guide plate is preferably set to 0.5% or less, more preferably 0.25% or less, and further preferably 0.05% or less.
  • resins that can realize this include cyclic polyolefin (COP), polystyrene, polycarbonate (PC), and the like.
  • the water absorption rate in this specification is determined according to JIS K7209 A method, after drying a test piece having a thickness of 3 mm and a disk shape having a diameter of 50 mm or a square having a side of 50 mm at 50 ° C. for 24 hours. It can be determined from the increase in weight when it is allowed to cool in a filter and immersed in water at 23 ° C. for 24 hours.
  • the method of manufacturing the light guide plate is preferably formed integrally from the viewpoint of productivity.
  • Examples of production methods that can be integrally formed in this way include injection molding and extrusion molding.
  • a flat light guide plate may be prepared in advance, and a pattern may be formed later on the surface of the light guide plate.
  • a method of forming a pattern on the surface of the flat light guide plate for example, a method by cutting using a tool capable of forming a pattern of a desired shape, a mold having a desired shape by applying a curable resin
  • the method include a method of curing in a transferred state, a method of forming by hot pressing, and a vacuum forming method.
  • the pattern may be formed simultaneously with the formation of the light guide plate.
  • profile extrusion can be performed using a profile die having a shape corresponding to a desired pattern.
  • a pattern may be formed by embossing after extrusion.
  • a casting mold capable of forming a desired pattern shape may be prepared, and a light guide plate may be produced by casting using this casting mold, and the pattern may be formed simultaneously with the molding of the light guide plate.
  • a mold capable of forming a desired pattern may be used.
  • the mold used for the mold shape transfer to the photo-curing resin, the extrusion process using a modified die, the embossing, the casting, or the injection molding is, for example, a metal member of a mold using a tool capable of forming a desired pattern. It can be obtained by cutting, or electroforming on a member having a desired shape.
  • a sheet corresponding to each region of the light guide plate may be prepared, and the light guide plate may be manufactured by combining and joining these sheets in a tile shape.
  • the light source examples include an LED, a laser diode, a cold cathode tube (CCFL, EEFL), a hot cathode tube (HCFL), and the like.
  • LEDs are preferable from the viewpoints of luminous efficiency, high-speed light control, and the like.
  • the LED include a blue-yellow pseudo white light emitting diode, a three-color (RGB) type white light emitting diode, and the like.
  • the LED for example, a surface-mounted LED, a side-emitting LED, or a bullet-type LED is used.
  • the dimension of the light emitting part of the LED can be set according to the light distribution characteristic of the LED. Usually, the width and height of the light emitting part of the LED are made equal. However, when the LED has an elliptical or oval cross section, the LED having a different width and height may be used. Good.
  • a general high dome type LED has a Lambertian light distribution and emits a relatively large divergent light having a half-value angle (full-width at half maximum) of about 120 °.
  • the LED has a full width at half maximum of preferably 35 ° or less, more preferably 30 ° or less, and particularly preferably 15 ° or less.
  • LEDs that emit as close to parallel light as possible are preferred.
  • the full width at half maximum of the LED is preferably 90 ° or more, more preferably 100 ° or more, and 110 °. The above is particularly preferable.
  • the anisotropic light extraction region works as a light diffusion pattern for preventing light diffusion when light enters from the light guide direction is shown, and an LED having a wide full width at half maximum can be sufficiently used.
  • a light source you may use combining light emitting elements, such as LED, and optical elements, such as a lens.
  • light emitting elements such as LED
  • optical elements such as a lens.
  • a light source that emits light at a full width at half maximum within the above-described preferable range can be realized by combining the LED and the lens.
  • a light source capable of dimming may be obtained by combining a light source that always emits light and an optical shutter (for example, a liquid crystal panel) provided between the light source and the light introduction surface.
  • an optical shutter for example, a liquid crystal panel
  • the illumination device of the present invention is suitable as a backlight device that supplies light to a liquid crystal panel of a liquid crystal display device, for example.
  • the liquid crystal panel is a member in which, for example, an alignment film, a transparent electrode, a glass plate, a color filter, a polarizing plate, and the like are stacked and arranged at appropriate positions with a liquid crystal layer interposed therebetween.
  • the lighting device of the present invention is usually provided on the back side of the liquid crystal panel so that light can be supplied to the liquid crystal panel from the back side.
  • thermoplastic alicyclic structure-containing resin (trade name ZEONOR 1060R, manufactured by Nippon Zeon Co., Ltd., refractive index 1.53, water absorption 0.05%) was prepared.
  • the light guide plate was divided into a matrix of 4 rows and 4 columns, and 16 regions were set. The dimensions of each region were 50 mm long and 50 mm wide.
  • a V-shaped groove pattern as shown in FIG. 1 was formed on the light extraction surface in the divided region by fine processing using a single crystal diamond tool (vertical angle 110 °).
  • the groove pitch of the V-shaped groove pattern was 70 ⁇ m.
  • the V-shaped groove patterns are arranged in parallel along the same direction in the same region.
  • region was made to be the same as that of the light-guide plate 300 demonstrated in 1st embodiment.
  • the back surface on the opposite side to the light extraction surface of the light guide plate was a smooth flat surface.
  • An LED manufactured by OSRAM, LWM673-N2R2-5K8L was prepared as a light source. Forty LEDs were installed on each of the four side surfaces of the light guide plate at intervals of 5 mm. The LEDs were wired so that they could be turned on and off every 10 consecutive groups.
  • FIG. 18 is a cross-sectional view schematically showing the vicinity of the light source of the illumination device configured in the present embodiment.
  • the light source 12 is installed at a position in front of each side surface 11 of the light guide plate 10.
  • the light guide plate 10 was wrapped with a reflection sheet (trade name E6SV, manufactured by Toray Industries, Inc.) 17 from the end 14 of the light extraction surface 13 and the end 16 of the back surface 15 to the light source 12. Further, the reflection sheet 18 is brought into close contact with the back surface 15 of the light guide plate 10.
  • two prism sheets (trade name BEF3, manufactured by 3M) and a diffusion sheet (trade name LIGHTUP GM3, manufactured by Kimoto) were stacked in this order.
  • the two prism sheets were designed such that the lens axes were orthogonal to each other.
  • an illumination device having a light guide plate and a light source was prepared.
  • the light guide plate of the present invention can be arbitrarily applied to optical applications, and is particularly suitable for an illumination device capable of surface light emission.
  • the illumination device of the present invention is suitable for use in a liquid crystal display device.
  • the lighting device of the present invention can also be used for applications other than the backlight of a liquid crystal display device, for example, as a lighting device such as a show window.

Abstract

Disclosed is a light-guiding plate (200) comprising a light introduction face (203) that introduces light; a light extraction face (201) wherein light that is introduced by the light introduction face (203) is extracted; and a rear face (202) that is located opposite to the light extraction face (201). The light-guiding plate (200) is partitioned into a plurality of regions (205, 206), wherein the plurality of regions (205, 206) from among the partitioned regions are respectively anisotropic light extraction regions with higher light extraction efficiencies of light that is guided in parallel to prescribed virtual axes (X, Y) than light extraction efficiencies of light that is guided in a direction that is orthogonal to the virtual axes (X, Y). The location of at least one site (205) from among the anisotropic light extraction regions is location adjusted such that light that is introduced from the corresponding light introducing region (203) within the light-guiding plate (200) arrives at the anisotropic light extraction region (205) via another anisotropic light extraction region (206) with a different virtual axis direction therefrom.

Description

導光板及び照明装置Light guide plate and lighting device
 本発明は、導光板およびそれを備えた照明装置に関する。 The present invention relates to a light guide plate and a lighting device including the same.
 液晶表示装置は、液晶テレビ、パーソナルコンピュータ、携帯電話等の表示部として広く使用されている。液晶表示装置は、通常、液晶パネルと、前記液晶パネルを背面から照らすバックライト装置と呼ばれる照明装置とを備える。 Liquid crystal display devices are widely used as display units for liquid crystal televisions, personal computers, mobile phones and the like. The liquid crystal display device usually includes a liquid crystal panel and an illumination device called a backlight device that illuminates the liquid crystal panel from the back.
 バックライト装置としては、例えば、導光板と、前記導光板へ側方から光を照射する光源とを組み合わせた照明装置が挙げられる。このようなタイプの照明装置について記載された文献を挙げると、例えば、特許文献1が挙げられる。このタイプの照明装置では、光源から照射された光が導光板の側面に位置する光導入面から導光板内に導入され、導入された光が導光板のおもて面又は裏面に位置する光取出面から取り出されることにより、面発光が行われるようになっている。 Examples of the backlight device include a lighting device that combines a light guide plate and a light source that irradiates light to the light guide plate from the side. When the literature described about such a type of illuminating device is given, patent document 1 will be mentioned, for example. In this type of lighting device, light emitted from a light source is introduced into a light guide plate from a light introduction surface located on a side surface of the light guide plate, and the introduced light is light located on the front surface or the back surface of the light guide plate. By emitting from the extraction surface, surface light emission is performed.
特開2009-224030号公報JP 2009-224030 A
 近年、液晶表示装置の分野においてはローカルディミングが注目されている。ローカルディミングとは、例えば、液晶パネルの全面に均等に光を照射するのではなく、所望の領域にだけ光を照射したり、領域ごとに光の照射強度を変化させたりする技術である。ローカルディミングにより、液晶表示装置の画質の向上(例えば、コントラストの向上、残像の低減等)及び省エネルギーを実現できるようになることが期待されている。 In recent years, local dimming has attracted attention in the field of liquid crystal display devices. Local dimming is, for example, a technique that does not irradiate light evenly over the entire surface of the liquid crystal panel, but irradiates light only in a desired region or changes the light irradiation intensity for each region. Local dimming is expected to improve the image quality of liquid crystal display devices (for example, improve contrast and reduce afterimages) and save energy.
 そこで、前記タイプの照明装置でも、ローカルディミングを実現する技術の開発が望まれる。前記タイプの照明装置でローカルディミングを実現するには、導光板の所望の領域における光取出面から選択的に光を取り出すことが要求され、他の領域からは光を取り出さないようにしたり取出量を抑制したりすることが要求される。ところが、従来の多くの導光板は、その全領域から均等に光を取り出すことを目的として開発されてきたものであり、所望の領域から選択的に光を取り出すことは困難であった。 Therefore, it is desired to develop a technique for realizing local dimming even in the above-described type of lighting device. In order to realize local dimming with the above-mentioned type of lighting device, it is required to selectively extract light from a light extraction surface in a desired region of the light guide plate, and to prevent light from being extracted from other regions. Is required to be suppressed. However, many conventional light guide plates have been developed for the purpose of extracting light evenly from the entire region, and it has been difficult to selectively extract light from a desired region.
 また、特許文献1記載の技術では縦方向及び横方向の2方向から導光板に光を照射して、照射された光が交差する領域の輝度を調整している。しかし、特許文献1記載の技術では1箇所の領域に対して少なくとも2個の光源が必要となり、構成が複雑となる傾向がある。また、交差させる2個の光源のそれぞれの発光強度を制御することになるため、制御も複雑になる傾向がある。 In the technique described in Patent Document 1, light is irradiated onto the light guide plate from two directions, ie, the vertical direction and the horizontal direction, and the luminance of the region where the irradiated light intersects is adjusted. However, in the technique described in Patent Document 1, at least two light sources are required for one region, and the configuration tends to be complicated. In addition, since the emission intensity of each of the two light sources that intersect is controlled, the control tends to be complicated.
 本発明は上記の課題に鑑みて創案されたものであって、所望の領域における光取出面から選択的に光を取り出せる導光板、並びに、前記導光板を用いて単純な構成でローカルディミングを実現できる照明装置を提供することを目的とする。 The present invention was devised in view of the above problems, and a light guide plate that can selectively extract light from a light extraction surface in a desired region, and local dimming with a simple configuration using the light guide plate. An object of the present invention is to provide a lighting device that can be used.
 上述した課題を解決し、目的を達成するために、本発明によれば、以下の〔1〕~〔17〕が提供される。
 〔1〕 光を導入する光導入面と、前記光導入面から導入された光が取り出される光取出面と、前記光取出面の反対側に位置する裏面とを有する導光板であって、
 前記導光板は、光の取出方向から見て複数領域に区分され、
 区分された領域のうち複数の領域が、それぞれ、前記光取出面と平行な所定の仮想軸と平行に導光される光の取出効率が、前記仮想軸と交差する方向に導光される光の取出効率よりも高い異方性光取出領域であり、
 前記光導入面が、前記異方性光取出領域それぞれに対応して少なくとも1箇所ずつ設けられた光導入領域を有し、
 前記異方性光取出領域のうち少なくとも1箇所の位置は、対応する前記光導入領域から前記導光板内に導入された光が、前記仮想軸の方向が異なる他の異方性光取出領域を通って当該異方性光取出領域に到達するように位置調整されている、導光板。
 〔2〕 前記導光板が、光の取出方向から見てa行b列(a及びbはそれぞれ2以上の整数。)の行列状にa×b箇所の領域に区分され、
 前記a×b箇所の領域のうち半数以上が前記異方性光取出領域となっている、〔1〕記載の導光板。
 〔3〕 前記a及びbが、2a+2b≧a×bを満たす、〔2〕記載の導光板。
 〔4〕 前記導光板が一体形成されている、〔1〕~〔3〕のいずれか一項に記載の導光板。
 〔5〕 前記異方性光取出領域が、その前記光取出面及び前記裏面の少なくとも一方に、当該異方性光取出領域の前記仮想軸と平行に導光される光に対しては当該光を前記異方性光取出領域の光取出面から出光させる光取出パターンとして機能し、当該異方性光取出領域の前記仮想軸と交差する方向に導光される光に対しては当該光が拡散することを防止する光拡散防止パターンとして機能するパターンが形成された領域である、〔1〕~〔4〕のいずれか一項に記載の導光板。
 〔6〕 前記パターンとして、当該パターンを形成された前記異方性光取出領域の前記仮想軸と直交する方向に延在して形成された複数の畝状パターンを有する、〔5〕記載の導光板。
 〔7〕 前記の畝状パターンとして、互いに平行な複数のプリズム様のV溝パターンを有する、〔6〕記載の導光板。
 〔8〕 前記の畝状パターンとして、互いに平行な複数のレンチキュラー溝パターンを有する、〔6〕又は〔7〕記載の導光板。
 〔9〕 〔1〕~〔8〕のいずれか一項に記載の導光板を備える、照明装置。
 〔10〕 前記光導入領域それぞれに独立して光を照射する、前記異方性光取出領域毎に調光可能な光源を備える、〔9〕記載の照明装置。
 〔11〕 2枚以上重ねて設けられた導光板を備え、
 前記導光板は、光を導入する光導入面と、前記光導入面から導入された光が取り出される光取出面と、前記光取出面の反対側に位置する裏面とを有し、光の取出方向から見て複数領域に区分され、
 区分された領域のうち複数の領域が、それぞれ、前記光取出面と平行な所定の仮想軸と平行な方向に導光される光の取出効率が、前記仮想軸と交差する方向に導光される光の取出効率よりも高い異方性光取出領域であり、
 前記光導入面が、光を取り出す前記異方性光取出領域それぞれに対応して少なくとも1箇所ずつ設けられた光導入領域を有し、
 前記異方性光取出領域のうち少なくとも1箇所の位置は、対応する前記光導入領域から前記導光板内に導入された光が、前記仮想軸の方向が異なる他の異方性光取出領域を通って当該異方性光取出領域に到達するように位置調整されていて、
 さらに、前記光導入領域それぞれに独立して光を照射する、前記異方性光取出領域毎に調光可能な光源を備える、照明装置。
 〔12〕 前記導光板が、いずれも光の取出方向から見てa行b列(a及びbはそれぞれ2以上の整数。)の行列状にa×b箇所の領域に区分され、
 前記a×b箇所の領域のうち半数以上が前記異方性光取出領域となっている、〔11〕に記載の照明装置。
 〔13〕 重ねられた前記導光板の数がn枚である場合に、2×n×a+2×n×b≧a×bを満たす、〔12〕記載の照明装置。
 〔14〕 前記導光板の前記異方性光取出領域が、その前記光取出面及び前記裏面の少なくとも一方に、当該異方性光取出領域の前記仮想軸と平行に導光される光に対しては当該光を前記異方性光取出領域の光取出面から出光させる光取出パターンとして機能し、当該異方性光取出領域の前記仮想軸と交差する方向に導光される光に対しては当該光が拡散することを防止する光拡散防止パターンとして機能するパターンが形成された領域である、〔11〕~〔13〕のいずれか一項に記載の照明装置。
 〔15〕 前記パターンとして、当該パターンを形成された前記異方性光取出領域の前記仮想軸と直交する方向に延在して形成された複数の畝状パターンを有する、〔14〕記載の照明装置。
 〔16〕 前記の畝状パターンとして、互いに平行な複数のプリズム様のV溝パターンを有する、〔15〕記載の照明装置。
 〔17〕 前記の畝状パターンとして、互いに平行な複数のレンチキュラー溝パターンを有する、〔15〕又は〔16〕記載の照明装置。
In order to solve the above-described problems and achieve the object, the present invention provides the following [1] to [17].
[1] A light guide plate having a light introduction surface for introducing light, a light extraction surface from which light introduced from the light introduction surface is extracted, and a back surface located on the opposite side of the light extraction surface,
The light guide plate is divided into a plurality of regions as seen from the light extraction direction,
Light that is guided in a direction in which a plurality of regions out of the divided regions are guided in parallel with a predetermined virtual axis parallel to the light extraction surface and intersects the virtual axis. Is an anisotropic light extraction area higher than the extraction efficiency of
The light introduction surface has at least one light introduction region corresponding to each of the anisotropic light extraction regions;
The position of at least one of the anisotropic light extraction regions is such that light introduced from the corresponding light introduction region into the light guide plate passes through another anisotropic light extraction region having a different virtual axis direction. A light guide plate, the position of which is adjusted to reach the isotropic light extraction region.
[2] The light guide plate is divided into a × b regions in a matrix of a rows and b columns (a and b are each an integer of 2 or more) when viewed from the light extraction direction,
The light guide plate according to [1], wherein more than half of the a × b regions are the anisotropic light extraction regions.
[3] The light guide plate according to [2], wherein a and b satisfy 2a + 2b ≧ a × b.
[4] The light guide plate according to any one of [1] to [3], wherein the light guide plate is integrally formed.
[5] For the anisotropic light extraction region, the light is guided to the at least one of the light extraction surface and the back surface in parallel with the virtual axis of the anisotropic light extraction region. Light diffusion that functions as a light extraction pattern for emitting light from the light extraction surface of the extraction region and prevents the light from diffusing with respect to light guided in a direction intersecting the virtual axis of the anisotropic light extraction region The light guide plate according to any one of [1] to [4], wherein the light guide plate is a region where a pattern functioning as a prevention pattern is formed.
[6] The light guide plate according to [5], wherein the light guide plate has a plurality of hook-shaped patterns formed to extend in a direction perpendicular to the virtual axis of the anisotropic light extraction region in which the pattern is formed.
[7] The light guide plate according to [6], wherein the bowl-shaped pattern includes a plurality of prism-like V-groove patterns parallel to each other.
[8] The light guide plate according to [6] or [7], wherein the bowl-shaped pattern includes a plurality of parallel lenticular groove patterns.
[9] An illumination device comprising the light guide plate according to any one of [1] to [8].
[10] The illumination device according to [9], further comprising a light source capable of adjusting light for each of the anisotropic light extraction regions that irradiates light independently to each of the light introduction regions.
[11] A light guide plate provided by stacking two or more sheets,
The light guide plate has a light introduction surface for introducing light, a light extraction surface from which light introduced from the light introduction surface is extracted, and a back surface located on the opposite side of the light extraction surface, and extracts light. Divided into multiple areas as seen from the direction,
A plurality of regions among the divided regions are guided in a direction intersecting with the virtual axis, and light extraction efficiency is guided in a direction parallel to a predetermined virtual axis parallel to the light extraction surface. An anisotropic light extraction area that is higher than the light extraction efficiency
The light introduction surface has light introduction regions provided at least one place corresponding to each of the anisotropic light extraction regions from which light is extracted;
The position of at least one of the anisotropic light extraction regions is such that light introduced from the corresponding light introduction region into the light guide plate passes through another anisotropic light extraction region having a different virtual axis direction. The position is adjusted to reach the isotropic light extraction area,
Furthermore, an illuminating device provided with the light source which can irradiate light to each said light introduction area | region independently and can adjust light for every said anisotropic light extraction area | region.
[12] Each of the light guide plates is divided into a × b regions in a matrix of a rows and b columns (a and b are each an integer of 2 or more) as viewed from the light extraction direction,
The illumination device according to [11], wherein more than half of the a × b regions are the anisotropic light extraction regions.
[13] The illumination device according to [12], wherein when the number of the light guide plates stacked is n, 2 × n × a + 2 × n × b ≧ a × b is satisfied.
[14] The light for the light guided to the anisotropic light extraction region of the light guide plate on at least one of the light extraction surface and the back surface in parallel to the virtual axis of the anisotropic light extraction region. Function as a light extraction pattern for emitting light from the light extraction surface of the anisotropic light extraction region, and the light diffuses for light guided in a direction intersecting the virtual axis of the anisotropic light extraction region. The illumination device according to any one of [11] to [13], wherein the illumination device is a region where a pattern that functions as a light diffusion prevention pattern to be prevented is formed.
[15] The illumination device according to [14], wherein the pattern includes a plurality of hook-shaped patterns formed to extend in a direction orthogonal to the virtual axis of the anisotropic light extraction region where the pattern is formed.
[16] The illumination device according to [15], wherein the bowl-shaped pattern includes a plurality of prism-like V-groove patterns parallel to each other.
[17] The illumination device according to [15] or [16], wherein the bowl-shaped pattern includes a plurality of parallel lenticular groove patterns.
 本発明の導光板によれば、所望の領域における光取出面から選択的に光を取り出せる。本発明の照明装置によれば、単純な構成でローカルディミングを実現できる。 According to the light guide plate of the present invention, light can be selectively extracted from the light extraction surface in a desired region. According to the illumination device of the present invention, local dimming can be realized with a simple configuration.
図1は、異方性光取出領域を有する導光板の一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region. 図2は、導光板内を導光される光が進む様子を説明するため、導光板をY軸方向に垂直な面で切った断面を拡大して模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an enlarged cross section of the light guide plate taken along a plane perpendicular to the Y-axis direction in order to explain how the light guided in the light guide plate travels. 図3は、導光板内を導光される光が進む様子を説明するため、導光板をX軸方向に垂直な面で切った断面を拡大して模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an enlarged cross section of the light guide plate taken along a plane perpendicular to the X-axis direction in order to explain how light guided in the light guide plate travels. 図4は、導光板内を導光される光が進む様子を説明するため、導光板をY軸方向に垂直な面で切った断面を拡大して模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an enlarged cross section of the light guide plate taken along a plane perpendicular to the Y-axis direction in order to explain how the light guided in the light guide plate travels. 図5は、異方性光取出領域を有する導光板の一例を模式的に示す斜視図である。FIG. 5 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region. 図6は、異方性光取出領域を有する導光板の一例を模式的に示す斜視図である。FIG. 6 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region. 図7は、異方性光取出領域を有する導光板の一例を模式的に示す斜視図である。FIG. 7 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region. 図8は、異方性光取出領域を有する導光板の一例を模式的に示す斜視図である。FIG. 8 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region. 図9は本発明の第一実施形態に係る照明装置を模式的に示す斜視図である。FIG. 9 is a perspective view schematically showing the illumination device according to the first embodiment of the present invention. 図10は、本発明の第一実施形態に係る照明装置をZ軸方向の光取出面側から見た様子を模式的に示す正面図である。FIG. 10 is a front view schematically showing the illumination device according to the first embodiment of the present invention as viewed from the light extraction surface side in the Z-axis direction. 図11は本発明の第二実施形態に係る照明装置をZ軸方向の光取出面側から見た様子を模式的に示す正面図である。FIG. 11 is a front view schematically showing a state in which the illumination device according to the second embodiment of the present invention is viewed from the light extraction surface side in the Z-axis direction. 図12は本発明の第三実施形態に係る照明装置をZ軸方向の光取出面側から見た様子を模式的に示す正面図である。FIG. 12 is a front view schematically showing a state in which the illumination device according to the third embodiment of the present invention is viewed from the light extraction surface side in the Z-axis direction. 図13は本発明の第四実施形態に係る照明装置を模式的に示す斜視図である。FIG. 13 is a perspective view schematically showing an illumination apparatus according to the fourth embodiment of the present invention. 図14は、本発明の第四実施形態に係る照明装置を分解した様子を模式的に示す分解斜視図である。FIG. 14 is an exploded perspective view schematically showing an exploded state of the illumination device according to the fourth embodiment of the present invention. 図15は、本発明の第四実施形態に係る照明装置における導光板と、この導光板の側面に光を照射する光源とを、Z軸方向の光取出面側から見た様子を模式的に示す正面図である。FIG. 15 schematically shows a light guide plate in a lighting device according to a fourth embodiment of the present invention and a light source that irradiates light on the side surface of the light guide plate as viewed from the light extraction surface side in the Z-axis direction. FIG. 図16は、本発明の第四実施形態に係る照明装置における導光板と、この導光板の側面に光を照射する光源とを、Z軸方向の光取出面側から見た様子を模式的に示す正面図である。FIG. 16 schematically shows a light guide plate in a lighting device according to a fourth embodiment of the present invention and a light source that irradiates light on the side surface of the light guide plate as viewed from the light extraction surface side in the Z-axis direction. FIG. 図17は、本発明の第五実施形態に係る照明装置を模式的に示す斜視図である。FIG. 17 is a perspective view schematically showing an illumination apparatus according to the fifth embodiment of the present invention. 図18は、実施例において構成した照明装置の光源近傍を模式的に示す断面図である。FIG. 18 is a cross-sectional view schematically showing the vicinity of the light source of the illumination device configured in the example.
 以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下の実施形態及び例示物等に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施できる。
 なお、以下の説明において、構成要素の方向が「平行」及び「直交」とは、特に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。また、ある方向に「沿って」とは、ある方向に「平行に」との意味である。さらに、導光板の各領域の位置の説明で「手前」という場合は当該領域に対応した光導入領域に近い位置をいい、「奥」という場合は当該領域に対応した光導入領域に遠い位置をいう。
Hereinafter, the present invention will be described in detail with reference to embodiments and examples, but the present invention is not limited to the following embodiments and examples, and the claims of the present invention and equivalents thereof. Any change can be made without departing from the scope.
In the following description, the directions of the components are “parallel” and “orthogonal” unless otherwise specified, including errors within a range that does not impair the effects of the present invention, for example, within ± 5 °. May be. Further, “along” in a certain direction means “in parallel” in a certain direction. Furthermore, in the description of the position of each area of the light guide plate, “near” means a position close to the light introduction area corresponding to the area, and “back” means a position far from the light introduction area corresponding to the area. Say.
〔異方性光取出領域〕
 本発明の導光板は、光を導入する光導入面と、光導入面から導入された光が取り出される光取出面と、光取出面の反対側に位置する裏面とを有する。また、本発明の導光板は、「異方性光取出領域」を有する。異方性光取出領域とは、光取出面と平行な所定の仮想軸と平行な方向に導光される光の取出効率が、前記仮想軸と交差する方向に導光される光の取出効率よりも高い領域のことをいう。また、導光板の領域とは、特に断らない限り、光の取出方向から見て区分された領域のことをいう。また、光の取出方向とは、特に断らない限り、導光板の光取出面から取り出された光の進行方向のうち、光の強度が最も大きくなる方向をいう。ただし、一般に導光板において取り出された光の方向は、光取出面とは垂直ではなく、一定の角度を持っている。このため、異なる導光方向から入光して後述するパターンによって取り出された光は、通常は互いに平行ではない。しかしながら、本明細書においては、理解を容易にするため、特に断らない限り、「光の取出方向」を光取出面の法線方向である、Z軸方向として記載する。さらに、導光板を「光の取り出し方向から見て」複数領域に区分するとは、導光板を、光の取出方向と平行な面で、複数の領域に区分することをいう。
[Anisotropic light extraction area]
The light guide plate of the present invention has a light introduction surface for introducing light, a light extraction surface from which light introduced from the light introduction surface is extracted, and a back surface located on the opposite side of the light extraction surface. The light guide plate of the present invention has an “anisotropic light extraction region”. An anisotropic light extraction region is an extraction efficiency of light guided in a direction parallel to a predetermined virtual axis parallel to the light extraction surface, more than the extraction efficiency of light guided in a direction intersecting the virtual axis. It means the high area. Moreover, the area | region of a light-guide plate means the area | region divided seeing from the extraction direction of light unless there is particular notice. In addition, the light extraction direction refers to a direction in which the light intensity is the highest among the traveling directions of the light extracted from the light extraction surface of the light guide plate, unless otherwise specified. However, in general, the direction of light extracted from the light guide plate is not perpendicular to the light extraction surface but has a certain angle. For this reason, the lights that have entered from different light guiding directions and are extracted by a pattern that will be described later are usually not parallel to each other. However, in this specification, for ease of understanding, unless otherwise specified, “light extraction direction” is described as the Z-axis direction, which is the normal direction of the light extraction surface. Further, to divide the light guide plate into a plurality of regions “when viewed from the light extraction direction” means to divide the light guide plate into a plurality of regions on a plane parallel to the light extraction direction.
 さらに、光が導光される方向(以下、適宜「導光方向」という。)とは、特に断らない限り、光の取出方向から見た場合に導光板内で光が導光される方向を指す。したがって、導光方向という場合、特に断らない限り、後述するZ軸方向については問題としない。このため、異方性光取出領域において当該異方性光取出領域の所定の仮想軸と交差する方向は、導光方向を指すため、光取出面と平行な方向であって前記の仮想軸と交差する方向のことを意味する。
 以下、本発明に係る異方性光取出領域について、図面を用いて説明する。
Furthermore, the direction in which light is guided (hereinafter referred to as “light guide direction” as appropriate) refers to the direction in which light is guided in the light guide plate when viewed from the light extraction direction, unless otherwise specified. Point to. Therefore, when referring to the light guide direction, the Z-axis direction described later is not a problem unless otherwise specified. For this reason, in the anisotropic light extraction region, the direction intersecting with the predetermined virtual axis of the anisotropic light extraction region indicates the light guide direction, and therefore is a direction parallel to the light extraction surface and intersecting the virtual axis. Means that.
Hereinafter, an anisotropic light extraction region according to the present invention will be described with reference to the drawings.
 図1は、異方性光取出領域を有する導光板の一例を模式的に示す斜視図である。図1に示すように、本例の導光板100は矩形板状となっている。また、導光板100は、その主面として、光取出面101と、光取出面101の反対側に位置する裏面102とを有する。さらに、導光板100は、光取出面101及び裏面102の端部に、互いに直交する側面103及び側面104を有する。 FIG. 1 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region. As shown in FIG. 1, the light guide plate 100 of this example has a rectangular plate shape. The light guide plate 100 has a light extraction surface 101 and a back surface 102 located on the opposite side of the light extraction surface 101 as its main surface. Furthermore, the light guide plate 100 has side surfaces 103 and 104 that are orthogonal to each other at the ends of the light extraction surface 101 and the back surface 102.
 ここで、導光板100の厚み方向をZ軸方向とする。また、Z軸方向に垂直な面に平行な方向のうち、光取出面101の矩形の一辺に平行な方向をX軸方向とし、前記X軸方向に直交する方向をY軸方向とする。また、光取出面101及び裏面102はいずれもZ軸方向に垂直な面であり、側面103はX軸方向に垂直な面であり、側面104はY軸方向に垂直な面であるとする。さらに、光取出面101からの光の取出方向は、Z軸方向と平行であるとする。なお、光取出面101は後述するようにパターン105を有するため微視的に見ると平坦な平面ではないが、パターン105は寸法が小さいため、巨視的に見た場合には光取出面101は平坦な平面として取り扱うことができる。したがって、光取出面101がZ軸方向に垂直であるとは、光取出面101を巨視的に見た場合の平面がZ軸方向に垂直であることを表す。 Here, the thickness direction of the light guide plate 100 is defined as the Z-axis direction. Of the directions parallel to the plane perpendicular to the Z-axis direction, the direction parallel to one side of the rectangle of the light extraction surface 101 is defined as the X-axis direction, and the direction orthogonal to the X-axis direction is defined as the Y-axis direction. The light extraction surface 101 and the back surface 102 are both surfaces perpendicular to the Z-axis direction, the side surface 103 is a surface perpendicular to the X-axis direction, and the side surface 104 is a surface perpendicular to the Y-axis direction. Furthermore, it is assumed that the light extraction direction from the light extraction surface 101 is parallel to the Z-axis direction. Since the light extraction surface 101 has a pattern 105 as will be described later, it is not a flat plane when viewed microscopically. However, since the pattern 105 has a small size, the light extraction surface 101 is It can be handled as a flat plane. Therefore, the light extraction surface 101 being perpendicular to the Z-axis direction means that a plane when the light extraction surface 101 is viewed macroscopically is perpendicular to the Z-axis direction.
 導光板100において、裏面102、側面103及び側面104は平坦な平面である。他方、光取出面101は、全面に、Y軸方向へ延在して形成された複数の畝状のパターン105を有している。
 図1に示すように、パターン105は互いに平行なプリズム様のV溝パターンとなっている。すなわち、断面がV字形状となる溝が、互いに平行に形成された形状となっている。したがって、パターン105はそれぞれ、Y軸方向と平行な平面からなる斜面106及び斜面107を有する。前記の斜面106及び斜面107は光取出面101(前記のように、巨視的に見た場合には平面である。)に対して互いに反対の向きに傾斜している。また、光取出面101では、斜面106と斜面107とがX軸方向で交互に存在することになる。
In the light guide plate 100, the back surface 102, the side surface 103, and the side surface 104 are flat planes. On the other hand, the light extraction surface 101 has a plurality of bowl-shaped patterns 105 formed extending in the Y-axis direction on the entire surface.
As shown in FIG. 1, the pattern 105 is a prism-like V-groove pattern parallel to each other. That is, the grooves whose cross sections are V-shaped are formed in parallel to each other. Therefore, the pattern 105 has the slope 106 and the slope 107 which consist of a plane parallel to a Y-axis direction, respectively. The slope 106 and the slope 107 are inclined in directions opposite to each other with respect to the light extraction surface 101 (as described above, it is a flat surface when viewed macroscopically). Further, on the light extraction surface 101, the slopes 106 and the slopes 107 are alternately present in the X-axis direction.
 前記の斜面106及び斜面107はそれぞれX軸方向と平行ではない。すなわち、斜面106及び斜面107は、それぞれX軸方向と交差する。したがって、斜面106及び斜面107を有するパターン105は、X軸方向と平行に導光される光に対しては当該光を光出射面101から出光させる光取出パターンとして機能するが、Y軸方向と平行に導光される光に対しては光取出パターンとして機能しないようになっている。このように光の導光方向に応じて光の取出効率が異なるパターンを、適宜「異方性パターン」と呼ぶ。 The slope 106 and the slope 107 are not parallel to the X-axis direction. That is, the slope 106 and the slope 107 each intersect the X-axis direction. Therefore, the pattern 105 having the slope 106 and the slope 107 functions as a light extraction pattern for emitting light from the light exit surface 101 for light guided in parallel with the X-axis direction. It does not function as a light extraction pattern for light guided in parallel. A pattern in which the light extraction efficiency differs depending on the light guide direction is referred to as an “anisotropic pattern” as appropriate.
 図2は、本例における導光板100内を導光される光が進む様子を説明するため、導光板100をY軸方向に垂直な面で切った断面を拡大して模式的に示す断面図である。なお、図2において、図1と同様の符号は、図1と同様の要素を示す。また、図2において、矢印A103は、導光板100内を導光される光のベクトルのうちY軸方向に垂直な成分を示す。図1に示すように、側面103を光導入領域とし、この側面103から導光板100に光A103を導入した場合を想定する。側面103から光A103が導入されると、導入された光A103は図2に示すように光取出面101及び裏面102で内部反射を繰り返しながらX軸方向に沿って導光される。内部反射を繰り返すうち、光A103はパターン105の斜面106又は斜面107に小さい入射角で入射する。内部反射ができない程度に小さい入射角で光A103が斜面106又は斜面107に入射すると、その斜面106又は斜面107から光A103が導光板100の外に取り出される。このようにして、パターン105はX軸方向と平行に導光される光A103に対して光取出パターンとして機能する。
 なお、図2では図中右向きの導光方向で導光される光A103について説明したが、逆に図中左向きの導光方向で導光される光についても、パターン105は同様に光取出パターンとして機能する。
FIG. 2 is a cross-sectional view schematically showing an enlarged cross section of the light guide plate 100 taken along a plane perpendicular to the Y-axis direction in order to explain how light guided in the light guide plate 100 in this example travels. It is. 2, the same reference numerals as those in FIG. 1 indicate the same elements as those in FIG. 1. In FIG. 2, an arrow A <b> 103 indicates a component perpendicular to the Y-axis direction among light vectors guided through the light guide plate 100. As shown in FIG. 1, it is assumed that the side surface 103 is a light introduction region and the light A 103 is introduced from the side surface 103 to the light guide plate 100. When the light A103 is introduced from the side surface 103, the introduced light A103 is guided along the X-axis direction while repeating internal reflection on the light extraction surface 101 and the back surface 102 as shown in FIG. While repeating internal reflection, the light A103 is incident on the slope 106 or slope 107 of the pattern 105 at a small incident angle. When the light A 103 is incident on the inclined surface 106 or the inclined surface 107 at an incident angle that is small enough to prevent internal reflection, the light A 103 is extracted from the inclined surface 106 or the inclined surface 107 to the outside of the light guide plate 100. In this way, the pattern 105 functions as a light extraction pattern for the light A103 guided in parallel with the X-axis direction.
In FIG. 2, the light A103 guided in the right light guide direction in the drawing has been described. Conversely, the pattern 105 similarly applies to the light guided in the left light guide direction in the drawing. Function as.
 図3は、本例における導光板100内を導光される光が進む様子を説明するため、導光板100をX軸方向に垂直な面で切った断面を拡大して模式的に示す断面図である。なお、図3において、図1と同様の符号は、図1と同様の要素を示す。また、図3において、矢印A104は、導光板100内を導光される光のベクトルのうちX軸方向に垂直な成分を示す。図1に示すように、側面104を光導入領域とし、この側面104から導光板100に光A104を導入した場合を想定する。側面104から光A104が導入されると、導入された光A104は図3に示すように光取出面101及び裏面102で内部反射を繰り返しながらY軸方向に沿って導光される。
 ここで、光A104の光ベクトルを、X軸方向に平行なX軸方向成分と、Y軸方向に平行なY軸方向成分と、Z軸方向に平行なZ軸方向成分とに分解する。Y軸方向と平行に導光される光A104では、Y軸方向成分がX軸方向成分及びZ軸方向成分よりも大きい傾向がある。このため、Y軸方向に平行な斜面106及び斜面107に対して、光A104は小さい入射角で入射し難い。したがって、斜面106及び斜面107を有するパターン105は、Y軸方向と平行に導光される光A104に対して光取出パターンとして機能しない。すなわち、パターン105は光A104を取り出す機能を発揮しないか、発揮するとしてもその程度はX軸方向と平行に導光される光A103よりも小さい。
 なお、図3では図中右向きの導光方向で導光される光A104について説明したが、逆に図中左向きの導光方向で導光される光についても、パターン105は同様に光取出パターンとして機能しない。
FIG. 3 is a cross-sectional view schematically showing an enlarged cross section of the light guide plate 100 taken along a plane perpendicular to the X-axis direction in order to explain how light guided in the light guide plate 100 in this example travels. It is. 3, the same reference numerals as those in FIG. 1 denote the same elements as those in FIG. In FIG. 3, an arrow A <b> 104 indicates a component perpendicular to the X-axis direction among light vectors guided through the light guide plate 100. As shown in FIG. 1, it is assumed that the side surface 104 is a light introduction region and the light A 104 is introduced from the side surface 104 to the light guide plate 100. When the light A104 is introduced from the side surface 104, the introduced light A104 is guided along the Y-axis direction while repeating internal reflection on the light extraction surface 101 and the back surface 102 as shown in FIG.
Here, the light vector of the light A104 is decomposed into an X-axis direction component parallel to the X-axis direction, a Y-axis direction component parallel to the Y-axis direction, and a Z-axis direction component parallel to the Z-axis direction. In the light A104 guided in parallel with the Y-axis direction, the Y-axis direction component tends to be larger than the X-axis direction component and the Z-axis direction component. For this reason, it is difficult for the light A104 to enter the inclined surface 106 and the inclined surface 107 parallel to the Y-axis direction at a small incident angle. Therefore, the pattern 105 having the slope 106 and the slope 107 does not function as a light extraction pattern with respect to the light A 104 guided in parallel with the Y-axis direction. That is, even if the pattern 105 does not exhibit the function of extracting the light A104 or exhibits the function, the degree is smaller than the light A103 guided in parallel with the X-axis direction.
In FIG. 3, the light A104 guided in the right light guide direction in the drawing has been described. Conversely, the pattern 105 similarly applies to the light guided in the left light guide direction in the drawing. Does not function as.
 前記のようにパターン105は異方性パターンとして機能するようになっている。このため、導光板100では、X軸方向に平行な導光方向に導光される光A103の取出効率が、X軸方向と交差する方向であるY軸方向に平行な導光方向に導光される光A104の取出効率よりも高くなっている。 As described above, the pattern 105 functions as an anisotropic pattern. Therefore, in the light guide plate 100, the extraction efficiency of the light A103 guided in the light guide direction parallel to the X axis direction is guided in the light guide direction parallel to the Y axis direction, which is a direction intersecting the X axis direction. The extraction efficiency of the light A104 is higher.
 ここで、光取出面101と平行な一本の仮想軸(所定の仮想軸)として、X軸方向に延在するX軸を想定する。そうすると、光A103の導光方向であるX軸方向は、X軸(即ち、光取出面101と平行な所定の仮想軸)と平行な導光方向となる。また、光A104の導光方向であるY軸方向は、光取出面101と平行であって、前記の仮想軸であるX軸と交差する導光方向となる。したがって、導光板100の全領域において、光取出面101と平行な所定の仮想軸(X軸)と平行に導光される光A103の取出効率が、前記仮想軸(X軸)と交差する導光方向(Y軸方向)に導光される光A104の取出効率よりも高いことになる。このように光の取出効率に異方性を有する導光板100の前記領域が、異方性光取出領域に該当する。 Here, an X axis extending in the X axis direction is assumed as one virtual axis (predetermined virtual axis) parallel to the light extraction surface 101. Then, the X-axis direction that is the light guide direction of the light A103 is a light guide direction parallel to the X-axis (that is, a predetermined virtual axis parallel to the light extraction surface 101). The Y-axis direction that is the light guide direction of the light A 104 is parallel to the light extraction surface 101 and is a light guide direction that intersects the X axis that is the virtual axis. Therefore, in the entire region of the light guide plate 100, the extraction efficiency of the light A103 guided in parallel with the predetermined virtual axis (X axis) parallel to the light extraction surface 101 is guided so as to intersect the virtual axis (X axis). This is higher than the extraction efficiency of the light A104 guided in the light direction (Y-axis direction). As described above, the region of the light guide plate 100 having anisotropy in the light extraction efficiency corresponds to the anisotropic light extraction region.
 なお、導光板が複数の異方性光取出領域を有する場合、光の取出効率が高くなる導光方向は、通常、異方性光取出領域ごとに設定される。したがって、前記の仮想軸も、通常、異方性光取出領域ごとに設定されることになる。 In addition, when the light guide plate has a plurality of anisotropic light extraction regions, the light guide direction in which the light extraction efficiency is high is usually set for each anisotropic light extraction region. Therefore, the virtual axis is usually set for each anisotropic light extraction region.
 ところで、前記のパターン105は、Y軸方向に導光される光A104に対して、当該光A104がX軸方向へ拡散することを防止する光拡散防止パターンとして機能する。したがって、前記のパターン105によって、光A104がX軸方向へ広がるようにして導光されることを防止できる。この点について、図面を示して説明する。 By the way, the pattern 105 functions as a light diffusion prevention pattern for preventing the light A104 from being diffused in the X-axis direction with respect to the light A104 guided in the Y-axis direction. Therefore, the pattern 105 can prevent the light A104 from being guided so as to spread in the X-axis direction. This will be described with reference to the drawings.
 図4は、本例における導光板100内を導光される光が進む様子を説明するため、導光板100をY軸方向に垂直な面で切った断面を拡大して模式的に示す断面図である。なお、図4において、図1と同様の符号は、図1と同様の要素を示す。また、図4において、矢印A104は、導光板100内を導光される光のベクトルのうちY軸方向に垂直な成分を示す。Y軸方向と平行に導光される光A104は、前記のように、X軸方向成分及びZ軸方向成分が、Y軸方向成分よりも小さい傾向がある。したがって、斜面106及び斜面107では大部分の光A104が内部反射されることになる。この際、斜面106及び斜面107がそれぞれX軸方向と交差するように傾斜しているため、光A104はX軸方向に広がらないように内部反射することになる。すなわち、光A104が斜面106又は斜面107で内部反射を繰り返すうちに、その光A104のY軸方向成分のベクトルの向きは反転を繰り返すことになる。したがって、Y軸方向と平行に導光される光A104の大部分はX軸方向の一方又は他方に連続して進行し続けることができず、X軸方向に拡散しないようになっている。すなわち、パターン105は、Y軸方向(仮想軸と交差する導光方向)に導光される光A104が、X軸方向(仮想軸と平行な導光方向)に広がって導光されないようにする機能を発揮するのである。このようにして、パターン105は、光A104のX軸方向への拡散を抑制する光拡散防止パターンとして機能することになる。
 なお、図4では図中右向きの導光方向で導光される光A104について説明したが、逆に図中左向きの導光方向で導光される光についても、パターン105は同様に光拡散防止パターンとして機能する。
FIG. 4 is a cross-sectional view schematically showing an enlarged cross section of the light guide plate 100 taken along a plane perpendicular to the Y-axis direction in order to explain how light guided in the light guide plate 100 in this example travels. It is. 4, the same reference numerals as those in FIG. 1 indicate the same elements as those in FIG. 1. Further, in FIG. 4, an arrow A <b> 104 indicates a component perpendicular to the Y-axis direction among light vectors guided through the light guide plate 100. As described above, the light A104 guided in parallel with the Y-axis direction has a tendency that the X-axis direction component and the Z-axis direction component are smaller than the Y-axis direction component. Therefore, most of the light A 104 is internally reflected on the slope 106 and the slope 107. At this time, since the slope 106 and the slope 107 are inclined so as to intersect the X-axis direction, the light A104 is internally reflected so as not to spread in the X-axis direction. That is, while the light A104 repeats internal reflection on the slope 106 or the slope 107, the direction of the vector of the Y-axis direction component of the light A104 is repeatedly reversed. Therefore, most of the light A104 guided in parallel with the Y-axis direction cannot continue to travel continuously in one or the other in the X-axis direction and does not diffuse in the X-axis direction. That is, the pattern 105 prevents the light A104 guided in the Y-axis direction (light guide direction intersecting the virtual axis) from being spread and guided in the X-axis direction (light guide direction parallel to the virtual axis). It demonstrates its function. In this way, the pattern 105 functions as a light diffusion prevention pattern that suppresses the diffusion of the light A104 in the X-axis direction.
In addition, although FIG. 4 demonstrated the light A104 guided in the right light guide direction in the drawing, the pattern 105 similarly prevents light diffusion for the light guided in the left light guide direction in the drawing. Acts as a pattern.
 導光板の異方性光取出領域に形成されるパターンは、通常、前記のように導光方向に応じて光の取出効率が異なる異方性パターンである。さらに、導光板の異方性光取出領域に形成されるパターンは、前記パターン105のように、光拡散防止パターンとして機能する異方性パターンであることが好ましい。光拡散防止パターンとして機能することにより、導光される光が所望の領域以外の領域に導光されることを防止できる。ひいては、所望の領域以外の領域における光取出面から光が取り出されることも防止できる。したがって、導光板を備えた液晶表示装置の画質向上、省エネルギー等の利点が得られる。 The pattern formed in the anisotropic light extraction region of the light guide plate is usually an anisotropic pattern having different light extraction efficiency depending on the light guide direction as described above. Further, the pattern formed in the anisotropic light extraction region of the light guide plate is preferably an anisotropic pattern that functions as a light diffusion prevention pattern, like the pattern 105. By functioning as a light diffusion prevention pattern, the guided light can be prevented from being guided to a region other than the desired region. As a result, it is also possible to prevent light from being extracted from the light extraction surface in a region other than the desired region. Therefore, advantages such as image quality improvement and energy saving of the liquid crystal display device including the light guide plate can be obtained.
 前記のように光拡散防止パターンとしても機能する異方性パターンは、例えば、導光板の表面に形成された畝状のパターンにより実現できる。前記の畝状のパターンは、通常、当該畝状のパターンを形成された異方性光取出領域の仮想軸と直交する方向に延在して形成される。 The anisotropic pattern that also functions as a light diffusion prevention pattern as described above can be realized by, for example, a bowl-shaped pattern formed on the surface of the light guide plate. The hook-shaped pattern is usually formed so as to extend in a direction orthogonal to the virtual axis of the anisotropic light extraction region where the hook-shaped pattern is formed.
 前記の畝状のパターンの形状の例を挙げると、以下の例が挙げられる。
 畝状のパターンは、例えば、図1に示したパターン105のように、当該パターン105の延在方向(図1では、Y軸方向)に垂直な平面で切った断面の形状が、三角形状となる形状であってもよい。このような形状の畝状のパターンを、断面三角形状パターンと呼ぶ。ここで、断面三角形状の頂角は、頂角30゜~120゜が拡散防止機能として好ましく、60゜~90゜がより好ましい。
The following examples are given as examples of the shape of the bowl-shaped pattern.
For example, like the pattern 105 shown in FIG. 1, the saddle-like pattern has a triangular cross-sectional shape cut by a plane perpendicular to the extending direction of the pattern 105 (Y-axis direction in FIG. 1). The shape which becomes may be sufficient. Such a hook-shaped pattern is called a triangular cross-sectional pattern. Here, the apex angle of the triangular cross section is preferably 30 ° to 120 ° as a diffusion preventing function, and more preferably 60 ° to 90 °.
 図5は、異方性光取出領域を有する導光板の一例を模式的に示す斜視図である。なお、図5において、図1~図4と同様の符号は、図1~図4と同様の要素を示す。畝状のパターンは、図1に示したように間隔を空けずに並べて形成してもよいが、所定の間隔を空けて並べて形成してもよい。例えば、図5に示すパターン108のように、V溝を所定の間隔を空けて形成したパターンでもよい。このような形状のパターン108も、プリズム様のV溝パターンに該当する。図5に示すパターン108は、当該パターン108の延在方向(図5では、Y軸方向)に垂直な平面で切った断面の形状が、台形状となる。このような形状の畝状のパターン108を、断面台形状パターンと呼ぶ。 FIG. 5 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region. In FIG. 5, the same reference numerals as those in FIGS. 1 to 4 denote the same elements as those in FIGS. The hook-shaped patterns may be formed side by side without a gap as shown in FIG. 1, but may be formed side by side with a predetermined gap. For example, a pattern in which V-grooves are formed at a predetermined interval, such as a pattern 108 shown in FIG. The pattern 108 having such a shape also corresponds to a prism-like V-groove pattern. The pattern 108 shown in FIG. 5 has a trapezoidal shape with a cross section taken along a plane perpendicular to the extending direction of the pattern 108 (Y-axis direction in FIG. 5). The bowl-shaped pattern 108 having such a shape is called a cross-sectional trapezoidal pattern.
 畝状のパターン108が断面台形状パターンである場合、当該パターン108は、それぞれ、斜面106及び斜面107を有する。また、パターン108は、Z軸方向に直交する平坦面109を斜面106及び斜面107の間に有する。斜面106,107を有するため、断面台形状パターンであるパターン108は、図1に示したパターン105と同様に、異方性パターンとして機能し、また、光拡散防止パターンとして機能する。 When the bowl-shaped pattern 108 is a trapezoidal cross-sectional pattern, the pattern 108 has a slope 106 and a slope 107, respectively. The pattern 108 has a flat surface 109 perpendicular to the Z-axis direction between the slope 106 and the slope 107. Since it has the slopes 106 and 107, the pattern 108 which is a trapezoidal cross-sectional pattern functions as an anisotropic pattern and also functions as a light diffusion prevention pattern like the pattern 105 shown in FIG.
 畝状のパターンは、例えば、当該パターンの延在方向に垂直な平面で切った断面の形状が、三角形状以上の多角形となる形状であってもよい。このような形状の畝状のパターンであっても、斜面を有するため、図1に示したパターン105と同様に、異方性パターンとして機能し、また、光拡散防止パターンとして機能する。 The bowl-shaped pattern may be, for example, a shape in which a cross-sectional shape cut by a plane perpendicular to the extending direction of the pattern is a triangle or more. Even in the case of such a bowl-shaped pattern, since it has an inclined surface, it functions as an anisotropic pattern and also functions as a light diffusion prevention pattern, similar to the pattern 105 shown in FIG.
 図6は、異方性光取出領域を有する導光板の一例を模式的に示す斜視図である。なお、図6において、図1~図5と同様の符号は、図1~図5と同様の要素を示す。畝状のパターンは、例えば、図6に示すパターン110のように、レンチキュラー溝パターンであってもよい。レンチキュラー溝パターンとは、例えば、当該パターン110の延在方向(図6では、Y軸方向)に垂直な平面で切った断面の形状が、円又は楕円の一部の形状(例えば、半円、半楕円状)となる形状をいう。 FIG. 6 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region. In FIG. 6, the same reference numerals as those in FIGS. 1 to 5 denote the same elements as those in FIGS. The saddle-like pattern may be a lenticular groove pattern, for example, like a pattern 110 shown in FIG. The lenticular groove pattern is, for example, a shape of a cross section cut by a plane perpendicular to the extending direction of the pattern 110 (Y-axis direction in FIG. 6), or a partial shape of a circle or an ellipse (for example, a semicircle, A semi-elliptical shape.
 畝状のパターン110がレンチキュラー溝パターンである場合、当該パターン110の表面111は、滑らかな曲面で形成され、その中央部からX軸方向端部にいくに従い光取出面101に対して次第に傾斜していく。このようにパターン110の表面111が前記のように傾斜するため、表面111はそれぞれX軸方向と平行でない(すなわち、X軸と交差する)部分を有することになる。表面111のX軸方向と平行でない部分は、V字溝パターン105,108の斜面106,107と同様に機能する。したがって、レンチキュラー溝パターンであるパターン110も、図1,5に示したパターン105,108と同様に、異方性パターンとして機能し、また、光拡散防止パターンとして機能する。ここで、レンチキュラーの溝パターンは、円または楕円の一部を切り取った形状が考えられるが、その場合、高さ/半径の比が好ましくは1/3以上、より好ましくは1/2以上で、さらに好ましくは、1/1以上であるが、形状を作成する観点からは、3/1以下の形状が好ましい。 When the bowl-shaped pattern 110 is a lenticular groove pattern, the surface 111 of the pattern 110 is formed as a smooth curved surface, and gradually inclines with respect to the light extraction surface 101 from the center to the end in the X-axis direction. To go. Thus, since the surface 111 of the pattern 110 is inclined as described above, the surface 111 has a portion that is not parallel to the X-axis direction (that is, intersects with the X-axis). Portions that are not parallel to the X-axis direction of the surface 111 function in the same manner as the slopes 106 and 107 of the V-shaped groove patterns 105 and 108. Therefore, the pattern 110 which is a lenticular groove pattern also functions as an anisotropic pattern and also functions as a light diffusion prevention pattern, like the patterns 105 and 108 shown in FIGS. Here, the groove pattern of the lenticular may be a shape obtained by cutting off a part of a circle or an ellipse. In that case, the height / radius ratio is preferably 1/3 or more, more preferably 1/2 or more, More preferably, it is 1/1 or more, but from the viewpoint of creating the shape, a shape of 3/1 or less is preferable.
 前記のようなパターン105,108,110は、導光板100の光取出面101及び裏面102の少なくとも一方に形成されていればよい。したがって、パターン105,108,110は、図1、図5及び図6に記載のように光取出面101に形成する以外にも、裏面102に形成するようにしてもよく、光取出面101及び裏面102の両方に形成するようにしてもよい。また、パターン105,108,110を光取出面101及び裏面102の両方に形成する場合、パターン105,108,110は光取出面101と裏面102とで同じパターンを採用してもよいが、異なるパターンを採用してもよい。さらに、パターン105,108,110は、当該パターン105,108,110を形成する領域において1種類の構造だけを形成するようにしてもよいが、当該領域において2種類以上の構造を組み合わせるようにしてもよい。 The patterns 105, 108, and 110 may be formed on at least one of the light extraction surface 101 and the back surface 102 of the light guide plate 100. Therefore, the patterns 105, 108, and 110 may be formed on the back surface 102 in addition to being formed on the light extraction surface 101 as shown in FIGS. 1, 5, and 6. You may make it form in both the back surfaces 102. FIG. When the patterns 105, 108, and 110 are formed on both the light extraction surface 101 and the back surface 102, the patterns 105, 108, and 110 may adopt the same pattern on the light extraction surface 101 and the back surface 102, but are different. A pattern may be adopted. Furthermore, the patterns 105, 108, and 110 may form only one type of structure in the region where the patterns 105, 108, and 110 are formed, but two or more types of structures may be combined in the region. Also good.
 図7は、異方性光取出領域を有する導光板の一例を模式的に示す斜視図である。なお、図7において、図1~図6と同様の符号は、図1~図6と同様の要素を示す。異方性パターン及び光拡散防止パターンと同様の機能は、光取出面101又は裏面102に形成されるパターン以外の構成によっても実現できる。例えば、図7に示すように、導光板100が一方向(図7ではY軸方向)にのみ延在するうねりを有する形状にしてもよい。この場合、X軸方向に平行な導光方向に導光される光は、導光される過程で部分的に内部反射ができない程度に小さい入射角で光取出面101に入射し、光取出面101から取り出される。他方、Y軸方向に平行な導光方向に導光される光は、光取出面101に小さい入射角で入射し難いため、光取出面101から取り出され難い。 FIG. 7 is a perspective view schematically showing an example of a light guide plate having an anisotropic light extraction region. In FIG. 7, the same reference numerals as those in FIGS. 1 to 6 denote the same elements as those in FIGS. Functions similar to the anisotropic pattern and the light diffusion prevention pattern can be realized by a configuration other than the pattern formed on the light extraction surface 101 or the back surface 102. For example, as shown in FIG. 7, the light guide plate 100 may have a shape having a swell extending only in one direction (the Y-axis direction in FIG. 7). In this case, the light guided in the light guide direction parallel to the X-axis direction is incident on the light extraction surface 101 at an incident angle that is small enough to prevent partial internal reflection during the light guide process. 101 is taken out. On the other hand, light guided in the light guide direction parallel to the Y-axis direction is difficult to be incident on the light extraction surface 101 at a small incident angle, and thus is difficult to be extracted from the light extraction surface 101.
 このように、異方性光取出領域は、様々な態様で実施可能である。たとえば、導光板材料の材質(以下、適宜「母材」という。)と屈折率差をもち、なおかつ異方性の形状を持つ拡散材を用意し、この拡散剤を母材に含ませ、これに剪断及び延伸などの加工を加えて拡散剤を配向させることにより、異方性光取出領域を形成することも可能である。さらには、異型押出などにより、母材内に中空の穴を一方方向に形成し、これをもって異方性光取出領域とすることもできる。これらを適切な大きさに切断し、光学的に接着することで、本発明に係る導光板を形成することが可能である。 As described above, the anisotropic light extraction region can be implemented in various modes. For example, a diffusion material having a refractive index difference and an anisotropic shape with a material of a light guide plate material (hereinafter referred to as “base material” as appropriate) is prepared, and this diffusion agent is included in the base material. It is also possible to form an anisotropic light extraction region by orienting the diffusing agent by applying processes such as shearing and stretching. Furthermore, a hollow hole is formed in one direction in the base material by profile extrusion or the like, and this can be used as an anisotropic light extraction region. It is possible to form the light guide plate according to the present invention by cutting them into appropriate sizes and optically bonding them.
 ところで、異方性光取出領域においては、通常、光導入領域に近い手前の位置ほど高い輝度で光が取り出される傾向がある。このため、異方性光取出領域が前記の畝状のパターンを有する場合、パターンの間隔を調整したり、サイズを調整したりすることが好ましい。具体的には、パターンのピッチ(間隔)、幅、高さ等を調整することにより、パターンの密度又はサイズが光導入領域から遠い奥の位置にいくほど連続的又は段階的に大きくなるようにすることが好ましい。これにより、奥にいくほど効率よく光を取り出せるようになるため、その異方性光取出領域における光取出面での輝度ムラを抑制できる。また、パターンについては、パターンが線として見えるムラを防ぐ意味で、出光する線の幅、隙間の幅とも、略0.3ミリ以下であることが好ましく、0.1ミリ以下であることがさらに好ましい。 By the way, in the anisotropic light extraction region, light tends to be extracted with higher brightness usually at a position closer to the light introduction region. For this reason, when an anisotropic light extraction area | region has the said hook-shaped pattern, it is preferable to adjust the space | interval of a pattern or a size. Specifically, by adjusting the pattern pitch (interval), width, height, etc., the density or size of the pattern increases continuously or stepwise as it goes farther away from the light introduction region. It is preferable to do. Thereby, since it becomes possible to extract light efficiently as it goes deeper, luminance unevenness on the light extraction surface in the anisotropic light extraction region can be suppressed. Further, with respect to the pattern, in order to prevent unevenness in which the pattern appears as a line, both the width of the outgoing light line and the width of the gap are preferably about 0.3 mm or less, and more preferably 0.1 mm or less. preferable.
〔位置調整〕
 本発明の導光板は、光の取出方向から見て複数領域に区分され、区分された領域のうち複数の領域が異方性光取出領域である。また、本発明の導光体の光導入面は、光を取り出したい異方性光取出領域それぞれに対応して、少なくとも1箇所ずつ、光導入領域を有する。
 さらに、異方性光取出領域のうち少なくとも1箇所の位置は、対応する光導入領域から導光板内に導入された光が、仮想軸の方向が異なる他の異方性光取出領域を通って導光され、当該異方性光取出領域に到達するように位置調整されている。
 以下、この位置調整について、図面を用いて説明する。
〔Positioning〕
The light guide plate of the present invention is divided into a plurality of regions when viewed from the light extraction direction, and a plurality of regions among the divided regions are anisotropic light extraction regions. Moreover, the light introduction surface of the light guide of the present invention has at least one light introduction region corresponding to each anisotropic light extraction region from which light is to be extracted.
Further, at least one position of the anisotropic light extraction region is such that light introduced from the corresponding light introduction region into the light guide plate is guided through another anisotropic light extraction region having a different virtual axis direction, The position is adjusted so as to reach the anisotropic light extraction region.
Hereinafter, this position adjustment will be described with reference to the drawings.
 図8は、異方性光取出領域を有する導光板200の一例を模式的に示す斜視図である。図8に示すように、本例の導光板200は矩形板状となっている。また、導光板200は、その主面として、光取出面201と、光取出面201の反対側に位置する裏面202とを有する。さらに、導光板200は、光取出面201及び裏面202の端部に、互いに直交する側面203及び側面204を有する。 FIG. 8 is a perspective view schematically showing an example of the light guide plate 200 having an anisotropic light extraction region. As shown in FIG. 8, the light guide plate 200 of this example has a rectangular plate shape. The light guide plate 200 has a light extraction surface 201 and a back surface 202 located on the opposite side of the light extraction surface 201 as its main surface. Furthermore, the light guide plate 200 has side surfaces 203 and 204 that are orthogonal to each other at the ends of the light extraction surface 201 and the back surface 202.
 ここで、導光板200の厚み方向をZ軸方向とする。また、Z軸方向に垂直な面に平行な方向のうち、光取出面201の矩形の一辺に平行な方向をX軸方向とし、前記X軸方向に直交する方向をY軸方向とする。また、光取出面201及び裏面202はいずれもZ軸方向に垂直な面であり、側面203はX軸方向に垂直な面であり、側面204はY軸方向に垂直な面であるとする。さらに、光取出面201からの光の取出方向は、Z軸方向と平行であるとする。なお、光取出面201は後述するパターン207及びパターン208を有するため微視的に見ると平坦な平面ではないが、巨視的に見た場合には平坦な平面として取り扱うことができるものとする。 Here, the thickness direction of the light guide plate 200 is defined as the Z-axis direction. Of the directions parallel to the plane perpendicular to the Z-axis direction, the direction parallel to one side of the rectangle of the light extraction surface 201 is defined as the X-axis direction, and the direction orthogonal to the X-axis direction is defined as the Y-axis direction. The light extraction surface 201 and the back surface 202 are both surfaces perpendicular to the Z-axis direction, the side surface 203 is a surface perpendicular to the X-axis direction, and the side surface 204 is a surface perpendicular to the Y-axis direction. Furthermore, it is assumed that the light extraction direction from the light extraction surface 201 is parallel to the Z-axis direction. The light extraction surface 201 has a pattern 207 and a pattern 208, which will be described later, and is not a flat plane when viewed microscopically, but can be handled as a flat plane when viewed macroscopically.
 導光板200は、光の取出方向(図8では、Z軸方向の光取出面側)から見て2個の領域205及び領域206に区分されている。ここでは、領域205及び領域206は、図8に示すように、X軸方向に並んで配置されているものとする。 The light guide plate 200 is divided into two regions 205 and 206 as viewed from the light extraction direction (in FIG. 8, the light extraction surface side in the Z-axis direction). Here, it is assumed that the region 205 and the region 206 are arranged side by side in the X-axis direction as shown in FIG.
 領域205における光取出面201には、異方性パターン及び光拡散防止パターンとして機能するパターン207が形成されている。パターン207は、X軸方向に平行なX軸を所定の仮想軸とする異方性パターンである。したがって、パターン207は、X軸方向と平行に導光される光に対しては光取出パターンとして機能するようになっている。また、パターン207は、Y軸方向と平行に導光される光に対しては光取出パターンとして機能せず、光拡散防止パターンとして機能するようになっている。 A pattern 207 that functions as an anisotropic pattern and a light diffusion prevention pattern is formed on the light extraction surface 201 in the region 205. The pattern 207 is an anisotropic pattern in which the X axis parallel to the X axis direction is a predetermined virtual axis. Therefore, the pattern 207 functions as a light extraction pattern for light guided in parallel with the X-axis direction. The pattern 207 does not function as a light extraction pattern for light guided in parallel with the Y-axis direction but functions as a light diffusion prevention pattern.
 領域206における光取出面201には、異方性パターン及び光拡散防止パターンとして機能するパターン208が形成されている。パターン208は、Y軸方向に平行なY軸を所定の仮想軸とする異方性パターンである。したがって、パターン208は、Y軸方向と平行に導光される光に対しては光取出パターンとして機能するようになっている。また、パターン208は、X軸方向と平行に導光される光に対しては光取出パターンとして機能せず、光拡散防止パターンとして機能するようになっている。 On the light extraction surface 201 in the region 206, a pattern 208 that functions as an anisotropic pattern and a light diffusion prevention pattern is formed. The pattern 208 is an anisotropic pattern having a Y axis parallel to the Y axis direction as a predetermined virtual axis. Therefore, the pattern 208 functions as a light extraction pattern for light guided in parallel with the Y-axis direction. The pattern 208 does not function as a light extraction pattern for light guided in parallel with the X-axis direction, but functions as a light diffusion prevention pattern.
 さらに、導光板200では、側面203及び側面204が光導入面となっている。このうち、側面203の全体が、領域205に対応した光導入領域となっている。また、領域206のY軸方向手前側に位置する側面204の部分209が、領域206の光導入領域となっている。 Furthermore, in the light guide plate 200, the side surface 203 and the side surface 204 are light introduction surfaces. Of these, the entire side surface 203 is a light introduction region corresponding to the region 205. Further, a portion 209 of the side surface 204 located on the near side in the Y-axis direction of the region 206 is a light introduction region of the region 206.
 このような導光板200では、領域205は、側面203(領域205に対応する光導入領域)から導入された光が、仮想軸の方向が異なる領域206(他の異方性光取出領域)を通って導光され、当該領域205に到達するように位置調整されている。
 したがって、側面203から導光板200に光が導入されると、導入された光は領域206を通って導光されてから領域205に到達する。
In such a light guide plate 200, the region 205 passes through a region 206 (another anisotropic light extraction region) in which the light introduced from the side surface 203 (the light introduction region corresponding to the region 205) has a different virtual axis direction. The light is guided and the position is adjusted so as to reach the region 205.
Therefore, when light is introduced from the side surface 203 into the light guide plate 200, the introduced light is guided through the region 206 and then reaches the region 205.
 すなわち、側面203から光が導入されると、その光はX軸方向と平行に導光され、領域206を通る。側面203から導入された光に対してパターン208は光取出パターンとして機能しないので、領域206を通る光は、領域206における光取出面201から取り出されない。また、領域206を通る光に対してパターン208が光拡散防止パターンとして機能するので、領域206ではY軸方向への光の拡散が防止される。 That is, when light is introduced from the side surface 203, the light is guided in parallel with the X-axis direction and passes through the region 206. Since the pattern 208 does not function as a light extraction pattern with respect to light introduced from the side surface 203, light passing through the region 206 is not extracted from the light extraction surface 201 in the region 206. In addition, since the pattern 208 functions as a light diffusion prevention pattern for the light passing through the region 206, diffusion of light in the Y-axis direction is prevented in the region 206.
 領域206を通った光は続いてX軸方向と平行に導光され、領域205に到達する。領域206での光の拡散が防止されるため、側面203から導入された光の大部分は効率的に領域205に到達する。到達した光は、パターン207が光取出パターンとして機能することにより、領域205における光取出面201から取り出される。 The light that has passed through the region 206 is subsequently guided in parallel with the X-axis direction and reaches the region 205. Since diffusion of light in the region 206 is prevented, most of the light introduced from the side surface 203 efficiently reaches the region 205. The reached light is extracted from the light extraction surface 201 in the region 205 when the pattern 207 functions as a light extraction pattern.
 このように、導光板200では、X軸方向に所定の仮想軸を有する領域205に到達する光が、Y軸方向に所定の仮想軸を有する領域206を通って導光されてから、当該領域205に到達するように、領域205,206の位置が調整されている。本発明の導光板では、複数の異方性光取出領域のうち少なくとも1箇所の位置が、前記の領域205のように位置調整されている。このような位置調整により、光の取り出す領域の位置を高い自由度で設定することができる。 As described above, in the light guide plate 200, light reaching the region 205 having the predetermined virtual axis in the X-axis direction is guided through the region 206 having the predetermined virtual axis in the Y-axis direction, and then the region The positions of the areas 205 and 206 are adjusted so as to reach 205. In the light guide plate of the present invention, the position of at least one of the plurality of anisotropic light extraction regions is adjusted as in the region 205. By such position adjustment, the position of the light extraction area can be set with a high degree of freedom.
 なお、導光板200の領域206から光を取り出す場合、領域206に対応した光導入領域である側面204の部分209から光を導入しうる。
 また、光導入領域から導光板に光を導入する場合、光源(図示せず。)から前記の光導入領域に光を照射することになる。この際、光源から照射する光の方向は、当該光導入領域に対応する異方性光取出領域の仮想軸と平行な方向であって、光取出面と平行な方向であることが好ましい。前記の光の取り出し及び拡散防止を効果的に行うようにするためである。
When light is extracted from the region 206 of the light guide plate 200, light can be introduced from the portion 209 of the side surface 204 that is a light introduction region corresponding to the region 206.
Further, when light is introduced into the light guide plate from the light introduction region, the light introduction region is irradiated with light from a light source (not shown). At this time, the direction of light emitted from the light source is preferably a direction parallel to the virtual axis of the anisotropic light extraction region corresponding to the light introduction region and a direction parallel to the light extraction surface. This is to effectively take out the light and prevent diffusion.
〔第一実施形態〕
 以下、図面を示して本発明の第一実施形態について説明する。図9は本発明の第一実施形態に係る照明装置を模式的に示す斜視図である。図9に示すように、本発明の第一実施形態に係る照明装置1は、1枚の導光板300と、光源411~414,421~424,431~434,441~444とを備える。
[First embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 9 is a perspective view schematically showing the illumination device according to the first embodiment of the present invention. As shown in FIG. 9, the illumination device 1 according to the first embodiment of the present invention includes a single light guide plate 300 and light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444.
 図9に示すように、導光板300は矩形板状となっている。また、導光板300は、その主面として、光取出面301と、光取出面301の反対側に位置する裏面302とを有する。さらに、導光板300は、光取出面301及び裏面302の端部に、光導入面として、4面の側面303~306を有する。 As shown in FIG. 9, the light guide plate 300 has a rectangular plate shape. The light guide plate 300 has a light extraction surface 301 and a back surface 302 located on the opposite side of the light extraction surface 301 as its main surface. Further, the light guide plate 300 has four side surfaces 303 to 306 as light introduction surfaces at the ends of the light extraction surface 301 and the back surface 302.
 ここで、導光板300の厚み方向をZ軸方向とする。また、Z軸方向に垂直な面に平行な方向のうち、光取出面301の矩形の一辺に平行な方向をX軸方向とし、前記X軸方向に直交する方向をY軸方向とする。また、光取出面301及び裏面302はいずれもZ軸方向に垂直な面であり、側面303及び側面305はX軸方向に垂直な面であり、側面304及び側面306はY軸方向に垂直な面であるとする。さらに、光取出面301からの光の取出方向は、Z軸方向と平行であるとする。 Here, the thickness direction of the light guide plate 300 is defined as the Z-axis direction. Of the directions parallel to the plane perpendicular to the Z-axis direction, the direction parallel to one side of the rectangle of the light extraction surface 301 is defined as the X-axis direction, and the direction orthogonal to the X-axis direction is defined as the Y-axis direction. The light extraction surface 301 and the back surface 302 are both surfaces perpendicular to the Z-axis direction, the side surface 303 and the side surface 305 are surfaces perpendicular to the X-axis direction, and the side surface 304 and the side surface 306 are perpendicular to the Y-axis direction. Suppose that it is a surface. Furthermore, it is assumed that the light extraction direction from the light extraction surface 301 is parallel to the Z-axis direction.
 導光板300は、光の取出方向(図9では、Z軸方向の光取出面側)から見て4行4列の行列状に、16箇所の領域に区分されている。具体的には、図9に示すように、X軸方向において等間隔に4行に区分され、Y軸方向においても等間隔に4列に区分されている。これにより、導光板300は、X軸方向に4行、Y軸方向に4列の領域311~314,321~324,331~334,341~344を有する。
 ただし、前記の領域311~314,321~324,331~334,341~344は光を取り出す位置を制御するために設定したものであり、各領域は障壁及び断絶等によって物理的に区切られていなくてもよい。
The light guide plate 300 is divided into 16 regions in a matrix of 4 rows and 4 columns as viewed from the light extraction direction (in FIG. 9, the light extraction surface side in the Z-axis direction). Specifically, as shown in FIG. 9, it is divided into four rows at equal intervals in the X-axis direction, and is divided into four columns at equal intervals in the Y-axis direction. Thus, the light guide plate 300 has regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 having four rows in the X-axis direction and four columns in the Y-axis direction.
However, the above-mentioned areas 311 to 314, 321 to 324, 331 to 334, and 341 to 344 are set to control the position from which light is extracted, and each area is physically separated by barriers and disconnection. It does not have to be.
 なお、以下の導光板の各領域の符号において、十の位の数は行列の行に対応し、一の位の数は行列の列に対応する。したがって、第a行の第b列の領域の符号は「3ab」で示される。例えば、本実施形態に係る導光板300において、第1行の第2列に位置する領域の符号は「312」となる。 It should be noted that in the following reference numerals of the regions of the light guide plate, the number of the tens place corresponds to the row of the matrix, and the number of the one place corresponds to the column of the matrix. Therefore, the code of the region in the a-th row and the b-th column is indicated by “3ab”. For example, in the light guide plate 300 according to the present embodiment, the code of the region located in the second column of the first row is “312”.
 図10は、本発明の第一実施形態に係る照明装置1をZ軸方向の光取出面側から見た様子を模式的に示す正面図である。なお、図10において、図9と同様の符号は、図9と同様の要素を示す。図10に示すように、前記の領域311~314,321~324,331~334,341~344はいずれも異方性光取出領域となっている。そして、異方性光取出領域である領域312,322,323,324,331,332,333,343の位置を、対応する光導入領域から導光板300内に導入された光が、仮想軸の方向が異なる他の異方性光取出領域を通って導光されてから当該領域312,322,323,324,331,332,333,343に到達するように位置調整してある。別の観点から言えば、異方性光取出領域である領域312,322,323,324,331,332,333,343の位置を、対応する光導入領域から導光板300内に導入された光が、仮想軸の方向が平行な他の異方性光取出領域を通らずに当該領域312,322,323,324,331,332,333,343に到達するように位置調整してある。 FIG. 10 is a front view schematically showing the illumination device 1 according to the first embodiment of the present invention as viewed from the light extraction surface side in the Z-axis direction. 10, the same reference numerals as those in FIG. 9 indicate the same elements as those in FIG. As shown in FIG. 10, the above-mentioned regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 are all anisotropic light extraction regions. The positions of the regions 312, 322, 323, 324, 331, 332, 333 and 343, which are anisotropic light extraction regions, indicate that the light introduced into the light guide plate 300 from the corresponding light introduction region has the direction of the virtual axis The position is adjusted so that the light is guided through another different anisotropic light extraction region and then reaches the region 312, 322, 323, 324, 331, 332, 333, 343. From another point of view, the positions of the regions 312, 322, 323, 324, 331, 332, 333, and 343, which are anisotropic light extraction regions, are introduced into the light guide plate 300 from the corresponding light introduction regions. The position is adjusted so as to reach the regions 312, 322, 323, 324, 331, 332, 333, and 343 without passing through other anisotropic light extraction regions having parallel virtual axis directions.
 具体的には、領域312,314,321,323,332,334,341,343における光取出面301及び裏面302の一方又は両方には、X軸方向に平行に導光される光に対しては光取出パターンとして機能し、Y軸方向に平行に導光される光に対しては光取出パターンとして機能せず、光拡散防止パターンとして機能するパターンが形成されている。したがって、領域312,314,321,323,332,334,341,343では、X軸方向に平行に導光される光は光取出面301から取り出され、Y軸方向に平行に導光される光は取り出されずにY軸方向に沿って導光されるようになっている。 Specifically, one or both of the light extraction surface 301 and the back surface 302 in the regions 312, 314, 321, 323, 332, 334, 341, and 343 is directed to the light guided in parallel in the X-axis direction. Functions as a light extraction pattern, and does not function as a light extraction pattern for light guided in parallel to the Y-axis direction, but forms a pattern that functions as a light diffusion prevention pattern. Accordingly, in the regions 312, 314, 321, 323, 332, 334, 341, 343, the light guided in parallel to the X-axis direction is extracted from the light extraction surface 301 and guided in parallel to the Y-axis direction. Light is guided along the Y-axis direction without being extracted.
 また、領域311,313,322,324,331,333,342,344における光取出面301及び裏面302の一方又は両方には、Y軸方向に平行に導光される光に対しては光取出パターンとして機能し、X軸方向に平行に導光される光に対しては光取出パターンとして機能せず、光拡散防止パターンとして機能するパターンが形成されている。したがって、領域311,313,322,324,331,333,342,344では、Y軸方向に平行に導光される光は光取出面301から取り出され、X軸方向に平行に導光される光は取り出されずにX軸方向に沿って導光されるようになっている。 In addition, one or both of the light extraction surface 301 and the back surface 302 in the regions 311, 313, 322, 324, 331, 333, 342, and 344 are light extraction for light guided parallel to the Y-axis direction. A pattern that functions as a pattern and does not function as a light extraction pattern for light guided parallel to the X-axis direction, but functions as a light diffusion prevention pattern is formed. Therefore, in the regions 311, 313, 322, 324, 331, 333, 342, and 344, the light guided in parallel to the Y-axis direction is extracted from the light extraction surface 301 and guided in parallel to the X-axis direction. Light is guided along the X-axis direction without being extracted.
 本実施形態に係る照明装置1においては、導光板300のすべての領域311~314,321~324,331~334,341~344における光取出面301から、光を取り出すようにする。そこで、図10に示すように、導光板300の光導入面である側面303~306には、光を取り出したい領域311~314,321~324,331~334,341~344それぞれに対応して、少なくとも1箇所ずつ設けられた光導入領域を有する。 In the illumination device 1 according to the present embodiment, light is extracted from the light extraction surfaces 301 in all the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 of the light guide plate 300. Therefore, as shown in FIG. 10, the side surfaces 303 to 306 that are the light introduction surfaces of the light guide plate 300 correspond to the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344, respectively, from which light is to be extracted. And at least one light introduction region.
 具体的には、側面303がY軸方向に等間隔に区分されることにより光導入領域303a~303dが形成されている。図10に示すように、光導入領域303aは領域311の図中左側に位置する領域であり、光導入領域303bは領域321の図中左側に位置する領域であり、光導入領域303cは領域331の図中左側に位置する領域であり、光導入領域303dは領域341の図中左側に位置する領域である。 Specifically, the light introduction regions 303a to 303d are formed by dividing the side surface 303 at equal intervals in the Y-axis direction. As shown in FIG. 10, the light introduction region 303a is a region located on the left side of the region 311 in the drawing, the light introduction region 303b is a region located on the left side of the region 321 in the drawing, and the light introduction region 303c is a region 331. The light introduction region 303d is a region located on the left side of the region 341 in the drawing.
 また、側面304がX軸方向に等間隔に区分されることにより光導入領域304a~304dが形成されている。図10に示すように、光導入領域304aは領域341の図中下側に位置する領域であり、光導入領域304bは領域342の図中下側に位置する領域であり、光導入領域304cは領域343の図中下側に位置する領域であり、光導入領域304dは領域344の図中下側に位置する領域である。 Further, the light introduction regions 304a to 304d are formed by dividing the side surface 304 at equal intervals in the X-axis direction. As shown in FIG. 10, the light introduction region 304a is a region located below the region 341 in the drawing, the light introduction region 304b is a region located below the region 342 in the drawing, and the light introduction region 304c is The region 343 is a region located on the lower side in the drawing, and the light introduction region 304d is a region located on the lower side of the region 344 in the drawing.
 また、側面305がY軸方向に等間隔に区分されることにより光導入領域305a~305dが形成されている。図10に示すように、光導入領域305aは領域314の図中右側に位置する領域であり、光導入領域305bは領域324の図中右側に位置する領域であり、光導入領域305cは領域334の図中右側に位置する領域であり、光導入領域305dは領域344の図中右側に位置する領域である。したがって、光導入領域305a~305dは、それぞれ、光導入領域303a~303dの反対側に位置している。 Further, the light introduction regions 305a to 305d are formed by dividing the side surface 305 at equal intervals in the Y-axis direction. As illustrated in FIG. 10, the light introduction region 305 a is a region located on the right side of the region 314 in the drawing, the light introduction region 305 b is a region located on the right side of the region 324 in the drawing, and the light introduction region 305 c is the region 334. The light introduction region 305d is a region located on the right side of the region 344 in the drawing. Accordingly, the light introduction regions 305a to 305d are located on the opposite sides of the light introduction regions 303a to 303d, respectively.
 さらに、側面306がX軸方向に等間隔に区分されることにより光導入領域306a~306dが形成されている。図10に示すように、光導入領域306aは領域311の図中上側に位置する領域であり、光導入領域306bは領域312の図中上側に位置する領域であり、光導入領域306cは領域313の図中上側に位置する領域であり、光導入領域306dは領域314の図中上側に位置する領域である。したがって、光導入領域306a~306dは、それぞれ、光導入領域304a~304dの反対側に位置している。 Furthermore, the light introduction regions 306a to 306d are formed by dividing the side surface 306 at equal intervals in the X-axis direction. As illustrated in FIG. 10, the light introduction region 306 a is a region located on the upper side of the region 311 in the drawing, the light introduction region 306 b is a region located on the upper side of the region 312 in the drawing, and the light introduction region 306 c is the region 313. The light introduction region 306d is a region located on the upper side of the region 314 in the drawing. Therefore, the light introduction regions 306a to 306d are located on the opposite sides of the light introduction regions 304a to 304d, respectively.
 なお、前記の光導入領域303a~303d,304a~304d,305a~305d,306a~306dは照明装置1の発光位置の制御のために設定されたものであり、通常、境界により物理的に区分されるものではない。 The light introduction areas 303a to 303d, 304a to 304d, 305a to 305d, and 306a to 306d are set for controlling the light emission position of the lighting device 1, and are usually physically separated by boundaries. It is not something.
 光源411~414,421~424,431~434,441~444は、導光板300の光導入面である側面303~306に光を照射する装置である。光源411~414,421~424,431~434,441~444としては、例えば、LED(Light Emitting Diode)を用いる。LEDは、発光効率が高く、省エネルギーの観点から優れた光源である。LEDには図示しない電源から電力が供給され、供給された電力により個別に調光可能となっている。 The light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 are devices that irradiate light to the side surfaces 303 to 306 that are light introduction surfaces of the light guide plate 300. As the light sources 411 to 414, 421 to 424, 431 to 434, 441 to 444, for example, LEDs (Light Emitting Diode) are used. LEDs are high light emission efficiency and are excellent light sources from the viewpoint of energy saving. The LED is supplied with electric power from a power source (not shown), and can be individually dimmed by the supplied electric power.
 ローカルディミングを実現する観点から、光源411~414,421~424,431~434,441~444は、光導入領域303a~303d,304a~304d,305a~305d,306a~306dそれぞれに独立して光を照射できるように設けられている。これにより、これらの複数の光源411~414,421~424,431~434,441~444が、領域311~314,321~324,331~334,341~344ごとに調光可能になっている。なお、光源411~414,421~424,431~434,441~444は、光を取り出そうとする領域311~314,321~324,331~334,341~344それぞれに対応して、1個ずつ設けてもよく、2個以上の光源を含む一群のグループずつ設けてもよい。ただし、いずれの場合でも、光源411~414,421~424,431~434,441~444は光を取り出そうとする領域311~314,321~324,331~334,341~344ごとに個別又はグループごとに調光可能とすることが好ましい。 From the viewpoint of realizing local dimming, the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 emit light independently to the light introduction regions 303a to 303d, 304a to 304d, 305a to 305d, and 306a to 306d, respectively. It is provided so that can be irradiated. As a result, the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 can be dimmed for each of the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344. . The light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 correspond to the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344, respectively, from which light is to be extracted. It may be provided, or a group of groups including two or more light sources may be provided. However, in any case, the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 are individually or grouped for each of the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 from which light is to be extracted. It is preferable to be dimmable every time.
 具体的には、側面306の光導入領域306aは領域311に対応し、領域306aの正面に光源411が設けられている。
 また、側面303の光導入領域303aは領域312に対応し、領域303aの正面に光源412が設けられている。
 また、側面306の光導入領域306cは領域313に対応し、領域306cの正面に光源413が設けられている。
 また、側面305の光導入領域305aは領域314に対応し、領域305aの正面に光源414が設けられている。
 また、側面303の光導入領域303bは領域321に対応し、領域303bの正面に光源421が設けられている。
 また、側面306の光導入領域306bは領域322に対応し、領域306bの正面に光源422が設けられている。
 また、側面305の光導入領域305bは領域323に対応し、領域305bの正面に光源423が設けられている。
 また、側面306の光導入領域306dは領域324に対応し、領域306dの正面に光源424が設けられている。
 また、側面304の光導入領域304aは領域331に対応し、領域304aの正面に光源431が設けられている。
 また、側面303の光導入領域303cは領域332に対応し、領域303cの正面に光源432が設けられている。
 また、側面304の光導入領域304cは領域333に対応し、領域304cの正面に光源433が設けられている。
 また、側面305の光導入領域305cは領域334に対応し、領域305cの正面に光源434が設けられている。
 また、側面303の光導入領域303dは領域341に対応し、領域303dの正面に光源441が設けられている。
 また、側面304の光導入領域304bは領域342に対応し、領域304bの正面に光源442が設けられている。
 また、側面305の光導入領域305dは領域343に対応し、領域305dの正面に光源443が設けられている。
 さらに、側面304の光導入領域304dは領域344に対応し、領域304dの正面に光源444が設けられている。
Specifically, the light introduction region 306a on the side surface 306 corresponds to the region 311 and a light source 411 is provided in front of the region 306a.
The light introduction region 303a on the side surface 303 corresponds to the region 312 and a light source 412 is provided in front of the region 303a.
A light introduction region 306c on the side surface 306 corresponds to the region 313, and a light source 413 is provided in front of the region 306c.
A light introduction region 305a on the side surface 305 corresponds to the region 314, and a light source 414 is provided in front of the region 305a.
A light introduction region 303b on the side surface 303 corresponds to the region 321 and a light source 421 is provided in front of the region 303b.
A light introduction region 306b on the side surface 306 corresponds to the region 322, and a light source 422 is provided in front of the region 306b.
A light introduction region 305b on the side surface 305 corresponds to the region 323, and a light source 423 is provided in front of the region 305b.
A light introduction region 306d on the side surface 306 corresponds to the region 324, and a light source 424 is provided in front of the region 306d.
A light introduction region 304a on the side surface 304 corresponds to the region 331, and a light source 431 is provided in front of the region 304a.
The light introduction region 303c on the side surface 303 corresponds to the region 332, and a light source 432 is provided in front of the region 303c.
A light introduction region 304c on the side surface 304 corresponds to the region 333, and a light source 433 is provided in front of the region 304c.
A light introduction region 305c on the side surface 305 corresponds to the region 334, and a light source 434 is provided in front of the region 305c.
The light introduction region 303d on the side surface 303 corresponds to the region 341, and a light source 441 is provided in front of the region 303d.
A light introduction region 304b on the side surface 304 corresponds to the region 342, and a light source 442 is provided in front of the region 304b.
A light introduction region 305d on the side surface 305 corresponds to the region 343, and a light source 443 is provided in front of the region 305d.
Further, the light introduction region 304d on the side surface 304 corresponds to the region 344, and a light source 444 is provided in front of the region 304d.
 なお、前記の光源411~414,421~424,431~434,441~444の調光とは、少なくとも発光の強弱を変化させることができればよい。したがって、光源411~414,421~424,431~434,441~444として通常は消灯可能なものを用いるが、完全に消灯可能なものでなくても明るさを調節できるものであれば使用可能である。本実施形態では、光源411~414,421~424,431~434,441~444は図示しない電源に接続され、供給される電力を調節することにより、所望の明るさで光を照射できるようになっているものとする。 Note that the dimming of the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 only needs to change at least the intensity of light emission. Therefore, as the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444, those that can normally be turned off are used, but they can be used if they are not completely extinguished and can adjust the brightness. It is. In this embodiment, the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 are connected to a power source (not shown) so that light can be emitted with a desired brightness by adjusting the supplied power. Suppose that
 本発明の第一実施形態に係る照明装置1は上述したように構成されている。したがって、使用時には、光を取り出そうとする領域311~314,321~324,331~334,341~344に対応した光源411~414,421~424,431~434,441~444を所望の明るさで選択的に発光させる。 The lighting device 1 according to the first embodiment of the present invention is configured as described above. Therefore, in use, the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 corresponding to the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 from which light is to be extracted have a desired brightness. Select to emit light.
 例えば、領域311における光取出面301から光を取り出そうとする場合には、光源411を発光させる。光源411が発光すると側面306の光導入領域306aに光が照射され、光導入領域306aから導光板300内に光が導入される。導入された光は、領域311における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 311, the light source 411 is caused to emit light. When the light source 411 emits light, the light introduction region 306a on the side surface 306 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 306a. The introduced light is extracted from the light extraction surface 301 in the region 311.
 例えば、領域312における光取出面301から光を取り出そうとする場合には、光源412を発光させる。光源412が発光すると側面303の光導入領域303aに光が照射され、光導入領域303aから導光板300内に光が導入される。導入された光は、領域311を通って導光されてから領域312に到達し、領域312における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 312, the light source 412 is caused to emit light. When the light source 412 emits light, the light introduction region 303a of the side surface 303 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 303a. The introduced light is guided through the region 311, reaches the region 312, and is extracted from the light extraction surface 301 in the region 312.
 例えば、領域313における光取出面301から光を取り出そうとする場合には、光源413を発光させる。光源413が発光すると側面306の光導入領域306cに光が照射され、光導入領域306cから導光板300内に光が導入される。導入された光は、領域313における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 313, the light source 413 is caused to emit light. When the light source 413 emits light, the light introduction region 306c on the side surface 306 is irradiated with light, and the light is introduced into the light guide plate 300 from the light introduction region 306c. The introduced light is extracted from the light extraction surface 301 in the region 313.
 例えば、領域314における光取出面301から光を取り出そうとする場合には、光源414を発光させる。光源414が発光すると側面305の光導入領域305aに光が照射され、光導入領域305aから導光板300内に光が導入される。導入された光は、領域314における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 314, the light source 414 is caused to emit light. When the light source 414 emits light, the light introduction region 305a on the side surface 305 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 305a. The introduced light is extracted from the light extraction surface 301 in the region 314.
 例えば、領域321における光取出面301から光を取り出そうとする場合には、光源421を発光させる。光源421が発光すると側面303の光導入領域303bに光が照射され、光導入領域303bから導光板300内に光が導入される。導入された光は、領域321における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 321, the light source 421 is caused to emit light. When the light source 421 emits light, light is irradiated to the light introduction region 303b of the side surface 303, and light is introduced into the light guide plate 300 from the light introduction region 303b. The introduced light is extracted from the light extraction surface 301 in the region 321.
 例えば、領域322における光取出面301から光を取り出そうとする場合には、光源422を発光させる。光源422が発光すると側面306の光導入領域306bに光が照射され、光導入領域306bから導光板300内に光が導入される。導入された光は、領域312を通って導光されてから領域322に到達し、領域322における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 322, the light source 422 is caused to emit light. When the light source 422 emits light, the light introduction region 306b of the side surface 306 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 306b. The introduced light is guided through the region 312, reaches the region 322, and is extracted from the light extraction surface 301 in the region 322.
 例えば、領域323における光取出面301から光を取り出そうとする場合には、光源423を発光させる。光源423が発光すると側面305の光導入領域305bに光が照射され、光導入領域305bから導光板300内に光が導入される。導入された光は、領域324を通って導光されてから領域323に到達し、領域323における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 323, the light source 423 is caused to emit light. When the light source 423 emits light, the light introduction region 305b of the side surface 305 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 305b. The introduced light is guided through the region 324, reaches the region 323, and is extracted from the light extraction surface 301 in the region 323.
 例えば、領域324における光取出面301から光を取り出そうとする場合には、光源424を発光させる。光源424が発光すると側面306の光導入領域306dに光が照射され、光導入領域306dから導光板300内に光が導入される。導入された光は、領域314を通って導光されてから領域324に到達し、領域324における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 324, the light source 424 is caused to emit light. When the light source 424 emits light, the light introduction region 306d on the side surface 306 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 306d. The introduced light is guided through the region 314, reaches the region 324, and is extracted from the light extraction surface 301 in the region 324.
 例えば、領域331における光取出面301から光を取り出そうとする場合には、光源431を発光させる。光源431が発光すると側面304の光導入領域304aに光が照射され、光導入領域304aから導光板300内に光が導入される。導入された光は、領域341を通って導光されてから領域331に到達し、領域331における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 331, the light source 431 is caused to emit light. When the light source 431 emits light, the light introduction region 304a of the side surface 304 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 304a. The introduced light is guided through the region 341, reaches the region 331, and is extracted from the light extraction surface 301 in the region 331.
 例えば、領域332における光取出面301から光を取り出そうとする場合には、光源432を発光させる。光源432が発光すると側面303の光導入領域303cに光が照射され、光導入領域303cから導光板300内に光が導入される。導入された光は、領域331を通って導光されてから領域332に到達し、領域332における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 332, the light source 432 is caused to emit light. When the light source 432 emits light, light is irradiated to the light introduction region 303c of the side surface 303, and light is introduced into the light guide plate 300 from the light introduction region 303c. The introduced light is guided through the region 331, reaches the region 332, and is extracted from the light extraction surface 301 in the region 332.
 例えば、領域333における光取出面301から光を取り出そうとする場合には、光源433を発光させる。光源433が発光すると側面303の光導入領域304cに光が照射され、光導入領域304cから導光板300内に光が導入される。導入された光は、領域343を通って導光されてから領域333に到達し、領域333における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 333, the light source 433 is caused to emit light. When the light source 433 emits light, the light introduction region 304c on the side surface 303 is irradiated with light, and the light is introduced into the light guide plate 300 from the light introduction region 304c. The introduced light is guided through the region 343, reaches the region 333, and is extracted from the light extraction surface 301 in the region 333.
 例えば、領域334における光取出面301から光を取り出そうとする場合には、光源434を発光させる。光源434が発光すると側面305の光導入領域305cに光が照射され、光導入領域305cから導光板300内に光が導入される。導入された光は、領域334における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 334, the light source 434 is caused to emit light. When the light source 434 emits light, the light introduction region 305c on the side surface 305 is irradiated with light, and the light is introduced into the light guide plate 300 from the light introduction region 305c. The introduced light is extracted from the light extraction surface 301 in the region 334.
 例えば、領域341における光取出面301から光を取り出そうとする場合には、光源441を発光させる。光源441が発光すると側面303の光導入領域303dに光が照射され、光導入領域303dから導光板300内に光が導入される。導入された光は、領域341における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 341, the light source 441 is caused to emit light. When the light source 441 emits light, the light introduction region 303d on the side surface 303 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 303d. The introduced light is extracted from the light extraction surface 301 in the region 341.
 例えば、領域342における光取出面301から光を取り出そうとする場合には、光源442を発光させる。光源442が発光すると側面304の光導入領域304bに光が照射され、光導入領域304bから導光板300内に光が導入される。導入された光は、領域342における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 342, the light source 442 is caused to emit light. When the light source 442 emits light, the light introduction region 304b of the side surface 304 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 304b. The introduced light is extracted from the light extraction surface 301 in the region 342.
 例えば、領域343における光取出面301から光を取り出そうとする場合には、光源443を発光させる。光源443が発光すると側面305の光導入領域305dに光が照射され、光導入領域305dから導光板300内に光が導入される。導入された光は、領域344を通って導光されてから領域343に到達し、領域343における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 343, the light source 443 is caused to emit light. When the light source 443 emits light, the light introduction region 305d on the side surface 305 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 305d. The introduced light is guided through the region 344, reaches the region 343, and is extracted from the light extraction surface 301 in the region 343.
 例えば、領域344における光取出面301から光を取り出そうとする場合には、光源444を発光させる。光源444が発光すると側面304の光導入領域304dに光が照射され、光導入領域304dから導光板300内に光が導入される。導入された光は、領域344における光取出面301から取り出される。 For example, when light is to be extracted from the light extraction surface 301 in the region 344, the light source 444 is caused to emit light. When the light source 444 emits light, the light introduction region 304d of the side surface 304 is irradiated with light, and light is introduced into the light guide plate 300 from the light introduction region 304d. The introduced light is extracted from the light extraction surface 301 in the region 344.
 以上のように、本発明の第一実施形態に係る照明装置1では、一つの領域311~314,321~324,331~334,341~344に対して一個又は一群の光源411~414,421~424,431~434,441~444を割り当て、当該一個又は一群の光源411~414,421~424,431~434,441~444を調光させるだけで、割り当てられた領域311~314,321~324,331~334,341~344における光取出面301から、選択的に光を取り出すことができる。一個又は一群の光源411~414,421~424,431~434,441~444を調光させるだけであるので、前記の選択的な光の取り出しは、容易である。また、光源411~414,421~424,431~434,441~444の割り当てが単純であるため、照明装置1の構成をシンプルにできる。さらに、光源411~414,421~424,431~434,441~444の発光の明るさを調節することにより、取り出す光の量を容易に調整することも可能である。また、本実施形態に係る照明装置1では、所望の領域311~314,321~324,331~334,341~344における光取出面301から選択的に光を取り出せるため、ローカルディミングを容易に実現できる。 As described above, in the illuminating device 1 according to the first embodiment of the present invention, one or a group of light sources 411 to 414 and 421 is provided for one region 311 to 314, 321 to 324, 331 to 334, and 341 to 344. 424, 431 to 434, 441 to 444 are allocated, and the assigned areas 311 to 314 and 321 are simply adjusted by dimming the light source 411 to 414, 421 to 424, 431 to 434, and 441 to 444. Light can be selectively extracted from the light extraction surfaces 301 in ˜324, 331˜334, 341˜344. Since only one or a group of light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 is dimmed, the selective light extraction is easy. Further, since the assignment of the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 is simple, the configuration of the lighting device 1 can be simplified. Furthermore, the amount of light to be taken out can be easily adjusted by adjusting the brightness of light emission of the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444. In the illumination device 1 according to the present embodiment, local dimming can be easily realized because light can be selectively extracted from the light extraction surface 301 in the desired regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344. it can.
 以上、本発明の第一実施形態について詳述したが、本発明は更に変更して実施してもよい。
 例えば、導光板300の形状に関しては、光取出面301と裏面302とは必ずしも平行でなくてもよい。
 例えば、導光板300の主面の形状は矩形でなくてもよい。
 例えば、導光板300の厚みは、必要に応じて不均一にしてもよい。
Although the first embodiment of the present invention has been described in detail above, the present invention may be further modified.
For example, regarding the shape of the light guide plate 300, the light extraction surface 301 and the back surface 302 do not necessarily have to be parallel.
For example, the shape of the main surface of the light guide plate 300 may not be rectangular.
For example, the thickness of the light guide plate 300 may be non-uniform as necessary.
 例えば、光導入面である側面303~306は、それぞれ、平坦な平面にしてもよく、凹凸を有する凹凸面にしてもよい。凹凸面にする場合、例えば、光の導入効率を高めるためにレンズ、プリズム等の凹凸を形成してもよい。レンズ、プリズム等を形成することにより、例えば、導光される光を平行光にすることができる。平行光とすることにより、光の拡散を更に安定して防止できるので、所望の領域以外の領域に光が導光される現象を安定して防止できる。また、レンズ、プリズム等を形成することにより、例えば、導光される光を意図的に拡散させることもできる。導光される光を所定の程度で拡散させることは、目玉防止の観点からは好ましい。ここで目玉とは、光取出面の光導入面近傍に発生する、光源の配置に由来する周期的な明暗模様のことをいう。光源の発光効率が向上すると光源の設置間隔が広くなる傾向があり、光導入面の付近に目玉が生じやすくなる傾向がある。 For example, each of the side surfaces 303 to 306 which are light introduction surfaces may be a flat surface or an uneven surface having unevenness. In the case of an uneven surface, for example, unevenness such as a lens or a prism may be formed in order to increase the light introduction efficiency. By forming a lens, a prism, or the like, for example, the guided light can be converted into parallel light. By using parallel light, the diffusion of light can be prevented more stably, so that the phenomenon that light is guided to a region other than the desired region can be prevented stably. Further, by forming a lens, a prism, or the like, for example, the guided light can be intentionally diffused. It is preferable from the viewpoint of preventing eyeballs to diffuse the guided light to a predetermined degree. Here, the eyeball refers to a periodic light and dark pattern derived from the arrangement of the light sources, which occurs in the vicinity of the light introduction surface of the light extraction surface. When the light emission efficiency of the light source is improved, the installation interval of the light sources tends to be widened, and an eyeball tends to be generated near the light introduction surface.
 例えば、上記の第一実施形態では領域311~314,321~324,331~334,341~344における光取出面301及び裏面302の一方又は両方にパターンを形成することにより、当該領域311~314,321~324,331~334,341~344を異方性光取出領域にしたが、別の手段によって異方性光取出領域にしてもよい。 For example, in the first embodiment described above, by forming a pattern on one or both of the light extraction surface 301 and the back surface 302 in the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344, the regions 311 to 314 are formed. , 321 to 324, 331 to 334, and 341 to 344 are anisotropic light extraction regions, but may be made anisotropic light extraction regions by other means.
 例えば、領域311~314,321~324,331~334,341~344ごとの仮想軸の方向、並びに、各領域311~314,321~324,331~334,341~344に対応する光導入領域303a~303d,304a~304d,305a~305d,306a~306dおよび光源411~414,421~424,431~434,441~444の位置などは、更に変更して実施してもよい。 For example, the direction of the virtual axis for each of the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344, and the light introduction region corresponding to each of the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 The positions of 303a to 303d, 304a to 304d, 305a to 305d, 306a to 306d and the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 may be further changed.
 例えば、必要に応じて隣り合う領域の間には遮光部を設けてもよい。前記の第一実施形態を例に挙げると、領域312と領域313との間では光を導光させる必要が無いため、遮光部を設けてもよい。 For example, you may provide a light-shielding part between adjacent areas as needed. Taking the first embodiment as an example, it is not necessary to guide light between the region 312 and the region 313, and therefore a light blocking portion may be provided.
 例えば、導光板の全領域を異方性光取出領域にしなくてもよい。したがって、導光板の一部に、どのような導光方向の光でも取り出す光取出パターンを光取出面及び裏面の一方又は両方に有する領域、どのような導光方向の光も取り出さないように光取出面及び裏面の両方が滑らかな平面となった領域、などを設けてもよい。ただし、少なくとも導光体の複数の領域を異方性光取出領域にする。 For example, the entire region of the light guide plate may not be an anisotropic light extraction region. Therefore, in a part of the light guide plate, a region having a light extraction pattern for extracting light in any light guide direction on one or both of the light extraction surface and the back surface, so that light in any light guide direction is not extracted. A region where both the extraction surface and the back surface are smooth surfaces may be provided. However, at least a plurality of regions of the light guide are set as anisotropic light extraction regions.
 また、例えば、導光板300の領域311~314,321~324,331~334,341~344は、上述した実施形態のようにX軸方向及びY軸方向ともに等間隔で区分することが好ましいが、等間隔で区分しなくてもよい。等間隔で区分しない場合、各領域における光取出面の面積が異なることになる。その場合、各領域に対応した光源から照射する光の光量を調整することが好ましい。 Further, for example, the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 of the light guide plate 300 are preferably divided at equal intervals in both the X-axis direction and the Y-axis direction as in the above-described embodiment. , It does not have to be divided at equal intervals. When not divided at equal intervals, the area of the light extraction surface in each region is different. In that case, it is preferable to adjust the amount of light emitted from the light source corresponding to each region.
 また、導光板の領域の数、並びに行列状に区分する際の行及び列の数は、上述した実施形態における数に限定されない。ただし、導光板を光の取出方向から見てa行b列(a及びbはそれぞれ2以上の整数。)の行列状にa×b箇所の領域に区分する場合には、前記の数a及びbが、2a+2b≧a×bを満たすことが好ましい。このように多数の領域に導光板を区分した場合に本発明を適用することで、各領域ごとに独立して明暗を付けることができ、本発明の利点を顕著に発揮させて、シンプルな構造でのローカルディミングを容易に実現できる。 Further, the number of regions of the light guide plate and the number of rows and columns when dividing into a matrix are not limited to the numbers in the above-described embodiment. However, when the light guide plate is divided into a × b areas in a matrix of a rows and b columns (a and b are each an integer of 2 or more) when viewed from the light extraction direction, the numbers a and b described above are used. It is preferable that b satisfies 2a + 2b ≧ a × b. By applying the present invention when the light guide plate is divided into a large number of areas in this way, it is possible to add brightness and darkness independently for each area, and to demonstrate the advantages of the present invention with a simple structure. Can easily realize local dimming.
 ただし、前記のように導光板を光の取出方向から見てa行b列の行列状にa×b箇所の領域に区分した場合には、前記a×b箇所の領域のうち半数以上が異方性光取出領域となっていることが好ましい。光を取り出す領域に異方性を持つことで、より多くの区分数を実現することができる。 However, when the light guide plate is divided into a × b regions in a matrix of a rows and b columns as viewed from the light extraction direction as described above, more than half of the a × b regions are different. The isotropic light extraction region is preferable. By having anisotropy in the region from which light is extracted, a larger number of sections can be realized.
 また、導光板の領域1箇所につき少なくとも1箇所の光導入領域を対応させることが好ましい。このため、光導入領域の数は、導光板の領域の数以上であることが好ましい。光導入領域の数の方が導光板の領域の数よりも多い場合、導光板の領域1箇所につき、2箇所以上の光導入領域を割り当てるようにしてもよい。ただしこの場合、導光板の同じ領域に対応している複数個所の光導入領域への光の照射は、同期することが好ましい。 Further, it is preferable that at least one light introduction region corresponds to one region of the light guide plate. For this reason, it is preferable that the number of light introducing regions is equal to or greater than the number of regions of the light guide plate. When the number of light introduction regions is larger than the number of light guide plate regions, two or more light introduction regions may be assigned to one region of the light guide plate. However, in this case, it is preferable to synchronize the irradiation of light to a plurality of light introduction regions corresponding to the same region of the light guide plate.
 また、照明装置には、光源及び導光板以外の構成要素を備えさせてもよい。例えば、光学シートを設けてもよい。
 光学シートの例を挙げると、集光シートが挙げられる。集光シートは、通常、導光板の光取出面側に設けられる。光取出面から取り出される光は、導光板内での導光方向に応じて、領域ごとに光の成分が異なる傾向がある。すなわち、取り出される光には、X軸方向へ広い出光角を有する光と、Y軸方向へ広い出光角を有する光とがあり、両者は領域ごとに異なる傾向がある。そこで、照明装置に集光シートを設ければ、取り出される光の出光方向を揃えて前記の出光角の差を減らすることができる。このような集光シートの具体例を挙げると、UTE-1(ミライテック社製)、BEF(スリーエム社製)等が挙げられる。なお、集光シートとしてBEFを用いる場合、2枚のBEFをレンズの軸が直交するように重ね合わせて用いることが好ましい。
In addition, the lighting device may include components other than the light source and the light guide plate. For example, an optical sheet may be provided.
If the example of an optical sheet is given, a condensing sheet will be mentioned. The condensing sheet is usually provided on the light extraction surface side of the light guide plate. The light extracted from the light extraction surface tends to have different light components for each region depending on the light guide direction in the light guide plate. That is, the extracted light includes light having a wide light emission angle in the X-axis direction and light having a wide light emission angle in the Y-axis direction, and both tend to be different for each region. Therefore, if a light collecting sheet is provided in the illumination device, the difference in the light output angle can be reduced by aligning the light output direction of the extracted light. Specific examples of such a light collecting sheet include UTE-1 (manufactured by Miraitech), BEF (manufactured by 3M), and the like. In addition, when using BEF as a condensing sheet | seat, it is preferable to overlap and use two BEFs so that the axis | shaft of a lens may orthogonally cross.
 また、光学シートとしては、例えば、拡散シートが挙げられる。導光板と集光シートとの間に拡散シートを設けると、モアレを生じにくくできる。また、集光シートの導光板とは反対側に拡散シートを設けると、観察者の観察角度が変わった場合、正面輝度の急激な変化を抑えることができ、画面のぎらつき感を抑えることができる。
 加えて、液晶モジュールのバックライトユニットとして用いる場合、正面輝度向上を目的として、偏光分離機能をもつ再帰性光学シートを設けてもよい。
 さらに、照明装置において、導光板の裏面には、白反射シート等の反射シートを設けてもよい。
Examples of the optical sheet include a diffusion sheet. When a diffusion sheet is provided between the light guide plate and the light collecting sheet, moire can be hardly generated. In addition, if a diffusion sheet is provided on the side opposite to the light guide plate of the light collecting sheet, a sudden change in front luminance can be suppressed and the screen glare can be suppressed if the observation angle of the observer changes. it can.
In addition, when used as a backlight unit of a liquid crystal module, a recursive optical sheet having a polarization separation function may be provided for the purpose of improving the front luminance.
Further, in the lighting device, a reflection sheet such as a white reflection sheet may be provided on the back surface of the light guide plate.
〔第二実施形態〕
 以下、図面を示して本発明の第二実施形態について説明する。図11は本発明の第二実施形態に係る照明装置をZ軸方向の光取出面側から見た様子を模式的に示す正面図である。なお、図11において、図9及び図10と同様の符号は、図9及び図10と同様の要素を示す。図11に示すように、本発明の第二実施形態に係る照明装置2は、1枚の導光板300と、光源411~414,421~424,431~434,441~444とを備える。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. FIG. 11 is a front view schematically showing a state in which the illumination device according to the second embodiment of the present invention is viewed from the light extraction surface side in the Z-axis direction. In FIG. 11, the same reference numerals as those in FIGS. 9 and 10 indicate the same elements as those in FIGS. 9 and 10. As shown in FIG. 11, the illumination device 2 according to the second embodiment of the present invention includes one light guide plate 300 and light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444.
 第二実施形態に係る照明装置2は、導光板300の領域311~314,321~324,331~334,341~344における異方性の向きが異なること、各領域311~314,321~324,331~334,341~344と光導入領域303a~303d,304a~304d,305a~305d,306a~306dとの対応関係が異なること、および、各領域311~314,321~324,331~334,341~344に対応する光源411~414,421~424,431~434,441~444の位置が異なること以外は、第一実施形態に係る照明装置1と、同様である。 In the illumination device 2 according to the second embodiment, the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 of the light guide plate 300 have different anisotropic directions, and the regions 311 to 314, 321 to 324 have different orientations. , 331 to 334, 341 to 344 and the light introduction regions 303a to 303d, 304a to 304d, 305a to 305d, and 306a to 306d, and the regions 311 to 314, 321 to 324, 331 to 334 , 341 to 344, except that the positions of the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 are the same as those of the lighting device 1 according to the first embodiment.
 第二実施形態に係る導光板300において、領域312,313,323,324,331,334,341,342における光取出面301及び裏面302の一方又は両方には、X軸方向に平行に導光される光に対しては光取出パターンとして機能し、Y軸方向に平行に導光される光に対しては光取出パターンとして機能せず、光拡散防止パターンとして機能するパターンが形成されている。したがって、領域312,313,323,324,331,334,341,342では、X軸方向に平行に導光される光は光取出面301から取り出され、Y軸方向に平行に導光される光は取り出されずにY軸方向に沿って導光されるようになっている。 In the light guide plate 300 according to the second embodiment, one or both of the light extraction surface 301 and the back surface 302 in the regions 312, 313, 323, 324, 331, 334, 341, 342 are guided in parallel with the X-axis direction. A pattern that functions as a light extraction pattern and functions as a light diffusion prevention pattern does not function as a light extraction pattern for light guided parallel to the Y-axis direction. . Accordingly, in the regions 312, 313, 323, 324, 331, 334, 341, and 342, light guided in parallel to the X-axis direction is extracted from the light extraction surface 301 and guided in parallel to the Y-axis direction. Light is guided along the Y-axis direction without being extracted.
 また、領域311,314,321,322,332,333,343,344における光取出面301及び裏面302の一方又は両方には、Y軸方向に平行に導光される光に対しては光取出パターンとして機能し、X軸方向に平行に導光される光に対しては光取出パターンとして機能せず、光拡散防止パターンとして機能するパターンが形成されている。したがって、領域311,314,321,322,332,333,343,344では、Y軸方向に平行に導光される光は光取出面301から取り出され、X軸方向に平行に導光される光は取り出されずにX軸方向に沿って導光されるようになっている。 In addition, one or both of the light extraction surface 301 and the back surface 302 in the regions 311, 314, 321, 322, 333, 343, and 344 is light extraction for light guided parallel to the Y-axis direction. A pattern that functions as a pattern and does not function as a light extraction pattern for light guided parallel to the X-axis direction, but functions as a light diffusion prevention pattern is formed. Therefore, in the regions 311, 314, 321, 322, 332, 333, 343, and 344, light guided in parallel to the Y-axis direction is extracted from the light extraction surface 301 and guided in parallel to the X-axis direction. Light is guided along the X-axis direction without being extracted.
 さらに、第二実施形態に係る照明装置2では、側面306の光導入領域306aは領域311に対応し、領域306aの正面に光源411が設けられている。
 また、側面303の光導入領域303aは領域312に対応し、領域303aの正面に光源412が設けられている。
 また、側面305の光導入領域305aは領域313に対応し、領域305aの正面に光源413が設けられている。
 また、側面306の光導入領域306dは領域314に対応し、領域306dの正面に光源414が設けられている。
 また、側面304の光導入領域304aは領域321に対応し、領域304aの正面に光源421が設けられている。
 また、側面306の光導入領域306bは領域322に対応し、領域306bの正面に光源422が設けられている。
 また、側面303の光導入領域303bは領域323に対応し、領域303bの正面に光源423が設けられている。
 また、側面305の光導入領域305bは領域324に対応し、領域305bの正面に光源424が設けられている。
 また、側面303の光導入領域303cは領域331に対応し、領域303cの正面に光源431が設けられている。
 また、側面303の光導入領域304bは領域332に対応し、領域304bの正面に光源432が設けられている。
 また、側面306の光導入領域306cは領域333に対応し、領域306cの正面に光源433が設けられている。
 また、側面305の光導入領域305cは領域334に対応し、領域305cの正面に光源434が設けられている。
 また、側面303の光導入領域303dは領域341に対応し、領域303dの正面に光源441が設けられている。
 また、側面305の光導入領域305dは領域342に対応し、領域305dの正面に光源442が設けられている。
 また、側面304の光導入領域304cは領域343に対応し、領域304cの正面に光源443が設けられている。
 さらに、側面304の光導入領域304dは領域344に対応し、領域304dの正面に光源444が設けられている。
Furthermore, in the lighting device 2 according to the second embodiment, the light introduction region 306a on the side surface 306 corresponds to the region 311 and the light source 411 is provided in front of the region 306a.
The light introduction region 303a on the side surface 303 corresponds to the region 312 and a light source 412 is provided in front of the region 303a.
The light introduction region 305a on the side surface 305 corresponds to the region 313, and a light source 413 is provided in front of the region 305a.
A light introduction region 306d on the side surface 306 corresponds to the region 314, and a light source 414 is provided in front of the region 306d.
A light introduction region 304a on the side surface 304 corresponds to the region 321 and a light source 421 is provided in front of the region 304a.
A light introduction region 306b on the side surface 306 corresponds to the region 322, and a light source 422 is provided in front of the region 306b.
A light introduction region 303b on the side surface 303 corresponds to the region 323, and a light source 423 is provided in front of the region 303b.
A light introduction region 305b on the side surface 305 corresponds to the region 324, and a light source 424 is provided in front of the region 305b.
The light introduction region 303c on the side surface 303 corresponds to the region 331, and a light source 431 is provided in front of the region 303c.
A light introduction region 304b on the side surface 303 corresponds to the region 332, and a light source 432 is provided in front of the region 304b.
A light introduction region 306c on the side surface 306 corresponds to the region 333, and a light source 433 is provided in front of the region 306c.
A light introduction region 305c on the side surface 305 corresponds to the region 334, and a light source 434 is provided in front of the region 305c.
The light introduction region 303d on the side surface 303 corresponds to the region 341, and a light source 441 is provided in front of the region 303d.
A light introduction region 305d on the side surface 305 corresponds to the region 342, and a light source 442 is provided in front of the region 305d.
The light introduction region 304c on the side surface 304 corresponds to the region 343, and a light source 443 is provided in front of the region 304c.
Further, the light introduction region 304d on the side surface 304 corresponds to the region 344, and a light source 444 is provided in front of the region 304d.
 本発明の第二実施形態に係る照明装置2は上述したように構成されている。したがって、使用時には、光を取り出そうとする領域311~314,321~324,331~334,341~344に対応した光源411~414,421~424,431~434,441~444を所望の明るさで選択的に発光させる。これにより、第一実施形態に係る照明装置1と同様の要領で、発光させた光源411~414,421~424,431~434,441~444から対応する領域311~314,321~324,331~334,341~344へと光が導光され、当該領域311~314,321~324,331~334,341~344における光取出面301から光が取り出される。 The lighting device 2 according to the second embodiment of the present invention is configured as described above. Therefore, in use, the light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 corresponding to the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344 from which light is to be extracted have a desired brightness. Select to emit light. Accordingly, in the same manner as the illumination device 1 according to the first embodiment, the corresponding regions 311 to 314, 321 to 324, and 331 from the emitted light sources 411 to 414, 421 to 424, 431 to 434, and 441 to 444 are provided. The light is guided to 334 to 341 to 344, and the light is extracted from the light extraction surfaces 301 in the regions 311 to 314, 321 to 324, 331 to 334, and 341 to 344.
 以上のように、本発明の第二実施形態に係る照明装置2も、第一実施形態に係る照明装置1と同様に使用でき、同様の利点が得られる。
 また、本発明の第二実施形態に係る照明装置2も、第一実施形態に係る照明装置1と同様に変更して実施してもよい。
As mentioned above, the illuminating device 2 which concerns on 2nd embodiment of this invention can be used similarly to the illuminating device 1 which concerns on 1st embodiment, and the same advantage is acquired.
Moreover, you may change and implement the illuminating device 2 which concerns on 2nd embodiment of this invention similarly to the illuminating device 1 which concerns on 1st embodiment.
 ところで、第二実施形態に係る導光板300においては、仮想軸の方向が平行となる異方性光取出領域同士が隣り合っている箇所がある。例えば、導光板300の領域332と領域333とは隣り合っており、仮想軸の方向がいずれもY軸方向と平行である。この場合、当該領域332に対応する光源432の半値全角が広いと、領域332における光取出面301から取り出されるはずの光の一部が領域333にも導光され、領域333における光取出面301から光が取り出される可能性がある。このような現象は光漏れと呼ばれる。前記の光漏れを防止するためには、例えば以下のような手段を講じることが好ましい。すなわち、例えば、領域332に対応した側面304の領域304bにレンズ等の集光部材を設け、光導入領域である領域304bから導入される光を平行光に近づけることが好ましい。また、例えば、光源432にレンズ等を取り付け、光源432が照射する光を平行光に近づけることが好ましい。さらに、例えば、前記の領域332と領域333との間に遮光部を設けてもよい。 By the way, in the light guide plate 300 according to the second embodiment, there are places where anisotropic light extraction regions where the directions of the virtual axes are parallel are adjacent to each other. For example, the region 332 and the region 333 of the light guide plate 300 are adjacent to each other, and the direction of the imaginary axis is parallel to the Y-axis direction. In this case, when the full width at half maximum of the light source 432 corresponding to the region 332 is wide, part of the light that should be extracted from the light extraction surface 301 in the region 332 is also guided to the region 333, and the light extraction surface 301 in the region 333 is obtained. There is a possibility that light will be extracted from. Such a phenomenon is called light leakage. In order to prevent the light leakage, it is preferable to take the following measures, for example. That is, for example, it is preferable to provide a condensing member such as a lens in the region 304b of the side surface 304 corresponding to the region 332 so that the light introduced from the region 304b which is a light introduction region is close to parallel light. In addition, for example, it is preferable to attach a lens or the like to the light source 432 so that the light emitted from the light source 432 approaches parallel light. Further, for example, a light shielding portion may be provided between the region 332 and the region 333.
〔第三実施形態〕
 以下、図面を示して本発明の第三実施形態について説明する。図12は本発明の第三実施形態に係る照明装置をZ軸方向の光取出面側から見た様子を模式的に示す正面図である。なお、図12において、図9~図11と同様の符号は、図9~図11と同様の要素を示す。図12に示すように、本発明の第三実施形態に係る照明装置3は、1枚の導光板300と、光源411~416,421~426,431~436とを備える。
[Third embodiment]
The third embodiment of the present invention will be described below with reference to the drawings. FIG. 12 is a front view schematically showing a state in which the illumination device according to the third embodiment of the present invention is viewed from the light extraction surface side in the Z-axis direction. In FIG. 12, the same reference numerals as those in FIGS. 9 to 11 denote the same elements as in FIGS. As shown in FIG. 12, the illumination device 3 according to the third embodiment of the present invention includes one light guide plate 300 and light sources 411 to 416, 421 to 426, and 431 to 436.
 第三実施形態に係る照明装置3は、導光板300のX軸方向の寸法をY軸方向の寸法よりも長くしたこと、光の取出方向から見て導光板300を、X軸方向に3行、Y軸方向に6列に等間隔に区分したこと、導光板300の領域311~316,321~326,331~336における異方性の向きが異なること、各領域311~316,321~326,331~336と光導入領域303a~303c,304a~304f,305a~305c,306a~306fとの対応関係が異なること、および、各領域311~316,321~326,331~336に対応する光源411~416,421~426,431~436の位置が異なること以外は、第一実施形態に係る照明装置1と、同様である。 In the illumination device 3 according to the third embodiment, the light guide plate 300 has three rows in the X-axis direction in which the size in the X-axis direction of the light guide plate 300 is longer than the size in the Y-axis direction. , Divided in six rows in the Y-axis direction at equal intervals, the anisotropic directions in the regions 311 to 316, 321 to 326, 331 to 336 of the light guide plate 300 are different, and the regions 311 to 316, 321 to 326 , 331 to 336 and the light introduction regions 303a to 303c, 304a to 304f, 305a to 305c, and 306a to 306f, and the light sources corresponding to the regions 311 to 316, 321 to 326, 331 to 336 Except that the positions of 411 to 416, 421 to 426, and 431 to 436 are different, it is the same as the illumination device 1 according to the first embodiment.
 第三実施形態に係る導光板300において、領域312,314,321,326,333,335における光取出面301及び裏面302の一方又は両方には、X軸方向に平行に導光される光に対しては光取出パターンとして機能し、Y軸方向に平行に導光される光に対しては光取出パターンとして機能せず、光拡散防止パターンとして機能するパターンが形成されている。したがって、領域312,314,321,326,333,335では、X軸方向に平行に導光される光は光取出面301から取り出され、Y軸方向に平行に導光される光は取り出されずにY軸方向に沿って導光されるようになっている。 In the light guide plate 300 according to the third embodiment, one or both of the light extraction surface 301 and the back surface 302 in the regions 312, 314, 321, 326, 333 and 335 are guided by light guided in parallel in the X-axis direction. On the other hand, a pattern that functions as a light extraction pattern and does not function as a light extraction pattern for light guided parallel to the Y-axis direction, but functions as a light diffusion prevention pattern. Accordingly, in the regions 312, 314, 321, 326, 333, and 335, light guided in parallel to the X-axis direction is extracted from the light extraction surface 301, and light guided in parallel to the Y-axis direction is not extracted. The light is guided along the Y-axis direction.
 また、領域311,313,315,316,322,323,324,325,331,332,334,336における光取出面301及び裏面302の一方又は両方には、Y軸方向に平行に導光される光に対しては光取出パターンとして機能し、X軸方向に平行に導光される光に対しては光取出パターンとして機能せず、光拡散防止パターンとして機能するパターンが形成されている。したがって、領域311,313,315,316,322,323,324,325,331,332,334,336では、Y軸方向に平行に導光される光は光取出面301から取り出され、X軸方向に平行に導光される光は取り出されずにX軸方向に沿って導光されるようになっている。 In addition, one or both of the light extraction surface 301 and the back surface 302 in the regions 311, 313, 315, 316, 322, 323, 324, 325, 331, 332, 334, 336 are guided in parallel with the Y-axis direction. A pattern that functions as a light extraction pattern and functions as a light diffusion prevention pattern without functioning as a light extraction pattern for light guided parallel to the X-axis direction is formed. Therefore, in the regions 311, 313, 315, 316, 322, 323, 324, 325, 331, 332, 334, and 336, the light guided in parallel to the Y-axis direction is extracted from the light extraction surface 301, and the X-axis Light guided in parallel to the direction is guided along the X-axis direction without being extracted.
 本実施形態に係る照明装置3においては、導光板300のすべての領域311~316,321~326,331~336における光取出面301から、光を取り出すようにする。そこで、図12に示すように、導光板300の光導入面である側面303~306には、光を取り出したい領域311~316,321~326,331~336それぞれに対応して、少なくとも1箇所ずつ設けられた光導入領域を有する。 In the illumination device 3 according to the present embodiment, light is extracted from the light extraction surfaces 301 in all the regions 311 to 316, 321 to 326, and 331 to 336 of the light guide plate 300. Therefore, as shown in FIG. 12, the side surfaces 303 to 306 which are light introduction surfaces of the light guide plate 300 have at least one location corresponding to each of the regions 311 to 316, 321 to 326 and 331 to 336 where light is to be extracted. There are light introduction regions provided one by one.
 具体的には、側面303がY軸方向に等間隔に区分されることにより光導入領域303a~303cが形成されている。図12に示すように、光導入領域303aは領域311の図中左側に位置する領域であり、光導入領域303bは領域321の図中左側に位置する領域であり、光導入領域303cは領域331の図中左側に位置する領域である。 Specifically, the light introduction regions 303a to 303c are formed by dividing the side surface 303 at equal intervals in the Y-axis direction. As shown in FIG. 12, the light introduction region 303a is a region located on the left side of the region 311 in the drawing, the light introduction region 303b is a region located on the left side of the region 321 in the drawing, and the light introduction region 303c is a region 331. This is an area located on the left side of FIG.
 また、側面304がX軸方向に等間隔に区分されることにより光導入領域304a~304fが形成されている。図12に示すように、光導入領域304aは領域331の図中下側に位置する領域であり、光導入領域304bは領域332の図中下側に位置する領域であり、光導入領域304cは領域333の図中下側に位置する領域であり、光導入領域304dは領域334の図中下側に位置する領域であり、光導入領域304eは領域335の図中下側に位置する領域であり、光導入領域304fは領域336の図中下側に位置する領域である。 Further, the light introduction regions 304a to 304f are formed by dividing the side surface 304 at equal intervals in the X-axis direction. As shown in FIG. 12, the light introduction region 304a is a region located below the region 331 in the drawing, the light introduction region 304b is a region located below the region 332 in the drawing, and the light introduction region 304c is The region 333 is a region located on the lower side in the drawing, the light introduction region 304d is a region located on the lower side of the region 334 in the drawing, and the light introduction region 304e is a region located on the lower side of the region 335 in the drawing. The light introduction region 304f is a region located below the region 336 in the drawing.
 また、側面305がY軸方向に等間隔に区分されることにより光導入領域305a~305cが形成されている。図12に示すように、光導入領域305aは領域316の図中右側に位置する領域であり、光導入領域305bは領域326の図中右側に位置する領域であり、光導入領域305cは領域336の図中右側に位置する領域である。したがって、光導入領域305a~305cは、それぞれ、光導入領域303a~303cの反対側に位置している。 Further, the light introduction regions 305a to 305c are formed by dividing the side surface 305 at equal intervals in the Y-axis direction. 12, the light introduction region 305a is a region located on the right side of the region 316 in the drawing, the light introduction region 305b is a region located on the right side of the region 326 in the drawing, and the light introduction region 305c is a region 336. It is the area | region located in the right side in the figure. Therefore, the light introduction regions 305a to 305c are located on the opposite sides of the light introduction regions 303a to 303c, respectively.
 さらに、側面306がX軸方向に等間隔に区分されることにより光導入領域306a~306fが形成されている。図12に示すように、光導入領域306aは領域311の図中上側に位置する領域であり、光導入領域306bは領域312の図中上側に位置する領域であり、光導入領域306cは領域313の図中上側に位置する領域であり、光導入領域306dは領域314の図中上側に位置する領域であり、光導入領域306eは領域315の図中上側に位置する領域であり、光導入領域306fは領域316の図中上側に位置する領域である。したがって、光導入領域306a~306fは、それぞれ、光導入領域304a~304fの反対側に位置している。 Furthermore, the light introduction regions 306a to 306f are formed by dividing the side surface 306 at equal intervals in the X-axis direction. As shown in FIG. 12, the light introduction region 306a is a region located on the upper side of the region 311 in the drawing, the light introduction region 306b is a region located on the upper side of the region 312 in the drawing, and the light introduction region 306c is the region 313. The light introduction region 306d is a region located above the region 314 in the figure, and the light introduction region 306e is a region located above the region 315 in the figure, and the light introduction region. Reference numeral 306f denotes an area located above the area 316 in the drawing. Accordingly, the light introduction regions 306a to 306f are located on the opposite sides of the light introduction regions 304a to 304f, respectively.
 さらに、第三実施形態に係る照明装置3では、側面306の光導入領域306aは領域311に対応し、領域306aの正面に光源411が設けられている。
 また、側面303の光導入領域303aは領域312に対応し、領域303aの正面に光源412が設けられている。
 また、側面306の光導入領域306cは領域313に対応し、領域306cの正面に光源413が設けられている。
 また、側面305の光導入領域305aは領域314に対応し、領域305aの正面に光源414が設けられている。
 また、側面306の光導入領域306eは領域315に対応し、領域306eの正面に光源415が設けられている。
 また、側面306の光導入領域306fは領域316に対応し、領域306fの正面に光源416が設けられている。
 また、側面303の光導入領域303bは領域321に対応し、領域303bの正面に光源421が設けられている。
 また、側面306の光導入領域306bは領域322に対応し、領域306bの正面に光源422が設けられている。
 また、側面304の光導入領域304cは領域323に対応し、領域304cの正面に光源423が設けられている。
 また、側面306の光導入領域306dは領域324に対応し、領域306dの正面に光源424が設けられている。
 また、側面304の光導入領域304eは領域325に対応し、領域304eの正面に光源425が設けられている。
 また、側面305の光導入領域305bは領域326に対応し、領域305bの正面に光源426が設けられている。
 また、側面304の光導入領域304aは領域331に対応し、領域304aの正面に光源431が設けられている。
 また、側面304の光導入領域304bは領域332に対応し、領域304bの正面に光源432が設けられている。
 また、側面303の光導入領域303cは領域333に対応し、領域303cの正面に光源433が設けられている。
 また、側面304の光導入領域304dは領域334に対応し、領域304dの正面に光源434が設けられている。
 また、側面305の光導入領域305cは領域335に対応し、領域305cの正面に光源435が設けられている。
 さらに、側面304の光導入領域304fは領域336に対応し、領域304fの正面に光源436が設けられている。
Furthermore, in the illumination device 3 according to the third embodiment, the light introduction region 306a on the side surface 306 corresponds to the region 311 and the light source 411 is provided in front of the region 306a.
The light introduction region 303a on the side surface 303 corresponds to the region 312 and a light source 412 is provided in front of the region 303a.
A light introduction region 306c on the side surface 306 corresponds to the region 313, and a light source 413 is provided in front of the region 306c.
A light introduction region 305a on the side surface 305 corresponds to the region 314, and a light source 414 is provided in front of the region 305a.
A light introduction region 306e on the side surface 306 corresponds to the region 315, and a light source 415 is provided in front of the region 306e.
A light introduction region 306f on the side surface 306 corresponds to the region 316, and a light source 416 is provided in front of the region 306f.
A light introduction region 303b on the side surface 303 corresponds to the region 321 and a light source 421 is provided in front of the region 303b.
A light introduction region 306b on the side surface 306 corresponds to the region 322, and a light source 422 is provided in front of the region 306b.
A light introduction region 304c on the side surface 304 corresponds to the region 323, and a light source 423 is provided in front of the region 304c.
A light introduction region 306d on the side surface 306 corresponds to the region 324, and a light source 424 is provided in front of the region 306d.
A light introduction region 304e on the side surface 304 corresponds to the region 325, and a light source 425 is provided in front of the region 304e.
A light introduction region 305b on the side surface 305 corresponds to the region 326, and a light source 426 is provided in front of the region 305b.
A light introduction region 304a on the side surface 304 corresponds to the region 331, and a light source 431 is provided in front of the region 304a.
The light introduction region 304b on the side surface 304 corresponds to the region 332, and a light source 432 is provided in front of the region 304b.
The light introduction region 303c on the side surface 303 corresponds to the region 333, and a light source 433 is provided in front of the region 303c.
A light introduction region 304d on the side surface 304 corresponds to the region 334, and a light source 434 is provided in front of the region 304d.
A light introduction region 305c on the side surface 305 corresponds to the region 335, and a light source 435 is provided in front of the region 305c.
Further, the light introduction region 304f on the side surface 304 corresponds to the region 336, and a light source 436 is provided in front of the region 304f.
 本発明の第三実施形態に係る照明装置3は上述したように構成されている。したがって、使用時には、光を取り出そうとする領域311~316,321~326,331~336に対応した光源411~416,421~426,431~436を所望の明るさで選択的に発光させる。これにより、第一実施形態に係る照明装置1と同様の要領で、発光させた光源411~416,421~426,431~436から対応する領域311~316,321~326,331~336へと光が導光され、当該領域311~316,321~326,331~336における光取出面301から光が取り出される。 The lighting device 3 according to the third embodiment of the present invention is configured as described above. Accordingly, in use, the light sources 411 to 416, 421 to 426, and 431 to 436 corresponding to the regions 311 to 316, 321 to 326, and 331 to 336 from which light is to be extracted are selectively emitted with desired brightness. As a result, in the same manner as the illumination device 1 according to the first embodiment, the emitted light sources 411 to 416, 421 to 426, 431 to 436 are changed to the corresponding regions 311 to 316, 321 to 326, 331 to 336. Light is guided, and light is extracted from the light extraction surface 301 in the regions 311 to 316, 321 to 326, and 331 to 336.
 以上のように、本発明の第三実施形態に係る照明装置3も、第一実施形態及び第二実施形態に係る照明装置1,2と同様に使用でき、同様の利点が得られる。
 また、本発明の第三実施形態に係る照明装置3も、第一実施形態及び第二実施形態に係る照明装置1,2と同様に変更して実施してもよい。
As mentioned above, the illuminating device 3 which concerns on 3rd embodiment of this invention can be used similarly to the illuminating devices 1 and 2 which concern on 1st embodiment and 2nd embodiment, and the same advantage is acquired.
Moreover, you may change and implement the illuminating device 3 which concerns on 3rd embodiment of this invention similarly to the illuminating devices 1 and 2 which concern on 1st embodiment and 2nd embodiment.
〔第四実施形態〕
 以下、図面を示して本発明の第四実施形態について説明する。図13は本発明の第四実施形態に係る照明装置を模式的に示す斜視図である。また、図14は、本発明の第四実施形態に係る照明装置を分解した様子を模式的に示す分解斜視図である。図13に示すように、本発明の第四実施形態に係る照明装置4は、2枚の同寸法の導光板500及び導光板600を重ねた複層導光板700と、光源812~816,821,824,825,836,911,922,923,926,931~935とを備える。
[Fourth embodiment]
Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 13 is a perspective view schematically showing an illumination apparatus according to the fourth embodiment of the present invention. FIG. 14 is an exploded perspective view schematically showing an exploded state of the illumination device according to the fourth embodiment of the present invention. As shown in FIG. 13, the illuminating device 4 according to the fourth embodiment of the present invention includes a multi-layer light guide plate 700 in which two light guide plates 500 and 600 having the same size are stacked, and light sources 812 to 816, 821. , 824, 825, 836, 911, 922, 923, 926, 931 to 935.
 複層導光板700は導光板500と導光板600とを重ねた部材である。図14に示すように、導光板500及び導光板600は、いずれも矩形板状となっている。
 導光板500は、その主面として、光取出面501と、光取出面501の反対側に位置する裏面502とを有する。また、導光板500は、光取出面501及び裏面502の端部に4面の側面503~506を有し、このうち側面503,506を光導入面として用いるようになっている。
 他方、導光板600は、その主面として、光取出面601と、光取出面601の反対側に位置する裏面602とを有する。また、導光板600は、光取出面601及び裏面602の端部に4面の側面603~606を有し、このうち側面603,606を光導入面として用いるようになっている。
 そして、前記の導光板500と導光板600とが、導光板500の裏面502と導光板600の光取出面601とが向かい合うように積み重ねられることで、複層導光板700が構成されている。
The multilayer light guide plate 700 is a member in which the light guide plate 500 and the light guide plate 600 are stacked. As shown in FIG. 14, each of the light guide plate 500 and the light guide plate 600 has a rectangular plate shape.
The light guide plate 500 has a light extraction surface 501 and a back surface 502 located on the opposite side of the light extraction surface 501 as its main surface. The light guide plate 500 has four side surfaces 503 to 506 at the ends of the light extraction surface 501 and the back surface 502, of which the side surfaces 503 and 506 are used as light introduction surfaces.
On the other hand, the light guide plate 600 has a light extraction surface 601 and a back surface 602 located on the opposite side of the light extraction surface 601 as its main surface. The light guide plate 600 has four side surfaces 603 to 606 at the ends of the light extraction surface 601 and the back surface 602, and the side surfaces 603 and 606 are used as light introduction surfaces.
The light guide plate 500 and the light guide plate 600 are stacked such that the back surface 502 of the light guide plate 500 and the light extraction surface 601 of the light guide plate 600 face each other, thereby forming a multilayer light guide plate 700.
 ここで、複層導光板700の厚み方向をZ軸方向とする。また、Z軸方向に垂直な面に平行な方向のうち、光取出面501の矩形の一辺に平行な方向をX軸方向とし、前記X軸方向に直交する方向をY軸方向とする。また、導光板500の光取出面501及び裏面502、並びに、導光板600の光取出面601及び裏面602はいずれもZ軸方向に垂直な面であるとする。また、導光板500の側面503及び側面505並びに導光板600の側面603及び側面605はX軸方向に垂直な面であり、導光板500の側面504及び側面506並びに導光板600の側面604及び側面606はY軸方向に垂直な面であるとする。さらに、光取出面501及び光取出面601からの光の取出方向は、Z軸方向と平行であるとする。 Here, the thickness direction of the multilayer light guide plate 700 is defined as the Z-axis direction. Of the directions parallel to the plane perpendicular to the Z-axis direction, the direction parallel to one side of the rectangle of the light extraction surface 501 is defined as the X-axis direction, and the direction perpendicular to the X-axis direction is defined as the Y-axis direction. The light extraction surface 501 and the back surface 502 of the light guide plate 500 and the light extraction surface 601 and the back surface 602 of the light guide plate 600 are all surfaces perpendicular to the Z-axis direction. Further, the side surface 503 and the side surface 505 of the light guide plate 500 and the side surface 603 and the side surface 605 of the light guide plate 600 are surfaces perpendicular to the X-axis direction, and the side surface 504 and the side surface 506 of the light guide plate 500 and the side surface 604 and the side surface of the light guide plate 600. Reference numeral 606 denotes a plane perpendicular to the Y-axis direction. Furthermore, it is assumed that the light extraction direction from the light extraction surface 501 and the light extraction surface 601 is parallel to the Z-axis direction.
 導光板500及び導光板600は、光の取出方向(図14では、Z軸方向の光取出面側)から見て、それぞれ3行6列の行列状に、18箇所の領域に区分されている。具体的には、図14に示すように、X軸方向において等間隔に3行に区分され、Y軸方向においても等間隔に6列に区分されている。これにより、導光板500は、X軸方向に3行、Y軸方向に6列の領域511~516,521~526,531~536を有する。また、導光板600は、X軸方向に3行、Y軸方向に6列の領域611~616,621~626,631~636を有する。
 ただし、前記の領域511~516,521~526,531~536及び領域611~616,621~626,631~636は光を取り出す位置を制御するために設定したものであり、各領域は障壁及び断絶等によって物理的に区切られていなくてもよい。
The light guide plate 500 and the light guide plate 600 are each divided into 18 regions in a matrix of 3 rows and 6 columns as viewed from the light extraction direction (in FIG. 14, the light extraction surface side in the Z-axis direction). . Specifically, as shown in FIG. 14, it is divided into three rows at equal intervals in the X-axis direction, and is divided into six columns at equal intervals in the Y-axis direction. Thus, the light guide plate 500 has regions 511 to 516, 521 to 526, and 531 to 536 in three rows in the X-axis direction and six columns in the Y-axis direction. The light guide plate 600 has regions 611 to 616, 621 to 626, and 631 to 636 in three rows in the X-axis direction and six columns in the Y-axis direction.
However, the regions 511 to 516, 521 to 526, 531 to 536 and the regions 611 to 616, 621 to 626, and 631 to 636 are set to control the position where light is extracted. It does not have to be physically separated by disconnection or the like.
 図15は、本発明の第四実施形態に係る照明装置4における導光板500と、この導光板500の側面503,506に光を照射する光源とを、Z軸方向の光取出面側から見た様子を模式的に示す正面図である。なお、図15において、図13及び図14と同様の符号は、図13及び図14と同様の要素を示す。図15に示すように、区分された領域511~516,521~526,531~536のうち、領域512~516,521~525,531~536はいずれも異方性光取出領域となっている。そして、異方性光取出領域である領域514,524,525,536の位置を、対応する光導入領域から導光板500内に導入された光が、仮想軸の方向が異なる他の異方性光取出領域を通って導光されてから当該領域514,524,525,536に到達するように位置調整してある。別の観点から言えば、異方性光取出領域である領域514,524,525,536の位置を、対応する光導入領域から導光板500内に導入された光が、仮想軸の方向が平行な他の異方性光取出領域を通らずに当該領域514,524,525,536に到達するように位置調整してある。 FIG. 15 shows the light guide plate 500 and the light source for irradiating light on the side surfaces 503 and 506 of the light guide plate 500 as viewed from the light extraction surface side in the Z-axis direction in the illumination device 4 according to the fourth embodiment of the present invention. FIG. In FIG. 15, the same reference numerals as those in FIGS. 13 and 14 denote the same elements as those in FIGS. As shown in FIG. 15, among the divided areas 511 to 516, 521 to 526, and 531 to 536, the areas 512 to 516, 521 to 525, and 531 to 536 are all anisotropic light extraction areas. Then, the positions of the regions 514, 524, 525, and 536, which are anisotropic light extraction regions, are compared with other anisotropic light extraction regions in which light introduced from the corresponding light introduction regions into the light guide plate 500 has different virtual axis directions. The position is adjusted so as to reach the regions 514, 524, 525, and 536 after being guided through. From another point of view, the positions of the regions 514, 524, 525, and 536, which are anisotropic light extraction regions, indicate that the light introduced into the light guide plate 500 from the corresponding light introduction region is parallel to the direction of the virtual axis. The position is adjusted so as to reach the region 514, 524, 525, 536 without passing through the anisotropic light extraction region.
 具体的には、導光板500の領域514,525,536における光取出面501及び裏面502の一方又は両方には、X軸方向に平行に導光される光に対しては光取出パターンとして機能し、Y軸方向に平行に導光される光に対しては光取出パターンとして機能せず、光拡散防止パターンとして機能するパターンが形成されている。したがって、領域514,525,536では、X軸方向に平行に導光される光は光取出面501から取り出され、Y軸方向に平行に導光される光は取り出されずにY軸方向に沿って導光されるようになっている。 Specifically, one or both of the light extraction surface 501 and the back surface 502 in the regions 514, 525, and 536 of the light guide plate 500 function as a light extraction pattern for light guided parallel to the X-axis direction. However, the light guided parallel to the Y-axis direction does not function as a light extraction pattern, but a pattern that functions as a light diffusion prevention pattern is formed. Therefore, in the regions 514, 525, and 536, the light guided in parallel to the X-axis direction is extracted from the light extraction surface 501, and the light guided in parallel to the Y-axis direction is not extracted and is along the Y-axis direction. The light is guided.
 また、導光板500の領域512,513,515,516,521~524,531~535における光取出面501及び裏面502の一方又は両方には、Y軸方向に平行に導光される光に対しては光取出パターンとして機能し、X軸方向に平行に導光される光に対しては光取出パターンとして機能せず、光拡散防止パターンとして機能するパターンが形成されている。したがって、領域512,513,515,516,521~524,531~535では、Y軸方向に平行に導光される光は光取出面501から取り出され、X軸方向に平行に導光される光は取り出されずにX軸方向に沿って導光されるようになっている。 Further, one or both of the light extraction surface 501 and the back surface 502 in the regions 512, 513, 515, 516, 521 to 524, 531 to 535 of the light guide plate 500 is directed to the light guided in parallel in the Y-axis direction. In this case, a pattern that functions as a light extraction pattern and does not function as a light extraction pattern for light guided parallel to the X-axis direction is formed. Therefore, in the regions 512, 513, 515, 516, 521 to 524, 531 to 535, light guided in parallel to the Y-axis direction is extracted from the light extraction surface 501 and guided in parallel to the X-axis direction. Light is guided along the X-axis direction without being extracted.
 また、領域511及び領域526は、光取出面501及び裏面502の両方が滑らかな平面となった領域である。この領域511,526では、X軸方向に平行に導光される光およびY軸方向に平行に導光される光のいずれもが光取出面501から取り出されず、それぞれX軸方向及びY軸方向に沿って導光されるようになっている。 Further, the region 511 and the region 526 are regions where both the light extraction surface 501 and the back surface 502 are smooth planes. In these regions 511 and 526, neither the light guided in parallel to the X-axis direction nor the light guided in parallel to the Y-axis direction is extracted from the light extraction surface 501, and the X-axis direction and the Y-axis direction respectively. The light is guided along.
 さらに、導光板500の領域511~516,521~526,531~536では、Z軸方向に沿って裏面502へ光が照射されると、照射された光は当該領域511~516,521~526,531~536を透過し、光取出面501から取り出されるようになっている。 Further, in the regions 511 to 516, 521 to 526, and 531 to 536 of the light guide plate 500, when light is irradiated to the back surface 502 along the Z-axis direction, the irradiated light is the regions 511 to 516, 521 to 526. , 531 to 536 and extracted from the light extraction surface 501.
 本実施形態に係る照明装置4の導光板500では、この導光板500の光導入面である側面503,506から導入した光を、導光板500の一部の領域512~516,521,524,525,536における光取出面501から取り出すようにする。そこで、図15に示すように、側面503,506には、光を取り出したい領域512~516,521,524,525,536それぞれに対応して、少なくとも1箇所ずつ設けられた光導入領域を有する。 In the light guide plate 500 of the illuminating device 4 according to the present embodiment, the light introduced from the side surfaces 503 and 506 that are the light introduction surfaces of the light guide plate 500 is used as partial regions 512 to 516, 521, and 524 of the light guide plate 500. The light is extracted from the light extraction surface 501 at 525 and 536. Therefore, as shown in FIG. 15, the side surfaces 503 and 506 have at least one light introduction region corresponding to each of the regions 512 to 516, 521, 524, 525 and 536 from which light is to be extracted. .
 具体的には、側面503がY軸方向に等間隔に区分されることにより光導入領域503a~503cが形成されている。図15に示すように、光導入領域503aは領域511の図中左側に位置する領域であり、光導入領域503bは領域521の図中左側に位置する領域であり、光導入領域503cは領域531の図中左側に位置する領域である。 Specifically, the light introduction regions 503a to 503c are formed by dividing the side surface 503 at equal intervals in the Y-axis direction. As shown in FIG. 15, the light introduction region 503a is a region located on the left side of the region 511 in the drawing, the light introduction region 503b is a region located on the left side of the region 521 in the drawing, and the light introduction region 503c is a region 531. This is an area located on the left side of FIG.
 また、側面506がX軸方向に等間隔に区分されることにより光導入領域506a~506fが形成されている。図15に示すように、光導入領域506aは領域511の図中上側に位置する領域であり、光導入領域506bは領域512の図中上側に位置する領域であり、光導入領域506cは領域513の図中上側に位置する領域であり、光導入領域506dは領域514の図中上側に位置する領域であり、光導入領域506eは領域515の図中上側に位置する領域であり、光導入領域506fは領域516の図中上側に位置する領域である。 Further, the light introduction regions 506a to 506f are formed by dividing the side surface 506 at equal intervals in the X-axis direction. As shown in FIG. 15, the light introduction region 506 a is a region located on the upper side of the region 511 in the drawing, the light introduction region 506 b is a region located on the upper side of the region 512 in the drawing, and the light introduction region 506 c is the region 513. The light introduction region 506d is a region located above the region 514 in the drawing, and the light introduction region 506e is a region located above the region 515 in the figure, and the light introduction region. Reference numeral 506f denotes an area located above the area 516 in the drawing.
 図16は、本発明の第四実施形態に係る照明装置4における導光板600と、この導光板600の側面603,606に光を照射する光源とを、Z軸方向の光取出面側から見た様子を模式的に示す正面図である。なお、図16において、図13~図15と同様の符号は、図13~図15と同様の要素を示す。図16に示すように、区分された領域611~616,621~626,631~636のうち、領域611~616,622~626,631~635はいずれも異方性光取出領域となっている。そして、異方性光取出領域である領域623,626,631~635の位置を、対応する光導入領域から導光板500内に導入された光が、仮想軸の方向が異なる他の異方性光取出領域を通って導光されてから当該領域623,626,631~635に到達するように位置調整してある。別の観点から言えば、異方性光取出領域である領域623,626,631~635の位置を、対応する光導入領域から導光板500内に導入された光が、仮想軸の方向が平行な他の異方性光取出領域を通らずに当該領域623,626,631~635に到達するように位置調整してある。 FIG. 16 shows the light guide plate 600 and the light source that irradiates light to the side surfaces 603 and 606 of the light guide plate 600 as viewed from the light extraction surface side in the Z-axis direction in the illumination device 4 according to the fourth embodiment of the present invention. FIG. In FIG. 16, the same reference numerals as those in FIGS. 13 to 15 denote the same elements as those in FIGS. As shown in FIG. 16, among the divided regions 611 to 616, 621 to 626 and 631 to 636, the regions 611 to 616, 622 to 626 and 631 to 635 are all anisotropic light extraction regions. Then, the positions of the regions 623, 626, 631 to 635, which are anisotropic light extraction regions, are compared with other anisotropic light extraction regions in which light introduced from the corresponding light introduction regions into the light guide plate 500 has different virtual axis directions. The position is adjusted so as to reach the regions 623, 626, 631 to 635 after being guided through. From another point of view, the positions of the regions 623, 626, 631 to 635 which are anisotropic light extraction regions are set so that the light introduced into the light guide plate 500 from the corresponding light introduction region is parallel to the direction of the virtual axis. The position is adjusted so as to reach the regions 623, 626, 631 to 635 without passing through the anisotropic light extraction region.
 具体的には、導光板600の領域611~616,622,624,625,633における光取出面601及び裏面602の一方又は両方には、X軸方向に平行に導光される光に対しては光取出パターンとして機能し、Y軸方向に平行に導光される光に対しては光取出パターンとして機能せず、光拡散防止パターンとして機能するパターンが形成されている。したがって、領域611~616,622,624,625,633では、X軸方向に平行に導光される光は光取出面601から取り出され、Y軸方向に平行に導光される光は取り出されずにY軸方向に沿って導光されるようになっている。 Specifically, one or both of the light extraction surface 601 and the back surface 602 in the regions 611 to 616, 622, 624, 625, and 633 of the light guide plate 600 is directed to the light guided in parallel in the X-axis direction. Functions as a light extraction pattern, and does not function as a light extraction pattern for light guided in parallel to the Y-axis direction, but forms a pattern that functions as a light diffusion prevention pattern. Therefore, in the regions 611 to 616, 622, 624, 625, and 633, light guided in parallel to the X-axis direction is extracted from the light extraction surface 601 and light guided in parallel to the Y-axis direction is not extracted. The light is guided along the Y-axis direction.
 また、導光板600の領域623,626,631,632,634,635における光取出面601及び裏面602の一方又は両方には、Y軸方向に平行に導光される光に対しては光取出パターンとして機能し、X軸方向に平行に導光される光に対しては光取出パターンとして機能せず、光拡散防止パターンとして機能するパターンが形成されている。したがって、領域623,626,631,632,634,635では、Y軸方向に平行に導光される光は光取出面601から取り出され、X軸方向に平行に導光される光は取り出されずにX軸方向に沿って導光されるようになっている。 Further, one or both of the light extraction surface 601 and the back surface 602 in the regions 623, 626, 631, 632, 634, and 635 of the light guide plate 600 is light extraction for light guided parallel to the Y-axis direction. A pattern that functions as a pattern and does not function as a light extraction pattern for light guided parallel to the X-axis direction, but functions as a light diffusion prevention pattern is formed. Therefore, in the regions 623, 626, 631, 632, 634, and 635, light guided in parallel to the Y-axis direction is extracted from the light extraction surface 601, and light guided in parallel to the X-axis direction is not extracted. The light is guided along the X-axis direction.
 さらに、領域621及び領域636は、光取出面601及び裏面602の両方が滑らかな平面となった領域である。この領域621,636では、X軸方向に平行に導光される光およびY軸方向に平行に導光される光のいずれもが光取出面601から取り出されず、それぞれX軸方向及びY軸方向に沿って導光されるようになっている。 Furthermore, the region 621 and the region 636 are regions in which both the light extraction surface 601 and the back surface 602 are smooth planes. In these areas 621 and 636, neither the light guided in parallel to the X-axis direction nor the light guided in parallel to the Y-axis direction is extracted from the light extraction surface 601, and the X-axis direction and the Y-axis direction respectively. The light is guided along.
 本実施形態に係る照明装置4の導光板600では、この導光板600の光導入面である側面603,606から導入した光を、導光板600の一部の領域611,622,623,626,631~635における光取出面501から取り出すようにする。そこで、図16に示すように、側面603,606には、光を取り出したい領域611,622,623,626,631~635それぞれに対応して、少なくとも1箇所ずつ設けられた光導入領域を有する。 In the light guide plate 600 of the illuminating device 4 according to the present embodiment, the light introduced from the side surfaces 603 and 606 that are the light introduction surfaces of the light guide plate 600 is used as part of the regions 611, 622, 623, 626 of the light guide plate 600. The light is extracted from the light extraction surface 501 at 631 to 635. Therefore, as shown in FIG. 16, the side surfaces 603 and 606 have at least one light introduction region corresponding to each of the regions 611, 622, 623, 626, 631 to 635 from which light is to be extracted. .
 具体的には、側面603がY軸方向に等間隔に区分されることにより光導入領域603a~603cが形成されている。図16に示すように、光導入領域603aは領域611の図中左側に位置する領域であり、光導入領域603bは領域621の図中左側に位置する領域であり、光導入領域603cは領域631の図中左側に位置する領域である。 Specifically, the light introduction regions 603a to 603c are formed by dividing the side surface 603 at equal intervals in the Y-axis direction. 16, the light introduction region 603a is a region located on the left side of the region 611 in the drawing, the light introduction region 603b is a region located on the left side of the region 621 in the drawing, and the light introduction region 603c is a region 631. This is an area located on the left side of FIG.
 また、側面606がX軸方向に等間隔に区分されることにより光導入領域606a~606fが形成されている。図16に示すように、光導入領域606aは領域611の図中上側に位置する領域であり、光導入領域606bは領域612の図中上側に位置する領域であり、光導入領域606cは領域613の図中上側に位置する領域であり、光導入領域606dは領域614の図中上側に位置する領域であり、光導入領域606eは領域615の図中上側に位置する領域であり、光導入領域606fは領域616の図中上側に位置する領域である。 Further, the light introduction regions 606a to 606f are formed by dividing the side surface 606 at equal intervals in the X-axis direction. As illustrated in FIG. 16, the light introduction region 606 a is a region located on the upper side of the region 611 in the drawing, the light introduction region 606 b is a region located on the upper side of the region 612 in the drawing, and the light introduction region 606 c is the region 613. The light introduction region 606d is a region located above the region 614 in the figure, and the light introduction region 606e is a region located above the region 615 in the figure, and is a light introduction region. Reference numeral 606f denotes an area located above the area 616 in the drawing.
 なお、前記の導光板500の光導入領域503a~503c,506a~506f及び導光板600の光導入領域603a~603c,606a~606fは照明装置4の発光位置の制御のために設定されたものであり、通常、境界により物理的に区分されるものではない。 The light introduction regions 503a to 503c and 506a to 506f of the light guide plate 500 and the light introduction regions 603a to 603c and 606a to 606f of the light guide plate 600 are set for controlling the light emission position of the illumination device 4. Yes, usually not physically separated by boundaries.
 図15に示す光源812~816,821,824,825,836は、導光板500の光導入面である側面503,506に光を照射する装置である。ローカルディミングを実現する観点から、光源812~816,821,824,825,836は、光導入領域503a~503c,506a~506fそれぞれに独立して光を照射できるように設けられている。これにより、光源812~816,821,824,825,836は、光を取り出す領域512~516,521,524,525,536ごとに調光可能になっている。 The light sources 812 to 816, 821, 824, 825, and 836 shown in FIG. 15 are devices that irradiate light to the side surfaces 503 and 506 that are light introduction surfaces of the light guide plate 500. From the viewpoint of realizing local dimming, the light sources 812 to 816, 821, 824, 825 and 836 are provided so that the light introduction regions 503 a to 503 c and 506 a to 506 f can be irradiated with light independently. As a result, the light sources 812 to 816, 821, 824, 825, and 836 can be dimmed for each of the light extraction regions 512 to 516, 521, 524, 525, and 536.
 具体的には、側面506の光導入領域506bは領域512に対応し、領域506bの正面に光源812が設けられている。
 また、側面506の光導入領域506cは領域513に対応し、領域506cの正面に光源813が設けられている。
 また、側面503の光導入領域503aは領域514に対応し、領域503aの正面に光源814が設けられている。
 また、側面506の光導入領域506eは領域515に対応し、領域506eの正面に光源815が設けられている。
 また、側面506の光導入領域506fは領域516に対応し、領域506fの正面に光源816が設けられている。
 また、側面506の光導入領域506aは領域521に対応し、領域506aの正面に光源821が設けられている。
 また、側面506の光導入領域506dは領域524に対応し、領域506dの正面に光源824が設けられている。
 また、側面503の光導入領域503bは領域525に対応し、領域503bの正面に光源825が設けられている。
 さらに、側面503の光導入領域503cは領域536に対応し、領域503cの正面に光源836が設けられている。
Specifically, the light introduction region 506b on the side surface 506 corresponds to the region 512, and a light source 812 is provided in front of the region 506b.
A light introduction region 506c on the side surface 506 corresponds to the region 513, and a light source 813 is provided in front of the region 506c.
A light introduction region 503a on the side surface 503 corresponds to the region 514, and a light source 814 is provided in front of the region 503a.
A light introduction region 506e on the side surface 506 corresponds to the region 515, and a light source 815 is provided in front of the region 506e.
A light introduction region 506f on the side surface 506 corresponds to the region 516, and a light source 816 is provided in front of the region 506f.
A light introduction region 506a on the side surface 506 corresponds to the region 521, and a light source 821 is provided in front of the region 506a.
A light introduction region 506d on the side surface 506 corresponds to the region 524, and a light source 824 is provided in front of the region 506d.
A light introduction region 503b on the side surface 503 corresponds to the region 525, and a light source 825 is provided in front of the region 503b.
Further, the light introduction region 503c on the side surface 503 corresponds to the region 536, and a light source 836 is provided in front of the region 503c.
 図16に示す光源911,922,923,926,931~935は、導光板600の光導入面である側面603,606に光を照射する装置である。ローカルディミングを実現する観点から、光源911,922,923,926,931~935は、光導入領域603a~603c,606a~606fそれぞれに独立して光を照射できるように設けられている。これにより、光源911,922,923,926,931~935は、光を取り出す領域611,622,623,626,631~635ごとに調光可能になっている。 16 are devices that irradiate light to the side surfaces 603 and 606 which are light introduction surfaces of the light guide plate 600. The light sources 911, 922, 923, 926, and 931 to 935 shown in FIG. From the viewpoint of realizing local dimming, the light sources 911, 922, 923, 926, 931 to 935 are provided so as to be able to irradiate light independently to the light introduction regions 603a to 603c and 606a to 606f. Thus, the light sources 911, 922, 923, 926, 931 to 935 can be dimmed for each of the regions 611, 622, 623, 626, 631 to 635 from which light is extracted.
 具体的には、側面603の光導入領域603aは領域611に対応し、領域603aの正面に光源911が設けられている。
 また、側面603の光導入領域603bは領域622に対応し、領域603bの正面に光源922が設けられている。
 また、側面606の光導入領域606cは領域623に対応し、領域606cの正面に光源923が設けられている。
 また、側面606の光導入領域606fは領域626に対応し、領域606fの正面に光源926が設けられている。
 また、側面606の光導入領域606aは領域631に対応し、領域606aの正面に光源931が設けられている。
 また、側面606の光導入領域606bは領域632に対応し、領域606bの正面に光源932が設けられている。
 また、側面603の光導入領域603cは領域633に対応し、領域603cの正面に光源933が設けられている。
 また、側面606の光導入領域606dは領域634に対応し、領域606dの正面に光源934が設けられている。
 さらに、側面606の光導入領域606eは領域635に対応し、領域606eの正面に光源935が設けられている。
Specifically, the light introduction region 603a on the side surface 603 corresponds to the region 611, and a light source 911 is provided in front of the region 603a.
A light introduction region 603b on the side surface 603 corresponds to the region 622, and a light source 922 is provided in front of the region 603b.
A light introduction region 606c on the side surface 606 corresponds to the region 623, and a light source 923 is provided in front of the region 606c.
A light introduction region 606f on the side surface 606 corresponds to the region 626, and a light source 926 is provided in front of the region 606f.
A light introduction region 606a on the side surface 606 corresponds to the region 631, and a light source 931 is provided in front of the region 606a.
A light introduction region 606b on the side surface 606 corresponds to the region 632, and a light source 932 is provided in front of the region 606b.
A light introduction region 603c on the side surface 603 corresponds to the region 633, and a light source 933 is provided in front of the region 603c.
A light introduction region 606d on the side surface 606 corresponds to the region 634, and a light source 934 is provided in front of the region 606d.
Further, the light introduction region 606e on the side surface 606 corresponds to the region 635, and a light source 935 is provided in front of the region 606e.
 本発明の第四実施形態に係る照明装置4は上述したように構成されている。前記のような照明装置4においては、導光板500の光取出面501が複層導光板700の光取出面として機能する。したがって、使用時には、光を取り出そうとする領域511~516,521~526,531~536ごとに光源812~816,821,824,825,836及び光源911,922,923,926,931~935を所望の明るさで選択的に発光させる。 The lighting device 4 according to the fourth embodiment of the present invention is configured as described above. In the illumination device 4 as described above, the light extraction surface 501 of the light guide plate 500 functions as the light extraction surface of the multilayer light guide plate 700. Accordingly, in use, the light sources 812 to 816, 821, 824, 825, and 836 and the light sources 911, 922, 923, 926, and 931 to 935 are provided for each of the regions 511 to 516, 521 to 526, and 531 to 536 from which light is to be extracted. Selectively emit light at a desired brightness.
 例えば、領域511における光取出面501から光を取り出そうとする場合には、光源911を発光させる。光源911が発光すると導光板600の側面603の光導入領域603aに光が照射され、光導入領域603aから導光板600内に光が導入される。導入された光は、導光板600の領域611における光取出面601から取り出される。取り出された光は、導光板500の領域511の裏面502へ照射され、領域511を透過して光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 511, the light source 911 is caused to emit light. When the light source 911 emits light, light is irradiated to the light introduction region 603a of the side surface 603 of the light guide plate 600, and light is introduced into the light guide plate 600 from the light introduction region 603a. The introduced light is extracted from the light extraction surface 601 in the region 611 of the light guide plate 600. The extracted light is applied to the back surface 502 of the region 511 of the light guide plate 500, passes through the region 511, and is extracted from the light extraction surface 501.
 例えば、領域512における光取出面501から光を取り出そうとする場合には、光源812を発光させる。光源812が発光すると導光板500の側面506の光導入領域506bに光が照射され、光導入領域506bから導光板500内に光が導入される。導入された光は、導光板500の領域512における光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 512, the light source 812 is caused to emit light. When the light source 812 emits light, light is irradiated to the light introduction region 506b on the side surface 506 of the light guide plate 500, and light is introduced into the light guide plate 500 from the light introduction region 506b. The introduced light is extracted from the light extraction surface 501 in the region 512 of the light guide plate 500.
 例えば、領域513における光取出面501から光を取り出そうとする場合には、光源813を発光させる。光源813が発光すると導光板500の側面506の光導入領域506cに光が照射され、光導入領域506cから導光板500内に光が導入される。導入された光は、導光板500の領域513における光取出面601から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 513, the light source 813 is caused to emit light. When the light source 813 emits light, light is irradiated to the light introduction region 506c on the side surface 506 of the light guide plate 500, and light is introduced into the light guide plate 500 from the light introduction region 506c. The introduced light is extracted from the light extraction surface 601 in the region 513 of the light guide plate 500.
 例えば、領域514における光取出面501から光を取り出そうとする場合には、光源814を発光させる。光源814が発光すると導光板500の側面503の光導入領域503aに光が照射され、光導入領域503aから導光板500内に光が導入される。導入された光は、導光板500の領域511~513を通って導光されてから領域514に到達し、領域514における光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 514, the light source 814 is caused to emit light. When the light source 814 emits light, light is irradiated to the light introduction region 503a on the side surface 503 of the light guide plate 500, and light is introduced into the light guide plate 500 from the light introduction region 503a. The introduced light is guided through the regions 511 to 513 of the light guide plate 500, reaches the region 514, and is extracted from the light extraction surface 501 in the region 514.
 例えば、領域515における光取出面501から光を取り出そうとする場合には、光源815を発光させる。光源815が発光すると導光板500の側面506の光導入領域506eに光が照射され、光導入領域506eから導光板500内に光が導入される。導入された光は、導光板500の領域515における光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 515, the light source 815 is caused to emit light. When the light source 815 emits light, light is irradiated to the light introduction region 506e on the side surface 506 of the light guide plate 500, and light is introduced into the light guide plate 500 from the light introduction region 506e. The introduced light is extracted from the light extraction surface 501 in the region 515 of the light guide plate 500.
 例えば、領域516における光取出面501から光を取り出そうとする場合には、光源816を発光させる。光源816が発光すると導光板500の側面506の光導入領域506fに光が照射され、光導入領域506fから導光板500内に光が導入される。導入された光は、導光板500の領域516における光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 516, the light source 816 is caused to emit light. When the light source 816 emits light, light is irradiated to the light introduction region 506f on the side surface 506 of the light guide plate 500, and light is introduced into the light guide plate 500 from the light introduction region 506f. The introduced light is extracted from the light extraction surface 501 in the region 516 of the light guide plate 500.
 例えば、領域521における光取出面501から光を取り出そうとする場合には、光源821を発光させる。光源821が発光すると導光板500の側面506の光導入領域506aに光が照射され、光導入領域506aから導光板500内に光が導入される。導入された光は、導光板500の領域511を通って導光されてから領域521に到達し、領域521における光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 521, the light source 821 is caused to emit light. When the light source 821 emits light, light is irradiated to the light introduction region 506a on the side surface 506 of the light guide plate 500, and light is introduced into the light guide plate 500 from the light introduction region 506a. The introduced light is guided through the region 511 of the light guide plate 500, reaches the region 521, and is extracted from the light extraction surface 501 in the region 521.
 例えば、領域522における光取出面501から光を取り出そうとする場合には、光源922を発光させる。光源922が発光すると導光板600の側面603の光導入領域603bに光が照射され、光導入領域603bから導光板600内に光が導入される。導入された光は、導光板600の領域621を通って導光されてから領域622に到達し、領域622における光取出面601から取り出される。取り出された光は、導光板500の領域522の裏面502へ照射され、領域522を透過して光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 522, the light source 922 is caused to emit light. When the light source 922 emits light, light is applied to the light introduction region 603b of the side surface 603 of the light guide plate 600, and light is introduced into the light guide plate 600 from the light introduction region 603b. The introduced light is guided through the region 621 of the light guide plate 600, reaches the region 622, and is extracted from the light extraction surface 601 in the region 622. The extracted light is applied to the back surface 502 of the region 522 of the light guide plate 500, passes through the region 522, and is extracted from the light extraction surface 501.
 例えば、領域523における光取出面501から光を取り出そうとする場合には、光源923を発光させる。光源923が発光すると導光板600の側面606の光導入領域606cに光が照射され、光導入領域606cから導光板600内に光が導入される。導入された光は、導光板600の領域613を通って導光されてから領域623に到達し、領域623における光取出面601から取り出される。取り出された光は、導光板500の領域523の裏面502へ照射され、領域523を透過して光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 523, the light source 923 is caused to emit light. When the light source 923 emits light, light is applied to the light introduction region 606c on the side surface 606 of the light guide plate 600, and light is introduced into the light guide plate 600 from the light introduction region 606c. The introduced light is guided through the region 613 of the light guide plate 600, reaches the region 623, and is extracted from the light extraction surface 601 in the region 623. The extracted light is applied to the back surface 502 of the region 523 of the light guide plate 500, passes through the region 523, and is extracted from the light extraction surface 501.
 例えば、領域524における光取出面501から光を取り出そうとする場合には、光源824を発光させる。光源824が発光すると導光板500の側面506の光導入領域506dに光が照射され、光導入領域506dから導光板600内に光が導入される。導入された光は、導光板500の領域514を通って導光されてから領域524に到達し、領域524における光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 524, the light source 824 is caused to emit light. When the light source 824 emits light, light is irradiated to the light introduction region 506d of the side surface 506 of the light guide plate 500, and light is introduced into the light guide plate 600 from the light introduction region 506d. The introduced light is guided through the region 514 of the light guide plate 500, reaches the region 524, and is extracted from the light extraction surface 501 in the region 524.
 例えば、領域525における光取出面501から光を取り出そうとする場合には、光源825を発光させる。光源825が発光すると導光板500の側面503の光導入領域503bに光が照射され、光導入領域503bから導光板500内に光が導入される。導入された光は、導光板500の領域521~524を通って導光されてから領域525に到達し、領域525における光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 525, the light source 825 is caused to emit light. When the light source 825 emits light, the light introduction region 503b on the side surface 503 of the light guide plate 500 is irradiated with light, and the light is introduced into the light guide plate 500 from the light introduction region 503b. The introduced light is guided through the regions 521 to 524 of the light guide plate 500, reaches the region 525, and is extracted from the light extraction surface 501 in the region 525.
 例えば、領域526における光取出面501から光を取り出そうとする場合には、光源926を発光させる。光源926が発光すると導光板600の側面606の光導入領域606fに光が照射され、光導入領域606fから導光板600内に光が導入される。導入された光は、導光板600の領域616を通って導光されてから領域626に到達し、領域626における光取出面601から取り出される。取り出された光は、導光板500の領域526の裏面502へ照射され、領域526を透過して光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 526, the light source 926 is caused to emit light. When the light source 926 emits light, the light introduction region 606f of the side surface 606 of the light guide plate 600 is irradiated with light, and the light is introduced into the light guide plate 600 from the light introduction region 606f. The introduced light is guided through the region 616 of the light guide plate 600, reaches the region 626, and is extracted from the light extraction surface 601 in the region 626. The extracted light is applied to the back surface 502 of the region 526 of the light guide plate 500, passes through the region 526, and is extracted from the light extraction surface 501.
 例えば、領域531における光取出面501から光を取り出そうとする場合には、光源931を発光させる。光源931が発光すると導光板600の側面606の光導入領域606aに光が照射され、光導入領域606aから導光板600内に光が導入される。導入された光は、導光板600の領域611及び領域621を通って導光されてから領域631に到達し、領域631における光取出面601から取り出される。取り出された光は、導光板500の領域531の裏面502へ照射され、領域531を透過して光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 531, the light source 931 is caused to emit light. When the light source 931 emits light, the light introduction region 606a on the side surface 606 of the light guide plate 600 is irradiated with light, and the light is introduced into the light guide plate 600 from the light introduction region 606a. The introduced light is guided through the region 611 and the region 621 of the light guide plate 600, then reaches the region 631, and is extracted from the light extraction surface 601 in the region 631. The extracted light is applied to the back surface 502 of the region 531 of the light guide plate 500, passes through the region 531, and is extracted from the light extraction surface 501.
 例えば、領域532における光取出面501から光を取り出そうとする場合には、光源932を発光させる。光源932が発光すると導光板600の側面606の光導入領域606bに光が照射され、光導入領域606bから導光板600内に光が導入される。導入された光は、導光板600の領域612及び領域622を通って導光されてから領域632に到達し、領域632における光取出面601から取り出される。取り出された光は、導光板500の領域532の裏面502へ照射され、領域532を透過して光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 532, the light source 932 is caused to emit light. When the light source 932 emits light, the light introduction region 606b on the side surface 606 of the light guide plate 600 is irradiated with light, and the light is introduced into the light guide plate 600 from the light introduction region 606b. The introduced light is guided through the region 612 and the region 622 of the light guide plate 600, then reaches the region 632, and is extracted from the light extraction surface 601 in the region 632. The extracted light is applied to the back surface 502 of the region 532 of the light guide plate 500, passes through the region 532, and is extracted from the light extraction surface 501.
 例えば、領域533における光取出面501から光を取り出そうとする場合には、光源933を発光させる。光源933が発光すると導光板600の側面603の光導入領域603cに光が照射され、光導入領域603cから導光板600内に光が導入される。導入された光は、導光板600の領域631及び領域632を通って導光されてから領域633に到達し、領域633における光取出面601から取り出される。取り出された光は、導光板500の領域533の裏面502へ照射され、領域533を透過して光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 533, the light source 933 is caused to emit light. When the light source 933 emits light, the light introduction region 603c on the side surface 603 of the light guide plate 600 is irradiated with light, and the light is introduced into the light guide plate 600 from the light introduction region 603c. The introduced light is guided through the region 631 and the region 632 of the light guide plate 600, then reaches the region 633, and is extracted from the light extraction surface 601 in the region 633. The extracted light is applied to the back surface 502 of the region 533 of the light guide plate 500, passes through the region 533, and is extracted from the light extraction surface 501.
 例えば、領域534における光取出面501から光を取り出そうとする場合には、光源934を発光させる。光源934が発光すると導光板600の側面606の光導入領域606dに光が照射され、光導入領域606dから導光板600内に光が導入される。導入された光は、導光板600の領域614及び領域624を通って導光されてから領域634に到達し、領域634における光取出面601から取り出される。取り出された光は、導光板500の領域534の裏面502へ照射され、領域534を透過して光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 534, the light source 934 is caused to emit light. When the light source 934 emits light, the light introduction region 606d on the side surface 606 of the light guide plate 600 is irradiated with light, and the light is introduced into the light guide plate 600 from the light introduction region 606d. The introduced light is guided through the region 614 and the region 624 of the light guide plate 600, reaches the region 634, and is extracted from the light extraction surface 601 in the region 634. The extracted light is applied to the back surface 502 of the region 534 of the light guide plate 500, passes through the region 534, and is extracted from the light extraction surface 501.
 例えば、領域535における光取出面501から光を取り出そうとする場合には、光源935を発光させる。光源935が発光すると導光板600の側面606の光導入領域606eに光が照射され、光導入領域606eから導光板600内に光が導入される。導入された光は、導光板600の領域615及び領域625を通って導光されてから領域635に到達し、領域635における光取出面601から取り出される。取り出された光は、導光板500の領域535の裏面502へ照射され、領域535を透過して光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 535, the light source 935 is caused to emit light. When the light source 935 emits light, the light introduction region 606e on the side surface 606 of the light guide plate 600 is irradiated with light, and the light is introduced into the light guide plate 600 from the light introduction region 606e. The introduced light is guided through the region 615 and the region 625 of the light guide plate 600, then reaches the region 635, and is extracted from the light extraction surface 601 in the region 635. The extracted light is applied to the back surface 502 of the region 535 of the light guide plate 500, passes through the region 535, and is extracted from the light extraction surface 501.
 例えば、領域536における光取出面501から光を取り出そうとする場合には、光源836を発光させる。光源836が発光すると導光板500の側面503の光導入領域503cに光が照射され、光導入領域503cから導光板500内に光が導入される。導入された光は、導光板500の領域531~535を通って導光されてから領域536に到達し、領域536における光取出面501から取り出される。 For example, when light is to be extracted from the light extraction surface 501 in the region 536, the light source 836 is caused to emit light. When the light source 836 emits light, the light introduction region 503c on the side surface 503 of the light guide plate 500 is irradiated with light, and the light is introduced into the light guide plate 500 from the light introduction region 503c. The introduced light is guided through the regions 531 to 535 of the light guide plate 500, reaches the region 536, and is extracted from the light extraction surface 501 in the region 536.
 以上のように、本発明の第四実施形態に係る照明装置4も、第一~第三実施形態と同様に、簡単な構成で容易にローカルディミングを実現できる。また、第一~第三実施形態に係る照明装置1と同様の利点が得られる。
 さらに、本発明の第四実施形態に係る照明装置4は、第一~第三実施形態に係る照明装置1と同様に変更して実施してもよい。
As described above, the illumination device 4 according to the fourth embodiment of the present invention can also easily realize local dimming with a simple configuration as in the first to third embodiments. Further, the same advantages as those of the lighting device 1 according to the first to third embodiments can be obtained.
Furthermore, the illuminating device 4 according to the fourth embodiment of the present invention may be modified and implemented in the same manner as the illuminating device 1 according to the first to third embodiments.
 また、上述した第四実施形態では2枚の導光板500及び導光板600を重ねるようにしたが、例えば、3枚以上の導光板を重ねるようにしてもよい。
 また、例えば、重ねる導光板の寸法及び形状は、通常は同じにするが、異なっていてもよい。
In the fourth embodiment described above, the two light guide plates 500 and the light guide plate 600 are stacked. However, for example, three or more light guide plates may be stacked.
Further, for example, the size and shape of the overlapping light guide plates are usually the same, but may be different.
 重ねられた導光板の数がn枚(nは2以上の整数。)であり、重ねられた導光板がそれぞれ光の取出方向から見てa行b列(a及びbはそれぞれ2以上の整数。)の行列状にa×b箇所の領域に区分されている場合、2×n×a+2×n×b≧a×bを満たすことが好ましい。このように多数の領域に導光板を区分した場合に本発明を適用することで、各領域ごとに独立して明暗を付けることができ、本発明の利点を顕著に発揮させて、シンプルな構造でのローカルディミングを容易に実現できる。 The number of superimposed light guide plates is n (n is an integer of 2 or more), and the overlapped light guide plates are a rows and b columns (a and b are integers of 2 or more, respectively) when viewed from the light extraction direction. .)) Is preferably divided into a × b regions, preferably 2 × n × a + 2 × n × b ≧ a × b. By applying the present invention when the light guide plate is divided into a large number of areas in this way, it is possible to add brightness and darkness independently for each area, and to demonstrate the advantages of the present invention with a simple structure. Can easily realize local dimming.
 また、重ね合わせた導光板同士の間には、光学シート等を設けてもよい。 Further, an optical sheet or the like may be provided between the overlapped light guide plates.
〔第五実施形態〕
 以下、図面を示して本発明の第五実施形態について説明する。図17は本発明の第五実施形態に係る照明装置を模式的に示す斜視図である。なお、図17において、図13~図16と同様の符号は、図13~図16と同様の要素を示す。図17に示すように、本発明の第五実施形態に係る照明装置5は、第四実施形態に係る照明装置4と同様の要領で各領域から光を取り出せるようにした照明装置を4個組み合わせた構成を有する。
[Fifth embodiment]
Hereinafter, a fifth embodiment of the present invention will be described with reference to the drawings. FIG. 17 is a perspective view schematically showing an illumination apparatus according to the fifth embodiment of the present invention. In FIG. 17, the same reference numerals as those in FIGS. 13 to 16 denote the same elements as those in FIGS. As shown in FIG. 17, the lighting device 5 according to the fifth embodiment of the present invention is a combination of four lighting devices that can extract light from each region in the same manner as the lighting device 4 according to the fourth embodiment. Have a configuration.
 すなわち、照明装置5をX軸方向に垂直な平面及びY軸方向に垂直な平面でそれぞれ均等に切断した場合、切断された照明装置5の部分5A~5Dでは、それぞれ、本発明の第四実施形態に係る照明装置4と同様の要領で、各領域における光取出面501から光を取り出せるようになっている。例えば、照明装置5の部分5Aでは、対応する光源を調光させることにより、領域511~516,521~526,531~536ごとに光を取り出せるようになっている。なお、照明装置5の部分5A~5Dは、通常、照明装置5を切断する前記の平面に対して面対称となる。 That is, when the illuminating device 5 is equally cut along a plane perpendicular to the X-axis direction and a plane perpendicular to the Y-axis direction, the portions 5A to 5D of the cut illuminating device 5 are respectively the fourth embodiment of the present invention. The light can be extracted from the light extraction surface 501 in each region in the same manner as the illumination device 4 according to the embodiment. For example, in the portion 5A of the illuminating device 5, light can be extracted for each of the regions 511 to 516, 521 to 526, and 531 to 536 by dimming the corresponding light source. Note that the portions 5A to 5D of the illumination device 5 are usually plane-symmetric with respect to the plane that cuts the illumination device 5.
 したがって、本発明の第五実施形態に係る照明装置5も、第一~第四実施形態と同様に、簡単な構成で容易にローカルディミングを実現できる。また、第一~第四実施形態に係る照明装置1と同様の利点が得られる。さらに、本発明の第五実施形態に係る照明装置によれば、6分割×12分割の計72箇所という多数の領域それぞれにおいて、独立して調光させることが可能な照明装置5を実現できるため、より精密なローカルディミングが可能である。 Therefore, the illumination device 5 according to the fifth embodiment of the present invention can also easily implement local dimming with a simple configuration as in the first to fourth embodiments. Further, the same advantages as those of the lighting device 1 according to the first to fourth embodiments can be obtained. Furthermore, according to the illuminating device according to the fifth embodiment of the present invention, it is possible to realize the illuminating device 5 capable of dimming independently in each of a large number of areas of 72 locations of 6 divisions × 12 divisions. More precise local dimming is possible.
 また、本発明の第五実施形態に係る照明装置5は、第一~第四実施形態に係る照明装置1~4と同様に変更して実施してもよい。さらに、例えば、第五実施形態に係る複層導光板700では、複層導光板700は照明装置5の各部分5A~5Dごとに別個に形成してもよいが、一体に形成してもよい。 Further, the illumination device 5 according to the fifth embodiment of the present invention may be modified and implemented in the same manner as the illumination devices 1 to 4 according to the first to fourth embodiments. Further, for example, in the multilayer light guide plate 700 according to the fifth embodiment, the multilayer light guide plate 700 may be formed separately for each of the portions 5A to 5D of the lighting device 5, or may be formed integrally. .
[導光板の材料及び製法等]
 以下、導光板の材料及び製造方法等について説明する。
 導光板の材料としては、例えば、ガラス、透明樹脂等が挙げられる。なお、導光板の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[Light guide plate materials and manufacturing method]
Hereinafter, the material and manufacturing method of the light guide plate will be described.
Examples of the material of the light guide plate include glass and transparent resin. In addition, the material of a light-guide plate may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 前記の透明樹脂としては、例えば、プロピレン-エチレン共重合体、ポリスチレン(PS)、(メタ)アクリル酸エステル-芳香族ビニル化合物共重合体、ポリエチレンテレフタレート、テレフタル酸-エチレングリコール-シクロヘキサンジメタノール共重合体、ポリカーボネート、メタクリル樹脂、脂環式構造を有する樹脂(例えば、ノルボルネン系の樹脂)などが挙げられる。これらの中で、脂環式構造を有する樹脂、メタクリル樹脂および(メタ)アクリル酸エステル-芳香族ビニル化合物共重合体樹脂が好適であり、脂環式構造を有する樹脂が特に好ましい。 Examples of the transparent resin include propylene-ethylene copolymer, polystyrene (PS), (meth) acrylic ester-aromatic vinyl compound copolymer, polyethylene terephthalate, terephthalic acid-ethylene glycol-cyclohexanedimethanol copolymer. Examples thereof include a coalescence, a polycarbonate, a methacrylic resin, and a resin having an alicyclic structure (for example, a norbornene resin). Among these, resins having an alicyclic structure, methacrylic resins, and (meth) acrylic acid ester-aromatic vinyl compound copolymer resins are preferable, and resins having an alicyclic structure are particularly preferable.
 脂環式構造を有する樹脂は、溶融樹脂の流動性が良好である。したがって、例えば射出成形により導光板を製造する場合、低い射出圧力で金型のキャビティを充填することができ、ウエルドラインが発生しにくい。また、例えば押し出し成形により導光板を製造する場合、成形時の厚みムラが少なく、成形後の形状付与が容易である。さらに、脂環式構造を有する樹脂は吸湿性が極めて低いので、寸法安定性に優れ、導光板に反りを生じにくい。さらに、脂環式構造を有する樹脂は比重が小さいので、導光板を軽量化することができる。 A resin having an alicyclic structure has good fluidity of the molten resin. Therefore, for example, when the light guide plate is manufactured by injection molding, the cavity of the mold can be filled with a low injection pressure, and a weld line is hardly generated. Moreover, when manufacturing a light-guide plate by extrusion molding, for example, there is little thickness nonuniformity at the time of shaping | molding, and the shaping | molding after shaping | molding is easy. Furthermore, since the resin having an alicyclic structure has extremely low hygroscopicity, it has excellent dimensional stability and hardly warps the light guide plate. Furthermore, since the specific gravity of the resin having an alicyclic structure is small, the light guide plate can be reduced in weight.
 脂環式構造を有する樹脂としては、主鎖または側鎖に脂環式構造を有する重合体樹脂が挙げられる。中でも、主鎖に脂環式構造を有する重合体樹脂は、機械的強度と耐熱性が良好なので、特に好適である。
 前記の脂環式構造は、飽和環状炭化水素構造であることが好ましい。
 脂環式構造を構成する炭素数は、好ましくは4以上、より好ましくは5以上であり、好ましくは30以下、より好ましくは20以下、特に好ましくは15以下である。
 脂環式構造を有する重合体樹脂中の脂環式構造を有する繰り返し単位の割合は、50重量%以上であることが好ましく、70重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。
Examples of the resin having an alicyclic structure include polymer resins having an alicyclic structure in the main chain or side chain. Among them, a polymer resin having an alicyclic structure in the main chain is particularly suitable because it has good mechanical strength and heat resistance.
The alicyclic structure is preferably a saturated cyclic hydrocarbon structure.
The number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less.
The ratio of the repeating unit having an alicyclic structure in the polymer resin having an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, and 90% by weight or more. More preferably.
 脂環式構造を有する樹脂としては、例えば、ノルボルネン系単量体の開環重合体若しくは開環共重合体またはそれらの水素添加物;ノルボルネン系単量体の付加重合体若しくは付加共重合体またはそれらの水素添加物;単環の環状オレフィン系単量体の重合体またはその水素添加物;環状共役ジエン系単量体の重合体またはその水素添加物;ビニル脂環式炭化水素系単量体の重合体若しくは共重合体またはそれらの水素添加物;ビニル芳香族炭化水素系単量体の重合体または共重合体の芳香環を含む不飽和結合部分の水素添加物;などが挙げられる。これらの中で、ノルボルネン系単量体の重合体の水素添加物およびビニル芳香族炭化水素系単量体の重合体の芳香環を含む不飽和結合部分の水素添加物は、機械的強度と耐熱性に優れるので、特に好適である。 Examples of the resin having an alicyclic structure include a ring-opening polymer or a ring-opening copolymer of a norbornene monomer or a hydrogenated product thereof; an addition polymer or an addition copolymer of a norbornene monomer; Polymers of monocyclic olefin monomers or their hydrogenated products; Polymers of cyclic conjugated diene monomers or their hydrogenated products; Vinyl alicyclic hydrocarbon monomers Or a hydrogenated product thereof; a polymer of a vinyl aromatic hydrocarbon monomer or a hydrogenated product of an unsaturated bond part containing an aromatic ring of the copolymer; and the like. Among these, hydrogenated products of norbornene-based monomer polymers and hydrogenated products of unsaturated bonds including aromatic rings of vinyl aromatic hydrocarbon-based monomer polymers have mechanical strength and heat resistance. It is particularly suitable because of its excellent properties.
 さらに、前記の透明樹脂のなかでも、メタクリル樹脂は、透明性に優れ、強靭でひびが入りにくいので、好適に用いることができる。メタクリル樹脂としては、例えば、JISK6717に規定されるメタクリル酸メチル重合物を80重量%以上含むメタクリル樹脂成形材料を挙げられる。この規格に規定されるメタクリル樹脂の中で、ビカット軟化点温度96~100℃、メルトフローレート8~16の指定分類コード100-120のメタクリル樹脂は、適度な流動性と強度を有するので、特に好適である。 Furthermore, among the above transparent resins, methacrylic resins are excellent in transparency, strong and resistant to cracking, and therefore can be suitably used. Examples of the methacrylic resin include a methacrylic resin molding material containing 80% by weight or more of a methyl methacrylate polymer specified in JIS K6717. Among the methacrylic resins specified in this standard, methacrylic resins having a specified classification code 100-120 having a Vicat softening point temperature of 96 to 100 ° C. and a melt flow rate of 8 to 16 have appropriate fluidity and strength. Is preferred.
 導光板の成形材料には、成形時における酸化劣化や熱劣化を防止するために、酸化防止剤を含ませてもよい。酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられる。これらの中で、フェノール系酸化防止剤が好適であり、中でもアルキル置換酸化防止剤が特に好ましい。なお、酸化防止剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。酸化防止剤の量は、樹脂成分100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.02重量部以上であり、好ましくは2重量部以下、より好ましくは1重量部以下である。 An antioxidant may be included in the light guide plate molding material in order to prevent oxidative degradation and thermal degradation during molding. Examples of the antioxidant include a phenolic antioxidant, a phosphorus antioxidant, and a sulfur antioxidant. Of these, phenolic antioxidants are preferred, and alkyl-substituted antioxidants are particularly preferred. In addition, an antioxidant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. The amount of the antioxidant is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, preferably 2 parts by weight or less, more preferably 1 part by weight with respect to 100 parts by weight of the resin component. It is as follows.
 導光板の成形材料には、導光板の耐光性などを向上させるために、耐光安定剤を含ませてもよい。耐光安定剤としては、例えば、ヒンダードアミン系耐光安定剤(HALS)、ベンゾエート系耐光安定剤などが挙げられる。これらの中で、ヒンダードアミン系耐光安定剤が好ましい。なお、耐光安定剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。耐光安定剤の量は、樹脂成分100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.02重量部以上、特に好ましくは0.05重量部以上であり、好ましくは2重量部以下、より好ましくは1重量部以下、特に好ましくは0.5重量部以下である。 In the molding material for the light guide plate, a light resistance stabilizer may be included in order to improve the light resistance of the light guide plate. Examples of the light resistance stabilizer include hindered amine light resistance stabilizer (HALS) and benzoate light resistance stabilizer. Among these, hindered amine light resistance stabilizers are preferred. In addition, a light-resistant stabilizer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. The amount of the light-resistant stabilizer is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, particularly preferably 0.05 parts by weight or more, preferably 2 parts by weight with respect to 100 parts by weight of the resin component. The amount is not more than parts by weight, more preferably not more than 1 part by weight, particularly preferably not more than 0.5 parts by weight.
 導光板の成形材料には、必要に応じて、さらに任意の添加剤を含ませてもよい。任意の添加剤としては、例えば、熱安定剤、紫外線吸収剤、近赤外線吸収剤などの安定剤;滑剤、可塑剤などの樹脂改質剤;染料、顔料などの着色剤;蛍光増白剤;帯電防止剤、光拡散剤などが挙げられる。なお、任意の添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The molding material for the light guide plate may further contain an optional additive as necessary. Examples of optional additives include stabilizers such as heat stabilizers, ultraviolet absorbers and near infrared absorbers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments; fluorescent brighteners; Examples thereof include an antistatic agent and a light diffusing agent. In addition, arbitrary additives may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 導光板の主面の寸法(前記の実施形態では、X軸方向及びY軸方向の寸法)は、通常、その導光板が用いられる液晶表示装置の液晶パネルの有効面のサイズに応じて設定される。また、導光板の厚み(前記の実施形態では、Z軸方向の寸法)は、通常、光源の高さ(前記の実施形態では、Z軸方向の寸法)以下とする。さらに、製品重量の軽減などの観点からは導光板の厚みは薄いことが好ましい。例えば導光板を射出成形で製造する場合、光導入面の形状の付与及び成形性の観点から、導光板の厚みは0.5mm~5mmが好ましい。導光板の厚みが過度に薄くなると、射出成形時の圧力上昇が顕著となり、同一サイズの成形機で成形可能な導光板を小さなものに限定せざるを得なくなる傾向がある。他方、導光板の厚みが過度に厚くなると、製造時の冷却工程に時間がかかり、生産性が悪化する可能性がある。 The dimensions of the main surface of the light guide plate (in the above embodiment, the dimensions in the X-axis direction and the Y-axis direction) are usually set according to the size of the effective surface of the liquid crystal panel of the liquid crystal display device in which the light guide plate is used. The In addition, the thickness of the light guide plate (in the embodiment described above, the dimension in the Z-axis direction) is usually equal to or less than the height of the light source (in the above-described embodiment, the dimension in the Z-axis direction). Furthermore, the thickness of the light guide plate is preferably thin from the viewpoint of reducing the product weight. For example, when the light guide plate is manufactured by injection molding, the thickness of the light guide plate is preferably 0.5 mm to 5 mm from the viewpoint of imparting the shape of the light introduction surface and moldability. When the thickness of the light guide plate becomes excessively thin, the pressure rise during injection molding becomes remarkable, and the light guide plate that can be molded by the molding machine of the same size tends to be limited to a small one. On the other hand, when the thickness of the light guide plate becomes excessively thick, it takes time for the cooling process at the time of manufacture, and productivity may deteriorate.
 導光板としては、例えば、その屈折率が1.533(臨界角40.7°)のものを用いることができる。 As the light guide plate, for example, one having a refractive index of 1.533 (critical angle 40.7 °) can be used.
 導光板が樹脂で形成されている場合、導光板が吸湿により寸法変化(伸びや反り)を生じる可能性がある。特に導光板の寸法が大きい場合(例えば、40インチ)には、当該寸法変化により、照明装置において光源と光導入面との相対位置関係が変化し、光利用効率が低下したり、ローカルディミングに不具合を生じたりする可能性がある。このため、導光板の吸水率は、0.5%以下に設定することが好ましく、0.25%以下がより好ましく、0.05%以下がさらに好ましい。これを実現できる樹脂の例を挙げると、環状ポリオレフィン(COP)、ポリスチレン、ポリカーボネート(PC)等が挙げられる。なお、本明細書中における吸水率は、JIS K7209 A法に準拠して、厚さ3mmで、直径50mmの円板形または一辺50mmの正方形の試験片を50℃で24時間乾燥したのちデシケ一ター中で放冷し、23℃の水に24時間浸漬したときの重量増から求めることができる。 When the light guide plate is made of resin, the light guide plate may cause a dimensional change (elongation or warpage) due to moisture absorption. In particular, when the size of the light guide plate is large (for example, 40 inches), the relative positional relationship between the light source and the light introduction surface changes in the lighting device due to the change in the size, and the light utilization efficiency decreases or local dimming occurs. It may cause problems. For this reason, the water absorption rate of the light guide plate is preferably set to 0.5% or less, more preferably 0.25% or less, and further preferably 0.05% or less. Examples of resins that can realize this include cyclic polyolefin (COP), polystyrene, polycarbonate (PC), and the like. The water absorption rate in this specification is determined according to JIS K7209 A method, after drying a test piece having a thickness of 3 mm and a disk shape having a diameter of 50 mm or a square having a side of 50 mm at 50 ° C. for 24 hours. It can be determined from the increase in weight when it is allowed to cool in a filter and immersed in water at 23 ° C. for 24 hours.
 導光板の製造方法に制限は無いが、生産性などの観点から、一体形成されることが好ましい。このように一体形成できる製造方法を挙げると、例えば、射出成形法、押出成形法などが挙げられる。 There is no limitation on the method of manufacturing the light guide plate, but it is preferably formed integrally from the viewpoint of productivity. Examples of production methods that can be integrally formed in this way include injection molding and extrusion molding.
 また、パターンを有する導光板を製造する場合、パターンの形成方法にも特に制限は無い。例えば、予め平板状の導光板を用意し、当該導光板の表面に後からパターンを形成するようにしてもよい。この場合、平板状の導光板の表面にパターンを形成する方法としては、例えば、所望の形状のパターンを形成できる工具を用いた切削加工による方法、硬化性樹脂を塗布して所望の形状の型を転写した状態で硬化させる方法、熱プレスにより賦形する方法、真空成形法などが挙げられる。 Also, when manufacturing a light guide plate having a pattern, there is no particular limitation on the pattern forming method. For example, a flat light guide plate may be prepared in advance, and a pattern may be formed later on the surface of the light guide plate. In this case, as a method of forming a pattern on the surface of the flat light guide plate, for example, a method by cutting using a tool capable of forming a pattern of a desired shape, a mold having a desired shape by applying a curable resin Examples of the method include a method of curing in a transferred state, a method of forming by hot pressing, and a vacuum forming method.
 導光板の表面にパターンを形成する方法としては、例えば、導光板の成形と同時にパターンを形成するようにしてもよい。この場合には、例えば、所望のパターンに対応した形状を有する異形ダイを用いて異形押出しうる。また、例えば、押出後にエンボス加工によりパターンを形成するようにしてもよい。さらに、例えば、所望のパターン形状を形成できるキャスティング型を用意し、このキャスティング型を用いて導光板をキャスティングにより作製して、導光板の成形と同時にパターンを形成するようにしてもよい。また、導光板を射出成形により作製し、同時にパターンを形成する場合は、所望のパターンを形成できる金型を用いてもよい。 As a method of forming a pattern on the surface of the light guide plate, for example, the pattern may be formed simultaneously with the formation of the light guide plate. In this case, for example, profile extrusion can be performed using a profile die having a shape corresponding to a desired pattern. Further, for example, a pattern may be formed by embossing after extrusion. Further, for example, a casting mold capable of forming a desired pattern shape may be prepared, and a light guide plate may be produced by casting using this casting mold, and the pattern may be formed simultaneously with the molding of the light guide plate. Further, when the light guide plate is manufactured by injection molding and the pattern is formed at the same time, a mold capable of forming a desired pattern may be used.
 なお、前記の光硬化樹脂への型形状転写、異形ダイによる押出し加工、エンボス加工、キャスティング、もしくは射出成形などに用いる型は、例えば、所望のパターンを形成できる工具を用いた型の金属部材への切削加工、もしくは所望の形状が形成された部材上への電鋳加工などにより得ることができる。 In addition, the mold used for the mold shape transfer to the photo-curing resin, the extrusion process using a modified die, the embossing, the casting, or the injection molding is, for example, a metal member of a mold using a tool capable of forming a desired pattern. It can be obtained by cutting, or electroforming on a member having a desired shape.
 また、一体成形以外の方法としては、例えば、導光板の各領域に対応したシートを用意し、これらのシートをタイル状に組み合わせて接合することにより、導光板を製造してもよい。 Further, as a method other than the integral molding, for example, a sheet corresponding to each region of the light guide plate may be prepared, and the light guide plate may be manufactured by combining and joining these sheets in a tile shape.
〔光源〕
 以下、光源について説明する。
 光源としては、例えば、LED、レーザーダイオード、冷陰極管(CCFL、EEFL)、熱陰極管(HCFL)等が挙げられる。中でも、発光効率、高速調光への対応等の観点から、LEDが好ましい。LEDとしては、例えば、青黄色系擬似白色発光ダイオード、3色(RGB)方式の白色発光ダイオード等が挙げられる。
〔light source〕
Hereinafter, the light source will be described.
Examples of the light source include an LED, a laser diode, a cold cathode tube (CCFL, EEFL), a hot cathode tube (HCFL), and the like. Among these, LEDs are preferable from the viewpoints of luminous efficiency, high-speed light control, and the like. Examples of the LED include a blue-yellow pseudo white light emitting diode, a three-color (RGB) type white light emitting diode, and the like.
 LEDとしては、例えば、表面実装型LED、サイドエミット型LED、あるいは砲弾型LEDを用いる。LEDの発光部の寸法は、LEDの配光特性に応じて設定しうる。通常、LEDの発光部の幅及び高さは等しくなるようにするが、LEDとして断面が楕円形または長円形等のものを用いる場合には、幅と高さとが異なる寸法のものを用いてもよい。 As the LED, for example, a surface-mounted LED, a side-emitting LED, or a bullet-type LED is used. The dimension of the light emitting part of the LED can be set according to the light distribution characteristic of the LED. Usually, the width and height of the light emitting part of the LED are made equal. However, when the LED has an elliptical or oval cross section, the LED having a different width and height may be used. Good.
 一般的なハイドーム型のLEDは配光がランバーシアンであり、半値角(半値全角)が120°程度の比較的に大きい発散光を出射する。ただし、光の広がりを抑制する観点からは、LEDとしては、半値全角は35°以下が好ましく、30°以下がより好ましく、15°以下が特に好ましい。理想的には、可能な限り平行光に近い光を発するLEDが好ましい。一方で、導光板の入光部付近のLED間に相当する部分が暗くなることを抑制する観点からは、LEDとしては、半値全角は90゜以上が好ましく、100゜以上がより好ましく、110゜以上が特に好ましい。本発明においては、異方性光取出領域が、導光方向から入光された場合、光拡散を防止する光拡散パターンとして働く例を示しており、半値全角が広いLEDも十分使いこなすことができる。 A general high dome type LED has a Lambertian light distribution and emits a relatively large divergent light having a half-value angle (full-width at half maximum) of about 120 °. However, from the viewpoint of suppressing the spread of light, the LED has a full width at half maximum of preferably 35 ° or less, more preferably 30 ° or less, and particularly preferably 15 ° or less. Ideally, LEDs that emit as close to parallel light as possible are preferred. On the other hand, from the viewpoint of suppressing the darkening of the corresponding portion between the LEDs in the vicinity of the light incident portion of the light guide plate, the full width at half maximum of the LED is preferably 90 ° or more, more preferably 100 ° or more, and 110 °. The above is particularly preferable. In the present invention, an example in which the anisotropic light extraction region works as a light diffusion pattern for preventing light diffusion when light enters from the light guide direction is shown, and an LED having a wide full width at half maximum can be sufficiently used.
 なお、光源としては、LED等の発光素子と、レンズ等の光学素子とを組み合わせて用いてもよい。例えば、半値全角が広いLEDを用いる場合であっても、当該LEDとレンズとを組み合わせれば、上記のような好ましい範囲の半値全角で光を照射する光源を実現できる。 In addition, as a light source, you may use combining light emitting elements, such as LED, and optical elements, such as a lens. For example, even when an LED having a wide full width at half maximum is used, a light source that emits light at a full width at half maximum within the above-described preferable range can be realized by combining the LED and the lens.
 また、常時発光する光源と、当該光源と光導入面との間に設けた光学的シャッター(例えば、液晶パネル等)とを組み合わせて、調光可能な光源としてもよい。 Further, a light source capable of dimming may be obtained by combining a light source that always emits light and an optical shutter (for example, a liquid crystal panel) provided between the light source and the light introduction surface.
〔用途〕
 本発明の照明装置は、例えば、液晶表示装置の液晶パネルに光を供給するバックライト装置として好適である。本発明の照明装置を液晶表示装置に設けることにより、その液晶表示装置においてシンプルな構成でローカルディミングを実現できる。
 液晶パネルは、例えば、液晶層を挟んで、配向膜、透明電極、ガラス板、カラーフィルタ、偏光板等を適切な位置に積層配置した部材である。本発明の照明装置を液晶表示装置に適用する場合、通常は、本発明の照明装置を液晶パネルの背面側に設け、液晶パネルに背面から光を供給できるようにする。
[Use]
The illumination device of the present invention is suitable as a backlight device that supplies light to a liquid crystal panel of a liquid crystal display device, for example. By providing the lighting device of the present invention in a liquid crystal display device, local dimming can be realized with a simple configuration in the liquid crystal display device.
The liquid crystal panel is a member in which, for example, an alignment film, a transparent electrode, a glass plate, a color filter, a polarizing plate, and the like are stacked and arranged at appropriate positions with a liquid crystal layer interposed therebetween. When the lighting device of the present invention is applied to a liquid crystal display device, the lighting device of the present invention is usually provided on the back side of the liquid crystal panel so that light can be supplied to the liquid crystal panel from the back side.
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施できる。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and may be arbitrarily set within the scope of the claims of the present invention and its equivalents. You can change it to
〔実施例1〕
 熱可塑性脂環構造含有樹脂(商品名ゼオノア1060R、日本ゼオン社製、屈折率 1.53、吸水率0.05%)を用意した。この樹脂を押出成形することにより、縦200mm、横200mm、板厚2mmの導光板を製造した。
 前記の導光板を、4行4列の行列状に区分し、16箇所の領域を設定した。各領域の寸法は、縦50mm、横50mmであった。
[Example 1]
A thermoplastic alicyclic structure-containing resin (trade name ZEONOR 1060R, manufactured by Nippon Zeon Co., Ltd., refractive index 1.53, water absorption 0.05%) was prepared. A light guide plate having a length of 200 mm, a width of 200 mm, and a plate thickness of 2 mm was produced by extrusion molding of this resin.
The light guide plate was divided into a matrix of 4 rows and 4 columns, and 16 regions were set. The dimensions of each region were 50 mm long and 50 mm wide.
 前記の区分した領域における光取出面に、単結晶ダイヤモンドバイト(頂角110°)を用いた微細加工により、図1に示したようなV字溝パターンを形成した。V字溝パターンの溝ピッチは70μmとした。また、V字溝パターンは同一領域内では同じ方向に沿って平行に並ぶようにした。さらに、各領域の位置は、第一実施形態で説明した導光板300と同様にした。
 なお、導光板の光取出面とは反対側の裏面は、滑らかな平面であった。
A V-shaped groove pattern as shown in FIG. 1 was formed on the light extraction surface in the divided region by fine processing using a single crystal diamond tool (vertical angle 110 °). The groove pitch of the V-shaped groove pattern was 70 μm. Further, the V-shaped groove patterns are arranged in parallel along the same direction in the same region. Furthermore, the position of each area | region was made to be the same as that of the light-guide plate 300 demonstrated in 1st embodiment.
In addition, the back surface on the opposite side to the light extraction surface of the light guide plate was a smooth flat surface.
 光源として、LED(OSRAM社製。LWM673-N2R2-5K8L)を用意した。このLEDを、前記の導光板の4つの側面にそれぞれ40個ずつ、5mm間隔で設置した。また、LEDは連続した10個のグループごとに点灯及び消灯ができるように配線した。 An LED (manufactured by OSRAM, LWM673-N2R2-5K8L) was prepared as a light source. Forty LEDs were installed on each of the four side surfaces of the light guide plate at intervals of 5 mm. The LEDs were wired so that they could be turned on and off every 10 consecutive groups.
 図18は、本実施例において構成した照明装置の光源近傍を模式的に示す断面図である。図18に示すように、導光板10の各側面11の正面の位置に、光源12を設置するようにした。また、導光板10の光取出面13の端部14及び裏面15の端部16から光源12にかけては、反射シート(商品名E6SV、東レ社製)17にて包み込むようにした。さらに、導光板10の裏面15には、反射シート18を密着させるようにした。 FIG. 18 is a cross-sectional view schematically showing the vicinity of the light source of the illumination device configured in the present embodiment. As shown in FIG. 18, the light source 12 is installed at a position in front of each side surface 11 of the light guide plate 10. The light guide plate 10 was wrapped with a reflection sheet (trade name E6SV, manufactured by Toray Industries, Inc.) 17 from the end 14 of the light extraction surface 13 and the end 16 of the back surface 15 to the light source 12. Further, the reflection sheet 18 is brought into close contact with the back surface 15 of the light guide plate 10.
 さらに、導光板の光取出面上に、2枚のプリズムシート(商品名BEF3、スリーエム社製)及び拡散シート(商品名ライトアップGM3、きもと社製)を、この順に重ねた。なお、2枚のプリズムシートは、互いにレンズの軸が直交するようにした。
 以上のようにして、導光板及び光源を有する照明装置を用意した。
Furthermore, on the light extraction surface of the light guide plate, two prism sheets (trade name BEF3, manufactured by 3M) and a diffusion sheet (trade name LIGHTUP GM3, manufactured by Kimoto) were stacked in this order. The two prism sheets were designed such that the lens axes were orthogonal to each other.
As described above, an illumination device having a light guide plate and a light source was prepared.
 用意した照明装置のLEDをグループごとに独立して点滅させた。その結果、それぞれのLEDのグループに対応する導光板の領域における光取出面から光が取り出されることが確認された。また、点灯させたLEDのグループに対応しない導光板の領域における光取出面からの光漏れがないことも確認された。 The LED of the prepared lighting device blinked independently for each group. As a result, it was confirmed that light was extracted from the light extraction surface in the region of the light guide plate corresponding to each LED group. It was also confirmed that there was no light leakage from the light extraction surface in the region of the light guide plate that did not correspond to the group of LEDs that were lit.
 以上より、本実施例の照明装置によれば、シンプルな構成によってローカルディミングが実現できることが確認された。 From the above, it was confirmed that local dimming can be realized with a simple configuration according to the lighting apparatus of the present example.
 本発明の導光板は、光学用途に任意に適用でき、中でも面発光可能な照明装置に好適である。
 本発明の照明装置は、液晶表示装置に用いて好適である。また、本発明の照明装置は、例えばショーウィンドウ等の照明装置として用いるなど、液晶表示装置のバックライト以外の用途に用いることも可能である。
The light guide plate of the present invention can be arbitrarily applied to optical applications, and is particularly suitable for an illumination device capable of surface light emission.
The illumination device of the present invention is suitable for use in a liquid crystal display device. The lighting device of the present invention can also be used for applications other than the backlight of a liquid crystal display device, for example, as a lighting device such as a show window.
 1~5 照明装置
 5A~5D 照明装置5の部分
 10 導光板
 11 導光板の側面
 12 光源
 13 光取出面
 14 光取出面の端部
 15 裏面
 16 裏面の端部
 17,18 反射シート
 100 導光板
 101 光取出面
 102 裏面
 103,104 側面
 105 パターン
 106,107 斜面
 108 パターン
 109 平坦面
 110 パターン
 111 パターン110の表面
 200 導光板
 201 光取出面
 202 裏面
 203,204 側面
 205 導光板の領域(異方性光取出領域)
 206 導光板の領域(異方性光取出領域)
 207,208 パターン
 209 導光板の領域206のY軸方向手前側に位置する側面204の部分209
 300 導光板
 301 光取出面
 302 裏面
 303~306 側面(光導入面)
 303a~303d,304a~304f,305a~305d,306a~306f 光導入領域
 311~316,321~326,331~336,341~344 導光板の領域(異方性光取出領域)
 411~416,421~426,431~436,441~444 光源
 500 導光板
 501 光取出面
 502 裏面
 503,506 側面(光導入面)
 504,505 側面
 503a~503c,506a~506f 光導入領域
 511~516,521~526,531~536 導光板の領域
 600 導光板
 601 光取出面
 602 裏面
 603,606 側面(光導入面)
 604,605 側面
 603a~603c,606a~606f 光導入領域
 611~516,621~626,631~636 導光板の領域
 700 複層導光板
 812~816,821,824,825,836 光源
 911,922,923,926,931~935 光源
 A103 光
 A104 光
DESCRIPTION OF SYMBOLS 1-5 Illuminating device 5A-5D Part of illuminating device 5 10 Light guide plate 11 Side surface of light guide plate 12 Light source 13 Light extraction surface 14 End portion of light extraction surface 15 Back surface 16 End portions of back surface 17, 18 Reflective sheet 100 Light guide plate 101 Light extraction surface 102 Back surface 103, 104 Side surface 105 Pattern 106, 107 Slope 108 Pattern 109 Flat surface 110 Pattern 111 Surface of pattern 110 200 Light extraction plate 201 Light extraction surface 202 Back surface 203, 204 Side surface 205 Light guide plate region (anisotropic light extraction region) )
206 Area of light guide plate (anisotropic light extraction area)
207, 208 Pattern 209 The portion 209 of the side surface 204 located on the front side in the Y-axis direction of the region 206 of the light guide plate
300 Light guide plate 301 Light extraction surface 302 Back surface 303 to 306 Side surface (light introduction surface)
303a to 303d, 304a to 304f, 305a to 305d, 306a to 306f Light introduction region 311 to 316, 321 to 326, 331 to 336, 341 to 344 Light guide plate region (anisotropic light extraction region)
411 to 416, 421 to 426, 431 to 436, 441 to 444 Light source 500 Light guide plate 501 Light extraction surface 502 Back surface 503, 506 Side surface (light introduction surface)
504, 505 Side surface 503a to 503c, 506a to 506f Light introduction region 511 to 516, 521 to 526, 531 to 536 Light guide plate region 600 Light guide plate 601 Light extraction surface 602 Back surface 603, 606 Side surface (light introduction surface)
604, 605 Side surface 603a to 603c, 606a to 606f Light introduction region 611 to 516, 621 to 626, 631 to 636 Light guide plate region 700 Multi-layer light guide plate 812 to 816, 821, 824, 825, 836 Light source 911, 922 923, 926, 931 to 935 Light source A103 light A104 light

Claims (17)

  1.  光を導入する光導入面と、前記光導入面から導入された光が取り出される光取出面と、前記光取出面の反対側に位置する裏面とを有する導光板であって、
     前記導光板は、光の取出方向から見て複数領域に区分され、
     区分された領域のうち複数の領域が、それぞれ、前記光取出面と平行な所定の仮想軸と平行に導光される光の取出効率が、前記仮想軸と交差する方向に導光される光の取出効率よりも高い異方性光取出領域であり、
     前記光導入面が、前記異方性光取出領域それぞれに対応して少なくとも1箇所ずつ設けられた光導入領域を有し、
     前記異方性光取出領域のうち少なくとも1箇所の位置は、対応する前記光導入領域から前記導光板内に導入された光が、前記仮想軸の方向が異なる他の異方性光取出領域を通って当該異方性光取出領域に到達するように位置調整されている、導光板。
    A light guide plate having a light introduction surface for introducing light, a light extraction surface from which light introduced from the light introduction surface is extracted, and a back surface located on the opposite side of the light extraction surface,
    The light guide plate is divided into a plurality of regions as seen from the light extraction direction,
    Light that is guided in a direction in which a plurality of regions out of the divided regions are guided in parallel with a predetermined virtual axis parallel to the light extraction surface and intersects the virtual axis. Is an anisotropic light extraction area higher than the extraction efficiency of
    The light introduction surface has at least one light introduction region corresponding to each of the anisotropic light extraction regions;
    The position of at least one of the anisotropic light extraction regions is such that light introduced from the corresponding light introduction region into the light guide plate passes through another anisotropic light extraction region having a different virtual axis direction. A light guide plate, the position of which is adjusted to reach the isotropic light extraction region.
  2.  前記導光板が、光の取出方向から見てa行b列(a及びbはそれぞれ2以上の整数。)の行列状にa×b箇所の領域に区分され、
     前記a×b箇所の領域のうち半数以上が前記異方性光取出領域となっている、請求項1記載の導光板。
    The light guide plate is divided into a × b regions in a matrix of a rows and b columns (a and b are each an integer of 2 or more) as viewed from the light extraction direction,
    The light guide plate according to claim 1, wherein more than half of the a × b regions are the anisotropic light extraction regions.
  3.  前記a及びbが、2a+2b≧a×bを満たす、請求項2記載の導光板。 The light guide plate according to claim 2, wherein the a and b satisfy 2a + 2b ≧ a × b.
  4.  前記導光板が一体形成されている、請求項1記載の導光板。 The light guide plate according to claim 1, wherein the light guide plate is integrally formed.
  5.  前記異方性光取出領域が、その前記光取出面及び前記裏面の少なくとも一方に、当該異方性光取出領域の前記仮想軸と平行に導光される光に対しては当該光を前記異方性光取出領域の光取出面から出光させる光取出パターンとして機能し、当該異方性光取出領域の前記仮想軸と交差する方向に導光される光に対しては当該光が拡散することを防止する光拡散防止パターンとして機能するパターンが形成された領域である、請求項1記載の導光板。 When the anisotropic light extraction region is guided to the at least one of the light extraction surface and the back surface in parallel with the virtual axis of the anisotropic light extraction region, the light is transmitted to the anisotropic light extraction region. As a light diffusion prevention pattern that functions as a light extraction pattern for emitting light from the light extraction surface and prevents the light from diffusing with respect to light guided in a direction intersecting the virtual axis of the anisotropic light extraction region The light guide plate according to claim 1, wherein the light guide plate is a region where a functioning pattern is formed.
  6.  前記パターンとして、当該パターンを形成された前記異方性光取出領域の前記仮想軸と直交する方向に延在して形成された複数の畝状パターンを有する、請求項5記載の導光板。 The light guide plate according to claim 5, wherein the light guide plate has a plurality of hook-like patterns formed to extend in a direction perpendicular to the virtual axis of the anisotropic light extraction region in which the pattern is formed as the pattern.
  7.  前記の畝状パターンとして、互いに平行な複数のプリズム様のV溝パターンを有する、請求項6記載の導光板。 The light guide plate according to claim 6, wherein the bowl-shaped pattern has a plurality of prism-like V-groove patterns parallel to each other.
  8.  前記の畝状パターンとして、互いに平行な複数のレンチキュラー溝パターンを有する、請求項6記載の導光板。 The light guide plate according to claim 6, comprising a plurality of lenticular groove patterns parallel to each other as the bowl-shaped pattern.
  9.  請求項1記載の導光板を備える、照明装置。 A lighting device comprising the light guide plate according to claim 1.
  10.  前記光導入領域それぞれに独立して光を照射する、前記異方性光取出領域毎に調光可能な光源を備える、請求項9記載の照明装置。 The illuminating device according to claim 9, further comprising a light source capable of adjusting light for each of the anisotropic light extraction regions that irradiates light independently to each of the light introduction regions.
  11.  2枚以上重ねて設けられた導光板を備え、
     前記導光板は、光を導入する光導入面と、前記光導入面から導入された光が取り出される光取出面と、前記光取出面の反対側に位置する裏面とを有し、光の取出方向から見て複数領域に区分され、
     区分された領域のうち複数の領域が、それぞれ、前記光取出面と平行な所定の仮想軸と平行な方向に導光される光の取出効率が、前記仮想軸と交差する方向に導光される光の取出効率よりも高い異方性光取出領域であり、
     前記光導入面が、光を取り出す前記異方性光取出領域それぞれに対応して少なくとも1箇所ずつ設けられた光導入領域を有し、
     前記異方性光取出領域のうち少なくとも1箇所の位置は、対応する前記光導入領域から前記導光板内に導入された光が、前記仮想軸の方向が異なる他の異方性光取出領域を通って当該異方性光取出領域に到達するように位置調整されていて、
     さらに、前記光導入領域それぞれに独立して光を照射する、前記異方性光取出領域毎に調光可能な光源を備える、照明装置。
    A light guide plate provided with two or more stacked,
    The light guide plate has a light introduction surface for introducing light, a light extraction surface from which light introduced from the light introduction surface is extracted, and a back surface located on the opposite side of the light extraction surface, and extracts light. Divided into multiple areas as seen from the direction,
    A plurality of regions among the divided regions are guided in a direction intersecting with the virtual axis, and light extraction efficiency is guided in a direction parallel to a predetermined virtual axis parallel to the light extraction surface. An anisotropic light extraction area that is higher than the light extraction efficiency
    The light introduction surface has light introduction regions provided at least one place corresponding to each of the anisotropic light extraction regions from which light is extracted;
    The position of at least one of the anisotropic light extraction regions is such that light introduced from the corresponding light introduction region into the light guide plate passes through another anisotropic light extraction region having a different virtual axis direction. The position is adjusted to reach the isotropic light extraction area,
    Furthermore, an illuminating device provided with the light source which can irradiate light to each said light introduction area | region independently and can adjust light for every said anisotropic light extraction area | region.
  12.  前記導光板が、いずれも光の取出方向から見てa行b列(a及びbはそれぞれ2以上の整数。)の行列状にa×b箇所の領域に区分され、
     前記a×b箇所の領域のうち半数以上が前記異方性光取出領域となっている、請求項11に記載の照明装置。
    Each of the light guide plates is divided into a × b regions in a matrix of a rows and b columns (a and b are each an integer of 2 or more) as viewed from the light extraction direction,
    The lighting device according to claim 11, wherein more than half of the a × b regions are the anisotropic light extraction regions.
  13.  重ねられた前記導光板の数がn枚である場合に、2×n×a+2×n×b≧a×bを満たす、請求項12記載の照明装置。 The illuminating device according to claim 12, wherein the number of the light guide plates stacked is n, wherein 2 × n × a + 2 × n × b ≧ a × b is satisfied.
  14.  前記導光板の前記異方性光取出領域が、その前記光取出面及び前記裏面の少なくとも一方に、当該異方性光取出領域の前記仮想軸と平行に導光される光に対しては当該光を前記異方性光取出領域の光取出面から出光させる光取出パターンとして機能し、当該異方性光取出領域の前記仮想軸と交差する方向に導光される光に対しては当該光が拡散することを防止する光拡散防止パターンとして機能するパターンが形成された領域である、請求項11記載の照明装置。 The anisotropic light extraction region of the light guide plate is different from the light guided to the at least one of the light extraction surface and the back surface in parallel with the virtual axis of the anisotropic light extraction region. Light that functions as a light extraction pattern that emits light from the light extraction surface of the isotropic light extraction region and prevents the light from diffusing with respect to light guided in a direction intersecting the virtual axis of the anisotropic light extraction region The illumination device according to claim 11, wherein the illumination device is a region where a pattern functioning as a diffusion prevention pattern is formed.
  15.  前記パターンとして、当該パターンを形成された前記異方性光取出領域の前記仮想軸と直交する方向に延在して形成された複数の畝状パターンを有する、請求項14記載の照明装置。 The lighting device according to claim 14, wherein the pattern includes a plurality of hook-shaped patterns formed to extend in a direction orthogonal to the virtual axis of the anisotropic light extraction region in which the pattern is formed.
  16.  前記の畝状パターンとして、互いに平行な複数のプリズム様のV溝パターンを有する、請求項15記載の照明装置。 16. The illumination device according to claim 15, wherein the bowl-shaped pattern has a plurality of prism-like V-groove patterns parallel to each other.
  17.  前記の畝状パターンとして、互いに平行な複数のレンチキュラー溝パターンを有する、請求項15記載の照明装置。 The lighting device according to claim 15, wherein the bowl-shaped pattern has a plurality of lenticular groove patterns parallel to each other.
PCT/JP2011/051302 2010-01-29 2011-01-25 Light-guiding plate and lighting device WO2011093262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010019720 2010-01-29
JP2010-019720 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011093262A1 true WO2011093262A1 (en) 2011-08-04

Family

ID=44319250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051302 WO2011093262A1 (en) 2010-01-29 2011-01-25 Light-guiding plate and lighting device

Country Status (2)

Country Link
TW (1) TW201213902A (en)
WO (1) WO2011093262A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027588A1 (en) * 2011-08-23 2013-02-28 Sharp Kabushiki Kaisha Local dimming backlight unit and display device incorporating same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026865A1 (en) * 2017-08-04 2019-02-07 日東電工株式会社 Light extraction member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007293339A (en) * 2006-04-21 2007-11-08 Samsung Electro-Mechanics Co Ltd Backlight unit for liquid crystal display device
WO2009084894A1 (en) * 2007-12-27 2009-07-09 Samsung Electro-Mechanics Co., Ltd. Backlight unit for liquid crystal display device
JP2010204256A (en) * 2009-03-02 2010-09-16 Hitachi Displays Ltd Liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007293339A (en) * 2006-04-21 2007-11-08 Samsung Electro-Mechanics Co Ltd Backlight unit for liquid crystal display device
WO2009084894A1 (en) * 2007-12-27 2009-07-09 Samsung Electro-Mechanics Co., Ltd. Backlight unit for liquid crystal display device
JP2010204256A (en) * 2009-03-02 2010-09-16 Hitachi Displays Ltd Liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027588A1 (en) * 2011-08-23 2013-02-28 Sharp Kabushiki Kaisha Local dimming backlight unit and display device incorporating same

Also Published As

Publication number Publication date
TW201213902A (en) 2012-04-01

Similar Documents

Publication Publication Date Title
KR101777885B1 (en) Lightguide
US9523810B2 (en) Illumination device and display device
US8616755B2 (en) Light guide plate for surface light source device and backlight unit using the same
KR20080101796A (en) Lcd displays with light redirection
WO2007111829A1 (en) Illumination apparatus and film
US7703963B2 (en) Light guiding strip and double-sided planar light apparatus
WO2011093173A1 (en) Light-guiding plate, lighting device, and liquid-crystal display device
US9321225B2 (en) Optical plate with microstructures
JPWO2013168392A1 (en) Light guide plate
US20050174804A1 (en) Backlighting apparatus
US20090273946A1 (en) Illumination module, and a display and general lighting apparatus using the same
JP2011134650A (en) Light source device and liquid crystal display device
WO2011093262A1 (en) Light-guiding plate and lighting device
WO2010034154A1 (en) Light guiding strip and double-sided planar light apparatus
JP2011216203A (en) Light source device, backlight device, and liquid crystal display device
JP2015191686A (en) Light guide, edge light type lighting apparatus and image display device
CN101620342A (en) Backlight module and optical plate thereof
JP2012237978A (en) Optical sheet and planar light source device using the same
JP2012204192A (en) Backlight device
JP2011138698A (en) Surface light source device and liquid crystal display device
US10941919B1 (en) Light bar structure
KR102540857B1 (en) Light guide plate module having local dimming function and display apparatus including the same
KR20130118160A (en) Serration light guide plate for liquid crystal display device and back light unit using the same
KR20140074763A (en) Hyperbolic Curve Pattern Type Prism Sheet
WO2011093172A1 (en) Light-guiding plate and lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP