JP2013170110A - Nonpolar organic solvent dispersion of titanium oxide - Google Patents

Nonpolar organic solvent dispersion of titanium oxide Download PDF

Info

Publication number
JP2013170110A
JP2013170110A JP2012036430A JP2012036430A JP2013170110A JP 2013170110 A JP2013170110 A JP 2013170110A JP 2012036430 A JP2012036430 A JP 2012036430A JP 2012036430 A JP2012036430 A JP 2012036430A JP 2013170110 A JP2013170110 A JP 2013170110A
Authority
JP
Japan
Prior art keywords
titanium oxide
dispersion
organic solvent
fine powder
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012036430A
Other languages
Japanese (ja)
Other versions
JP6064338B2 (en
Inventor
Kazuyasu Hikita
和康 疋田
Masahiko Kamata
正彦 鎌田
Hirotaka Amano
裕貴 天野
Masashi Ishida
昌司 石田
Yukiya Yamashita
行也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aerosil Co Ltd
Original Assignee
Nippon Aerosil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co Ltd filed Critical Nippon Aerosil Co Ltd
Priority to JP2012036430A priority Critical patent/JP6064338B2/en
Publication of JP2013170110A publication Critical patent/JP2013170110A/en
Application granted granted Critical
Publication of JP6064338B2 publication Critical patent/JP6064338B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a comparatively inexpensive dispersion formed by dispersing titanium oxide particles uniformly in a nanoparticle level into a low-polarity organic solvent which is considered to be difficult to have dispersion of titanium oxide particles therein, without water inclusion that causes contamination, and without using a dispersant or a stabilizer.SOLUTION: A nonpolar organic solvent dispersion of titanium oxide is formed by dispersing, into a nonpolar organic solvent, hydrophobic titanium oxide fine powder obtained by performing a dry surface treatment with a silane coupling agent and/or a silicone compound on the surface of titanium oxide fine powder obtained by hydrolyzing a volatile titanium compound in a vapor-phase flame containing hydrogen.

Description

本発明は、分散剤や安定化剤などを用いることなく、酸化チタン微粒子を非極性(非プロトン)溶媒に均一に分散させてなる酸化チタンの非極性有機溶媒分散液に関する。   The present invention relates to a non-polar organic solvent dispersion of titanium oxide in which titanium oxide fine particles are uniformly dispersed in a non-polar (non-proton) solvent without using a dispersant, a stabilizer or the like.

酸化チタンの分散液への要望は高く、既に多くの文献、特許が公開されている。
例えば、学術的な総説の中で、「ナノ粒子の液中凝集・分散挙動の制御」の一般的な技術の概要について考え方が紹介されている(非特許文献1)。
ここでは、先ず、金属酸化物など親水性の粒子を、水やアルコールなど親水性溶媒に分散させる場合に触れ、粒子表面に何らかの修飾を施すことが述べられている。
例えば、ポリアクリル酸、カルボン酸塩、ポリイミン系の分散剤等が使用され、また、溶媒が水系であれば、アニオン、カチオン系の界面活性剤を吸着させて、粒子の表面電位を増加させたり、あるいは粒子表面に吸着した親水基と吸着しない疎水基による立体障害効果で分散させる手法なども考案されている。
The demand for a titanium oxide dispersion is high, and many documents and patents have already been published.
For example, in an academic review, the concept of a general technique of “control of aggregation and dispersion behavior of nanoparticles in liquid” is introduced (Non-patent Document 1).
Here, first, when hydrophilic particles such as metal oxide are dispersed in a hydrophilic solvent such as water or alcohol, it is stated that some modification is performed on the particle surface.
For example, polyacrylic acid, carboxylate, polyimine-based dispersants, etc. are used, and if the solvent is aqueous, anionic and cationic surfactants are adsorbed to increase the surface potential of the particles. Alternatively, a method of dispersing by a steric hindrance effect by a hydrophilic group adsorbed on the particle surface and a hydrophobic group not adsorbed has been devised.

また、親水性粒子の無極性溶媒への分散では、トルエン、MMA、THFを始めとした極性の低い有機溶媒中の親水性セラミックス原料粒子は、濡れ性が悪いため、極性の溶媒に使われる分散剤に加え、表面をシランカップリング剤で修飾し、炭化水素鎖を導入する方法で溶媒との濡れ性を高めることが紹介されている。   In addition, when dispersing hydrophilic particles in nonpolar solvents, hydrophilic ceramic raw material particles in low-polar organic solvents such as toluene, MMA, and THF have poor wettability. In addition to the agent, it has been introduced that the surface is modified with a silane coupling agent to improve the wettability with a solvent by introducing a hydrocarbon chain.

従来の酸化チタン粒子の水性溶媒への分散技術の代表的なものとしては、次のようなものがある。   Typical examples of conventional technology for dispersing titanium oxide particles in an aqueous solvent include the following.

特許文献1:酸化物粒子の粒度の非対称な分布を特徴にし、かつ分散剤としてアルカリ金属、アルカリ土類金属、アンモニウムイオンなどを含むチタンの熱分解法により製造された酸化物粒子を含有する水性分散液
特許文献2:二酸化チタンと、親水性高分子のカルボキシル基とをエステル結合で化学的に修飾することにより、中性付近はもとより幅広いpH領域の水系溶媒への分散性と安定性に優れた、表面改質二酸化チタン微粒子とその分散液
特許文献3:ルチル型結晶構造の酸化チタンを含有する無機酸化物超微粒子をチタンに対するスズのモル比(Sn/Ti)が0.001〜2のスズ化合物共存下、Ti濃度が0.07〜5mol/lのチタン化合物水溶液をpHが−1〜3の範囲で反応させて核(A)とし、ケイ素酸化物を含む被覆層(B)を有する被覆型無機酸化物超微粒子
特許文献4:二酸化チタンの表面が、カルボキシル基を有する親水性高分子により修飾された表面改質二酸化チタン微粒子を水系溶媒に分散させた表面改質二酸化チタン微粒子の分散液
Patent Document 1: Aqueous containing oxide particles characterized by an asymmetric distribution of the particle size of oxide particles and produced by a thermal decomposition method of titanium containing alkali metal, alkaline earth metal, ammonium ion or the like as a dispersant Dispersion Patent Document 2: Titanium dioxide and the carboxyl group of hydrophilic polymer are chemically modified with an ester bond, so that they are excellent in dispersibility and stability in aqueous solvents in a wide pH range as well as near neutrality. Further, surface-modified titanium dioxide fine particles and dispersions thereof Patent Document 3: Inorganic oxide ultrafine particles containing titanium oxide having a rutile-type crystal structure with a molar ratio of tin to titanium (Sn / Ti) of 0.001 to 2 In the presence of a tin compound, a titanium compound aqueous solution having a Ti concentration of 0.07 to 5 mol / l is reacted in a pH range of −1 to 3 to form a nucleus (A) containing silicon oxide. Coated inorganic oxide ultrafine particles having a coating layer (B) Patent Document 4: Surface obtained by dispersing surface-modified titanium dioxide fine particles in which the surface of titanium dioxide is modified with a hydrophilic polymer having a carboxyl group in an aqueous solvent Modified titanium dioxide fine particle dispersion

また、非極性溶媒への分散については次のような技術がある。   Moreover, there exists the following technique about dispersion | distribution to a nonpolar solvent.

特許文献5:表面処理剤によって表面が処理された金属酸化物微粒子を(メタ)アクリルモノマーからなる分散媒中に導入する工程、リン、又は硫黄を含むオキソ酸を加える工程を有する金属酸化物微粒子分散液の製造方法。ここでは、有機溶媒とともに表面処理剤を加えることにより、有機溶媒中に金属酸化物微粒子を抽出する分散剤を添加して分散させる。
特許文献6:スズ化合物と、チタン濃度が0.1M以上0.25M以下のチタン化合物とを含む水溶液を加熱処理して酸化チタン微粒子を生成する工程と、脂溶性表面修飾分子により水溶液中で表面が修飾された酸化チタン微粒子を、水溶液へ添加剤を加えて非極性有機溶媒相へルチル型チタニアを抽出する湿式の工程で、高い再現性で、トルエンのような非極性有機溶媒に高い分散性を示すルチル型酸化チタン微粒子を製造する。
特許文献7:硬化性シリコーン化合物を必須成分とするハードコート組成物であり、樹脂に混合されるための技術であって、ハードコート組成物を作製する工程の中で、コロイド分散液として入手可能な公知技術による(含水)酸化チタンに対して、被覆剤である珪素化合物を添加して表面処理をするプロセスを含む。ここでは部分的に、いわゆるシラン・カップリング処理で水及び/又は有機溶媒に分散してゾルを形成しうる一般的な技術を示している。なお、有機溶媒を用いる場合には、極性の高い有機溶媒が好ましいとしている。
特許文献8:分散安定剤を含む酸化チタン微粒子の透明な有機溶媒分散液であって、該分散安定剤が屈折率1.50以上の有機酸を主成分とするものである酸化チタン微粒子分散液。
特許文献9:ナノレベルのルチル型結晶の酸化チタン微粒子が分散している、透明性に優れた酸化チタン微粒子の有機溶媒分散液であって、少なくとも混合有機溶媒及び有機酸を含むルチル型結晶の酸化チタン微粒子の有機溶媒分散液。
特許文献10:チタン原料を直流アークプラズマ法によって加熱、気化させ、そのチタン蒸気を酸化、冷却することにより、20重量%の水分散体のpHが2.8〜4.0であり、平均粒子径が5〜70nmの範囲である二酸化チタン超微粒子を用いる。有機溶媒に分散剤と共に分散処理することにより二酸化チタン超微粒子の非水性分散体を得ており、分散剤と共に分散させることを必要とする。
特許文献11:有機溶媒中に、気相法で製造された平均一次粒子径が0.01〜0.1μmの超微粒子酸化チタン粉末と、β−ジケトンと、チタネート系及び/もしくはアルミニウム系のカップリング剤と、チタンアルコキシドもしくはその部分加水分解物とを含有する光触媒塗料。分散のため、分散効果を有する試薬が分散液に添加される技術である。
特許文献12:カップリング剤により導入された炭化水素鎖中の二重結合等を利用しモノマーをグラフト重合させ、更に架橋反応をさせて、ポリマーでコートしたカーボンブラックなど種々の粒子の疎水性を高め、ポリマーの懸架力で溶媒への懸濁の安定性を増進させた電気泳動液体を発明している。前段では、珪酸ナトリウム水溶液中でシリカコーティング処理などを施しており、水系の溶液中での処理が伴っている。
Patent Document 5: Metal oxide fine particles having a step of introducing metal oxide fine particles whose surface has been treated with a surface treating agent into a dispersion medium made of (meth) acrylic monomer, and a step of adding oxo acid containing phosphorus or sulfur A method for producing a dispersion. Here, by adding a surface treating agent together with an organic solvent, a dispersing agent for extracting metal oxide fine particles is added and dispersed in the organic solvent.
Patent Document 6: A step of heat-treating an aqueous solution containing a tin compound and a titanium compound having a titanium concentration of 0.1 M or more and 0.25 M or less to produce titanium oxide fine particles, and a surface in the aqueous solution by a fat-soluble surface modifying molecule Is a wet process in which titanium oxide fine particles modified with an additive are added to an aqueous solution to extract rutile-type titania into a nonpolar organic solvent phase, with high reproducibility and high dispersibility in nonpolar organic solvents such as toluene Rutile-type titanium oxide fine particles having the following formula are produced.
Patent Document 7: A hard coat composition containing a curable silicone compound as an essential component and is a technique for mixing with a resin, and can be obtained as a colloidal dispersion in the process of preparing the hard coat composition This includes a process in which a silicon compound as a coating agent is added to a surface-treated titanium oxide (containing water) according to a known technique. Here, in part, a general technique that can be dispersed in water and / or an organic solvent by a so-called silane coupling process to form a sol is shown. In addition, when using an organic solvent, the organic solvent with high polarity is considered preferable.
Patent Document 8: Titanium oxide fine particle dispersion comprising a transparent organic solvent dispersion of titanium oxide fine particles containing a dispersion stabilizer, wherein the dispersion stabilizer is mainly composed of an organic acid having a refractive index of 1.50 or more. .
Patent Document 9: An organic solvent dispersion of titanium oxide fine particles having excellent transparency, in which titanium oxide fine particles of nano-level rutile type crystals are dispersed, and containing at least a mixed organic solvent and an organic acid. An organic solvent dispersion of titanium oxide fine particles.
Patent Document 10: Titanium raw material is heated and vaporized by a direct current arc plasma method, and the titanium vapor is oxidized and cooled, whereby the pH of a 20% by weight aqueous dispersion is 2.8 to 4.0, and the average particle Titanium dioxide ultrafine particles having a diameter in the range of 5 to 70 nm are used. A non-aqueous dispersion of titanium dioxide ultrafine particles is obtained by dispersing in an organic solvent together with a dispersant, and it is necessary to disperse together with the dispersant.
Patent Document 11: Ultrafine titanium oxide powder having an average primary particle diameter of 0.01 to 0.1 μm produced by a vapor phase method, β-diketone, titanate and / or aluminum cup in an organic solvent A photocatalyst coating material containing a ring agent and titanium alkoxide or a partial hydrolyzate thereof. This is a technique in which a reagent having a dispersion effect is added to a dispersion for dispersion.
Patent Document 12: Hydrophobic properties of various particles such as carbon black coated with a polymer by graft polymerization of monomers using a double bond in a hydrocarbon chain introduced by a coupling agent and further crosslinking reaction An electrophoretic liquid has been invented that enhances and enhances the stability of the suspension in the solvent due to the suspension of the polymer. In the former stage, silica coating treatment or the like is performed in a sodium silicate aqueous solution, which is accompanied by treatment in an aqueous solution.

なお、本発明で用いる疎水性酸化チタン微粉末については、特許文献13に記載されている。   The hydrophobic titanium oxide fine powder used in the present invention is described in Patent Document 13.

酸化チタンは色々な用途に必須で有用な材料であるため、上述のように、従来、水溶液系又は有機溶媒系において、酸化チタンを分散させるための技術について、多くの発明、提案がなされている。
しかしながら、水溶液系で合成される酸化チタンでは、粒子内部に残存吸着水が多く含まれ、分子レベルで強く吸着されると十分に乾燥するのが難しいため、水系の溶媒中での分散に使われる場合を除き、水の混入を望まれない用途には使用が難しいという問題があった。
Since titanium oxide is an essential and useful material for various applications, as described above, conventionally, many inventions and proposals have been made regarding techniques for dispersing titanium oxide in an aqueous solution system or an organic solvent system. .
However, titanium oxide synthesized in an aqueous system contains a large amount of residual adsorbed water inside the particle, and if it is strongly adsorbed at the molecular level, it is difficult to dry sufficiently, so it is used for dispersion in an aqueous solvent. Except in some cases, there was a problem that it was difficult to use in applications where mixing of water was not desired.

また、水系の溶媒中で分散している酸化チタン粒子の表面を、カップリング剤などにより表面修飾を施して分散させやすくする技術があるが、溶媒から取り出して一旦乾燥させると、酸化チタン同士の凝集を起こしやすく、かさ密度が高くなったり、別途、解砕・篩分けなどをする作業・工程が必要になり、また、その作業によって、コンタミが増えるという問題が発生する。   In addition, there is a technology that makes it easy to disperse the surface of titanium oxide particles dispersed in an aqueous solvent by applying a surface modification with a coupling agent or the like. Aggregation is likely to occur, the bulk density becomes high, and a separate work / process for crushing and sieving is required, and the work causes a problem of increased contamination.

そこで、一旦溶液系外に取り出す操作を不要とするために、水系溶媒中で表面修飾した酸化チタン粒子を有機溶媒に抽出する発明も見られるが、水を包含し、あるいは水が付着した粒子が抽出される有機溶媒中に導入されたり、水系溶媒中に溶解していた分散剤、安定剤なども混入するという問題があった。   Therefore, in order to eliminate the need to take it out of the solution system once, there is an invention in which the titanium oxide particles surface-modified in an aqueous solvent are extracted into an organic solvent. There has been a problem that a dispersant, a stabilizer, or the like introduced into an organic solvent to be extracted or dissolved in an aqueous solvent is also mixed.

湿式のプロセスで合成した酸化チタンだけでなく、仮に酸化チタンを気相中で製造した場合であっても、一旦、水系溶媒に入れて表面の修飾や改質の処理をすれば、上記で述べた問題は同様に発生する。   In addition to titanium oxide synthesized by a wet process, even if titanium oxide is produced in the gas phase, once the surface modification or modification treatment is performed in an aqueous solvent, it is described above. The same problem occurs as well.

酸化チタン自体は、物理化学的には親水性の性質・特性を持ち、そのもの自体では有機溶媒、特に非水系の、極性の低い有機溶媒には均一に分散し難い。
このため、有機溶媒を用いた酸化チタン粒子の分散液を得るために、溶媒中に分散効果のある表面活性剤などを別途添加して分散させ、分散状態を安定化させたり、あるいは、溶液中で、カップリング剤などを用いて酸化チタン粒子の表面を修飾して、溶媒に分散しやすくするなどの手法を用いたり、まず水溶液系で分散液を調製した後、有機溶媒に抽出する方法などの技術が提案されている。
しかしながら、従来法では、非極性有機溶媒への酸化チタン粒子の分散には、分散剤を添加しないと均一分散状態を得ることができず、分散剤の使用に起因する分散剤由来のコンタミの問題があった。また、分散剤を含む酸化チタン粒子の分散液では、溶媒を蒸発除去した後、酸化チタンのみならず分散剤が残留することとなり、酸化チタンのみを必要とする用途には用いることができなかった。
Titanium oxide itself has physicochemical properties and characteristics that are hydrophilic, and itself is difficult to uniformly disperse in an organic solvent, particularly a non-aqueous, low-polarity organic solvent.
For this reason, in order to obtain a dispersion of titanium oxide particles using an organic solvent, a surfactant having a dispersing effect is separately added and dispersed in the solvent to stabilize the dispersion state or in the solution. Then, use a technique such as modifying the surface of titanium oxide particles with a coupling agent to make it easier to disperse in a solvent, or first preparing a dispersion in an aqueous solution and then extracting it to an organic solvent, etc. The technology has been proposed.
However, in the conventional method, the dispersion of the titanium oxide particles in the nonpolar organic solvent cannot obtain a uniform dispersion state unless a dispersant is added, and there is a problem of contamination derived from the dispersant due to the use of the dispersant. was there. Further, in the dispersion of titanium oxide particles containing a dispersant, not only the titanium oxide but also the dispersant remains after the solvent is removed by evaporation, and cannot be used for applications requiring only titanium oxide. .

特許第4338636号公報Japanese Patent No. 4338636 特開2005−289660号公報JP 2005-289660 A 特開2007−197278号公報JP 2007-197278 A 特許第3775432号公報Japanese Patent No. 3775432 特開2010−095679号公報JP 2010-095679 A 特開2009−215119号公報JP 2009-215119 A 特開2004−238418号公報JP 2004-238418 A 特許第4725510号公報Japanese Patent No. 4725510 特開2010−138020号公報JP 2010-138020 A 特開平11−278844号公報JP-A-11-278844 特許第3291563号公報Japanese Patent No. 3291563 US2002/0185378A1US2002 / 0185378A1 特許第3417291号公報Japanese Patent No. 3417291

Hidehiro and Yotoyuki Iijima,”Aggregation and Dispersion Behavior Contral of Nanoparticles in Liquid Phase”J.Soc.Powder Technol,Japan,46,606−614(2009)Hidehiro and Yotoyuki Iijima, “Aggregation and Dispersion Behavior Contral of Nanoparticles in Liquid Phase” J. Soc. Powder Technol, Japan, 46, 606-614 (2009)

本発明は、上記従来の実情に鑑みてなされたものであって、コンタミの原因となる水の混入がなく、また、分散剤や安定化剤などを用いることなく、酸化チタン粒子の分散が難しいとされている極性の低い有機溶媒中に、酸化チタン粒子をナノ粒子レベルで均一に分散させた、比較的安価な分散液を提供することを目的とする。   The present invention has been made in view of the above-described conventional situation, and it is difficult to disperse titanium oxide particles without contamination of water causing contamination, and without using a dispersant or a stabilizer. It is an object of the present invention to provide a relatively inexpensive dispersion liquid in which titanium oxide particles are uniformly dispersed at the nanoparticle level in an organic solvent having a low polarity.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、揮発性のチタン化合物を、水素を含む気相火炎中で加水分解することによって得られる酸化チタン微粉末の表面を、シランカップリング剤及び/又はシリコーン化合物で、乾式にて表面処理して得られる疎水性酸化チタン微粉末が、分散剤や安定化剤などを用いることなく、非極性有機溶媒中にナノ粒子レベルで均一に分散可能であることを見出した。   As a result of intensive investigations to solve the above problems, the present inventors have determined that the surface of titanium oxide fine powder obtained by hydrolyzing a volatile titanium compound in a gas-phase flame containing hydrogen is treated with silane. Hydrophobic titanium oxide fine powder obtained by surface treatment with a coupling agent and / or silicone compound is uniform at a nanoparticle level in a nonpolar organic solvent without using a dispersant or stabilizer. It was found to be dispersible.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] 揮発性のチタン化合物を、水素を含む気相火炎中で加水分解することによって得られた酸化チタン微粉末の表面を、シランカップリング剤及び/又はシリコーン化合物で乾式にて表面処理してなる疎水性酸化チタン微粉末を、非極性有機溶媒に分散させてなる酸化チタンの非極性有機溶媒分散液。 [1] The surface of titanium oxide fine powder obtained by hydrolyzing a volatile titanium compound in a gas-phase flame containing hydrogen is surface-treated with a silane coupling agent and / or a silicone compound in a dry process. A non-polar organic solvent dispersion of titanium oxide obtained by dispersing a hydrophobic titanium oxide fine powder obtained in a non-polar organic solvent.

[2] [1]において、前記疎水性酸化チタン微粉末を構成する酸化チタンが、BET比表面積が40〜150m/gで、アナターゼ及びルチルの結晶構造を持ち、アナターゼの比率が0.3〜0.98の酸化チタンであることを特徴とする酸化チタンの非極性有機溶媒分散液。 [2] In [1], the titanium oxide constituting the hydrophobic titanium oxide fine powder has a BET specific surface area of 40 to 150 m 2 / g, a crystal structure of anatase and rutile, and a ratio of anatase of 0.3 A non-polar organic solvent dispersion of titanium oxide, characterized by being -0.98 titanium oxide.

[3] [1]又は[2]において、前記非極性有機溶媒が、メチルエチルケトン、酢酸エチル、ベンゼン、ジエチルエーテル、及びトルエンよりなる群から選ばれる1種又は2種以上であることを特徴とする酸化チタンの非極性有機溶媒分散液。 [3] In [1] or [2], the nonpolar organic solvent is one or more selected from the group consisting of methyl ethyl ketone, ethyl acetate, benzene, diethyl ether, and toluene. Nonpolar organic solvent dispersion of titanium oxide.

[4] [1]ないし[3]のいずれかにおいて、前記シランカップリング剤が、下記一般式(I)又は(II)で表されるものであることを特徴とする酸化チタンの非極性有機溶媒分散液。
4−nSiR …(I)
(上記(I)式中、Xは水酸基、アルコキシ基、又はハロゲン原子を示し、Rは炭素数1〜18のアルキル基を示し、nは0〜3の整数を示す。)
R'SiNHSiR' …(II)
(上記(II)式中、R'は炭素数1〜3のアルキル基を示し、一部のR'は水素原子又はビニル基等の他の置換基であってもよい。)
[4] The nonpolar organic material of titanium oxide according to any one of [1] to [3], wherein the silane coupling agent is represented by the following general formula (I) or (II): Solvent dispersion.
X 4-n SiR n (I)
(In the formula (I), X represents a hydroxyl group, an alkoxy group, or a halogen atom, R represents an alkyl group having 1 to 18 carbon atoms, and n represents an integer of 0 to 3).
R ′ 3 SiNHSiR ′ 3 (II)
(In the formula (II), R ′ represents an alkyl group having 1 to 3 carbon atoms, and some R ′ may be other substituents such as a hydrogen atom or a vinyl group.)

[5] [1]ないし[3]のいずれかにおいて、前記シリコーン化合物が、下記一般式(III)で表されるものであることを特徴とする酸化チタンの非極性有機溶媒分散液。 [5] A nonpolar organic solvent dispersion of titanium oxide according to any one of [1] to [3], wherein the silicone compound is represented by the following general formula (III):

Figure 2013170110
Figure 2013170110

(上記(III)式中、Rはメチル基又はエチル基を示し、Rは水素原子、メチル基、エチル基、あるいはビニル基、フェニル基又はアミノ基で置換されてもよいアルキル基を示し、X'は水酸基、アルコキシ基、ハロゲン原子又はアルキル基を示し、mは1〜500の整数を示す。) (In the formula (III), R a represents a methyl group or an ethyl group, and R b represents a hydrogen atom, a methyl group, an ethyl group, or an alkyl group which may be substituted with a vinyl group, a phenyl group or an amino group. X ′ represents a hydroxyl group, an alkoxy group, a halogen atom or an alkyl group, and m represents an integer of 1 to 500.)

[6] [1]ないし[5]のいずれかにおいて、前記疎水性酸化チタン微粉末は、透過率法によって測定された疎水率が70%以上の値を示すことを特徴とする酸化チタンの非極性有機溶媒分散液。 [6] In any one of [1] to [5], the hydrophobic titanium oxide fine powder has a hydrophobicity measured by a transmittance method of 70% or more. Polar organic solvent dispersion.

[7] [1]ないし[6]のいずれかにおいて、前記疎水性酸化チタン微粉末は、前記酸化チタン微粒子と前記シランカップリング剤及び/又はシリコーン化合物とを混合して加熱処理することにより得られることを特徴とする酸化チタンの非極性有機溶媒分散液。 [7] In any one of [1] to [6], the hydrophobic titanium oxide fine powder is obtained by mixing and heat-treating the titanium oxide fine particles and the silane coupling agent and / or silicone compound. A non-polar organic solvent dispersion of titanium oxide,

[8] [1]ないし[7]のいずれかにおいて、前記疎水性酸化チタン微粉末を、撹拌翼、ディゾルバー、ボールミル、ニーダー、サンドミル、ロール混合機、超音波ホモジナイザー、ホモミキサー、タワーミル、湿式ジェットミル及びビーズミルのいずれか1種又は2種以上の機械的・物理的な手段で前記非極性有機溶媒に分散させてなることを特徴とする酸化チタンの非極性有機溶媒分散液。 [8] In any one of [1] to [7], the hydrophobic titanium oxide fine powder is mixed with a stirring blade, dissolver, ball mill, kneader, sand mill, roll mixer, ultrasonic homogenizer, homomixer, tower mill, wet jet. A nonpolar organic solvent dispersion of titanium oxide, which is dispersed in the nonpolar organic solvent by one or more mechanical / physical means of either a mill or a bead mill.

[9] [1]ないし[8]のいずれかにおいて、前記疎水性酸化チタン微粉末の濃度が0.1〜40重量%であることを特徴とする酸化チタンの非極性有機溶媒分散液。 [9] The nonpolar organic solvent dispersion of titanium oxide according to any one of [1] to [8], wherein the concentration of the hydrophobic titanium oxide fine powder is 0.1 to 40% by weight.

本発明によれば、分散剤や安定化剤などを用いることなく、また水分散液を経ることなく、非極性有機溶媒中に酸化チタン微粉末をナノ粒子レベルで均一に分散させた酸化チタンの非極性有機溶媒分散液が提供される。
即ち、本発明によれば、気相火炎中での加水分解で得られた酸化チタンの表面に、シランカップリング剤及び/又はシリコーン化合物を用いる乾式処理で疎水性機能を付与したことによって、非極性有機溶媒に対する分散性が良好なものとなり、分散液を安定させるための分散剤や表面活性剤、安定剤などの成分を必要とすることなく、均一分散液を得ることができるため、これらの成分を用いることによる不純物の混入、例えば、燐酸、錫などの混入を避けることができる。
According to the present invention, titanium oxide fine powder in which titanium oxide fine powder is uniformly dispersed at a nanoparticle level in a nonpolar organic solvent without using a dispersant or a stabilizer or without passing through an aqueous dispersion. A nonpolar organic solvent dispersion is provided.
That is, according to the present invention, a hydrophobic function is imparted to the surface of titanium oxide obtained by hydrolysis in a gas phase flame by a dry treatment using a silane coupling agent and / or a silicone compound. Since the dispersibility with respect to the polar organic solvent is good and a uniform dispersion can be obtained without the need for components such as a dispersant, a surfactant and a stabilizer for stabilizing the dispersion, these It is possible to avoid mixing of impurities due to the use of components, for example, mixing of phosphoric acid and tin.

また、分散剤や安定化剤などを用いないと、従来は実現不可能であった酸化チタン微粒子の非極性有機溶媒分散液を実現することにより、本発明の酸化チタンの非極性有機溶媒分散液を、極性溶媒による分散液では適用できなかった用途、例えば、塗料、インク、樹脂との複合材料、フィルムなどの構成成分として適用することが可能となり、しかも、その際に、分散液の分散安定性が優れていることから、対象製品表面の均質な塗膜、コーティング、フィルムを提供することができる。
これらはまた、酸化チタンを原料として用いる製品の寸法、表面状態・充填率などの均質性を担保すると共に、光学的な製品の光学的均質性を付与するために有効である。
Moreover, the non-polar organic solvent dispersion of titanium oxide of the present invention is realized by realizing a non-polar organic solvent dispersion of titanium oxide fine particles, which could not be realized conventionally without using a dispersant or a stabilizer. Can be applied as a constituent component of applications such as paints, inks, composites with resins, films, etc. that could not be applied with dispersions using polar solvents. Since the property is excellent, it is possible to provide a uniform coating film, coating, or film on the surface of the target product.
These are also effective for ensuring the homogeneity of the product using titanium oxide as a raw material, such as the size, surface state, and filling rate, and for providing optical homogeneity of the optical product.

特に、本発明の酸化チタンの非極性有機溶媒分散液から溶媒が除去される過程で、酸化チタン以外の不要な分散剤等の添加剤が析出することが無いため、酸化チタン微粒子で形成される表面コーティング、フィルム、固体などのいかなる形状の製品においても、不要な物質が酸化チタンの界面に濃縮されたり、凝集するおそれが無く、高純度で均質な材料を必要とする用途に有効に用いることができる。   In particular, in the process of removing the solvent from the non-polar organic solvent dispersion of titanium oxide according to the present invention, an additive such as an unnecessary dispersant other than titanium oxide does not precipitate, and therefore it is formed of titanium oxide fine particles. In products of any shape such as surface coatings, films and solids, there is no risk of unnecessary substances concentrating or agglomerating at the interface of titanium oxide, and it should be used effectively for applications that require high purity and homogeneous materials Can do.

実施例1において、撹拌翼による撹拌を30分行ったときの分散液中の酸化チタン分散粒子の粒子径分布を示すチャートである。In Example 1, it is a chart which shows the particle diameter distribution of the titanium oxide dispersion particle in a dispersion liquid when stirring with a stirring blade was performed for 30 minutes. 実施例1において、撹拌翼による撹拌後、更に超音波ホモジナイザーによる分散処理を10分行ったときの分散液中の酸化チタン分散粒子の粒子径分布を示すチャートである。In Example 1, it is a chart which shows the particle size distribution of the titanium oxide dispersion | distribution particle | grains in a dispersion liquid when the dispersion | distribution process by an ultrasonic homogenizer was performed for 10 minutes after stirring with a stirring blade. 実施例1において、撹拌翼による撹拌後、更にビーズミルによる分散処理を60分行ったときの分散液中の酸化チタン分散粒子の粒子径分布を示すチャートである。In Example 1, it is a chart which shows the particle size distribution of the titanium oxide dispersion | distribution particle | grains in a dispersion liquid when the dispersion | distribution process by a bead mill was performed for 60 minutes after stirring with a stirring blade.

以下に本発明の酸化チタンの非極性有機溶媒分散液の実施の形態を詳細に説明する。   Hereinafter, embodiments of the nonpolar organic solvent dispersion of titanium oxide of the present invention will be described in detail.

[疎水性酸化チタン微粉末]
まず、本発明の酸化チタンの非極性有機溶媒分散液において、非極性有機溶媒中に分散させる疎水性酸化チタン微粉末(以下、「本発明の疎水性酸化チタン微粉末」と称す場合がある。)について、その製造方法に従って説明する。
[Hydrophobic titanium oxide fine powder]
First, the non-polar organic solvent dispersion of titanium oxide of the present invention may be referred to as a hydrophobic titanium oxide fine powder dispersed in a non-polar organic solvent (hereinafter referred to as “the hydrophobic titanium oxide fine powder of the present invention”). ) Will be described according to the manufacturing method.

<酸化チタンの合成>
まず、TiCl等の揮発性のチタン化合物を水素を含む気相火炎中で加水分解することによって、疎水性酸化チタン微粉末を構成する酸化チタンを合成する。
一般に市販されている硫酸法等で製造される湿式酸化チタン等に比べ、本乾式酸化チタンは、気相中で含水素火炎中で合成されるため、基本的には残存水が無いあるいはあっても含水率は極めて微量である。
また、内部比表面積が小さいため、粒子が内部まで均一に疎水化され易く、またかさ密度が小さいことから分かるように粒子の凝集の程度が低いため、溶媒中で微細粒子として分散しやすいという特徴を持つ。
<Synthesis of titanium oxide>
First, a volatile titanium compound such as TiCl 4 is hydrolyzed in a gas-phase flame containing hydrogen to synthesize titanium oxide constituting the hydrophobic titanium oxide fine powder.
Compared with wet titanium oxides etc. that are generally produced by the sulfuric acid method that is commercially available, this dry titanium oxide is synthesized in a hydrogen-containing flame in the gas phase, so there is basically no or no residual water. The water content is extremely small.
Also, since the internal specific surface area is small, the particles are easily hydrophobized uniformly to the inside, and as the bulk density is low, the degree of aggregation of the particles is low, so that the particles are easily dispersed as fine particles in a solvent. have.

出発原料となる揮発性のチタン化合物としては、TiClの他、Ti(OCH,Ti(OC等のチタンアルコキシド等を用いることができる。 As a volatile titanium compound used as a starting material, titanium alkoxide such as Ti (OCH 3 ) 4 and Ti (OC 2 H 5 ) 4 can be used in addition to TiCl 4 .

このような揮発性のチタン化合物を分解することにより製造された酸化チタンのBET比表面積が40m/gより小さいと、得られる疎水性酸化チタン微粉末が非極性有機溶媒中で解砕あるいは粉砕されにくく、分散性が悪くなり、BET比表面積が150m/gより大きいと酸化チタンの凝集力が高くなって、非極性有機溶媒中での分散が難しくなる。
従って、得られる乾式酸化チタンのBET比表面積は40〜150m/g、特に50〜110m/gであることが好ましい。
When titanium oxide produced by decomposing such a volatile titanium compound has a BET specific surface area of less than 40 m 2 / g, the resulting hydrophobic titanium oxide fine powder is crushed or ground in a nonpolar organic solvent. When the BET specific surface area is larger than 150 m 2 / g, the cohesive strength of titanium oxide increases and dispersion in a nonpolar organic solvent becomes difficult.
Therefore, the BET specific surface area of the obtained dry titanium oxide is preferably 40 to 150 m 2 / g, particularly 50 to 110 m 2 / g.

また、得られる乾式酸化チタンはルチルとアナターゼの比率には特に制限はないが、アナターゼの比率(以下「アナターゼ比」と称す場合がある。)が0.3よりも小さいと酸化チタンの表面の活性が弱すぎるため均一に表面改質することが困難となり、得られる疎水性酸化チタン微粉末の疎水性が悪くなる。アナターゼ比が0.98よりも大きいと表面活性が強すぎるため、一部、表面改質剤に分解等が起こり均一に表面改質することが困難となる。
従って、本発明において、得られる乾式酸化チタンは、アナターゼ及びルチルの結晶構造を持ち、アナターゼ比が特に0.3〜0.98であることが好ましい。
なお、アナターゼ比は、後述の実施例の項に記載される方法で求めることができる。
The dry titanium oxide obtained is not particularly limited in the ratio of rutile and anatase, but if the ratio of anatase (hereinafter sometimes referred to as “anatase ratio”) is less than 0.3, the surface of the titanium oxide surface Since the activity is too weak, it is difficult to uniformly modify the surface, and the hydrophobicity of the resulting hydrophobic titanium oxide fine powder becomes poor. When the anatase ratio is greater than 0.98, the surface activity is too strong, and therefore, the surface modifier is partially decomposed and it is difficult to uniformly modify the surface.
Therefore, in the present invention, the obtained dry titanium oxide has anatase and rutile crystal structures, and the anatase ratio is particularly preferably 0.3 to 0.98.
In addition, anatase ratio can be calculated | required by the method described in the term of the below-mentioned Example.

このようにBET比表面積が40〜150m/gで、アナターゼ比が0.3〜0.98の酸化チタンは、例えば、揮発性のチタン化合物を、水素含有ガスの存在下、600〜1800℃の温度で原料ガス中のチタン濃度が二酸化チタン換算で5〜250g/mの条件下で熱加水分解することにより製造することができる。 Thus, the titanium oxide having a BET specific surface area of 40 to 150 m 2 / g and an anatase ratio of 0.3 to 0.98 is, for example, a volatile titanium compound in the presence of a hydrogen-containing gas at 600 to 1800 ° C. It can manufacture by thermally hydrolyzing on the conditions whose titanium concentration in source gas is 5-250 g / m < 3 > in conversion of titanium dioxide.

<表面処理>
本発明においては、上述のようにして得られる乾式酸化チタンの表面改質剤として、好ましくは下記一般式(I)又は(II)で表されるシランカップリング剤及び/又は下記一般式(III)で表されるシリコーン化合物を用いて乾式で表面処理を行う。
<Surface treatment>
In the present invention, the dry titanium oxide surface modifier obtained as described above is preferably a silane coupling agent represented by the following general formula (I) or (II) and / or the following general formula (III): Surface treatment is performed dry using a silicone compound represented by

4−nSiR …(I)
(上記(I)式中、Xは水酸基、アルコキシ基、又はハロゲン原子を示し、Rは炭素数1〜18のアルキル基を示し、nは0〜3の整数を示す。)
X 4-n SiR n (I)
(In the formula (I), X represents a hydroxyl group, an alkoxy group, or a halogen atom, R represents an alkyl group having 1 to 18 carbon atoms, and n represents an integer of 0 to 3).

R'SiNHSiR' …(II)
(上記(II)式中、R'は炭素数1〜3のアルキル基を示し、一部のR'は水素原子又はビニル基等の他の置換基であってもよい。)
R ′ 3 SiNHSiR ′ 3 (II)
(In the formula (II), R ′ represents an alkyl group having 1 to 3 carbon atoms, and some R ′ may be other substituents such as a hydrogen atom or a vinyl group.)

Figure 2013170110
Figure 2013170110

(上記(III)式中、Rはメチル基又はエチル基を示し、Rは水素原子、メチル基、エチル基、あるいはビニル基、フェニル基又はアミノ基で置換されてもよいアルキル基を示し、X'は水酸基、アルコキシ基、ハロゲン原子又はアルキル基を示し、mは1〜500の整数を示す。) (In the formula (III), R a represents a methyl group or an ethyl group, and R b represents a hydrogen atom, a methyl group, an ethyl group, or an alkyl group which may be substituted with a vinyl group, a phenyl group or an amino group. X ′ represents a hydroxyl group, an alkoxy group, a halogen atom or an alkyl group, and m represents an integer of 1 to 500.)

前記一般式(I),(II)において、Rで表されるアルキル基の炭素数が18よりも大きい長鎖アルキルシランカップリング剤を用いた場合、立体障害等が起きることにより表面改質が均一に行われにくく、また凝集しやすくなる。   In the general formulas (I) and (II), when a long-chain alkylsilane coupling agent having an alkyl group represented by R having a carbon number greater than 18 is used, surface modification may occur due to steric hindrance. It is difficult to carry out uniformly and is easy to aggregate.

前記一般式(I)で表されるシランカップリング剤において、Rとしては、特に炭素数1〜10のアルキル基が、Xとしては、水酸基、炭素数1〜3のアルコキシ基、Cl等のハロゲン原子が好ましく、具体的には、メチルトリメトキシシラン、ジメチルトリメトキシシラン、ジメチルトリエトキシシラン、n−ブチルトリメトキシシラン、イソブチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−オクチルトリメトキシシラン、n−オクタデシルトリメトキシシラン、ジメチルジクロロシラン、メチルトリクロロシラン等が挙げられる。   In the silane coupling agent represented by the general formula (I), R particularly represents an alkyl group having 1 to 10 carbon atoms, and X represents a hydroxyl group, an alkoxy group having 1 to 3 carbon atoms, or a halogen such as Cl. Atoms are preferred, specifically, methyltrimethoxysilane, dimethyltrimethoxysilane, dimethyltriethoxysilane, n-butyltrimethoxysilane, isobutyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltrimethoxysilane, Examples include n-octadecyltrimethoxysilane, dimethyldichlorosilane, and methyltrichlorosilane.

また、前記一般式(II)で表されるシランカップリング剤において、R'としては特に炭素数1〜2のアルキル基が好ましく具体的にはヘキサメチルジシラザン等が挙げられ、一部のR'が水素原子に置換されたものとしてはテトラメチルジシラザン、ビニル基で置換されたものとしてはジビニルテトラメチルジシラザンが挙げられる。   In the silane coupling agent represented by the general formula (II), R ′ is particularly preferably an alkyl group having 1 to 2 carbon atoms, specifically, hexamethyldisilazane and the like. Examples of those in which 'is substituted with a hydrogen atom include tetramethyldisilazane, and those in which' is substituted with a vinyl group include divinyltetramethyldisilazane.

また、前記一般式(III)で表されるシリコーン化合物が、低分子であると疎水性を持たせることが難しく、高分子であると疎水性を持たせることはできるが凝集しやすくなる。   Further, the silicone compound represented by the general formula (III) is difficult to impart hydrophobicity if it is a low molecule, and if it is a polymer, it can be imparted hydrophobicity but tends to aggregate.

前記一般式(III)で表されるシリコーン化合物において、Rとしては、水素原子、メチル基等が好ましく、またX'としては水酸基、メトキシ基、メチル基等が好ましく、mは15〜300であることが好ましい。
このシリコーン化合物としては分子量1000〜20000程度のジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、α,ω−ヒドロキシオルガノポリシロキサン、アルキル変性シリコーンオイル等が好適である。
In the silicone compound represented by the general formula (III), R b is preferably a hydrogen atom, a methyl group or the like, and X ′ is preferably a hydroxyl group, a methoxy group or a methyl group, and m is 15 to 300. Preferably there is.
As the silicone compound, dimethylpolysiloxane having a molecular weight of about 1000 to 20000, methylhydrogenpolysiloxane, α, ω-hydroxyorganopolysiloxane, alkyl-modified silicone oil and the like are suitable.

このような表面改質剤は、それぞれ単独で用いても良く、2種以上を同時に用いても良く、また2種以上を段階的に用いても良い。   Such surface modifiers may be used singly, or two or more kinds may be used simultaneously, or two or more kinds may be used stepwise.

また、表面改質処理は、乾式法、湿式法のいずれでも行えるが、本発明では、水の混入を極力防止することから、乾式で行う。また、凝集の問題や処理コストの面、及び、廃液処理や環境への配慮の面からも乾式法が望ましい。   The surface modification treatment can be performed by either a dry method or a wet method, but in the present invention, the surface modification treatment is performed by a dry method in order to prevent water contamination as much as possible. Also, the dry method is desirable from the viewpoint of aggregation problems and processing costs, and from the viewpoint of waste liquid processing and environmental considerations.

乾式による表面処理は、酸化チタン微粉末に撹拌下、不活性ガス雰囲気中で、シランカップリング剤及び/又はシリコーン化合物を滴下し、50〜400℃で0.1〜3時間程度加熱撹拌すれば良い。   The dry surface treatment can be performed by adding a silane coupling agent and / or a silicone compound dropwise in an inert gas atmosphere to titanium oxide fine powder while stirring and heating and stirring at 50 to 400 ° C. for about 0.1 to 3 hours. good.

この表面改質処理において、シランカップリング剤及び/又はシリコーン化合物の使用量が少な過ぎると十分に表面改質を行うことができず、多過ぎると凝集物が多くなる。従って、シランカップリング剤及び/又はシリコーン化合物の添加量は酸化チタンに対して0.1〜50重量%、特に1〜30重量%とすることが好ましい。   In this surface modification treatment, if the amount of the silane coupling agent and / or silicone compound used is too small, the surface modification cannot be carried out sufficiently, and if it is too much, aggregates increase. Therefore, the addition amount of the silane coupling agent and / or the silicone compound is preferably 0.1 to 50% by weight, particularly 1 to 30% by weight, based on titanium oxide.

このようにして得られる本発明の疎水性酸化チタン微粉末は、透過率法によって測定された疎水率が、好ましくは70%以上、より好ましくは80%以上の値を示すことが、非極性有機溶媒中に安定的に均一分散させることができることから好ましい。   The hydrophobic titanium oxide fine powder of the present invention thus obtained has a hydrophobicity measured by a transmittance method of preferably 70% or more, more preferably 80% or more. This is preferable because it can be stably and uniformly dispersed in a solvent.

[疎水性酸化チタン微粉末の非極性有機溶媒への分散]
次に、上述のようにして得られる疎水性酸化チタン微粉末を非極性有機溶媒中に分散させて、本発明の酸化チタンの非極性有機溶媒分散液を製造する方法について説明する。
[Dispersion of hydrophobic titanium oxide fine powder in nonpolar organic solvent]
Next, a method for producing a nonpolar organic solvent dispersion of titanium oxide of the present invention by dispersing the hydrophobic titanium oxide fine powder obtained as described above in a nonpolar organic solvent will be described.

<非極性有機溶媒>
本発明で用いる非極性有機溶媒は、持っている電気双極子が小さい分子からなり、溶媒として用いたとき、一般に溶解力が低いような有機溶媒であり、このような極性のない、ないしは極性の小さい有機溶媒であれば特に制限はないが、具体的には、ベンゼン、四塩化炭素、ジエチルエーテル、メチルエチルケトン、酢酸エチル、ヘキサン、クロロホルム、トルエン、キシレン、メチルイソブチルケトン、酢酸ブチルなどが挙げられる。これらのうち、好ましくは、メチルエチルケトン、酢酸エチル、ベンゼン、ジエチルエーテル、トルエンである。
これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
<Non-polar organic solvent>
The nonpolar organic solvent used in the present invention is composed of molecules having small electric dipoles, and is generally an organic solvent having a low dissolving power when used as a solvent. Although it will not be restrict | limited especially if it is a small organic solvent, Specifically, benzene, carbon tetrachloride, diethyl ether, methyl ethyl ketone, ethyl acetate, hexane, chloroform, toluene, xylene, methyl isobutyl ketone, butyl acetate, etc. are mentioned. Of these, methyl ethyl ketone, ethyl acetate, benzene, diethyl ether, and toluene are preferable.
These may be used alone or in combination of two or more.

<分散方法>
上記のような非極性有機溶媒に本発明の疎水性酸化チタン微粉末を分散させる方法としては、均一に分散できる方法であれば特に制限はない。例えば、撹拌翼、ディゾルバー、ボールミル、ニーダー、サンドミル、ロール混合機、ホモミキサー、タワーミル、超音波ホモジナイザー、湿式ジェットミル及びビーズミルなど呼称・名称は種々異なるが、衝撃、摩擦、振動や剪断応力などを付与する、機械的ないしは物理的手法により撹拌、混合、粉砕する方法が挙げられる。このような分散処理は、2以上を組み合わせて行ってもよい。
<Distribution method>
The method for dispersing the hydrophobic titanium oxide fine powder of the present invention in the nonpolar organic solvent as described above is not particularly limited as long as it can be uniformly dispersed. For example, there are various names and names such as stirring blades, dissolvers, ball mills, kneaders, sand mills, roll mixers, homomixers, tower mills, ultrasonic homogenizers, wet jet mills and bead mills. Examples thereof include a method of stirring, mixing, and pulverizing by a mechanical or physical method. Such distributed processing may be performed in combination of two or more.

分散処理時間は、均一な分散液が得られるように、分散液の疎水性酸化チタン微粉末濃度や分散処理手段等に応じて適宜決定される。   The dispersion treatment time is appropriately determined according to the concentration of the hydrophobic titanium oxide fine powder in the dispersion, the dispersion treatment means, etc. so that a uniform dispersion can be obtained.

<疎水性酸化チタン微粉末濃度>
本発明の酸化チタンの非極性有機溶媒分散液において、分散液中の疎水性酸化チタン微粉末濃度は、0.1〜40重量%、特に0.5〜30重量%であることが好ましい。
分散液中の疎水性酸化チタン微粉末濃度が低過ぎると、各種用途への適用が困難であり、高過ぎると均一分散液とすることが難しく、分散処理に長時間を要するなどの不具合が生じる。
<Hydrophobic titanium oxide fine powder concentration>
In the non-polar organic solvent dispersion of titanium oxide of the present invention, the concentration of the hydrophobic titanium oxide fine powder in the dispersion is preferably 0.1 to 40% by weight, particularly preferably 0.5 to 30% by weight.
If the concentration of the fine powder of hydrophobic titanium oxide in the dispersion is too low, it will be difficult to apply to various applications, and if it is too high, it will be difficult to obtain a uniform dispersion, resulting in problems such as a long time for dispersion treatment. .

<その他の成分>
本発明の疎水性酸化チタン微粉末は、分散剤や安定化剤などを用いることなく、非極性有機溶媒中に均一分散させることができる。
ここで、本発明で不使用とする分散剤や安定化剤は、微粒子の分散性向上のために一般的に用いられるものであり、例えば、ポリアクリル酸、カルボン酸塩、ポリイミン系の分散剤、各種の炭化水素化合物、錫化合物、燐酸やホスホン酸・ホスフィン酸などのりん化合物、アルミニウム化合物、硫酸やスルフォン酸等の硫黄化合物、シランカップリング剤、硬化性シリコーンなど、目的とする粉体と溶媒成分以外の分散助剤、安定化剤など(本発明においては、これらを「分散剤」と称す。)である。
また、酸化チタン合成のプロセスにより混入する水分も望ましくない混入物である。
本発明の酸化チタンの非極性有機溶媒分散液は、これらの分散剤を実質的に含まないことが分散剤によるコンタミや、非極性有機溶媒を揮発させた後の分散剤の残留の問題がないことから好ましい。ここで、実質的に含まないとは、分散液中の濃度として例えば0.05重量%以下であることをいう。
<Other ingredients>
The hydrophobic titanium oxide fine powder of the present invention can be uniformly dispersed in a nonpolar organic solvent without using a dispersant or a stabilizer.
Here, the dispersants and stabilizers that are not used in the present invention are those generally used for improving the dispersibility of the fine particles. For example, polyacrylic acid, carboxylate, polyimine-based dispersants Various kinds of hydrocarbon compounds, tin compounds, phosphorus compounds such as phosphoric acid and phosphonic acid / phosphinic acid, aluminum compounds, sulfur compounds such as sulfuric acid and sulfonic acid, silane coupling agents, curable silicones, and the like powders Dispersing aids and stabilizers other than the solvent component (in the present invention, these are referred to as “dispersing agents”).
Also, the moisture mixed in by the titanium oxide synthesis process is an undesirable contaminant.
The non-polar organic solvent dispersion of titanium oxide according to the present invention does not contain any of these dispersants, and there is no problem of contamination due to the dispersant or residual of the dispersant after volatilizing the non-polar organic solvent. Therefore, it is preferable. Here, being substantially free means that the concentration in the dispersion is, for example, 0.05% by weight or less.

なお、本発明の酸化チタンの非極性有機溶媒分散液には、上記の分散剤以外の成分、例えば酸化珪素などの珪素系化合物、塩素化合物等を含んでいてもよいが、最も好ましくは、疎水性酸化チタン微粉末と前述の非極性有機溶媒のみで構成される。なお、本発明の分散液中には、1種の疎水性酸化チタン微粉末のみが含まれていてもよく、BET比表面積や、アナターゼ比、疎水率や、用いた表面処理剤の異なる疎水性酸化チタン微粉末の2種以上が含まれていてもよい。   The non-polar organic solvent dispersion of titanium oxide of the present invention may contain components other than the above-described dispersant, for example, silicon compounds such as silicon oxide, chlorine compounds, etc., but most preferably hydrophobic Composed of fine titanium oxide fine powder and the aforementioned nonpolar organic solvent. The dispersion of the present invention may contain only one kind of hydrophobic titanium oxide fine powder, and the BET specific surface area, the anatase ratio, the hydrophobicity, and the different hydrophobicity of the surface treatment agent used. Two or more kinds of titanium oxide fine powder may be contained.

<分散度>
本発明の酸化チタンの非極性有機溶媒分散液における疎水性酸化チタン微粉末の均一分散状態としては、粒子径分布が10nm〜3μm、特に20nm〜0.5μmで、D50が30〜300nm、特に40〜100nmであることが各種用途において好ましい。
なお、分散液中の酸化チタンの粒子径分布は、動的光散乱法に基いて、例えば日機装社製「マイクロトラックUPA−EX」、「マイクロトラックMT3300II」、掘場製作所製「LA−920」、「LB−500」などを用いて測定することができ、また、D50は、この粒子径分布の測定結果から細かい粒子と粗い粒子の境目を示す中央の値(D50)として求めることができるが、本発明においては、日機装社製「マイクロトラックMT3300II」を用いて測定を行った。
<Dispersity>
As a uniform dispersion state of the hydrophobic titanium oxide fine powder in the nonpolar organic solvent dispersion of titanium oxide of the present invention, the particle size distribution is 10 nm to 3 μm, particularly 20 nm to 0.5 μm, and D 50 is 30 to 300 nm. It is preferable in various uses that it is 40-100 nm.
The particle size distribution of the titanium oxide in the dispersion is based on the dynamic light scattering method, for example, “Microtrac UPA-EX”, “Microtrac MT3300II” manufactured by Nikkiso Co., Ltd., “LA-920” manufactured by Minato Seisakusho. , “LB-500” or the like, and D 50 can be obtained from the measurement result of the particle size distribution as a center value (D 50 ) indicating the boundary between fine particles and coarse particles. However, in the present invention, the measurement was performed using “Microtrac MT3300II” manufactured by Nikkiso Co., Ltd.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

なお、以下において、酸化チタン微粉末のBET比表面積、アナターゼ比、疎水性酸化チタン微粉末の疎水率と、分散液中の疎水性酸化チタン微粉末又は酸化チタン微粉末の粒子径分布及びD50は、以下の方法によって測定したものである。 In the following, the BET specific surface area, anatase ratio of the titanium oxide fine powder, the hydrophobicity of the hydrophobic titanium oxide fine powder, the particle size distribution of the hydrophobic titanium oxide fine powder or the titanium oxide fine powder in the dispersion, and D 50 Is measured by the following method.

<BET比表面積>
BET法により測定した。
<BET specific surface area>
It was measured by the BET method.

<アナターゼ比>
酸化チタン微粉末を試料ホルダーにガラス板にて平面状に押し付けたものをX線回折装置(フィリップス社製)で測定し、得られた回折強度のアナターゼ型結晶構造の最強干渉線である(101)の回折強度(I)とルチル型結晶構造の最強干渉線である(110)の回折強度(I)から下式を用いてアナターゼ型結晶構造の含有率(A)を求めた値をアナターゼ比とした。
A(%)=100/(1+1.265×I/I
(Ref.R.A.Spurr,H.Myers,Anal.Chem.29,760(1957))
<Anatase ratio>
Titanium oxide fine powder pressed flat on a sample holder with a glass plate was measured with an X-ray diffractometer (manufactured by Philips), and was the strongest interference line of anatase crystal structure of the obtained diffraction intensity (101 diffraction intensity) (I a) and the strongest interference line of the rutile-type crystal structure value determined content of the anatase type crystal structure (a) using the following equation from the diffraction intensity (I R) of the (110) Anatase ratio was used.
A (%) = 100 / (1 + 1.265 × I A / I R )
(Ref. R. A. Spurr, H. Myers, Anal. Chem. 29, 760 (1957))

<疎水率>
疎水性酸化チタン微粉末1gを200mLの分液ロートに計り採り、これに純水100mLを加えて栓をし、ターブラミキサーで10分間振盪した後、10分間静置する。静置後、下層の20〜30mLをロートから抜き取った後に、下層の混合液を10mm石英セルに分取し、純水をブランクとして比色計にかけ、その500nmの透過率を疎水率とした。
<Hydrophobic rate>
1 g of hydrophobic titanium oxide fine powder is weighed into a 200 mL separatory funnel, 100 mL of pure water is added thereto, stoppered, shaken with a turbula mixer for 10 minutes, and then allowed to stand for 10 minutes. After standing, 20 to 30 mL of the lower layer was withdrawn from the funnel, and the lower layer mixed solution was dispensed into a 10 mm quartz cell.

<粒子径分布、D50
動的光散乱法により、日機装社製「マイクロトラックMT3300II」を用いて測定した。また、測定結果から細かい粒子と粗い粒子の境目を示す中央の値(D50)を求めた。
<Particle size distribution, D 50>
Measurement was performed by a dynamic light scattering method using “Microtrac MT3300II” manufactured by Nikkiso Co., Ltd. Further, it determined central value indicating the boundary of the fine particles and coarse particles from the measurement results (D 50).

[実施例1]
ガス状の四塩化チタンを水素原子が混在する火炎中で、1,000℃の温度下、チタン濃度が二酸化チタン換算で80g/mの条件で、熱加水分解することによりBET比表面積が90m/g、アナターゼ比が0.85の酸化チタン微粉末を製造した。
この酸化チタン微粉末100重量部を、ミキサーに入れ、窒素雰囲気下で撹拌しながら、n−オクチルトリメトキシシラン20重量部を滴下し、150℃で2時間加熱撹拌し、その後冷却することにより表面処理した。
得られた疎水性酸化チタン微粉末の疎水率は97%であった。
[Example 1]
BET specific surface area of 90 m is obtained by thermal hydrolysis of gaseous titanium tetrachloride in a flame containing hydrogen atoms at a temperature of 1,000 ° C. and a titanium concentration of 80 g / m 3 in terms of titanium dioxide. Titanium oxide fine powder having an anatase ratio of 2 / g and anatase ratio of 0.85 was produced.
100 parts by weight of this titanium oxide fine powder is put into a mixer, 20 parts by weight of n-octyltrimethoxysilane is added dropwise with stirring in a nitrogen atmosphere, heated and stirred at 150 ° C. for 2 hours, and then cooled to cool the surface. Processed.
The hydrophobicity of the obtained hydrophobic titanium oxide fine powder was 97%.

この疎水性酸化チタン微粉末を10重量部採り、撹拌翼を有する容器に採った90重量部のメチルエチルケトンに、撹拌しながら加え、30分間撹拌を継続して、乳白色の均一な分散液を得た。
この分散液の一部を採取して粒子径分布を測定したところ、図1のように、粒子径分布は60nm〜2μmで、D50は210nmとなり、撹拌によって十分に均質な分散液が得られたことが確認された。
残りの分散液の一部に超音波ホモジナイザーを10分間作用させ、その一部をサンプル採取して粒子径分布を測定したところ、図2に示すように、粒子径分布は38nm〜0.45μmでD50は75nmとなり、分散粒子は更に微細粒子となり、分散が促進されたことが確認された。
残りの分散液をビーズミル(日本コークス製・MSCミル)で、液を分散させながら60分間、30μmの安定化ジルコニアビーズで混合と分散を継続した。その分散液サンプルの粒子径分布を測定したところ、図3に示すように、粒子径分布は35nm〜0.25μmで、D50は65nmとなり、ビーズミルで更に粗粒が減少して微細粒子となり、分散が促進されたことが確認された。
10 parts by weight of this hydrophobic titanium oxide fine powder was added to 90 parts by weight of methyl ethyl ketone taken in a container having a stirring blade while stirring, and stirring was continued for 30 minutes to obtain a milky white uniform dispersion. .
When a part of this dispersion was sampled and the particle size distribution was measured, as shown in FIG. 1, the particle size distribution was 60 nm to 2 μm, D 50 was 210 nm, and a sufficiently homogeneous dispersion was obtained by stirring. It was confirmed that
An ultrasonic homogenizer was allowed to act on a part of the remaining dispersion for 10 minutes, and a part of the dispersion was sampled to measure the particle size distribution. As shown in FIG. 2, the particle size distribution was 38 nm to 0.45 μm. D 50 is next 75 nm, dispersed particles becomes more fine particles, it was confirmed that the dispersion has been promoted.
The remaining dispersion liquid was continuously mixed and dispersed with 30 μm stabilized zirconia beads for 60 minutes while dispersing the liquid with a beads mill (manufactured by Nippon Coke, MSC mill). When the particle size distribution of the dispersion liquid sample was measured, as shown in FIG. 3, the particle size distribution was 35 nm to 0.25 μm, D 50 was 65 nm, and the coarse particles were further reduced by the bead mill to become fine particles. It was confirmed that dispersion was promoted.

これら撹拌後、ホモジナイズ後、ミル混合後の分散液をそれぞれ透明なガラス容器に移して、静置して観察したが、数日後ではいずれのサンプルも粒子の沈降と溶媒の分離は見られなかった。   After the stirring, homogenization, and dispersion after mill mixing were each transferred to a transparent glass container and allowed to stand for observation, but after several days, neither sample sedimentation nor solvent separation was observed. .

また、上記の疎水性酸化チタン微粉末を20重量部採り、撹拌翼を有する容器に採った80重量部のメチルエチルケトンに、撹拌しながら加え、1時間撹拌を継続して、乳白色の均一な分散液を得た。
この分散液を、上記と同様、それぞれ超音波ホモジナイザー、ビーズミルで分散させたところ、それぞれの処理時間を長くする必要がある場合があるが、上記と同様に、粒子の沈降が見られず安定な分散液が得られた。
更に、上記の疎水性酸化チタン微粉末の割合を増加させ30重量部とし、70重量部のメチルエチルケトンに撹拌しながら加え、1時間撹拌を継続した後、超音波ホモジナイザーで分散させ、乳白色の均一な分散液が得られた。この分散液もまた、上記と同様に、粒子の沈降が見られず安定な分散液であった。
ただし、疎水性酸化チタン微粉末が30重量部を超え40重量部としても混合は可能であったが、粉体の重量部数を40重量部まで増加させると、撹拌翼による撹拌が次第に難しくなるため、分散液としての適切な濃度の限界は30重量%であると考えられた。
In addition, 20 parts by weight of the above-mentioned hydrophobic titanium oxide fine powder was added to 80 parts by weight of methyl ethyl ketone taken in a container having a stirring blade while stirring, and stirring was continued for 1 hour to obtain a milky white uniform dispersion. Got.
When this dispersion is dispersed with an ultrasonic homogenizer and a bead mill, respectively, as described above, it may be necessary to lengthen the treatment time, but as described above, no sedimentation of particles is observed and stable. A dispersion was obtained.
Further, the proportion of the above-mentioned hydrophobic titanium oxide fine powder was increased to 30 parts by weight, added to 70 parts by weight of methyl ethyl ketone with stirring, and stirred for 1 hour, and then dispersed with an ultrasonic homogenizer to obtain a milky white uniform powder. A dispersion was obtained. Similarly to the above, this dispersion was also a stable dispersion with no sedimentation of particles.
However, although mixing was possible even when the hydrophobic titanium oxide fine powder exceeded 30 parts by weight and 40 parts by weight, when the weight part of the powder was increased to 40 parts by weight, stirring with a stirring blade became increasingly difficult. The limit of the appropriate concentration as a dispersion was considered to be 30% by weight.

[比較例1]
実施例1で製造したBET比表面積が90m/gの酸化チタン微粉末は親水性を示している。これを表面処理することなく、10重量部採り、撹拌翼を有する容器に採った90重量部のメチルエチルケトンに撹拌しながら加え、30分間撹拌を継続して白色系の混合物を得た。
更に撹拌しながら、この一部を採取して静置したところ、一部の粒子の沈降が見られ、1時間後には溶媒の一部が上澄みとして分離し、十分な分散と安定化がなされていないことが観察された。
また、撹拌中に採取した一部の混合物に、超音波ホモジナイザーを10分間作用させ、静置して観察したところ、撹拌翼による混合と同様に、1から2時間後には粒子の沈降と溶媒の分離が見られた。
更に撹拌しているサンプルの一部を、ビーズミルの試料フォルダに投入し、混合液を循環しながら粉砕と分散を試みたが、1時間ミル処理した後のサンプルでも、ミルから取り出して静置すると、時間の経過とともに、1から2時間後には粒子の沈降と溶媒の分離が明らかになった。
この結果から、親水性の酸化チタンは、非極性溶媒に安定して分散されにくいことが確認された。
[Comparative Example 1]
The titanium oxide fine powder having a BET specific surface area of 90 m 2 / g produced in Example 1 is hydrophilic. Without surface treatment, 10 parts by weight was taken and added to 90 parts by weight of methyl ethyl ketone taken in a vessel having a stirring blade, and stirring was continued for 30 minutes to obtain a white mixture.
When a part of the sample was collected and allowed to stand while stirring, some particles settled, and after 1 hour, a part of the solvent separated as a supernatant, and was sufficiently dispersed and stabilized. Not observed.
In addition, an ultrasonic homogenizer was allowed to act on a part of the mixture collected during stirring for 10 minutes and allowed to stand to observe. As in the case of mixing with a stirring blade, the particles settled and the solvent was removed after 1 to 2 hours. Separation was seen.
Furthermore, a part of the stirred sample was put into the sample folder of the bead mill, and pulverization and dispersion were tried while circulating the mixed solution. Even after the sample was milled for 1 hour, it was removed from the mill and left to stand. As time passed, sedimentation of the particles and separation of the solvent became apparent after 1 to 2 hours.
From this result, it was confirmed that hydrophilic titanium oxide is not easily dispersed stably in a nonpolar solvent.

[実施例2]
実施例1において、非極性有機溶媒として酢酸エチルを用いたこと以外は同様にして分散液を製造した。
即ち、疎水性酸化チタン微粉末を10重量部採り、撹拌翼を有する容器に採った90重量部の酢酸エチルに撹拌しながら加え、30分間撹拌を継続して、乳白色の均一な分散液を得た。
実施例1と同様に、これの一部を採取して粒子径分布を測定したところ、図1と同様に、粒子径分布は68nm〜1.8μmでD50は220nmとなり、撹拌によって十分に均質な分散液が得られた。
残りの分散液の一部に超音波ホモジナイザーを10分間作用させ、その一部からサンプル採取して粒子径分布を測定したところ、図2と同様に、粒子径分布は45nm〜0.42μmで、D50は80nmとなり、更に微細粒子となり、分散が促進された。
残りの分散液をビーズミルで、液を分散させながら60分間、30μmの安定化ジルコニアビーズで混合と分散を継続し、その分散液の粒子径分布を測定したところ、図3に示したのと同様に、粒子径分布は38nm〜0.25μmで、D50は70nmとなり、ビーズミルで更に粗粒が減少して微細粒子となり、分散が促進された。
これら撹拌後、ホモジナイズ後、ミル混合後の分散液をそれぞれ透明なガラス容器に移して、静置して観察したが、数日後ではいずれのサンプルも粒子の沈降と溶媒の分離は見られなかった。
[Example 2]
A dispersion was produced in the same manner as in Example 1, except that ethyl acetate was used as the nonpolar organic solvent.
That is, 10 parts by weight of hydrophobic titanium oxide fine powder was added to 90 parts by weight of ethyl acetate in a container having a stirring blade while stirring, and stirring was continued for 30 minutes to obtain a milky white uniform dispersion. It was.
As in Example 1, a part of this was sampled and the particle size distribution was measured. As in FIG. 1, the particle size distribution was 68 nm to 1.8 μm and D 50 was 220 nm, which was sufficiently homogeneous by stirring. A good dispersion was obtained.
An ultrasonic homogenizer was allowed to act on a part of the remaining dispersion for 10 minutes, and a sample was collected from the part to measure the particle size distribution. As in FIG. 2, the particle size distribution was 45 nm to 0.42 μm. D 50 is 80nm, and the further becomes fine particles, dispersed was promoted.
The remaining dispersion liquid was continuously mixed and dispersed with 30 μm stabilized zirconia beads for 60 minutes while dispersing the liquid with a bead mill, and the particle size distribution of the dispersion liquid was measured. As shown in FIG. Furthermore, the particle size distribution was 38 nm to 0.25 μm, D 50 was 70 nm, and the coarse particles were further reduced by the bead mill to become fine particles, which promoted dispersion.
After the stirring, homogenization, and dispersion after mill mixing were each transferred to a transparent glass container and allowed to stand for observation, but after several days, neither sample sedimentation nor solvent separation was observed. .

[実施例3]
実施例1において、非極性有機溶媒としてトルエンを用いたこと以外は同様にして分散液を製造した。
即ち、疎水性酸化チタン微粉末を10重量部採り、撹拌翼を有する容器に採った90重量部のトルエンに撹拌しながら加え、30分間撹拌を継続して、乳白色の均一な分散液を得た。
実施例1と同様に、この分散液の一部を採取して超音波ホモジナイザーを10分間作用させ、その一部からサンプル採取して粒子径分布を測定したところ、粒子径分布は80nm〜1.2μmであった。
この撹拌後にホモジナイズした後の分散液を透明なガラス容器に移して、静置して観察したところ、2〜3時間後では粒子の沈降、溶媒の分離は認められなかった。
ホモジナイズ処理から24時間経過すると、分散液の上部と下部の間の白濁の状態に変化と差が見られた。
[Example 3]
A dispersion was produced in the same manner as in Example 1 except that toluene was used as the nonpolar organic solvent.
That is, 10 parts by weight of hydrophobic titanium oxide fine powder was added to 90 parts by weight of toluene in a container having a stirring blade while stirring, and stirring was continued for 30 minutes to obtain a milky white uniform dispersion. .
In the same manner as in Example 1, a part of this dispersion was sampled and an ultrasonic homogenizer was allowed to act for 10 minutes. A sample was sampled from the part and the particle size distribution was measured. It was 2 μm.
After the stirring, the homogenized dispersion was transferred to a transparent glass container and allowed to stand to observe. After 2 to 3 hours, no precipitation of particles and separation of the solvent were observed.
After 24 hours from the homogenization treatment, changes and differences were observed in the state of cloudiness between the upper part and the lower part of the dispersion.

[比較例2]
比較例1において、非極性有機溶媒として酢酸エチルを用いたこと以外は同様の操作を行った。
即ち、表面処理を施していない親水性の酸化チタン微粉末を10重量部を採り、撹拌翼を有する容器に採った90重量部の酢酸エチルに、撹拌しながら加え、30分間撹拌を継続して白色系の混合物を得た。
この一部を採取して静置したところ、一部の粒子の沈降が見られ、1時間後には溶媒の一部が上澄みとして観察され、十分な分散と安定化がなされていないことが認められた。
また、撹拌中に採取した一部の混合物に、超音波ホモジナイザーを10分間作用させ、静置して観察したところ、撹拌翼による混合と同様に、1から2時間後には粒子の沈降と溶媒の分離が見られた。
[Comparative Example 2]
In Comparative Example 1, the same operation was performed except that ethyl acetate was used as the nonpolar organic solvent.
That is, 10 parts by weight of hydrophilic titanium oxide fine powder not subjected to surface treatment was added to 90 parts by weight of ethyl acetate taken in a container having a stirring blade while stirring, and stirring was continued for 30 minutes. A white mixture was obtained.
When a part of this was collected and allowed to stand, some particles settled, and after 1 hour, a part of the solvent was observed as a supernatant, and it was confirmed that sufficient dispersion and stabilization were not achieved. It was.
In addition, an ultrasonic homogenizer was allowed to act on a part of the mixture collected during stirring for 10 minutes and allowed to stand to observe. As in the case of mixing with a stirring blade, the particles settled and the solvent was removed after 1 to 2 hours. Separation was seen.

[比較例3]
比較例1において、非極性有機溶媒としてトルエンを用いたこと以外は同様の操作を行い、30分撹拌後の液、また超音波ホモジナイズ処理後の分散液を静置したところ、一部の粒子の沈降が見られ、1時間後には溶媒の一部が上澄みとして観察された。
[Comparative Example 3]
In Comparative Example 1, the same operation was performed except that toluene was used as the nonpolar organic solvent, and the liquid after stirring for 30 minutes or the dispersion liquid after ultrasonic homogenization treatment was allowed to stand. Sedimentation was observed, and a portion of the solvent was observed as a supernatant after 1 hour.

比較例2,3からも親水性の酸化チタンは、非極性溶媒に安定して分散されにくいことが確認された。   From Comparative Examples 2 and 3, it was confirmed that the hydrophilic titanium oxide was hardly dispersed stably in the nonpolar solvent.

[実施例4]
ガス状の四塩化チタンを水素原子が混在する火炎中で、900℃の温度下、チタン濃度が二酸化チタン換算で40g/mの条件で、熱加水分解することによりBET比表面積が120m/g、アナターゼ比0.90の酸化チタン微粉末を製造した。
この酸化チタン微粉末100重量部を、ミキサーに入れ、窒素雰囲気下で撹拌しながら、n−ブチルトリメトキシシラン20重量部を滴下し、150℃で2時間加熱撹拌し、その後冷却することにより表面処理した。
得られた疎水性酸化チタン微粉末の疎水率は95%であった。
[Example 4]
BET specific surface area is 120 m 2 / g by thermal hydrolysis in gaseous titanium tetrachloride in a flame in which hydrogen atoms are mixed at a temperature of 900 ° C. and a titanium concentration of 40 g / m 3 in terms of titanium dioxide. g. A fine titanium oxide powder having an anatase ratio of 0.90 was produced.
100 parts by weight of this titanium oxide fine powder is put into a mixer, 20 parts by weight of n-butyltrimethoxysilane is added dropwise with stirring in a nitrogen atmosphere, heated and stirred at 150 ° C. for 2 hours, and then cooled to cool the surface. Processed.
The hydrophobicity of the obtained hydrophobic titanium oxide fine powder was 95%.

この疎水性酸化チタン微粉末を10重量部採り、撹拌翼を有する容器に採った90重量部のメチルエチルケトンに、撹拌しながら加え、30分間撹拌を継続して、乳白色の均一な分散液を得た。
この分散液の一部を採取して粒子径分布を測定したところ、粒子径分布は65nm〜1.8μmで、D50は200nmで、撹拌によって十分に均質な分散液が得られたことが確認された。
残りの分散液の一部に超音波ホモジナイザーを10分間作用させ、その一部をサンプル採取して粒子径分布を測定したところ、粒子径分布は40nm〜0.42μmで、D50は72nmとなり、更に微細粒子となり、分散が促進されたことが確認された。
残りの分散液を前記のビーズミルで、液を分散させながら60分間、30μmの安定化ジルコニアビーズで混合と分散を継続した。その分散液サンプルの粒子径分布を測定したところ、粒子径分布は36nm〜0.23μmで、D50は62nmとなり、ビーズミルで更に粗粒が減少して微細粒子となり、分散が促進されたことが確認された。
10 parts by weight of this hydrophobic titanium oxide fine powder was added to 90 parts by weight of methyl ethyl ketone taken in a container having a stirring blade while stirring, and stirring was continued for 30 minutes to obtain a milky white uniform dispersion. .
When a part of this dispersion was collected and the particle size distribution was measured, the particle size distribution was 65 nm to 1.8 μm, D 50 was 200 nm, and it was confirmed that a sufficiently homogeneous dispersion was obtained by stirring. It was done.
An ultrasonic homogenizer was allowed to act on a part of the remaining dispersion for 10 minutes, and a part of the dispersion was sampled and the particle size distribution was measured. The particle size distribution was 40 nm to 0.42 μm, and D 50 was 72 nm. Furthermore, it became a fine particle, and it was confirmed that dispersion | distribution was accelerated | stimulated.
The remaining dispersion was continued to be mixed and dispersed with 30 μm stabilized zirconia beads for 60 minutes while dispersing the liquid with the bead mill. When the particle size distribution of the dispersion liquid sample was measured, it was found that the particle size distribution was 36 nm to 0.23 μm, D 50 was 62 nm, the coarse particles were further reduced by the bead mill to become fine particles, and the dispersion was accelerated. confirmed.

これら撹拌後、ホモジナイズ後、ミル混合後の分散液をそれぞれ透明なガラス容器に移して、静置して観察したが、数日後ではいずれのサンプルも粒子の沈降と溶媒の分離は見られなかった。   After the stirring, homogenization, and dispersion after mill mixing were each transferred to a transparent glass container and allowed to stand for observation, but after several days, neither sample sedimentation nor solvent separation was observed. .

上記の疎水性酸化チタン微粉末を20重量部採り、撹拌翼を有する容器に採った80重量部のメチルエチルケトンに、撹拌しながら加え、30分間撹拌を継続して、乳白色の均一な分散液を得た。
この分散液を上記と同様に、それぞれ、超音波ホモジナイザー、ビーズミルで分散させたところ、それぞれの処理時間を長くする必要がある場合があるが、上記同様、粒子の沈降が見られず、安定な分散液が得られた。
また、実施例2と同様に、溶媒を酢酸エチルにした場合にも、撹拌、超音波ホモジナイザー、ビーズミルで分散して、良い分散性が得られた。
更に、疎水性酸化チタン微粉末を30重量部とし、70重量部のメチルエチルケトンに撹拌しながら加え、1時間撹拌を継続した後、超音波ホモジナイザーで分散させ、乳白色の均一な分散液が得られ、上記と同様に、粒子の沈降が見られず安定な分散液であることが確認された。
ただし、疎水性酸化チタン微粉末が30重量部を超え40重量部としても混合は可能であったが、粉体の重量部数を40重量部まで増加させると、撹拌翼による撹拌が次第に難しくなるため、分散液としての適切な濃度の限界は30重量%であると考えられた。
20 parts by weight of the above-mentioned hydrophobic titanium oxide fine powder is added to 80 parts by weight of methyl ethyl ketone taken in a container having a stirring blade while stirring, and stirring is continued for 30 minutes to obtain a milky white uniform dispersion. It was.
In the same manner as above, when this dispersion was dispersed with an ultrasonic homogenizer and a bead mill, respectively, it may be necessary to lengthen each treatment time. A dispersion was obtained.
Similarly to Example 2, even when ethyl acetate was used as the solvent, good dispersibility was obtained by dispersing with stirring, an ultrasonic homogenizer, and a bead mill.
Further, 30 parts by weight of hydrophobic titanium oxide fine powder was added to 70 parts by weight of methyl ethyl ketone while stirring, and after stirring for 1 hour, the mixture was dispersed with an ultrasonic homogenizer to obtain a milky white uniform dispersion. Similar to the above, no sedimentation of particles was observed, and it was confirmed that the dispersion was stable.
However, although mixing was possible even when the hydrophobic titanium oxide fine powder exceeded 30 parts by weight and 40 parts by weight, when the weight part of the powder was increased to 40 parts by weight, stirring with a stirring blade became increasingly difficult. The limit of the appropriate concentration as a dispersion was considered to be 30% by weight.

なお、n−ブチルトリメトキシシランの代わりに、異性体であるiso−ブチルトリメトキシシランを用いて上記と同様に表面処理を行って得られた疎水性酸化チタン微粉末についても、メチルエチルケトン、酢酸エチル、又はトルエンに、撹拌翼、超音波ホモジナイザー、ビーズミルなどで均質に分散され、得られた分散液は、1週間放置後から1ヶ月放置後も粉体の沈降と溶媒の分離が見られず、上記と同等の結果を得た。   The hydrophobic titanium oxide fine powder obtained by surface treatment in the same manner as described above using iso-butyltrimethoxysilane, which is an isomer, instead of n-butyltrimethoxysilane was also used for methyl ethyl ketone and ethyl acetate. Or dispersed homogeneously in toluene with a stirring blade, an ultrasonic homogenizer, a bead mill, etc., and the resulting dispersion shows no sedimentation of the powder and separation of the solvent after standing for 1 week to standing for 1 month, A result equivalent to the above was obtained.

[実施例5]
ガス状の四塩化チタンを水素原子が混在する火炎中で、1,550℃の温度下、チタン濃度が二酸化チタン換算で230g/mの条件で、熱加水分解することによりBET比表面積が40m/g、アナターゼ比が0.30の酸化チタン微粉末を製造した。
この酸化チタン微粉末100重量部を、ミキサーに入れ、窒素雰囲気下で撹拌しながら、n−オクタデシルトリメトキシシラン30重量部を滴下し、150℃で2時間加熱撹拌し、その後冷却することにより表面処理した。
得られた疎水性酸化チタン微粉末の疎水率は90%であった。
[Example 5]
BET specific surface area of 40 m is obtained by thermal hydrolysis of gaseous titanium tetrachloride in a flame containing hydrogen atoms at a temperature of 1,550 ° C. and a titanium concentration of 230 g / m 3 in terms of titanium dioxide. Titanium oxide fine powder with 2 / g and anatase ratio of 0.30 was produced.
100 parts by weight of this titanium oxide fine powder is put into a mixer, 30 parts by weight of n-octadecyltrimethoxysilane is added dropwise with stirring in a nitrogen atmosphere, heated and stirred at 150 ° C. for 2 hours, and then cooled to cool the surface. Processed.
The hydrophobicity of the obtained hydrophobic titanium oxide fine powder was 90%.

この疎水性酸化チタン微粉末を10重量部採り、撹拌翼を有する容器に採った90重量部のメチルエチルケトンに、撹拌しながら加え、30分間撹拌を継続して均一な分散液を得た。
この分散液の一部に超音波ホモジナイザーを10分間作用させ、その一部を採取して粒子径分布を測定したところ、粒子径分布は60nm〜0.65μmであった。
また、撹拌後の分散液と更にホモジナイズ処理した分散液をそれぞれ透明なガラス容器に移し、静置して観察したが、1週間後も粒子の沈降と溶媒の分離は見られなかった。
また、上記の表面処理で得られた疎水性酸化チタン微粉末を20重量部採り、80重量部のメチルエチルケトンに同様にして撹拌後、超音波ホモジナイザーで分散させたところ、それぞれの処理時間を長くする必要がある場合があるが、上記と同様、粒子の沈降が見られず、安定な分散液が得られた。
10 parts by weight of this hydrophobic titanium oxide fine powder was added to 90 parts by weight of methyl ethyl ketone in a container having a stirring blade while stirring, and stirring was continued for 30 minutes to obtain a uniform dispersion.
An ultrasonic homogenizer was allowed to act on a part of this dispersion for 10 minutes, and a part of the dispersion was collected to measure the particle size distribution. The particle size distribution was 60 nm to 0.65 μm.
The stirred dispersion and further homogenized dispersion were each transferred to a transparent glass container and allowed to stand for observation, but no sedimentation of the particles and separation of the solvent were observed after one week.
Also, 20 parts by weight of the hydrophobic titanium oxide fine powder obtained by the above surface treatment was taken and stirred in 80 parts by weight of methyl ethyl ketone in the same manner and then dispersed with an ultrasonic homogenizer. Although it may be necessary, as described above, no sedimentation of particles was observed, and a stable dispersion was obtained.

[実施例6]
ガス状の四塩化チタンを水素原子が混在する火炎中で、1,550℃の温度下、チタン濃度が二酸化チタン換算で15g/mの条件で、熱加水分解することによりBET比表面積が150m/g、アナターゼ比が0.95の酸化チタン微粉末を製造した。
この酸化チタン微粉末100重量部を、ミキサーに入れ、窒素雰囲気下で撹拌しながら、メチルハイドロジェンポリシロキサン25重量部を滴下し、250℃で1時間加熱撹拌し、その後冷却することにより表面処理した。
得られた疎水性酸化チタン微粉末の疎水率は95%であった。
[Example 6]
BET specific surface area is 150 m by thermal hydrolysis in gaseous titanium tetrachloride in a flame in which hydrogen atoms are mixed at a temperature of 1,550 ° C. and a titanium concentration of 15 g / m 3 in terms of titanium dioxide. Titanium oxide fine powder having an anatase ratio of 2 / g and anatase ratio of 0.95 was produced.
100 parts by weight of this titanium oxide fine powder is put into a mixer, 25 parts by weight of methyl hydrogen polysiloxane is added dropwise with stirring in a nitrogen atmosphere, heated and stirred at 250 ° C. for 1 hour, and then cooled to effect surface treatment. did.
The hydrophobicity of the obtained hydrophobic titanium oxide fine powder was 95%.

この疎水性酸化チタン微粉末を10重量部採り、撹拌翼を有する容器に採った90重量部のメチルエチルケトンに撹拌しながら加え、30分間撹拌を継続して均一な分散液を得た。
この分散液の一部に超音波ホモジナイザーを10分間作用させ、その一部を採取して粒子径分布を測定したところ、粒子径分布は50nm〜0.55μmであった。
また、撹拌後の分散液と更にホモジナイズ処理した分散液をそれぞれ透明なガラス容器に移し、静置して観察したが、1週間後も粒子の沈降と溶媒の分離は見られなかった。
また、上記の表面処理で得られた疎水性酸化チタン微粉末を20重量部採り、80重量部のメチルエチルケトンに同様にして撹拌後、超音波ホモジナイザーで分散させたところ、それぞれの処理時間を長くする必要がある場合があるが、上記と同様、1週間後も粒子の沈降と溶媒の分離は見られず、安定な分散液が得られた。
10 parts by weight of this hydrophobic titanium oxide fine powder was added to 90 parts by weight of methyl ethyl ketone in a container having a stirring blade while stirring, and stirring was continued for 30 minutes to obtain a uniform dispersion.
An ultrasonic homogenizer was allowed to act on a part of this dispersion for 10 minutes, and a part of the dispersion was sampled and the particle size distribution was measured. The particle size distribution was 50 nm to 0.55 μm.
The stirred dispersion and further homogenized dispersion were each transferred to a transparent glass container and allowed to stand for observation, but no sedimentation of the particles and separation of the solvent were observed after one week.
Also, 20 parts by weight of the hydrophobic titanium oxide fine powder obtained by the above surface treatment was taken and stirred in 80 parts by weight of methyl ethyl ketone in the same manner and then dispersed with an ultrasonic homogenizer. Although it may be necessary, as described above, no sedimentation of the particles and separation of the solvent were observed even after one week, and a stable dispersion was obtained.

[実施例7]
ガス状の四塩化チタンを水素原子が混在する火炎中で、1,100℃の温度下、チタン濃度が二酸化チタン換算で100g/mの条件で、熱加水分解することによりBET比表面積が100m/g、アナターゼ比が0.80の酸化チタン微粉末を製造した。
この酸化チタン微粉末100重量部を、ミキサーに入れ、窒素雰囲気下で撹拌しながら、ヘキサメチルジシラザン10重量部を滴下し、200℃で2時間加熱撹拌し、その後冷却した。更に得られた疎水性酸化チタン微粉末100重量部に対して、ジメチルポリシロキサン10重量部とn−ヘキサン30重量部の混合物を窒素雰囲気下で撹拌しながら滴下し、300℃で1時間加熱撹拌して、冷却することにより表面処理した。
得られた疎水性酸化チタン微粉末の疎水率は90%であった。
[Example 7]
BET specific surface area is 100m by thermally hydrolyzing gaseous titanium tetrachloride in a flame containing hydrogen atoms at a temperature of 1,100 ° C and a titanium concentration of 100g / m 3 in terms of titanium dioxide. A fine titanium oxide powder having a 2 / g and anatase ratio of 0.80 was produced.
100 parts by weight of this titanium oxide fine powder was put into a mixer, 10 parts by weight of hexamethyldisilazane was added dropwise with stirring in a nitrogen atmosphere, and the mixture was heated and stirred at 200 ° C. for 2 hours, and then cooled. Furthermore, with respect to 100 parts by weight of the obtained hydrophobic titanium oxide fine powder, a mixture of 10 parts by weight of dimethylpolysiloxane and 30 parts by weight of n-hexane was added dropwise with stirring in a nitrogen atmosphere, and the mixture was heated and stirred at 300 ° C. for 1 hour. And it surface-treated by cooling.
The hydrophobicity of the obtained hydrophobic titanium oxide fine powder was 90%.

この疎水性酸化チタン微粉末を10重量部採り、撹拌翼を有する容器に採った90重量部のメチルエチルケトンに撹拌しながら加え、30分間撹拌を継続して均一な分散液を得た。
この分散液の一部に超音波ホモジナイザーを10分間作用させ、その一部を採取して粒子径分布を測定したところ、粒子径分布は70nm〜0.45μmであった。
また、撹拌後の分散液と更にホモジナイズ処理した分散液をそれぞれ透明なガラス容器に移して、静置して観察したが、1週間後も粒子の沈降と溶媒の分離は見られなかった。
また、上記の表面処理で得られた疎水性酸化チタン微粉末を20重量部採り、80重量部のメチルエチルケトンに同様にして撹拌後、超音波ホモジナイザーで分散液を分散させたところ、それぞれの処理時間を長くする必要がある場合があるが、上記と同様、1週間後も粒子の沈降と溶媒の分離は見られず、安定な分散液が得られた。
10 parts by weight of this hydrophobic titanium oxide fine powder was added to 90 parts by weight of methyl ethyl ketone in a container having a stirring blade while stirring, and stirring was continued for 30 minutes to obtain a uniform dispersion.
An ultrasonic homogenizer was allowed to act on a part of the dispersion for 10 minutes, and a part of the dispersion was sampled to measure the particle size distribution. The particle size distribution was 70 nm to 0.45 μm.
The stirred dispersion and further homogenized dispersion were each transferred to a transparent glass container and allowed to stand for observation, but no sedimentation of the particles and separation of the solvent were observed after one week.
Further, 20 parts by weight of the hydrophobic titanium oxide fine powder obtained by the above surface treatment was taken, stirred in 80 parts by weight of methyl ethyl ketone in the same manner, and then the dispersion was dispersed with an ultrasonic homogenizer. However, as described above, no sedimentation of the particles and separation of the solvent were observed after one week, and a stable dispersion was obtained.

[比較例4]
実施例4で製造したBET比表面積が120m/gの酸化チタン微粉末は親水性を示している。これを表面処理することなく、10重量部採り、撹拌翼を有する容器に採った90重量部のメチルエチルケトンに撹拌しながら加え、30分間撹拌を継続して白色系の混合物を得た。
更に撹拌しながら、この一部を採取して静置したところ、一部の粒子の沈降が見られ、1時間後には溶媒の一部が上澄みとして分離し、十分な分散と安定化がなされていないことが観察された。
また、撹拌中に採取した一部の混合物に、超音波ホモジナイザーを10分間作用させ、静置して観察したところ、撹拌翼による混合と同様に、1から2時間後には粒子の沈降と溶媒の分離が見られた。
更に撹拌しているサンプルの一部を、ビーズミルの試料フォルダに投入し、混合液を循環しながら粉砕と分散を試みたが、1時間ミル処理した後のサンプルでも、ミルから取り出して静置すると、時間の経過とともに、1から2時間後には粒子の沈降と非極性溶媒の分離が明らかになった。
非極性有機溶媒として、酢酸エチル又はトルエンを用いた場合も同様の結果が得られた。
[Comparative Example 4]
The titanium oxide fine powder having a BET specific surface area of 120 m 2 / g produced in Example 4 is hydrophilic. Without surface treatment, 10 parts by weight was taken and added to 90 parts by weight of methyl ethyl ketone taken in a vessel having a stirring blade, and stirring was continued for 30 minutes to obtain a white mixture.
When a part of the sample was collected and allowed to stand while stirring, some particles settled, and after 1 hour, a part of the solvent separated as a supernatant, and was sufficiently dispersed and stabilized. Not observed.
In addition, an ultrasonic homogenizer was allowed to act on a part of the mixture collected during stirring for 10 minutes and allowed to stand to observe. As in the case of mixing with a stirring blade, the particles settled and the solvent was removed after 1 to 2 hours. Separation was seen.
Furthermore, a part of the stirred sample was put into the sample folder of the bead mill, and pulverization and dispersion were tried while circulating the mixed solution. Even after the sample was milled for 1 hour, it was removed from the mill and left to stand. Over time, after 1 to 2 hours, sedimentation of particles and separation of nonpolar solvents became apparent.
Similar results were obtained when ethyl acetate or toluene was used as the nonpolar organic solvent.

[比較例5]
実施例5で製造したBET比表面積が40m/gの酸化チタン微粉末は親水性を示している。これを表面処理することなく、10重量部採り、撹拌翼を有する容器に採った90重量部の非極性溶媒であるメチルエチルケトンに撹拌しながら加え、30分間撹拌を継続して白色系の混合物を得た。
更に撹拌しながら、この一部を採取して静置したところ、一部の粒子の沈降が見られ、1時間後には溶媒の一部が上澄みとして分離し、十分な分散と安定化がなされていないことが観察された。
また、撹拌中に採取した一部の混合物に、超音波ホモジナイザーを10分間作用させ、静置して観察したところ、撹拌翼による混合と同様に、1から2時間後には粒子の沈降と溶媒の分離が見られた。
更に撹拌しているサンプルの一部を、ビーズミルの試料フォルダに投入し、混合液を循環しながら粉砕と分散を試みたが、1時間ミル処理した後のサンプルでも、ミルから取り出して静置すると、時間の経過とともに、1から2時間後には粒子の沈降と非極性溶媒の分離が明らかになった。
非極性有機溶媒として、酢酸エチル又はトルエンを用いた場合も同様の結果が得られた。
[Comparative Example 5]
The titanium oxide fine powder having a BET specific surface area of 40 m 2 / g produced in Example 5 is hydrophilic. Without surface treatment, 10 parts by weight were taken and added to 90 parts by weight of methyl ethyl ketone, which is a nonpolar solvent, taken in a container having a stirring blade, and stirring was continued for 30 minutes to obtain a white mixture. It was.
When a part of the sample was collected and allowed to stand while stirring, some particles settled, and after 1 hour, a part of the solvent separated as a supernatant, and was sufficiently dispersed and stabilized. Not observed.
In addition, an ultrasonic homogenizer was allowed to act on a part of the mixture collected during stirring for 10 minutes and allowed to stand to observe. As in the case of mixing with a stirring blade, the particles settled and the solvent was removed after 1 to 2 hours. Separation was seen.
Furthermore, a part of the stirred sample was put into the sample folder of the bead mill, and pulverization and dispersion were tried while circulating the mixed solution. Even after the sample was milled for 1 hour, it was removed from the mill and left to stand. Over time, after 1 to 2 hours, sedimentation of particles and separation of nonpolar solvents became apparent.
Similar results were obtained when ethyl acetate or toluene was used as the nonpolar organic solvent.

[比較例6]
実施例6で製造したBET比表面積が150m/gの酸化チタン微粉末は親水性を示している。これを表面処理することなく、10重量部採り、撹拌翼を有する容器に採った90重量部のメチルエチルケトンに撹拌しながら加え、30分間撹拌を継続して白色系の混合物を得た。
更に撹拌しながら、この一部を採取して静置したところ、一部の粒子の沈降が見られ、1時間後には溶媒の一部が上澄みとして分離し、十分な分散と安定化がなされていないことが観察された。
また、撹拌中に採取した一部の混合物に、超音波ホモジナイザーを10分間作用させ、静置して観察したところ、撹拌翼による混合と同様に、1から2時間後には粒子の沈降と溶媒の分離が見られた。
更に撹拌しているサンプルの一部を、ビーズミルの試料フォルダに投入し、混合液を循環しながら粉砕と分散を試みたが、1時間ミル処理した後のサンプルでも、ミルから取り出して静置すると、時間の経過とともに、1から2時間後には粒子の沈降と非極性溶媒の分離が明らかになった。
非極性有機溶媒として、酢酸エチル又はトルエンを用いた場合も同様の結果が得られた。
[Comparative Example 6]
The titanium oxide fine powder having a BET specific surface area of 150 m 2 / g produced in Example 6 is hydrophilic. Without surface treatment, 10 parts by weight was taken and added to 90 parts by weight of methyl ethyl ketone taken in a vessel having a stirring blade, and stirring was continued for 30 minutes to obtain a white mixture.
When a part of the sample was collected and allowed to stand while stirring, some particles settled, and after 1 hour, a part of the solvent separated as a supernatant, and was sufficiently dispersed and stabilized. Not observed.
In addition, an ultrasonic homogenizer was allowed to act on a part of the mixture collected during stirring for 10 minutes and allowed to stand to observe. As in the case of mixing with a stirring blade, the particles settled and the solvent was removed after 1 to 2 hours. Separation was seen.
Furthermore, a part of the stirred sample was put into the sample folder of the bead mill, and pulverization and dispersion were tried while circulating the mixed solution. Even after the sample was milled for 1 hour, it was removed from the mill and left to stand. Over time, after 1 to 2 hours, sedimentation of particles and separation of nonpolar solvents became apparent.
Similar results were obtained when ethyl acetate or toluene was used as the nonpolar organic solvent.

[比較例7]
実施例7で製造したBET比表面積が100m/gの酸化チタン微粉末は親水性を示している。これを表面処理することなく、10重量部採り、撹拌翼を有する容器に採った90重量部のメチルエチルケトンに撹拌しながら加え、30分間撹拌を継続して白色系の混合物を得た。
更に撹拌しながら、この一部を採取して静置したところ、一部の粒子の沈降が見られ、1時間後には溶媒の一部が上澄みとして分離し、十分な分散と安定化がなされていないことが観察された。
また、撹拌中に採取した一部の混合物に、超音波ホモジナイザーを10分間作用させ、静置して観察したところ、撹拌翼による混合と同様に、1から2時間後には粒子の沈降と溶媒の分離が見られた。
更に撹拌しているサンプルの一部を、ビーズミルの試料フォルダに投入し、混合液を循環しながら粉砕と分散を試みたが、1時間ミル処理した後のサンプルでも、ミルから取り出して静置すると、時間の経過とともに、1から2時間後には粒子の沈降と非極性溶媒の分離が明らかになった。
非極性有機溶媒として、酢酸エチル又はトルエンを用いた場合も同様の結果が得られた。
[Comparative Example 7]
The titanium oxide fine powder having a BET specific surface area of 100 m 2 / g produced in Example 7 is hydrophilic. Without surface treatment, 10 parts by weight was taken and added to 90 parts by weight of methyl ethyl ketone taken in a vessel having a stirring blade, and stirring was continued for 30 minutes to obtain a white mixture.
When a part of the sample was collected and allowed to stand while stirring, some particles settled, and after 1 hour, a part of the solvent separated as a supernatant, and was sufficiently dispersed and stabilized. Not observed.
In addition, an ultrasonic homogenizer was allowed to act on a part of the mixture collected during stirring for 10 minutes and allowed to stand to observe. As in the case of mixing with a stirring blade, the particles settled and the solvent was removed after 1 to 2 hours. Separation was seen.
Furthermore, a part of the stirred sample was put into the sample folder of the bead mill, and pulverization and dispersion were tried while circulating the mixed solution. Even after the sample was milled for 1 hour, it was removed from the mill and left to stand. Over time, after 1 to 2 hours, sedimentation of particles and separation of nonpolar solvents became apparent.
Similar results were obtained when ethyl acetate or toluene was used as the nonpolar organic solvent.

上記の比較例4〜7の結果からも、親水性の酸化チタンは、非極性溶媒に安定して分散されにくいことが確認された。   Also from the results of the above Comparative Examples 4 to 7, it was confirmed that hydrophilic titanium oxide is difficult to be stably dispersed in a nonpolar solvent.

[参考例1]
実施例1,2,4で得られた分散液中に含まれるジルコニウム成分の分析を行った。
ジルコニウム成分の漏洩を防止するために、それぞれの分散液の溶媒を蒸発させ、サンプルを乾燥固化させたものを700℃で熱処理して固化させた試料を、SEM−EDXで観察すると共に、それぞれランダムに6点を選んで、その成分分析を行った。
その結果、ジルコニウム成分の量は検出限界以下の0.00%であり、実質的に検出されなかった。
即ち、酸化チタンを非極性有機溶媒に分散させる際に、粉砕媒体として一般的に用いられている安定化酸化ジルコニウムなどのボールあるいはビーズを用いるとジルコニウムによるコンタミが懸念されるが、本発明では、短時間の混合・分散時間で良好な分散結果が得られるため、分散液へのジルコニウムによるコンタミが、問題となる混入量ではないことが確認された。
[Reference Example 1]
The zirconium component contained in the dispersions obtained in Examples 1, 2, and 4 was analyzed.
In order to prevent leakage of the zirconium component, the solvent of each dispersion liquid was evaporated, and the sample obtained by drying and solidifying the sample was heat-treated at 700 ° C. and solidified by observing with SEM-EDX, and each random Six points were selected for the component analysis.
As a result, the amount of the zirconium component was 0.00% below the detection limit and was not substantially detected.
That is, when dispersing titanium oxide in a nonpolar organic solvent, if balls or beads such as stabilized zirconium oxide generally used as a grinding medium are used, there is a concern about contamination by zirconium. Since a good dispersion result was obtained with a short mixing / dispersion time, it was confirmed that the contamination by the zirconium in the dispersion was not a problematic mixing amount.

Claims (9)

揮発性のチタン化合物を、水素を含む気相火炎中で加水分解することによって得られた酸化チタン微粉末の表面を、シランカップリング剤及び/又はシリコーン化合物で乾式にて表面処理してなる疎水性酸化チタン微粉末を、非極性有機溶媒に分散させてなる酸化チタンの非極性有機溶媒分散液。   Hydrophobic formed by dry-treating the surface of titanium oxide fine powder obtained by hydrolyzing a volatile titanium compound in a gas-phase flame containing hydrogen with a silane coupling agent and / or a silicone compound. A nonpolar organic solvent dispersion of titanium oxide obtained by dispersing a fine titanium oxide fine powder in a nonpolar organic solvent. 請求項1において、前記疎水性酸化チタン微粉末を構成する酸化チタンが、BET比表面積が40〜150m/gで、アナターゼ及びルチルの結晶構造を持ち、アナターゼの比率が0.3〜0.98の酸化チタンであることを特徴とする酸化チタンの非極性有機溶媒分散液。 In Claim 1, the titanium oxide which comprises the said hydrophobic titanium oxide fine powder has a BET specific surface area of 40-150 m < 2 > / g, has a crystal structure of anatase and a rutile, and the ratio of anatase is 0.3-0. A nonpolar organic solvent dispersion of titanium oxide, which is 98 titanium oxide. 請求項1又は2において、前記非極性有機溶媒が、メチルエチルケトン、酢酸エチル、ベンゼン、ジエチルエーテル、及びトルエンよりなる群から選ばれる1種又は2種以上であることを特徴とする酸化チタンの非極性有機溶媒分散液。   The nonpolar organic titanium according to claim 1 or 2, wherein the nonpolar organic solvent is one or more selected from the group consisting of methyl ethyl ketone, ethyl acetate, benzene, diethyl ether, and toluene. Organic solvent dispersion. 請求項1ないし3のいずれか1項において、前記シランカップリング剤が、下記一般式(I)又は(II)で表されるものであることを特徴とする酸化チタンの非極性有機溶媒分散液。
4−nSiR …(I)
(上記(I)式中、Xは水酸基、アルコキシ基、又はハロゲン原子を示し、Rは炭素数1〜18のアルキル基を示し、nは0〜3の整数を示す。)
R'SiNHSiR' …(II)
(上記(II)式中、R'は炭素数1〜3のアルキル基を示し、一部のR'は水素原子又はビニル基等の他の置換基であってもよい。)
4. The nonpolar organic solvent dispersion of titanium oxide according to claim 1, wherein the silane coupling agent is represented by the following general formula (I) or (II): .
X 4-n SiR n (I)
(In the formula (I), X represents a hydroxyl group, an alkoxy group, or a halogen atom, R represents an alkyl group having 1 to 18 carbon atoms, and n represents an integer of 0 to 3).
R ′ 3 SiNHSiR ′ 3 (II)
(In the formula (II), R ′ represents an alkyl group having 1 to 3 carbon atoms, and some R ′ may be other substituents such as a hydrogen atom or a vinyl group.)
請求項1ないし3のいずれか1項において、前記シリコーン化合物が、下記一般式(III)で表されるものであることを特徴とする酸化チタンの非極性有機溶媒分散液。
Figure 2013170110
(上記(III)式中、Rはメチル基又はエチル基を示し、Rは水素原子、メチル基、エチル基、あるいはビニル基、フェニル基又はアミノ基で置換されてもよいアルキル基を示し、X'は水酸基、アルコキシ基、ハロゲン原子又はアルキル基を示し、mは1〜500の整数を示す。)
The nonpolar organic solvent dispersion of titanium oxide according to any one of claims 1 to 3, wherein the silicone compound is represented by the following general formula (III).
Figure 2013170110
(In the formula (III), R a represents a methyl group or an ethyl group, and R b represents a hydrogen atom, a methyl group, an ethyl group, or an alkyl group which may be substituted with a vinyl group, a phenyl group or an amino group. X ′ represents a hydroxyl group, an alkoxy group, a halogen atom or an alkyl group, and m represents an integer of 1 to 500.)
請求項1ないし5のいずれか1項において、前記疎水性酸化チタン微粉末は、透過率法によって測定された疎水率が70%以上の値を示すことを特徴とする酸化チタンの非極性有機溶媒分散液。   The non-polar organic solvent for titanium oxide according to any one of claims 1 to 5, wherein the hydrophobic titanium oxide fine powder exhibits a value of a hydrophobicity measured by a transmittance method of 70% or more. Dispersion. 請求項1ないし6のいずれか1項において、前記疎水性酸化チタン微粉末は、前記酸化チタン微粒子と前記シランカップリング剤及び/又はシリコーン化合物とを混合して加熱処理することにより得られることを特徴とする酸化チタンの非極性有機溶媒分散液。   7. The hydrophobic titanium oxide fine powder according to claim 1, wherein the hydrophobic titanium oxide fine powder is obtained by mixing and heat-treating the titanium oxide fine particles and the silane coupling agent and / or silicone compound. A non-polar organic solvent dispersion of titanium oxide characterized. 請求項1ないし7のいずれか1項において、前記疎水性酸化チタン微粉末を、撹拌翼、ディゾルバー、ボールミル、ニーダー、サンドミル、ロール混合機、超音波ホモジナイザー、ホモミキサー、タワーミル、湿式ジェットミル及びビーズミルのいずれか1種又は2種以上の機械的・物理的な手段で前記非極性有機溶媒に分散させてなることを特徴とする酸化チタンの非極性有機溶媒分散液。   8. The hydrophobic titanium oxide fine powder according to claim 1, wherein the hydrophobic titanium oxide fine powder is mixed with a stirring blade, a dissolver, a ball mill, a kneader, a sand mill, a roll mixer, an ultrasonic homogenizer, a homomixer, a tower mill, a wet jet mill, and a bead mill. A nonpolar organic solvent dispersion of titanium oxide, wherein the dispersion is dispersed in the nonpolar organic solvent by one or more mechanical / physical means. 請求項1ないし8のいずれか1項において、前記疎水性酸化チタン微粉末の濃度が0.1〜40重量%であることを特徴とする酸化チタンの非極性有機溶媒分散液。   The nonpolar organic solvent dispersion of titanium oxide according to any one of claims 1 to 8, wherein the concentration of the fine powder of hydrophobic titanium oxide is 0.1 to 40% by weight.
JP2012036430A 2012-02-22 2012-02-22 Method for producing a nonpolar organic solvent dispersion of titanium oxide Expired - Fee Related JP6064338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012036430A JP6064338B2 (en) 2012-02-22 2012-02-22 Method for producing a nonpolar organic solvent dispersion of titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012036430A JP6064338B2 (en) 2012-02-22 2012-02-22 Method for producing a nonpolar organic solvent dispersion of titanium oxide

Publications (2)

Publication Number Publication Date
JP2013170110A true JP2013170110A (en) 2013-09-02
JP6064338B2 JP6064338B2 (en) 2017-01-25

Family

ID=49264286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012036430A Expired - Fee Related JP6064338B2 (en) 2012-02-22 2012-02-22 Method for producing a nonpolar organic solvent dispersion of titanium oxide

Country Status (1)

Country Link
JP (1) JP6064338B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474288A (en) * 2019-02-25 2021-10-01 日产化学株式会社 Inorganic oxide particles, inorganic oxide particle dispersion liquid, method for producing inorganic oxide particle dispersion liquid, and method for producing surface modifier
CN115872442A (en) * 2023-03-08 2023-03-31 国能龙源环保有限公司 Method for preparing titanium dioxide by using waste denitration catalyst

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137305A (en) * 1983-01-27 1984-08-07 Nippon Aerojiru Kk Surface-modified fine metallic oxide powder
JPH02307806A (en) * 1989-02-10 1990-12-21 Idemitsu Kosan Co Ltd Production of surface-reformed metal oxide superfine grain
JPH05279041A (en) * 1992-01-31 1993-10-26 Degussa Ag Surface-modified pyrogenically produced titanium dioxide, production of compound, and toner additive made of compound
JPH06340423A (en) * 1993-04-08 1994-12-13 Tokuyama Soda Co Ltd Production of titanium oxide
JPH08217654A (en) * 1995-02-08 1996-08-27 Nippon Aerojiru Kk Ultraviolet-shelding cosmetic using fine powder of titanium dioxide
JPH11278845A (en) * 1998-03-31 1999-10-12 Nippon Aerosil Kk Hydrophobic titanium oxide fine powder and its production
JP2003252625A (en) * 2001-12-28 2003-09-10 Shinto Paint Co Ltd Modified titania sol composition
JP2005200294A (en) * 2003-12-19 2005-07-28 Nissan Chem Ind Ltd Process of producing inorganic oxide organosol
JP2008069046A (en) * 2006-09-14 2008-03-27 Tokyo Univ Of Agriculture & Technology Method for producing nonaqueous dispersion containing titanium oxide microparticle and method for producing polymer-type nanocomposite containing titanium oxide microparticle and organic polymer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137305A (en) * 1983-01-27 1984-08-07 Nippon Aerojiru Kk Surface-modified fine metallic oxide powder
JPH02307806A (en) * 1989-02-10 1990-12-21 Idemitsu Kosan Co Ltd Production of surface-reformed metal oxide superfine grain
JPH05279041A (en) * 1992-01-31 1993-10-26 Degussa Ag Surface-modified pyrogenically produced titanium dioxide, production of compound, and toner additive made of compound
JPH06340423A (en) * 1993-04-08 1994-12-13 Tokuyama Soda Co Ltd Production of titanium oxide
JPH08217654A (en) * 1995-02-08 1996-08-27 Nippon Aerojiru Kk Ultraviolet-shelding cosmetic using fine powder of titanium dioxide
JPH11278845A (en) * 1998-03-31 1999-10-12 Nippon Aerosil Kk Hydrophobic titanium oxide fine powder and its production
JP2003252625A (en) * 2001-12-28 2003-09-10 Shinto Paint Co Ltd Modified titania sol composition
JP2005200294A (en) * 2003-12-19 2005-07-28 Nissan Chem Ind Ltd Process of producing inorganic oxide organosol
JP2008069046A (en) * 2006-09-14 2008-03-27 Tokyo Univ Of Agriculture & Technology Method for producing nonaqueous dispersion containing titanium oxide microparticle and method for producing polymer-type nanocomposite containing titanium oxide microparticle and organic polymer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6015036157; Silane Coupling Agents , 201005, Shin-Etsu *
JPN6015040908; 神谷秀博,外: 'ナノ粒子の液中凝集・分散挙動の制御' 粉体工学会誌 Vol.46, No.8, 20090810, p.605-614 *
JPN6016018158; IIJIMA, M. et al: 'Effect of additive ratio of mixed silane alkoxides on reactivity with TiO2 nanoparticle surface and' Advanced Powder Technology Vol.22, No.5, 20101008, p.663-668 *
JPN6016018166; 新村出: 広辞苑 第四版 , 19911115, p.576,1150, 岩波書店 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474288A (en) * 2019-02-25 2021-10-01 日产化学株式会社 Inorganic oxide particles, inorganic oxide particle dispersion liquid, method for producing inorganic oxide particle dispersion liquid, and method for producing surface modifier
CN113474288B (en) * 2019-02-25 2023-11-17 日产化学株式会社 Inorganic oxide particles, inorganic oxide particle dispersion, method for producing same, and method for producing surface modifier
CN115872442A (en) * 2023-03-08 2023-03-31 国能龙源环保有限公司 Method for preparing titanium dioxide by using waste denitration catalyst

Also Published As

Publication number Publication date
JP6064338B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
US9617657B2 (en) Synthesis, capping and dispersion of nanocrystals
EP3190083B1 (en) Synthesis, capping and dispersion of nanocrystals
WO2008044685A1 (en) Core-shell-type cerium oxide microparticle, dispersion solution comprising the microparticle, and process for production of the microparticle or dispersion solution
KR20110110221A (en) Composite particles, process for producig the composite particles, hollow particles, process for producing the hollow particles, and use of the hollow particles
WO2008041729A1 (en) Process for producing dispersion of fine metal compound particles and the dispersion
JP2007217258A (en) Carbon nanoparticle dispersion and its production method, and core/shell type carbon nanoparticle and its production method
JP5287038B2 (en) Silica-coated gold nanorod and method for producing the same
EP3319907B1 (en) Sio2 containing dispersion with high salt stability
TW201607892A (en) Method for producing surface-modified silica nanoparticle, and surface-modified silica nanoparticle
JP2007051188A (en) Low smell alkylsilylated powder, method for producing the same, silicone oil slurry dispersed with the low smell alkylsilylated powder, and cosmetic mixed with the low smell alkylsilylated powder or the silicone oil slurry
US11046834B2 (en) Surface-modified nanodiamond, surface-modified nanodiamond dispersion liquid, and resin dispersion
JP2004315300A (en) Silica fine particle, silica colloid in which silica fine particles are dispersed and method of manufacturing the same
WO2020179559A1 (en) Hydrophobic silica powder and toner resin particle
JPWO2021215285A5 (en)
Fabjan et al. Surface protection of an organic pigment based on a modification using a mixed-micelle system
JP6064338B2 (en) Method for producing a nonpolar organic solvent dispersion of titanium oxide
JP5392696B2 (en) Core-shell type cobalt oxide fine particles or dispersion containing the same, production method and use thereof
JP4803630B2 (en) Method for producing high purity hydrophobic organic solvent-dispersed silica sol
TWI673235B (en) Monoclinic zirconia-based nano particle and preparation method thereof
JPH054325B2 (en)
JP2008169233A (en) Method for producing nano-particle dispersion, nano-particle dispersion, method for producing nano-composite material, nano-composite material and transparent container or transparent film
WO2009107674A1 (en) Ultrafine zinc oxide particle dispersion, method for manufacturing the same, and zinc oxide membrane
JP7007982B2 (en) Colloidal silica
JP7061000B2 (en) Method for producing silica particles or a dispersion thereof
JP4184683B2 (en) Metal oxide spherical particles and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R150 Certificate of patent or registration of utility model

Ref document number: 6064338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees