WO2011092824A1 - Paper sheet handling device and paper sheet handling method - Google Patents

Paper sheet handling device and paper sheet handling method Download PDF

Info

Publication number
WO2011092824A1
WO2011092824A1 PCT/JP2010/051154 JP2010051154W WO2011092824A1 WO 2011092824 A1 WO2011092824 A1 WO 2011092824A1 JP 2010051154 W JP2010051154 W JP 2010051154W WO 2011092824 A1 WO2011092824 A1 WO 2011092824A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper sheet
amount
interval
paper
sheets
Prior art date
Application number
PCT/JP2010/051154
Other languages
French (fr)
Japanese (ja)
Inventor
昌志 西川
Original Assignee
グローリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローリー株式会社 filed Critical グローリー株式会社
Priority to PCT/JP2010/051154 priority Critical patent/WO2011092824A1/en
Publication of WO2011092824A1 publication Critical patent/WO2011092824A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/58Article switches or diverters
    • B65H29/62Article switches or diverters diverting faulty articles from the main streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H43/00Use of control, checking, or safety devices, e.g. automatic devices comprising an element for sensing a variable
    • B65H43/04Use of control, checking, or safety devices, e.g. automatic devices comprising an element for sensing a variable detecting, or responding to, presence of faulty articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H7/00Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
    • B65H7/02Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
    • B65H7/06Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to presence of faulty articles or incorrect separation or feed
    • B65H7/08Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to presence of faulty articles or incorrect separation or feed responsive to incorrect front register
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D11/00Devices accepting coins; Devices accepting, dispensing, sorting or counting valuable papers
    • G07D11/10Mechanical details
    • G07D11/16Handling of valuable papers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/445Moving, forwarding, guiding material stream of articles separated from each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/445Moving, forwarding, guiding material stream of articles separated from each other
    • B65H2301/4452Regulating space between separated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/20Location in space
    • B65H2511/22Distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/20Location in space
    • B65H2511/24Irregularities, e.g. in orientation or skewness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/50Occurence
    • B65H2511/51Presence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/50Occurence
    • B65H2511/51Presence
    • B65H2511/514Particular portion of element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2513/00Dynamic entities; Timing aspects
    • B65H2513/40Movement
    • B65H2513/42Route, path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/40Sensing or detecting means using optical, e.g. photographic, elements
    • B65H2553/41Photoelectric detectors
    • B65H2553/416Array arrangement, i.e. row of emitters or detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/13Parts concerned of the handled material
    • B65H2701/131Edges
    • B65H2701/1311Edges leading edge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/19Specific article or web
    • B65H2701/1912Banknotes, bills and cheques or the like

Definitions

  • the present invention relates to a paper sheet processing apparatus and a paper sheet processing method for processing paper sheets.
  • a paper sheet processing apparatus that monitors the transport status of paper sheets when transporting paper sheets including banknotes, checks and other securities, postcards, sealed letters, etc. on a predetermined transport path.
  • a paper sheet processing method that monitors the transport status of paper sheets when transporting paper sheets including banknotes, checks and other securities, postcards, sealed letters, etc.
  • paper sheets such as postcards and sealed letters are transported one by one at a time
  • the paper sheets may be skewed.
  • a transport failure such as a jam may occur in the gate means that switches the transport direction of the paper sheets one by one.
  • the gate means the paper sheets may be damaged.
  • Japanese Patent Application Laid-Open No. 11-292350 detects the state of paper sheet conveyance on the upstream side of the gate means, and determines the operation time of the gate means according to the degree of skew of the paper sheets. Propose to change.
  • a batch rejection method is adopted in which a plurality of paper sheets are collectively rejected at once for the paper sheets being conveyed in a so-called chained state.
  • Japanese Patent Application Laid-Open No. 02-238591 discloses a paper sheet that is conveyed in a so-called chained state once the paper sheet arrives at an upstream sensor in order to keep the operation of the gate means in time. Proposes to stop leaf transport. However, since this method extremely decreases the throughput, it cannot withstand practical use.
  • an optical path sensor provided on the transport path has been used. That is, when a paper sheet passes over the path sensor, the path of light incident on the path sensor is blocked (shielded), and thereby the paper sheet on the path sensor. The passage timing can be detected.
  • the actual interval of the paper sheets can be calculated based only on the passage timing of the paper sheets by a single passage sensor. Therefore, the discrimination criterion to be compared with the calculated interval can be directly determined from the operating time of the gate means. Then, by comparing the calculated interval with a preset discrimination criterion, it is possible to discriminate whether or not those sheets are in a so-called chained state.
  • the actual interval between the paper sheets cannot be calculated based only on the passage timing of the paper sheet by a single passage sensor. If it is determined based on the chain determination criterion when there is no skew of the paper sheets, the skewed paper sheets are not in time for the switching operation of the gate means, and a jam occurs. In addition, when judged based on the chain judgment criterion considering the maximum allowable skew amount of paper sheets, the paper sheets having no skew / small skew are transported in an unnecessarily large interval. As a result, the processing throughput of the paper sheets decreases.
  • the present invention has been devised to pay attention to the above problems and to effectively solve them. It is an object of the present invention to measure the degree of skew of a paper sheet being conveyed and to take into account the degree of skew, so that the paper sheets are more accurately chained (abnormally approached) / unchained than before. It is an object of the present invention to provide a paper sheet processing apparatus and a paper sheet processing method capable of determining the above.
  • the present invention provides a conveyance path through which paper sheets are conveyed one by one, a rejection path that is branched from the conveyance path, and a gate unit that switches the conveyance path from the conveyance path to the rejection path.
  • at least two or more passage sensors provided at a position upstream of the gate means on the conveyance path and detecting the passage of the paper sheets, and skew feeding of the paper sheets passed based on the detection result by the passage sensor
  • Paper sheet reference interval storage means for storing in advance a paper sheet reference interval as a criterion for determining whether or not the paper sheet is in a chained state, and paper derived by the paper sheet interval amount deriving means. The interval between leaves When the paper sheet reference interval stored in the interval storage means is equal to or smaller than the paper sheet reference interval, the gate means is driven to convey the two sheets passed in order.
  • a paper sheet processing apparatus comprising: a reject control unit that switches a path to a reject path.
  • the skew amount of the paper sheet being conveyed is derived, and the paper sheet interval amount is derived in consideration of the derived skew amount of the two sheets that have passed in order. Therefore, the paper sheet interval amount can be grasped more accurately. Therefore, it is possible to determine the linkage (abnormal approach) / non-linkage of paper sheets more accurately than in the past, and as a result, the processing throughput of paper sheets per unit time can be increased.
  • the passage sensor may be constituted by, for example, a line sensor that functions as an identification unit that identifies paper sheets.
  • the passage sensor may be constituted by, for example, two or more light-shielding sensors arranged so as to be aligned in a direction perpendicular to the paper sheet conveyance direction.
  • the paper sheet interval amount deriving means derives a paper sheet interval amount corresponding to each derived skew feed amount with reference to a preset correspondence table.
  • the paper sheet interval amount deriving means derives the paper sheet interval amount in consideration of the length of the paper sheet in the conveyance direction (when the paper sheet is a bill, the bill length). It is preferable.
  • the paper sheet interval amount deriving means refers to a preset correspondence table, and the paper sheets corresponding to the derived skew feed amount and the length of the paper sheet in the transport direction. It is preferable to derive the interval amount.
  • the present invention provides a conveyance path through which paper sheets are conveyed one by one, a rejection path branched from the conveyance path, and a gate that switches the conveyance path from the conveyance path to the rejection path.
  • a criterion for determining whether or not the paper sheets are in a chained state at least two passage sensors provided at a position upstream of the gate means on the transport path and detecting the passage of the paper sheets.
  • a paper sheet reference interval storage means for storing in advance a paper sheet reference interval, and a paper sheet processing method for processing a paper sheet using a paper sheet processing apparatus, wherein the passage sensor A skew amount derivation step for deriving the skew amount of the paper sheet that has passed based on the detection result of the paper sheet, and a paper sheet based on the derived skew amount for each of the two paper sheets that have passed in sequence.
  • Paper sheet interval amount derivation process The paper sheet interval amount derived by the paper sheet interval amount derivation step is compared with the paper sheet reference interval stored by the paper sheet reference interval storage means, and is equal to or less than the paper sheet reference interval.
  • a paper sheet processing comprising: a reject control step of driving the gate means to switch the transport path of the two paper sheets that have passed sequentially to a reject path. Is the method.
  • the skew amount of the paper sheet being conveyed is derived, and the paper sheet interval amount is derived in consideration of the derived skew amount of the two sheets that have passed in order. Therefore, the paper sheet interval amount can be grasped more accurately. Therefore, it is possible to determine the linkage (abnormal approach) / non-linkage of paper sheets more accurately than in the past, and as a result, the processing throughput of paper sheets per unit time can be increased.
  • the paper sheet interval amount deriving step derives the paper sheet interval amount in consideration of the length of the paper sheet in the transport direction (when the paper sheet is a bill, the bill length). It is preferable.
  • FIG. It is a composition schematic diagram of a bill processing device by one embodiment of the present invention. It is the structure schematic of the banknote processing apparatus by other embodiment of this invention.
  • a line sensor is provided as a passage sensor that detects passage of a paper sheet at two or more points on a paper sheet conveyance path. Based on the detection result by the line sensor, the skew angle as the skew amount of the paper sheet is derived as follows.
  • FIG. 1 is a schematic diagram for explaining an example of a process (algorithm) for deriving a skew angle of a paper sheet 11 based on a detection result by a line sensor.
  • the shape of the paper sheet 11 is extracted from the entire image acquired by the line sensor by a computer using a known algorithm, and the inclination of the center line of the paper sheet 11 is the skew angle.
  • the computer functions as a skew amount (skew angle) deriving means.
  • the slope of the center line (skew angle) can be obtained from Equation 1 below.
  • the inclination (skew angle) of the center line is 10 degrees.
  • (X0, Y0) (104, 115)
  • (X1, Y1) (130, 120)
  • (X2, Y2) (157,124)
  • (X3, Y3) (183, 129)
  • (X4, Y4) (209, 134)
  • (X5, Y5) (236, 138)
  • (X6, Y6) (262, 143)
  • (X7, Y7) (288, 148)
  • a passage sensor for detecting the passage of the paper sheet at two or more points on the paper sheet conveyance path two light shielding sensors are arranged in a direction perpendicular to the paper sheet conveyance direction. The case where it is arranged will be described. Based on the detection results of the two light shielding sensors, the skew angle of the paper sheet is derived as follows.
  • FIG. 2 is a schematic diagram for explaining an example of a process (algorithm) for deriving the skew angle of the paper sheet 21 based on the detection results by the two light shielding sensors.
  • the paper sheet has a time difference between the timing of light shielding (paper sheet passage) detection by one light shielding sensor VP1R and the timing of light shielding (paper sheet passage) detection by the other light shielding sensor VP1L.
  • the “deviation amount” X of the paper sheet 21 at the position of the two light shielding sensors can be obtained.
  • X may be obtained by using a pulse of a rotary encoder that outputs a mechanical clock synchronized with the transport amount of paper sheets.
  • the inclination (skew angle) of the paper sheet 21 can be obtained from the following Expression 2.
  • FIG. 3 is a schematic diagram for explaining a state in which the previous banknote is skewed.
  • the conveyance path width is 184 mm
  • the interval between the two light shielding sensors VP1L and VP1R is 58 mm
  • the size of the bill to be conveyed is a bill length of 60 mm and a bill width of 120 mm.
  • the amount of deviation on the rear side of the banknote is maximized when one end on the front side of the banknote is positioned at the side edge of the transport path.
  • FIG. 3 is a schematic diagram for explaining a state in which the previous banknote is skewed.
  • the conveyance path width is 184 mm
  • the interval between the two light shielding sensors VP1L and VP1R is 58 mm
  • the size of the bill to be conveyed is a bill length of 60 mm and a bill width of 120 mm.
  • the amount of deviation on the rear side of the banknote is maximized when one end on the front side of the
  • route is 42.8 mm.
  • PSCT 2 is a timing sensor that starts the operation of the branch claw 30. The operation of the branch claw 30 starts when a bill that needs to branch to the sensor PSCT2 arrives. Similarly, even when a banknote that needs to return the branching claw 30 arrives, the operation of the branching claw 30 starts based on the output of the sensor PSCT2.
  • the sensor one of the two light-shielding sensors VP1L and VP1R which detects late completion of passage of a banknote
  • a value exceeding 42.8 mm is required as follows. That is, in the example of FIG. 3, the case where the skew angle of the next (later) banknote is 0 degree is shown, but if the skew angle of the previous banknote is 5 degrees, 47.9 mm is obtained. If the skew angle of the previous banknote is 10 degrees, 52.0 mm is required, and if the skew angle of the previous banknote is 15 degrees, 55.5 mm is required.
  • each value varies depending on the bill length.
  • the size of the bill to be conveyed is a bill length of 85 mm and a bill width of 120 mm, as shown in FIG. 4, two pieces are used to secure the necessary distance (42.8 mm) in the actual bill.
  • the banknote is skewed with respect to the distance to the next banknote obtained based on the detection timing of the sensor (VP1L in FIG. 4) that detects the passage completion of the banknote later among the light shielding sensors VP1L and VP1R Requires a value exceeding 42.8 mm as follows. That is, in the example of FIG.
  • Fig. 5 shows a table summarizing these numbers by bill length and skew angle.
  • the correction values corresponding to the classification by the skew angle shown in the left column of the table of FIG. 6 and the classification by the bill length shown in the upper column of the table are the bill values of the bills of the two light shielding sensors VP1L and VP1R.
  • 42.8 mm is a discrimination standard (paper sheet standard interval amount).
  • 45 mm may be adopted as the determination reference (paper sheet reference interval amount).
  • FIG. 7 is a schematic diagram for explaining a state in which a later bill is skewed. As shown in FIG. 7, the amount of deviation on the front side of the banknote is maximized when one end on the rear side of the banknote is positioned at the side edge of the transport path.
  • the sensor one of the two light-shielding sensors VP1L and VP1R which detects the passage start of a banknote early
  • a value exceeding 42.8 mm is required as follows. That is, in the example of FIG. 7, the case where the skew angle of the preceding banknote is 0 degree is shown, but if the skew angle of the subsequent banknote is 5 degrees, 47.9 mm is required. If the skew angle of the subsequent banknote is 10 degrees, 52.0 mm is required, and if the skew angle of the subsequent banknote is 15 degrees, 55.5 mm is required.
  • each value varies depending on the bill length as described with reference to FIGS. 4 and 5.
  • the correction values corresponding to the classification by the skew angle shown in the left column of the table of FIG. 6 and the classification by the bill length shown in the upper column of the table are the bill values of the bills of the two light shielding sensors VP1L and VP1R.
  • the virtual rear end of the previous banknote is determined based on the detection timing of the sensor (VP1L in FIGS. 3 and 4) that detects late completion of the passage of the banknote out of the two light shielding sensors VP1L and VP1R.
  • the virtual front end of the subsequent banknote is determined based on the detection timing of the sensor (VP1L in FIG. 7) that detects the passage start of the banknote earlier among the two light shielding sensors VP1L and VP1R.
  • the temporary inter-banknote distance is calculated from the difference between these detection timings and the banknote transport speed.
  • the correction value (FIG. 6) based on the skew angle and bill length of each banknote is subtracted, thereby obtaining the distance used as the actual banknote interval in the present invention. The distance is compared with the discrimination criterion (paper sheet reference interval amount).
  • the bill interval is derived in consideration of the derived skew angle for the two bills that have passed in order, so that the bill interval can be grasped more accurately. It is possible to discriminate banknote linkage (abnormal approach) / non-linkage more accurately than in the past. Therefore, as a result, the processing throughput of banknotes per unit time can be increased.
  • FIG. 8 is a schematic configuration diagram of a banknote handling apparatus according to an embodiment of the present invention.
  • a transport path 103 through which banknotes as paper sheets are transported one by one, a reject path 104 branched from the transport path 103, and a reject path from the transport path 103.
  • Gate means 105 for switching the transfer route to 104 is provided.
  • the gate means 105 is formed as a circular branch portion having six branch portions, and each branch portion is configured as a three-way branch portion.
  • an identification unit 102 is provided at a position upstream of the gate means 105 on the transport path 103.
  • the identification unit 102 is provided with a line sensor that also functions as an identification means for identifying a banknote as a passage sensor that detects the passage of the banknote at two or more points.
  • a control unit (PC) 106 is connected to the identification unit 102, and the control unit 106 derives a skew angle as a skew amount of a bill that has passed based on a detection result by a line sensor.
  • the banknote reference interval storage means for preliminarily storing the banknote reference interval as a criterion for determining whether or not the banknote is in a chained state, and the banknote interval derived by the function of the banknote interval deriving means Compared with the banknote reference interval stored by the function of the interval storage means, when it is equal to or less than the banknote reference interval, the gate means 105 is driven, and the transport path of the two bills 102 that have passed in order is And functions as a reject control means for switching to injecting passage 104.
  • 111 is a depositing port
  • 113 is a dispensing port
  • 114 is a deposit rejecting port
  • 115 is a temporary holding part.
  • 110 is a deposit / withdrawal unit
  • 120 is a storage / feeding unit
  • 130 is a storage unit.
  • 121a to 121e are stackers
  • 121f is a scrutiny cassette
  • 131 is a stacking unit.
  • the apparatus shown in FIG. 8 operates as follows. That is, the deposited banknotes are fed out from the deposit port 111 one by one and reach the identification unit 102 through the conveyance path 103. In the identification unit 102, the denomination and authenticity of the banknote are identified. At the same time, the skew angle of the banknote is derived by the line sensor, and the skew angle derived for each of the two sheets that have passed in order. Based on the above, it is more preferable that the bill interval is derived in consideration of the bill length of each bill as described above.
  • Normal banknotes that are normally identified are sent via a conveyance path 103 to a predetermined stacker that stores a predetermined denomination.
  • unidentifiable banknotes, fake banknotes, banknotes that are severely damaged, and the like are sent to the deposit reject port 114.
  • banknotes deposited banknotes being conveyed in a chained state are also sent to the deposit rejection port 114. Whether the banknote transport mode is in a chained state is determined by the control unit 106 by performing the functions described above.
  • banknotes to be withdrawn banknotes that cannot be identified, fake banknotes, and banknotes that are severely damaged are temporarily suspended without being withdrawn.
  • banknotes being conveyed in a chained state are also sent to the withdrawal port 115. Whether the banknote transport mode is in a chained state is determined by the control unit 106 by performing the functions described above.
  • the reject banknotes saved in the temporary storage unit are fed out again and stored in any stacker of the storage and feeding unit 120.
  • FIG. 9 is a schematic configuration diagram of a banknote handling apparatus according to another embodiment of the present invention.
  • a transport path 203 through which banknotes 202 as paper sheets are transported one by one, a reject path 204 branched from the transport path 203, and a reject path from the transport path 203.
  • Gate means 205 for switching the transport path to the passage 204 is provided.
  • a mechanical clock pulse is used to detect whether or not the bill 202 is in a passing state as a passage sensor that detects passage of the bill 202 at two or more points.
  • Two sensors 208 are provided.
  • a gate control unit 209 is connected to the gate unit 205, and a skew angle as a skew amount of the banknote 202 passed based on the detection result by the sensor 208 is derived to the gate control unit 209. Further connected is a control unit 210 that functions as a skew angle deriving unit and functions as a banknote interval deriving unit that derives a banknote interval based on the derived skew angles of two banknotes that have passed in order. .
  • the gate control unit 209 functions as a bill reference interval storage unit that stores in advance a bill reference interval as a criterion for determining whether or not the bill 202 is in a chained state, and is derived by the function of the bill interval deriving unit.
  • the banknote interval is compared with the banknote reference interval stored by the function of the banknote reference interval storage means.
  • the gate means 205 is driven to sequentially pass two banknotes.
  • the conveyance path 202 is switched to the rejection path 204.
  • 211 is a timing sensor which detects banknote passage.
  • the apparatus shown in FIG. 9 operates as follows. That is, banknotes 202 are conveyed one by one through the conveyance path 203 and reach the sensor 208. Based on the detection output of the sensor 208, the skew angle of the banknote 202 is derived by the control unit 210. Further, based on the skew angles derived for the two sheets sequentially passed by the control unit 210, more preferably, the bill length of each banknote 202 is also taken into consideration as described above. An interval is derived.
  • the gate control unit 209 compares the derived banknote interval with the stored banknote reference interval, and drives the gate unit 205 when it is equal to or less than the banknote reference interval.
  • the driving timing is determined (controlled) based on the detection output of the timing sensor 211. In this case, the transport path of the two bills 202 that have passed in order is switched to the reject passage 204.
  • the description of the above embodiment is made based on a mode of deriving a skew angle as a skew amount, but the present invention is not limited to such a mode. That is, the object of the present invention can be similarly achieved even when another physical quantity corresponding to the skew amount is used instead of the skew angle.
  • an aspect may be employed in which the output value of a sensor that can be used to obtain the skew angle is used as it is as an input value for control, and a physical quantity called the skew angle is not derived (calculated).
  • the description of the above embodiment has been made based on an aspect in which the interval between paper sheets (for example, banknotes) is derived as the paper sheet interval amount, but the present invention is not limited to such an aspect. . That is, the object of the present invention can be similarly achieved even if another physical quantity corresponding to the paper sheet (banknote) interval is used instead of the paper sheet (banknote) interval.
  • the output value of the sensor that can be used for obtaining the paper sheet (banknote) interval is used as the input value for control as it is, and the physical quantity of the paper sheet (banknote) interval is not derived (calculated). Can be employed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Controlling Sheets Or Webs (AREA)

Abstract

A paper sheet handling device and a paper sheet handling method which are, by consideration of the amount of oblique movement of paper sheets being conveyed, capable of more accurately determining chaining (abnormal nearness) and non-chaining of the paper sheets than in a conventional paper sheet handling device. The amounts of oblique movement of two paper sheets having sequentially passed through at least two passage sensors, which detect the passage of the paper sheets, are individually derived on the basis of the detection by the at least two passage sensors. Also, the amount of spacing between the paper sheets is derived from the derived amounts of oblique movement. Then, the amount of spacing between the paper sheets and a reference paper sheet spacing are compared with each other. If the amount of spacing between the paper sheets is less than or equal to the reference paper sheet spacing, a gate means is driven to switch the conveyance path for the two paper sheets, which have sequentially passed through the at least two passage sensors, to a path for rejection.

Description

紙葉類処理装置及び紙葉類処理方法Paper sheet processing apparatus and paper sheet processing method
 本発明は、紙葉類を処理する紙葉類処理装置及び紙葉類処理方法に関する。特には、所定の搬送路上において、紙幣、小切手等の有価証券、はがき、封書等を含む紙葉類を搬送する際に、当該紙葉類の搬送状態の監視を行うような紙葉類処理装置及び紙葉類処理方法に関する。 The present invention relates to a paper sheet processing apparatus and a paper sheet processing method for processing paper sheets. In particular, a paper sheet processing apparatus that monitors the transport status of paper sheets when transporting paper sheets including banknotes, checks and other securities, postcards, sealed letters, etc. on a predetermined transport path. And a paper sheet processing method.
 紙幣、小切手等の有価証券、はがき、封書等の紙葉類が、1枚ずつ間隔をあけて搬送される際、当該紙葉類が斜行する可能性がある。紙葉類が搬送方向に対して斜行していると、1枚ずつ紙葉類の搬送方向を切り替えるゲート手段において、ジャム等の搬送不良を生じる場合がある。さらには、当該ゲート手段において、紙葉類に損傷が生じる場合すらある。 When securities such as banknotes and checks, paper sheets such as postcards and sealed letters are transported one by one at a time, the paper sheets may be skewed. When the paper sheets are skewed with respect to the transport direction, a transport failure such as a jam may occur in the gate means that switches the transport direction of the paper sheets one by one. Furthermore, in the gate means, the paper sheets may be damaged.
 このような問題を回避するために、特開平11-292350号公報は、紙葉類の搬送状態をゲート手段の上流側で検知して、紙葉類の斜行の程度に従ってゲート手段の動作時間を変更することを提案している。 In order to avoid such a problem, Japanese Patent Application Laid-Open No. 11-292350 detects the state of paper sheet conveyance on the upstream side of the gate means, and determines the operation time of the gate means according to the degree of skew of the paper sheets. Propose to change.
 しかしながら、所定間隔以内に狭い間隔で搬送されている紙葉類、すなわち、いわゆる連鎖状態で搬送されている紙葉類に対しては、ゲート手段の動作時間を最短に変更したとしても、各紙葉類に対応するべきゲート手段の動作が間に合わず、ジャム等が生じ得るという問題を十分に回避できない。 However, for paper sheets that are transported at narrow intervals within a predetermined interval, that is, paper sheets that are transported in a so-called chained state, even if the operating time of the gate means is changed to the shortest, each paper sheet It is not possible to sufficiently avoid the problem that jamming or the like may occur due to the operation of the gate means that should correspond to the class.
 そこで、現状では、いわゆる連鎖状態で搬送されている紙葉類について、それら複数の紙葉類をまとめて一度にリジェクト処理する、という一括リジェクトの対処法が採用されている。 Therefore, at present, a batch rejection method is adopted in which a plurality of paper sheets are collectively rejected at once for the paper sheets being conveyed in a so-called chained state.
 他に、特開平02-238591号公報は、いわゆる連鎖状態で搬送されている紙葉類について、ゲート手段の動作を間に合わせるために、上流側のセンサに紙葉類が到来してから一旦紙葉類の搬送を止めることを提案している。しかしながら、当該方法は、スループットを極端に低下させることになるため、実用上の使用に耐えるものではない。 In addition, Japanese Patent Application Laid-Open No. 02-238591 discloses a paper sheet that is conveyed in a so-called chained state once the paper sheet arrives at an upstream sensor in order to keep the operation of the gate means in time. Proposes to stop leaf transport. However, since this method extremely decreases the throughput, it cannot withstand practical use.
 さて、紙葉類の連鎖状態を検出するために、従来より、搬送路上に設けられた光学式の通路センサが利用されている。すなわち、当該通路センサ上を紙葉類が通過すると、当該通路センサに入光している光の経路が遮断(遮光)されるようになっており、このことによって当該通路センサ上の紙葉類の通過タイミングを検知できるようになっている。 Now, in order to detect the linkage state of paper sheets, conventionally, an optical path sensor provided on the transport path has been used. That is, when a paper sheet passes over the path sensor, the path of light incident on the path sensor is blocked (shielded), and thereby the paper sheet on the path sensor. The passage timing can be detected.
 紙葉類の斜行が存在しない状況であれば、単一の通路センサによる紙葉類の通過タイミングのみに基づいて、紙葉類の実際の間隔を算出することができる。従って、当該算出された間隔と比較されるべき判別基準を、ゲート手段の動作時間等から直接決定することができる。そして、当該算出された間隔を、予め設定された判別基準と比較することによって、それらの紙葉類がいわゆる連鎖状態にあるか否かを判別することができる。 If there is no skew of the paper sheets, the actual interval of the paper sheets can be calculated based only on the passage timing of the paper sheets by a single passage sensor. Therefore, the discrimination criterion to be compared with the calculated interval can be directly determined from the operating time of the gate means. Then, by comparing the calculated interval with a preset discrimination criterion, it is possible to discriminate whether or not those sheets are in a so-called chained state.
 しかしながら、紙葉類の斜行が存在し得る状況では、単一の通路センサによる紙葉類の通過タイミングのみに基づいて、紙葉類の実際の間隔を算出することはできない。紙葉類の斜行が存在しない状態での連鎖判断基準により判断すると、斜行した紙葉類はゲート手段の切り替え動作に間に合わず、ジャムが発生する。また、許容できる紙葉類の斜行量が最大の場合を考慮した連鎖判断基準により判断すると、斜行の無い/少ない紙葉類は必要以上に間隔が開いた状態で搬送されることになり、紙葉類の処理スループットが低下することになる。 However, in a situation where there is a possibility that the skew of the paper sheet exists, the actual interval between the paper sheets cannot be calculated based only on the passage timing of the paper sheet by a single passage sensor. If it is determined based on the chain determination criterion when there is no skew of the paper sheets, the skewed paper sheets are not in time for the switching operation of the gate means, and a jam occurs. In addition, when judged based on the chain judgment criterion considering the maximum allowable skew amount of paper sheets, the paper sheets having no skew / small skew are transported in an unnecessarily large interval. As a result, the processing throughput of the paper sheets decreases.
発明の要旨Summary of the Invention
 本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、搬送中の紙葉類の斜行の程度を測定し、当該斜行の程度を考慮に入れることによって、従来よりも正確に紙葉類の連鎖(異常接近)・非連鎖の判別を行うことができるような紙葉類処理装置及び紙葉類処理方法を提供することにある。 The present invention has been devised to pay attention to the above problems and to effectively solve them. It is an object of the present invention to measure the degree of skew of a paper sheet being conveyed and to take into account the degree of skew, so that the paper sheets are more accurately chained (abnormally approached) / unchained than before. It is an object of the present invention to provide a paper sheet processing apparatus and a paper sheet processing method capable of determining the above.
 本発明は、紙葉類が1枚ずつ搬送される搬送路と、前記搬送路から分岐して設けられたリジェクト用通路と、前記搬送路から前記リジェクト用通路へと搬送経路を切り替えるゲート手段と、前記搬送路上の前記ゲート手段より上流の位置に設けられ、前記紙葉類の通過を検知する少なくとも2以上の通過センサと、前記通過センサによる検知結果に基づいて通過した紙葉類の斜行量を導出する斜行量導出手段と、順に通過した2枚の紙葉類について、それぞれの導出された斜行量に基づいて、紙葉類間隔量を導出する紙葉類間隔量導出手段と、紙葉類が連鎖状態にあるか否かの判別基準としての紙葉類基準間隔を予め記憶しておく紙葉類基準間隔記憶手段と、 前記紙葉類間隔量導出手段によって導出される紙葉類間隔量を、前記紙葉類基準間隔記憶手段によって記憶されている紙葉類基準間隔と比較して、当該紙葉類基準間隔以下である場合に、前記ゲート手段を駆動して、順に通過した2枚の前記紙葉類の搬送経路をリジェクト用通路へと切り替えるリジェクト制御手段と、を備えたことを特徴とする紙葉類処理装置である。 The present invention provides a conveyance path through which paper sheets are conveyed one by one, a rejection path that is branched from the conveyance path, and a gate unit that switches the conveyance path from the conveyance path to the rejection path. And at least two or more passage sensors provided at a position upstream of the gate means on the conveyance path and detecting the passage of the paper sheets, and skew feeding of the paper sheets passed based on the detection result by the passage sensor A skew amount deriving unit for deriving an amount, and a paper sheet interval amount deriving unit for deriving a paper sheet interval amount based on each derived skew amount for two sheets that have passed in order. Paper sheet reference interval storage means for storing in advance a paper sheet reference interval as a criterion for determining whether or not the paper sheet is in a chained state, and paper derived by the paper sheet interval amount deriving means. The interval between leaves When the paper sheet reference interval stored in the interval storage means is equal to or smaller than the paper sheet reference interval, the gate means is driven to convey the two sheets passed in order. A paper sheet processing apparatus comprising: a reject control unit that switches a path to a reject path.
 本発明によれば、搬送中の紙葉類の斜行量を導出し、順に通過した2枚の紙葉類についてそれぞれの導出された斜行量を考慮に入れて紙葉類間隔量を導出するため、より正確に紙葉類間隔量を把握することができる。従って、従来よりも正確に紙葉類の連鎖(異常接近)・非連鎖の判別を行うことができ、結果的に単位時間あたりの紙葉類の処理スループットを高くすることができる。 According to the present invention, the skew amount of the paper sheet being conveyed is derived, and the paper sheet interval amount is derived in consideration of the derived skew amount of the two sheets that have passed in order. Therefore, the paper sheet interval amount can be grasped more accurately. Therefore, it is possible to determine the linkage (abnormal approach) / non-linkage of paper sheets more accurately than in the past, and as a result, the processing throughput of paper sheets per unit time can be increased.
 前記通過センサは、例えば、紙葉類を識別する識別手段として機能するラインセンサによって構成され得る。あるいは、前記通過センサは、例えば、紙葉類の搬送方向に対して垂直な方向に並ぶように配置された2以上の遮光センサによって構成され得る。 The passage sensor may be constituted by, for example, a line sensor that functions as an identification unit that identifies paper sheets. Alternatively, the passage sensor may be constituted by, for example, two or more light-shielding sensors arranged so as to be aligned in a direction perpendicular to the paper sheet conveyance direction.
 また、前記紙葉類間隔量導出手段は、予め設定された対応テーブルを参照して、それぞれの導出された斜行量に対応する紙葉類間隔量を導出するようになっていることが好ましい。 Further, it is preferable that the paper sheet interval amount deriving means derives a paper sheet interval amount corresponding to each derived skew feed amount with reference to a preset correspondence table. .
 また、前記紙葉類間隔量導出手段は、紙葉類の搬送方向における長さ(紙葉類が紙幣である場合、札長)をも考慮して紙葉類間隔量を導出するようになっていることが好ましい。 In addition, the paper sheet interval amount deriving means derives the paper sheet interval amount in consideration of the length of the paper sheet in the conveyance direction (when the paper sheet is a bill, the bill length). It is preferable.
 この場合、更に、前記紙葉類間隔量導出手段は、予め設定された対応テーブルを参照して、それぞれの導出された斜行量と紙葉類の搬送方向における長さとに対応する紙葉類間隔量を導出するようになっていることが好ましい。 In this case, the paper sheet interval amount deriving means refers to a preset correspondence table, and the paper sheets corresponding to the derived skew feed amount and the length of the paper sheet in the transport direction. It is preferable to derive the interval amount.
 また、本発明は、紙葉類が1枚ずつ搬送される搬送路と、前記搬送路から分岐して設けられたリジェクト用通路と、前記搬送路から前記リジェクト用通路へと搬送経路を切り替えるゲート手段と、前記搬送路上の前記ゲート手段より上流の位置に設けられ、前記紙葉類の通過を検知する少なくとも2以上の通過センサと、紙葉類が連鎖状態にあるか否かの判別基準としての紙葉類基準間隔を予め記憶しておく紙葉類基準間隔記憶手段と、を備えた紙葉類処理装置を用いて紙葉類を処理する紙葉類処理方法であって、前記通過センサによる検知結果に基づいて通過した紙葉類の斜行量を導出する斜行量導出工程と、順に通過した2枚の紙葉類について、それぞれの導出された斜行量に基づいて、紙葉類間隔量を導出する紙葉類間隔量導出工程と、前記紙葉類間隔量導出工程によって導出された紙葉類間隔量を、前記紙葉類基準間隔記憶手段によって記憶されている紙葉類基準間隔と比較して、当該紙葉類基準間隔以下である場合に、前記ゲート手段を駆動して、順に通過した2枚の前記紙葉類の搬送経路をリジェクト用通路へと切り替えるリジェクト制御工程と、を備えたことを特徴とする紙葉類処理方法である。 In addition, the present invention provides a conveyance path through which paper sheets are conveyed one by one, a rejection path branched from the conveyance path, and a gate that switches the conveyance path from the conveyance path to the rejection path. As a criterion for determining whether or not the paper sheets are in a chained state, at least two passage sensors provided at a position upstream of the gate means on the transport path and detecting the passage of the paper sheets. A paper sheet reference interval storage means for storing in advance a paper sheet reference interval, and a paper sheet processing method for processing a paper sheet using a paper sheet processing apparatus, wherein the passage sensor A skew amount derivation step for deriving the skew amount of the paper sheet that has passed based on the detection result of the paper sheet, and a paper sheet based on the derived skew amount for each of the two paper sheets that have passed in sequence. Paper sheet interval amount derivation process The paper sheet interval amount derived by the paper sheet interval amount derivation step is compared with the paper sheet reference interval stored by the paper sheet reference interval storage means, and is equal to or less than the paper sheet reference interval. In this case, a paper sheet processing comprising: a reject control step of driving the gate means to switch the transport path of the two paper sheets that have passed sequentially to a reject path. Is the method.
 本発明によれば、搬送中の紙葉類の斜行量を導出し、順に通過した2枚の紙葉類についてそれぞれの導出された斜行量を考慮に入れて紙葉類間隔量を導出するため、より正確に紙葉類間隔量を把握することができる。従って、従来よりも正確に紙葉類の連鎖(異常接近)・非連鎖の判別を行うことができ、結果的に単位時間あたりの紙葉類の処理スループットを高くすることができる。 According to the present invention, the skew amount of the paper sheet being conveyed is derived, and the paper sheet interval amount is derived in consideration of the derived skew amount of the two sheets that have passed in order. Therefore, the paper sheet interval amount can be grasped more accurately. Therefore, it is possible to determine the linkage (abnormal approach) / non-linkage of paper sheets more accurately than in the past, and as a result, the processing throughput of paper sheets per unit time can be increased.
 また、前記紙葉類間隔量導出工程は、紙葉類の搬送方向における長さ(紙葉類が紙幣である場合、札長)をも考慮して紙葉類間隔量を導出するようになっていることが好ましい。 Further, the paper sheet interval amount deriving step derives the paper sheet interval amount in consideration of the length of the paper sheet in the transport direction (when the paper sheet is a bill, the bill length). It is preferable.
ラインセンサによる検知結果に基づいて紙葉類の斜行角を導出するプロセス(アルゴリズム)の一例を説明するための概略図である。It is the schematic for demonstrating an example of the process (algorithm) which derives the skew angle of paper sheets based on the detection result by a line sensor. 2個の遮光センサによる検知結果に基づいて紙葉類の斜行角を導出するプロセス(アルゴリズム)の一例を説明するための概略図である。It is the schematic for demonstrating an example of the process (algorithm) which derives the skew angle of paper sheets based on the detection result by two light shielding sensors. 前の紙幣(紙葉類の一例)が斜行している状態を説明するための概略図である。It is the schematic for demonstrating the state in which the front banknote (an example of paper sheets) is skewing. 紙幣(紙葉類の一例)の札長(搬送方向の長さ)を変えた場合の図3と同様の図である。It is the same figure as FIG. 3 at the time of changing the bill length (length of a conveyance direction) of a banknote (an example of paper sheets). 検出される紙幣間距離について、紙幣(紙葉類の一例)の札長(搬送方向の長さ)と、斜行角と、によって必要距離が変化することを示す表図である。It is a table | surface figure which shows that required distance changes with the bill length (length of a conveyance direction) of banknote (an example of paper sheets), and skew angle about the distance between banknotes detected. 紙幣(紙葉類の一例)の札長(搬送方向の長さ)と、斜行角と、を考慮して、紙幣(紙葉類)間隔を導出するプロセス(アルゴリズム)の一例を説明するための表図である。To describe an example of a process (algorithm) for deriving a bill (paper sheet) interval in consideration of a bill length (an example of a paper sheet) and a skew angle. FIG. 後の紙幣(紙葉類の一例)が斜行している状態を説明するための概略図である。It is the schematic for demonstrating the state in which the subsequent banknote (an example of paper sheets) is skewing. 本発明の一実施の形態による紙幣処理装置の構成概略図である。It is a composition schematic diagram of a bill processing device by one embodiment of the present invention. 本発明の他の実施の形態による紙幣処理装置の構成概略図である。It is the structure schematic of the banknote processing apparatus by other embodiment of this invention.
 まず、紙葉類の搬送路上において、紙葉類の通過を2以上の点で検知する通過センサとして、ラインセンサが設けられている場合について説明する。当該ラインセンサによる検知結果に基づいて、紙葉類の斜行量としての斜行角が、以下のように導出される。 First, a case where a line sensor is provided as a passage sensor that detects passage of a paper sheet at two or more points on a paper sheet conveyance path will be described. Based on the detection result by the line sensor, the skew angle as the skew amount of the paper sheet is derived as follows.
 図1は、ラインセンサによる検知結果に基づいて紙葉類11の斜行角を導出するプロセス(アルゴリズム)の一例を説明するための概略図である。図1に示す例では、ラインセンサによって取得される全面画像から、公知のアルゴリズムを用いてコンピュータによって紙葉類11の形状抽出が行われ、紙葉類11の中央線の傾きが斜行角として算出される。すなわち、当該コンピュータが斜行量(斜行角)導出手段として機能し、具体的には、図1に示すように、中央線上の点の座標を(Xi,Yi)(i=1,・・・,n)とした時、中央線の傾き(斜行角)は、以下の式1から得られる。
Figure JPOXMLDOC01-appb-M000001
例えば、中央線上の点の座標として以下の8つの座標が得られた場合、中央線の傾き(斜行角)は10度である。 
(X0,Y0)=(104,115)
(X1,Y1)=(130,120)
(X2,Y2)=(157,124)
(X3,Y3)=(183,129)
(X4,Y4)=(209,134)
(X5,Y5)=(236,138)
(X6,Y6)=(262,143)
(X7,Y7)=(288,148)
FIG. 1 is a schematic diagram for explaining an example of a process (algorithm) for deriving a skew angle of a paper sheet 11 based on a detection result by a line sensor. In the example shown in FIG. 1, the shape of the paper sheet 11 is extracted from the entire image acquired by the line sensor by a computer using a known algorithm, and the inclination of the center line of the paper sheet 11 is the skew angle. Calculated. That is, the computer functions as a skew amount (skew angle) deriving means. Specifically, as shown in FIG. 1, the coordinates of the points on the center line are set to (Xi, Yi) (i = 1,... .., N), the slope of the center line (skew angle) can be obtained from Equation 1 below.
Figure JPOXMLDOC01-appb-M000001
For example, when the following eight coordinates are obtained as the coordinates of a point on the center line, the inclination (skew angle) of the center line is 10 degrees.
(X0, Y0) = (104, 115)
(X1, Y1) = (130, 120)
(X2, Y2) = (157,124)
(X3, Y3) = (183, 129)
(X4, Y4) = (209, 134)
(X5, Y5) = (236, 138)
(X6, Y6) = (262, 143)
(X7, Y7) = (288, 148)
 次に、紙葉類の搬送路上において、紙葉類の通過を2以上の点で検知する通過センサとして、紙葉類の搬送方向に対して垂直な方向に並ぶように2個の遮光センサが配置されている場合について説明する。当該2個の遮光センサによる検知結果に基づいて、紙葉類の斜行角が、以下のように導出される。 Next, as a passage sensor for detecting the passage of the paper sheet at two or more points on the paper sheet conveyance path, two light shielding sensors are arranged in a direction perpendicular to the paper sheet conveyance direction. The case where it is arranged will be described. Based on the detection results of the two light shielding sensors, the skew angle of the paper sheet is derived as follows.
 図2は、2個の遮光センサによる検知結果に基づいて紙葉類21の斜行角を導出するプロセス(アルゴリズム)の一例を説明するための概略図である。図2に示す例では、一方の遮光センサVP1Rによる遮光(紙葉類通過)検知のタイミングと、他方の遮光センサVP1Lによる遮光(紙葉類通過)検知のタイミングと、の時間差に、紙葉類21の搬送速度を掛けることによって、2個の遮光センサの位置での紙葉類21の「ずれ量」Xを得ることができる。あるいは、紙葉類の搬送量に同期したメカクロックを出力するロータリーエンコーダのパルスを持用いてXを得るようにしてもよい。一方、2個の遮光センサの検知位置の間隔Lは既知であるから、当該紙葉類21の傾き(斜行角)は、以下の式2から得られる。この演算は、例えばコンピュータによって行われる。すなわち、当該コンピュータが斜行量(斜行角)導出手段として機能する。
Figure JPOXMLDOC01-appb-M000002
例えば、X=10.23mm、L=58mmであった場合、斜行角は10度である。
FIG. 2 is a schematic diagram for explaining an example of a process (algorithm) for deriving the skew angle of the paper sheet 21 based on the detection results by the two light shielding sensors. In the example shown in FIG. 2, the paper sheet has a time difference between the timing of light shielding (paper sheet passage) detection by one light shielding sensor VP1R and the timing of light shielding (paper sheet passage) detection by the other light shielding sensor VP1L. By multiplying the conveyance speed by 21, the “deviation amount” X of the paper sheet 21 at the position of the two light shielding sensors can be obtained. Alternatively, X may be obtained by using a pulse of a rotary encoder that outputs a mechanical clock synchronized with the transport amount of paper sheets. On the other hand, since the interval L between the detection positions of the two light shielding sensors is known, the inclination (skew angle) of the paper sheet 21 can be obtained from the following Expression 2. This calculation is performed by a computer, for example. That is, the computer functions as a skew amount (skew angle) deriving unit.
Figure JPOXMLDOC01-appb-M000002
For example, when X = 10.23 mm and L = 58 mm, the skew angle is 10 degrees.
 紙葉類の一例として、紙幣が搬送される場合について、図3乃至図6を参照して更に詳しく説明する。図3は、前の紙幣が斜行している状態を説明するための概略図である。図3の例では、搬送経路幅が184mmであり、2個の遮光センサVP1L、VP1Rの間隔が58mmであり、搬送される紙幣のサイズは、札長60mm、札幅120mmである。図3の例では、図3に示すように、紙幣の後方側のずれ量が最大となるのは、紙幣の前方側の一端が搬送経路の側方縁ギリギリに位置する場合である。また、図3の例では、搬送経路を切り替えるためのゲート手段(例えば分岐爪)の駆動に必要な時間から決定される紙幣間の必要距離(必要間隔)は、42.8mmである。その他、図3において、PSCT2は、分岐爪30の動作を開始するタイミングセンサである。当該センサPSCT2に分岐する必要のある紙幣が到来した時点で分岐爪30の動作が始まる。分岐爪30を元に戻す必要のある紙幣が到来した場合についても、同様に、当該センサPSCT2の出力に基づいて分岐爪30の動作が始まる。 As an example of paper sheets, the case where a banknote is conveyed will be described in more detail with reference to FIGS. FIG. 3 is a schematic diagram for explaining a state in which the previous banknote is skewed. In the example of FIG. 3, the conveyance path width is 184 mm, the interval between the two light shielding sensors VP1L and VP1R is 58 mm, and the size of the bill to be conveyed is a bill length of 60 mm and a bill width of 120 mm. In the example of FIG. 3, as shown in FIG. 3, the amount of deviation on the rear side of the banknote is maximized when one end on the front side of the banknote is positioned at the side edge of the transport path. Moreover, in the example of FIG. 3, the required distance (required space | interval) between the banknotes determined from the time required for the drive of the gate means (for example, branching claw) for switching a conveyance path | route is 42.8 mm. In addition, in FIG. 3, PSCT 2 is a timing sensor that starts the operation of the branch claw 30. The operation of the branch claw 30 starts when a bill that needs to branch to the sensor PSCT2 arrives. Similarly, even when a banknote that needs to return the branching claw 30 arrives, the operation of the branching claw 30 starts based on the output of the sensor PSCT2.
 そして、図3に示すように、実際の紙幣において当該必要距離(42.8mm)を確保するためには、2個の遮光センサVP1L、VP1Rのうち紙幣の通過完了を遅く検知する方のセンサ(図3ではVP1L)の検知タイミングに基づいて得られる次の紙幣までの距離について、紙幣が斜行している場合には以下のように42.8mmを越える値が必要となる。すなわち、図3の例では、次の(後の)紙幣の斜行角が0度である場合について示されているが、前の紙幣の斜行角が5度であれば、47.9mmが必要となるし、前の紙幣の斜行角が10度であれば、52.0mmが必要となるし、前の紙幣の斜行角が15度であれば、55.5mmが必要となる。 And in order to ensure the said required distance (42.8 mm) in an actual banknote as shown in FIG. 3, the sensor (one of the two light-shielding sensors VP1L and VP1R which detects late completion of passage of a banknote) As for the distance to the next bill obtained based on the detection timing (VP1L in FIG. 3), when the bill is skewed, a value exceeding 42.8 mm is required as follows. That is, in the example of FIG. 3, the case where the skew angle of the next (later) banknote is 0 degree is shown, but if the skew angle of the previous banknote is 5 degrees, 47.9 mm is obtained. If the skew angle of the previous banknote is 10 degrees, 52.0 mm is required, and if the skew angle of the previous banknote is 15 degrees, 55.5 mm is required.
 ここで、当該各値は、紙幣の札長によっても変化する。例えば、搬送される紙幣のサイズが、札長85mm、札幅120mmである場合には、図4に示すように、実際の紙幣において前記必要距離(42.8mm)を確保するために、2個の遮光センサVP1L、VP1Rのうち紙幣の通過完了を遅く検知する方のセンサ(図4ではVP1L)の検知タイミングに基づいて得られる次の紙幣までの距離について、紙幣が斜行している場合には以下のように42.8mmを越える値が必要となる。すなわち、図4の例では、次の(後の)紙幣の斜行角が0度である場合について示されているが、前の紙幣の斜行角が5度であれば、47.7mmが必要となるし、前の紙幣の斜行角が10度であれば、51.3mmが必要となるし、前の紙幣の斜行角が15度であれば、53.8mmが必要となる。 Here, each value varies depending on the bill length. For example, when the size of the bill to be conveyed is a bill length of 85 mm and a bill width of 120 mm, as shown in FIG. 4, two pieces are used to secure the necessary distance (42.8 mm) in the actual bill. When the banknote is skewed with respect to the distance to the next banknote obtained based on the detection timing of the sensor (VP1L in FIG. 4) that detects the passage completion of the banknote later among the light shielding sensors VP1L and VP1R Requires a value exceeding 42.8 mm as follows. That is, in the example of FIG. 4, the case where the skew angle of the next (later) banknote is 0 degree is shown, but if the skew angle of the previous banknote is 5 degrees, 47.7 mm If the skew angle of the previous banknote is 10 degrees, 51.3 mm is required, and if the skew angle of the previous banknote is 15 degrees, 53.8 mm is required.
 これらの数値について、紙幣の札長と、斜行角と、によって纏めた表図を図5に示す。 Fig. 5 shows a table summarizing these numbers by bill length and skew angle.
 従って、図5の数値に基づいて、例えば図6に示すような対応テーブルに基づく補正値を採用することが有効である。すなわち、図6の表図の左欄に示す斜行角による分類と同表図の上欄に示す札長による分類とに対応する補正値を、2個の遮光センサVP1L、VP1Rのうち紙幣の通過完了を遅く検知する方のセンサ(図3、図4ではVP1L)の検知タイミングに基づいて得られる次の紙幣までの距離から減算し(それが実際の紙幣間の距離である)、当該減算結果を判別基準(紙葉類基準間隔量)である42.8mmと比較することが有効である。ここで、いわゆるマージンを見込んで、判別基準(紙葉類基準間隔量)は、例えば45mmが採用されてもよい。 Therefore, it is effective to adopt a correction value based on the correspondence table as shown in FIG. 6 based on the numerical values in FIG. That is, the correction values corresponding to the classification by the skew angle shown in the left column of the table of FIG. 6 and the classification by the bill length shown in the upper column of the table are the bill values of the bills of the two light shielding sensors VP1L and VP1R. Subtract from the distance to the next banknote obtained based on the detection timing of the sensor that detects the completion of passage later (VP1L in FIGS. 3 and 4) (this is the actual distance between banknotes) It is effective to compare the result with 42.8 mm which is a discrimination standard (paper sheet standard interval amount). Here, in consideration of a so-called margin, for example, 45 mm may be adopted as the determination reference (paper sheet reference interval amount).
 次に、図7は、後の紙幣が斜行している状態を説明するための概略図である。図7に示すように、紙幣の前方側のずれ量が最大となるのは、紙幣の後方側の一端が搬送経路の側方縁ギリギリに位置する場合である。 Next, FIG. 7 is a schematic diagram for explaining a state in which a later bill is skewed. As shown in FIG. 7, the amount of deviation on the front side of the banknote is maximized when one end on the rear side of the banknote is positioned at the side edge of the transport path.
 そして、図7に示すように、実際の紙幣において前記必要距離(42.8mm)を確保するためには、2個の遮光センサVP1L、VP1Rのうち紙幣の通過開始を早く検知する方のセンサ(図7ではVP1L)の検知タイミングに基づいて得られる前の紙幣までの距離について、紙幣が斜行している場合には以下のように42.8mmを越える値が必要となる。すなわち、図7の例では、前の紙幣の斜行角が0度である場合について示されているが、後の紙幣の斜行角が5度であれば、47.9mmが必要となるし、後の紙幣の斜行角が10度であれば、52.0mmが必要となるし、後の紙幣の斜行角が15度であれば、55.5mmが必要となる。 And in order to ensure the said required distance (42.8 mm) in an actual banknote as shown in FIG. 7, the sensor (one of the two light-shielding sensors VP1L and VP1R which detects the passage start of a banknote early) ( As for the distance to the previous banknote obtained based on the detection timing (VP1L) in FIG. 7, when the banknote is skewed, a value exceeding 42.8 mm is required as follows. That is, in the example of FIG. 7, the case where the skew angle of the preceding banknote is 0 degree is shown, but if the skew angle of the subsequent banknote is 5 degrees, 47.9 mm is required. If the skew angle of the subsequent banknote is 10 degrees, 52.0 mm is required, and if the skew angle of the subsequent banknote is 15 degrees, 55.5 mm is required.
 ここで、当該各値は、図4及び図5を用いて説明したのと同様に、紙幣の札長によっても変化する。 Here, each value varies depending on the bill length as described with reference to FIGS. 4 and 5.
 以上より、後の紙幣についても、例えば図6に示すような対応テーブルに基づく補正値を採用することが有効である。すなわち、図6の表図の左欄に示す斜行角による分類と同表図の上欄に示す札長による分類とに対応する補正値を、2個の遮光センサVP1L、VP1Rのうち紙幣の通過開始を早く検知する方のセンサ(図7ではVP1L)の検知タイミングに基づいて得られる前の紙幣からの距離から減算し(それが実際の紙幣間の距離である)、当該減算結果を判別基準(紙葉類基準間隔量)と比較することが有効である。 From the above, it is effective to adopt a correction value based on a correspondence table as shown in FIG. That is, the correction values corresponding to the classification by the skew angle shown in the left column of the table of FIG. 6 and the classification by the bill length shown in the upper column of the table are the bill values of the bills of the two light shielding sensors VP1L and VP1R. Subtract from the distance from the previous banknote obtained based on the detection timing of the sensor (VP1L in FIG. 7) that detects the start of passage earlier, and determine the subtraction result. It is effective to compare with the reference (paper sheet reference interval amount).
 纏めると、前の紙幣の仮想の後端は、2個の遮光センサVP1L、VP1Rのうち紙幣の通過完了を遅く検知する方のセンサ(図3、図4ではVP1L)の検知タイミングに基づいて決定され、後の紙幣の仮想の前端については、2個の遮光センサVP1L、VP1Rのうち紙幣の通過開始を早く検知する方のセンサ(図7ではVP1L)の検知タイミングに基づいて決定される。そして、それらの検知タイミングの差と紙幣搬送速度とから、仮の紙幣間距離が算出される。そこから、各紙幣の斜行角と札長とに基づく補正値(図6)がそれぞれ減算され、これによって、本発明において実際の紙幣間隔として用いられる距離が得られる。当該距離が、判別基準(紙葉類基準間隔量)と比較されることになる。 In summary, the virtual rear end of the previous banknote is determined based on the detection timing of the sensor (VP1L in FIGS. 3 and 4) that detects late completion of the passage of the banknote out of the two light shielding sensors VP1L and VP1R. Then, the virtual front end of the subsequent banknote is determined based on the detection timing of the sensor (VP1L in FIG. 7) that detects the passage start of the banknote earlier among the two light shielding sensors VP1L and VP1R. And the temporary inter-banknote distance is calculated from the difference between these detection timings and the banknote transport speed. From there, the correction value (FIG. 6) based on the skew angle and bill length of each banknote is subtracted, thereby obtaining the distance used as the actual banknote interval in the present invention. The distance is compared with the discrimination criterion (paper sheet reference interval amount).
 以上のような原理によれば、順に通過した2枚の紙幣についてそれぞれの導出された斜行角を考慮に入れて紙幣間隔が導出されるため、より正確に紙幣間隔を把握することができ、従来よりも正確に紙幣の連鎖(異常接近)・非連鎖の判別を行うことができる。従って、結果的に、単位時間あたりの紙幣の処理スループットを高くすることができる。 According to the principle as described above, the bill interval is derived in consideration of the derived skew angle for the two bills that have passed in order, so that the bill interval can be grasped more accurately. It is possible to discriminate banknote linkage (abnormal approach) / non-linkage more accurately than in the past. Therefore, as a result, the processing throughput of banknotes per unit time can be increased.
 図8は、本発明の一実施の形態による紙幣処理装置の構成概略図である。図8の紙幣処理装置101では、紙葉類としての紙幣が1枚ずつ搬送される搬送路103と、搬送路103から分岐して設けられたリジェクト用通路104と、搬送路103からリジェクト用通路104へと搬送経路を切り替えるゲート手段105と、が設けられている。ゲート手段105は、図8の例では、6個の分岐部を有する円形分岐部として形成されており、各分岐部が三方向分岐部として構成されている。 FIG. 8 is a schematic configuration diagram of a banknote handling apparatus according to an embodiment of the present invention. In the banknote handling apparatus 101 in FIG. 8, a transport path 103 through which banknotes as paper sheets are transported one by one, a reject path 104 branched from the transport path 103, and a reject path from the transport path 103. Gate means 105 for switching the transfer route to 104 is provided. In the example of FIG. 8, the gate means 105 is formed as a circular branch portion having six branch portions, and each branch portion is configured as a three-way branch portion.
 また、搬送路103上のゲート手段105より上流の位置には、識別部102が設けられている。この識別部102には、紙幣の通過を2以上の点で検知する通過センサとして、紙幣を識別する識別手段としても機能するラインセンサが設けられている。また、識別部102には、制御部(PC)106が接続され、当該制御部106は、ラインセンサによる検知結果に基づいて通過した紙幣の斜行量としての斜行角を導出する斜行角(斜行量)導出手段として機能し、順に通過した2枚の紙幣についてそれぞれの導出された斜行角に基づいて紙幣間隔を導出する紙幣間隔導出手段(紙葉類間隔量導出手段)として機能し、紙幣が連鎖状態にあるか否かの判別基準としての紙幣基準間隔を予め記憶しておく紙幣基準間隔記憶手段として機能し、紙幣間隔導出手段の機能によって導出された紙幣間隔を、紙幣基準間隔記憶手段の機能によって記憶されていた紙幣基準間隔と比較して、当該紙幣基準間隔以下である場合に、ゲート手段105を駆動して、順に通過した2枚の紙幣102の搬送経路をリジェクト用通路104へと切り替えるリジェクト制御手段として機能するようになっている。 Also, an identification unit 102 is provided at a position upstream of the gate means 105 on the transport path 103. The identification unit 102 is provided with a line sensor that also functions as an identification means for identifying a banknote as a passage sensor that detects the passage of the banknote at two or more points. In addition, a control unit (PC) 106 is connected to the identification unit 102, and the control unit 106 derives a skew angle as a skew amount of a bill that has passed based on a detection result by a line sensor. It functions as a (skew amount) deriving means, and functions as a bill interval deriving means (paper sheet interval amount deriving means) for deriving a bill interval based on the derived skew angles for two bills that have passed in order. The banknote reference interval storage means for preliminarily storing the banknote reference interval as a criterion for determining whether or not the banknote is in a chained state, and the banknote interval derived by the function of the banknote interval deriving means Compared with the banknote reference interval stored by the function of the interval storage means, when it is equal to or less than the banknote reference interval, the gate means 105 is driven, and the transport path of the two bills 102 that have passed in order is And functions as a reject control means for switching to injecting passage 104.
 図8において、111は入金口であり、113は出金口であり、114は入金リジェクト口であり、115は一時保留部である。 In FIG. 8, 111 is a depositing port, 113 is a dispensing port, 114 is a deposit rejecting port, and 115 is a temporary holding part.
 また、図8において、110は入出金部であり、120は収納繰出部であり、130は収納部である。更に、121a乃至121eはスタッカであり、121fは精査カセットであり、131は集積部である。 In FIG. 8, 110 is a deposit / withdrawal unit, 120 is a storage / feeding unit, and 130 is a storage unit. Furthermore, 121a to 121e are stackers, 121f is a scrutiny cassette, and 131 is a stacking unit.
 図8の装置は、以下のように作用する。すなわち、入金された紙幣が、入金口111から1枚ずつ繰り出されて、搬送路103を通って識別部102に至る。識別部102において、紙幣の金種や真偽が識別されるが、同時に、ラインセンサによって紙幣の斜行角が導出され、順に通過した2枚の紙葉類について、それぞれ導出された斜行角に基づいて、更に好ましくは前述のようにそれぞれの紙幣の札長をも考慮されて、紙幣間隔が導出される。 The apparatus shown in FIG. 8 operates as follows. That is, the deposited banknotes are fed out from the deposit port 111 one by one and reach the identification unit 102 through the conveyance path 103. In the identification unit 102, the denomination and authenticity of the banknote are identified. At the same time, the skew angle of the banknote is derived by the line sensor, and the skew angle derived for each of the two sheets that have passed in order. Based on the above, it is more preferable that the bill interval is derived in consideration of the bill length of each bill as described above.
 通常に識別された正常な紙幣は、搬送路103を経由して、定められた金種を収納する所定のスタッカへと送られる。一方、入金された紙幣のうち、識別不能紙幣や偽紙幣や損傷がひどい紙幣などは、入金リジェクト口114へと送られる。そして、入金された紙幣のうち、連鎖状態で搬送されている紙幣群についても、入金リジェクト口114へと送られる。紙幣の搬送態様が連鎖状態であるか否かについては、制御部106が、前記した各機能を発揮して判別する。 Normal banknotes that are normally identified are sent via a conveyance path 103 to a predetermined stacker that stores a predetermined denomination. On the other hand, among the deposited banknotes, unidentifiable banknotes, fake banknotes, banknotes that are severely damaged, and the like are sent to the deposit reject port 114. And among the banknotes deposited, banknotes being conveyed in a chained state are also sent to the deposit rejection port 114. Whether the banknote transport mode is in a chained state is determined by the control unit 106 by performing the functions described above.
 また、出金される紙幣のうち、識別不能紙幣や偽紙幣や損傷がひどい紙幣などは、出金させずに一時保留させる。そして、出金される紙幣のうち、連鎖状態で搬送されている紙幣群についても、出金ジェクト口115へと送られる。紙幣の搬送態様が連鎖状態であるか否かについては、制御部106が、前記した各機能を発揮して判別する。一時保留部に待避されたリジェクト紙幣は、再度繰り出されて、収納繰出部120のいずれかのスタッカに再度収納される。 Also, among banknotes to be withdrawn, banknotes that cannot be identified, fake banknotes, and banknotes that are severely damaged are temporarily suspended without being withdrawn. Of the banknotes to be withdrawn, banknotes being conveyed in a chained state are also sent to the withdrawal port 115. Whether the banknote transport mode is in a chained state is determined by the control unit 106 by performing the functions described above. The reject banknotes saved in the temporary storage unit are fed out again and stored in any stacker of the storage and feeding unit 120.
 図9は、本発明の他の実施の形態による紙幣処理装置の構成概略図である。図9の紙幣処理装置201では、紙葉類としての紙幣202が1枚ずつ搬送される搬送路203と、搬送路203から分岐して設けられたリジェクト用通路204と、搬送路203からリジェクト用通路204へと搬送経路を切り替えるゲート手段205と、が設けられている。 FIG. 9 is a schematic configuration diagram of a banknote handling apparatus according to another embodiment of the present invention. In the banknote handling apparatus 201 in FIG. 9, a transport path 203 through which banknotes 202 as paper sheets are transported one by one, a reject path 204 branched from the transport path 203, and a reject path from the transport path 203. Gate means 205 for switching the transport path to the passage 204 is provided.
 また、搬送路203上のゲート手段205より上流の位置には、紙幣202の通過を2以上の点で検知する通過センサとして、紙幣202の通過状態か否かをメカクロックパルスを用いて検知する2個のセンサ208が設けられている。 Further, at a position upstream of the gate means 205 on the transport path 203, a mechanical clock pulse is used to detect whether or not the bill 202 is in a passing state as a passage sensor that detects passage of the bill 202 at two or more points. Two sensors 208 are provided.
 また、ゲート手段205には、ゲート制御手段209が接続されており、当該ゲート制御手段209には、センサ208による検知結果に基づいて通過した紙幣202の斜行量としての斜行角を導出する斜行角導出手段として機能すると共に順に通過した2枚の紙幣についてそれぞれの導出された斜行角に基づいて紙幣間隔を導出する紙幣間隔導出手段として機能する制御部210が、更に接続されている。そして、ゲート制御手段209は、紙幣202が連鎖状態にあるか否かの判別基準としての紙幣基準間隔を予め記憶しておく紙幣基準間隔記憶手段として機能し、紙幣間隔導出手段の機能によって導出された紙幣間隔を、紙幣基準間隔記憶手段の機能によって記憶されていた紙幣基準間隔と比較して、当該紙幣基準間隔以下である場合に、ゲート手段205を駆動して、順に通過した2枚の紙幣202の搬送経路をリジェクト用通路204へと切り替えるようになっている。その他、211は、紙幣通過を検知するタイミングセンサである。 Further, a gate control unit 209 is connected to the gate unit 205, and a skew angle as a skew amount of the banknote 202 passed based on the detection result by the sensor 208 is derived to the gate control unit 209. Further connected is a control unit 210 that functions as a skew angle deriving unit and functions as a banknote interval deriving unit that derives a banknote interval based on the derived skew angles of two banknotes that have passed in order. . The gate control unit 209 functions as a bill reference interval storage unit that stores in advance a bill reference interval as a criterion for determining whether or not the bill 202 is in a chained state, and is derived by the function of the bill interval deriving unit. The banknote interval is compared with the banknote reference interval stored by the function of the banknote reference interval storage means. When the banknote interval is equal to or less than the banknote reference interval, the gate means 205 is driven to sequentially pass two banknotes. The conveyance path 202 is switched to the rejection path 204. In addition, 211 is a timing sensor which detects banknote passage.
 図9の装置は、以下のように作用する。すなわち、紙幣202が、搬送路203を通って1枚ずつ搬送されて、センサ208に至る。当該センサ208の検知出力に基づいて、制御部210によって、紙幣202の斜行角が導出される。また、制御部210によって、順に通過した2枚の紙葉類について、それぞれ導出された斜行角に基づいて、更に好ましくは前述のようにそれぞれの紙幣202の札長をも考慮されて、紙幣間隔が導出される。 The apparatus shown in FIG. 9 operates as follows. That is, banknotes 202 are conveyed one by one through the conveyance path 203 and reach the sensor 208. Based on the detection output of the sensor 208, the skew angle of the banknote 202 is derived by the control unit 210. Further, based on the skew angles derived for the two sheets sequentially passed by the control unit 210, more preferably, the bill length of each banknote 202 is also taken into consideration as described above. An interval is derived.
 ゲート制御手段209は、導出された紙幣間隔を、記憶されていた紙幣基準間隔と比較して、当該紙幣基準間隔以下である場合にゲート手段205を駆動する。この駆動のタイミングは、タイミングセンサ211の検知出力に基づいて決定(制御)される。この場合、順に通過した2枚の紙幣202の搬送経路が、リジェクト用通路204へと切り替えられる。 The gate control unit 209 compares the derived banknote interval with the stored banknote reference interval, and drives the gate unit 205 when it is equal to or less than the banknote reference interval. The driving timing is determined (controlled) based on the detection output of the timing sensor 211. In this case, the transport path of the two bills 202 that have passed in order is switched to the reject passage 204.
 なお、以上の実施の形態の説明は、斜行量として斜行角を導出する態様に基づいてなされているが、本発明はそのような態様に限定されない。すなわち、斜行角の代わりに、斜行量に対応する他の物理量が用いられても、本発明の目的は同様に達成され得る。例えば、斜行角を求めるために用いられ得るセンサの出力値がそのまま制御の入力値として用いられて、斜行角という物理量は導出(演算)されない、という態様も採用され得る。 The description of the above embodiment is made based on a mode of deriving a skew angle as a skew amount, but the present invention is not limited to such a mode. That is, the object of the present invention can be similarly achieved even when another physical quantity corresponding to the skew amount is used instead of the skew angle. For example, an aspect may be employed in which the output value of a sensor that can be used to obtain the skew angle is used as it is as an input value for control, and a physical quantity called the skew angle is not derived (calculated).
 同様に、以上の実施の形態の説明は、紙葉類間隔量として紙葉類(例えば紙幣)の間隔そのものを導出する態様に基づいてなされているが、本発明はそのような態様に限定されない。すなわち、紙葉類(紙幣)間隔の代わりに、紙葉類(紙幣)間隔に対応する他の物理量が用いられても、本発明の目的は同様に達成され得る。例えば、紙葉類(紙幣)間隔を求めるために用いられ得るセンサの出力値がそのまま制御の入力値として用いられて、紙葉類(紙幣)間隔という物理量は導出(演算)されない、という態様も採用され得る。 Similarly, the description of the above embodiment has been made based on an aspect in which the interval between paper sheets (for example, banknotes) is derived as the paper sheet interval amount, but the present invention is not limited to such an aspect. . That is, the object of the present invention can be similarly achieved even if another physical quantity corresponding to the paper sheet (banknote) interval is used instead of the paper sheet (banknote) interval. For example, the output value of the sensor that can be used for obtaining the paper sheet (banknote) interval is used as the input value for control as it is, and the physical quantity of the paper sheet (banknote) interval is not derived (calculated). Can be employed.

Claims (8)

  1.  紙葉類が1枚ずつ搬送される搬送路と、
     前記搬送路から分岐して設けられたリジェクト用通路と、
     前記搬送路から前記リジェクト用通路へと搬送経路を切り替えるゲート手段と、
     前記搬送路上の前記ゲート手段より上流の位置に設けられ、前記紙葉類の通過を2以上の点で検知する通過センサと、
     前記通過センサによる検知結果に基づいて通過した紙葉類の斜行量を導出する斜行量導出手段と、
     順に通過した2枚の紙葉類について、それぞれの導出された斜行量に基づいて、紙葉類間隔量を導出する紙葉類間隔導出手段と、
     紙葉類が連鎖状態にあるか否かの判別基準としての紙葉類基準間隔量を予め記憶しておく紙葉類基準間隔量記憶手段と、
     前記紙葉類間隔量導出手段によって導出される紙葉類間隔量を、前記紙葉類基準間隔量記憶手段によって記憶されている紙葉類基準間隔量と比較して、当該紙葉類基準間隔量以下である場合に、前記ゲート手段を駆動して、順に通過した2枚の前記紙葉類の搬送経路をリジェクト用通路へと切り替えるリジェクト制御手段と、
    を備えたことを特徴とする紙葉類処理装置。
    A transport path through which paper sheets are transported one by one;
    A reject passage provided by branching from the conveyance path;
    Gate means for switching the transport path from the transport path to the reject path;
    A passage sensor provided at a position upstream of the gate means on the conveyance path and detecting passage of the paper sheet at two or more points;
    Skew amount deriving means for deriving the skew amount of the paper sheets that have passed based on the detection result by the passage sensor;
    Paper sheet interval deriving means for deriving a paper sheet interval amount based on the derived skew amount for two sheets that have passed in sequence;
    A paper sheet reference interval amount storage means for storing in advance a paper sheet reference interval amount as a criterion for determining whether or not the paper sheet is in a chained state;
    The paper sheet reference interval amount derived by the paper sheet interval amount deriving means is compared with the paper sheet reference interval amount stored by the paper sheet reference interval amount storage means. A reject control means for driving the gate means to switch the transport path of the two sheets passed in order to a reject path when the amount is less than or equal to the amount;
    A paper sheet processing apparatus comprising:
  2.  前記通過センサは、紙葉類を識別する識別手段として機能するラインセンサによって構成されている
    ことを特徴とする請求項1に記載の紙葉類処理装置。
    The paper sheet processing apparatus according to claim 1, wherein the passage sensor includes a line sensor that functions as an identification unit that identifies paper sheets.
  3.  前記通過センサは、紙葉類の搬送方向に対して垂直な方向に並ぶように配置された2以上の遮光センサによって構成されている
    ことを特徴とする請求項1に記載の紙葉類処理装置。
    2. The paper sheet processing apparatus according to claim 1, wherein the passage sensor includes two or more light-shielding sensors arranged in a direction perpendicular to a paper sheet conveyance direction. .
  4.  前記紙葉類間隔量導出手段は、予め設定された対応テーブルを参照して、それぞれの導出された斜行量に対応する紙葉類間隔量を導出するようになっている
    ことを特徴とする請求項1乃至3のいずれかに記載の紙葉類処理装置。
    The sheet interval amount deriving means is configured to derive a sheet interval amount corresponding to each derived skew amount with reference to a preset correspondence table. The paper sheet processing apparatus according to any one of claims 1 to 3.
  5.  前記紙葉類間隔量導出手段は、紙葉類の搬送方向における長さをも考慮して紙葉類間隔量を導出するようになっている
    ことを特徴とする請求項1乃至4のいずれかに記載の紙葉類処理装置。
    5. The paper sheet interval amount deriving means derives the paper sheet interval amount in consideration of the length in the transport direction of the paper sheet. The paper sheet processing apparatus according to 1.
  6.  前記紙葉類間隔量導出手段は、予め設定された対応テーブルを参照して、それぞれの導出された斜行量と紙葉類の搬送方向における長さとに対応する紙葉類間隔量を導出するようになっている
    ことを特徴とする請求項5に記載の紙葉類処理装置。
    The sheet interval amount deriving means refers to a preset correspondence table and derives the sheet interval amount corresponding to each derived skew amount and the length of the sheet in the transport direction. The paper sheet processing apparatus according to claim 5, wherein the paper sheet processing apparatus is configured as described above.
  7.  紙葉類が1枚ずつ搬送される搬送路と、
     前記搬送路から分岐して設けられたリジェクト用通路と、
     前記搬送路から前記リジェクト用通路へと搬送経路を切り替えるゲート手段と、
     前記搬送路上の前記ゲート手段より上流の位置に設けられ、前記紙葉類の通過を2以上の点で検知する通過センサと、
     紙葉類が連鎖状態にあるか否かの判別基準としての紙葉類基準間隔を予め記憶しておく紙葉類基準間隔記憶手段と、
    を備えた紙葉類処理装置を用いて紙葉類を処理する紙葉類処理方法であって、
     前記通過センサによる検知結果に基づいて通過した紙葉類の斜行量を導出する斜行量導出工程と、
     順に通過した2枚の紙葉類について、それぞれの導出された斜行量に基づいて、紙葉類間隔量を導出する紙葉類間隔量導出工程と、
     前記紙葉類間隔量導出工程によって導出された紙葉類間隔量を、前記紙葉類基準間隔記憶手段によって記憶されている紙葉類基準間隔と比較して、当該紙葉類基準間隔以下である場合に、前記ゲート手段を駆動して、順に通過した2枚の前記紙葉類の搬送経路をリジェクト用通路へと切り替えるリジェクト制御工程と、
    を備えたことを特徴とする紙葉類処理方法。
    A transport path through which paper sheets are transported one by one;
    A reject passage provided by branching from the conveyance path;
    Gate means for switching the transport path from the transport path to the reject path;
    A passage sensor provided at a position upstream of the gate means on the conveyance path and detecting passage of the paper sheet at two or more points;
    A paper sheet reference interval storage means for storing in advance a paper sheet reference interval as a criterion for determining whether or not the paper sheet is in a chained state;
    A paper sheet processing method for processing paper sheets using a paper sheet processing apparatus comprising:
    A skew amount derivation step for deriving a skew amount of paper sheets that have passed based on the detection result by the passage sensor;
    A paper sheet interval amount derivation step for deriving a paper sheet interval amount based on the derived skew amount for two sheets that have passed in sequence;
    The paper sheet interval amount derived by the paper sheet interval amount deriving step is compared with the paper sheet reference interval stored by the paper sheet reference interval storage means, and is equal to or less than the paper sheet reference interval. In some cases, a reject control step of driving the gate means to switch the transport path of the two paper sheets that have passed in sequence to a reject path;
    A paper sheet processing method characterized by comprising:
  8.  前記紙葉類間隔量導出工程は、紙葉類の搬送方向における長さをも考慮して紙葉類間隔量を導出するようになっている
    ことを特徴とする請求項7に記載の紙葉類処理方法。
    8. The paper sheet according to claim 7, wherein the paper sheet interval amount deriving step derives the paper sheet interval amount in consideration of the length in the transport direction of the paper sheet. Kind processing method.
PCT/JP2010/051154 2010-01-28 2010-01-28 Paper sheet handling device and paper sheet handling method WO2011092824A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051154 WO2011092824A1 (en) 2010-01-28 2010-01-28 Paper sheet handling device and paper sheet handling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051154 WO2011092824A1 (en) 2010-01-28 2010-01-28 Paper sheet handling device and paper sheet handling method

Publications (1)

Publication Number Publication Date
WO2011092824A1 true WO2011092824A1 (en) 2011-08-04

Family

ID=44318834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051154 WO2011092824A1 (en) 2010-01-28 2010-01-28 Paper sheet handling device and paper sheet handling method

Country Status (1)

Country Link
WO (1) WO2011092824A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032172A (en) * 2013-08-05 2015-02-16 日立オムロンターミナルソリューションズ株式会社 Paper sheet handling device
EP2919171A4 (en) * 2012-11-06 2015-12-02 Grg Banking Equipment Co Ltd Flaky medium processing system and method for detecting real-time position of flaky medium
CN114830199A (en) * 2019-12-25 2022-07-29 富士通先端科技株式会社 Paper money processing device, conveyance control method, and conveyance control program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888080A (en) * 1981-11-20 1983-05-26 株式会社日立製作所 Apparatus for sorting paper
JPS61291366A (en) * 1985-06-19 1986-12-22 Omron Tateisi Electronics Co Paper sheet sorting device
JPH01162656A (en) * 1987-12-19 1989-06-27 Omron Tateisi Electron Co Sensing device for spacing of paper sheet
JPH0725512A (en) * 1993-07-14 1995-01-27 Hitachi Ltd Paper sheet handling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888080A (en) * 1981-11-20 1983-05-26 株式会社日立製作所 Apparatus for sorting paper
JPS61291366A (en) * 1985-06-19 1986-12-22 Omron Tateisi Electronics Co Paper sheet sorting device
JPH01162656A (en) * 1987-12-19 1989-06-27 Omron Tateisi Electron Co Sensing device for spacing of paper sheet
JPH0725512A (en) * 1993-07-14 1995-01-27 Hitachi Ltd Paper sheet handling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2919171A4 (en) * 2012-11-06 2015-12-02 Grg Banking Equipment Co Ltd Flaky medium processing system and method for detecting real-time position of flaky medium
US9428358B2 (en) 2012-11-06 2016-08-30 Grg Banking Equipment Co., Ltd. Flaky medium processing system and method for detecting real-time position of flaky medium
JP2015032172A (en) * 2013-08-05 2015-02-16 日立オムロンターミナルソリューションズ株式会社 Paper sheet handling device
CN114830199A (en) * 2019-12-25 2022-07-29 富士通先端科技株式会社 Paper money processing device, conveyance control method, and conveyance control program
EP4083947A4 (en) * 2019-12-25 2022-12-28 Fujitsu Frontech Limited Banknote handling device, conveyance control method, and conveyance control program
US11995940B2 (en) 2019-12-25 2024-05-28 Fujitsu Frontech Limited Banknote handling apparatus, conveyance control method, and non-transitory computer-readable recording medium

Similar Documents

Publication Publication Date Title
KR100808835B1 (en) Apparatus and method for depositing paper moneys of various kinds
US8708128B2 (en) Paper currency deposit-withdrawal mechanism
JP5092598B2 (en) Banknote handling equipment
US20100314217A1 (en) Posture converting device and paper-like material processing apparatus
US20090066017A1 (en) Papaer sheet storage device, and control method and control program for paper sheet storage device
WO2008050460A1 (en) Bill identifier/counter
JP5091628B2 (en) Paper sheet handling equipment
WO2011092824A1 (en) Paper sheet handling device and paper sheet handling method
KR100935806B1 (en) Method for controlling gate in conveyance path
JP2007087219A (en) Paper sheet treating device and soundness discrimination level setting method
US8246036B2 (en) Paper sheet handling machine
KR101611701B1 (en) Device of aligning paper money for automated teller machine
JP3766466B2 (en) Method for determining the number of paper sheets and paper sheet handling apparatus
JP5587115B2 (en) Banknote handling equipment
US9842450B2 (en) Banknote handling apparatus
JP2013191083A (en) Paper sheet feeding mechanism and paper sheet feeding method
JP5991902B2 (en) Paper sheet conveying apparatus and paper sheet conveying method
JP6750466B2 (en) Banknote processor
JP2006315801A (en) Paper sheet carrying device
JP4300072B2 (en) Paper sheet pitch correction device
JP3594352B2 (en) Paper handling equipment
KR102197789B1 (en) Active control apparatus for bill interval of bill sorter and method thereof
WO2021130944A1 (en) Banknote handling device, conveyance control method, and conveyance control program
JPH0110692Y2 (en)
JPH0714300Y2 (en) Transport control device for paper processing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201004424

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 10844586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP