WO2011091741A1 - 一种扩展控制器pwm分辨率的方法及装置 - Google Patents

一种扩展控制器pwm分辨率的方法及装置 Download PDF

Info

Publication number
WO2011091741A1
WO2011091741A1 PCT/CN2011/070525 CN2011070525W WO2011091741A1 WO 2011091741 A1 WO2011091741 A1 WO 2011091741A1 CN 2011070525 W CN2011070525 W CN 2011070525W WO 2011091741 A1 WO2011091741 A1 WO 2011091741A1
Authority
WO
WIPO (PCT)
Prior art keywords
analog quantity
pwm
value
controller
current
Prior art date
Application number
PCT/CN2011/070525
Other languages
English (en)
French (fr)
Inventor
刘建飞
谢春华
张立品
孔徐生
鞠万金
汪兆华
李战功
窦晓月
Original Assignee
深圳市京泉华电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市京泉华电子有限公司 filed Critical 深圳市京泉华电子有限公司
Publication of WO2011091741A1 publication Critical patent/WO2011091741A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/82Digital/analogue converters with intermediate conversion to time interval
    • H03M1/822Digital/analogue converters with intermediate conversion to time interval using pulse width modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation

Definitions

  • the invention belongs to the field of PWM control, and in particular relates to a method and a system for a controller to expand a PWM frequency and a resolution.
  • Pulse Width Modulation is a very effective technique for controlling analog circuits by using the digital output of a microprocessor. It is widely used in many fields from measurement and communication to power control and conversion.
  • PWM By digitally controlling the analog circuitry, PWM can significantly reduce system cost and power consumption.
  • many microcontrollers and DSPs already include a PWM controller on the chip.
  • the PWM control system based on single-chip microcomputer has low CPU frequency, which is usually lower than 20M.
  • CPU frequency which is usually lower than 20M.
  • 8M and 16M frequency Take a single-chip microcomputer with 8M and 16M frequency as an example.
  • PWM resolution and frequency please refer to Figure 1:
  • the embodiment of the present invention is implemented by the method for expanding the PWM resolution of the controller, and the method includes the following steps:
  • the duty cycle of the software extended PWM is adjusted in the direction of decreasing the analog quantity.
  • An object of the embodiments of the present invention is to provide an apparatus for expanding a PWM resolution of a controller, including:
  • a current analog quantity acquisition unit for reading an actual value of the current analog quantity
  • a preset analog quantity acquiring unit configured to acquire a value of a preset analog quantity
  • a comparison unit configured to compare an actual value of the current analog quantity with a value of a preset analog quantity
  • an adjusting unit configured to adjust a software extended PWM duty cycle by adding a PWM control register to the direction of increasing the analog quantity according to the comparison result of the comparing unit, or adjusting a duty ratio of the software extended PWM to a direction of decreasing the analog quantity .
  • the embodiment of the invention is based on the software extension based on the PWM resolution of the controller hardware, compares the value of the current analog quantity with the value of the preset analog quantity, and adjusts the software-expanded PWM according to the comparison result. Air ratio to achieve precise control.
  • the invention can effectively expand the resolution of the PWM without lowering the PWM frequency, and can use the low-frequency low-cost controller instead of the high-frequency and high-cost DSP chip to realize fine software control, which is beneficial to reducing system power consumption. And cost.
  • 1 is a schematic diagram showing the relationship between PWM resolution and frequency in the prior art
  • FIG. 3 is a schematic diagram of a device software for expanding a PWM resolution of a controller according to an embodiment of the present invention
  • FIG. 4 is a structural diagram of an apparatus hardware for expanding a controller PWM resolution according to an embodiment of the present invention.
  • 5A to 5F are waveform diagrams of software extended PWM 2Bit resolution according to an embodiment of the present invention.
  • 6A to 6B are schematic diagrams showing the relationship between PWM resolution and frequency according to an embodiment of the present invention.
  • 7A to 7B are digital ripple diagrams of a PWM control system according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for expanding a PWM resolution of a controller according to an embodiment of the present invention.
  • the embodiment of the invention is based on the software extension based on the PWM resolution of the controller hardware. By comparing the current current and the preset current magnitude, the duty ratio of the PWM is adjusted according to the comparison result to achieve the purpose of high precision current control. .
  • FIG. 3 shows the structure of an apparatus for expanding the PWM resolution of a controller provided by an embodiment of the present invention.
  • the current analog quantity acquiring unit 31 is configured to read the actual value of the current analog quantity.
  • the analog quantity includes current, voltage, motor speed, temperature, and LED brightness, and is of course not limited to the above, and is not enumerated here.
  • the preset analog quantity acquiring unit 32 is configured to acquire a value of a preset analog quantity.
  • the comparing unit 33 is configured to compare the actual value of the current analog quantity acquired by the current analog quantity acquiring unit 31 with the value of the preset analog quantity acquired by the preset analog quantity acquiring unit 32, and the comparison result includes the following Two parts: the actual value of the current analog quantity is less than the preset analog value, and the actual value of the analog quantity is greater than the value of the preset analog quantity.
  • the adjusting unit 34 adjusts the software extended PWM duty cycle in the direction of increasing the analog quantity
  • the adjusting unit 34 adjusts the duty ratio of the software extended PWM to the direction of decreasing the analog quantity.
  • the duty ratio is adjusted such that the actual value of the analog quantity approaches the set value.
  • the device further includes a digital filtering unit 35.
  • the digital filtering unit 35 is configured to digitally filter the ripple interference according to the reading deviation of the ADC and the current power working voltage.
  • the controller includes an ADC port connected to the ADC and a PWM port (not shown) connected to the PWM.
  • FIG. 4 is an actual hardware adjustment structure diagram including a PWM input clock, a PWM counter, a PWM data register, a PWM comparator, a PWM controller, and a PWM output pin.
  • 5A-5D are waveform diagrams of software extended 2Bit PWM resolution according to an embodiment of the present invention:
  • the normal PWM waveform is shown in Figure 5A;
  • Figure 6A is a schematic diagram of the software extended PWM 2Bit resolution versus frequency
  • Figure 6B is the software extended PWM 4Bit A schematic diagram of the relationship between resolution and frequency.
  • FIG. 7A is a digital ripple diagram of a PWM 2Bit according to an embodiment of the present invention
  • FIG. 7B is a software extension 4Bit PWM according to an embodiment of the present invention. Resolution digital ripple map.
  • the PWM frequency control system of the embodiment of the present invention has an overflow interrupt.
  • the controller When the PWM frequency is high, such as 250K, the controller has a higher main frequency requirement.
  • the controller uses a counter to accumulate the number of PWM pulses. When the number of pulses is equal to the extended bit, it is cleared and recounted. The number of pulses is greater than the duty of the software extension bit.
  • the hardware PWM duty cycle remains unchanged. When the number of pulses is less than the Duty cycle of the software extension bit, the hardware PWM duty cycle is incremented by one.
  • FIG. 8 is a flowchart of a method for controlling a PWM by a controller according to an embodiment of the present invention.
  • step S801 the actual value of the current analog quantity is read
  • the analog quantity includes current, voltage, motor speed, temperature, and LED brightness, and is of course not limited to the above, and is not enumerated here.
  • step S802 a value of a preset analog quantity is acquired
  • step S803 the actual value of the current analog quantity is compared with the value of the preset analog quantity
  • step S604 If the actual value of the current analog quantity is less than the preset analog quantity value, proceed to step S604; if the actual value of the analog quantity is greater than the value of the preset analog quantity, proceed to step S605;
  • step S804 adjusting the duty ratio of the software extended PWM to the direction of increasing the analog quantity
  • step S805 adjusting the duty ratio of the software extended PWM to the direction of decreasing the analog amount
  • step S806 by adjusting the duty ratio, the actual value of the analog quantity approaches the set value.
  • the controller includes an ADC port connected to the ADC and a PWM port connected to the PWM.
  • the ripple interference is introduced according to the reading deviation of the ADC and the working voltage of the power supply, and the arithmetic average method is reasonably adopted. Perform digital filtering.
  • the duty ratio of the software extended PWM is adjusted according to the comparison result, and the base of the PWM frequency is not reduced without using the high-frequency and high-cost DSP. It greatly expands the resolution of the PWM, which helps to reduce system power consumption and cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Dc-Dc Converters (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

一种扩展控制器 PWM 分辨率的方法及装置
技术领域
本发明属于PWM控制领域,尤其涉及一种控制器拓展PWM频率和分辨率的方法及系统。
背景技术
脉冲宽度调制(Pulse Width Modulation ,PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
PWM通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器。
基以单片机的PWM控制系统由于CPU主频都较低,通常都低于20M,以一个8M和16M主频的单片机为例,PWM分辨率与频率的关系请参阅图1:
在图1中可以看出,一个基于16M高主频的单片机调控系统中当PWM分辨率为12Bit时,PWM频率只有3.9K,这在AC/DC或DC/DC变换中是完全不能满足要求的,当PWM分辨率为6Bit 或7Bit 时才能满足DC/DC变换系统中对频率的要求。但此时由于PWM分辨率低,不管采用何种数字滤波技术,也不管单片机的ADC分辨率多高,PWM调控系统的数字纹波是相当明显的(请参阅图2)。
因此,如何在不降低PWM频率的基础上有效的拓展PWM的分辨率,是数字处理技术领域研究的方向之一。
发明内容
本发明实施例的目的在于提供一种拓展控制器PWM分辨率的方法,旨在不降低PWM频率的基础上有效的拓展PWM的分辨率。
本发明实施例是这样实现的,一种拓展控制器PWM分辨率的方法,所述方法包括以下步骤:
读取当前模拟量的实际值;
获取预先设定的模拟量的值;
将当前模拟量的实际值与预先设定的模拟量的值进行比较;
若当前模拟量的实际值小于预先设定的模拟量值,则向增加模拟量的方向调整软件拓展的PWM占空比;
若模拟量的实际值大于预先设定的模拟量的值,则向减小模拟量的方向调整软件扩展的PWM的占空比。
本发明实施例的目的还在于提供一种拓展控制器PWM分辨率的装置,包括:
当前模拟量获取单元,用于读取当前模拟量的实际值;
预设模拟量获取单元,用于获取预先设定的模拟量的值;
比较单元,用于将当前模拟量的实际值与预先设定的模拟量的值进行比较;
调整单元,用于根据所述比较单元的比较结果,通过PWM控制寄存器向增加模拟量的方向调整软件拓展的PWM占空比,或者向减小模拟量的方向调整软件扩展的PWM的占空比。
本发明实施例基于控制器硬件PWM分辨率的基础上的软件扩展,通过比较当前模拟量的数值和预先设定的模拟量的数值进行大小的比较,根据比较结果调整软件扩展后的PWM的占空比,以达到精确的控制。本发明在不降低PWM频率的基础上非常有效地拓展了PWM的分辨率,可以使用低主频低成本的控制器代替高主频高成本的DSP芯片实现精细的软件控制,利于降低系统功耗和成本。
附图说明
图1是现有技术中PWM分辨率与频率的关系示意图;
图2是现有技术中PWM调控系统的数字纹波图;
图3是本发明实施例提供的拓展控制器PWM分辨率的装置软件的结构;
图4是本发明实施例提供的拓展控制器PWM分辨率的装置硬件的结构
图5A至5F是本发明实施例提供的软件扩展PWM 2Bit 分辨率的波形图;
图6A至6B是本发明实施例提供的PWM分辨率与频率的关系示意图;
图7A至7B是本发明实施例提供的PWM调控系统的数字纹波图;
图8是本发明实施例提供的拓展控制器PWM分辨率的方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例基于控制器硬件PWM分辨率的基础上的软件扩展,通过比较当前电流和预先设定的电流的大小,根据比较结果调整PWM的占空比,以达到高精度电流控制的目的。。
图3示出了本发明实施例提供的拓展控制器PWM分辨率的装置的结构。
其中,当前模拟量获取单元31,用于读取当前模拟量的实际值。
优选的,所述的模拟量包括电流、电压、电机转速、温度以及LED亮度,当然也不限于上述几种,此处不一一列举。
预设模拟量获取单元32,用于获取预先设定的模拟量的值。
比较单元33,用于将所述当前模拟量获取单元31获取的当前模拟量的实际值与所述预设模拟量获取单元32获取的预先设定的模拟量的值进行比较,比较结果包括以下两部分:当前模拟量的实际值小于预先设定的模拟量值,以及,模拟量的实际值大于预先设定的模拟量的值。
若当前模拟量的实际值小于预先设定的模拟量值,调整单元34则向增加模拟量的方向调整软件拓展的PWM占空比;
若模拟量的实际值大于预先设定的模拟量的值,调整单元34则向减小模拟量的方向调整软件扩展的PWM的占空比。
本发明实施例通过调整所述占空比,使得模拟量的实际值接近设定值。
所述装置还包括有数字滤波单元35,在调整单元34进行调整的过程中,数字滤波单元35用于根据控制器对所述ADC的读数偏差以及当前电源工作电压引入纹波干扰进行数字滤波。
在具体实施过程中,所述控制器包括有连接ADC的ADC端口以及连接PWM的PWM端口(图未示出)。
请参阅图4,该图为实际的硬件调整结构图,包括有PWM输入时钟、PWM计数器,PWM数据寄存器、PWM比较器,PWM控制器以及PWM输出脚。
其中,PWM的频率由计数器的位数来和PWM输入时钟的输入频率决定:如输入频率为8M,计数器为8Bit,PWM频率为8000/2^8=31.25K,计数器为7Bit时PWM频率为8000/2^7=62.5K。
图5A至图5D为本发明实施例提供的软件扩展2Bit PWM分辨率的波形图:
譬如,正常的PWM波形如图5A;
当软件扩展位加1的时候,以4个脉冲群为一组的第一个脉冲宽度加1,其余脉冲宽度不变,如图5B;
当软件扩展位加2的时候,以4个脉冲群为一组的第一个和第二脉冲宽度加1,其余脉冲宽度不变,如图5C;
当软件扩展位加3的时候,以4个脉冲群为一组的第1,2,3脉冲宽度加1,其余脉冲宽度不变,如图5D;
当软件扩展位加4的时候,把软件扩展位清零,硬件PWM Duty cycle 加1,如图5E。
图6A为软件扩展PWM 2Bit 分辨率的与频率的关系示意图,图6B为软件扩展PWM 4Bit 分辨率的与频率的关系示意图。
图7A为本发明实施例提供的PWM 2Bit的数字纹波图,图7B为本发明实施例提供的软件扩展4Bit PWM 分辨率的数字纹波图。
在具体实施过程中,本发明实施例的PWM频率控制系统有溢出中断,PWM频率较高时如250K,控制器主频要求较高,此时,控制器用一个计数器来累加PWM脉冲个数,当脉冲个数等于扩展位时清零重新计数,脉冲个数大于软件扩展位的duty cycle时,硬件PWM duty cycle 保持不变,当脉冲个数小于软件扩展位的Duty cycle时,硬件PWM duty cycle加1。
图8示出了本发明实施例提供的控制器控制PWM的方法的流程。
在步骤S801中,读取当前模拟量的实际值;
优选的,所述的模拟量包括电流、电压、电机转速、温度以及LED亮度,当然也不限于上述几种,此处不一一列举。
在步骤S802中,获取预先设定的模拟量的值;
在步骤S803中,将当前模拟量的实际值与预先设定的模拟量的值进行比较;
若当前模拟量的实际值小于预先设定的模拟量值则进行步骤S604;若模拟量的实际值大于预先设定的模拟量的值,则进行步骤S605;
在步骤S804中,向增加模拟量的方向调整软件扩展的PWM的占空比;
在步骤S805中,向减小模拟量的方向调整软件扩展的PWM的占空比;
在步骤S806中,通过调整所述占空比,模拟量的实际值接近设定值。
在具体实施过程中,所述控制器包括有连接ADC的ADC端口以及连接PWM的PWM端口,在进行调整时,根据所述ADC的读数偏差和电源工作电压引入纹波干扰,合理采用算术平均法进行数字滤波。
本发明实施例通过比较当前电流和预先设定的电流的大小,根据比较结果调整软件拓展的PWM的占空比,在不使用高主频高成本的DSP情况下,在不降低PWM频率的基础上非常有效地拓展了PWM的分辨率,利于降低系统功耗和成本。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种拓展控制器PWM分辨率的方法,其特征在于,所述方法包括以下步骤:
    读取当前模拟量的实际值;
    获取预先设定的模拟量的值;
    将当前模拟量的实际值与预先设定的模拟量的值进行比较;
    若当前模拟量的实际值小于预先设定的模拟量值,则向增加模拟量的方向调整软件拓展的PWM占空比;
    若模拟量的实际值大于预先设定的模拟量的值,则向减小模拟量的方向调整软件扩展的PWM的占空比。
  2. 如权利要求1所述的拓展控制器PWM分辨率的方法,其特征在于,所述控制器包括有ADC端口以及PWM端口。
  3. 如权利要求1所述的拓展控制器PWM分辨率的方法,其特征在于,在根据比较结果调整PWM的占空比时,所述方法还包括:
    根据控制器对所述ADC的读数偏差以及当前电源工作电压引入纹波干扰进行数字滤波。
  4. 如权利要求1所述的拓展控制器PWM分辨率的方法,其特征在于,所述模拟量包括电流、电压、电机转速、温度以及LED亮度。
  5. 一种拓展控制器PWM分辨率的装置,其特征在于,包括:
    当前模拟量获取单元,用于读取当前模拟量的实际值;
    预设模拟量获取单元,用于获取预先设定的模拟量的值;
    比较单元,用于将当前模拟量的实际值与预先设定的模拟量的值进行比较;
    调整单元,用于根据所述比较单元的比较结果,通过PWM控制寄存器向增加模拟量的方向调整软件拓展的PWM占空比,或者向减小模拟量的方向调整软件扩展的PWM的占空比。
  6. 如权利要求5所述的拓展控制器PWM分辨率的装置,其特征在于,所述控制器包括有ADC端口以及PWM端口。
  7. 如权利要求5所述的拓展控制器PWM分辨率的装置,其特征在于,所述装置还包括:
    数字滤波单元,用于根据控制器对所述ADC的读数偏差以及当前电源工作电压引入纹波干扰进行数字滤波。
  8. 如权利要求5所述的拓展控制器PWM分辨率的装置,其特征在于,所述模拟量包括电流、电压、温度、电机转速以及LED亮度。
PCT/CN2011/070525 2010-01-26 2011-01-24 一种扩展控制器pwm分辨率的方法及装置 WO2011091741A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010103425 CN101800528B (zh) 2010-01-26 2010-01-26 一种扩展控制器pwm分辨率的方法及装置
CN201010103425.7 2010-01-26

Publications (1)

Publication Number Publication Date
WO2011091741A1 true WO2011091741A1 (zh) 2011-08-04

Family

ID=42596056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070525 WO2011091741A1 (zh) 2010-01-26 2011-01-24 一种扩展控制器pwm分辨率的方法及装置

Country Status (2)

Country Link
CN (1) CN101800528B (zh)
WO (1) WO2011091741A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800528A (zh) * 2010-01-26 2010-08-11 深圳市京泉华电子有限公司 一种扩展控制器pwm分辨率的方法及装置
WO2013082825A1 (zh) * 2011-12-08 2013-06-13 深圳市华星光电技术有限公司 发光二极管的驱动电路与方法及其应用的显示装置
CN108519522A (zh) * 2018-03-27 2018-09-11 系新电子技术(苏州)有限公司 一种瞬时占/空比测量方法
CN110572141A (zh) * 2019-08-16 2019-12-13 赛特威尔电子股份有限公司 一种提高pwm控制器精度的方法及装置
CN113759288A (zh) * 2021-11-08 2021-12-07 深圳市德兰明海科技有限公司 一种漏电流检测电路、方法及漏电流检测器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254974B (zh) * 2012-03-20 2017-05-17 德克萨斯仪器股份有限公司 具有可调转角频率的pwm占空比合成器和方法
CN103888006B (zh) * 2014-03-07 2016-11-23 杭州电子科技大学 一种单片机控制逆变器工作的驱动脉冲数字实现方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201285505Y (zh) * 2008-10-30 2009-08-05 Bcd半导体制造有限公司 最小占空比可调的pwm控制电路
CN101800528A (zh) * 2010-01-26 2010-08-11 深圳市京泉华电子有限公司 一种扩展控制器pwm分辨率的方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10302379B4 (de) * 2003-01-22 2005-06-09 Minebea Co., Ltd. Pulsweitenmodulatorschaltung und Verfahren zur Ansteuerung einer Pulsweitenmo- dulatorschaltung
WO2004109917A1 (en) * 2003-06-11 2004-12-16 Koninklijke Philips Electronics, N.V. High resolution pwm generator or digitally controlled oscillator
JP4760909B2 (ja) * 2005-09-13 2011-08-31 トヨタ自動車株式会社 Pwm信号生成回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201285505Y (zh) * 2008-10-30 2009-08-05 Bcd半导体制造有限公司 最小占空比可调的pwm控制电路
CN101800528A (zh) * 2010-01-26 2010-08-11 深圳市京泉华电子有限公司 一种扩展控制器pwm分辨率的方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800528A (zh) * 2010-01-26 2010-08-11 深圳市京泉华电子有限公司 一种扩展控制器pwm分辨率的方法及装置
WO2013082825A1 (zh) * 2011-12-08 2013-06-13 深圳市华星光电技术有限公司 发光二极管的驱动电路与方法及其应用的显示装置
CN108519522A (zh) * 2018-03-27 2018-09-11 系新电子技术(苏州)有限公司 一种瞬时占/空比测量方法
CN110572141A (zh) * 2019-08-16 2019-12-13 赛特威尔电子股份有限公司 一种提高pwm控制器精度的方法及装置
CN110572141B (zh) * 2019-08-16 2024-02-13 赛特威尔电子股份有限公司 一种提高pwm控制器精度的方法及装置
CN113759288A (zh) * 2021-11-08 2021-12-07 深圳市德兰明海科技有限公司 一种漏电流检测电路、方法及漏电流检测器

Also Published As

Publication number Publication date
CN101800528B (zh) 2013-01-16
CN101800528A (zh) 2010-08-11

Similar Documents

Publication Publication Date Title
WO2011091741A1 (zh) 一种扩展控制器pwm分辨率的方法及装置
WO2014029279A1 (zh) 一种具有高功率因数的led控制电路及led照明装置
WO2013181853A1 (zh) 一种led背光系统及显示装置
WO2015006963A1 (zh) 一种led背光系统及显示装置
WO2013078669A1 (zh) Led驱动电路和led驱动芯片
WO2017076006A1 (zh) 恒压恒流同步输出电源及电视机
WO2014146308A1 (zh) 背光驱动板以及液晶显示器
WO2013082825A1 (zh) 发光二极管的驱动电路与方法及其应用的显示装置
WO2014094648A1 (zh) 一种分体式led灯具及其驱动电源插拔保护电路
CN105162356B (zh) 一种电压相位可调且易于并联的全桥谐振超声驱动电路
WO2020056870A1 (zh) 驱动电路、升压芯片及显示装置
WO2007134510A1 (fr) Alimentation électrique par ordinateur de bureau unique et procédé de fourniture d'alimentation électrique
CN106533154A (zh) 改进的dc‑dc转换器的负载瞬变和抖动
US20150188413A1 (en) Multiple output integrated power factor correction
WO2010058923A2 (en) Ac light emitting device, driving device thereof, and driving method thereby
WO2016183882A1 (zh) 显示装置及其驱动方法
WO2018157419A1 (zh) 驱动电路及液晶显示装置
CN107070178A (zh) 一种可自动调节斜坡补偿斜率的斜坡补偿电路
CN101944740B (zh) 一种多通道直流均流方法及装置
WO2017197732A1 (zh) 一种数字电源提供电路及液晶驱动装置
WO2012115425A9 (ko) 스마트 디밍 컨버터 장치
CN107222090A (zh) 一种捕获导通时间的并联供电输出功率均衡控制系统
WO2012037803A1 (zh) Led恒流驱动电路
WO2015068978A1 (ko) 교류 led 구동회로
WO2014183322A1 (zh) 光源模组、光源模组的驱动电路及驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736623

Country of ref document: EP

Kind code of ref document: A1