WO2011090085A1 - Modified cerium oxide colloid particles and manufacturing method for same - Google Patents

Modified cerium oxide colloid particles and manufacturing method for same Download PDF

Info

Publication number
WO2011090085A1
WO2011090085A1 PCT/JP2011/050898 JP2011050898W WO2011090085A1 WO 2011090085 A1 WO2011090085 A1 WO 2011090085A1 JP 2011050898 W JP2011050898 W JP 2011050898W WO 2011090085 A1 WO2011090085 A1 WO 2011090085A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
colloidal particles
sol
group
antimony pentoxide
Prior art date
Application number
PCT/JP2011/050898
Other languages
French (fr)
Japanese (ja)
Inventor
博和 加藤
欣也 小山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Publication of WO2011090085A1 publication Critical patent/WO2011090085A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0039Post treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/61Surface treated
    • A61K2800/62Coated
    • A61K2800/621Coated by inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/65Characterized by the composition of the particulate/core
    • A61K2800/651The particulate/core comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other

Definitions

  • the present invention relates to a silica-stannic oxide or silica-5 having a primary particle diameter of 1 to 3 nm, the outer surface of which is a cerium oxide colloidal particle (A) having a primary particle diameter of 4 to 60 nm.
  • the present invention also provides a water solubility of 0.002 to 12 mass% of the surface-hydrophobized cerium oxide colloidal particles (D) having an organosilicon compound bonded to the surface of the modified cerium oxide colloidal particles (C).
  • the present invention relates to a hydrophobic organic solvent-dispersed sol and a method for producing the same.
  • Cerium oxide has a high UV absorption ability and is widely applied to UV shielding glass for automobiles, sun protection cosmetics, UV absorbing coating compositions for plastics, and the like. Since these members that are used with an ultraviolet absorbing function are usually required to be transparent to visible light, when applying ceric oxide, fine particles, particularly the primary particle diameter is 100 nm or less. The colloidal particles are preferred. As a sol in which colloidal particles of cerium oxide are dispersed, a crystalline cerium oxide sol having a particle diameter of 30 nm is known (see Patent Document 1).
  • the phosphorus antioxidant used for preventing discoloration of the resin is easily decomposed by the action of various components coexisting in the resin composition.
  • a phosphorus-based antioxidant When a phosphorus-based antioxidant is applied to a cerium oxide sol as in Patent Document 2, the decomposition product may impair the dispersion stability of the cerium oxide sol in the resin composition.
  • the blending of was restricted.
  • organic antioxidants absorb ultraviolet rays and oxidize and alter themselves, their antioxidant effect is not semi-permanent, and light resistance is not always sufficient for applications exposed to ultraviolet rays for a long time. I can't say that.
  • a silica-based composite colloid comprising cerium oxide colloidal particles composed of silica-stannic oxide or silica-antimony pentoxide without using a phosphorus-based antioxidant that causes decomposition by the components of the resin composition.
  • cerium oxide colloidal particles having good light resistance to ultraviolet rays and their aqueous sol or hydrophilic organic solvent-dispersed sol or surface hydrophobized cerium oxide colloidal particles of 0.002 to 12% by mass It has been found that a hydrophobic organic solvent-dispersed sol having a water solubility of 1 to 5 can be provided.
  • the present invention provides, as a first aspect, silica-oxide oxide having a cerium oxide colloidal particle (A) having a primary particle diameter of 4 to 60 nm as a nucleus and an outer surface thereof having a primary particle diameter of 1 to 3 nm.
  • A cerium oxide colloidal particle
  • the modified ceric oxide colloidal particles according to the first aspect wherein the amine compound is at least one compound selected from the group consisting of primary amines, secondary amines and tertiary amines.
  • a hydrophilic organic solvent-dispersed sol of the modified ceric oxide colloidal particles (C) according to the first aspect or the second aspect is methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol mono
  • the hydrophilic organic solvent-dispersed sol according to the fourth aspect which is at least one compound selected from the group consisting of ethyl ether, dipropylene glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether,
  • surface hydrophilic organic solvent-dispersed sol according to the fourth aspect which is at least one compound selected from the group consisting of e
  • the organosilicon compound is Formula (I) (R 1 ) a (R Three ) b Si (OR 2 ) 4- (a + b) (I) (However, R 1 And R 3 Each represents an alkyl group or halogenated alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an aryl group or halogenated aryl group having 6 to 8 carbon atoms, or an epoxy group, It represents an organic group having an acryloyl group, a methacryloyl group, a mercapto group, an amino group or a cyano group, and is bonded to a silicon atom by a Si—C bond.
  • the surface hydrophobized cerium oxide colloidal particles (D) according to the sixth aspect which are at least one compound selected from the group consisting of organic silicon compounds represented by the following formula:
  • the hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass comprises a ketone, an ester, a hydrocarbon, a halogenated hydrocarbon, and a polyoxyalkylene dicarboxylic acid alkyl ester. It has a water solubility of 0.002 to 12 mass% of the surface-hydrophobized cerium oxide colloidal particles (D) according to any one of the ninth to eleventh aspects, which is at least one compound selected from the above.
  • the hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass is methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, methyl methacrylate, diisopropyl ether, toluene, triethylene glycol. It consists of di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH), tetraethylene glycol diheptanoate (4G7) and tetraethylene glycol di-2-ethylhexanoate (4GO).
  • a method for producing an aqueous sol of modified cerium oxide colloidal particles (C) comprising: (A) Step: An amine compound having a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 1.0.
  • an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm.
  • An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Jamaica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10
  • the cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated.
  • the molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) to the silica-based composite colloidal particles (B ′) is 0.001 to 0.00.
  • the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M
  • (C) a method for producing an aqueous sol
  • a method for producing a hydrophilic organic solvent-dispersed sol of modified cerium oxide colloidal particles (C) comprising: (A) Step: An amine compound having a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 1.0.
  • an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm.
  • An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Jamaica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10
  • the cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated.
  • the molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) to the silica-based composite colloidal particles (B ′) is 0.001 to 0.00.
  • the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M
  • an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm.
  • An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Jamaica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10
  • the cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated.
  • the molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) to the silica-based composite colloidal particles (B ′) is 0.001 to 0.00.
  • the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M
  • An eighteenth aspect is the hydrophilic organic according to the sixteenth aspect or the seventeenth aspect, in which the amine compound is at least one compound selected from the group consisting of a primary amine, a secondary amine, and a tertiary amine.
  • the hydrophilic organic solvent is methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl.
  • a method for producing a hydrophilic organic solvent-dispersed sol according to the sixteenth aspect or the seventeenth aspect, which is at least one compound selected from the group consisting of ether, dipropylene glycol, propylene glycol monomethyl ether, and propylene glycol monoethyl ether As a 20th viewpoint, A method for producing a hydrophobic organic solvent-dispersed sol of surface-hydrophobized cerium oxide colloidal particles (D) comprising: (A) Step: An amine compound having a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 1.0.
  • an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm.
  • An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Jamaica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10
  • the cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated.
  • the molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) to the silica-based composite colloidal particles (B ′) is 0.001 to 0.00.
  • the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (provided that M
  • the surface hydrophobized ceric oxide according to the twentieth aspect in which the amine compound is at least one compound selected from the group consisting of a primary amine, a secondary amine class, and a ter
  • the hydrophilic organic solvent is methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol mono Hydrophobic organic solvent which is at least one compound selected from the group consisting of ethyl ether, dipropylene glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether, and has a water solubility of 0.002 to 12% by mass Is methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl a
  • cerium oxide colloidal particles (A) having a primary particle diameter of 4 to 60 nm according to the present invention are used as a core, and the outer surface thereof is silica-stannic oxide or silica-pentoxide having a primary particle diameter of 1 to 3 nm.
  • silica / stannic oxide or silica / antimony pentoxide of 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (provided that M represents an amine compound) and is coated with silica-based composite colloidal particles (B) bound with an amine compound having a molar ratio of 0.001 to 0.08, and the cerium oxide colloidal particles (A)
  • the modified cerium oxide colloidal particles (C) having a mass ratio (A) / (B) of 1 to 50 with respect to the silica-based composite colloidal particles (B) have excellent light resistance, and inorganic ultraviolet rays.
  • the aqueous sol or hydrophilic organic solvent dispersion sol of the modified ceric oxide colloidal particles (C) has good compatibility with various hydrophilic resins, and a resin composition excellent in light resistance can be obtained.
  • the solvent-dispersed sol has good compatibility with various monomers or resins, can impart a UV-absorbing ability to various monomers, and can obtain a resin composition excellent in light resistance.
  • the present invention relates to a silica-stannic oxide or silica-5 having a primary particle diameter of 1 to 3 nm, the outer surface of which is a cerium oxide colloidal particle (A) having a primary particle diameter of 4 to 60 nm.
  • M represents an amine compound
  • B silica-based composite colloidal particle
  • A The modified ceric oxide colloidal particles (C) having a mass ratio (A) / (B) of 1 to 50 with respect to the silica-based composite colloidal particles (B).
  • the primary particle diameter of the modified cerium oxide colloidal particles (C) is 5 to 70 nm, and can be measured by observation with a transmission electron microscope.
  • the cerium oxide colloidal particles (A) serving as nuclei have a primary particle diameter of 4 to 60 nm.
  • the primary particle diameter can be measured by observation with a transmission electron microscope.
  • the cerium oxide colloidal particles (A) serving as nuclei can be produced by a known method. For example, after reacting a cerium salt with an alkaline substance in an aqueous medium under an inert gas atmosphere to form a cerium hydroxide suspension, the suspension is subjected to oxygen at a temperature of 10 to 95 ° C. under atmospheric pressure.
  • a method of obtaining an aqueous sol of colloidal cerium oxide particles by injecting a gas containing oxygen to oxidize, or reacting cerium carbonate and hydrogen peroxide in an aqueous medium containing a quaternary ammonium carbonate,
  • a method of obtaining an aqueous sol of ceric oxide colloidal particles through a step of heating at 60 to 110 ° C. and a step of hydrothermal treatment at 110 to 250 ° C. can be mentioned.
  • the aqueous sol of the cerium oxide colloidal particles (A) used in the present invention can be used in the range of pH 3 to 11, preferably pH 8 to 11, more preferably pH 9 to 10.
  • Silica-based composite colloidal particles (B) made of silica-stannic oxide or silica-antimony pentoxide covering the surface of the core cerium oxide colloidal particles (A) have a primary particle diameter of a transmission electron microscope. Observation is 1 to 3 nm, and the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10, and M / (silica + stannic oxide) or M / (silica + Antimony pentoxide) (where M represents an amine compound) is an amine compound having a molar ratio of 0.001 to 0.08.
  • the silica-based composite colloidal particles (B) are composed of silica-stannic oxide or silica-antimony pentoxide having a primary particle size of 1 to 3 nm as a precursor thereof, and silica / stannic oxide or silica / penta
  • the mass ratio of antimony oxide is 0.1 to 10
  • the molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1.
  • An aqueous sol of silica-based composite colloidal particles (B ′) stabilized with an amine compound of 1 to 1.0 is produced.
  • the modified cerium oxide colloidal particles (C) of the present invention are obtained by adding the aqueous sol to the aqueous sol of the cerium oxide colloidal particles (A), and the surface of the cerium oxide colloidal particles (A). After the silica-based composite colloidal particles (B ′) are coated on the surface, the amine compound for stabilization is removed by cation exchange, and then suitable for stabilizing the modified cerium oxide colloidal particles (C). It is obtained by binding the amine compound to the surface.
  • the amount of the amine compound suitable for stabilizing the modified cerium oxide colloidal particles (C) is M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M is an amine compound).
  • the molar ratio is 0.001 to 0.08.
  • the present invention Hydrophobic organic solvent dispersion sol of modified cerium oxide colloidal particles (C) or hydrophobic organic solvent dispersion sol having a water solubility of 0.05 to 12% by mass of surface hydrophobized cerium oxide colloidal particles (D) This is not preferable because of insufficient dispersion stability.
  • the modified cerium oxide of the organosilicon compound represented by the general formula (I) and / or the general formula (II) is used. This is not preferable because it hinders binding to the surface of the colloidal particles (C).
  • the aqueous sol of silica-based composite colloidal particles (B ′) composed of silica-stannic oxide or silica-antimony pentoxide can be produced by a known method (for example, Japanese Patent Publication No. 50-40119). For example, it can be obtained by mixing an alkali silicate aqueous solution with an alkali stannate aqueous solution or an alkali antimonate aqueous solution, then removing the cation with a cation exchange resin, and then adding an amine compound.
  • the amine compound is adsorbed on the surface of the silica-based composite colloidal particles (B ′) composed of silica-stannic oxide or silica-antimony pentoxide, and also present by being dissolved in an aqueous sol dispersion medium. It is presumed that the dispersion stability of the colloidal particles (B ′) is maintained.
  • the colloidal solution obtained by mixing the alkali silicate aqueous solution and the alkali stannate aqueous solution or the alkali antimonate aqueous solution and then removing the cation with a cation exchange resin does not add an amine compound or the amount of the amine compound added.
  • the gel loses stability upon standing for several hours. Can not be used.
  • the addition amount of the amine compound is 0.1 to 1.0 as a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound). Is an amount sufficient to maintain the dispersion stability of the aqueous sol of the silica-based composite colloidal particles (B ′).
  • alkali silicate aqueous solution a sodium silicate aqueous solution or a potassium silicate aqueous solution can be used.
  • alkali stannate aqueous solution a sodium stannate aqueous solution can be preferably used.
  • alkali antimonate aqueous solution a potassium antimonate aqueous solution is preferably used.
  • amine compound used in the present invention at least one compound selected from the group consisting of primary amines, secondary amines and tertiary amines can be used.
  • primary amines include methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, amylamine, allylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cyclopropylamine, cyclopropylamine, Examples include butylamine, cyclopentylamine and cyclohexylamine.
  • Examples of the secondary amine include dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diisobutylamine, N-ethyl-1,2-dimethylpropylamine, diamylamine and diallylamine.
  • Examples of the tertiary amine include trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine, and triallylamine.
  • the aqueous sol of the modified cerium oxide colloidal particles (C) of the present invention includes an aqueous sol of the cerium oxide colloidal particles (A) and silica-stannic oxide or silica having a primary particle diameter of 1 to 3 nm.
  • the molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) to the silica-based composite colloidal particles (B ′) is 0.001 to It can be obtained by adding an amine compound that is 0.08.
  • the primary particle diameter of the modified cerium oxide colloidal particles (C) is 5 to 70 nm and can be measured by observation with a transmission electron microscope.
  • the average particle size by dynamic light scattering method is 10 to 100 nm.
  • the solid content concentration of the aqueous sol of the modified ceric oxide colloidal particles (C) is 0.5 to 50% by mass, preferably 5 to 50% by mass as the total metal oxide concentration.
  • the solid content concentration of the aqueous sol can be higher than 50% by mass as required.
  • the hydrophilic organic solvent dispersion sol of the modified cerium oxide colloidal particles (C) of the present invention is obtained by replacing the dispersion medium of the aqueous sol of the modified cerium oxide colloidal particles (C) with a hydrophilic organic solvent.
  • the hydrophilic organic solvent sol of the modified cerium oxide colloidal particles (C) has an average particle diameter of 10 to 100 nm by a dynamic light scattering method, and the solid content concentration of the hydrophilic organic solvent sol is a total metal oxide.
  • the concentration is 0.5 to 50% by mass, preferably 5 to 50% by mass.
  • the solid content concentration of the hydrophilic organic solvent sol can be higher than 50% by mass as required.
  • the hydrophilic organic solvent used in the present invention is an organic solvent uniformly mixed with water, and the content of water in the organic phase when water and the organic solvent are mixed at 20 ° C. to form two phases.
  • This content is referred to as “water solubility of organic solvent” refers to an organic solvent having a content exceeding 12% by mass.
  • Specific examples of the hydrophilic organic solvent include methanol, ethanol, propanol, isopropanol, butanol (water solubility 20% by mass), isobutanol (water solubility 44.1% by mass), acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide.
  • the hydrophilic organic solvent dispersion sol of the surface-hydrophobized cerium oxide colloidal particles (D) of the present invention is the modified cerium oxide colloid to the hydrophilic organic solvent dispersion sol of the modified cerium oxide colloidal particles (C).
  • organosilicon compounds represented by the following general formula (I) and / or general formula (II) or their hydrolysates so that the mass ratio to the particles (C) is 0.01 to 0.5
  • At least one selected compound was added, and the cerium oxide colloidal particles (D) in which the organosilicon compound was bonded to the surface of the modified cerium oxide colloidal particles (C) were dispersed in the hydrophilic organic solvent. It is a sol.
  • the hydrophobic organic solvent dispersion sol having a water solubility of 0.002 to 12% by mass of the surface-hydrophobized ceric oxide colloidal particles (D) of the present invention is the modified ceric oxide colloidal particles (C).
  • the hydrophilic organic solvent-dispersed sol is represented by the following general formula (I) and / or general formula (II) so that the mass ratio with respect to the modified cerium oxide colloidal particles (C) is 0.01 to 0.50.
  • the organosilicon compound used in the present invention is Formula (I) (R 1 ) a (R 3 ) b Si (OR 2 ) 4- (a + b) (I) (However, R 1 and R 3 are each an alkyl group having 1 to 8 carbon atoms or a halogenated alkyl group, an alkenyl group having 2 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, or a halogenated aryl group.
  • R 2 represents carbon An alkyl group having 1 to 8 atoms or an alkoxyalkyl group or an acyl group having 2 to 8 carbon atoms; a and b each represents an integer of 0, 1 or 2; a + b represents an integer of 0, 1 or 2; And / or general formula (II) [(R 4 ) c Si (OX) 3-c ] 2 Y (II) (Wherein R 4 represents an alkyl group having 1 to 5 carbon atoms, X represents an alkyl group having 1 to 4 carbon atoms or an acyl group having 2 to 8 carbon atoms, and Y represents 1 to 20 carbon atoms) Is an at least one compound selected from the group consisting of an organosilicon compound represented by (2) and
  • organosilicon compound represented by the general formula (I) examples include tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetraacetoxysilane, and methyltrimethoxysilane.
  • Methyltriethoxysilane methyltripropoxysilane, methyltriacetoxysilane, methyltributoxysilane, methyltripropoxysilane, methyltriamyloxysilane, methyltriphenoxysilane, methyltribenzyloxysilane, methyltriphenethyloxysilane, glycine Sidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxyethyltriethoxysilane, ⁇ -glycidoxyethyl Trimethoxysilane, ⁇ -glycidoxyethyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇
  • organosilicon compound represented by the general formula (I) used in the present invention methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, methyltributoxysilane and hydrolysates thereof are particularly preferable.
  • hydrolyzate of the organosilicon compound represented by the above general formula (I) is a compound in which part or all of R 2 in the formula is substituted with a hydrogen atom.
  • hydrolysates of organosilicon compounds represented by general formula (I) can be used alone or in combination of two or more.
  • organosilicon compound represented by the general formula (II) examples include methylene bismethyldimethoxysilane, ethylene bisethyldimethoxysilane, propylene bisethyldiethoxysilane, butylene bismethyldiethoxysilane, and hexamethyldisilazane. It is done. These can be used alone or in combination of two or more.
  • the hydrolyzate of the organosilicon compound represented by the general formula (II) is a compound in which a part or all of X in the formula is substituted with a hydrogen atom. These hydrolysates of organosilicon compounds represented by the general formula (II) can be used alone or in combination of two or more.
  • the hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass is not uniformly mixed with water, but is mixed with water at 20 ° C. to form two phases in the organic phase.
  • the water content is 0.002 to 12% by mass.
  • the hydrophobic organic solvent include methyl ethyl ketone (water solubility 9.9% by mass), methyl isobutyl ketone (water solubility 1.8% by mass), cyclohexanone (water solubility 8% by mass), and ethyl acetate (water solubility 2.
  • the method for producing an aqueous sol of the modified cerium dioxide colloidal particles (C) of the present invention is a method including the following steps (a) to (d).
  • a method for producing an aqueous sol of modified cerium oxide colloidal particles (C) comprising: (A) Step: An amine compound having a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 1.0.
  • an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm.
  • An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Jamaica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10
  • the cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated.
  • An amine compound having a molar ratio of 0.001 to 0.08 is added, the cerium oxide colloidal particles (A) are used as nuclei,
  • silica-stannic oxide or silica-antimony pentoxide Have a diameter Consisting of silica-stannic oxide or silica-antimony pentoxide and having a mass ratio of silica / stannic oxide or silica / antimony pentoxide of 0.1 to 10 and M / (silica + stannic oxide) or Covered with silica-based composite colloidal particles (B) to which an amine compound having a molar ratio of M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.001 to 0.08, and A step of adjusting the mass ratio (A) / (B) of the cerium oxide colloidal particles (A) to the silica-based composite colloidal particles (B) to be 1 to 50.
  • a sodium stannate aqueous solution or a potassium stannate aqueous solution can be used as the alkali stannate aqueous solution, preferably a sodium stannate aqueous solution.
  • a sodium antimonate aqueous solution a sodium antimonate aqueous solution, a potassium antimonate aqueous solution or an amine antimonate aqueous solution can be used, and a sodium antimonate aqueous solution is preferred.
  • a sodium silicate aqueous solution or a potassium silicate aqueous solution can be used as the alkali silicate aqueous solution.
  • An alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10, and is present in the aqueous solution. Cations are removed with a cation exchange resin.
  • An alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are prepared by being measured so that the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and dissolved in water. Is done.
  • the solid content concentration of the aqueous solution is preferably 1 to 12% by mass as (silica + stannic oxide) or (silica + antimony pentoxide).
  • Cations are removed from the prepared aqueous solution using a cation exchange resin.
  • the cation exchange resin is preferably a hydrogen-type strongly acidic cation exchange resin.
  • Amberlite (registered trademark) 120B can be packed in a column and used.
  • a silica system comprising silica-stannic oxide or silica-antimony pentoxide having a primary particle diameter of 1 to 3 nm.
  • Composite colloidal particles are produced.
  • silica-based composite colloidal particle Since this silica-based composite colloidal particle is poor in stability and gels in a few hours if left standing, it is necessary to quickly stabilize it by adding an amine compound after cation exchange.
  • the mass ratio of distin or silica / antimony pentoxide is 0.1 to 10, and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound)
  • M aqueous sol of silica-based composite colloidal particles (B ′) composed of silica-stannic oxide or silica-antimony pentoxide stabilized with an amine compound having a molar ratio of 0.1 to 1.0. is there.
  • the solid content concentration of the obtained aqueous sol is 0.1 to 10% by mass as (silica + stannic oxide) or (silica + antimony pentoxide).
  • the amount of the amine compound suitable for stabilizing the silica-based composite colloidal particles composed of silica-stannic oxide or silica-antimony pentoxide produced by the cation exchange is M / (silica + stannic oxide) or M
  • the molar ratio of / (silica + antimony pentoxide) (wherein M represents an amine compound) is 0.1 to 1.0.
  • the added amount of the amine compound is less than 0.1 as a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound)
  • the mixture is left for several hours. This is not preferable because it loses stability and gels.
  • the addition amount of the amine compound exceeds 1.0 as a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound), the amine The compound is present in excess and is not efficient.
  • step (b) an aqueous sol of cerium oxide colloidal particles (A) having a primary particle size of 4 to 60 nm, and silica / stannic oxide or silica / antimony pentoxide obtained in step (a).
  • the molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 10.
  • An aqueous sol of silica-based composite colloidal particles (B ′) composed of silica-stannic oxide or silica-antimony pentoxide stabilized with an amine compound having a mass ratio of (A) / (B ′ ) Are mixed so as to be 1 to 50, whereby the surface of the ceric oxide colloidal particles (A) is coated with the silica-based composite colloidal particles (B ′). ' It can be obtained in the aqueous sol.
  • the amine compound at least one compound selected from the group consisting of primary amines, secondary amines and tertiary amines is used.
  • the primary amine class include methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, amylamine, allylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cyclopropylamine, Examples include cyclobutylamine, cyclopentylamine, and cyclohexylamine.
  • Examples of the secondary amine class include dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diisobutylamine, N-ethyl-1,2-dimethylpropylamine, diamylamine and diallylamine.
  • Examples of the tertiary amine include trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine, and triallylamine.
  • the solid content concentration of the aqueous sol of the ceric oxide colloidal particles (A) is preferably 0.5 to 30% by mass.
  • the aqueous sol of the ceric oxide colloidal particles (A) can be used in the range of pH 3 to 11, preferably pH 8 to 11, more preferably pH 9 to 10.
  • the pH of the aqueous sol of the cerium oxide colloidal particles (A) can be adjusted with an alkali component as necessary.
  • alkali component used for the adjustment examples include alkali metal hydroxides such as lithium, sodium and potassium, alkaline earth metal hydroxides such as calcium, magnesium and strontium, ammonia, ethylamine, triethylamine, isopropylamine, n -Alkylamines such as propylamine, aralkylamines such as benzylamine, alicyclic amines such as piperidine, alkanolamines such as monoethanolamine and triethanolamine, and quaternary ammonium hydroxides.
  • alkali metal hydroxides such as lithium, sodium and potassium
  • alkaline earth metal hydroxides such as calcium, magnesium and strontium
  • ammonia ethylamine, triethylamine
  • isopropylamine n -Alkylamines
  • aralkylamines such as benzylamine
  • alicyclic amines such as piperidine
  • alkanolamines such as monoethanol
  • the mixing of the aqueous sol of the ceric oxide colloidal particles (A) and the aqueous sol of the silica-based composite colloidal particles (B ′) obtained in the step (a) is preferably performed with stirring.
  • the mixing of the cerium oxide colloidal particles (A) and the silica-based composite colloidal particles (B ′) is preferably carried out at a mass ratio (A) / (B ′) of 1 to 50.
  • cerium oxide colloidal particles (A) having the silica-based composite colloidal particles (B ′) as the core cannot be sufficiently coated, and the stable hydrophilic organic solvent-dispersed sol or the surface hydrophobized ceric oxide colloid A hydrophobic organic solvent-dispersed sol having a water solubility of 0.05 to 12% by mass of the particles (D) cannot be obtained. Further, 1 is sufficient for the mass ratio, and when it is less than 1, the silica-based composite colloidal particles (B ′) become excessive, which is not efficient.
  • step (c) cation exchange is performed on the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in step (b). As a result, the amine compound bonded to the silica-based composite colloidal particles (C ′) is removed. It is preferable to use a hydrogen type strongly acidic cation exchange resin for the cation exchange.
  • M / (silica + second oxide) with respect to the silica-based composite colloidal particles (B ′) is added to the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in the step (c).
  • an amine compound having a molar ratio of tin) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.001 to 0.08 modified ceric oxide colloidal particles ( C) aqueous sol is obtained.
  • the hydrophilicity of the present invention is not preferable because the dispersion stability of the conductive organic solvent-dispersed sol becomes insufficient.
  • the aqueous sol of the modified cerium oxide colloidal particles (C) has a primary particle diameter of 5 to 70 nm that can be measured by observation with a transmission electron microscope, and an average particle diameter by dynamic light scattering method is 10 nm. To 100 nm.
  • the solid content concentration of the aqueous sol is 0.5 to 50% by mass, preferably 5 to 50% by mass as the total metal oxide concentration.
  • the solid content concentration of the aqueous sol can be higher than 50% by mass as required.
  • the method for producing a hydrophilic organic solvent-dispersed sol of the modified cerium oxide colloidal particles (C) of the present invention is a method including the following step (e) in addition to the above steps (a) to (d).
  • the dispersion medium of the aqueous sol of the modified cerium oxide colloidal particles (C) obtained in the step (d) is replaced with a hydrophilic organic solvent.
  • the hydrophilic organic solvent used in the present invention is an organic solvent that is uniformly mixed with water, and the content of water in the organic phase when water and the organic solvent are mixed at 20 ° C. to form two phases ( This content rate is referred to as “water solubility of organic solvent”) and is an organic solvent exceeding 12% by mass.
  • hydrophilic organic solvent examples include methanol, ethanol, propanol, isopropanol, butanol (water solubility 20% by mass), isobutanol (water solubility 44.1% by mass), acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide. , Acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, dipropylene glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether.
  • the hydrophilic organic solvent-dispersed sol of the modified ceric oxide colloidal particles (C) has a primary particle diameter of 5 to 70 nm that can be measured by transmission electron microscope observation, and an average by a dynamic light scattering method.
  • the particle diameter is 10 to 100 nm.
  • the solid content concentration of the hydrophilic organic solvent-dispersed sol is 0.5 to 50% by mass, preferably 5 to 50% by mass as the total metal oxide concentration.
  • the solid content concentration of the hydrophilic organic solvent-dispersed sol can be higher than 50% by mass as necessary.
  • the method for producing a hydrophilic organic solvent-dispersed sol of the surface-hydrophobized cerium oxide colloidal particles (D) of the present invention is a method comprising the following step (f) in addition to the steps (a) to (e). .
  • step (f) the hydrophilic organic solvent-dispersed sol obtained in the step (e) Formula (I) (R 1 ) a (R 3 ) b Si (OR 2 ) 4- (a + b) (I) (However, R 1 and R 3 are each an alkyl group having 1 to 8 carbon atoms or a halogenated alkyl group, an alkenyl group having 2 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, or a halogenated aryl group.
  • R 2 represents carbon An alkyl group having 1 to 8 atoms or an alkoxyalkyl group or an acyl group having 2 to 8 carbon atoms; a and b each represents an integer of 0, 1 or 2; a + b represents an integer of 0, 1 or 2; And / or general formula (II) [(R 4 ) c Si (OX) 3-c ] 2 Y (II) (Wherein R 4 represents an alkyl group having 1 to 5 carbon atoms, X represents an alkyl group having 1 to 4 carbon atoms or an acyl group having 2 to 8 carbon atoms, and Y represents 1 to 20 carbon atoms) And at least one compound selected from the group consisting of hydrolysates thereof is added to the modified oxidized
  • the hydrophilic organic solvent-dispersed sol of the cerium colloidal particles (C) is at least one selected from the group consisting of the organosilicon compounds represented by the general formula (I) and / or the general formula (II) or their hydrolysates.
  • Hydrolysis of the organosilicon compound represented by the general formula (I) and / or the general formula (II) requires 1 to 4 moles of water with respect to 1 mole of the organosilicon compound. This necessary water may be contained in advance in the hydrophilic organic solvent-dispersed sol, or may be added after the addition of the organosilicon compound. Moreover, you may add the organosilicon compound which hydrolyzed beforehand.
  • the hydrolyzate of the organosilicon compound can be obtained by adding water or an acidic aqueous solution of a hydrochloric acid aqueous solution, a sulfuric acid aqueous solution, or an acetic acid aqueous solution to the organosilicon compound and stirring the mixture.
  • the ripening temperature can be carried out in the range of the boiling point of the hydrophilic organic solvent used from room temperature, and it is preferable to carry out in the vicinity of the boiling point of the hydrophilic organic solvent because the binding rate of the organosilicon compound to the colloidal particles increases.
  • the aging can be performed under atmospheric pressure, and is preferably performed under reflux.
  • the organosilicon compound used in the present invention is particularly preferably methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, methyltributoxysilane or a hydrolyzate thereof. Further, methylene bismethyldimethoxysilane, ethylene bisethyldimethoxysilane, propylene bisethyldiethoxysilane, butylene bismethyldiethoxysilane, and hexamethyldisilazane are preferable.
  • the total metal oxide concentration of the hydrophilic solvent-dispersed sol obtained in the step (f) is 1 to 70% by mass as the total metal oxide concentration of the surface hydrophobized cerium oxide colloidal particles (D), or 5 to 60% by mass.
  • the obtained hydrophilic solvent-dispersed sol has a primary particle diameter of 5 to 70 nm that can be measured by observation with a transmission electron microscope, and an average particle diameter by dynamic light scattering is 10 to 100 nm.
  • step (f) methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, dipropylene It can be substituted with at least one hydrophilic organic solvent selected from the group consisting of glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether.
  • the method for producing a hydrophobic organic solvent sol having a water solubility of 0.002 to 12 mass% of the surface-hydrophobized cerium oxide colloidal particles (D) of the present invention is not limited to the steps (a) to (f).
  • the method includes the following step (g).
  • the dispersion medium of the hydrophilic solvent sol of the surface-hydrophobized cerium oxide colloidal particles (D) obtained in the step (f) has a water solubility of 0.002 to 12% by mass.
  • Replace with organic solvent Solvent replacement can be performed by a known method such as an evaporation replacement method, an ultrafiltration membrane method, or a solvent extraction method under normal pressure or reduced pressure.
  • the temperature of the sol when replacing the dispersion medium from a hydrophilic organic solvent to a hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass is from room temperature to 0.002 to 12% by mass. It is carried out in the range of the boiling point of the hydrophobic organic solvent having water solubility. The solvent replacement is performed until the hydrophilic solvent concentration in the sol becomes less than 2% by mass.
  • the hydrophilic organic solvent-dispersed sol obtained in the step (f) has a concentration of the surface hydrophobized ceric oxide colloidal particles (D) contained in the range of 5 to 70% by mass, or 10 to It is preferable to concentrate in advance in the range of 50% by mass.
  • the sol can be concentrated by a known method such as a heat evaporation method or an ultrafiltration method.
  • the total metal oxide concentration of the sol obtained in the step (g) is 1 to 70% by mass, or 5 to 60% by mass as the total metal oxide concentration of the surface hydrophobized ceric oxide colloidal particles (D). is there.
  • the obtained sol has a primary particle diameter of 5 to 70 nm that can be measured by observation with a transmission electron microscope, and an average particle diameter by dynamic light scattering is 10 to 100 nm.
  • the present invention is not limited to these examples.
  • the measuring method of physical properties is shown below.
  • the primary particle diameter of the colloidal particles was observed at an acceleration voltage of 100 kv using a transmission electron microscope JEM-1010 (manufactured by JEOL Ltd.). The observation was performed by carrying a diluted solution of sol on a carbon support film. [Average particle diameter by dynamic light scattering method] The sol was diluted with a dispersion solvent, measured with a submicron particle analyzer N5 (manufactured by Beckman Coulter, Inc.) using the solvent parameters, and calculated by the cumulant method to obtain an average particle size.
  • the average particle diameter of the particles in the sol is observed, and when the particles are aggregated, the average particle diameter of the aggregated particles is observed.
  • Production Example 1 208.2 kg of tetramethylammonium hydrogen carbonate aqueous solution (manufactured by Tama Chemical Industry Co., Ltd., containing 42.0% by mass in terms of tetramethylammonium hydroxide) in a 1 m 3 pressure reactor equipped with a stirring blade. And 37.5 kg of pure water were added. While stirring this aqueous solution, cerium carbonate powder (manufactured by AMR International Corp., containing 50.94% by mass as CeO 2 ) was gradually added to the aqueous solution, and a total of 54.06 kg was added.
  • tetramethylammonium hydrogen carbonate aqueous solution manufactured by Tama Chemical Industry Co., Ltd., containing 42.0% by mass in terms of tetramethylammonium hydroxide
  • the contents were heated to 50 ° C., and 388.6 kg of 7 mass% hydrogen peroxide water was added over 5 hours while maintaining the temperature.
  • the contents were heated to 102 ° C. and aged for 4 hours, followed by hydrothermal treatment at 145 ° C. for 6 hours. What was obtained after this hydrothermal treatment was in the form of a slurry.
  • the slurry after the hydrothermal treatment was washed while gradually adding pure water using an ultrafiltration device, the slurry was peptized to form a sol.
  • the obtained sol was subsequently washed and concentrated with an ultrafiltration device, solid content 5.18% by mass, pH 9.8, conductivity 780 ⁇ S / cm, cerium oxide having an average particle size of 61 nm by dynamic light scattering method 489.6 kg of aqueous sol was obtained. 5 kg of this aqueous cerium oxide sol was sampled, dispersed with an ultrasonic homogenizer (UIP2000), and then washed with gradual addition of pure water using an ultrafiltration device.
  • UIP2000 ultrasonic homogenizer
  • the obtained aqueous solution was passed through a column packed with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B) to obtain an acidic aqueous sol of stannic oxide-silica composite colloidal particles (pH 2.4, SnO 2 contained 0.87 mass%, SiO 2 contained 2.62 mass%, and SiO 2 / SnO 2 mass ratio 3.0) 860 g was obtained.
  • a hydrogen-type cation exchange resin Amberlite (registered trademark) IR-120B
  • the molar ratio of diisopropylamine / (silica + stannic oxide) was 0.21, and the pH was 10.3.
  • colloidal particles having a primary particle diameter of 3 nm or less were observed with a transmission electron microscope.
  • the obtained potassium antimonate silicate aqueous solution (542.6 g) was diluted with pure water (207.4 g) and passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B).
  • antimony oxide - aqueous sol of silica composite colloidal particles (pH 2.1, 0.66% by mass as Sb 2 O 5, containing 1.30% by mass as SiO 2, SiO 2 / Sb 2 O 5 mass ratio 2.0) 754 g was obtained.
  • 4.5 g of diisopropylamine was added to the obtained aqueous sol.
  • the obtained sol was an alkaline aqueous sol of antimony pentoxide-silica composite colloidal particles.
  • the molar ratio of diisopropylamine / (silica + antimony pentoxide) was 0.25 and the pH was 10.3.
  • colloidal particles having a primary particle diameter of 3 nm or less were observed with a transmission electron microscope.
  • Example 1 The alkaline cerium oxide prepared in Production Example 2 was added to the cerium oxide aqueous sol having a solid concentration of 4.5% by mass obtained by adding 336.7 g of pure water to 2330 g of the aqueous cerium oxide sol prepared in Production Example 1. 869 g of an alkaline aqueous sol of tin-silica colloid particles was added and stirred well. Subsequently, the mixture was heated at 95 ° C. for 3 hours to obtain 3404 g of an aqueous sol of modified cerium oxide colloidal particles coated with stannic oxide-silica composite colloidal particles. The total metal oxide concentration of the obtained sol was 4.4% by mass, and the pH was 8.6.
  • the obtained modified aqueous cerium oxide colloidal particle sol was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and 3421 g of acidic aqueous sol of modified cerium oxide colloidal particles was obtained.
  • the obtained acidic aqueous sol had a total metal oxide concentration of 4.4% by mass and a pH of 2.7.
  • 0.55 g of diisopropylamine was added to the acidic aqueous sol of the modified ceric oxide colloidal particles, and diisopropylamine was bound to the surface of the modified ceric oxide colloidal particles.
  • the molar ratio of diisopropylamine / (silica + stannic oxide) in the sol was 0.013, and the pH was 3.5.
  • the obtained acidic aqueous sol of the modified cerium oxide colloidal particles was concentrated using an ultrafiltration device, and the total metal oxide concentration was 20.5% by mass, the specific gravity was 1.202, the pH was 3.3, and the viscosity was 5. 730 g of an acidic aqueous sol having an average particle diameter of 46 nm by 5 mPa ⁇ s and a dynamic light scattering method was obtained.
  • Example 2 The alkaline cerium oxide prepared in Production Example 2 was added to the cerium oxide aqueous sol having a solid concentration of 4.5% by mass obtained by adding 336.7 g of pure water to 2330 g of the aqueous cerium oxide sol prepared in Production Example 1. 869 g of an alkaline aqueous sol of tin-silica colloid particles was added and stirred well. Subsequently, the mixture was heated at 95 ° C. for 3 hours to obtain 3404 g of an aqueous sol of modified cerium oxide colloidal particles coated with stannic oxide-silica composite colloidal particles. The total metal oxide concentration of the obtained sol was 4.4% by mass, and the pH was 8.6.
  • the obtained modified aqueous cerium oxide colloidal particle sol was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and 3421 g of acidic aqueous sol of modified cerium oxide colloidal particles was obtained.
  • the obtained acidic aqueous sol had a total metal oxide concentration of 4.4% by mass and a pH of 2.7.
  • 0.7 g of diisobutylamine was added to the acidic aqueous sol of the modified ceric oxide colloidal particles, and diisobutylamine was bound to the surface of the modified ceric oxide colloidal particles.
  • the molar ratio of diisobutylamine / (silica + stannic oxide) in the sol was 0.013, and the pH was 3.5.
  • the obtained acidic aqueous sol of the modified cerium oxide colloidal particles was concentrated using an ultrafiltration device, and concentrated to a total metal oxide concentration of 16.9% by mass.
  • the concentrated aqueous sol is put into an evaporator with an eggplant-shaped flask, and water is distilled off under a reduced pressure of 100 Torr while adding methanol to the sol, whereby a modified ceric oxide colloid in which diisobutylamine is bound to the surface thereof. Particulate methanol sol was obtained.
  • the obtained methanol sol had a total metal oxide concentration of 20.5% by mass, a specific gravity of 0.966, pH 3.6 (diluted with water of the same mass as the sol), a viscosity of 3.5 mPa ⁇ s, and a water content of 1.0% by mass.
  • the average particle size by dynamic light scattering method was 55 nm.
  • Example 3 5.0 g of methyltrimethoxysilane (product name: LS-530, manufactured by Shin-Etsu Silicone Co., Ltd.) was added to 244 g of the methanol sol obtained in Example 2, and silylation was carried out by reflux heating for 5 hours. Silyl groups were bonded to the surface of the modified ceric oxide colloidal particles. Next, methanol was distilled off while adding methyl ethyl ketone (hereinafter also referred to as “MEK”) under a reduced pressure of 140 Torr using an evaporator, so that methanol was replaced with methyl ethyl ketone and the surface was hydrophobicized with a methyldimethoxysilyl group bonded thereto.
  • MEK methyl ethyl ketone
  • a methyl ethyl ketone sol of ceric oxide colloidal particles was obtained.
  • the obtained methyl ethyl ketone sol had a total metal oxide concentration of 20.9% by mass, a specific gravity of 0.988, a viscosity of 2.6 mPa ⁇ s, and an average particle size by dynamic light scattering of 48 nm. In observation with a transmission electron microscope, the primary particle diameter was 12 nm.
  • Example 4 The same procedure as in Example 3 was performed, except that 3.6 g of phenyltrimethoxysilane (product name: KBM-103, manufactured by Shin-Etsu Silicone Co., Ltd.) was used instead of 5.0 g of methyltrimethoxysilane.
  • a methyl ethyl ketone sol of cerium colloid particles was obtained.
  • the obtained methyl ethyl ketone sol had a total metal oxide concentration of 20.5% by mass, a specific gravity of 0.984, a viscosity of 3.0 mPa ⁇ s, and an average particle size by a dynamic light scattering method of 56 nm. In observation with a transmission electron microscope, the primary particle diameter was 12 nm.
  • Example 5 The alkaline cerium pentoxide prepared in Production Example 3 was added to the aqueous cerium oxide aqueous sol having a solid concentration of 4.5% by mass, which was obtained by adding 168.3 g of pure water to 1165 g of the cerium oxide aqueous sol prepared in Production Example 1. Add 754 g of aqueous sol of silica composite colloidal particles and stir well. Subsequently, the mixture was heated at 95 ° C. for 3 hours to obtain 1926 g of an aqueous sol of modified cerium oxide colloidal particles coated with antimony pentoxide-silica composite colloidal particles. The obtained aqueous sol had a total metal oxide concentration of 3.9% by mass and a pH of 8.0.
  • the obtained aqueous sol of the modified cerium oxide colloid particles was passed through a column packed with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and the acidic aqueous solution of the modified cerium oxide colloid particles was obtained. 1939 g of sol was obtained.
  • the obtained acidic aqueous sol had a total metal oxide concentration of 3.8% by mass and a pH of 2.6.
  • 1.5 g of diisobutylamine was added to the acidic aqueous sol of the modified ceric oxide colloidal particles, and diisobutylamine was bound to the surface of the modified ceric oxide colloidal particles.
  • the pH of the sol was 3.7, and the molar ratio of diisobutylamine / (silica + antimony pentoxide) was 0.065.
  • the obtained sol was concentrated using an ultrafiltration device, and concentrated to a total metal oxide concentration of 20.5% by mass.
  • This concentrated sol had a total metal oxide concentration of 20.5% by mass, a specific gravity of 1.208, a pH of 3.5, a viscosity of 6.10 mPa ⁇ s, and an average particle size by dynamic light scattering of 43 nm.
  • Example 6 5.0 g of methyltrimethoxysilane (product name: LS-530, manufactured by Shin-Etsu Silicone Co., Ltd.) was added to 244 g of the methanol sol obtained in Example 2, and silylation was carried out by reflux heating for 5 hours. A methanol sol of surface hydrophobized cerium oxide colloidal particles was obtained by bonding silyl groups to the surface of the modified cerium oxide colloidal particles. Next, the methanol was replaced with isopropanol by distilling off methanol while adding isopropanol (hereinafter also referred to as “IPA”) under a reduced pressure of 100 Torr using an evaporator. A sol was obtained.
  • IPA isopropanol
  • the obtained isopropanol sol had a total metal oxide concentration of 20.5% by mass, a specific gravity of 0.955, a viscosity of 5.2 mPa ⁇ s, and an average particle size by a dynamic light scattering method of 51 nm.
  • Example 7 The same operation as in Example 6 was carried out except that propylene glycol monomethyl ether (hereinafter also referred to as “PGME”) was used instead of isopropanol to obtain a propylene glycol monomethyl ether sol of surface hydrophobized ceric oxide colloidal particles. .
  • the obtained propylene glycol monomethyl ether sol had a total metal oxide concentration of 20.5% by mass, a specific gravity of 1.111, a viscosity of 4.5 mPa ⁇ s, and an average particle size by a dynamic light scattering method of 45 nm.
  • PGME propylene glycol monomethyl ether
  • Comparative Example 1 The alkaline cerium oxide prepared in Production Example 4 was added to the aqueous cerium oxide aqueous sol having a solid concentration of 4.5% by mass by adding 112.2 g of pure water to 776.7 g of the aqueous cerium oxide sol obtained in Production Example 1. 290 g of an aqueous solution containing a silicic acid oligomer was added and stirred sufficiently. Next, the mixture was aged at 95 ° C. for 3 hours to obtain 1165 g of an aqueous sol of modified cerium oxide colloidal particles coated with silica and its oligomer.
  • the obtained aqueous sol of the modified cerium oxide colloidal particles was passed through a column packed with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and the acidic modified cerium oxide colloidal particles 1200 g of an aqueous sol was obtained.
  • the obtained aqueous sol had a total metal oxide concentration of 4.1% by mass and a pH of 8.8.
  • the obtained aqueous sol of the modified cerium oxide colloidal particles was concentrated using an ultrafiltration device, and the total metal oxide concentration was 20.5% by mass, the specific gravity was 1.196, pH 2.7, and the viscosity was 6.5 mPa ⁇ s.
  • 240 g of an aqueous sol having an average particle diameter of 49 nm obtained by a dynamic light scattering method was obtained.
  • Example 2 Methanol substitution was performed in the same manner as in Example 2 except that diisobutylamine was not added to the acidic aqueous sol of cerium oxide colloidal particles, but the sol gelled in the middle of substitution with methanol. Cann't get.
  • Comparative Example 3 The same procedure as in Example 3 was performed except that methyltrimethoxysilane was not added to the methanol sol of the modified cerium oxide colloidal particles in which diisobutylamine was bonded to the surface, but the sol was gelated while being replaced with methyl ethyl ketone. As a result, methyl ethyl ketone sol could not be obtained.
  • the obtained sol was evaluated by the following method.
  • a sol dispersion medium was added so that the total solid content concentration was 20% by mass to prepare a coating composition.
  • the cured film was produced by heating at 150 degreeC for 2 hours using an electric furnace.
  • (3) Evaluation of light resistance The coating composition prepared in (1) above and the cured film prepared in (2) above were irradiated with ultraviolet rays with a 300 W high-pressure mercury lamp (HANDY UV300 manufactured by ORC Manufacturing Co., Ltd.) Light resistance was evaluated. For comparison, a sol obtained by concentrating the cerium oxide aqueous sol obtained in Production Example 1 to 20% by mass was similarly evaluated. Color coordinate values were measured using a color difference meter (TC-1800MK-II, manufactured by Tokyo Denshoku Co., Ltd.), and the color difference value calculated by the following Hunter color difference formula was used as an indicator of light resistance.
  • the modified cerium oxide colloidal particles (C) of the invention of the present application are used as an inorganic ultraviolet absorber having high ultraviolet absorption ability and chemical stability, for automobile ultraviolet shielding glass, sun protection cosmetics, and plastics. Application as an additive component to ultraviolet absorbing coating compositions is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Birds (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Colloid Chemistry (AREA)
  • Cosmetics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Abstract

Disclosed are cerium oxide colloid particles which exhibit excellent light resistance and which are formed by coating cerium oxide colloid particles with silica-based composite colloid particles of silica-stannic oxide or silica antimony pentoxide. Cerium oxide colloid particles (A) having a primary particle diameter of 4-60 nm serve as the core, and the outer surface of the particles is coated with silica-based composite colloid particles (B) which are formed from silica antimony pentoxide or silica-stannic oxide having a primary particle diameter of 1-3 nm, the silica/stannic oxide or the silica/antimony pentoxide mass ratio is 0.1-10, and wherein amine compounds having an M/(silica+stannic oxide) or M/(silica+antimony pentoxide) (wherein M represents an amine compound) mole ratio of 0.001- 0.08 are connected. The resulting modified cerium oxide colloid particles (C) have a cerium oxide colloid particles (A) to silica-based composite colloid particles (B) mass ratio ((A)/(B)) of 1-50.

Description

変性酸化第二セリウムコロイド粒子及びその製造方法Modified ceric oxide colloidal particles and method for producing the same
 本願発明は、4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50である変性酸化第二セリウムコロイド粒子(C)及びその水性ゾル又はその親水性有機溶媒分散ゾル並びにそれらの製造方法である。
 また、本願発明は、前記変性酸化第二セリウムコロイド粒子(C)の表面に有機珪素化合物が結合した表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾル及びその製造方法に関する。
The present invention relates to a silica-stannic oxide or silica-5 having a primary particle diameter of 1 to 3 nm, the outer surface of which is a cerium oxide colloidal particle (A) having a primary particle diameter of 4 to 60 nm. Made of antimony oxide and having a mass ratio of silica / stannic oxide or silica / antimony pentoxide of 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) ( Wherein M represents an amine compound) and is coated with a silica-based composite colloidal particle (B) to which an amine compound having a molar ratio of 0.001 to 0.08 is bonded, and the cerium oxide colloidal particle (A) Modified cerium oxide colloidal particles (C) having a mass ratio (A) / (B) of 1 to 50 with respect to the silica-based composite colloidal particles (B) and their aqueous sols or their hydrophilic organics Medium is a dispersion sol and a process for their preparation.
The present invention also provides a water solubility of 0.002 to 12 mass% of the surface-hydrophobized cerium oxide colloidal particles (D) having an organosilicon compound bonded to the surface of the modified cerium oxide colloidal particles (C). The present invention relates to a hydrophobic organic solvent-dispersed sol and a method for producing the same.
 酸化第二セリウムは高い紫外線吸収能を持ち、自動車用紫外線遮蔽硝子、日焼け防止化粧品、プラスチック用紫外線吸収コーティング組成物などに幅広く応用されている。紫外線吸収機能を付与して用いるこれらの部材は、通常可視光に対して透明であることが必要とされるため、酸化第二セリウムを適用する場合には、微粒子、特に一次粒子径が100nm以下のコロイド粒子であることが好ましい。
 酸化第二セリウムのコロイド粒子が分散されたゾルとしては、粒子径30nmの結晶質酸化第二セリウムゾルが知られている(特許文献1参照)。
 また、酸化第二セリウムゾルをプラスチック、塗料等の樹脂組成物に適用した場合に酸化第二セリウムの変質に伴う樹脂の着色現象を改良する方法として、酸化第二セリウムゾルにリン系酸化防止剤を適用する方法が提案されている(特許文献2参照)。
Cerium oxide has a high UV absorption ability and is widely applied to UV shielding glass for automobiles, sun protection cosmetics, UV absorbing coating compositions for plastics, and the like. Since these members that are used with an ultraviolet absorbing function are usually required to be transparent to visible light, when applying ceric oxide, fine particles, particularly the primary particle diameter is 100 nm or less. The colloidal particles are preferred.
As a sol in which colloidal particles of cerium oxide are dispersed, a crystalline cerium oxide sol having a particle diameter of 30 nm is known (see Patent Document 1).
In addition, when a cerium oxide sol is applied to resin compositions such as plastics and paints, a phosphorous antioxidant is applied to the cerium oxide sol as a method to improve the coloring phenomenon of the resin accompanying the alteration of the cerium oxide. Has been proposed (see Patent Document 2).
特開平1-148710号公報JP-A-1-148710 特開平7-62139号公報JP 7-62139 A
 樹脂の変色防止のために用いるリン系酸化防止剤は、樹脂組成物中に共存する各種成分の作用によって分解されやすい。特許文献2のように酸化第二セリウムゾルにリン系酸化防止剤を適用した場合には、その分解生成物によって樹脂組成物中の酸化第二セリウムゾルの分散安定性を損なうことがあり、樹脂組成物の配合が制約される欠点があった。
 また、このような有機系酸化防止剤は紫外線を吸収し自ら酸化して変質するため、その酸化防止効果は半永久とはいえず、長期間紫外線に暴露される用途では耐光性が必ずしも十分とはいえない。
The phosphorus antioxidant used for preventing discoloration of the resin is easily decomposed by the action of various components coexisting in the resin composition. When a phosphorus-based antioxidant is applied to a cerium oxide sol as in Patent Document 2, the decomposition product may impair the dispersion stability of the cerium oxide sol in the resin composition. There was a drawback that the blending of was restricted.
In addition, since such organic antioxidants absorb ultraviolet rays and oxidize and alter themselves, their antioxidant effect is not semi-permanent, and light resistance is not always sufficient for applications exposed to ultraviolet rays for a long time. I can't say that.
 本願発明では、樹脂組成物の成分により分解を起こすようなリン系酸化防止剤を用いることなく、酸化第二セリウムコロイド粒子をシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子で被覆することによって、紫外線に対する耐光性が良好な酸化第二セリウムコロイド粒子及びその水性ゾル又はその親水性有機溶媒分散ゾル若しくは表面疎水化酸化第二セリウムコロイド粒子の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルを提供できることを見出したものである。
 即ち本願発明は、第1観点として、4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50である変性酸化第二セリウムコロイド粒子(C)、
 第2観点として、前記アミン化合物が、第一級アミン、第二級アミン及び第三級アミンからなる群より選ばれる少なくとも1種の化合物である第1観点に記載の変性酸化第二セリウムコロイド粒子(C)、
 第3観点として、第1観点又は第2観点に記載の変性酸化第二セリウムコロイド粒子(C)の水性ゾル、
 第4観点として、第1観点又は第2観点に記載の変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒分散ゾル、
 第5観点として、前記親水性有機溶媒が、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコール、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルからなる群より選ばれる少なくとも1種の化合物である第4観点に記載の親水性有機溶媒分散ゾル、
 第6観点として、第1観点又は第2観点に記載の変性酸化第二セリウムコロイド粒子(C)の表面に有機珪素化合物が結合した表面疎水化酸化第二セリウムコロイド粒子(D)、
 第7観点として、第6観点に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の親水性有機溶媒分散ゾル、
 第8観点として、前記親水性有機溶媒が、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコール、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルからなる群より選ばれる少なくとも1種の化合物である第7観点に記載の親水性有機溶媒分散ゾル、
 第9観点として、第6観点に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾル、
 第10観点として、前記変性酸化第二セリウムコロイド粒子(C)に対する前記有機珪素化合物の質量比が0.01乃至0.50である第6観点に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾル、
 第11観点として、
 前記有機珪素化合物が、
一般式(I)
(R1a(R3bSi(OR24-(a+b)     (I)
(但し、R及びRは、それぞれ炭素原子数1乃至8のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至8のアルケニル基、炭素原子数6乃至8のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基若しくはシアノ基を有する有機基を表し、且つSi-C結合によりケイ素原子と結合しているものであり、R2は炭素原子数1乃至8のアルキル基若しくはアルコキシアルキル基又は炭素原子数2乃至8のアシル基を表し、a及びbはそれぞれ0、1又は2の整数を表し、a+bは0、1又は2の整数を表す。)及び/又は
一般式(II)
〔(R4cSi(OX)3-c2Y     (II)
(但し、R4は炭素原子数1乃至5のアルキル基を表し、Xは炭素原子数1乃至4のアルキル基又は炭素原子数2乃至8のアシル基を表し、Yは炭素原子数1乃至20のアルキレン基を表し、cは0又は1の整数を表す。)で表される有機珪素化合物、若しくはそれらの加水分解物からなる群より選ばれる少なくとも1種の化合物である第6観点に記載の表面疎水化酸化第二セリウムコロイド粒子(D)、
 第12観点として、前記0.002乃至12質量%の水溶解度を有する疎水性有機溶媒が、ケトン類、エステル類、炭化水素類、ハロゲン化炭化水素類及びポリオキシアルキレンジカルボン酸アルキルエステルからなる群より選ばれる少なくとも1種の化合物である第9観点乃至第11観点のいずれか1項に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾル、
 第13観点として、前記0.002乃至12質量%の水溶解度を有する疎水性有機溶媒が、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、メタクリル酸メチル、ジイソプロピルエーテル、トルエン、トリエチレングリコールジ2-エチルヘキサノエート(3GO)、トリエチレングリコールジ2-エチルブチレート(3GH)、テトラエチレングリコールジヘプタノエート(4G7)及びテトラエチレングリコールジ2-エチルヘキサノエート(4GO)からなる群より選ばれる少なくとも1種の化合物である第9観点乃至第11観点のいずれか1項に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾル。
 第14観点として、
 変性酸化第二セリウムコロイド粒子(C)の水性ゾルの製造方法であって、
(a)工程:M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0であるアミン化合物で安定化させたシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B‘)の水性ゾルを得る工程であって、シリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10となるようにスズ酸アルカリ水溶液又はアンチモン酸アルカリ水溶液とケイ酸アルカリ水溶液とを混合し、続いて該水溶液中に存在する陽イオンを除去して1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ複合体コロイド粒子又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子の水性ゾルを調製し、次に該水性ゾルにM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.10乃至1.0であるアミン化合物を添加することにより、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であるシリカ系複合コロイド粒子(B‘)を安定化させる工程、
(b)工程:変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを得る工程であって、4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)の水性ゾルと、前記(a)工程で得られたシリカ系複合コロイド粒子(B‘)の水性ゾルとを、(A)/(B‘)の質量比で1乃至50となるように混合して、該酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、前記シリカ系複合コロイド粒子(B‘)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B‘)に対する質量比(A)/(B‘)が1乃至50となる割合にする工程、
(c)工程:前記(b)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを陽イオン交換する工程であって、陽イオン交換により前記シリカ系複合コロイド粒子(C‘)に結合していたアミン化合物を除去する工程、及び
(d)工程:変性酸化第二セリウムコロイド粒子(C)の水性ゾルを得る工程であって、前記(c)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルに、前記シリカ系複合コロイド粒子(B‘)に対するM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物を添加して、前記酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50となる割合にする工程、
を含む第3観点に記載の変性酸化第二セリウムコロイド粒子(C)の水性ゾルの製造方法、
 第15観点として、前記アミン化合物が、第一級アミン、第二級アミン及び第三級アミンからなる群より選ばれる少なくとも1種の化合物である第14観点に記載の変性酸化第二セリウムコロイド粒子(C)の水性ゾルの製造方法、
 第16観点として、
 変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒分散ゾルの製造方法であって、
(a)工程:M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0であるアミン化合物で安定化させたシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B‘)の水性ゾルを得る工程であって、シリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10となるようにスズ酸アルカリ水溶液又はアンチモン酸アルカリ水溶液とケイ酸アルカリ水溶液とを混合し、続いて該水溶液中に存在する陽イオンを除去して1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ複合体コロイド粒子又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子の水性ゾルを調製し、次に該水性ゾルにM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.10乃至1.0であるアミン化合物を添加することにより、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であるシリカ系複合コロイド粒子(B‘)を安定化させる工程、
(b)工程:変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを得る工程であって、4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)の水性ゾルと、前記(a)工程で得られたシリカ系複合コロイド粒子(B‘)の水性ゾルとを、(A)/(B‘)の質量比で1乃至50となるように混合して、該酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、前記シリカ系複合コロイド粒子(B‘)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B‘)に対する質量比(A)/(B‘)が1乃至50となる割合にする工程、
(c)工程:前記(b)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを陽イオン交換する工程であって、陽イオン交換により前記シリカ系複合コロイド粒子(C‘)に結合していたアミン化合物を除去する工程、
(d)工程:変性酸化第二セリウムコロイド粒子(C)の水性ゾルを得る工程であって、前記(c)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルに、前記シリカ系複合コロイド粒子(B‘)に対するM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物を添加して、前記酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50となる割合にする工程、及び
(e)工程:前記(d)工程で得られた変性酸化第二セリウムコロイド粒子(C)の水性ゾルの分散媒を親水性有機溶媒に置換する工程、
を含む第4観点に記載の変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒分散ゾルの製造方法、
 第17観点として、
 表面疎水化酸化第二セリウムコロイド粒子(D)の親水性溶媒分散ゾルの製造方法であって、
(a)工程:M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0であるアミン化合物で安定化させたシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B‘)の水性ゾルを得る工程であって、シリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10となるようにスズ酸アルカリ水溶液又はアンチモン酸アルカリ水溶液とケイ酸アルカリ水溶液とを混合し、続いて該水溶液中に存在する陽イオンを除去して1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ複合体コロイド粒子又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子の水性ゾルを調製し、次に該水性ゾルにM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.10乃至1.0であるアミン化合物を添加することにより、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であるシリカ系複合コロイド粒子(B‘)を安定化させる工程、
(b)工程:変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを得る工程であって、4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)の水性ゾルと、前記(a)工程で得られたシリカ系複合コロイド粒子(B‘)の水性ゾルとを、(A)/(B‘)の質量比で1乃至50となるように混合して、該酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、前記シリカ系複合コロイド粒子(B‘)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B‘)に対する質量比(A)/(B‘)が1乃至50となる割合にする工程、
(c)工程:前記(b)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを陽イオン交換する工程であって、陽イオン交換により前記シリカ系複合コロイド粒子(C‘)に結合していたアミン化合物を除去する工程、
(d)工程:変性酸化第二セリウムコロイド粒子(C)の水性ゾルを得る工程であって、前記(c)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルに、前記シリカ系複合コロイド粒子(B‘)に対するM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物を添加して、前記酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50となる割合にする工程、
(e)工程:前記(d)工程で得られた変性酸化第二セリウムコロイド粒子(C)の水性ゾルの分散媒を親水性有機溶媒に置換する工程、及び
(f)工程:有機珪素化合物が変性酸化第二セリウムコロイド粒子(C)の表面に結合した表面疎水化酸化第二セリウムコロイド粒子(D)の親水性溶媒分散ゾルを得る工程であって、前記(e)工程で得られた親水性有機溶媒分散ゾルに、
一般式(I)
(R1a(R3bSi(OR24-(a+b)     (I)
(但し、R及びRは、それぞれ炭素原子数1乃至8のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至8のアルケニル基、炭素原子数6乃至8のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基若しくはシアノ基を有する有機基を表し、且つSi-C結合によりケイ素原子と結合しているものであり、R2は炭素原子数1乃至8のアルキル基若しくはアルコキシアルキル基又は炭素原子数2乃至8のアシル基を表し、a及びbはそれぞれ0、1又は2の整数を表し、a+bは0、1又は2の整数を表す。)及び/又は
一般式(II)
〔(R4cSi(OX)3-c2Y     (II)
(但し、R4は炭素原子数1乃至5のアルキル基を表し、Xは炭素原子数1乃至4のアルキル基又は炭素原子数2乃至8のアシル基を表し、Yは炭素原子数1乃至20のアルキレン基を表し、cは0又は1の整数を表す。)で表される有機珪素化合物、若しくはそれらの加水分解物からなる群より選ばれる少なくとも1種の化合物を添加して前記変性酸化第二セリウムコロイド粒子(C)に対する有機珪素化合物の質量比が0.01乃至0.5となる割合にする工程、
を含む第7観点に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の親水性有機溶媒分散ゾルの製造方法、
 第18観点として、前記アミン化合物が、第一級アミン、第二級アミン及び第三級アミンからなる群より選ばれる少なくとも1種の化合物である第16観点又は第17観点に記載の親水性有機溶媒分散ゾルの製造方法、
 第19観点として、前記親水性有機溶媒がメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、及びプロピレングリコールモノエチルエーテルからなる群より選ばれる少なくとも1種の化合物である第16観点又は第17観点に記載の親水性有機溶媒分散ゾルの製造方法、
 第20観点として、
 表面疎水化酸化第二セリウムコロイド粒子(D)の疎水性有機溶媒分散ゾルの製造方法であって、
(a)工程:M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0であるアミン化合物で安定化させたシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B‘)の水性ゾルを得る工程であって、シリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10となるようにスズ酸アルカリ水溶液又はアンチモン酸アルカリ水溶液とケイ酸アルカリ水溶液とを混合し、続いて該水溶液中に存在する陽イオンを除去して1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ複合体コロイド粒子又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子の水性ゾルを調製し、次に該水性ゾルにM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.10乃至1.0であるアミン化合物を添加することにより、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であるシリカ系複合コロイド粒子(B‘)を安定化させる工程、
(b)工程:変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを得る工程であって、4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)の水性ゾルと、前記(a)工程で得られたシリカ系複合コロイド粒子(B‘)の水性ゾルとを、(A)/(B‘)の質量比で1乃至50となるように混合して、該酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、前記シリカ系複合コロイド粒子(B‘)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B‘)に対する質量比(A)/(B‘)が1乃至50となる割合にする工程、
(c)工程:前記(b)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを陽イオン交換する工程であって、陽イオン交換により前記シリカ系複合コロイド粒子(C‘)に結合していたアミン化合物を除去する工程、
(d)工程:変性酸化第二セリウムコロイド粒子(C)の水性ゾルを得る工程であって、前記(c)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルに、前記シリカ系複合コロイド粒子(B‘)に対するM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物を添加して、前記酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50となる割合にする工程、
(e)工程:前記(d)工程で得られた変性酸化第二セリウムコロイド粒子(C)の水性ゾルの分散媒を親水性有機溶媒に置換する工程、
(f)工程:有機珪素化合物が変性酸化第二セリウムコロイド粒子(C)の表面に結合した表面疎水化酸化第二セリウムコロイド粒子(D)の親水性溶媒分散ゾルを得る工程であって、前記(e)工程で得られた親水性有機溶媒分散ゾルに、
一般式(I)
(R1a(R3bSi(OR24-(a+b)     (I)
(但し、R及びRは、それぞれ炭素原子数1乃至8のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至8のアルケニル基、炭素原子数6乃至8のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基若しくはシアノ基を有する有機基を表し、且つSi-C結合によりケイ素原子と結合しているものであり、R2は炭素原子数1乃至8のアルキル基若しくはアルコキシアルキル基又は炭素原子数2乃至8のアシル基を表し、a及びbはそれぞれ0、1又は2の整数を表し、a+bは0、1又は2の整数を表す。)及び/又は
一般式(II)
〔(R4cSi(OX)3-c2Y     (II)
(但し、R4は炭素原子数1乃至5のアルキル基を表し、Xは炭素原子数1乃至4のアルキル基又は炭素原子数2乃至8のアシル基を表し、Yは炭素原子数1乃至20のアルキレン基を表し、cは0又は1の整数を表す。)で表される有機珪素化合物、若しくはそれらの加水分解物からなる群より選ばれる少なくとも1種の化合物を添加して前記変性酸化第二セリウムコロイド粒子(C)に対する有機珪素化合物の質量比が0.01乃至0.5となる割合にする工程、及び
(g)工程:前記(f)工程で得られた表面疎水化酸化第二セリウムコロイド粒子(D)の親水性溶媒分散ゾルの分散媒を0.002乃至12質量%の水溶解度を有する疎水性有機溶媒に置換する工程、
を含む第9観点乃至第11観点のいずれか1項に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒ゾルの製造方法、
 第21観点として、前記アミン化合物が、第一級アミン、第二アミン級及び第三級アミンからなる群より選ばれる少なくとも1種の化合物である第20観点に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルの製造方法、
 第22観点として、前記親水性有機溶媒が、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコール、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルからなる群より選ばれる少なくとも1種の化合物であって、且つ前記0.002乃至12質量%の水溶解度を有する疎水性有機溶媒が、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、メタクリル酸メチル、ジイソプロピルエーテル、トルエン、トリエチレングリコールジ2-エチルヘキサノエート(3GO)、トリエチレングリコールジ2-エチルブチレート(3GH)、テトラエチレングリコールジヘプタノエート(4G7)及びテトラエチレングリコールジ2-エチルヘキサノエート(4GO)からなる群より選ばれる少なくとも1種の化合物である第20観点又は第21観点に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルの製造方法、である。
In the present invention, a silica-based composite colloid comprising cerium oxide colloidal particles composed of silica-stannic oxide or silica-antimony pentoxide without using a phosphorus-based antioxidant that causes decomposition by the components of the resin composition. By coating with particles, cerium oxide colloidal particles having good light resistance to ultraviolet rays and their aqueous sol or hydrophilic organic solvent-dispersed sol or surface hydrophobized cerium oxide colloidal particles of 0.002 to 12% by mass It has been found that a hydrophobic organic solvent-dispersed sol having a water solubility of 1 to 5 can be provided.
That is, the present invention provides, as a first aspect, silica-oxide oxide having a cerium oxide colloidal particle (A) having a primary particle diameter of 4 to 60 nm as a nucleus and an outer surface thereof having a primary particle diameter of 1 to 3 nm. Composed of distinous or silica-antimony pentoxide and having a mass ratio of silica / stannic oxide or silica / antimony pentoxide of 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + Antimony pentoxide) (wherein M represents an amine compound) coated with silica-based composite colloidal particles (B) bound with an amine compound having a molar ratio of 0.001 to 0.08, and the ceric oxide Modified cerium oxide colloidal particles (C) having a mass ratio (A) / (B) of 1 to 50 of the colloidal particles (A) to the silica-based composite colloidal particles (B),
As a second aspect, the modified ceric oxide colloidal particles according to the first aspect, wherein the amine compound is at least one compound selected from the group consisting of primary amines, secondary amines and tertiary amines. (C),
As a third aspect, an aqueous sol of the modified ceric oxide colloidal particles (C) according to the first aspect or the second aspect,
As a fourth aspect, a hydrophilic organic solvent-dispersed sol of the modified ceric oxide colloidal particles (C) according to the first aspect or the second aspect,
As a fifth aspect, the hydrophilic organic solvent is methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol mono The hydrophilic organic solvent-dispersed sol according to the fourth aspect, which is at least one compound selected from the group consisting of ethyl ether, dipropylene glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether,
As a sixth aspect, surface hydrophobized cerium oxide colloidal particles (D) in which an organosilicon compound is bonded to the surface of the modified cerium oxide colloidal particles (C) described in the first aspect or the second aspect,
As a seventh aspect, a hydrophilic organic solvent-dispersed sol of surface hydrophobized ceric oxide colloidal particles (D) according to the sixth aspect,
As an eighth aspect, the hydrophilic organic solvent is methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol mono The hydrophilic organic solvent-dispersed sol according to the seventh aspect, which is at least one compound selected from the group consisting of ethyl ether, dipropylene glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether,
As a ninth aspect, a hydrophobic organic solvent-dispersed sol having a water solubility of 0.002 to 12% by mass of the surface-hydrophobized ceric oxide colloidal particles (D) according to the sixth aspect,
As a tenth aspect, the surface-hydrophobized cerium oxide colloidal particles (6) according to the sixth aspect, wherein the mass ratio of the organosilicon compound to the modified cerium oxide colloidal particles (C) is 0.01 to 0.50. D) a hydrophobic organic solvent-dispersed sol having a water solubility of 0.002 to 12% by mass,
As an eleventh aspect,
The organosilicon compound is
Formula (I)
(R 1 ) a (R Three ) b Si (OR 2 ) 4- (a + b) (I)
(However, R 1 And R 3 Each represents an alkyl group or halogenated alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an aryl group or halogenated aryl group having 6 to 8 carbon atoms, or an epoxy group, It represents an organic group having an acryloyl group, a methacryloyl group, a mercapto group, an amino group or a cyano group, and is bonded to a silicon atom by a Si—C bond. 2 Represents an alkyl group having 1 to 8 carbon atoms or an alkoxyalkyl group or an acyl group having 2 to 8 carbon atoms, a and b each represents an integer of 0, 1 or 2, and a + b is 0, 1 or 2 Represents an integer. ) And / or
Formula (II)
[(R Four ) c Si (OX) 3-c ] 2 Y (II)
(However, R Four Represents an alkyl group having 1 to 5 carbon atoms, X represents an alkyl group having 1 to 4 carbon atoms or an acyl group having 2 to 8 carbon atoms, and Y represents an alkylene group having 1 to 20 carbon atoms. , C represents an integer of 0 or 1. The surface hydrophobized cerium oxide colloidal particles (D) according to the sixth aspect, which are at least one compound selected from the group consisting of organic silicon compounds represented by the following formula:
As a twelfth aspect, the hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass comprises a ketone, an ester, a hydrocarbon, a halogenated hydrocarbon, and a polyoxyalkylene dicarboxylic acid alkyl ester. It has a water solubility of 0.002 to 12 mass% of the surface-hydrophobized cerium oxide colloidal particles (D) according to any one of the ninth to eleventh aspects, which is at least one compound selected from the above. Hydrophobic organic solvent dispersion sol,
As a thirteenth aspect, the hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass is methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, methyl methacrylate, diisopropyl ether, toluene, triethylene glycol. It consists of di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH), tetraethylene glycol diheptanoate (4G7) and tetraethylene glycol di-2-ethylhexanoate (4GO). The water solubility of 0.002 to 12 mass% of the surface hydrophobized ceric oxide colloidal particles (D) according to any one of the ninth to eleventh aspects, which is at least one compound selected from the group Hydrophobic organic solvent dispersion sol having.
As the 14th viewpoint,
A method for producing an aqueous sol of modified cerium oxide colloidal particles (C) comprising:
(A) Step: An amine compound having a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 1.0. A step of obtaining an aqueous sol of silica-based composite colloidal particles (B ′) comprising stabilized silica-stannic oxide or silica-antimony pentoxide, comprising silica / stannic oxide or silica / antimony pentoxide First, an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm. An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Rica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10 The step of stabilizing B ′),
(B) step: a step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C ′), wherein the aqueous sol of ceric oxide colloidal particles (A) having a primary particle diameter of 4 to 60 nm, The aqueous sol of silica-based composite colloidal particles (B ′) obtained in the step (a) is mixed so that the mass ratio of (A) / (B ′) is 1 to 50, and the second oxidized oxide is mixed. The cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated. ) A ratio of mass ratio (A) / (B ′) to 1 to 50,
Step (c): A step of cation exchange of the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in the step (b), wherein the silica-based composite colloidal particles (C Removing the amine compound bound to '); and
Step (d): A step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C), wherein the aqueous sol of modified ceric oxide colloidal particles (C ′) obtained in the step (c) The molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) to the silica-based composite colloidal particles (B ′) is 0.001 to 0.00. A silica-stannic oxide or silica-antimony pentoxide having a primary particle size of 1 to 3 nm with the addition of an amine compound of 08 and using the cerium oxide colloidal particles (A) as nuclei And the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M The silica-based composite colloidal particles (B) coated with silica-based composite colloidal particles (B) to which an amine compound having a molar ratio of 0.001 to 0.08 is bonded. A step of adjusting the mass ratio (A) / (B) to 1 to 50 with respect to the composite colloidal particles (B);
A method for producing an aqueous sol of the modified ceric oxide colloidal particles (C) according to the third aspect, comprising:
As a fifteenth aspect, the modified ceric oxide colloidal particles according to the fourteenth aspect, wherein the amine compound is at least one compound selected from the group consisting of a primary amine, a secondary amine, and a tertiary amine. (C) a method for producing an aqueous sol,
As the 16th viewpoint,
A method for producing a hydrophilic organic solvent-dispersed sol of modified cerium oxide colloidal particles (C), comprising:
(A) Step: An amine compound having a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 1.0. A step of obtaining an aqueous sol of silica-based composite colloidal particles (B ′) comprising stabilized silica-stannic oxide or silica-antimony pentoxide, comprising silica / stannic oxide or silica / antimony pentoxide First, an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm. An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Rica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10 The step of stabilizing B ′),
(B) step: a step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C ′), wherein the aqueous sol of ceric oxide colloidal particles (A) having a primary particle diameter of 4 to 60 nm, The aqueous sol of silica-based composite colloidal particles (B ′) obtained in the step (a) is mixed so that the mass ratio of (A) / (B ′) is 1 to 50, and the second oxidized oxide is mixed. The cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated. ) A ratio of mass ratio (A) / (B ′) to 1 to 50,
Step (c): A step of cation exchange of the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in the step (b), wherein the silica-based composite colloidal particles (C ') The step of removing the amine compound bound to
Step (d): A step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C), wherein the aqueous sol of modified ceric oxide colloidal particles (C ′) obtained in the step (c) The molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) to the silica-based composite colloidal particles (B ′) is 0.001 to 0.00. A silica-stannic oxide or silica-antimony pentoxide having a primary particle size of 1 to 3 nm with the addition of an amine compound of 08 and using the cerium oxide colloidal particles (A) as nuclei And the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M The silica-based composite colloidal particles (B) coated with silica-based composite colloidal particles (B) to which an amine compound having a molar ratio of 0.001 to 0.08 is bonded. A step of adjusting the mass ratio (A) / (B) to 1 to 50 with respect to the composite colloidal particles (B), and
(E) step: a step of replacing the dispersion medium of the aqueous sol of the modified cerium oxide colloidal particles (C) obtained in the step (d) with a hydrophilic organic solvent,
A method for producing a hydrophilic organic solvent-dispersed sol of the modified ceric oxide colloidal particles (C) according to the fourth aspect, comprising:
As the 17th viewpoint,
A method for producing a hydrophilic solvent-dispersed sol of surface hydrophobized ceric oxide colloidal particles (D),
(A) Step: An amine compound having a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 1.0. A step of obtaining an aqueous sol of silica-based composite colloidal particles (B ′) comprising stabilized silica-stannic oxide or silica-antimony pentoxide, comprising silica / stannic oxide or silica / antimony pentoxide First, an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm. An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Rica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10 The step of stabilizing B ′),
(B) step: a step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C ′), wherein the aqueous sol of ceric oxide colloidal particles (A) having a primary particle diameter of 4 to 60 nm, The aqueous sol of silica-based composite colloidal particles (B ′) obtained in the step (a) is mixed so that the mass ratio of (A) / (B ′) is 1 to 50, and the second oxidized oxide is mixed. The cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated. ) A ratio of mass ratio (A) / (B ′) to 1 to 50,
Step (c): A step of cation exchange of the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in the step (b), wherein the silica-based composite colloidal particles (C ') The step of removing the amine compound bound to
Step (d): A step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C), wherein the aqueous sol of modified ceric oxide colloidal particles (C ′) obtained in the step (c) The molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) to the silica-based composite colloidal particles (B ′) is 0.001 to 0.00. A silica-stannic oxide or silica-antimony pentoxide having a primary particle size of 1 to 3 nm with the addition of an amine compound of 08 and using the cerium oxide colloidal particles (A) as nuclei And the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M The silica-based composite colloidal particles (B) coated with silica-based composite colloidal particles (B) to which an amine compound having a molar ratio of 0.001 to 0.08 is bonded. A step of adjusting the mass ratio (A) / (B) to 1 to 50 with respect to the composite colloidal particles (B);
(E) step: replacing the dispersion medium of the aqueous sol of the modified cerium oxide colloidal particles (C) obtained in the step (d) with a hydrophilic organic solvent; and
(F) Step: A step of obtaining a hydrophilic solvent-dispersed sol of surface-hydrophobized cerium oxide colloidal particles (D) in which an organosilicon compound is bonded to the surface of the modified cerium oxide colloidal particles (C), (E) To the hydrophilic organic solvent dispersion sol obtained in the step,
Formula (I)
(R 1 ) a (R Three ) b Si (OR 2 ) 4- (a + b) (I)
(However, R 1 And R 3 Each represents an alkyl group or halogenated alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an aryl group or halogenated aryl group having 6 to 8 carbon atoms, or an epoxy group, It represents an organic group having an acryloyl group, a methacryloyl group, a mercapto group, an amino group or a cyano group, and is bonded to a silicon atom by a Si—C bond. 2 Represents an alkyl group having 1 to 8 carbon atoms or an alkoxyalkyl group or an acyl group having 2 to 8 carbon atoms, a and b each represents an integer of 0, 1 or 2, and a + b is 0, 1 or 2 Represents an integer. ) And / or
Formula (II)
[(R Four ) c Si (OX) 3-c ] 2 Y (II)
(However, R Four Represents an alkyl group having 1 to 5 carbon atoms, X represents an alkyl group having 1 to 4 carbon atoms or an acyl group having 2 to 8 carbon atoms, and Y represents an alkylene group having 1 to 20 carbon atoms. , C represents an integer of 0 or 1. ) Or at least one compound selected from the group consisting of hydrolysates thereof, and the mass ratio of the organosilicon compound to the modified ceric oxide colloidal particles (C) is 0. A step of making a ratio of .01 to 0.5;
A method for producing a hydrophilic organic solvent-dispersed sol of surface-hydrophobized cerium oxide colloidal particles (D) according to the seventh aspect, comprising:
An eighteenth aspect is the hydrophilic organic according to the sixteenth aspect or the seventeenth aspect, in which the amine compound is at least one compound selected from the group consisting of a primary amine, a secondary amine, and a tertiary amine. Method for producing solvent-dispersed sol,
As a nineteenth aspect, the hydrophilic organic solvent is methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl. The method for producing a hydrophilic organic solvent-dispersed sol according to the sixteenth aspect or the seventeenth aspect, which is at least one compound selected from the group consisting of ether, dipropylene glycol, propylene glycol monomethyl ether, and propylene glycol monoethyl ether,
As a 20th viewpoint,
A method for producing a hydrophobic organic solvent-dispersed sol of surface-hydrophobized cerium oxide colloidal particles (D) comprising:
(A) Step: An amine compound having a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 1.0. A step of obtaining an aqueous sol of silica-based composite colloidal particles (B ′) comprising stabilized silica-stannic oxide or silica-antimony pentoxide, comprising silica / stannic oxide or silica / antimony pentoxide First, an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm. An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Rica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10 The step of stabilizing B ′),
(B) step: a step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C ′), wherein the aqueous sol of ceric oxide colloidal particles (A) having a primary particle diameter of 4 to 60 nm, The aqueous sol of silica-based composite colloidal particles (B ′) obtained in the step (a) is mixed so that the mass ratio of (A) / (B ′) is 1 to 50, and the second oxidized oxide is mixed. The cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated. ) A ratio of mass ratio (A) / (B ′) to 1 to 50,
Step (c): A step of cation exchange of the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in the step (b), wherein the silica-based composite colloidal particles (C ') The step of removing the amine compound bound to
Step (d): A step of obtaining an aqueous sol of the modified cerium oxide colloidal particles (C), wherein the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in the step (c) The molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) to the silica-based composite colloidal particles (B ′) is 0.001 to 0.00. A silica-stannic oxide or silica-antimony pentoxide having a primary particle diameter of 1 to 3 nm with the addition of an amine compound of 08 and using the cerium oxide colloidal particles (A) as nuclei And the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (provided that M The silica-based composite colloidal particles (B) coated with silica-based composite colloidal particles (B) to which an amine compound having a molar ratio of 0.001 to 0.08 is bonded. A step of adjusting the mass ratio (A) / (B) to 1 to 50 with respect to the composite colloidal particles (B);
(E) step: a step of replacing the dispersion medium of the aqueous sol of the modified cerium oxide colloidal particles (C) obtained in the step (d) with a hydrophilic organic solvent,
(F) Step: A step of obtaining a hydrophilic solvent-dispersed sol of surface-hydrophobized cerium oxide colloidal particles (D) in which an organosilicon compound is bonded to the surface of the modified cerium oxide colloidal particles (C), (E) To the hydrophilic organic solvent dispersion sol obtained in the step,
Formula (I)
(R 1 ) a (R Three ) b Si (OR 2 ) 4- (a + b) (I)
(However, R 1 And R 3 Each represents an alkyl group or halogenated alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an aryl group or halogenated aryl group having 6 to 8 carbon atoms, or an epoxy group, It represents an organic group having an acryloyl group, a methacryloyl group, a mercapto group, an amino group or a cyano group, and is bonded to a silicon atom by a Si—C bond. 2 Represents an alkyl group having 1 to 8 carbon atoms or an alkoxyalkyl group or an acyl group having 2 to 8 carbon atoms, a and b each represents an integer of 0, 1 or 2, and a + b is 0, 1 or 2 Represents an integer. ) And / or
Formula (II)
[(R Four ) c Si (OX) 3-c ] 2 Y (II)
(However, R Four Represents an alkyl group having 1 to 5 carbon atoms, X represents an alkyl group having 1 to 4 carbon atoms or an acyl group having 2 to 8 carbon atoms, and Y represents an alkylene group having 1 to 20 carbon atoms. , C represents an integer of 0 or 1. ) Or at least one compound selected from the group consisting of hydrolysates thereof, and the mass ratio of the organosilicon compound to the modified ceric oxide colloidal particles (C) is 0. A step of making a ratio of .01 to 0.5; and
(G) Step: Hydrophobic having a water solubility of 0.002 to 12% by mass of the dispersion medium of the hydrophilic solvent-dispersed sol of the surface hydrophobized ceric oxide colloidal particles (D) obtained in the step (f) Substituting with an organic solvent,
A method for producing a hydrophobic organic solvent sol having a water solubility of 0.002 to 12% by mass of the surface-hydrophobized ceric oxide colloidal particles (D) according to any one of the ninth aspect to the eleventh aspect ,
As a twenty-first aspect, the surface hydrophobized ceric oxide according to the twentieth aspect, in which the amine compound is at least one compound selected from the group consisting of a primary amine, a secondary amine class, and a tertiary amine. A method for producing a hydrophobic organic solvent-dispersed sol having a water solubility of 0.002 to 12 mass% of the colloidal particles (D),
As a twenty-second aspect, the hydrophilic organic solvent is methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol mono Hydrophobic organic solvent which is at least one compound selected from the group consisting of ethyl ether, dipropylene glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether, and has a water solubility of 0.002 to 12% by mass Is methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, methyl methacrylate, Isopropyl ether, toluene, triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH), tetraethylene glycol diheptanoate (4G7) and tetraethylene glycol di-2-ethyl 0.002 to 12% by mass of the surface-hydrophobized ceric oxide colloidal particles (D) according to the twentieth aspect or the twenty-first aspect, which is at least one compound selected from the group consisting of hexanoate (4GO) A method for producing a hydrophobic organic solvent-dispersed sol having water solubility.
 本願発明の4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50である変性酸化第二セリウムコロイド粒子(C)は、耐光性に優れており、無機系紫外線吸収剤として酸化第二セリウムの優れた特性を発揮するものである。
 また、前記変性酸化第二セリウムコロイド粒子(C)の水性ゾル又は親水性有機溶媒分散ゾルは各種親水性樹脂との相溶性が良好であり、耐光性に優れた樹脂組成物を得ることができる。
 さらに、前記変性酸化第二セリウムコロイド粒子(C)の表面に有機珪素化合物が結合した表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルは、各種モノマー又は樹脂との相溶性が良好であり、各種モノマーに紫外線吸収能を付与し、また耐光性に優れた樹脂組成物を得ることができる。
The cerium oxide colloidal particles (A) having a primary particle diameter of 4 to 60 nm according to the present invention are used as a core, and the outer surface thereof is silica-stannic oxide or silica-pentoxide having a primary particle diameter of 1 to 3 nm. Made of antimony and having a mass ratio of silica / stannic oxide or silica / antimony pentoxide of 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (provided that M represents an amine compound) and is coated with silica-based composite colloidal particles (B) bound with an amine compound having a molar ratio of 0.001 to 0.08, and the cerium oxide colloidal particles (A) The modified cerium oxide colloidal particles (C) having a mass ratio (A) / (B) of 1 to 50 with respect to the silica-based composite colloidal particles (B) have excellent light resistance, and inorganic ultraviolet rays. In which it exhibits excellent characteristics of ceric oxide as adsorbents.
Moreover, the aqueous sol or hydrophilic organic solvent dispersion sol of the modified ceric oxide colloidal particles (C) has good compatibility with various hydrophilic resins, and a resin composition excellent in light resistance can be obtained. .
Further, the hydrophobic organic compound having a water solubility of 0.002 to 12% by mass of the surface-hydrophobized cerium oxide colloidal particles (D) having an organosilicon compound bonded to the surface of the modified cerium oxide colloidal particles (C). The solvent-dispersed sol has good compatibility with various monomers or resins, can impart a UV-absorbing ability to various monomers, and can obtain a resin composition excellent in light resistance.
 以下、本願発明の好適な実施形態について説明する。
 本願発明は、4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50である変性酸化第二セリウムコロイド粒子(C)である。この変性酸化第二セリウムコロイド粒子(C)の一次粒子径は5乃至70nmであり、透過型電子顕微鏡観察により測定することができる。
Hereinafter, preferred embodiments of the present invention will be described.
The present invention relates to a silica-stannic oxide or silica-5 having a primary particle diameter of 1 to 3 nm, the outer surface of which is a cerium oxide colloidal particle (A) having a primary particle diameter of 4 to 60 nm. Made of antimony oxide and having a mass ratio of silica / stannic oxide or silica / antimony pentoxide of 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) ( Wherein M represents an amine compound) and is coated with a silica-based composite colloidal particle (B) to which an amine compound having a molar ratio of 0.001 to 0.08 is bonded, and the cerium oxide colloidal particle (A) The modified ceric oxide colloidal particles (C) having a mass ratio (A) / (B) of 1 to 50 with respect to the silica-based composite colloidal particles (B). The primary particle diameter of the modified cerium oxide colloidal particles (C) is 5 to 70 nm, and can be measured by observation with a transmission electron microscope.
 本願発明において、核となる酸化第二セリウムコロイド粒子(A)は、その一次粒子径が4乃至60nmである。一次粒子径は透過型電子顕微鏡観察により測定することができる。
 この核となる酸化第二セリウムコロイド粒子(A)は、公知の方法で製造することができる。例えば、不活性ガス雰囲気下に水性媒体中でセリウム塩とアルカリ性物質とを反応させて水酸化セリウム懸濁液を生成した後、該懸濁液に大気圧下で10乃至95℃の温度で酸素又は酸素を含有するガスを吹き込んで酸化させることにより酸化第二セリウムコロイド粒子の水性ゾルとして得る方法、又は第4級アンモニウムの炭酸塩を含む水性媒体中で炭酸セリウムと過酸化水素を反応させ、60乃至110℃で加熱する工程と、110乃至250℃で水熱処理を行う工程を経ることにより、酸化第二セリウムコロイド粒子の水性ゾルとして得る方法が挙げられる。
 本願発明で用いられる酸化第二セリウムコロイド粒子(A)の水性ゾルとしては、pH3乃至11の範囲で用いることができ、好ましくはpH8乃至11、より好ましくはpH9乃至10である。
In the present invention, the cerium oxide colloidal particles (A) serving as nuclei have a primary particle diameter of 4 to 60 nm. The primary particle diameter can be measured by observation with a transmission electron microscope.
The cerium oxide colloidal particles (A) serving as nuclei can be produced by a known method. For example, after reacting a cerium salt with an alkaline substance in an aqueous medium under an inert gas atmosphere to form a cerium hydroxide suspension, the suspension is subjected to oxygen at a temperature of 10 to 95 ° C. under atmospheric pressure. Alternatively, a method of obtaining an aqueous sol of colloidal cerium oxide particles by injecting a gas containing oxygen to oxidize, or reacting cerium carbonate and hydrogen peroxide in an aqueous medium containing a quaternary ammonium carbonate, A method of obtaining an aqueous sol of ceric oxide colloidal particles through a step of heating at 60 to 110 ° C. and a step of hydrothermal treatment at 110 to 250 ° C. can be mentioned.
The aqueous sol of the cerium oxide colloidal particles (A) used in the present invention can be used in the range of pH 3 to 11, preferably pH 8 to 11, more preferably pH 9 to 10.
 核となる酸化第二セリウムコロイド粒子(A)の表面を被覆するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B)は、その一次粒子径が透過型電子顕微鏡観察において1乃至3nmであり、且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であって、M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したものである。
 前記シリカ系複合コロイド粒子(B)は、その前駆体として、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0であるアミン化合物で安定化されたシリカ系複合コロイド粒子(B‘)の水性ゾルが作製される。そして、本願発明の変性酸化第二セリウムコロイド粒子(C)は、この水性ゾルが前記酸化第二セリウムコロイド粒子(A)の水性ゾルに添加され、前記酸化第二セリウムコロイド粒子(A)の表面に前記シリカ系複合コロイド粒子(B‘)が被覆された後に、陽イオン交換により安定化のためのアミン化合物が除去され、続いて前記変性酸化第二セリウムコロイド粒子(C)の安定化に適したアミン化合物をその表面に結合させることにより得られる。
Silica-based composite colloidal particles (B) made of silica-stannic oxide or silica-antimony pentoxide covering the surface of the core cerium oxide colloidal particles (A) have a primary particle diameter of a transmission electron microscope. Observation is 1 to 3 nm, and the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10, and M / (silica + stannic oxide) or M / (silica + Antimony pentoxide) (where M represents an amine compound) is an amine compound having a molar ratio of 0.001 to 0.08.
The silica-based composite colloidal particles (B) are composed of silica-stannic oxide or silica-antimony pentoxide having a primary particle size of 1 to 3 nm as a precursor thereof, and silica / stannic oxide or silica / penta The mass ratio of antimony oxide is 0.1 to 10, and the molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1. An aqueous sol of silica-based composite colloidal particles (B ′) stabilized with an amine compound of 1 to 1.0 is produced. The modified cerium oxide colloidal particles (C) of the present invention are obtained by adding the aqueous sol to the aqueous sol of the cerium oxide colloidal particles (A), and the surface of the cerium oxide colloidal particles (A). After the silica-based composite colloidal particles (B ′) are coated on the surface, the amine compound for stabilization is removed by cation exchange, and then suitable for stabilizing the modified cerium oxide colloidal particles (C). It is obtained by binding the amine compound to the surface.
 前記変性酸化第二セリウムコロイド粒子(C)の安定化に適したアミン化合物の量は、M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比として0.001乃至0.08である。前記シリカ系複合コロイド粒子(B)に結合するアミン化合物の量が前記M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)のモル比として0.001未満では、本願発明の変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒分散ゾル又は表面疎水化酸化第二セリウムコロイド粒子(D)の0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルの分散安定性が不十分となるため好ましくない。また、前記M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)のモル比として0.08を超える場合は、前記表面疎水化酸化第二セリウムコロイド粒子(D)の0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルを得る際に、上記一般式(I)及び/又は一般式(II)で表される有機珪素化合物の前記変性酸化第二セリウムコロイド粒子(C)表面への結合の妨げになるため好ましくない。 The amount of the amine compound suitable for stabilizing the modified cerium oxide colloidal particles (C) is M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M is an amine compound). The molar ratio is 0.001 to 0.08. When the amount of the amine compound bound to the silica-based composite colloidal particles (B) is less than 0.001 as the molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide), the present invention Hydrophobic organic solvent dispersion sol of modified cerium oxide colloidal particles (C) or hydrophobic organic solvent dispersion sol having a water solubility of 0.05 to 12% by mass of surface hydrophobized cerium oxide colloidal particles (D) This is not preferable because of insufficient dispersion stability. Further, when the molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) exceeds 0.08, 0 of the surface hydrophobized cerium oxide colloidal particles (D). When obtaining a hydrophobic organic solvent-dispersed sol having a water solubility of 0.05 to 12% by mass, the modified cerium oxide of the organosilicon compound represented by the general formula (I) and / or the general formula (II) is used. This is not preferable because it hinders binding to the surface of the colloidal particles (C).
 前記シリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B‘)の水性ゾルは、公知の方法で製造することができる(例えば特公昭50-40119号公報等)。例えば、ケイ酸アルカリ水溶液とスズ酸アルカリ水溶液又はアンチモン酸アルカリ水溶液とを混合した後、陽イオン交換樹脂により陽イオンを除去し、その後アミン化合物を添加することにより得ることができる。
 アミン化合物は、シリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B‘)の表面に吸着するものの他、水性ゾルの分散媒中に溶解して存在することにより、該コロイド粒子(B‘)の分散安定性を保持させるものと推定される。
 上記ケイ酸アルカリ水溶液とスズ酸アルカリ水溶液又はアンチモン酸アルカリ水溶液とを混合した後、陽イオン交換樹脂により陽イオンを除去して得られるコロイド溶液は、アミン化合物を加えない又はアミン化合物の添加量が、M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比として0.1未満では、数時間の放置により安定性を失いゲル化してしまうため、使用することができない。アミン化合物の添加量が、M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比として0.1乃至1.0である場合は、上記シリカ系複合コロイド粒子(B‘)の水性ゾルの分散安定性を保持するのに十分な量である。アミン化合物の添加量が、M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比として1.0を超えてもアミン化合物が過剰に存在するだけで効率的ではない。
The aqueous sol of silica-based composite colloidal particles (B ′) composed of silica-stannic oxide or silica-antimony pentoxide can be produced by a known method (for example, Japanese Patent Publication No. 50-40119). For example, it can be obtained by mixing an alkali silicate aqueous solution with an alkali stannate aqueous solution or an alkali antimonate aqueous solution, then removing the cation with a cation exchange resin, and then adding an amine compound.
The amine compound is adsorbed on the surface of the silica-based composite colloidal particles (B ′) composed of silica-stannic oxide or silica-antimony pentoxide, and also present by being dissolved in an aqueous sol dispersion medium. It is presumed that the dispersion stability of the colloidal particles (B ′) is maintained.
The colloidal solution obtained by mixing the alkali silicate aqueous solution and the alkali stannate aqueous solution or the alkali antimonate aqueous solution and then removing the cation with a cation exchange resin does not add an amine compound or the amount of the amine compound added. When the molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is less than 0.1, the gel loses stability upon standing for several hours. Can not be used. When the addition amount of the amine compound is 0.1 to 1.0 as a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound). Is an amount sufficient to maintain the dispersion stability of the aqueous sol of the silica-based composite colloidal particles (B ′). Even if the addition amount of the amine compound exceeds 1.0 as the molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound), the amine compound It is not efficient just to exist in excess.
 前記ケイ酸アルカリ水溶液としては、ケイ酸ナトリウム水溶液、ケイ酸カリウム水溶液を用いることができる。
 前記スズ酸アルカリ水溶液としては、好ましくはスズ酸ナトリウム水溶液を用いることができる。
 前記アンチモン酸アルカリ水溶液としては、好ましくはアンチモン酸カリウム水溶液を用いることができる。
As the alkali silicate aqueous solution, a sodium silicate aqueous solution or a potassium silicate aqueous solution can be used.
As the alkali stannate aqueous solution, a sodium stannate aqueous solution can be preferably used.
As the alkali antimonate aqueous solution, a potassium antimonate aqueous solution is preferably used.
 本願発明に用いられるアミン化合物としては、第一級アミン、第二級アミン及び第三級アミンからなる群より選ばれる少なくとも1種の化合物を用いることができる。
 第一級アミンとしては、例えば、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン、アミルアミン、アリルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン及びシクロヘキシルアミンが挙げられる。
 第二級アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジイソブチルアミン、N-エチル-1,2-ジメチルプロピルアミン、ジアミルアミン及びジアリルアミンが挙げられる。
 第三級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリアミルアミン及びトリアリルアミンが挙げられる。
As the amine compound used in the present invention, at least one compound selected from the group consisting of primary amines, secondary amines and tertiary amines can be used.
Examples of primary amines include methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, amylamine, allylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cyclopropylamine, cyclopropylamine, Examples include butylamine, cyclopentylamine and cyclohexylamine.
Examples of the secondary amine include dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diisobutylamine, N-ethyl-1,2-dimethylpropylamine, diamylamine and diallylamine.
Examples of the tertiary amine include trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine, and triallylamine.
 本願発明の変性酸化第二セリウムコロイド粒子(C)の水性ゾルは、前記酸化第二セリウムコロイド粒子(A)の水性ゾルと、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0であるアミン化合物で安定化されたシリカ系複合コロイド粒子(B‘)の水性ゾルとを、質量比(A)/(B‘)が1乃至50となるように混合して得られる変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを得た後、該水性ゾルを陽イオン交換によりアミン化合物を除去し、その後、前記シリカ系複合コロイド粒子(B‘)に対するM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物を添加することにより得ることができる。 The aqueous sol of the modified cerium oxide colloidal particles (C) of the present invention includes an aqueous sol of the cerium oxide colloidal particles (A) and silica-stannic oxide or silica having a primary particle diameter of 1 to 3 nm. -Consisting of antimony pentoxide and having a mass ratio of silica / stannic oxide or silica / antimony pentoxide of 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) ) (Wherein M represents an amine compound) an aqueous sol of silica-based composite colloidal particles (B ′) stabilized with an amine compound having a molar ratio of 0.1 to 1.0, and a mass ratio (A) After obtaining an aqueous sol of modified cerium oxide colloidal particles (C ′) obtained by mixing so that / B (B ′) is 1 to 50, the amine compound is removed from the aqueous sol by cation exchange. , That Thereafter, the molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) to the silica-based composite colloidal particles (B ′) is 0.001 to It can be obtained by adding an amine compound that is 0.08.
 前記変性酸化第二セリウムコロイド粒子(C)の一次粒子径は5乃至70nmであり、透過型電子顕微鏡観察により測定することができる。また、動的光散乱法による平均粒子径は10乃至100nmである。変性酸化第二セリウムコロイド粒子(C)の水性ゾルの固形分濃度は、全金属酸化物濃度として0.5乃至50質量%、好ましくは5乃至50質量%である。水性ゾルの固形分濃度は必要に応じて50質量%よりも高くすることができる。 The primary particle diameter of the modified cerium oxide colloidal particles (C) is 5 to 70 nm and can be measured by observation with a transmission electron microscope. The average particle size by dynamic light scattering method is 10 to 100 nm. The solid content concentration of the aqueous sol of the modified ceric oxide colloidal particles (C) is 0.5 to 50% by mass, preferably 5 to 50% by mass as the total metal oxide concentration. The solid content concentration of the aqueous sol can be higher than 50% by mass as required.
 本願発明の変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒分散ゾルは、前記変性酸化第二セリウムコロイド粒子(C)の水性ゾルの分散媒を親水性有機溶媒に置換したものである。該変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒ゾルは、動的光散乱法による平均粒子径が10乃至100nmであり、親水性有機溶媒ゾルの固形分濃度は、全金属酸化物濃度として0.5乃至50質量%、好ましくは5乃至50質量%である。親水性有機溶媒ゾルの固形分濃度は必要に応じて50質量%よりも高くすることができる。 The hydrophilic organic solvent dispersion sol of the modified cerium oxide colloidal particles (C) of the present invention is obtained by replacing the dispersion medium of the aqueous sol of the modified cerium oxide colloidal particles (C) with a hydrophilic organic solvent. . The hydrophilic organic solvent sol of the modified cerium oxide colloidal particles (C) has an average particle diameter of 10 to 100 nm by a dynamic light scattering method, and the solid content concentration of the hydrophilic organic solvent sol is a total metal oxide. The concentration is 0.5 to 50% by mass, preferably 5 to 50% by mass. The solid content concentration of the hydrophilic organic solvent sol can be higher than 50% by mass as required.
 本願発明に用いられる親水性有機溶媒とは、水と均一に混和する有機溶媒、及び20℃において水と有機溶媒とを混合して二相を形成させたときの有機相中の水の含有率(この含有率を「有機溶媒の水溶解度」という)が12質量%を超える有機溶媒を指す。
 前記親水性有機溶媒の具体例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール(水溶解度20質量%)、イソブタノール(水溶解度44.1質量%)、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコール、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルが挙げられる。
The hydrophilic organic solvent used in the present invention is an organic solvent uniformly mixed with water, and the content of water in the organic phase when water and the organic solvent are mixed at 20 ° C. to form two phases. (This content is referred to as “water solubility of organic solvent”) refers to an organic solvent having a content exceeding 12% by mass.
Specific examples of the hydrophilic organic solvent include methanol, ethanol, propanol, isopropanol, butanol (water solubility 20% by mass), isobutanol (water solubility 44.1% by mass), acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide. , Acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, dipropylene glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether.
 本願発明の表面疎水化酸化第二セリウムコロイド粒子(D)の親水性有機溶媒分散ゾルは、前記変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒分散ゾルに、変性酸化第二セリウムコロイド粒子(C)に対する質量比が0.01乃至0.5となるように下記一般式(I)及び/又は一般式(II)で表される有機珪素化合物若しくはそれらの加水分解物からなる群から選ばれる少なくとも1種の化合物を添加して、該有機珪素化合物が変性酸化第二セリウムコロイド粒子(C)の表面に結合された酸化第二セリウムコロイド粒子(D)が親水性有機溶媒に分散したゾルである。 The hydrophilic organic solvent dispersion sol of the surface-hydrophobized cerium oxide colloidal particles (D) of the present invention is the modified cerium oxide colloid to the hydrophilic organic solvent dispersion sol of the modified cerium oxide colloidal particles (C). From the group consisting of organosilicon compounds represented by the following general formula (I) and / or general formula (II) or their hydrolysates so that the mass ratio to the particles (C) is 0.01 to 0.5 At least one selected compound was added, and the cerium oxide colloidal particles (D) in which the organosilicon compound was bonded to the surface of the modified cerium oxide colloidal particles (C) were dispersed in the hydrophilic organic solvent. It is a sol.
 また、本願発明の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルは、前記変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒分散ゾルに、変性酸化第二セリウムコロイド粒子(C)に対する質量比が0.01乃至0.50となるように下記一般式(I)及び/又は一般式(II)で表される有機珪素化合物若しくはそれらの加水分解物からなる群から選ばれる少なくとも1種の化合物を添加して、該有機珪素化合物が変性酸化第二セリウムコロイド粒子(C)の表面に結合された酸化第二セリウムコロイド粒子0の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒に分散したゾルである。 Moreover, the hydrophobic organic solvent dispersion sol having a water solubility of 0.002 to 12% by mass of the surface-hydrophobized ceric oxide colloidal particles (D) of the present invention is the modified ceric oxide colloidal particles (C). The hydrophilic organic solvent-dispersed sol is represented by the following general formula (I) and / or general formula (II) so that the mass ratio with respect to the modified cerium oxide colloidal particles (C) is 0.01 to 0.50. And at least one compound selected from the group consisting of an organosilicon compound or a hydrolyzate thereof, and the organosilicon compound is bonded to the surface of the modified cerium oxide colloidal particles (C). A sol dispersed in a hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass of cerium colloidal particles 0.
 本願発明に用いられる有機珪素化合物は、
 一般式(I)
(R1a(R3bSi(OR24-(a+b)     (I)
(但し、R及びRは、それぞれ炭素原子数1乃至8のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至8のアルケニル基、炭素原子数6乃至8のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基若しくはシアノ基を有する有機基を表し、且つSi-C結合によりケイ素原子と結合しているものであり、R2は炭素原子数1乃至8のアルキル基若しくはアルコキシアルキル基又は炭素原子数2乃至8のアシル基を表し、a及びbはそれぞれ0、1又は2の整数を表し、a+bは0、1又は2の整数を表す。)及び/又は
 一般式(II)
〔(R4cSi(OX)3-c2Y     (II)
(但し、R4は炭素原子数1乃至5のアルキル基を表し、Xは炭素原子数1乃至4のアルキル基又は炭素原子数2乃至8のアシル基を表し、Yは炭素原子数1乃至20のアルキレン基を表し、cは0又は1の整数を表す。)で表される有機珪素化合物、又はそれらの加水分解物からなる群より選ばれる少なくとも1種の化合物である。
The organosilicon compound used in the present invention is
Formula (I)
(R 1 ) a (R 3 ) b Si (OR 2 ) 4- (a + b) (I)
(However, R 1 and R 3 are each an alkyl group having 1 to 8 carbon atoms or a halogenated alkyl group, an alkenyl group having 2 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, or a halogenated aryl group. Or an organic group having an epoxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group or a cyano group, and bonded to a silicon atom by a Si—C bond, and R 2 represents carbon An alkyl group having 1 to 8 atoms or an alkoxyalkyl group or an acyl group having 2 to 8 carbon atoms; a and b each represents an integer of 0, 1 or 2; a + b represents an integer of 0, 1 or 2; And / or general formula (II)
[(R 4 ) c Si (OX) 3-c ] 2 Y (II)
(Wherein R 4 represents an alkyl group having 1 to 5 carbon atoms, X represents an alkyl group having 1 to 4 carbon atoms or an acyl group having 2 to 8 carbon atoms, and Y represents 1 to 20 carbon atoms) Is an at least one compound selected from the group consisting of an organosilicon compound represented by (2) and a hydrolyzate thereof.
 一般式(I)
(R1a(R3bSi(OR24-(a+b)     (I)
においては、R1とR3が同一の有機基又は異なる有機基を表す場合や、aとbが同一の整数又は異なる整数を表す場合の有機珪素化合物を含む。
Formula (I)
(R 1 ) a (R 3 ) b Si (OR 2 ) 4- (a + b) (I)
In the case of R 1 and R 3 , an organic silicon compound in the case where R 1 and R 3 represent the same organic group or different organic groups, or a and b represent the same integer or different integers is included.
 上記一般式(I)で表される有機珪素化合物は、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラアセトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、メチルトリプロポキシシラン、メチルトリアミロキシシラン、メチルトリフェノキシシラン、メチルトリベンジルオキシシラン、メチルトリフェネチルオキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、αーグリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、グリシドキシメチルメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルエチルジメトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルトリアセトキシシラン、3,3,3,-トリフロロプロピルトリメトキシシラン、γ-メタクリルオキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、β-シアノエチルトリエトキシシラン、クロロメチルトリメトキシシラン、クロロメチルトリエトキシシラン、N-(β-アミノエチル)γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)γ-アミノプロピルメチルジエトキシシラン、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ-メタクリルオキシプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトメチルジエトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン等が挙げられる。これらは単独で又は2種以上を組み合わせて使用することができる。 Examples of the organosilicon compound represented by the general formula (I) include tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetraacetoxysilane, and methyltrimethoxysilane. , Methyltriethoxysilane, methyltripropoxysilane, methyltriacetoxysilane, methyltributoxysilane, methyltripropoxysilane, methyltriamyloxysilane, methyltriphenoxysilane, methyltribenzyloxysilane, methyltriphenethyloxysilane, glycine Sidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycidoxyethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β-glycidoxyethyl Trimethoxysilane, β-glycidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypropyltriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyl Triethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltripropoxysilane, γ-glycidoxypropyltributoxysilane, γ-glycidoxypropyl Triphenoxysilane, α-glycidoxybutyltrimethoxysilane, α-glycidoxybutyltriethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltrimethoxysilane, γ-glycidoxybutyl Triethoxysilane, δ- Glycidoxybutyltrimethoxysilane, δ-glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxysilane, β- (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltripropoxysilane, β- (3,4-epoxycyclohexyl) ethyl Tributoxysilane, β- (3,4-epoxycyclohexyl) ethyltriphenoxysilane, γ- (3,4-epoxycyclohexyl) propyltrimethoxysilane, γ- (3,4-epoxycyclohexyl) propyltriethoxysilane, δ -(3,4-D Xycyclohexyl) butyltrimethoxysilane, δ- (3,4-epoxycyclohexyl) butyltriethoxysilane, glycidoxymethylmethyldimethoxysilane, glycidoxymethylmethyldiethoxysilane, α-glycidoxyethylmethyldimethoxysilane, α-glycidoxyethylmethyldiethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylethyldimethoxysilane, α-glycidoxypropylmethyldimethoxysilane, α-glycidoxypropylmethyldiethoxysilane Silane, β-glycidoxypropylmethyldimethoxysilane, β-glycidoxypropylethyldimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-g Sidoxypropylmethyldipropoxysilane, γ-glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldiphenoxysilane, γ-glycidoxypropylethyldimethoxysilane, γ-glycidoxypropylethyldiethoxysilane , Γ-glycidoxypropyl vinyldimethoxysilane, γ-glycidoxypropylvinyldiethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, phenyltrimethoxy Silane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltriacetoxysilane, 3,3 , 3, -trifluoropropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, β-cyanoethyltriethoxysilane, chloromethyltrimethoxysilane, chloro Methyltriethoxysilane, N- (β-aminoethyl) γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldimethoxysilane, N- (β- Aminoethyl) γ-aminopropyltriethoxysilane, N- (β-aminoethyl) γ-aminopropylmethyldiethoxysilane, dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyl Ethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimethoxy Examples thereof include silane, γ-mercaptomethyldiethoxysilane, methylvinyldimethoxysilane, and methylvinyldiethoxysilane. These can be used alone or in combination of two or more.
 本願発明において用いられる一般式(I)で表される有機珪素化合物としては、特にメチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、メチルトリブトキシシラン及びこれらの加水分解物が好ましい。 As the organosilicon compound represented by the general formula (I) used in the present invention, methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, methyltributoxysilane and hydrolysates thereof are particularly preferable.
 また、上記一般式(I)で表される有機珪素化合物の加水分解物は、式中のR2の一部又は全部が水素原子に置換された化合物である。これら一般式(I)で表される有機珪素化合物の加水分解物は、単独で又は2種以上を組み合わせて使用することができる。 Moreover, the hydrolyzate of the organosilicon compound represented by the above general formula (I) is a compound in which part or all of R 2 in the formula is substituted with a hydrogen atom. These hydrolysates of organosilicon compounds represented by general formula (I) can be used alone or in combination of two or more.
 上記一般式(II)で表される有機珪素化合物は、例えば、メチレンビスメチルジメトキシシラン、エチレンビスエチルジメトキシシラン、プロピレンビスエチルジエトキシシラン、ブチレンビスメチルジエトキシシラン、ヘキサメチルジシラザン等が挙げられる。これらは単独で又は2種以上を組み合わせて使用することができる。
 また、上記一般式(II)で表される有機珪素化合物の加水分解物は、式中のXの一部又は全部が水素原子に置換された化合物である。これら一般式(II)で表される有機珪素化合物の加水分解物は、単独で又は2種以上を組み合わせて使用することができる。
Examples of the organosilicon compound represented by the general formula (II) include methylene bismethyldimethoxysilane, ethylene bisethyldimethoxysilane, propylene bisethyldiethoxysilane, butylene bismethyldiethoxysilane, and hexamethyldisilazane. It is done. These can be used alone or in combination of two or more.
Moreover, the hydrolyzate of the organosilicon compound represented by the general formula (II) is a compound in which a part or all of X in the formula is substituted with a hydrogen atom. These hydrolysates of organosilicon compounds represented by the general formula (II) can be used alone or in combination of two or more.
 本願発明において0.002乃至12質量%の水溶解度を有する疎水性有機溶媒とは、水と均一に混合せず、20℃において水と混合して二相を形成させたときの有機相中の水の含有率が0.002乃至12質量%となるものである。
 前記疎水性有機溶媒としては、例えば、メチルエチルケトン(水溶解度9.9質量%)、メチルイソブチルケトン(水溶解度1.8質量%)、シクロヘキサノン(水溶解度8質量%)、酢酸エチル(水溶解度2.9質量%)、酢酸ブチル(水溶解度1.9質量%)、メタクリル酸メチル(水溶解度1.1質量%)、ジイソプロピルエーテル(水溶解度0.55質量%)、ジブチルエーテル(水溶解度0.2質量%)、トルエン(水溶解度0.05質量%)、トリエチレングリコールジ2-エチルヘキサノエート(3GO)(水溶解度0.0025質量%)、トリエチレングリコールジ2-エチルブチレート(3GH)(水溶解度0.0054質量%)、テトラエチレングリコールジヘプタノエート(4G7)(水溶解度0.0079質量%)及びテトラエチレングリコールジ2-エチルヘキサノエート(4GO)(水溶解度0.038質量%)が挙げられる。
In the present invention, the hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass is not uniformly mixed with water, but is mixed with water at 20 ° C. to form two phases in the organic phase. The water content is 0.002 to 12% by mass.
Examples of the hydrophobic organic solvent include methyl ethyl ketone (water solubility 9.9% by mass), methyl isobutyl ketone (water solubility 1.8% by mass), cyclohexanone (water solubility 8% by mass), and ethyl acetate (water solubility 2. 9% by weight), butyl acetate (water solubility 1.9% by weight), methyl methacrylate (water solubility 1.1% by weight), diisopropyl ether (water solubility 0.55% by weight), dibutyl ether (water solubility 0.2). Mass%), toluene (water solubility 0.05 mass%), triethylene glycol di-2-ethylhexanoate (3GO) (water solubility 0.0025 mass%), triethylene glycol di-2-ethylbutyrate (3GH) (Water solubility 0.0054% by mass), tetraethylene glycol diheptanoate (4G7) (water solubility 0.0079% by mass) Fine tetraethylene glycol di-2-ethylhexanoate (4GO) (water solubility 0.038 wt%) and the like.
 本願発明の変性第二酸化セリウムコロイド粒子(C)の水性ゾルの製造方法は、下記の(a)工程乃至(d)工程を含む方法である。
 変性酸化第二セリウムコロイド粒子(C)の水性ゾルの製造方法であって、
(a)工程:M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0であるアミン化合物で安定化させたシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B‘)の水性ゾルを得る工程であって、シリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10となるようにスズ酸アルカリ水溶液又はアンチモン酸アルカリ水溶液とケイ酸アルカリ水溶液とを混合し、続いて該水溶液中に存在する陽イオンを除去して1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ複合体コロイド粒子又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子の水性ゾルを調製し、次に該水性ゾルにM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.10乃至1.0であるアミン化合物を添加することにより、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であるシリカ系複合コロイド粒子(B‘)を安定化させる工程、
(b)工程:変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを得る工程であって、4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)の水性ゾルと、前記(a)工程で得られたシリカ系複合コロイド粒子(B‘)の水性ゾルとを、(A)/(B‘)の質量比で1乃至50となるように混合して、該酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、前記シリカ系複合コロイド粒子(B‘)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B‘)に対する質量比(A)/(B‘)が1乃至50となる割合にする工程、
(c)工程:前記(b)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを陽イオン交換する工程であって、陽イオン交換により前記シリカ系複合コロイド粒子(C‘)に結合していたアミン化合物を除去する工程、及び
(d)工程:変性酸化第二セリウムコロイド粒子(C)の水性ゾルを得る工程であって、前記(c)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルに、前記シリカ系複合コロイド粒子(B‘)に対するM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物を添加して、前記酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50となる割合にする工程。
The method for producing an aqueous sol of the modified cerium dioxide colloidal particles (C) of the present invention is a method including the following steps (a) to (d).
A method for producing an aqueous sol of modified cerium oxide colloidal particles (C) comprising:
(A) Step: An amine compound having a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 1.0. A step of obtaining an aqueous sol of silica-based composite colloidal particles (B ′) comprising stabilized silica-stannic oxide or silica-antimony pentoxide, comprising silica / stannic oxide or silica / antimony pentoxide First, an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm. An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Rica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10 The step of stabilizing B ′),
(B) step: a step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C ′), wherein the aqueous sol of ceric oxide colloidal particles (A) having a primary particle diameter of 4 to 60 nm, The aqueous sol of silica-based composite colloidal particles (B ′) obtained in the step (a) is mixed so that the mass ratio of (A) / (B ′) is 1 to 50, and the second oxidized oxide is mixed. The cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated. ) A ratio of mass ratio (A) / (B ′) to 1 to 50,
Step (c): A step of cation exchange of the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in the step (b), wherein the silica-based composite colloidal particles (C ') The step of removing the amine compound bonded to the step, and the step (d): a step of obtaining an aqueous sol of the modified cerium oxide colloidal particles (C), the modification obtained in the step (c) M / (silica + stannic oxide) or M / (silica + antimony pentoxide) or M / (silica + antimony pentoxide) with respect to the silica-based composite colloidal particles (B ′) (where M is an aqueous sol of cerium oxide colloid particles (C ′)) An amine compound having a molar ratio of 0.001 to 0.08 is added, the cerium oxide colloidal particles (A) are used as nuclei, and the outer surface is primary particles of 1 to 3 nm. Have a diameter Consisting of silica-stannic oxide or silica-antimony pentoxide and having a mass ratio of silica / stannic oxide or silica / antimony pentoxide of 0.1 to 10 and M / (silica + stannic oxide) or Covered with silica-based composite colloidal particles (B) to which an amine compound having a molar ratio of M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.001 to 0.08, and A step of adjusting the mass ratio (A) / (B) of the cerium oxide colloidal particles (A) to the silica-based composite colloidal particles (B) to be 1 to 50.
 (a)工程では、前記スズ酸アルカリ水溶液としては、スズ酸ナトリウム水溶液又はスズ酸カリウム水溶液を用いることができ、好ましくはスズ酸ナトリウム水溶液である。また、前記アンチモン酸アルカリ水溶液としては、アンチモン酸ナトリウム水溶液、アンチモン酸カリウム水溶液又はアンチモン酸アミン水溶液を用いることができ、好ましくはアンチモン酸ナトリウム水溶液である。
 前記ケイ酸アルカリ水溶液としては、ケイ酸ナトリウム水溶液、ケイ酸カリウム水溶液を用いることができる。
 シリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10となるようにスズ酸アルカリ水溶液又はアンチモン酸アルカリ水溶液とケイ酸アルカリ水溶液とを混合し、該水溶液中に存在する陽イオンを陽イオン交換樹脂により除去する。
 スズ酸アルカリ水溶液又はアンチモン酸アルカリ水溶液とケイ酸アルカリ水溶液とは、シリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10となるように計量されて水に溶解され調製される。好ましい水溶液の固形分濃度は(シリカ+酸化第二スズ)又は(シリカ+五酸化アンチモン)として1乃至12質量%である。
In the step (a), a sodium stannate aqueous solution or a potassium stannate aqueous solution can be used as the alkali stannate aqueous solution, preferably a sodium stannate aqueous solution. As the alkali antimonate aqueous solution, a sodium antimonate aqueous solution, a potassium antimonate aqueous solution or an amine antimonate aqueous solution can be used, and a sodium antimonate aqueous solution is preferred.
As the alkali silicate aqueous solution, a sodium silicate aqueous solution or a potassium silicate aqueous solution can be used.
An alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10, and is present in the aqueous solution. Cations are removed with a cation exchange resin.
An alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are prepared by being measured so that the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and dissolved in water. Is done. The solid content concentration of the aqueous solution is preferably 1 to 12% by mass as (silica + stannic oxide) or (silica + antimony pentoxide).
 調製された水溶液は陽イオン交換樹脂を用いて陽イオンが除去される。陽イオン交換樹脂としては水素型の強酸性陽イオン交換樹脂が好ましく、例えばアンバーライト(登録商標)120B等をカラムに充填して用いることができる。この陽イオン交換を行うことにより、ケイ酸成分とスズ酸成分又はアンチモン酸成分とが重合し、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子が生成する。
 このシリカ系複合コロイド粒子は安定性に乏しく、放置すると数時間でゲル化するため、陽イオン交換後は速やかにアミン化合物を添加して安定化させる必要があり、具体的にはシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であって、M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0であるアミン化合物で安定化されたシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B‘)の水性ゾルとする必要である。
 得られる水性ゾルの固形分濃度は(シリカ+酸化第二スズ)又は(シリカ+五酸化アンチモン)として0.1乃至10質量%である。
Cations are removed from the prepared aqueous solution using a cation exchange resin. The cation exchange resin is preferably a hydrogen-type strongly acidic cation exchange resin. For example, Amberlite (registered trademark) 120B can be packed in a column and used. By carrying out this cation exchange, a silicic acid component and a stannic acid component or an antimonic acid component are polymerized, and a silica system comprising silica-stannic oxide or silica-antimony pentoxide having a primary particle diameter of 1 to 3 nm. Composite colloidal particles are produced.
Since this silica-based composite colloidal particle is poor in stability and gels in a few hours if left standing, it is necessary to quickly stabilize it by adding an amine compound after cation exchange. The mass ratio of distin or silica / antimony pentoxide is 0.1 to 10, and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) It is necessary to prepare an aqueous sol of silica-based composite colloidal particles (B ′) composed of silica-stannic oxide or silica-antimony pentoxide stabilized with an amine compound having a molar ratio of 0.1 to 1.0. is there.
The solid content concentration of the obtained aqueous sol is 0.1 to 10% by mass as (silica + stannic oxide) or (silica + antimony pentoxide).
 前記陽イオン交換により生成するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子の安定化に適したアミン化合物の量は、M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比として0.1乃至1.0である。アミン化合物の添加量が、M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比として0.1未満では、数時間の放置により安定性を失いゲル化するため好ましくない。また、アミン化合物の添加量が、M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比として1.0を超えてもアミン化合物が過剰に存在するだけで効率的ではない。 The amount of the amine compound suitable for stabilizing the silica-based composite colloidal particles composed of silica-stannic oxide or silica-antimony pentoxide produced by the cation exchange is M / (silica + stannic oxide) or M The molar ratio of / (silica + antimony pentoxide) (wherein M represents an amine compound) is 0.1 to 1.0. When the added amount of the amine compound is less than 0.1 as a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound), the mixture is left for several hours. This is not preferable because it loses stability and gels. In addition, even if the addition amount of the amine compound exceeds 1.0 as a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound), the amine The compound is present in excess and is not efficient.
 (b)工程では、4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)の水性ゾルと、前記(a)工程で得られたシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であって、M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0であるアミン化合物で安定化されたシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B‘)の水性ゾルとを、質量比(A)/(B‘)が1乃至50となるように混合することにより、前記酸化第二セリウムコロイド粒子(A)の表面が前記シリカ系複合コロイド粒子(B‘)によって被覆された変性酸化第二セリウムコロイド粒子(C’)の水性ゾルを得ることができる。 In step (b), an aqueous sol of cerium oxide colloidal particles (A) having a primary particle size of 4 to 60 nm, and silica / stannic oxide or silica / antimony pentoxide obtained in step (a). The molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 10. An aqueous sol of silica-based composite colloidal particles (B ′) composed of silica-stannic oxide or silica-antimony pentoxide stabilized with an amine compound having a mass ratio of (A) / (B ′ ) Are mixed so as to be 1 to 50, whereby the surface of the ceric oxide colloidal particles (A) is coated with the silica-based composite colloidal particles (B ′). ' It can be obtained in the aqueous sol.
 前記アミン化合物としては、第一級アミン、第二級アミン及び第三級アミンからなる群より選ばれる少なくとも1種の化合物が用いられる。
 前記第一アミン級としては、例えば、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン、アミルアミン、アリルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン及びシクロヘキシルアミンが挙げられる。
 前記第二アミン級としては、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジイソブチルアミン、N-エチル-1,2-ジメチルプロピルアミン、ジアミルアミン及びジアリルアミンが挙げられる。
 前記第三級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリアミルアミン及びトリアリルアミンが挙げられる。
 前記酸化第二セリウムコロイド粒子(A)の水性ゾルの固形分濃度は、0.5乃至30質量%であることが好ましい。
As the amine compound, at least one compound selected from the group consisting of primary amines, secondary amines and tertiary amines is used.
Examples of the primary amine class include methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, amylamine, allylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cyclopropylamine, Examples include cyclobutylamine, cyclopentylamine, and cyclohexylamine.
Examples of the secondary amine class include dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diisobutylamine, N-ethyl-1,2-dimethylpropylamine, diamylamine and diallylamine.
Examples of the tertiary amine include trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine, and triallylamine.
The solid content concentration of the aqueous sol of the ceric oxide colloidal particles (A) is preferably 0.5 to 30% by mass.
 前記酸化第二セリウムコロイド粒子(A)の水性ゾルは、pH3乃至11の範囲で用いることができ、好ましくはpH8乃至11、より好ましくはpH9乃至10である。
 前記酸化第二セリウムコロイド粒子(A)の水性ゾルのpHは、必要に応じてアルカリ成分により調整することができる。調整に用いられるアルカリ成分としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属水酸化物、カルシウム、マグネシウム、ストロンチウム等のアルカリ土類金属の水酸化物、アンモニア、エチルアミン、トリエチルアミン、イソプロピルアミン、n-プロピルアミン等のアルキルアミン、ベンジルアミン等のアラルキルアミン、ピペリジン等の脂環式アミン、モノエタノールアミン、トリエタノールアミン等のアルカノールアミン、第4級アンモニウム水酸化物等が挙げられる。
The aqueous sol of the ceric oxide colloidal particles (A) can be used in the range of pH 3 to 11, preferably pH 8 to 11, more preferably pH 9 to 10.
The pH of the aqueous sol of the cerium oxide colloidal particles (A) can be adjusted with an alkali component as necessary. Examples of the alkali component used for the adjustment include alkali metal hydroxides such as lithium, sodium and potassium, alkaline earth metal hydroxides such as calcium, magnesium and strontium, ammonia, ethylamine, triethylamine, isopropylamine, n -Alkylamines such as propylamine, aralkylamines such as benzylamine, alicyclic amines such as piperidine, alkanolamines such as monoethanolamine and triethanolamine, and quaternary ammonium hydroxides.
 前記酸化第二セリウムコロイド粒子(A)の水性ゾルと、前記(a)工程で得られたシリカ系複合コロイド粒子(B‘)の水性ゾルとの混合は、攪拌下で行うことが好ましい。
 前記酸化第二セリウムコロイド粒子(A)と前記シリカ系複合コロイド粒子(B‘)との混合は、質量比(A)/(B‘)が1乃至50で行うのが好ましく、50を超えるとシリカ系複合コロイド粒子(B‘)が核となる酸化第二セリウムコロイド粒子(A)を十分に被覆することができず、安定な親水性有機溶媒分散ゾル又は上記表面疎水化酸化第二セリウムコロイド粒子(D)の0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルを得ることができない。また、前記質量比は1で十分であり、1未満の場合はシリカ系複合コロイド粒子(B‘)が過剰となり効率的ではない。
The mixing of the aqueous sol of the ceric oxide colloidal particles (A) and the aqueous sol of the silica-based composite colloidal particles (B ′) obtained in the step (a) is preferably performed with stirring.
The mixing of the cerium oxide colloidal particles (A) and the silica-based composite colloidal particles (B ′) is preferably carried out at a mass ratio (A) / (B ′) of 1 to 50. The cerium oxide colloidal particles (A) having the silica-based composite colloidal particles (B ′) as the core cannot be sufficiently coated, and the stable hydrophilic organic solvent-dispersed sol or the surface hydrophobized ceric oxide colloid A hydrophobic organic solvent-dispersed sol having a water solubility of 0.05 to 12% by mass of the particles (D) cannot be obtained. Further, 1 is sufficient for the mass ratio, and when it is less than 1, the silica-based composite colloidal particles (B ′) become excessive, which is not efficient.
 (c)工程では、前記(b)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルの陽イオン交換を行う。これにより、前記シリカ系複合コロイド粒子(C‘)に結合していたアミン化合物を除去する。陽イオン交換は水素型の強酸性陽イオン交換樹脂を用いることが好ましい。 (C) In step (c), cation exchange is performed on the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in step (b). As a result, the amine compound bonded to the silica-based composite colloidal particles (C ′) is removed. It is preferable to use a hydrogen type strongly acidic cation exchange resin for the cation exchange.
 (d)工程では、前記(c)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルに、前記シリカ系複合コロイド粒子(B‘)に対するM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物を添加することで、変性酸化第二セリウムコロイド粒子(C)の水性ゾルが得られる。アミン化合物の添加量が、M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比として0.001未満では、本願発明の親水性有機溶媒分散ゾルの分散安定性が不十分となるため好ましくない。 In the step (d), M / (silica + second oxide) with respect to the silica-based composite colloidal particles (B ′) is added to the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in the step (c). By adding an amine compound having a molar ratio of tin) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.001 to 0.08, modified ceric oxide colloidal particles ( C) aqueous sol is obtained. When the added amount of the amine compound is less than 0.001 as a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound), the hydrophilicity of the present invention This is not preferable because the dispersion stability of the conductive organic solvent-dispersed sol becomes insufficient.
 前記変性酸化第二セリウムコロイド粒子(C)の水性ゾルは、透過型電子顕微鏡観察により測定することができる一次粒子径として5乃至70nmであり、また、動的光散乱法による平均粒子径は10乃至100nmである。水性ゾルの固形分濃度は、全金属酸化物濃度として0.5乃至50質量%であり、好ましくは5乃至50質量%である。水性ゾルの固形分濃度は必要に応じて50質量%よりも高くすることができる。 The aqueous sol of the modified cerium oxide colloidal particles (C) has a primary particle diameter of 5 to 70 nm that can be measured by observation with a transmission electron microscope, and an average particle diameter by dynamic light scattering method is 10 nm. To 100 nm. The solid content concentration of the aqueous sol is 0.5 to 50% by mass, preferably 5 to 50% by mass as the total metal oxide concentration. The solid content concentration of the aqueous sol can be higher than 50% by mass as required.
 本願発明の変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒分散ゾルの製造方法は、上記(a)工程乃至(d)工程以外に下記の(e)工程を含む方法である。
 (e)工程では、前記(d)工程で得られた変性酸化第二セリウムコロイド粒子(C)の水性ゾルの分散媒を親水性有機溶媒に置換する。
 本願発明に用いられる親水性有機溶媒は、水と均一に混和する有機溶媒、及び20℃において水と有機溶媒とを混合して二相を形成させたときの有機相中の水の含有率(この含有率を「有機溶媒の水溶解度」という)が12質量%を超える有機溶媒である。
 前記親水性有機溶媒の具体例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール(水溶解度20質量%)、イソブタノール(水溶解度44.1質量%)、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコール、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルが挙げられる。
The method for producing a hydrophilic organic solvent-dispersed sol of the modified cerium oxide colloidal particles (C) of the present invention is a method including the following step (e) in addition to the above steps (a) to (d).
In the step (e), the dispersion medium of the aqueous sol of the modified cerium oxide colloidal particles (C) obtained in the step (d) is replaced with a hydrophilic organic solvent.
The hydrophilic organic solvent used in the present invention is an organic solvent that is uniformly mixed with water, and the content of water in the organic phase when water and the organic solvent are mixed at 20 ° C. to form two phases ( This content rate is referred to as “water solubility of organic solvent”) and is an organic solvent exceeding 12% by mass.
Specific examples of the hydrophilic organic solvent include methanol, ethanol, propanol, isopropanol, butanol (water solubility 20% by mass), isobutanol (water solubility 44.1% by mass), acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide. , Acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, dipropylene glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether.
 前記変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒分散ゾルは、透過型電子顕微鏡観察により測定することができる一次粒子径として5乃至70nmであり、また、動的光散乱法による平均粒子径は10乃至100nmである。親水性有機溶媒分散ゾルの固形分濃度は、全金属酸化物濃度として0.5乃至50質量%、好ましくは5乃至50質量%である。親水性有機溶媒分散ゾルの固形分濃度は必要に応じて50質量%よりも高くすることができる。 The hydrophilic organic solvent-dispersed sol of the modified ceric oxide colloidal particles (C) has a primary particle diameter of 5 to 70 nm that can be measured by transmission electron microscope observation, and an average by a dynamic light scattering method. The particle diameter is 10 to 100 nm. The solid content concentration of the hydrophilic organic solvent-dispersed sol is 0.5 to 50% by mass, preferably 5 to 50% by mass as the total metal oxide concentration. The solid content concentration of the hydrophilic organic solvent-dispersed sol can be higher than 50% by mass as necessary.
 本願発明の表面疎水化酸化第二セリウムコロイド粒子(D)の親水性有機溶媒分散ゾルの製造方法は、上記(a)工程乃至(e)工程以外に下記の(f)工程を含む方法である。
 (f)工程では、前記(e)工程で得られた親水性有機溶媒分散ゾルに、
一般式(I)
(R1a(R3bSi(OR24-(a+b)     (I)
(但し、R及びRは、それぞれ炭素原子数1乃至8のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至8のアルケニル基、炭素原子数6乃至8のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基若しくはシアノ基を有する有機基を表し、且つSi-C結合によりケイ素原子と結合しているものであり、R2は炭素原子数1乃至8のアルキル基若しくはアルコキシアルキル基又は炭素原子数2乃至8のアシル基を表し、a及びbはそれぞれ0、1又は2の整数を表し、a+bは0、1又は2の整数を表す。)及び/又は
一般式(II)
〔(R4cSi(OX)3-c2Y     (II)
(但し、R4は炭素原子数1乃至5のアルキル基を表し、Xは炭素原子数1乃至4のアルキル基又は炭素原子数2乃至8のアシル基を表し、Yは炭素原子数1乃至20のアルキレン基を表し、cは0又は1の整数を表す。)で表される有機珪素化合物、若しくはそれらの加水分解物からなる群より選ばれる少なくとも1種の化合物を添加して前記変性酸化第二セリウムコロイド粒子(C)に対する有機珪素化合物の質量比が0.01乃至0.5となる割合にする。
The method for producing a hydrophilic organic solvent-dispersed sol of the surface-hydrophobized cerium oxide colloidal particles (D) of the present invention is a method comprising the following step (f) in addition to the steps (a) to (e). .
In the step (f), the hydrophilic organic solvent-dispersed sol obtained in the step (e)
Formula (I)
(R 1 ) a (R 3 ) b Si (OR 2 ) 4- (a + b) (I)
(However, R 1 and R 3 are each an alkyl group having 1 to 8 carbon atoms or a halogenated alkyl group, an alkenyl group having 2 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, or a halogenated aryl group. Or an organic group having an epoxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group or a cyano group, and bonded to a silicon atom by a Si—C bond, and R 2 represents carbon An alkyl group having 1 to 8 atoms or an alkoxyalkyl group or an acyl group having 2 to 8 carbon atoms; a and b each represents an integer of 0, 1 or 2; a + b represents an integer of 0, 1 or 2; And / or general formula (II)
[(R 4 ) c Si (OX) 3-c ] 2 Y (II)
(Wherein R 4 represents an alkyl group having 1 to 5 carbon atoms, X represents an alkyl group having 1 to 4 carbon atoms or an acyl group having 2 to 8 carbon atoms, and Y represents 1 to 20 carbon atoms) And at least one compound selected from the group consisting of hydrolysates thereof is added to the modified oxidized group, and c represents an integer of 0 or 1. The mass ratio of the organosilicon compound to the dicerium colloid particles (C) is set to a ratio of 0.01 to 0.5.
 (f)工程に用いられる前記一般式(I)及び/又は一般式(II)で表される有機珪素化合物の例示は上述の通りであり、前記(e)工程で得られた変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒分散ゾルに前記一般式(I)及び/又は一般式(II)で表される有機珪素化合物若しくはそれらの加水分解物からなる群より選ばれる少なくとも1種である化合物を添加して熟成することにより、前記変性酸化第二セリウムコロイド粒子(C)の表面に前記有機珪素化合物が結合される。
 前記一般式(I)及び/又は一般式(II)で表される有機珪素化合物の加水分解には、前記有機珪素化合物1モルに対して1乃至4モルの水が必要である。この必要な水は、あらかじめ親水性有機溶媒分散ゾルに含有させてもよく、また有機珪素化合物の添加後に加えてもよい。
 また有機珪素化合物は、予め加水分解を行ったものを添加してもよい。上記有機珪素化合物の加水分解物は、この有機珪素化合物に水又は所望により塩酸水溶液、硫酸水溶液若しくは酢酸水溶液の酸性水溶液を添加し、攪拌することにより得ることができる。
Examples of the organosilicon compound represented by the general formula (I) and / or the general formula (II) used in the step (f) are as described above, and the modified second oxidized oxide obtained in the step (e). The hydrophilic organic solvent-dispersed sol of the cerium colloidal particles (C) is at least one selected from the group consisting of the organosilicon compounds represented by the general formula (I) and / or the general formula (II) or their hydrolysates. By adding and aging the compound, the organosilicon compound is bonded to the surface of the modified cerium oxide colloidal particles (C).
Hydrolysis of the organosilicon compound represented by the general formula (I) and / or the general formula (II) requires 1 to 4 moles of water with respect to 1 mole of the organosilicon compound. This necessary water may be contained in advance in the hydrophilic organic solvent-dispersed sol, or may be added after the addition of the organosilicon compound.
Moreover, you may add the organosilicon compound which hydrolyzed beforehand. The hydrolyzate of the organosilicon compound can be obtained by adding water or an acidic aqueous solution of a hydrochloric acid aqueous solution, a sulfuric acid aqueous solution, or an acetic acid aqueous solution to the organosilicon compound and stirring the mixture.
 前記有機珪素化合物が添加された後は熟成が行われる。熟成温度は常温から用いられる親水性有機溶媒の沸点の範囲で行うことができ、前記親水性有機溶媒の沸点付近で行う方が有機珪素化合物のコロイド粒子への結合率が高くなり好ましい。
 前記熟成は、大気圧下で行うことができ、還流下で行うことが好ましい。
Aging is performed after the organosilicon compound is added. The ripening temperature can be carried out in the range of the boiling point of the hydrophilic organic solvent used from room temperature, and it is preferable to carry out in the vicinity of the boiling point of the hydrophilic organic solvent because the binding rate of the organosilicon compound to the colloidal particles increases.
The aging can be performed under atmospheric pressure, and is preferably performed under reflux.
 本願発明に用いられる有機珪素化合物は、特にメチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、メチルトリブトキシシラン及びこれらの加水分解物が好ましい。また、メチレンビスメチルジメトキシシラン、エチレンビスエチルジメトキシシラン、プロピレンビスエチルジエトキシシラン、ブチレンビスメチルジエトキシシラン、ヘキサメチルジシラザンが好ましい。 The organosilicon compound used in the present invention is particularly preferably methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, methyltributoxysilane or a hydrolyzate thereof. Further, methylene bismethyldimethoxysilane, ethylene bisethyldimethoxysilane, propylene bisethyldiethoxysilane, butylene bismethyldiethoxysilane, and hexamethyldisilazane are preferable.
 (f)工程で得られる親水性溶媒分散ゾルの全金属酸化物濃度は、表面疎水化酸化第二セリウムコロイド粒子(D)の全金属酸化物濃度として1乃至70質量%であり、又は5乃至60質量%である。また、得られる親水性溶媒分散ゾルは透過型電子顕微鏡観察により測定することができる一次粒子径として5乃至70nmであり、また、動的光散乱法による平均粒子径は10乃至100nmである。 The total metal oxide concentration of the hydrophilic solvent-dispersed sol obtained in the step (f) is 1 to 70% by mass as the total metal oxide concentration of the surface hydrophobized cerium oxide colloidal particles (D), or 5 to 60% by mass. The obtained hydrophilic solvent-dispersed sol has a primary particle diameter of 5 to 70 nm that can be measured by observation with a transmission electron microscope, and an average particle diameter by dynamic light scattering is 10 to 100 nm.
 また、(f)工程後にメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコール、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルからなる群より選ばれる少なくとも1種の親水性有機溶媒に置換することもできる。 In addition, after step (f), methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, dipropylene It can be substituted with at least one hydrophilic organic solvent selected from the group consisting of glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether.
 本願発明の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒ゾルの製造方法は、上記(a)工程乃至(f)工程以外に下記の(g)工程を含む方法である。
 (g)工程では、前記(f)工程で得られた表面疎水化酸化第二セリウムコロイド粒子(D)の親水性溶媒ゾルの分散媒を0.002乃至12質量%の水溶解度を有する疎水性有機溶媒に置換する。
 溶媒置換は常圧下又は減圧下における蒸発置換法、限外濾過膜法、溶媒抽出法等の公知の方法で行うことができる。例えば蒸留法の場合、分散媒を親水性有機溶媒から0.002乃至12質量%の水溶解度を有する疎水性有機溶媒に置換する際のゾルの温度は、室温から0.002乃至12質量%の水溶解度を有する疎水性有機溶媒の沸点の範囲で行われる。溶媒置換はゾル中の親水性溶媒濃度が2質量%未満となるまで行われる。
 溶媒置換を効率よく行うため、(f)工程で得られた親水性有機溶媒分散ゾルは、含まれる表面疎水化酸化第二セリウムコロイド粒子(D)の濃度を5乃至70質量%、又は10乃至50質量%の範囲で予め濃縮しておくことが好ましい。ゾルの濃縮は、加熱蒸発法、限外濾過法等の公知の方法を用いることができる。
The method for producing a hydrophobic organic solvent sol having a water solubility of 0.002 to 12 mass% of the surface-hydrophobized cerium oxide colloidal particles (D) of the present invention is not limited to the steps (a) to (f). The method includes the following step (g).
In the step (g), the dispersion medium of the hydrophilic solvent sol of the surface-hydrophobized cerium oxide colloidal particles (D) obtained in the step (f) has a water solubility of 0.002 to 12% by mass. Replace with organic solvent.
Solvent replacement can be performed by a known method such as an evaporation replacement method, an ultrafiltration membrane method, or a solvent extraction method under normal pressure or reduced pressure. For example, in the case of the distillation method, the temperature of the sol when replacing the dispersion medium from a hydrophilic organic solvent to a hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass is from room temperature to 0.002 to 12% by mass. It is carried out in the range of the boiling point of the hydrophobic organic solvent having water solubility. The solvent replacement is performed until the hydrophilic solvent concentration in the sol becomes less than 2% by mass.
In order to perform solvent substitution efficiently, the hydrophilic organic solvent-dispersed sol obtained in the step (f) has a concentration of the surface hydrophobized ceric oxide colloidal particles (D) contained in the range of 5 to 70% by mass, or 10 to It is preferable to concentrate in advance in the range of 50% by mass. The sol can be concentrated by a known method such as a heat evaporation method or an ultrafiltration method.
 (g)工程で得られるゾルの全金属酸化物濃度は、表面疎水化酸化第二セリウムコロイド粒子(D)の全金属酸化物濃度として1乃至70質量%であり、又は5乃至60質量%である。また、得られるゾルは透過型電子顕微鏡観察により測定することができる一次粒子径として5乃至70nmであり、また、動的光散乱法による平均粒子径は10乃至100nmである。 The total metal oxide concentration of the sol obtained in the step (g) is 1 to 70% by mass, or 5 to 60% by mass as the total metal oxide concentration of the surface hydrophobized ceric oxide colloidal particles (D). is there. The obtained sol has a primary particle diameter of 5 to 70 nm that can be measured by observation with a transmission electron microscope, and an average particle diameter by dynamic light scattering is 10 to 100 nm.
 以下に本願発明の実施例を示す。尚、本願発明はこれらの実施例に限定されるものではない。物性の測定方法は以下に示す。
〔透過型電子顕微鏡観察〕
 透過型電子顕微鏡JEM-1010(日本電子株式会社製)を用いて加速電圧100kvにてコロイド粒子の一次粒子径を観察した。
観察は、ゾルの希釈液をカーボン支持膜に担持して行った。
〔動的光散乱法による平均粒子径〕
 ゾルを分散溶媒で希釈し、溶媒のパラメーターを用いてサブミクロン粒子アナライザー N5(ベックマン・コールター社製)にて測定し、キュムラント法にて演算することで平均粒子径を得た。動的光散乱法ではゾル中の粒子の平均粒子径が観測され、粒子同士の凝集があるときはそれらの凝集粒子の平均粒子径が観測される。
〔比重〕
 浮き秤法(液温25℃)にて求めた。
〔粘度〕
 B型粘度計(液温25℃)にて求めた。
〔水分〕
 カールフィッシャー滴定法にて求めた。
Examples of the present invention are shown below. The present invention is not limited to these examples. The measuring method of physical properties is shown below.
(Transmission electron microscope observation)
The primary particle diameter of the colloidal particles was observed at an acceleration voltage of 100 kv using a transmission electron microscope JEM-1010 (manufactured by JEOL Ltd.).
The observation was performed by carrying a diluted solution of sol on a carbon support film.
[Average particle diameter by dynamic light scattering method]
The sol was diluted with a dispersion solvent, measured with a submicron particle analyzer N5 (manufactured by Beckman Coulter, Inc.) using the solvent parameters, and calculated by the cumulant method to obtain an average particle size. In the dynamic light scattering method, the average particle diameter of the particles in the sol is observed, and when the particles are aggregated, the average particle diameter of the aggregated particles is observed.
〔specific gravity〕
It calculated | required by the float balance method (liquid temperature of 25 degreeC).
〔viscosity〕
It calculated | required with the B-type viscosity meter (liquid temperature of 25 degreeC).
〔moisture〕
It was determined by Karl Fischer titration.
 製造例1
 撹拌翼を備えた1m3の圧力反応装置に、炭酸水素テトラメチルアンモニウム水溶液(多摩化学工業(株)製、水酸化テトラメチルアンモニウムに換算して42.0質量%を含有する。)208.2kgと純水37.5kgを投入した。この水溶液を撹拌しながら、炭酸セリウム粉末(AMR International Corp.製、CeO2として50.94質量%を含有する。)を水溶液中に徐々に添加し、合計で54.06kg投入した。添加終了後、内容物を50℃に昇温し、温度を保ちながら7質量%の過酸化水素水388.6kgを5時間かけて投入した。次いで、内容物を102℃に昇温して4時間加熱熟成した後、145℃で6時間の水熱処理を行った。この水熱処理後に得られたものは、スラリー状であった。水熱処理後のスラリーを、限外ろ過装置を使用して、純水を徐々に添加しながら洗浄すると解膠してゾルとなった。得られたゾルを引き続き限外ろ過装置で洗浄及び濃縮を行い、固形分5.18質量%、pH9.8、電導度780μS/cm、動的光散乱法による平均粒子径61nmの酸化第二セリウム水性ゾル489.6kgを得た。この酸化第二セリウム水性ゾル5kgを分取して、超音波ホモジナイザー(UIP2000)で分散処理を行い、次いで限外ろ過装置を使用して、純水を徐々に添加しながら洗浄することにより、固形分5.15質量%、pH9.3、電導度140μS/cm、動的光散乱法による平均粒子径43nm、透過型電子顕微鏡観察による一次粒子径10nmの酸化第二セリウム水性ゾル5kgを得た。
Production Example 1
208.2 kg of tetramethylammonium hydrogen carbonate aqueous solution (manufactured by Tama Chemical Industry Co., Ltd., containing 42.0% by mass in terms of tetramethylammonium hydroxide) in a 1 m 3 pressure reactor equipped with a stirring blade. And 37.5 kg of pure water were added. While stirring this aqueous solution, cerium carbonate powder (manufactured by AMR International Corp., containing 50.94% by mass as CeO 2 ) was gradually added to the aqueous solution, and a total of 54.06 kg was added. After the addition was completed, the contents were heated to 50 ° C., and 388.6 kg of 7 mass% hydrogen peroxide water was added over 5 hours while maintaining the temperature. Next, the contents were heated to 102 ° C. and aged for 4 hours, followed by hydrothermal treatment at 145 ° C. for 6 hours. What was obtained after this hydrothermal treatment was in the form of a slurry. When the slurry after the hydrothermal treatment was washed while gradually adding pure water using an ultrafiltration device, the slurry was peptized to form a sol. The obtained sol was subsequently washed and concentrated with an ultrafiltration device, solid content 5.18% by mass, pH 9.8, conductivity 780 μS / cm, cerium oxide having an average particle size of 61 nm by dynamic light scattering method 489.6 kg of aqueous sol was obtained. 5 kg of this aqueous cerium oxide sol was sampled, dispersed with an ultrasonic homogenizer (UIP2000), and then washed with gradual addition of pure water using an ultrafiltration device. 5 kg of a cerium oxide aqueous sol having a content of 5.15% by mass, a pH of 9.3, an electric conductivity of 140 μS / cm, an average particle size of 43 nm by a dynamic light scattering method, and a primary particle size of 10 nm by observation with a transmission electron microscope was obtained.
 製造例2
 JIS3号珪酸ナトリウム(SiO2として29.3質量%含有、富士化学(株)製)76.8gを純水766.8gで希釈した水溶液に、スズ酸ナトリウム(NaSnO3・H2O)(SnO2として55.4質量%含有、昭和化工(株)製)13.5gを溶解した。得られた水溶液を水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通すことにより、酸化第二スズ-シリカ複合コロイド粒子の酸性水性ゾル(pH2.4、SnO2として0.87質量%、SiO2として2.62質量%を含有、SiO2/SnO2質量比3.0)860gを得た。次いで得られた酸性水性ゾルにジイソプロピルアミン9.0gを添加した。得られたゾルは酸化第二スズ-シリカ複合コロイド粒子のアルカリ性水性ゾルであり、ジイソプロピルアミン/(シリカ+酸化第二スズ)のモル比は0.21、pH10.3であった。該水性ゾルは、透過型電子顕微鏡により3nm以下の1次粒子径のコロイド粒子が観察された。
Production Example 2
Sodium stannate (NaSnO 3 · H 2 O) (SnO) was added to an aqueous solution obtained by diluting 76.8 g of JIS 3 sodium silicate (containing 29.3 mass% as SiO 2 , manufactured by Fuji Chemical Co., Ltd.) with 766.8 g of pure water. As a result, 13.5 g of 55.4% by mass (made by Showa Kako Co., Ltd.) was dissolved. The obtained aqueous solution was passed through a column packed with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B) to obtain an acidic aqueous sol of stannic oxide-silica composite colloidal particles (pH 2.4, SnO 2 contained 0.87 mass%, SiO 2 contained 2.62 mass%, and SiO 2 / SnO 2 mass ratio 3.0) 860 g was obtained. Next, 9.0 g of diisopropylamine was added to the obtained acidic aqueous sol. The obtained sol was an alkaline aqueous sol of stannic oxide-silica composite colloidal particles. The molar ratio of diisopropylamine / (silica + stannic oxide) was 0.21, and the pH was 10.3. In the aqueous sol, colloidal particles having a primary particle diameter of 3 nm or less were observed with a transmission electron microscope.
 製造例3
 珪酸カリウム水溶液(SiO2として19.9質量%含有、日産化学工業(株)製)35.6kgを純水330.0kgで希釈した。この希釈液に48%水酸化カリウム水溶液18.1kgと三酸化アンチモン(三国精錬(株)製)3.2kgを添加し、撹拌下で更に35質量%過酸化水素水2.2kgを添加した後、93℃で1時間反応させることにより、珪酸アンチモン酸カリウムの水溶液を得た。得られた珪酸アンチモン酸カリウム水溶液542.6gを純水207.4gで希釈し、水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通液することにより、五酸化アンチモン-シリカ複合コロイド粒子の水性ゾル(pH2.1、Sb25として0.66質量%、SiO2として1.30質量%を含有、SiO2/Sb25質量比2.0)754gを得た。次いで得られた水性ゾルにジイソプロピルアミンを4.5g添加した。得られたゾルは五酸化アンチモン-シリカ複合コロイド粒子のアルカリ性水性ゾルであり、ジイソプロピルアミン/(シリカ+五酸化アンチモン)のモル比は0.25、pH10.3であった。該水性ゾルは、透過型電子顕微鏡により3nm以下の1次粒子径のコロイド粒子が観察された。
Production Example 3
35.6 kg of potassium silicate aqueous solution (containing 19.9 mass% as SiO 2 , manufactured by Nissan Chemical Industries, Ltd.) was diluted with 330.0 kg of pure water. After adding 18.1 kg of 48% potassium hydroxide aqueous solution and 3.2 kg of antimony trioxide (manufactured by Mikuni Seimitsu Co., Ltd.) to this diluted solution, and further adding 2.2 kg of 35 mass% hydrogen peroxide water with stirring. By reacting at 93 ° C. for 1 hour, an aqueous solution of potassium antimonate silicate was obtained. The obtained potassium antimonate silicate aqueous solution (542.6 g) was diluted with pure water (207.4 g) and passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B). antimony oxide - aqueous sol of silica composite colloidal particles (pH 2.1, 0.66% by mass as Sb 2 O 5, containing 1.30% by mass as SiO 2, SiO 2 / Sb 2 O 5 mass ratio 2.0) 754 g was obtained. Next, 4.5 g of diisopropylamine was added to the obtained aqueous sol. The obtained sol was an alkaline aqueous sol of antimony pentoxide-silica composite colloidal particles. The molar ratio of diisopropylamine / (silica + antimony pentoxide) was 0.25 and the pH was 10.3. In the aqueous sol, colloidal particles having a primary particle diameter of 3 nm or less were observed with a transmission electron microscope.
 製造例4
 JIS3号珪酸ナトリウム(SiO2として29.3質量%含有、富士化学(株)製)34.1gを純水251.4gで希釈した。得られた水溶液を水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通し、活性珪酸水溶液(pH3.1、SiO2として3.5質量%を含有)290gを得た。次いでこの活性珪酸水溶液にジイソプロピルアミン3.0gを添加した。得られた水溶液はアルカリ性の珪酸オリゴマーを含む水溶液であり、ジイソプロピルアミン/シリカのモル比は0.18、pH10.2であった。
Production Example 4
34.1 g of JIS 3 sodium silicate (containing 29.3 mass% as SiO 2 , manufactured by Fuji Chemical Co., Ltd.) was diluted with 251.4 g of pure water. The obtained aqueous solution was passed through a column packed with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and 290 g of an active silicic acid aqueous solution (pH 3.1, containing 3.5% by mass as SiO 2) was added. Obtained. Subsequently, 3.0 g of diisopropylamine was added to this active silicic acid aqueous solution. The obtained aqueous solution was an aqueous solution containing an alkaline silicic acid oligomer, and the diisopropylamine / silica molar ratio was 0.18 and pH 10.2.
 実施例1
 製造例1で調製した酸化第二セリウム水性ゾル2330gに純水336.7gを加えた固形分濃度4.5質量%の酸化第二セリウム水性ゾルに、製造例2で調製したアルカリ性の酸化第二スズ-シリカコロイド粒子のアルカリ性水性ゾル869gを添加し、十分に撹拌した。次いで95℃で3時間加熱して、酸化第二スズ-シリカ複合コロイド粒子で被覆された変性酸化第二セリウムコロイド粒子の水性ゾル3404gを得た。得られたゾルの全金属酸化物濃度は4.4質量%、pHは8.6であった。得られた変性酸化第二セリウムコロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通し、変性酸化第二セリウムコロイド粒子の酸性水性ゾル3421gを得た。得られた酸性水性ゾルの全金属酸化物濃度は4.4質量%、pHは2.7であった。
 次いで、該変性酸化第二セリウムコロイド粒子の酸性水性ゾルにジイソプロピルアミンを0.55g添加し、変性酸化第二セリウムコロイド粒子の表面にジイソプロピルアミンを結合させた。このときのゾルのジイソプロピルアミン/(シリカ+酸化第二スズ)のモル比は0.013であり、pHは3.5であった。次いで、得られた変性酸化第二セリウムコロイド粒子の酸性水性ゾルを限外ろ過装置を用いて濃縮し、全金属酸化物濃度20.5質量%、比重1.202、pH3.3、粘度5.5mPa・s、動的光散乱法による平均粒子径が46nmの酸性水性ゾル730gを得た。
Example 1
The alkaline cerium oxide prepared in Production Example 2 was added to the cerium oxide aqueous sol having a solid concentration of 4.5% by mass obtained by adding 336.7 g of pure water to 2330 g of the aqueous cerium oxide sol prepared in Production Example 1. 869 g of an alkaline aqueous sol of tin-silica colloid particles was added and stirred well. Subsequently, the mixture was heated at 95 ° C. for 3 hours to obtain 3404 g of an aqueous sol of modified cerium oxide colloidal particles coated with stannic oxide-silica composite colloidal particles. The total metal oxide concentration of the obtained sol was 4.4% by mass, and the pH was 8.6. The obtained modified aqueous cerium oxide colloidal particle sol was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and 3421 g of acidic aqueous sol of modified cerium oxide colloidal particles was obtained. Got. The obtained acidic aqueous sol had a total metal oxide concentration of 4.4% by mass and a pH of 2.7.
Next, 0.55 g of diisopropylamine was added to the acidic aqueous sol of the modified ceric oxide colloidal particles, and diisopropylamine was bound to the surface of the modified ceric oxide colloidal particles. At this time, the molar ratio of diisopropylamine / (silica + stannic oxide) in the sol was 0.013, and the pH was 3.5. Subsequently, the obtained acidic aqueous sol of the modified cerium oxide colloidal particles was concentrated using an ultrafiltration device, and the total metal oxide concentration was 20.5% by mass, the specific gravity was 1.202, the pH was 3.3, and the viscosity was 5. 730 g of an acidic aqueous sol having an average particle diameter of 46 nm by 5 mPa · s and a dynamic light scattering method was obtained.
 実施例2
 製造例1で調製した酸化第二セリウム水性ゾル2330gに純水336.7gを加えた固形分濃度4.5質量%の酸化第二セリウム水性ゾルに、製造例2で調製したアルカリ性の酸化第二スズ-シリカコロイド粒子のアルカリ性水性ゾル869gを添加し、十分に撹拌した。次いで95℃で3時間加熱して、酸化第二スズ-シリカ複合コロイド粒子で被覆された変性酸化第二セリウムコロイド粒子の水性ゾル3404gを得た。得られたゾルの全金属酸化物濃度は4.4質量%、pHは8.6であった。得られた変性酸化第二セリウムコロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通し、変性酸化第二セリウムコロイド粒子の酸性水性ゾル3421gを得た。得られた酸性水性ゾルの全金属酸化物濃度は4.4質量%、pHは2.7であった。
 次いで、該変性酸化第二セリウムコロイド粒子の酸性水性ゾルにジイソブチルアミンを0.7g添加し、変性酸化第二セリウムコロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのジイソブチルアミン/(シリカ+酸化第二スズ)のモル比は0.013であり、pHは3.5であった。次いで得られた変性酸化第二セリウムコロイド粒子の酸性水性ゾルを限外ろ過装置を用いて濃縮し、全金属酸化物濃度16.9質量%まで濃縮した。この濃縮された水性ゾルをナス型フラスコ付きエバポレータに投入し、該ゾルにメタノールを添加しながら100Torr減圧下で水を留去することにより、ジイソブチルアミンがその表面に結合した変性酸化第二セリウムコロイド粒子のメタノールゾルを得た。得られたメタノールゾルは、全金属酸化物濃度20.5質量%、比重0.966、pH3.6(ゾルと同質量の水で希釈)、粘度3.5mPa・s、水分1.0質量%、動的光散乱法による平均粒子径は55nmであった。
Example 2
The alkaline cerium oxide prepared in Production Example 2 was added to the cerium oxide aqueous sol having a solid concentration of 4.5% by mass obtained by adding 336.7 g of pure water to 2330 g of the aqueous cerium oxide sol prepared in Production Example 1. 869 g of an alkaline aqueous sol of tin-silica colloid particles was added and stirred well. Subsequently, the mixture was heated at 95 ° C. for 3 hours to obtain 3404 g of an aqueous sol of modified cerium oxide colloidal particles coated with stannic oxide-silica composite colloidal particles. The total metal oxide concentration of the obtained sol was 4.4% by mass, and the pH was 8.6. The obtained modified aqueous cerium oxide colloidal particle sol was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and 3421 g of acidic aqueous sol of modified cerium oxide colloidal particles was obtained. Got. The obtained acidic aqueous sol had a total metal oxide concentration of 4.4% by mass and a pH of 2.7.
Next, 0.7 g of diisobutylamine was added to the acidic aqueous sol of the modified ceric oxide colloidal particles, and diisobutylamine was bound to the surface of the modified ceric oxide colloidal particles. At this time, the molar ratio of diisobutylamine / (silica + stannic oxide) in the sol was 0.013, and the pH was 3.5. Subsequently, the obtained acidic aqueous sol of the modified cerium oxide colloidal particles was concentrated using an ultrafiltration device, and concentrated to a total metal oxide concentration of 16.9% by mass. The concentrated aqueous sol is put into an evaporator with an eggplant-shaped flask, and water is distilled off under a reduced pressure of 100 Torr while adding methanol to the sol, whereby a modified ceric oxide colloid in which diisobutylamine is bound to the surface thereof. Particulate methanol sol was obtained. The obtained methanol sol had a total metal oxide concentration of 20.5% by mass, a specific gravity of 0.966, pH 3.6 (diluted with water of the same mass as the sol), a viscosity of 3.5 mPa · s, and a water content of 1.0% by mass. The average particle size by dynamic light scattering method was 55 nm.
 実施例3
 実施例2で得られたメタノールゾル244gにメチルトリメトキシシラン(信越シリコーン株式会社製 品名:LS-530)を5.0g添加し、還留加熱を5時間行うことでシリル化を行い、メチルジメトキシシリル基を変性酸化第二セリウムコロイド粒子の表面に結合させた。次いでエバポレータを用いて140Torrの減圧下でメチルエチルケトン(以下、「MEK」ともいう)を添加しながらメタノールを留去することにより、メタノールをメチルエチルケトンに置換して、メチルジメトキシシリル基が結合した表面疎水化酸化第二セリウムコロイド粒子のメチルエチルケトンゾルが得られた。得られたメチルエチルケトンゾルは、全金属酸化物濃度20.9質量%、比重0.988、粘度2.6mPa・s、動的光散乱法による平均粒子径は48nmであった。透過型電子顕微鏡による観察では、一次粒子径が12nmであった。
Example 3
5.0 g of methyltrimethoxysilane (product name: LS-530, manufactured by Shin-Etsu Silicone Co., Ltd.) was added to 244 g of the methanol sol obtained in Example 2, and silylation was carried out by reflux heating for 5 hours. Silyl groups were bonded to the surface of the modified ceric oxide colloidal particles. Next, methanol was distilled off while adding methyl ethyl ketone (hereinafter also referred to as “MEK”) under a reduced pressure of 140 Torr using an evaporator, so that methanol was replaced with methyl ethyl ketone and the surface was hydrophobicized with a methyldimethoxysilyl group bonded thereto. A methyl ethyl ketone sol of ceric oxide colloidal particles was obtained. The obtained methyl ethyl ketone sol had a total metal oxide concentration of 20.9% by mass, a specific gravity of 0.988, a viscosity of 2.6 mPa · s, and an average particle size by dynamic light scattering of 48 nm. In observation with a transmission electron microscope, the primary particle diameter was 12 nm.
 実施例4
 メチルトリメトキシシラン5.0gの代わりにフェニルトリメトキシシラン(信越シリコーン株式会社製 品名:KBM-103)3.6gを用いた以外は実施例3と同様の操作を行い、表面疎水化酸化第二セリウムコロイド粒子のメチルエチルケトンゾルを得た。得られたメチルエチルケトンゾルは、全金属酸化物濃度20.5質量%、比重0.984、粘度3.0mPa・s、動的光散乱法による平均粒子径は56nmであった。透過型電子顕微鏡による観察では、一次粒子径が12nmであった。
Example 4
The same procedure as in Example 3 was performed, except that 3.6 g of phenyltrimethoxysilane (product name: KBM-103, manufactured by Shin-Etsu Silicone Co., Ltd.) was used instead of 5.0 g of methyltrimethoxysilane. A methyl ethyl ketone sol of cerium colloid particles was obtained. The obtained methyl ethyl ketone sol had a total metal oxide concentration of 20.5% by mass, a specific gravity of 0.984, a viscosity of 3.0 mPa · s, and an average particle size by a dynamic light scattering method of 56 nm. In observation with a transmission electron microscope, the primary particle diameter was 12 nm.
 実施例5
 製造例1で調製した酸化第二セリウム水性ゾル1165gに純水168.3gを加えた固形分濃度4.5質量%の酸化第二セリウム水性ゾルに、製造例3で調製したアルカリ性の五酸化アンチモン-シリカ複合コロイド粒子の水性ゾル754gを添加し、十分に撹拌した。次いで95℃で3時間加熱して、五酸化アンチモン-シリカ複合コロイド粒子で被覆された変性酸化第二セリウムコロイド粒子の水性ゾル1926gを得た。得られた水性ゾルの全金属酸化物濃度は3.9質量%、pHは8.0であった。次いで、得られた変性酸化第二セリウムコロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通し、変性酸化第二セリウムコロイド粒子の酸性水性ゾル1939gを得た。得られた酸性水性ゾルの全金属酸化物濃度は3.8質量%、pHは2.6であった。次いで、該変性酸化第二セリウムコロイド粒子の酸性水性ゾルにジイソブチルアミンを1.5g添加し、変性酸化第二セリウムコロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのpHは3.7であり、ジイソブチルアミン/(シリカ+五酸化アンチモン)のモル比は0.065であった。次いで得られたゾルを限外ろ過装置を用いて濃縮し、全金属酸化物濃度20.5質量%まで濃縮した。この濃縮されたゾルは全金属酸化物濃度20.5質量%、比重1.208、pH3.5、粘度6.10mPa・s、動的光散乱法による平均粒子径が43nmであった。
Example 5
The alkaline cerium pentoxide prepared in Production Example 3 was added to the aqueous cerium oxide aqueous sol having a solid concentration of 4.5% by mass, which was obtained by adding 168.3 g of pure water to 1165 g of the cerium oxide aqueous sol prepared in Production Example 1. Add 754 g of aqueous sol of silica composite colloidal particles and stir well. Subsequently, the mixture was heated at 95 ° C. for 3 hours to obtain 1926 g of an aqueous sol of modified cerium oxide colloidal particles coated with antimony pentoxide-silica composite colloidal particles. The obtained aqueous sol had a total metal oxide concentration of 3.9% by mass and a pH of 8.0. Subsequently, the obtained aqueous sol of the modified cerium oxide colloid particles was passed through a column packed with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and the acidic aqueous solution of the modified cerium oxide colloid particles was obtained. 1939 g of sol was obtained. The obtained acidic aqueous sol had a total metal oxide concentration of 3.8% by mass and a pH of 2.6. Next, 1.5 g of diisobutylamine was added to the acidic aqueous sol of the modified ceric oxide colloidal particles, and diisobutylamine was bound to the surface of the modified ceric oxide colloidal particles. At this time, the pH of the sol was 3.7, and the molar ratio of diisobutylamine / (silica + antimony pentoxide) was 0.065. Subsequently, the obtained sol was concentrated using an ultrafiltration device, and concentrated to a total metal oxide concentration of 20.5% by mass. This concentrated sol had a total metal oxide concentration of 20.5% by mass, a specific gravity of 1.208, a pH of 3.5, a viscosity of 6.10 mPa · s, and an average particle size by dynamic light scattering of 43 nm.
 実施例6
 実施例2で得られたメタノールゾル244gにメチルトリメトキシシラン(信越シリコーン株式会社製 品名:LS-530)を5.0g添加し、還留加熱を5時間行うことでシリル化を行い、メチルジメトキシシリル基を変性酸化第二セリウムコロイド粒子の表面に結合させることにより、表面疎水化酸化第二セリウムコロイド粒子のメタノールゾルを得た。次いでエバポレータを用いて100Torrの減圧下でイソプロパノール(以下、「IPA」ともいう)を添加しながらメタノールを留去することによりメタノールをイソプロパノールに置換して、表面疎水化酸化第二セリウムコロイド粒子のイソプロパノールゾルを得た。得られたイソプロパノールゾルは、全金属酸化物濃度20.5質量%、比重0.955、粘度5.2mPa・s、動的光散乱法による平均粒子径は51nmであった。
Example 6
5.0 g of methyltrimethoxysilane (product name: LS-530, manufactured by Shin-Etsu Silicone Co., Ltd.) was added to 244 g of the methanol sol obtained in Example 2, and silylation was carried out by reflux heating for 5 hours. A methanol sol of surface hydrophobized cerium oxide colloidal particles was obtained by bonding silyl groups to the surface of the modified cerium oxide colloidal particles. Next, the methanol was replaced with isopropanol by distilling off methanol while adding isopropanol (hereinafter also referred to as “IPA”) under a reduced pressure of 100 Torr using an evaporator. A sol was obtained. The obtained isopropanol sol had a total metal oxide concentration of 20.5% by mass, a specific gravity of 0.955, a viscosity of 5.2 mPa · s, and an average particle size by a dynamic light scattering method of 51 nm.
 実施例7
 イソプロパノールの代わりにプロピレングリコールモノメチルエーテル(以下、「PGME」ともいう)を用いた以外は実施例6と同様の操作を行い、表面疎水化酸化第二セリウムコロイド粒子のプロピレングリコールモノメチルエーテルゾルを得た。得られたプロピレングリコールモノメチルエーテルゾルは、全金属酸化物濃度20.5質量%、比重1.111、粘度4.5mPa・s、動的光散乱法による平均粒子径は45nmであった。
Example 7
The same operation as in Example 6 was carried out except that propylene glycol monomethyl ether (hereinafter also referred to as “PGME”) was used instead of isopropanol to obtain a propylene glycol monomethyl ether sol of surface hydrophobized ceric oxide colloidal particles. . The obtained propylene glycol monomethyl ether sol had a total metal oxide concentration of 20.5% by mass, a specific gravity of 1.111, a viscosity of 4.5 mPa · s, and an average particle size by a dynamic light scattering method of 45 nm.
 比較例1
 製造例1で得られた酸化第二セリウム水性ゾル776.7gに純水112.2gを加えた固形分濃度4.5質量%の酸化第二セリウム水性ゾルに、製造例4で調製したアルカリ性の珪酸オリゴマーを含む水溶液290gを添加し、十分に撹拌した。次いで95℃で3時間加熱熟成して、シリカとそのオリゴマーで被覆された変性酸化第二セリウムコロイド粒子の水性ゾル1165gを得た。次いで、得られた変性酸化第二セリウムコロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通し、酸性の変性酸化第二セリウムコロイド粒子の水性ゾル1200gを得た。得られた水性ゾルの全金属酸化物濃度は4.1質量%、pHは8.8であった。得られた変性酸化第二セリウムコロイド粒子の水性ゾルを限外ろ過装置を用いて濃縮し、全金属酸化物濃度20.5質量%、比重1.196、pH2.7、粘度6.5mPa・s、動的光散乱法による平均粒子径が49nmの水性ゾル240gを得たが、経時的に増粘しゲル化した。
Comparative Example 1
The alkaline cerium oxide prepared in Production Example 4 was added to the aqueous cerium oxide aqueous sol having a solid concentration of 4.5% by mass by adding 112.2 g of pure water to 776.7 g of the aqueous cerium oxide sol obtained in Production Example 1. 290 g of an aqueous solution containing a silicic acid oligomer was added and stirred sufficiently. Next, the mixture was aged at 95 ° C. for 3 hours to obtain 1165 g of an aqueous sol of modified cerium oxide colloidal particles coated with silica and its oligomer. Next, the obtained aqueous sol of the modified cerium oxide colloidal particles was passed through a column packed with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and the acidic modified cerium oxide colloidal particles 1200 g of an aqueous sol was obtained. The obtained aqueous sol had a total metal oxide concentration of 4.1% by mass and a pH of 8.8. The obtained aqueous sol of the modified cerium oxide colloidal particles was concentrated using an ultrafiltration device, and the total metal oxide concentration was 20.5% by mass, the specific gravity was 1.196, pH 2.7, and the viscosity was 6.5 mPa · s. In addition, 240 g of an aqueous sol having an average particle diameter of 49 nm obtained by a dynamic light scattering method was obtained.
 比較例2
 酸化第二セリウムコロイド粒子の酸性水性ゾルに対してジイソブチルアミンを添加しないこと以外は実施例2と同様にしてメタノール置換を行ったが、メタノールに置換する途中でゾルがゲル化したため、メタノールゾルを得ることができなかった。
Comparative Example 2
Methanol substitution was performed in the same manner as in Example 2 except that diisobutylamine was not added to the acidic aqueous sol of cerium oxide colloidal particles, but the sol gelled in the middle of substitution with methanol. Couldn't get.
 比較例3
 ジイソブチルアミンがその表面に結合した変性酸化第二セリウムコロイド粒子のメタノールゾルに対してメチルトリメトキシシランを添加しないこと以外は実施例3と同様に行ったが、メチルエチルケトンに置換する途中でゾルがゲル化したため、メチルエチルケトンゾルを得ることができなかった。
Comparative Example 3
The same procedure as in Example 3 was performed except that methyltrimethoxysilane was not added to the methanol sol of the modified cerium oxide colloidal particles in which diisobutylamine was bonded to the surface, but the sol was gelated while being replaced with methyl ethyl ketone. As a result, methyl ethyl ketone sol could not be obtained.
〔評価方法〕
 得られたゾルを以下の方法で評価した。
(1)コーティング組成物の調製
 実施例1、2、3、5、比較例1で得られたゾルを用いて以下の方法でコーティング組成物を調製した。
 水性ゾルはポリエステルエマルジョンWB-630-25(センショウ化成製)と固形分比(全金属酸化物:バインダー)=1:1となるよう混合し、総固形分濃度が20質量%となるようにゾルの分散媒を添加して、コーティング組成物を調製した。また、有機溶媒分散ゾルはシリカ系バインダー(γ-グリシドキシプロピルトリメトキシシラン部分加水分解物とアルミニウムアセチルアセトネートとの混合物)の部分加水分解物と、固形分比(全金属酸化物:バインダー)=1:1となるよう混合し、総固形分濃度が20質量%となるようにゾルの分散媒を添加して、コーティング組成物を調製した。
(2)硬化膜の作製
 上記(1)で調製したコーティング組成物をガラス基材上に滴下し、300rpm×3秒、1800rpm×8秒の条件でスピンコーティングすることにより製膜した。次いでホットプレートを用いて80℃で10分間乾燥した後、電気炉を用いて150℃で2時間熱することにより、硬化膜を作製した。
(3)耐光性の評価
 上記(1)で調製したコーティング組成物、及び上記(2)で作製した硬化膜に300Wの高圧水銀ランプ((株)ORC製作所製 HANDY UV300)で紫外線を照射し、耐光性を評価した。また、比較のために製造例1で得られる酸化第二セリウム水性ゾルを20質量%に濃縮したゾルも同様に評価を行った。
 色差計((有)東京電色製、TC-1800MK-II型)を使用して色座標値を測定し、以下のHunterの色差式によって算出される色差値を耐光性の指標とした。
Hunterの色差式 ΔE=[(L1-L02+(a1-a02+(b1-b021/2
但し、L0、a0、b0は紫外線照射前の色座標値を示し、L1、a1、b1は紫外線30分照射後の色座標値を示した。
 コーティング組成物の評価結果を表1-1に、硬化膜の評価結果を表1-2に示した。
 変性酸化第二セリウムコロイド粒子のゾルはいずれも色差値の増大が抑制されており、特に酸化第二スズ-シリカ複合コロイド粒子で被覆された変性酸化第二セリウムコロイド粒子は耐光性に優れていた。
〔Evaluation methods〕
The obtained sol was evaluated by the following method.
(1) Preparation of coating composition Using the sols obtained in Examples 1, 2, 3, 5 and Comparative Example 1, a coating composition was prepared by the following method.
The aqueous sol is mixed with the polyester emulsion WB-630-25 (manufactured by Sensho Kasei) so that the solid content ratio (total metal oxide: binder) = 1: 1, and the total solid content concentration is 20% by mass. A dispersion composition was added to prepare a coating composition. The organic solvent dispersion sol is composed of a silica-based binder (a mixture of γ-glycidoxypropyltrimethoxysilane partial hydrolyzate and aluminum acetylacetonate) and a solid content ratio (total metal oxide: binder). ) = 1: 1, and a sol dispersion medium was added so that the total solid content concentration was 20% by mass to prepare a coating composition.
(2) Production of cured film The coating composition prepared in (1) above was dropped on a glass substrate and spin-coated under the conditions of 300 rpm × 3 seconds and 1800 rpm × 8 seconds to form a film. Subsequently, after drying for 10 minutes at 80 degreeC using a hotplate, the cured film was produced by heating at 150 degreeC for 2 hours using an electric furnace.
(3) Evaluation of light resistance The coating composition prepared in (1) above and the cured film prepared in (2) above were irradiated with ultraviolet rays with a 300 W high-pressure mercury lamp (HANDY UV300 manufactured by ORC Manufacturing Co., Ltd.) Light resistance was evaluated. For comparison, a sol obtained by concentrating the cerium oxide aqueous sol obtained in Production Example 1 to 20% by mass was similarly evaluated.
Color coordinate values were measured using a color difference meter (TC-1800MK-II, manufactured by Tokyo Denshoku Co., Ltd.), and the color difference value calculated by the following Hunter color difference formula was used as an indicator of light resistance.
Hunter's color difference ΔE = [(L 1 −L 0 ) 2 + (a 1 −a 0 ) 2 + (b 1 −b 0 ) 2 ] 1/2
However, L 0 , a 0 , and b 0 indicate color coordinate values before ultraviolet irradiation, and L 1 , a 1 , and b 1 indicate color coordinate values after 30 minutes of ultraviolet irradiation.
The evaluation results of the coating composition are shown in Table 1-1, and the evaluation results of the cured film are shown in Table 1-2.
The sol of the modified cerium oxide colloidal particles has suppressed the increase of the color difference value, and particularly the modified cerium oxide colloidal particles coated with the stannic oxide-silica composite colloidal particles were excellent in light resistance. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本願発明の変性酸化第二セリウムコロイド粒子(C)は、高い紫外線吸収能を有し、且つ化学的安定性を有した無機の紫外線吸収剤として、自動車用紫外線遮蔽硝子、日焼け防止化粧品、プラスチック用紫外線吸収コーティング組成物等への添加成分としての応用が期待される。 The modified cerium oxide colloidal particles (C) of the invention of the present application are used as an inorganic ultraviolet absorber having high ultraviolet absorption ability and chemical stability, for automobile ultraviolet shielding glass, sun protection cosmetics, and plastics. Application as an additive component to ultraviolet absorbing coating compositions is expected.

Claims (22)

  1.  4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50である変性酸化第二セリウムコロイド粒子(C)。 A cerium oxide colloidal particle (A) having a primary particle size of 4 to 60 nm is used as a nucleus, and its outer surface is made of silica-stannic oxide or silica-antimony pentoxide having a primary particle size of 1 to 3 nm. And the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M is an amine) The silica-based composite of the cerium oxide colloidal particles (A) coated with silica-based composite colloidal particles (B) to which an amine compound having a molar ratio of 0.001 to 0.08 is bonded. Modified cerium oxide colloidal particles (C) having a mass ratio (A) / (B) of 1 to 50 with respect to the colloidal particles (B).
  2.  前記アミン化合物が第一級アミン、第二級アミン及び第三級アミンからなる群より選ばれる少なくとも1種の化合物である請求項1に記載の変性酸化第二セリウムコロイド粒子(C)。 The modified ceric oxide colloidal particles (C) according to claim 1, wherein the amine compound is at least one compound selected from the group consisting of primary amines, secondary amines and tertiary amines.
  3.  請求項1又は請求項2に記載の変性酸化第二セリウムコロイド粒子(C)の水性ゾル。 An aqueous sol of the modified ceric oxide colloidal particles (C) according to claim 1 or 2.
  4.  請求項1又は請求項2に記載の変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒分散ゾル。 A hydrophilic organic solvent-dispersed sol of the modified cerium oxide colloidal particles (C) according to claim 1 or 2.
  5.  前記親水性有機溶媒が、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコール、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルからなる群より選ばれる少なくとも1種の化合物である請求項4に記載の親水性有機溶媒分散ゾル。 The hydrophilic organic solvent is methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, dipropylene The hydrophilic organic solvent-dispersed sol according to claim 4, which is at least one compound selected from the group consisting of glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether.
  6.  請求項1又は請求項2に記載の変性酸化第二セリウムコロイド粒子(C)の表面に有機珪素化合物が結合した表面疎水化酸化第二セリウムコロイド粒子(D)。 Surface hydrophobized ceric oxide colloidal particles (D) in which an organosilicon compound is bonded to the surface of the modified ceric oxide colloidal particles (C) according to claim 1 or 2.
  7.  請求項6に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の親水性有機溶媒分散ゾル。 A hydrophilic organic solvent-dispersed sol of surface-hydrophobized ceric oxide colloidal particles (D) according to claim 6.
  8.  前記親水性有機溶媒が、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコール、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルからなる群より選ばれる少なくとも1種の化合物である請求項7に記載の親水性有機溶媒分散ゾル。 The hydrophilic organic solvent is methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, dipropylene The hydrophilic organic solvent-dispersed sol according to claim 7, which is at least one compound selected from the group consisting of glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether.
  9.  請求項6に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾル。 A hydrophobic organic solvent-dispersed sol having a water solubility of 0.002 to 12% by mass of the surface-hydrophobized cerium oxide colloidal particles (D) according to claim 6.
  10.  前記変性酸化第二セリウムコロイド粒子(C)に対する前記有機珪素化合物の質量比が0.01乃至0.50である請求項6に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾル。 The surface hydrophobized cerium oxide colloidal particles (D) according to claim 6, wherein a mass ratio of the organosilicon compound to the modified cerium oxide colloidal particles (C) is 0.01 to 0.50. A hydrophobic organic solvent-dispersed sol having a water solubility of 002 to 12% by mass.
  11.  前記有機珪素化合物が、
    一般式(I)
    (R1a(R3bSi(OR24-(a+b)     (I)
    (但し、R及びRは、それぞれ炭素原子数1乃至8のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至8のアルケニル基、炭素原子数6乃至8のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基若しくはシアノ基を有する有機基を表し、且つSi-C結合によりケイ素原子と結合しているものであり、R2は炭素原子数1乃至8のアルキル基若しくはアルコキシアルキル基又は炭素原子数2乃至8のアシル基を表し、a及びbはそれぞれ0、1又は2の整数を表し、a+bは0、1又は2の整数を表す。)及び/又は
    一般式(II)
    〔(R4cSi(OX)3-c2Y     (II)
    (但し、R4は炭素原子数1乃至5のアルキル基を表し、Xは炭素原子数1乃至4のアルキル基又は炭素原子数2乃至8のアシル基を表し、Yは炭素原子数1乃至20のアルキレン基を表し、cは0又は1の整数を表す。)で表される有機珪素化合物、若しくはそれらの加水分解物からなる群より選ばれる少なくとも1種の化合物である請求項6に記載の表面疎水化酸化第二セリウムコロイド粒子(D)。
    The organosilicon compound is
    Formula (I)
    (R 1 ) a (R 3 ) b Si (OR 2 ) 4- (a + b) (I)
    (However, R 1 and R 3 are each an alkyl group having 1 to 8 carbon atoms or a halogenated alkyl group, an alkenyl group having 2 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, or a halogenated aryl group. Or an organic group having an epoxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group or a cyano group, and bonded to a silicon atom by a Si—C bond, and R 2 represents carbon An alkyl group having 1 to 8 atoms or an alkoxyalkyl group or an acyl group having 2 to 8 carbon atoms; a and b each represents an integer of 0, 1 or 2; a + b represents an integer of 0, 1 or 2; And / or general formula (II)
    [(R 4 ) c Si (OX) 3-c ] 2 Y (II)
    (Wherein R 4 represents an alkyl group having 1 to 5 carbon atoms, X represents an alkyl group having 1 to 4 carbon atoms or an acyl group having 2 to 8 carbon atoms, and Y represents 1 to 20 carbon atoms) 7 is an at least one compound selected from the group consisting of an organosilicon compound represented by the formula (1), wherein c represents an integer of 0 or 1), or a hydrolyzate thereof. Surface hydrophobized ceric oxide colloidal particles (D).
  12.  前記0.002乃至12質量%の水溶解度を有する疎水性有機溶媒が、ケトン類、エステル類、炭化水素類、ハロゲン化炭化水素類及びポリオキシアルキレンジカルボン酸アルキルエステルからなる群より選ばれる少なくとも1種の化合物である請求項9乃至請求項11のいずれか1項に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾル。 The hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass is at least one selected from the group consisting of ketones, esters, hydrocarbons, halogenated hydrocarbons, and polyoxyalkylene dicarboxylic acid alkyl esters. A hydrophobic organic solvent dispersion having a water solubility of 0.002 to 12 mass% of the surface-hydrophobized cerium oxide colloidal particles (D) according to any one of claims 9 to 11, which is a seed compound. Sol.
  13.  前記0.002乃至12質量%の水溶解度を有する疎水性有機溶媒が、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、メタクリル酸メチル、ジイソプロピルエーテル、トルエン、トリエチレングリコールジ2-エチルヘキサノエート(3GO)、トリエチレングリコールジ2-エチルブチレート(3GH)、テトラエチレングリコールジヘプタノエート(4G7)及びテトラエチレングリコールジ2-エチルヘキサノエート(4GO)からなる群より選ばれる少なくとも1種の化合物である請求項9乃至請求項11のいずれか1項に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾル。 The hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass is methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, methyl methacrylate, diisopropyl ether, toluene, triethylene glycol di-2-ethylhexa At least selected from the group consisting of noate (3GO), triethylene glycol di-2-ethylbutyrate (3GH), tetraethylene glycol diheptanoate (4G7) and tetraethylene glycol di-2-ethylhexanoate (4GO) A hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass of the surface-hydrophobized cerium oxide colloidal particles (D) according to any one of claims 9 to 11, which is a single compound. Dispersed sol.
  14.  変性酸化第二セリウムコロイド粒子(C)の水性ゾルの製造方法であって、
    (a)工程:M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0であるアミン化合物で安定化させたシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B‘)の水性ゾルを得る工程であって、シリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10となるようにスズ酸アルカリ水溶液又はアンチモン酸アルカリ水溶液とケイ酸アルカリ水溶液とを混合し、続いて該水溶液中に存在する陽イオンを除去して1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ複合体コロイド粒子又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子の水性ゾルを調製し、次に該水性ゾルにM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.10乃至1.0であるアミン化合物を添加することにより、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であるシリカ系複合コロイド粒子(B‘)を安定化させる工程、
    (b)工程:変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを得る工程であって、4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)の水性ゾルと、前記(a)工程で得られたシリカ系複合コロイド粒子(B‘)の水性ゾルとを、(A)/(B‘)の質量比で1乃至50となるように混合して、該酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、前記シリカ系複合コロイド粒子(B‘)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B‘)に対する質量比(A)/(B‘)が1乃至50となる割合にする工程、
    (c)工程:前記(b)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを陽イオン交換する工程であって、陽イオン交換により前記シリカ系複合コロイド粒子(C‘)に結合していたアミン化合物を除去する工程、及び
    (d)工程:変性酸化第二セリウムコロイド粒子(C)の水性ゾルを得る工程であって、前記(c)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルに、前記シリカ系複合コロイド粒子(B‘)に対するM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物を添加して、前記酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50となる割合にする工程、
    を含む請求項3に記載の変性酸化第二セリウムコロイド粒子(C)の水性ゾルの製造方法。
    A method for producing an aqueous sol of modified cerium oxide colloidal particles (C) comprising:
    (A) Step: An amine compound having a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 1.0. A step of obtaining an aqueous sol of silica-based composite colloidal particles (B ′) comprising stabilized silica-stannic oxide or silica-antimony pentoxide, comprising silica / stannic oxide or silica / antimony pentoxide First, an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm. An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Rica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10 The step of stabilizing B ′),
    (B) step: a step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C ′), wherein the aqueous sol of ceric oxide colloidal particles (A) having a primary particle diameter of 4 to 60 nm, The aqueous sol of silica-based composite colloidal particles (B ′) obtained in the step (a) is mixed so that the mass ratio of (A) / (B ′) is 1 to 50, and the second oxidized oxide is mixed. The cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated. ) A ratio of mass ratio (A) / (B ′) to 1 to 50,
    Step (c): A step of cation exchange of the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in the step (b), wherein the silica-based composite colloidal particles (C ') The step of removing the amine compound bonded to the step, and the step (d): a step of obtaining an aqueous sol of the modified cerium oxide colloidal particles (C), the modification obtained in the step (c) M / (silica + stannic oxide) or M / (silica + antimony pentoxide) or M / (silica + antimony pentoxide) with respect to the silica-based composite colloidal particles (B ′) (where M is an aqueous sol of cerium oxide colloid particles (C ′)) An amine compound having a molar ratio of 0.001 to 0.08 is added, the cerium oxide colloidal particles (A) are used as nuclei, and the outer surface is primary particles of 1 to 3 nm. Have a diameter Consisting of silica-stannic oxide or silica-antimony pentoxide and having a mass ratio of silica / stannic oxide or silica / antimony pentoxide of 0.1 to 10 and M / (silica + stannic oxide) or Covered with silica-based composite colloidal particles (B) to which an amine compound having a molar ratio of M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.001 to 0.08, and A step of adjusting a mass ratio (A) / (B) of the cerium oxide colloidal particles (A) to the silica-based composite colloidal particles (B) to be 1 to 50;
    The manufacturing method of the aqueous | water-based sol of the modified cerium oxide colloidal particle (C) of Claim 3 containing this.
  15.  前記アミン化合物が第一級アミン、第二級アミン及び第三級アミンからなる群より選ばれる少なくとも1種の化合物である請求項14に記載の変性酸化第二セリウムコロイド粒子(C)の水性ゾルの製造方法。 The aqueous sol of modified ceric oxide colloidal particles (C) according to claim 14, wherein the amine compound is at least one compound selected from the group consisting of primary amines, secondary amines and tertiary amines. Manufacturing method.
  16.  変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒分散ゾルの製造方法であって、
    (a)工程:M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0であるアミン化合物で安定化させたシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B‘)の水性ゾルを得る工程であって、シリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10となるようにスズ酸アルカリ水溶液又はアンチモン酸アルカリ水溶液とケイ酸アルカリ水溶液とを混合し、続いて該水溶液中に存在する陽イオンを除去して1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ複合体コロイド粒子又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子の水性ゾルを調製し、次に該水性ゾルにM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.10乃至1.0であるアミン化合物を添加することにより、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であるシリカ系複合コロイド粒子(B‘)を安定化させる工程、
    (b)工程:変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを得る工程であって、4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)の水性ゾルと、前記(a)工程で得られたシリカ系複合コロイド粒子(B‘)の水性ゾルとを、(A)/(B‘)の質量比で1乃至50となるように混合して、該酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、前記シリカ系複合コロイド粒子(B‘)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B‘)に対する質量比(A)/(B‘)が1乃至50となる割合にする工程、
    (c)工程:前記(b)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを陽イオン交換する工程であって、陽イオン交換により前記シリカ系複合コロイド粒子(C‘)に結合していたアミン化合物を除去する工程、
    (d)工程:変性酸化第二セリウムコロイド粒子(C)の水性ゾルを得る工程であって、前記(c)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルに、前記シリカ系複合コロイド粒子(B‘)に対するM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物を添加して、前記酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50となる割合にする工程、及び
    (e)工程:前記(d)工程で得られた変性酸化第二セリウムコロイド粒子(C)の水性ゾルの分散媒を親水性有機溶媒に置換する工程、
    を含む請求項4に記載の変性酸化第二セリウムコロイド粒子(C)の親水性有機溶媒分散ゾルの製造方法。
    A method for producing a hydrophilic organic solvent-dispersed sol of modified cerium oxide colloidal particles (C), comprising:
    (A) Step: An amine compound having a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 1.0. A step of obtaining an aqueous sol of silica-based composite colloidal particles (B ′) comprising stabilized silica-stannic oxide or silica-antimony pentoxide, comprising silica / stannic oxide or silica / antimony pentoxide First, an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm. An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Rica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10 The step of stabilizing B ′),
    (B) step: a step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C ′), wherein the aqueous sol of ceric oxide colloidal particles (A) having a primary particle diameter of 4 to 60 nm, The aqueous sol of silica-based composite colloidal particles (B ′) obtained in the step (a) is mixed so that the mass ratio of (A) / (B ′) is 1 to 50, and the second oxidized oxide is mixed. The cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated. ) A ratio of mass ratio (A) / (B ′) to 1 to 50,
    Step (c): A step of cation exchange of the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in the step (b), wherein the silica-based composite colloidal particles (C ') The step of removing the amine compound bound to
    Step (d): A step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C), wherein the aqueous sol of modified ceric oxide colloidal particles (C ′) obtained in the step (c) The molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) to the silica-based composite colloidal particles (B ′) is 0.001 to 0.00. A silica-stannic oxide or silica-antimony pentoxide having a primary particle size of 1 to 3 nm with the addition of an amine compound of 08 and using the cerium oxide colloidal particles (A) as nuclei And the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M The silica-based composite colloidal particles (B) coated with silica-based composite colloidal particles (B) to which an amine compound having a molar ratio of 0.001 to 0.08 is bonded. A step of adjusting the mass ratio (A) / (B) to 1 to 50 with respect to the composite colloidal particles (B), and a step (e): the modified ceric oxide colloidal particles obtained in the step (d) ( A step of replacing the dispersion medium of the aqueous sol of C) with a hydrophilic organic solvent,
    A process for producing a hydrophilic organic solvent-dispersed sol of the modified ceric oxide colloidal particles (C) according to claim 4.
  17.  表面疎水化酸化第二セリウムコロイド粒子(D)の親水性溶媒分散ゾルの製造方法であって、
    (a)工程:M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0であるアミン化合物で安定化させたシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B‘)の水性ゾルを得る工程であって、シリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10となるようにスズ酸アルカリ水溶液又はアンチモン酸アルカリ水溶液とケイ酸アルカリ水溶液とを混合し、続いて該水溶液中に存在する陽イオンを除去して1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ複合体コロイド粒子又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子の水性ゾルを調製し、次に該水性ゾルにM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.10乃至1.0であるアミン化合物を添加することにより、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であるシリカ系複合コロイド粒子(B‘)を安定化させる工程、
    (b)工程:変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを得る工程であって、4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)の水性ゾルと、前記(a)工程で得られたシリカ系複合コロイド粒子(B‘)の水性ゾルとを、(A)/(B‘)の質量比で1乃至50となるように混合して、該酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、前記シリカ系複合コロイド粒子(B‘)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B‘)に対する質量比(A)/(B‘)が1乃至50となる割合にする工程、
    (c)工程:前記(b)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを陽イオン交換する工程であって、陽イオン交換により前記シリカ系複合コロイド粒子(C‘)に結合していたアミン化合物を除去する工程、
    (d)工程:変性酸化第二セリウムコロイド粒子(C)の水性ゾルを得る工程であって、前記(c)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルに、前記シリカ系複合コロイド粒子(B‘)に対するM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物を添加して、前記酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50となる割合にする工程、
    (e)工程:前記(d)工程で得られた変性酸化第二セリウムコロイド粒子(C)の水性ゾルの分散媒を親水性有機溶媒に置換する工程、及び
    (f)工程:有機珪素化合物が変性酸化第二セリウムコロイド粒子(C)の表面に結合した表面疎水化酸化第二セリウムコロイド粒子(D)の親水性溶媒分散ゾルを得る工程であって、前記(e)工程で得られた親水性有機溶媒分散ゾルに、
    一般式(I)
    (R1a(R3bSi(OR24-(a+b)     (I)
    (但し、R及びRは、それぞれ炭素原子数1乃至8のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至8のアルケニル基、炭素原子数6乃至8のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基若しくはシアノ基を有する有機基を表し、且つSi-C結合によりケイ素原子と結合しているものであり、R2は炭素原子数1乃至8のアルキル基若しくはアルコキシアルキル基又は炭素原子数2乃至8のアシル基を表し、a及びbはそれぞれ0、1又は2の整数を表し、a+bは0、1又は2の整数を表す。)及び/又は
    一般式(II)
    〔(R4cSi(OX)3-c2Y     (II)
    (但し、R4は炭素原子数1乃至5のアルキル基を表し、Xは炭素原子数1乃至4のアルキル基又は炭素原子数2乃至8のアシル基を表し、Yは炭素原子数1乃至20のアルキレン基を表し、cは0又は1の整数を表す。)で表される有機珪素化合物、若しくはそれらの加水分解物からなる群より選ばれる少なくとも1種の化合物を添加して前記変性酸化第二セリウムコロイド粒子(C)に対する有機珪素化合物の質量比が0.01乃至0.5となる割合にする工程、
    を含む請求項7に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の親水性有機溶媒分散ゾルの製造方法。
    A method for producing a hydrophilic solvent-dispersed sol of surface hydrophobized ceric oxide colloidal particles (D),
    (A) Step: An amine compound having a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 1.0. A step of obtaining an aqueous sol of silica-based composite colloidal particles (B ′) comprising stabilized silica-stannic oxide or silica-antimony pentoxide, comprising silica / stannic oxide or silica / antimony pentoxide First, an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm. An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Rica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10 The step of stabilizing B ′),
    (B) step: a step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C ′), wherein the aqueous sol of ceric oxide colloidal particles (A) having a primary particle diameter of 4 to 60 nm, The aqueous sol of silica-based composite colloidal particles (B ′) obtained in the step (a) is mixed so that the mass ratio of (A) / (B ′) is 1 to 50, and the second oxidized oxide is mixed. The cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated. ) A ratio of mass ratio (A) / (B ′) to 1 to 50,
    Step (c): A step of cation exchange of the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in the step (b), wherein the silica-based composite colloidal particles (C ') The step of removing the amine compound bound to
    Step (d): A step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C), wherein the aqueous sol of modified ceric oxide colloidal particles (C ′) obtained in the step (c) The molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) to the silica-based composite colloidal particles (B ′) is 0.001 to 0.00. A silica-stannic oxide or silica-antimony pentoxide having a primary particle size of 1 to 3 nm with the addition of an amine compound of 08 and using the cerium oxide colloidal particles (A) as nuclei And the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M The silica-based composite colloidal particles (B) coated with silica-based composite colloidal particles (B) to which an amine compound having a molar ratio of 0.001 to 0.08 is bonded. A step of adjusting the mass ratio (A) / (B) to 1 to 50 with respect to the composite colloidal particles (B);
    Step (e): Step of replacing the dispersion medium of the aqueous sol of the modified cerium oxide colloidal particles (C) obtained in Step (d) with a hydrophilic organic solvent, and Step (f): The organosilicon compound is A step of obtaining a hydrophilic solvent-dispersed sol of surface-hydrophobized cerium oxide colloidal particles (D) bonded to the surface of the modified cerium oxide colloidal particles (C), the hydrophilicity obtained in the step (e) In the organic solvent dispersion sol,
    Formula (I)
    (R 1 ) a (R 3 ) b Si (OR 2 ) 4- (a + b) (I)
    (However, R 1 and R 3 are each an alkyl group having 1 to 8 carbon atoms or a halogenated alkyl group, an alkenyl group having 2 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, or a halogenated aryl group. Or an organic group having an epoxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group or a cyano group, and bonded to a silicon atom by a Si—C bond, and R 2 represents carbon An alkyl group having 1 to 8 atoms or an alkoxyalkyl group or an acyl group having 2 to 8 carbon atoms; a and b each represents an integer of 0, 1 or 2; a + b represents an integer of 0, 1 or 2; And / or general formula (II)
    [(R 4 ) c Si (OX) 3-c ] 2 Y (II)
    (Wherein R 4 represents an alkyl group having 1 to 5 carbon atoms, X represents an alkyl group having 1 to 4 carbon atoms or an acyl group having 2 to 8 carbon atoms, and Y represents 1 to 20 carbon atoms) And at least one compound selected from the group consisting of hydrolysates thereof, is added to the modified oxidized group, and c represents an integer of 0 or 1. A step of adjusting the mass ratio of the organosilicon compound to the dicerium colloid particles (C) to be 0.01 to 0.5;
    A method for producing a hydrophilic organic solvent-dispersed sol of surface-hydrophobized cerium oxide colloidal particles (D) according to claim 7.
  18.  前記アミン化合物が第一級アミン、第二級アミン及び第三級アミンからなる群より選ばれる少なくとも1種の化合物である請求項16又は請求項17に記載の親水性有機溶媒分散ゾルの製造方法。 The method for producing a hydrophilic organic solvent-dispersed sol according to claim 16 or 17, wherein the amine compound is at least one compound selected from the group consisting of a primary amine, a secondary amine, and a tertiary amine. .
  19.  前記親水性有機溶媒が、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコール、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルからなる群より選ばれる少なくとも1種の化合物である請求項16又は請求項17に記載の親水性有機溶媒分散ゾルの製造方法。 The hydrophilic organic solvent is methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, dipropylene The method for producing a hydrophilic organic solvent-dispersed sol according to claim 16 or 17, which is at least one compound selected from the group consisting of glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether.
  20.  表面疎水化酸化第二セリウムコロイド粒子(D)の疎水性有機溶媒分散ゾルの製造方法であって、
    (a)工程:M/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0であるアミン化合物で安定化させたシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子(B‘)の水性ゾルを得る工程であって、シリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10となるようにスズ酸アルカリ水溶液又はアンチモン酸アルカリ水溶液とケイ酸アルカリ水溶液とを混合し、続いて該水溶液中に存在する陽イオンを除去して1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ複合体コロイド粒子又はシリカ-五酸化アンチモンからなるシリカ系複合コロイド粒子の水性ゾルを調製し、次に該水性ゾルにM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.10乃至1.0であるアミン化合物を添加することにより、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であるシリカ系複合コロイド粒子(B‘)を安定化させる工程、
    (b)工程:変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを得る工程であって、4乃至60nmの一次粒子径を有する酸化第二セリウムコロイド粒子(A)の水性ゾルと、前記(a)工程で得られたシリカ系複合コロイド粒子(B‘)の水性ゾルとを、(A)/(B‘)の質量比で1乃至50となるように混合して、該酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、前記シリカ系複合コロイド粒子(B‘)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B‘)に対する質量比(A)/(B‘)が1乃至50となる割合にする工程、
    (c)工程:前記(b)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルを陽イオン交換する工程であって、陽イオン交換により前記シリカ系複合コロイド粒子(C‘)に結合していたアミン化合物を除去する工程、
    (d)工程:変性酸化第二セリウムコロイド粒子(C)の水性ゾルを得る工程であって、前記(c)工程で得られた変性酸化第二セリウムコロイド粒子(C‘)の水性ゾルに、前記シリカ系複合コロイド粒子(B‘)に対するM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物を添加して、前記酸化第二セリウムコロイド粒子(A)を核とし且つその外表面を、1乃至3nmの一次粒子径を有するシリカ-酸化第二スズ又はシリカ-五酸化アンチモンからなり且つシリカ/酸化第二スズ又はシリカ/五酸化アンチモンの質量比が0.1乃至10であり且つM/(シリカ+酸化第二スズ)又はM/(シリカ+五酸化アンチモン)(但しMはアミン化合物を表す)のモル比が0.001乃至0.08であるアミン化合物が結合したシリカ系複合コロイド粒子(B)で被覆し、且つ該酸化第二セリウムコロイド粒子(A)の該シリカ系複合コロイド粒子(B)に対する質量比(A)/(B)が1乃至50となる割合にする工程、
    (e)工程:前記(d)工程で得られた変性酸化第二セリウムコロイド粒子(C)の水性ゾルの分散媒を親水性有機溶媒に置換する工程、
    (f)工程:有機珪素化合物が変性酸化第二セリウムコロイド粒子(C)の表面に結合した表面疎水化酸化第二セリウムコロイド粒子(D)の親水性溶媒分散ゾルを得る工程であって、前記(e)工程で得られた親水性有機溶媒分散ゾルに、
    一般式(I)
    (R1a(R3bSi(OR24-(a+b)     (I)
    (但し、R及びRは、それぞれ炭素原子数1乃至8のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至8のアルケニル基、炭素原子数6乃至8のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基若しくはシアノ基を有する有機基を表し、且つSi-C結合によりケイ素原子と結合しているものであり、R2は炭素原子数1乃至8のアルキル基若しくはアルコキシアルキル基又は炭素原子数2乃至8のアシル基を表し、a及びbはそれぞれ0、1又は2の整数を表し、a+bは0、1又は2の整数を表す。)及び/又は
    一般式(II)
    〔(R4cSi(OX)3-c2Y     (II)
    (但し、R4は炭素原子数1乃至5のアルキル基を表し、Xは炭素原子数1乃至4のアルキル基又は炭素原子数2乃至8のアシル基を表し、Yは炭素原子数1乃至20のアルキレン基を表し、cは0又は1の整数を表す。)で表される有機珪素化合物、若しくはそれらの加水分解物からなる群より選ばれる少なくとも1種の化合物を添加して前記変性酸化第二セリウムコロイド粒子(C)に対する有機珪素化合物の質量比が0.01乃至0.5となる割合にする工程、及び
    (g)工程:前記(f)工程で得られた表面疎水化酸化第二セリウムコロイド粒子(D)の親水性溶媒分散ゾルの分散媒を0.002乃至12質量%の水溶解度を有する疎水性有機溶媒に置換する工程、
    を含む請求項9乃至請求項11のいずれか1項に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒ゾルの製造方法。
    A method for producing a hydrophobic organic solvent-dispersed sol of surface-hydrophobized cerium oxide colloidal particles (D) comprising:
    (A) Step: An amine compound having a molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) is 0.1 to 1.0. A step of obtaining an aqueous sol of silica-based composite colloidal particles (B ′) comprising stabilized silica-stannic oxide or silica-antimony pentoxide, comprising silica / stannic oxide or silica / antimony pentoxide First, an alkali stannate aqueous solution or an alkali antimonate aqueous solution and an alkali silicate aqueous solution are mixed so that the mass ratio is 0.1 to 10, and then a cation present in the aqueous solution is removed to remove a primary of 1 to 3 nm. An aqueous sol of silica-stannic oxide composite colloidal particles having a particle diameter or silica-based composite colloidal particles composed of silica-antimony pentoxide is prepared, and then M / (Si By adding an amine compound having a molar ratio of Rica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) of 0.10 to 1.0, 1 to 3 nm Silica-based composite colloidal particles having a primary particle size of silica-stannic oxide or silica-antimony pentoxide and having a silica / stannic oxide or silica / antimony pentoxide mass ratio of 0.1 to 10 The step of stabilizing B ′),
    (B) step: a step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C ′), wherein the aqueous sol of ceric oxide colloidal particles (A) having a primary particle diameter of 4 to 60 nm, The aqueous sol of silica-based composite colloidal particles (B ′) obtained in the step (a) is mixed so that the mass ratio of (A) / (B ′) is 1 to 50, and the second oxidized oxide is mixed. The cerium colloidal particles (A) are used as nuclei and the outer surface thereof is coated with the silica-based composite colloidal particles (B ′), and the silica-based composite colloidal particles (B ′) of the cerium oxide colloidal particles (A) are coated. ) A ratio of mass ratio (A) / (B ′) to 1 to 50,
    Step (c): A step of cation exchange of the aqueous sol of the modified cerium oxide colloidal particles (C ′) obtained in the step (b), wherein the silica-based composite colloidal particles (C ') The step of removing the amine compound bound to
    Step (d): A step of obtaining an aqueous sol of modified ceric oxide colloidal particles (C), wherein the aqueous sol of modified ceric oxide colloidal particles (C ′) obtained in the step (c) The molar ratio of M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M represents an amine compound) to the silica-based composite colloidal particles (B ′) is 0.001 to 0.00. A silica-stannic oxide or silica-antimony pentoxide having a primary particle size of 1 to 3 nm with the addition of an amine compound of 08 and using the cerium oxide colloidal particles (A) as nuclei And the mass ratio of silica / stannic oxide or silica / antimony pentoxide is 0.1 to 10 and M / (silica + stannic oxide) or M / (silica + antimony pentoxide) (where M The silica-based composite colloidal particles (B) coated with silica-based composite colloidal particles (B) to which an amine compound having a molar ratio of 0.001 to 0.08 is bonded. A step of adjusting the mass ratio (A) / (B) to 1 to 50 with respect to the composite colloidal particles (B);
    (E) step: a step of replacing the dispersion medium of the aqueous sol of the modified cerium oxide colloidal particles (C) obtained in the step (d) with a hydrophilic organic solvent,
    (F) Step: A step of obtaining a hydrophilic solvent-dispersed sol of surface-hydrophobized cerium oxide colloidal particles (D) in which an organosilicon compound is bonded to the surface of the modified cerium oxide colloidal particles (C), (E) To the hydrophilic organic solvent dispersion sol obtained in the step,
    Formula (I)
    (R 1 ) a (R 3 ) b Si (OR 2 ) 4- (a + b) (I)
    (However, R 1 and R 3 are each an alkyl group having 1 to 8 carbon atoms or a halogenated alkyl group, an alkenyl group having 2 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, or a halogenated aryl group. Or an organic group having an epoxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group or a cyano group, and bonded to a silicon atom by a Si—C bond, and R 2 represents carbon An alkyl group having 1 to 8 atoms or an alkoxyalkyl group or an acyl group having 2 to 8 carbon atoms; a and b each represents an integer of 0, 1 or 2; a + b represents an integer of 0, 1 or 2; And / or general formula (II)
    [(R 4 ) c Si (OX) 3-c ] 2 Y (II)
    (Wherein R 4 represents an alkyl group having 1 to 5 carbon atoms, X represents an alkyl group having 1 to 4 carbon atoms or an acyl group having 2 to 8 carbon atoms, and Y represents 1 to 20 carbon atoms) And at least one compound selected from the group consisting of hydrolysates thereof is added to the modified oxidized group, and c represents an integer of 0 or 1. The step of adjusting the mass ratio of the organosilicon compound to the dicerium colloidal particles (C) to be 0.01 to 0.5, and the step (g): the surface hydrophobized second oxide obtained in the step (f) Replacing the dispersion medium of the hydrophilic solvent-dispersed sol of the cerium colloid particles (D) with a hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass;
    A method for producing a hydrophobic organic solvent sol having a water solubility of 0.002 to 12% by mass of the surface-hydrophobized cerium oxide colloidal particles (D) according to any one of claims 9 to 11 .
  21.  前記アミン化合物が、第一級アミン、第二アミン級及び第三級アミンからなる群より選ばれる少なくとも1種の化合物である請求項20に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルの製造方法。 The surface-hydrophobized cerium oxide colloidal particles (D) according to claim 20, wherein the amine compound is at least one compound selected from the group consisting of a primary amine, a secondary amine class and a tertiary amine. A method for producing a hydrophobic organic solvent-dispersed sol having a water solubility of 0.002 to 12% by mass.
  22.  前記親水性有機溶媒が、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコール、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルからなる群より選ばれる少なくとも1種の化合物であって、且つ前記0.002乃至12質量%の水溶解度を有する疎水性有機溶媒が、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、メタクリル酸メチル、ジイソプロピルエーテル、トルエン、トリエチレングリコールジ2-エチルヘキサノエート(3GO)、トリエチレングリコールジ2-エチルブチレート(3GH)、テトラエチレングリコールジヘプタノエート(4G7)及びテトラエチレングリコールジ2-エチルヘキサノエート(4GO)からなる群より選ばれる少なくとも1種の化合物である請求項20又は請求項21に記載の表面疎水化酸化第二セリウムコロイド粒子(D)の0.002乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルの製造方法。 The hydrophilic organic solvent is methanol, ethanol, propanol, isopropanol, butanol, isobutanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, dipropylene And at least one compound selected from the group consisting of glycol, propylene glycol monomethyl ether and propylene glycol monoethyl ether, and the hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass is methyl ethyl ketone, methyl Isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, methyl methacrylate, diisopropyl ether Tellurium, toluene, triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH), tetraethylene glycol diheptanoate (4G7) and tetraethylene glycol di-2-ethylhexa The surface hydrophobized cerium oxide colloidal particles (D) of 0.002 to 12% by mass of water according to claim 20 or 21, which are at least one compound selected from the group consisting of noate (4GO). A method for producing a hydrophobic organic solvent-dispersed sol having solubility.
PCT/JP2011/050898 2010-01-19 2011-01-19 Modified cerium oxide colloid particles and manufacturing method for same WO2011090085A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-009244 2010-01-19
JP2010009244A JP2013056780A (en) 2010-01-19 2010-01-19 Modified ceric oxide colloidal particle and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2011090085A1 true WO2011090085A1 (en) 2011-07-28

Family

ID=44306885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050898 WO2011090085A1 (en) 2010-01-19 2011-01-19 Modified cerium oxide colloid particles and manufacturing method for same

Country Status (3)

Country Link
JP (1) JP2013056780A (en)
TW (1) TW201139535A (en)
WO (1) WO2011090085A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6151469B1 (en) * 2016-02-02 2017-06-21 エム・テクニック株式会社 Precision modification method of fine particle dispersion
JP6144447B1 (en) * 2016-02-02 2017-07-05 エム・テクニック株式会社 Precision modification method of fine particle dispersion
WO2017135327A1 (en) * 2016-02-02 2017-08-10 エム・テクニック株式会社 Precise modifying method for fine particle dispersion liquid
JP2022509948A (en) * 2018-11-19 2022-01-25 ソウルブレイン シーオー., エルティーディー. A sunscreen composition that absorbs light in the UVA region, and a method for producing the same.
CN117024925A (en) * 2023-10-10 2023-11-10 山东龙兴塑膜科技股份有限公司 Modified polyester and application thereof in high-temperature-resistant polyester film for carbon tape printing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122621A (en) * 1999-08-16 2001-05-08 Nissan Chem Ind Ltd Modified metal oxide sol and method of manufacturing the same
JP2006182604A (en) * 2004-12-28 2006-07-13 Catalysts & Chem Ind Co Ltd Method for producing metal oxide sol and metal oxide sol
WO2007018176A1 (en) * 2005-08-09 2007-02-15 Nissan Chemical Industries, Ltd. Zirconium oxide-tin oxide composite sol, coating composition and optical member
WO2009044878A1 (en) * 2007-10-03 2009-04-09 Nissan Chemical Industries, Ltd. Modified metal-oxide composite sol, coating composition, and optical member
WO2009044879A1 (en) * 2007-10-03 2009-04-09 Nissan Chemical Industries, Ltd. Metal oxide composite sol, coating composition, and optical member
WO2010008050A1 (en) * 2008-07-17 2010-01-21 日産化学工業株式会社 Dispersion sol of anhydrous zinc antimonate colloidal particles in hydrophobic organic solvent and process for production of same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122621A (en) * 1999-08-16 2001-05-08 Nissan Chem Ind Ltd Modified metal oxide sol and method of manufacturing the same
JP2006182604A (en) * 2004-12-28 2006-07-13 Catalysts & Chem Ind Co Ltd Method for producing metal oxide sol and metal oxide sol
WO2007018176A1 (en) * 2005-08-09 2007-02-15 Nissan Chemical Industries, Ltd. Zirconium oxide-tin oxide composite sol, coating composition and optical member
WO2009044878A1 (en) * 2007-10-03 2009-04-09 Nissan Chemical Industries, Ltd. Modified metal-oxide composite sol, coating composition, and optical member
WO2009044879A1 (en) * 2007-10-03 2009-04-09 Nissan Chemical Industries, Ltd. Metal oxide composite sol, coating composition, and optical member
WO2010008050A1 (en) * 2008-07-17 2010-01-21 日産化学工業株式会社 Dispersion sol of anhydrous zinc antimonate colloidal particles in hydrophobic organic solvent and process for production of same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6151469B1 (en) * 2016-02-02 2017-06-21 エム・テクニック株式会社 Precision modification method of fine particle dispersion
JP6144447B1 (en) * 2016-02-02 2017-07-05 エム・テクニック株式会社 Precision modification method of fine particle dispersion
WO2017135327A1 (en) * 2016-02-02 2017-08-10 エム・テクニック株式会社 Precise modifying method for fine particle dispersion liquid
WO2017135326A1 (en) * 2016-02-02 2017-08-10 エム・テクニック株式会社 Precise modifying method for fine particle dispersion liquid
CN108430915A (en) * 2016-02-02 2018-08-21 M技术株式会社 The accurate method of modifying of particle dispersion liquid
EP3412628A4 (en) * 2016-02-02 2019-07-10 M. Technique Co., Ltd. Precise modifying method for fine particle dispersion liquid
US11008216B2 (en) 2016-02-02 2021-05-18 M. Technique Co., Ltd. Precise modifying method for fine particle dispersion liquid
US11111145B2 (en) 2016-02-02 2021-09-07 M. Technique Co., Ltd. Precise modifying method for fine particle dispersion liquid
CN108430915B (en) * 2016-02-02 2022-07-26 M技术株式会社 Method for precisely modifying fine particle dispersion
JP2022509948A (en) * 2018-11-19 2022-01-25 ソウルブレイン シーオー., エルティーディー. A sunscreen composition that absorbs light in the UVA region, and a method for producing the same.
CN117024925A (en) * 2023-10-10 2023-11-10 山东龙兴塑膜科技股份有限公司 Modified polyester and application thereof in high-temperature-resistant polyester film for carbon tape printing
CN117024925B (en) * 2023-10-10 2024-01-05 山东龙兴塑膜科技股份有限公司 Modified polyester and application thereof in high-temperature-resistant polyester film for carbon tape printing

Also Published As

Publication number Publication date
TW201139535A (en) 2011-11-16
JP2013056780A (en) 2013-03-28

Similar Documents

Publication Publication Date Title
JP5704345B2 (en) Silane surface-treated metal oxide fine particles and method for producing the same
JP5382371B2 (en) Hydrophobic organic solvent-dispersed sol of colloidal particles of anhydrous zinc antimonate and method for producing the same
JP5182533B2 (en) Metal oxide composite sol, coating composition and optical member
JP5182532B2 (en) Modified metal oxide composite sol, coating composition and optical member
KR101290081B1 (en) Zirconium oxide-tin oxide composite sol, coating composition and optical member
US11168201B2 (en) Silica sol dispersed in ketone solvent and resin composition
WO2011090085A1 (en) Modified cerium oxide colloid particles and manufacturing method for same
WO2019117088A1 (en) Coating composition containing silane compound containing nitrogen-containing ring
JP4288432B2 (en) Coating composition and optical member
JP4019480B2 (en) Method for producing anhydrous zinc antimonate
JP2012031353A (en) Coating composition and optical member
US6093749A (en) Anhydrous zinc antimonate sol and method for producing the same
JP4803630B2 (en) Method for producing high purity hydrophobic organic solvent-dispersed silica sol
JPH11314918A (en) Anhydrous zinc antimonate sol and its preparation
JP4605375B2 (en) Anhydrous zinc antimonate sol and method for producing the same
JP4510489B2 (en) Method for producing a coating composition
JP2005008515A (en) Metal oxide particle and its manufacturing method
JP2014196216A (en) Modified metal oxide particulate powder, modified metal oxide particulate dispersion and method for producing the same
JP5712846B2 (en) Dicarboxylic anhydride-dispersed sol of silane-modified metal oxide, method for producing the same, epoxy curing agent containing the same, and cured epoxy resin
JP2014196215A (en) Modified metal oxide particulate powder and method for producing the same
JP2013170110A (en) Nonpolar organic solvent dispersion of titanium oxide
WO2023100947A1 (en) Modified metal oxide colloidal particles, and method for producing same
WO2022224770A1 (en) Modified metal oxide colloidal particle having improved weather resistance, sol thereof, and production methods therefor
JP2013252981A (en) Method for producing conductive tin oxide sol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP