WO2011090010A1 - Thin metal film transfer material and production method of same - Google Patents

Thin metal film transfer material and production method of same Download PDF

Info

Publication number
WO2011090010A1
WO2011090010A1 PCT/JP2011/050699 JP2011050699W WO2011090010A1 WO 2011090010 A1 WO2011090010 A1 WO 2011090010A1 JP 2011050699 W JP2011050699 W JP 2011050699W WO 2011090010 A1 WO2011090010 A1 WO 2011090010A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
metal thin
layer
transfer material
insulating
Prior art date
Application number
PCT/JP2011/050699
Other languages
French (fr)
Japanese (ja)
Inventor
飯島俊和
田中範夫
堤田裕二
中野成
Original Assignee
東レフィルム加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レフィルム加工株式会社 filed Critical 東レフィルム加工株式会社
Priority to KR1020127015435A priority Critical patent/KR101780661B1/en
Priority to JP2011502958A priority patent/JP5692602B2/en
Priority to CN201180005987.0A priority patent/CN103003063B/en
Publication of WO2011090010A1 publication Critical patent/WO2011090010A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate

Definitions

  • the present invention significantly improves the corrosion resistance of the corroded island-shaped metal thin film, has an insulating property, can suppress electrostatic breakdown, and can impart radio wave permeability, and has excellent metallic luster design.
  • the present invention relates to a metal thin film transfer material and a method for producing the same.
  • Metal thin film transfer materials using island-shaped structure metal are beautiful for home appliances such as TV, audio and video, information communication equipment such as mobile phones and personal information terminals, and information communication equipment in automobiles. In order to give a feeling, it is used to impart a metallic luster to the surface.
  • Patent Documents 1 and 2 describe a method of forming a metal thin film by a vacuum deposition method on a transfer material and transferring it to a base material that requires a beautiful feeling.
  • island-shaped metal thin films such as tin and indium.
  • Patent Document 3 defines the relationship between the deposition amount of vapor deposition tin and the light transmittance, and increases the coating rate with respect to the adhesion amount of the metal thin film transfer material excellent in appearance uniformity, that is, the tin deposition amount, and lower.
  • a technique for achieving light transmittance is disclosed.
  • the metal thin film on the island-like structure is easily damaged by hydroxylation, oxidation, etc., and although the radio wave transparency and insulation can be obtained by these disclosed techniques, the corrosion resistance is insufficient.
  • Patent Document 4 discloses a base film, a release resin layer, a protective resin layer, an insulating metal thin film layer, a corrosion-resistant resin layer made of melamine resin, and an insulating transfer film having excellent corrosion resistance made of an adhesive layer. However, the corrosion resistance was still insufficient.
  • Patent Document 5 discloses a half-tone metallic glossy transfer film provided with a protective layer and improved corrosion resistance. However, in recent years, further improvement in corrosion resistance has been demanded, and although the corrosion resistance of the half-tone metallic glossy transfer film described in Patent Document 4 has been improved, there is a problem in terms of product safety in that zinc sulfide is used. there were.
  • Japanese Patent Publication No. 3-25353 Japanese Patent Laid-Open No. 10-324093 JP 2008-105179 A JP 2007-326300 A JP 2008-207337 A
  • An object of the present invention is to solve the above problems, that is, to provide a metal thin film transfer material having excellent corrosion resistance.
  • the present invention has the following configuration.
  • the present invention is a metal thin film transfer material in which a release resin layer, a protective resin layer, an insulating metal thin film layer, and an adhesive layer are laminated in this order on at least one surface of a transparent substrate film, Metal thin film transfer satisfying the relationship Tr ⁇ 87.522 ⁇ Exp ( ⁇ 0.0422 ⁇ X) when the thickness X of the thin film layer is 5 nm to 100 nm and the total light transmittance is Tr (%) Material.
  • the present invention also provides a metal thin film transfer material in which a release resin layer, a protective resin layer, a metal thin film layer, an insulating metal thin film layer, and an adhesive layer are laminated in this order on at least one surface of a transparent substrate film.
  • coating weight is 15ng / cm 2 ⁇ 700ng / cm 2 of the metal thin film layer
  • the thickness X of the insulating metallic thin film layer is 5 nm ⁇ 100 nm
  • the total light transmittance when formed into a Tr (%) This is a metal thin film transfer material satisfying the relationship Tr ⁇ 87.522 ⁇ Exp ( ⁇ 0.0422 ⁇ X).
  • the surface of the base material on which the release resin layer and the protective resin layer are laminated on at least one surface of the transparent base film is subjected to surface treatment by plasma treatment under reduced pressure, and an insulating metal is formed thereon.
  • a method for producing a metal thin film transfer material is proposed, which comprises forming a thin film and laminating an adhesive resin layer on the insulating metal thin film.
  • the metal thin film transfer material of the present invention has a high total light transmittance, the insulating metal thin film layer is easily corroded over time due to the high height of individual islands in the island-like structure of the insulating metal thin film layer. It has excellent corrosion resistance.
  • a corrosion resistance test (temperature of 85 ° C., humidity of 85 °), which is stricter than a corrosion resistance test (a test that is allowed to stand for 96 hours under conditions of a temperature of 60 ° C. and a humidity of 95% RH), which is an evaluation standard for the corrosion resistance of mobile phones and audio products.
  • a corrosion resistance test (temperature of 85 ° C., humidity of 85 °)
  • a corrosion resistance test (a test that is allowed to stand for 96 hours under conditions of a temperature of 60 ° C. and a humidity of 95% RH)
  • the change rate of the total light transmittance is 1 to 2.5 times, and the insulating metal thin film layer does not disappear due to corrosion. It can be used for a very wide range of applications including required mobile phones and audio products.
  • the metal thin film transfer material of the present invention is formed by providing a release resin layer and a protective resin layer in this order on a transparent base film, and further forming an insulating metal thin film layer and an adhesive layer in this order.
  • a known plastic film conventionally used for a transfer film can be used as the transparent substrate film.
  • the plastic film include a polyester film, an acrylic film, a polyimide film, a polyamideimide film, a fluorine film, a polyethylene film, and a polypropylene film.
  • a polyester film is preferable in terms of heat resistance and moisture resistance.
  • the polyester film include a biaxially stretched polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film. Among these, a biaxially stretched polyethylene terephthalate film is more preferable in terms of heat resistance and film price.
  • the thickness of the transparent substrate film is preferably 10 ⁇ m to 100 ⁇ m, and particularly preferably in the range of 12 ⁇ m to 50 ⁇ m from the viewpoint of handleability when a metal thin film transfer material is used.
  • the release resin layer side of the transparent substrate film may be subjected to uneven processing such as hairline processing, embossing processing, mat processing, etc.
  • uneven processing such as hairline processing, embossing processing, mat processing, etc.
  • a release resin layer is provided on one side of the transparent substrate film.
  • the release resin layer phospholipid (lecithin), cellulose acetate, wax, fatty acid, fatty acid amide, fatty acid ester, rosin, acrylic resin, silicone, fluororesin, and the like are appropriately used depending on the degree of ease of peeling. Selected and used.
  • the release resin layer has a thickness of 0.01 ⁇ m to 2 ⁇ m, and more preferably has a thickness of 0.1 ⁇ m to 1 ⁇ m.
  • the release resin layer can be formed by a conventionally known method such as a gravure coating method, a reverse coating method, or a die coating method.
  • the metal thin film transfer material of the present invention has a protective resin layer to protect the insulating metal thin film layer after transfer.
  • a resin for the protective resin layer a thermosetting resin, a thermoplastic resin, or a photocurable resin by ultraviolet rays or the like having good adhesion is used for both the release resin layer and the insulating metal thin film layer.
  • the protective resin layer can be appropriately selected depending on the kind of vapor deposition metal and various performances required for the application (mechanical characteristics, heat resistance, solvent resistance, optical characteristics, weather resistance, etc.).
  • One type or two or more types selected from resins, melamine resins, urethane resins, epoxy resins, alkyd resins, cellulose series, polyvinyl chloride series, and the like can be used.
  • the thickness is about 0.2 ⁇ m to 5 ⁇ m, more preferably 1 ⁇ m to 3 ⁇ m.
  • These resins have good transparency, but can be colored by adding dyes, pigments or matting agents. Further, an iris color or a hologram effect can be imparted by performing hologram processing on the surface of the protective resin layer.
  • the protective resin layer can be formed by a conventionally known method such as a gravure coating method, a reverse coating method, or a die coating method.
  • the resin forming the release resin layer and the protective resin layer of the present invention may be the same type of acrylic resin.
  • the transparent base film is peeled off after being bonded to the adherend as an adhesive film as a metal thin film transfer material, peeling due to cohesive failure occurs in the release resin layer, and the protective resin layer and It includes a layer design in which a part of the release resin is transferred to function as a protective resin layer.
  • an easy adhesion layer may be further laminated on the protective resin layer for the purpose of improving the adhesion to the insulating metal thin film layer.
  • an insulating metal thin film layer is provided on the protective resin layer.
  • the insulating metal thin film in the present invention is a metal thin film having both metallic luster and insulating properties, and means a discontinuous metal thin film having an island structure.
  • the thickness X of the insulating metal thin film layer needs to be 5 nm to 100 nm, preferably 20 nm to 80 nm, more preferably 50 nm to 80 nm. If the thickness is less than 5 nm, the light transmittance is large, and the metallic luster expected for decoration cannot be obtained. Further, when the thickness exceeds 100 nm, the insulating property of the vapor deposition film required in the present invention cannot be ensured, so that electrostatic breakdown cannot be suppressed and further sufficient radio wave permeability cannot be ensured.
  • the total light transmittance Tr (%) of the insulating metal thin film layer is preferably in the range of 5% to 50%, and the relationship with the thickness X (nm) of the insulating metal thin film layer is expressed by the formula 1 It is necessary to satisfy the above, and more preferably, the formula 2 is satisfied.
  • Formula 2 Tr ⁇ 120.52 ⁇ Exp ( ⁇ 0.0418 ⁇ X) The meaning of these formulas is as follows.
  • the right side shows that the value decreases exponentially as X increases as a function of the thickness X of the insulating metal thin film, but that the total light transmittance Tr is equal to or greater than the value of this X function. Show. In other words, it shows that the insulating metal thin film has a thickness equal to or greater than the thickness X with respect to a certain transmittance Tr when these equations are equal.
  • the thickness of the insulating metal thin film layer is increased, the distance between the islands is reduced. Therefore, the amount of metal must be reduced to ensure insulation, and corrosion due to oxidation and hydroxylation is required. It was easy to be affected.
  • the thickness of the insulating metal thin film layer is increased, the distance between the islands can be maintained to some extent, so that insulation can be ensured while maintaining Tr at a certain value or more. Therefore, it is not necessary to reduce the amount of metal, and it is difficult to be affected by corrosion due to oxidation or the like. If Expression 2 is satisfied, high light transmittance can be achieved while more insulating metal is adhered, and higher corrosion resistance can be ensured.
  • the size and spacing of the islands of the insulating metal thin film layer vary depending on the type of metal used, the design properties, the degree of insulation, etc., but the island size is preferably 1 nm to 2 ⁇ m from the viewpoint of design properties.
  • the distance between the islands is preferably 2 nm to 500 nm from the viewpoint of insulation.
  • the total light transmittance of the insulating metal thin film layer is preferably 5% to 50%.
  • the corrosion resistance and the design are improved. From the viewpoint of these effects, it is more preferable to set the total light transmittance to 8% to 30%.
  • the total light transmittance after exposure to a transparent substrate transferred to an environment of temperature 85 ° C. and humidity 85% RH for 48 hours is the total light transmittance before exposure to the environment. It is preferably 1 to 2.5 times. When it is 2.5 times or less, the appearance change with time of the metallic luster is small, and it becomes more practical.
  • the thickness of the insulating metal thin film layer may be appropriately determined within the above range depending on the type of metal used and the design properties.
  • the metal to be used is selected from the group consisting of tin, indium, zinc, bismuth, cobalt, germanium, or alloys thereof. More preferably, the insulating metal thin film layer is one or more metal thin films selected from the group consisting of at least tin, indium and zinc, and tin and indium are more preferable from the viewpoint of insulation.
  • the thickness of the insulating metal layer when tin is used is preferably 20 nm to 80 nm.
  • the insulating metal thin film layer can be formed by vacuum deposition, sputtering deposition, EB deposition or the like of the above metal.
  • a method of controlling the thickness X of the insulating metal thin film layer and the total light transmittance Tr so as to satisfy Equation 1 or Equation 2 for example, by controlling the evaporation amount of the induction heating method in the vapor deposition method and the film speed, the sputtering method Then, it can be controlled by discharge gas pressure, discharge power and film speed.
  • the present invention as a method for controlling the thickness X of the insulating metal thin film layer and the total light transmittance Tr so as to satisfy Formula 1 or Formula 2, at least one surface of the transparent base film has a release resin layer and a protective layer. It has been found that this can be achieved by laminating a resin layer, subjecting the surface of the protective resin layer to surface treatment by plasma treatment under reduced pressure, and forming an insulating metal thin film layer thereon.
  • the thickness X of the insulating metal thin film layer and the total light transmittance Tr can be in a relationship satisfying Equation 1 or Equation 2 even by surface treatment using a so-called nucleation method in which a small amount of metal is attached to the substrate surface by sputtering. I found. Also in this case, since the protective resin layer is exposed to plasma, it can be defined as a kind of plasma treatment.
  • the discharge electrode material may not be substantially sputtered, and the discharge electrode material may be sputtered by the sputtering phenomenon, and the protective resin layer may be sputtered.
  • the metal of the discharge electrode material may adhere to the surface.
  • the present invention provides a material that satisfies the relationship of Formula 1 regardless of whether or not the discharge electrode material is deposited by the plasma treatment.
  • the present invention in this case is a metal thin film transfer material in which a release resin layer, a protective resin layer, a metal thin film layer, an insulating metal thin film layer, and an adhesive layer are laminated in this order on at least one surface of a transparent substrate film.
  • the adhesion amount of the metal thin film layer is 15ng / cm 2 ⁇ 700ng / cm 2
  • the thickness X of the insulating metallic thin film layer is 5 nm ⁇ 100 nm
  • the total light transmittance when formed into a Tr (%) is a metal thin film transfer material satisfying the relationship Tr ⁇ 87.522 ⁇ Exp ( ⁇ 0.0422 ⁇ X).
  • Amount of adhesion of the metal thin film layer is in the range of 15ng / cm 2 ⁇ 700ng / cm 2, the thickness X of the insulating metallic thin film layer formed thereafter and 5 nm ⁇ 100 nm. If it is less than 15 ng / cm 2 is insufficient corrosion resistance, when exceeding 700 ng / cm 2 radio wave transmitting and insulating property deteriorates.
  • the sputtering may be performed simultaneously with the plasma treatment under reduced pressure, or an active sputtering method may be used.
  • Discharge electrode materials in plasma treatment or target metal species used in sputtering are aluminum, silver, gold, tin, indium, lead, zinc, bismuth, titanium, chromium, iron, cobalt, nickel, silicon, germanium, or these Those selected from the group consisting of alloys can be used, but indium and tin are preferably used from the viewpoint of radio wave transmission.
  • the insulating metal layer preferably contains one or more metals selected from the group consisting of tin, indium, and zinc, and the metal thin film layer includes the metal of the insulating metal layer.
  • the same type is preferable from the viewpoint of radio wave transmission, and when different types of metals are used, the color may be different from the metallic luster of the originally expected insulating metal. preferable.
  • the adhesive layer in the metal thin film transfer material of the present invention is formed on the insulating metal thin film layer, and after transfer, the plastic substrate and the transfer layer (release resin layer, protective layer, insulating metal thin film layer, and adhesive) Layer).
  • acrylic resin acrylic resin, polyester resin, melamine resin, epoxy resin, vinyl chloride resin, vinyl acetate resin, vinyl chloride vinyl acetate copolymer resin, and the like can be used.
  • the adhesive layer can be formed by a conventionally known method such as a gravure coating method, a reverse coating method, or a die coating method.
  • a half-tone metallic glossy film can be obtained by using the metal thin film transfer material of the present invention, and a half-tone metallic glossy molded product can be obtained by hot roll transfer or in-mold molding. Is obtained by in-mold molding, in order to improve the releasability between the transparent base film and the release resin layer, and to prevent the occurrence of poor peeling and tearing of the plastic film during transfer.
  • An undercoat layer is preferably formed between the resin layer and the formation of the undercoat layer makes it possible to stably obtain a molded product having a complicated shape.
  • thermosetting resins such as melamine resins, amino alkyd resins, epoxy resins, acrylic resins, silicone resins and waxes can be used. Based resins are preferred.
  • the metal thin film transfer material of the present invention is a high temperature and high humidity test that is an evaluation standard for the corrosion resistance of mobile phones and audio products (test that is left for 48 hours under conditions of a temperature of 85 ° C. and a humidity of 85% RH). Since the total light transmittance after the test is 1 to 2.5 times the total light transmittance before the test, the insulating metal thin film layer does not disappear due to the corrosion. It can be used for a very wide range of applications including required mobile phones and audio products.
  • Metal adhesion amount of metal thin film layer A sample film of 5 cm ⁇ 1 cm is put in a solution in which hydrochloric acid and nitric acid are mixed at a ratio of 1: 4 and left for 24 hours or more.
  • Radio wave permeability test A metal thin film transfer film cut to 15 cm ⁇ 15 cm is set in a KEC method shield effect measuring apparatus MAM101 manufactured by Microwave Factory Co., Ltd., and a network analyzer Agilent E5062A manufactured by Agilent Technologies is used. The attenuation rate (dB) was measured. Radio wave permeability is manifested by the discontinuous island structure of the metal thin film, and at the same time, insulation is ensured. The smaller the value, the better the radio wave permeability and the better the insulation, and it is preferably 1 dB or less, more preferably 0.5 dB or less.
  • Examples 1 to 3 Using Toyobo's biaxially stretched polyethylene terephthalate film E5001 type 25 ⁇ m as a transparent substrate film, a cellulose acetate resin is dried on a gravure type coater as a release resin layer on one side of the film, and a thickness of 0.5 g / m Then, a toluene solution containing methacrylic acid, 2-hydroxyethyl methacrylate, n-butyl methacrylate, and melamine resin is applied to the surface of the release resin layer using the coater, dried, and resin Curing was performed to obtain a protective resin layer having a thickness of 1 ⁇ m.
  • tin As sputtering conditions, argon gas was used as the discharge gas, and a tin electrode was used as the cathode.
  • Tr tin as an insulating metal layer on the metal thin film layer surface
  • Tr was adjusted to 5%, 15%, and 46%, and Examples 1, 2, and 3 were used, respectively.
  • the insulating metal layer was provided by vapor deposition at an operating pressure of 0.04 Pa using an induction heating type vacuum vapor deposition machine (EB5207 manufactured by Nippon Vacuum).
  • a saturated polyester resin was coated and formed on the vapor-deposited surface to a thickness of 1 g / m 2 after drying using a gravure coater.
  • Table 1 The results of evaluating the performance of the metal thin film transfer film obtained here are shown in Table 1. In Examples 1, 2, and 3, all showed good radio wave permeability, and at the same time, the change (B / A) before and after the test was also good at 2.5 times or less in the corrosion resistance test.
  • the cross-sectional photograph in TEM about the structure of the island-like metal layer of the insulating metal thin film material obtained in Example 2 is shown in FIG.
  • Example 4 The thickness of the metal thin film layer was 15 ng / cm 2 as Example 4, 200 ng / cm 2 as Example 5, and 500 ng / cm 2 as Example 6.
  • tin was formed as an insulating metal thin film so that the light transmittance Tr was 15%.
  • Table 1 shows the results of producing metal thin film transfer materials and evaluating the characteristics.
  • Each of Examples 4, 5, and 6 had good radio wave permeability and insulation, and at the same time, the Tr change in the corrosion resistance test was 2.5 times or less.
  • Example 7) Copper 50 ng / cm 2 was provided as a metal thin film layer on the surface of the protective resin layer by a sputtering method.
  • Example 8 As sputtering conditions, argon gas was used as a discharge gas, and a copper electrode was used as a cathode. Then, indium was deposited as an insulating metal so that Tr was 15%.
  • Example 8 The base film roll laminated up to the protective resin layer prepared in the same manner as in Example 1 was set in an induction heating type vacuum deposition machine (EB5207 manufactured by Nippon Vacuum), and after unwinding the film, the tin electrode was placed in vacuum. Plasma treatment was performed while flowing nitrogen gas with the planar type plasma treatment apparatus used, and then tin was vapor-deposited as an insulating metal to make Tr 25%.
  • EB5207 manufactured by Nippon Vacuum
  • Example 9 In the same manner as in Example 8, plasma treatment was performed while flowing nitrogen gas in a planar plasma treatment apparatus using a copper electrode in a vacuum, and subsequently tin was deposited as an insulating metal to make Tr 23%. It was created.
  • Example 10 In the same manner as in Example 6, 700 ng / cm 2 of tin was used as Example 10. Although the radio wave permeability tended to be as large as 0.68 dB, it was within the practical range and a good one was obtained.
  • Example 11 In the same manner as in Example 7, 300 ng / cm 2 of copper as a metal thin film layer was provided on the surface of the protective resin layer by a sputtering method, and tin as an insulating metal was deposited so as to have a Tr of 18%. Although it was a good result in the corrosion resistance test, the metallic luster after peeling of the base film was slightly red-eyed due to the influence of the copper metal with the core, and the radio wave transmission exceeded 1 dB. (Example 12) In the same manner as in Example 1, the insulating metal layer was 95.8 nm.
  • Example 13 As in Example 4, when the adhesion amount of the metal thin film is 15 ng / cm 2 and the total light transmittance is 22%, the change in transmittance is 2.6 times, which is slightly insufficient for corrosion resistance. It was.
  • Example 14 Plasma treatment was performed in a vacuum vapor deposition machine in the same manner as in Examples 8 and 9, and tin was continuously deposited. The plasma treatment electrode was a glass-covered electrode, and the power source was a high frequency of 110 kHz.
  • Plasma treatment was performed at an intensity of 50 W ⁇ min / m 2 .
  • the discharge gas was oxygen, and substantially no sputtering of the discharge electrode material occurred.
  • the result was that Formula 1 was satisfied, and the radio wave permeability and corrosion resistance were excellent.
  • the evaluation results are shown in Table 1.
  • Comparative Example 1 the radio wave permeability was low and the insulation was insufficient. Further, both Comparative Examples 1 and 2 were low in corrosion resistance.
  • a TEM cross-sectional photograph of Comparative Example 2 is shown in FIG.
  • Example 3 A metal thin film layer was formed by the same sputtering method as in Example 1 with an adhesion amount of 10 ng / cm 2 , and tin was formed so that the light transmittance Tr was 14%. Other conditions were set to Comparative Example 3 in the same manner as in Example 1, the performance was evaluated, and the results are shown in Table 1. In the corrosion resistance test, the rate of change of Tr before and after the corrosion resistance test exceeded 2.5 times and was insufficient.
  • Comparative Example 4 A metal thin film layer was formed by the same sputtering method as in Example 1 with an adhesion amount of 800 ng / cm 2 , and tin was formed so that the light transmittance Tr was 15%.

Abstract

Disclosed is a thin metal film transfer material provided with an insulating metal film which exhibits sufficient electromagnetic wave transmission characteristics and insulation characteristics and exhibits high resistance to corrosion such as oxidation or hydroxylation while maintaining a good metallic appearance. The thin metal film transfer material is either a material obtained by stacking a resin release layer, a resin protective layer, an insulating thin metal film layer and an adhesive layer in that order on at least one surface of a transparent base film, in which case the thickness (X) of the insulating thin metal film layer is 5-100 nm and the total light transmittance (Tr) (%) of the material satisfies the equation Tr ≥ 87.522 x Exp (-0.0422 x X), or is a material obtained by stacking a resin release layer, a resin protective layer, a thin metal film layer, an insulating thin metal film layer and an adhesive layer in that order on at least one surface of a transparent base film, in which case the thin metal film layer has a mass of deposit per unit area of 15-700 ng/cm2, the thickness (X) of the insulating thin metal film layer is 5-100 nm and the total light transmittance (Tr) (%) of the material satisfies the equation Tr ≥ 87.522 x Exp (-0.0422 x X)

Description

金属薄膜転写材料およびその製造方法Metal thin film transfer material and method for producing the same
 本発明は、腐蝕しやすい島状構造金属薄膜の耐蝕性を大幅に向上させ、絶縁性を有することで静電破壊を抑え、電波透過性を付与することができ、金属光沢の意匠性に優れた金属薄膜転写材料およびその製造方法に関する。 The present invention significantly improves the corrosion resistance of the corroded island-shaped metal thin film, has an insulating property, can suppress electrostatic breakdown, and can impart radio wave permeability, and has excellent metallic luster design. The present invention relates to a metal thin film transfer material and a method for producing the same.
 島状構造金属を用いた金属薄膜転写材料は、テレビ、オーディオ、ビデオ等の家電製品や、携帯電話、個人情報端末などの情報通信機器、自動車内の情報通信機器などの筐体に優れた美麗感を与えるために、表面に金属光沢を付与するために用いられている。 Metal thin film transfer materials using island-shaped structure metal are beautiful for home appliances such as TV, audio and video, information communication equipment such as mobile phones and personal information terminals, and information communication equipment in automobiles. In order to give a feeling, it is used to impart a metallic luster to the surface.
 この目的のため、特許文献1および2には、真空蒸着法による金属薄膜を転写材料に形成し、美麗感を必要とする基材に転写する方法が行われており、このための金属薄膜として静電破壊を防ぎ、電波を透過する目的でスズやインジウムなどの島状構造金属薄膜を使用することが提唱されている。 For this purpose, Patent Documents 1 and 2 describe a method of forming a metal thin film by a vacuum deposition method on a transfer material and transferring it to a base material that requires a beautiful feeling. In order to prevent electrostatic breakdown and transmit radio waves, it has been proposed to use island-shaped metal thin films such as tin and indium.
 特許文献3には、蒸着スズの付着量と光線透過率の関係を規定し、外観の均一性に優れた金属薄膜転写材料、すなわち、スズの付着量に対して被覆率を上昇させ、より低い光線透過率を達成する技術が開示されている。 Patent Document 3 defines the relationship between the deposition amount of vapor deposition tin and the light transmittance, and increases the coating rate with respect to the adhesion amount of the metal thin film transfer material excellent in appearance uniformity, that is, the tin deposition amount, and lower. A technique for achieving light transmittance is disclosed.
 しかし、島状構造金属薄膜は水酸化、酸化等により、表面の金属光沢が損なわれやすく、これらの開示技術によって電波透過性及び絶縁性は得られるものの、耐蝕性が不十分であった。 However, the metal thin film on the island-like structure is easily damaged by hydroxylation, oxidation, etc., and although the radio wave transparency and insulation can be obtained by these disclosed techniques, the corrosion resistance is insufficient.
 特許文献4には基材フィルム、離型樹脂層、保護樹脂層、絶縁性金属薄膜層、メラミン樹脂からなる耐腐食性樹脂層、接着層からなる耐腐食性に優れた絶縁性転写フィルムの開示があるが、依然耐蝕性が不十分なものであった。 Patent Document 4 discloses a base film, a release resin layer, a protective resin layer, an insulating metal thin film layer, a corrosion-resistant resin layer made of melamine resin, and an insulating transfer film having excellent corrosion resistance made of an adhesive layer. However, the corrosion resistance was still insufficient.
 特許文献5には保護層を設け耐蝕性を向上させたハーフ調金属光沢転写フィルムが開示されている。しかしながら、近年更なる耐蝕性の向上が求められており、特許文献4に記載のハーフ調金属光沢転写フィルムの耐蝕性の向上はあるが、硫化亜鉛を使用している点、製品安全上問題があった。 Patent Document 5 discloses a half-tone metallic glossy transfer film provided with a protective layer and improved corrosion resistance. However, in recent years, further improvement in corrosion resistance has been demanded, and although the corrosion resistance of the half-tone metallic glossy transfer film described in Patent Document 4 has been improved, there is a problem in terms of product safety in that zinc sulfide is used. there were.
特公平3-25353号公報Japanese Patent Publication No. 3-25353 特開平10-324093号公報Japanese Patent Laid-Open No. 10-324093 特開2008-105179号公報JP 2008-105179 A 特開2007-326300号公報JP 2007-326300 A 特開2008-207337号公報JP 2008-207337 A
 本発明の目的は、上記問題点を解決すること、すなわち優れた耐蝕性を持った金属薄膜転写材料を提供することにある。 An object of the present invention is to solve the above problems, that is, to provide a metal thin film transfer material having excellent corrosion resistance.
 上記課題を解決するため、本発明は以下の構成からなる。 In order to solve the above problems, the present invention has the following configuration.
 すなわち、本発明は、透明基材フィルムの少なくとも片面に、離型樹脂層、保護樹脂層、絶縁性金属薄膜層および接着剤層がこの順に積層された金属薄膜転写材料であって、絶縁性金属薄膜層の厚さXが5nm~100nmであり、全光線透過率をTr(%)としたときに、Tr≧87.522×Exp(-0.0422×X)の関係を満足する金属薄膜転写材料である。 That is, the present invention is a metal thin film transfer material in which a release resin layer, a protective resin layer, an insulating metal thin film layer, and an adhesive layer are laminated in this order on at least one surface of a transparent substrate film, Metal thin film transfer satisfying the relationship Tr ≧ 87.522 × Exp (−0.0422 × X) when the thickness X of the thin film layer is 5 nm to 100 nm and the total light transmittance is Tr (%) Material.
 また、本発明は、透明基材フィルムの少なくとも片面に、離型樹脂層、保護樹脂層、金属薄膜層、絶縁性金属薄膜層および接着剤層がこの順に積層された金属薄膜転写材料であって、金属薄膜層の付着量が15ng/cm~700ng/cm、絶縁性金属薄膜層の厚さXが5nm~100nmであり、全光線透過率をTr(%)としたときに、
Tr≧87.522×Exp(-0.0422×X)の関係を満足する金属薄膜転写材料である。
The present invention also provides a metal thin film transfer material in which a release resin layer, a protective resin layer, a metal thin film layer, an insulating metal thin film layer, and an adhesive layer are laminated in this order on at least one surface of a transparent substrate film. coating weight is 15ng / cm 2 ~ 700ng / cm 2 of the metal thin film layer, the thickness X of the insulating metallic thin film layer is 5 nm ~ 100 nm, the total light transmittance when formed into a Tr (%),
This is a metal thin film transfer material satisfying the relationship Tr ≧ 87.522 × Exp (−0.0422 × X).
 また、本発明として、透明基材フィルムの少なくとも片面に、離型樹脂層、保護樹脂層が積層された基材表面に、減圧下でのプラズマ処理により表面処理を行い、その上に絶縁性金属薄膜を形成し、該絶縁性金属薄膜上に接着性樹脂層を積層することを特徴とする金属薄膜転写材料の製造方法を提案する。 In the present invention, the surface of the base material on which the release resin layer and the protective resin layer are laminated on at least one surface of the transparent base film is subjected to surface treatment by plasma treatment under reduced pressure, and an insulating metal is formed thereon. A method for producing a metal thin film transfer material is proposed, which comprises forming a thin film and laminating an adhesive resin layer on the insulating metal thin film.
 本発明の金属薄膜転写材料は、全光線透過率が高い割に、絶縁性金属薄膜層の島状構造における個々の島の高さが高いことにより、経時で絶縁性金属薄膜層が容易に腐蝕することがなく、耐蝕性に優れている。 Although the metal thin film transfer material of the present invention has a high total light transmittance, the insulating metal thin film layer is easily corroded over time due to the high height of individual islands in the island-like structure of the insulating metal thin film layer. It has excellent corrosion resistance.
 特に、携帯電話やオーディオ製品の耐蝕性についての評価基準である耐蝕性試験(温度60℃、湿度95%RHの条件下で96時間放置する試験)より厳しい耐蝕性試験(温度85℃、湿度85%RHの条件下で48時間放置する試験)で、全光線透過率の変化率が1~2.5倍であり、腐蝕により絶縁性金属薄膜層が消失する事がないので、耐蝕性を強く要求される携帯電話やオーディオ製品等をはじめ、非常に広範な用途に使用可能である。 In particular, a corrosion resistance test (temperature of 85 ° C., humidity of 85 °), which is stricter than a corrosion resistance test (a test that is allowed to stand for 96 hours under conditions of a temperature of 60 ° C. and a humidity of 95% RH), which is an evaluation standard for the corrosion resistance of mobile phones and audio products. In a test that is allowed to stand for 48 hours under the condition of% RH), the change rate of the total light transmittance is 1 to 2.5 times, and the insulating metal thin film layer does not disappear due to corrosion. It can be used for a very wide range of applications including required mobile phones and audio products.
実施例2における絶縁性金属薄膜層の断面写真(透過電子顕微鏡写真 421,000倍)である。It is a cross-sectional photograph (transmission electron microscope photograph 421,000 times) of the insulating metal thin film layer in Example 2. 比較例2における絶縁性金属薄膜層の断面写真(透過電子顕微鏡写真 421,000倍)である。4 is a cross-sectional photograph (transmission electron micrograph, 421,000 times) of an insulating metal thin film layer in Comparative Example 2.
 以下に、本発明の内容について詳しく説明する。 The contents of the present invention will be described in detail below.
 本発明の金属薄膜転写材料は、透明基材フィルム上に、離型樹脂層、保護樹脂層をこの順に設け、さらに絶縁性金属薄膜層、接着剤層を順次形成してなる。 The metal thin film transfer material of the present invention is formed by providing a release resin layer and a protective resin layer in this order on a transparent base film, and further forming an insulating metal thin film layer and an adhesive layer in this order.
 本発明において、透明基材フィルムは、従来から転写フィルムに使用される公知のプラスチックフィルムを用いることができる。プラスチックフィルムとしては、ポリエステルフィルム、アクリルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、フッ素フィルム、ポリエチレンフィルム、ポリプロピレンフィルムなどが挙げられ、中でもポリエステルフィルムが耐熱性と耐湿性で好ましい。ポリエステルフィルムとしては、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムなどが挙げられ、中でも二軸延伸ポリエチレンテレフタレートフィルムが耐熱性とフィルム価格等でより好ましい。 In the present invention, a known plastic film conventionally used for a transfer film can be used as the transparent substrate film. Examples of the plastic film include a polyester film, an acrylic film, a polyimide film, a polyamideimide film, a fluorine film, a polyethylene film, and a polypropylene film. Among these, a polyester film is preferable in terms of heat resistance and moisture resistance. Examples of the polyester film include a biaxially stretched polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film. Among these, a biaxially stretched polyethylene terephthalate film is more preferable in terms of heat resistance and film price.
 上記透明基材フィルムの厚さは、10μm~100μmが好ましく、特に、12μm~50μmの範囲であることが金属薄膜転写材料とした場合に取り扱い性から好ましい。 The thickness of the transparent substrate film is preferably 10 μm to 100 μm, and particularly preferably in the range of 12 μm to 50 μm from the viewpoint of handleability when a metal thin film transfer material is used.
 また、意匠性の向上を目的に、透明基材フィルムの離型樹脂層側に、ヘアライン加工、エンボス加工、マット加工等の凹凸加工を施してもよく、このような加工を施すことで、本発明の金属薄膜転写材料を被転写体であるプラスチック基材に転写した後に得られる成形品の転写部分表面が凹凸形状となり、できあがった成形品をより意匠性に優れたものとすることができる。 In addition, for the purpose of improving design properties, the release resin layer side of the transparent substrate film may be subjected to uneven processing such as hairline processing, embossing processing, mat processing, etc. The surface of the transfer part of the molded product obtained after transferring the metal thin film transfer material of the invention to a plastic substrate, which is a transfer target, has an uneven shape, and the finished molded product can be made more excellent in design.
 本発明の金属薄膜転写材料では、透明基材フィルムの片面に離型樹脂層が設けられる。離型樹脂層としては、リン脂質(レシチン)、酢酸セルロース、ワックス、脂肪酸、脂肪酸アミド、脂肪酸エステル、ロジン、アクリル樹脂、シリコーン、フッ素樹脂等が、その剥離の容易性の程度に応じて、適宜選択されて使用される。ベースフィルムが平滑な場合は離型樹脂層は0.01μm~2μmの厚さであり、より好ましくは、0.1μm~1μmの厚さで使用される。 In the metal thin film transfer material of the present invention, a release resin layer is provided on one side of the transparent substrate film. As the release resin layer, phospholipid (lecithin), cellulose acetate, wax, fatty acid, fatty acid amide, fatty acid ester, rosin, acrylic resin, silicone, fluororesin, and the like are appropriately used depending on the degree of ease of peeling. Selected and used. When the base film is smooth, the release resin layer has a thickness of 0.01 μm to 2 μm, and more preferably has a thickness of 0.1 μm to 1 μm.
 離型樹脂層は、グラビアコート法、リバースコート法、ダイコート法等の従来公知の方法で形成できる。 The release resin layer can be formed by a conventionally known method such as a gravure coating method, a reverse coating method, or a die coating method.
 本発明の金属薄膜転写材料では、転写後の絶縁性金属薄膜層を保護するために保護樹脂層を有する。かかる保護樹脂層の樹脂としては離型樹脂層および絶縁性金属薄膜層のいずれにも接着性のよい熱硬化性樹脂、熱可塑性樹脂または紫外線などによる光硬化性の樹脂が使われる。具体的には、保護樹脂層は蒸着金属の種類、用途による必要諸性能(機械的特性、耐熱性、耐溶剤性、光学的特性、耐候性など)により適宜選択することができ、例えば、アクリル樹脂、メラミン樹脂、ウレタン樹脂、エポキシ樹脂、アルキッド樹脂、セルロース系、ポリ塩化ビニル系等から選ばれた一種または二種以上を使用することができる。一般にその厚さは0.2μm~5μm程度、より好ましくは1μm~3μmである。これらの樹脂は透明性のよいものが使用されるが、染料、顔料または艶消し剤を入れて着色することもできる。また保護樹脂層の表面にホログラム加工を施すことによって、虹彩色もしくはホログラム効果を付与することもできる。 The metal thin film transfer material of the present invention has a protective resin layer to protect the insulating metal thin film layer after transfer. As the resin for the protective resin layer, a thermosetting resin, a thermoplastic resin, or a photocurable resin by ultraviolet rays or the like having good adhesion is used for both the release resin layer and the insulating metal thin film layer. Specifically, the protective resin layer can be appropriately selected depending on the kind of vapor deposition metal and various performances required for the application (mechanical characteristics, heat resistance, solvent resistance, optical characteristics, weather resistance, etc.). One type or two or more types selected from resins, melamine resins, urethane resins, epoxy resins, alkyd resins, cellulose series, polyvinyl chloride series, and the like can be used. In general, the thickness is about 0.2 μm to 5 μm, more preferably 1 μm to 3 μm. These resins have good transparency, but can be colored by adding dyes, pigments or matting agents. Further, an iris color or a hologram effect can be imparted by performing hologram processing on the surface of the protective resin layer.
 保護樹脂層は、グラビアコート法、リバースコート法、ダイコート法等の従来公知の方法で形成できる。 The protective resin layer can be formed by a conventionally known method such as a gravure coating method, a reverse coating method, or a die coating method.
 本発明の離型樹脂層および保護樹脂層を形成する樹脂はアクリル系樹脂等による同種のものであっても良い。この場合、金属薄膜転写材料として被着体に接着剤を介して接着された後、透明基材フィルムを剥離する際に、離型樹脂の層中で凝集破壊による剥離が起き、保護樹脂層および離型樹脂の一部が転写されて保護樹脂層として機能するという層設計も含む。 The resin forming the release resin layer and the protective resin layer of the present invention may be the same type of acrylic resin. In this case, when the transparent base film is peeled off after being bonded to the adherend as an adhesive film as a metal thin film transfer material, peeling due to cohesive failure occurs in the release resin layer, and the protective resin layer and It includes a layer design in which a part of the release resin is transferred to function as a protective resin layer.
 本発明は、必要に応じ、絶縁性金属薄膜層との接着性を向上させる目的でさらに該保護樹脂層上に易接着層を積層しても良い。 In the present invention, if necessary, an easy adhesion layer may be further laminated on the protective resin layer for the purpose of improving the adhesion to the insulating metal thin film layer.
 本発明の金属薄膜転写材料は、上記保護樹脂層上に絶縁性金属薄膜層を設ける。本発明における絶縁性金属薄膜とは金属光沢と絶縁性を兼ね備えた金属薄膜のことで、島状構造の不連続な金属薄膜をいう。 In the metal thin film transfer material of the present invention, an insulating metal thin film layer is provided on the protective resin layer. The insulating metal thin film in the present invention is a metal thin film having both metallic luster and insulating properties, and means a discontinuous metal thin film having an island structure.
 本発明において、絶縁性金属薄膜層の厚さXは5nm~100nmであることが必要であり、好ましくは20nm~80nm、より好ましくは50nm~80nmである。厚さが5nm未満では、光線透過率が大きく、加飾に期待される金属光沢感が得られない。また、厚さが100nmを越えた場合は本発明で必要としている蒸着膜の絶縁性が確保できないため、静電破壊を抑えられず、更に十分な電波透過性を確保できない。 In the present invention, the thickness X of the insulating metal thin film layer needs to be 5 nm to 100 nm, preferably 20 nm to 80 nm, more preferably 50 nm to 80 nm. If the thickness is less than 5 nm, the light transmittance is large, and the metallic luster expected for decoration cannot be obtained. Further, when the thickness exceeds 100 nm, the insulating property of the vapor deposition film required in the present invention cannot be ensured, so that electrostatic breakdown cannot be suppressed and further sufficient radio wave permeability cannot be ensured.
 本発明において、絶縁性金属薄膜層の全光線透過率Tr(%)を5%~50%の範囲とすることが好ましく、絶縁性金属薄膜層の厚さX(nm)との関係が式1を満足することが必要であり、より好ましくは式2を満足する。
式1 Tr≧87.522×Exp(-0.0422×X)
式2 Tr≧120.52×Exp(-0.0418×X)
 これらの式が意味するところは以下の通りである。すなわち、右辺は絶縁性金属薄膜の厚さXの関数として、Xが増大すると指数関数的に値が小さくなることを示すが、全光線透過率TrがこのXの関数の値以上であることを示している。言い換えれば、これらの式が等式とした場合の、ある透過率Trに対する厚さX以上の厚みを絶縁性金属薄膜が有することを示している。
In the present invention, the total light transmittance Tr (%) of the insulating metal thin film layer is preferably in the range of 5% to 50%, and the relationship with the thickness X (nm) of the insulating metal thin film layer is expressed by the formula 1 It is necessary to satisfy the above, and more preferably, the formula 2 is satisfied.
Formula 1 Tr ≧ 87.522 × Exp (−0.0422 × X)
Formula 2 Tr ≧ 120.52 × Exp (−0.0418 × X)
The meaning of these formulas is as follows. That is, the right side shows that the value decreases exponentially as X increases as a function of the thickness X of the insulating metal thin film, but that the total light transmittance Tr is equal to or greater than the value of this X function. Show. In other words, it shows that the insulating metal thin film has a thickness equal to or greater than the thickness X with respect to a certain transmittance Tr when these equations are equal.
 従来の技術によれば、絶縁性金属薄膜層の厚さを厚くすると島の間隔が狭まってしまうため、絶縁性を確保するために金属量を減らさざるを得ず、酸化、水酸化による腐蝕の影響をうけやすかった。本願発明は絶縁性金属薄膜層の厚さを厚くしても島の間隔をある程度保持できるため、Trを一定の値以上に保持しつつ絶縁性を確保する事が出来る。そのために金属量を減らす必要がなく、酸化等による腐蝕の影響をうけにくい。式2を満足すればより多くの絶縁性金属を付着させながら、高い光線透過率を達成でき、より高い耐蝕性を確保することができる。 According to the prior art, when the thickness of the insulating metal thin film layer is increased, the distance between the islands is reduced. Therefore, the amount of metal must be reduced to ensure insulation, and corrosion due to oxidation and hydroxylation is required. It was easy to be affected. In the present invention, even if the thickness of the insulating metal thin film layer is increased, the distance between the islands can be maintained to some extent, so that insulation can be ensured while maintaining Tr at a certain value or more. Therefore, it is not necessary to reduce the amount of metal, and it is difficult to be affected by corrosion due to oxidation or the like. If Expression 2 is satisfied, high light transmittance can be achieved while more insulating metal is adhered, and higher corrosion resistance can be ensured.
 本発明において、絶縁性金属薄膜層の島のサイズや間隔は、使用する金属の種類、意匠性、絶縁性の程度等により異なるが、島のサイズは意匠性の観点から1nm~2μmが好ましく、島の間隔は絶縁性の観点から2nm~500nmが好ましい。 In the present invention, the size and spacing of the islands of the insulating metal thin film layer vary depending on the type of metal used, the design properties, the degree of insulation, etc., but the island size is preferably 1 nm to 2 μm from the viewpoint of design properties. The distance between the islands is preferably 2 nm to 500 nm from the viewpoint of insulation.
 本発明において、絶縁性金属薄膜層の全光線透過率は5%~50%が好ましい。絶縁性金属薄膜層の厚さをこの範囲とすることにより耐蝕性、意匠性が向上する。これら効果の点から、全光線透過率を8%~30%としておけば、より好ましい。 In the present invention, the total light transmittance of the insulating metal thin film layer is preferably 5% to 50%. By setting the thickness of the insulating metal thin film layer within this range, the corrosion resistance and the design are improved. From the viewpoint of these effects, it is more preferable to set the total light transmittance to 8% to 30%.
 本発明の金属薄膜転写材料は、透明基体へ転写したものを温度85℃、湿度85%RHの環境下に48時間さらした後の全光線透過率が前記環境下にさらす前の全光線透過率に対して1~2.5倍であることが好ましい。2.5倍以下であると金属光沢の経時による外観変化が小さく、より実用性に優れたものとなる。 In the metal thin film transfer material of the present invention, the total light transmittance after exposure to a transparent substrate transferred to an environment of temperature 85 ° C. and humidity 85% RH for 48 hours is the total light transmittance before exposure to the environment. It is preferably 1 to 2.5 times. When it is 2.5 times or less, the appearance change with time of the metallic luster is small, and it becomes more practical.
 絶縁性金属薄膜層の厚さは、使用する金属の種類や意匠性等により、上記範囲内で適宜決定すればよい。 The thickness of the insulating metal thin film layer may be appropriately determined within the above range depending on the type of metal used and the design properties.
 絶縁性金属薄膜層を島状構造とするには、使用する金属をスズ、インジウム、亜鉛、ビスマス、コバルト、ゲルマニウム、又はこれらの合金からなる群から選ばれるものとしておくことが好ましい。より好ましくは絶縁性金属薄膜層が少なくともスズ、インジウム、亜鉛からなる群から選ばれた一種又は二種以上の金属薄膜であり、絶縁性の点からスズ、インジウムがさらに好ましい。 In order for the insulating metal thin film layer to have an island structure, it is preferable that the metal to be used is selected from the group consisting of tin, indium, zinc, bismuth, cobalt, germanium, or alloys thereof. More preferably, the insulating metal thin film layer is one or more metal thin films selected from the group consisting of at least tin, indium and zinc, and tin and indium are more preferable from the viewpoint of insulation.
 スズを用いた場合の絶縁性金属層の厚さは20nmから80nmが好ましい。 The thickness of the insulating metal layer when tin is used is preferably 20 nm to 80 nm.
 絶縁性金属薄膜層は、上記金属を真空蒸着法、スパッタリング蒸着法、EB蒸着法等により形成できる。絶縁性金属薄膜層の厚さXと全光線透過率Trを式1または式2を満たすように制御する方法としては、例えば蒸着法における誘導加熱方式の蒸発量、フィルム速度で制御し、スパッタリング法では放電ガス圧と放電電力およびフィルム速度で制御することができる。 The insulating metal thin film layer can be formed by vacuum deposition, sputtering deposition, EB deposition or the like of the above metal. As a method of controlling the thickness X of the insulating metal thin film layer and the total light transmittance Tr so as to satisfy Equation 1 or Equation 2, for example, by controlling the evaporation amount of the induction heating method in the vapor deposition method and the film speed, the sputtering method Then, it can be controlled by discharge gas pressure, discharge power and film speed.
 本発明においては、絶縁性金属薄膜層の厚さXと全光線透過率Trを式1または式2を満たすように制御する方法として、透明基材フィルムの少なくとも片面に、離型樹脂層と保護樹脂層を積層し、この保護樹脂層の表面に、減圧下でのプラズマ処理により表面処理を行い、その上に絶縁性金属薄膜層を形成することにより達成できることを見出した。またスパッタリングにより微量の金属を基材表面に付着させる、いわゆる核付け法による表面処理によっても上記絶縁性金属薄膜層の厚さXと全光線透過率Trを式1または式2を満たす関係とできることを見出した。この場合の核付け処理においても、保護樹脂層がプラズマに曝されることから、一種のプラズマ処理と定義することができる。 In the present invention, as a method for controlling the thickness X of the insulating metal thin film layer and the total light transmittance Tr so as to satisfy Formula 1 or Formula 2, at least one surface of the transparent base film has a release resin layer and a protective layer. It has been found that this can be achieved by laminating a resin layer, subjecting the surface of the protective resin layer to surface treatment by plasma treatment under reduced pressure, and forming an insulating metal thin film layer thereon. In addition, the thickness X of the insulating metal thin film layer and the total light transmittance Tr can be in a relationship satisfying Equation 1 or Equation 2 even by surface treatment using a so-called nucleation method in which a small amount of metal is attached to the substrate surface by sputtering. I found. Also in this case, since the protective resin layer is exposed to plasma, it can be defined as a kind of plasma treatment.
 上記プラズマ処理の際には、放電電極(陰極)材料と放電ガスの組み合わせによっては、放電電極材料が実質的にスパッタされない場合もあり、またスパッタリング現象により放電電極材料がスパッタされ、保護樹脂層上に放電電極材料の金属が付着することもある。本願発明は、これらプラズマ処理による放電電極材料の付着ありなしにかかわらず、式1の関係を満足するものを提供するものである。 During the plasma treatment, depending on the combination of the discharge electrode (cathode) material and the discharge gas, the discharge electrode material may not be substantially sputtered, and the discharge electrode material may be sputtered by the sputtering phenomenon, and the protective resin layer may be sputtered. The metal of the discharge electrode material may adhere to the surface. The present invention provides a material that satisfies the relationship of Formula 1 regardless of whether or not the discharge electrode material is deposited by the plasma treatment.
 減圧下によるプラズマ処理において、放電電極材料の金属が付着する場合は付着量はプラズマ処理の処理強度の指標になる。すなわちこの場合の本発明は、透明基材フィルムの少なくとも片面に、離型樹脂層、保護樹脂層、金属薄膜層、絶縁性金属薄膜層および接着剤層がこの順に積層された金属薄膜転写材料であって、金属薄膜層の付着量が15ng/cm~700ng/cm、絶縁性金属薄膜層の厚さXが5nm~100nmであり、全光線透過率をTr(%)としたときに、Tr≧87.522×Exp(-0.0422×X)の関係を満足する金属薄膜転写材料である。 In the plasma treatment under reduced pressure, when the metal of the discharge electrode material adheres, the amount of adhesion becomes an index of the treatment intensity of the plasma treatment. That is, the present invention in this case is a metal thin film transfer material in which a release resin layer, a protective resin layer, a metal thin film layer, an insulating metal thin film layer, and an adhesive layer are laminated in this order on at least one surface of a transparent substrate film. there are, the adhesion amount of the metal thin film layer is 15ng / cm 2 ~ 700ng / cm 2, the thickness X of the insulating metallic thin film layer is 5 nm ~ 100 nm, the total light transmittance when formed into a Tr (%), This is a metal thin film transfer material satisfying the relationship Tr ≧ 87.522 × Exp (−0.0422 × X).
 金属薄膜層として15ng/cm~700ng/cm、好ましくは50ng/cm~500ng/cmの金属を付着させる。金属薄膜層の付着量が15ng/cm~700ng/cmの範囲内とし、その後に形成される絶縁性金属薄膜層の厚さXを5nm~100nmとする。15ng/cm未満では耐蝕性が不十分であり、700ng/cmを越える場合は電波透過性や、絶縁性が悪化する。金属薄膜層を設ける方法としては、上記のごとく減圧下でのプラズマ処理と同時に発生するスパッタによるものか、積極的なスパッタ法であっても良い。プラズマ処理における放電電極材料あるいはスパッタ法で使用するターゲット金属種は、アルミニウム、銀、金、スズ、インジウム、鉛、亜鉛、ビスマス、チタン、クロム、鉄、コバルト、ニッケル、ケイ素、ゲルマニウム、又はこれらの合金からなる群から選ばれるものが使用できるが、電波透過性の点から、インジウム、スズを使用するのが好ましい。 15ng / cm 2 ~ 700ng / cm 2 as the metal thin film layer, thereby preferably attached to the metal 50ng / cm 2 ~ 500ng / cm 2. Amount of adhesion of the metal thin film layer is in the range of 15ng / cm 2 ~ 700ng / cm 2, the thickness X of the insulating metallic thin film layer formed thereafter and 5 nm ~ 100 nm. If it is less than 15 ng / cm 2 is insufficient corrosion resistance, when exceeding 700 ng / cm 2 radio wave transmitting and insulating property deteriorates. As a method of providing the metal thin film layer, as described above, the sputtering may be performed simultaneously with the plasma treatment under reduced pressure, or an active sputtering method may be used. Discharge electrode materials in plasma treatment or target metal species used in sputtering are aluminum, silver, gold, tin, indium, lead, zinc, bismuth, titanium, chromium, iron, cobalt, nickel, silicon, germanium, or these Those selected from the group consisting of alloys can be used, but indium and tin are preferably used from the viewpoint of radio wave transmission.
 前述のように、絶縁性金属層はスズ、インジウム、亜鉛からなる群から選ばれた一種又は二種以上の金属を含有するものであることが好ましく、金属薄膜層は絶縁性金属層の金属と同種であることが電波透過性の点から好ましく、異種金属を用いた場合は、本来期待する絶縁性金属の金属光沢とは異なる色目となることがあり、この点からも同種金属を用いることが好ましい。 As described above, the insulating metal layer preferably contains one or more metals selected from the group consisting of tin, indium, and zinc, and the metal thin film layer includes the metal of the insulating metal layer. The same type is preferable from the viewpoint of radio wave transmission, and when different types of metals are used, the color may be different from the metallic luster of the originally expected insulating metal. preferable.
 本発明の金属薄膜転写材料における接着剤層は、絶縁性金属薄膜層上に形成され、転写後に、プラスチック基材と転写層(離型樹脂層、保護層、絶縁性金属薄膜層、及び接着剤層)を接着するものである。 The adhesive layer in the metal thin film transfer material of the present invention is formed on the insulating metal thin film layer, and after transfer, the plastic substrate and the transfer layer (release resin layer, protective layer, insulating metal thin film layer, and adhesive) Layer).
 接着剤層に使用する樹脂は、アクリル系樹脂、ポリエステル系樹脂、メラミン系樹脂、エポキシ系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、塩化ビニル酢酸ビニル共重合体樹脂等が使用できる。 As the resin used for the adhesive layer, acrylic resin, polyester resin, melamine resin, epoxy resin, vinyl chloride resin, vinyl acetate resin, vinyl chloride vinyl acetate copolymer resin, and the like can be used.
 接着剤層は、グラビアコート法、リバースコート法、ダイコート法等の従来公知の方法で形成できる。 The adhesive layer can be formed by a conventionally known method such as a gravure coating method, a reverse coating method, or a die coating method.
 本発明の金属薄膜転写材料を使用してハーフ調金属光沢フィルムを得ることができ、さらに熱ロール転写やインモールド成形によりハーフ調金属光沢成形品を得ることができるが、ハーフ調金属光沢成形品をインモールド成形により得る場合、透明基材フィルムと離型樹脂層との離型性を向上し、転写時にプラスチックフィルムの剥離不良や破れの発生を防止する目的で、透明基材フィルムと離型樹脂層との間に、下塗層を形成するのが好ましく、該下塗層の形成により、複雑な形状の成形品を安定して得ることが可能となる。下塗層に使用する樹脂は、メラミン系樹脂、アミノアルキッド系樹脂、エポキシ系樹脂、アクリル系樹脂、シリコーン系樹脂等の熱硬化性樹脂やワックス等が使用できるが、特にメラミン系樹脂やアクリルメラミン系樹脂が好ましい。 A half-tone metallic glossy film can be obtained by using the metal thin film transfer material of the present invention, and a half-tone metallic glossy molded product can be obtained by hot roll transfer or in-mold molding. Is obtained by in-mold molding, in order to improve the releasability between the transparent base film and the release resin layer, and to prevent the occurrence of poor peeling and tearing of the plastic film during transfer. An undercoat layer is preferably formed between the resin layer and the formation of the undercoat layer makes it possible to stably obtain a molded product having a complicated shape. As the resin used for the undercoat layer, thermosetting resins such as melamine resins, amino alkyd resins, epoxy resins, acrylic resins, silicone resins and waxes can be used. Based resins are preferred.
 本発明の金属薄膜転写材料は、前記の通り携帯電話やオーディオ製品の耐腐蝕性についての評価基準である高温高湿試験(温度85℃、湿度85%RHの条件下で48時間放置する試験)で、試験後の全光線透過率が試験前の全光線透過率に対して1~2.5倍とすることで、腐蝕により絶縁性金属薄膜層が消失することがないので、耐蝕性を強く要求される携帯電話やオーディオ製品等をはじめ、非常に広範な用途に使用可能となる。 As described above, the metal thin film transfer material of the present invention is a high temperature and high humidity test that is an evaluation standard for the corrosion resistance of mobile phones and audio products (test that is left for 48 hours under conditions of a temperature of 85 ° C. and a humidity of 85% RH). Since the total light transmittance after the test is 1 to 2.5 times the total light transmittance before the test, the insulating metal thin film layer does not disappear due to the corrosion. It can be used for a very wide range of applications including required mobile phones and audio products.
 以下本発明の様態を実施例をもって具体的に説明するが、本発明はこれによって限定されるものではない。なお、本発明における評価法は次の通りである。 Hereinafter, the embodiment of the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. The evaluation method in the present invention is as follows.
 (1)金属薄膜層の金属付着量
 5cm×1cmの試料フィルムを、塩酸と硝酸を1:4の比に混合した溶液に入れ24時間以上放置する。
(1) Metal adhesion amount of metal thin film layer A sample film of 5 cm × 1 cm is put in a solution in which hydrochloric acid and nitric acid are mixed at a ratio of 1: 4 and left for 24 hours or more.
 この液を、島津製作所製原子吸光分光光度計AA-6300にて、測定波長:286.3nm ランプ電流:10mA スリット幅:0.7nm 点灯モード:BGC-2 1%吸光光度:5.0ppmにて測定した。 This solution was measured with an atomic absorption spectrophotometer AA-6300 manufactured by Shimadzu Corporation. Measurement wavelength: 286.3 nm, lamp current: 10 mA, slit width: 0.7 nm, lighting mode: BGC-2, 1% absorbance: 5.0 ppm It was measured.
 (2)全光線透過率(%)
 表面をアルコールで清拭した厚さ1mm×巾10cm×長さ20cmのアクリル板に、ロールスタンパー(太平工業(株)製RT-300X)を用い、ロール温度220℃、速度5cm/秒で転写後、フィルムを剥離し、保護層を表面としたテストピースを作製した。作製したテストピースを、日本電色工業(株)製ヘイズメータNDH-2000を用い、JIS-K7136(2000年制定)に則り全光線透過率Tr(%)を測定した。
(2) Total light transmittance (%)
Using a roll stamper (RT-300X, manufactured by Taihei Kogyo Co., Ltd.) on an acrylic plate with a thickness of 1 mm x width 10 cm x length 20 cm, the surface of which was wiped with alcohol, after a transfer at a roll temperature of 220 ° C and a speed of 5 cm / sec. Then, the film was peeled off to prepare a test piece having the protective layer as a surface. The total light transmittance Tr (%) of the produced test piece was measured according to JIS-K7136 (established in 2000) using a haze meter NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
 (3)絶縁性金属薄膜層の厚さX(nm)
 蒸着加工による絶縁性金属層を設けたフィルムを試料とし、日立収束イオンビーム加工観察装置FB2000Aを用い、試料断面を作成後、絶縁性金属薄膜層の断面を日立透過型電子顕微鏡(TEM)HF-2100で加速電圧30kV、観測倍率421,000倍で観察し、その写真の単位視野内に観察される島の数と島の厚さ(島の保護樹脂層側境界面からの高さ)から、数平均をとって絶縁性金属薄膜層の厚みX(nm)を算出した。この場合、島間の間隔は考慮せず、島のもっとも高い部分の厚みの数平均値を計算する。例えば図1においては(48.9+56.6+42.6+56.7)/4=51.2nmと計算する。
(3) Thickness X (nm) of the insulating metal thin film layer
Using a film with an insulating metal layer formed by vapor deposition as a sample, and using the Hitachi focused ion beam processing and observation apparatus FB2000A to create a sample cross section, the cross section of the insulating metal thin film layer was analyzed using a Hitachi transmission electron microscope (TEM) HF- Observed at an acceleration voltage of 30kV and an observation magnification of 421,000 at 2100, and from the number of islands observed in the unit field of view and the thickness of the islands (height from the boundary surface on the protective resin layer side of the islands), The number X was taken to calculate the thickness X (nm) of the insulating metal thin film layer. In this case, the number average value of the thickness of the highest part of the island is calculated without considering the interval between the islands. For example, in FIG. 1, it is calculated as (48.9 + 56.6 + 42.6 + 56.7) /4=51.2 nm.
 (4)耐蝕性試験
 絶縁性金属薄膜転写材料としてのフィルムを、厚さ1mmの透明アクリル板(透明基体)を用意し、表面をアルコール等で清拭し、ロールスタンパー(太平工業(株)製RT-300X)を用い、ロール温度220℃、速度5cm/秒で転写し、フィルムを剥離し、保護樹脂層を表面としたテストピースを作製した。作製したテストピースを、日本電色工業(株)製ヘイズメーターNDH2000(JIS-K7136(2000年制定)準拠)で全光線透過率を測定し、タバイエスペック(株)製恒温恒湿オーブン(PL-1SP)のサンプルセット網にクリップで吊し、温度85℃、湿度85%RH環境下にて48時間放置した。48時間経過品も先述同様に全光線透過率を測定し、環境負荷前のサンプルと比較した。負荷前(試験前)透過率をA(%)、負荷後(試験後)透過率をB(%)としB/Aの倍率を透過率変化として算出した。
(4) Corrosion resistance test A 1 mm thick transparent acrylic plate (transparent substrate) is prepared for the film as an insulating metal thin film transfer material, the surface is wiped with alcohol, etc., and a roll stamper (produced by Taihei Kogyo Co., Ltd.) RT-300X) was used and transferred at a roll temperature of 220 ° C. and a speed of 5 cm / second, and the film was peeled off to prepare a test piece having the protective resin layer as the surface. The produced test piece was measured for total light transmittance with a haze meter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. (JIS-K7136 (established in 2000)), and a constant temperature and humidity oven (PL- 1SP) was hung with a clip on a sample set net, and left for 48 hours in a temperature 85 ° C. and humidity 85% RH environment. For the 48-hour product, the total light transmittance was measured in the same manner as described above, and compared with the sample before environmental load. The transmittance before load (before test) was A (%), the transmittance after load (after test) was B (%), and the B / A magnification was calculated as the transmittance change.
 (5)電波透過性試験
 15cm×15cmにカットした金属薄膜転写フィルムを、マイクロウェーブファクトリー株式会社製KEC法シールド効果測定装置MAM101にセットし、Agilent Technologies製 Network Analyzer Agilent E5062Aを用い、800MHzの電波の減衰率(dB)を測定した。電波透過性は、金属薄膜が不連続な島状構造であることにより発現し、同時に絶縁性が確保される。値は小さいほど電波透過性に優れ、絶縁性に優れたものとなり、1dB以下であることが好ましく、0.5dB以下であることがより好ましい。
(実施例1~3)
 透明基材フィルムとして東洋紡製二軸延伸ポリエチレンテレフタレートフィルムE5001タイプ25μmを用いて、該フィルムの片面に離型樹脂層として、酢酸セルロース樹脂をグラビア型塗工機で乾燥後厚さ0.5g/mになるように塗工形成し、さらに該離型樹脂層面にメタクリル酸、メタクリル酸2-ヒドロキシエチル、メタクリル酸nブチル、メラミン樹脂を含有するトルエン溶液を前記コータを用いて塗布、乾燥、樹脂硬化をおこない、厚さ1μmの保護樹脂層を得た。続いて該保護樹脂層面に金属薄膜層としてスズ50ng/cmをスパッタリング法により設けた。スパッタリング条件は、放電ガスとしてアルゴンガスを使用し、カソードとしてスズ電極を用いた。該金属薄膜層面にスズを絶縁性金属層として、Trを調節して、5%、15%および46%とし、各々を実施例1、2、3とした。該絶縁性金属層は、誘導加熱方式真空蒸着機(日本真空製EB5207)を使用し、作業圧力0.04Paで蒸着加工により設けた。該蒸着面に接着剤層として、飽和ポリエステル樹脂をグラビア型塗工機を用いて、乾燥後厚さ1g/mに塗工形成した。ここで得た金属薄膜転写フィルムの性能を評価した結果を表1に示す。実施例1、2、3では、いずれも良好な電波透過性を示し、同時に耐蝕性試験でも試験前後の変化(B/A)が2.5倍以下と良好であった。なお、実施例2で得た絶縁性金属薄膜材料の島状金属層の構造についてTEMでの断面写真を図1に示す。
(実施例4~6)
 金属薄膜層の厚さを、実施例4として15ng/cm、実施例5として200ng/cm、実施例6として500ng/cmに形成した。次いで各々に、絶縁性金属薄膜としてスズを光線透過率Trを15%となるように形成した。その他条件は実施例1、2、3と同様にして、金属薄膜転写材を作成して特性を評価した結果を表1に示す。実施例4、5、6ともに良好な電波透過性、絶縁性を持つと同時に耐蝕性試験でのTr変化が2.5倍以下であった。
(実施例7)
 保護樹脂層面に金属薄膜層として銅50ng/cmをスパッタリング法により設けた。スパッタリング条件は、放電ガスとしてアルゴンガスを使用し、カソードとして銅電極を用いた。、絶縁性金属としてインジウムをTrが15%となるように蒸着した。
(実施例8)
 実施例1と同様にして準備した保護樹脂層までを積層した基材フィルムロールを誘導加熱方式真空蒸着機(日本真空製EB5207)にセットし、フィルムを巻き出した後、真空中でスズ電極を用いたプレーナー方式のプラズマ処理装置により、窒素ガスを流しながらプラズマ処理を行い、引き続きスズを絶縁性金属として蒸着しTrを25%としたものを作成した。なお、プラズマ処理のみを行い蒸着を行わなかった事前検討により、スズの付着量は45ng/cmであることを確認していたが、一連の蒸着でスズを絶縁性金属として形成したものでは同様の付着量であると推定する。
(実施例9)
 実施例8と同様にして、真空中で銅電極を用いたプレーナー方式のプラズマ処理装置により、窒素ガスを流しながらプラズマ処理を行い、引き続きスズを絶縁性金属として蒸着しTrを23%としたものを作成した。なお、プラズマ処理のみを行い蒸着を行わなかった事前検討により、銅の付着量は55ng/cmであることを確認していたが、一連の蒸着でスズを絶縁性金属として形成したものでは同様の付着量であると推定する。
(実施例10)
 実施例6とほぼ同様にして、スズを700ng/cm付着させたものを実施例10とした。電波透過性は0.68dBと大きくなる傾向が認められたが実用範囲内であり、良好なものが得られた。
(実施例11)
 実施例7と同様にして保護樹脂層面に金属薄膜層として銅を300ng/cmをスパッタリング法により設けた上に、絶縁性金属としてスズをTr18%となるように蒸着した。耐蝕性試験においては良い結果であったが、核付けの銅金属の影響により基材フィルム剥離後の金属光沢が若干赤目であり、電波透過性も1dBを超えたものとなった。
(実施例12)
 実施例1と同様にして、絶縁性金属層を95.8nmとした。電波透過性が1.23dBと悪化したため、電波透過性を必要とする用途には使用しづらい性能となったが、通常の金属光沢のみを必要とする用途には好適に使用できるものであった。
(実施例13)
 実施例4と同様に金属薄膜の付着量を15ng/cmとし、全光線透過率を22%としたところ、透過率の変化が2.6倍となり、やや耐蝕性に不十分なものとなった。
(実施例14)
 実施例8、9と同様に真空蒸着機中でプラズマ処理を行い、連続的にスズの蒸着を行ったが、プラズマ処理の電極をガラス被覆の電極とし、電源は110kHzの高周波のものを用いて50W・分/mの強度でプラズマ処理を行った。放電ガスは酸素であり、実質的に放電電極材料のスパッタリングは発生していなかったが、式1を満足する結果であり、電波透過性、耐蝕性に優れたものとなった。
(比較例1、2)
 金属薄膜層を設けずにスズ蒸着膜をTr=6%、17%に設け、その他の条件を実施例1と同様にして、各々を比較例1、比較例2とし、その特性を評価した。評価結果を表1に示す。比較例1では電波透過性が低く、絶縁性も不十分であった。また比較例1、2ともに耐蝕性が低い結果であった。なお、比較例2のTEM断面写真を図2に示す。
(比較例3)
 金属薄膜層を実施例1と同様のスパッタリング法で10ng/cmの付着量で形成し、スズを光線透過率Trを14%となるように形成した。その他の条件を実施例1と同様にして比較例3とし、性能を評価しその結果を表1に示す。耐蝕性試験では、耐蝕試験前後のTrの変化率が2.5倍を越え不十分であった。
(比較例4)
 金属薄膜層を実施例1と同様のスパッタリング法で800ng/cmの付着量で形成し、スズを光線透過率Trを15%となるように形成した。その他の条件を実施例1と同様にして比較例4とし、性能を評価しその結果を表1に示す。電波透過性が1.56dBと悪化し、絶縁性も不十分なものとなった。金属の付着量が多くなり、電波透過性が悪化したものと推定される。
(比較例5、6)
 実施例1と同様にして、絶縁性金属層の厚さを4.5nmと108nmとしてそれぞれ全光線透過率を74%、2.6%としてものを作成しそれぞれ比較例5、6とした。比較例5では、全光線透過率が高く、金属光沢が不十分なものとなった。比較例6では絶縁性が確保できず電波透過性が悪化した。
(比較例7)
 実施例13と同様に真空蒸着機中で、ガラス被覆電極を用いてプラズマ処理を行ったが処理強度を6W・分/mとしたところ、式1を満足せず、耐蝕性が不十分なものとなった。
(5) Radio wave permeability test A metal thin film transfer film cut to 15 cm × 15 cm is set in a KEC method shield effect measuring apparatus MAM101 manufactured by Microwave Factory Co., Ltd., and a network analyzer Agilent E5062A manufactured by Agilent Technologies is used. The attenuation rate (dB) was measured. Radio wave permeability is manifested by the discontinuous island structure of the metal thin film, and at the same time, insulation is ensured. The smaller the value, the better the radio wave permeability and the better the insulation, and it is preferably 1 dB or less, more preferably 0.5 dB or less.
(Examples 1 to 3)
Using Toyobo's biaxially stretched polyethylene terephthalate film E5001 type 25 μm as a transparent substrate film, a cellulose acetate resin is dried on a gravure type coater as a release resin layer on one side of the film, and a thickness of 0.5 g / m Then, a toluene solution containing methacrylic acid, 2-hydroxyethyl methacrylate, n-butyl methacrylate, and melamine resin is applied to the surface of the release resin layer using the coater, dried, and resin Curing was performed to obtain a protective resin layer having a thickness of 1 μm. Subsequently, 50 ng / cm 2 of tin was provided as a metal thin film layer on the surface of the protective resin layer by a sputtering method. As sputtering conditions, argon gas was used as the discharge gas, and a tin electrode was used as the cathode. Using tin as an insulating metal layer on the metal thin film layer surface, Tr was adjusted to 5%, 15%, and 46%, and Examples 1, 2, and 3 were used, respectively. The insulating metal layer was provided by vapor deposition at an operating pressure of 0.04 Pa using an induction heating type vacuum vapor deposition machine (EB5207 manufactured by Nippon Vacuum). A saturated polyester resin was coated and formed on the vapor-deposited surface to a thickness of 1 g / m 2 after drying using a gravure coater. The results of evaluating the performance of the metal thin film transfer film obtained here are shown in Table 1. In Examples 1, 2, and 3, all showed good radio wave permeability, and at the same time, the change (B / A) before and after the test was also good at 2.5 times or less in the corrosion resistance test. In addition, the cross-sectional photograph in TEM about the structure of the island-like metal layer of the insulating metal thin film material obtained in Example 2 is shown in FIG.
(Examples 4 to 6)
The thickness of the metal thin film layer was 15 ng / cm 2 as Example 4, 200 ng / cm 2 as Example 5, and 500 ng / cm 2 as Example 6. Next, tin was formed as an insulating metal thin film so that the light transmittance Tr was 15%. The other conditions were the same as in Examples 1, 2, and 3. Table 1 shows the results of producing metal thin film transfer materials and evaluating the characteristics. Each of Examples 4, 5, and 6 had good radio wave permeability and insulation, and at the same time, the Tr change in the corrosion resistance test was 2.5 times or less.
(Example 7)
Copper 50 ng / cm 2 was provided as a metal thin film layer on the surface of the protective resin layer by a sputtering method. As sputtering conditions, argon gas was used as a discharge gas, and a copper electrode was used as a cathode. Then, indium was deposited as an insulating metal so that Tr was 15%.
(Example 8)
The base film roll laminated up to the protective resin layer prepared in the same manner as in Example 1 was set in an induction heating type vacuum deposition machine (EB5207 manufactured by Nippon Vacuum), and after unwinding the film, the tin electrode was placed in vacuum. Plasma treatment was performed while flowing nitrogen gas with the planar type plasma treatment apparatus used, and then tin was vapor-deposited as an insulating metal to make Tr 25%. In addition, it was confirmed that the amount of tin deposited was 45 ng / cm 2 according to a preliminary study in which only plasma treatment was performed and no vapor deposition was performed. However, the same applies to the case where tin is formed as an insulating metal by a series of vapor deposition. It is estimated that it is the amount of adhesion.
Example 9
In the same manner as in Example 8, plasma treatment was performed while flowing nitrogen gas in a planar plasma treatment apparatus using a copper electrode in a vacuum, and subsequently tin was deposited as an insulating metal to make Tr 23%. It was created. In addition, it was confirmed that the amount of copper deposited was 55 ng / cm 2 according to a preliminary study in which only the plasma treatment was performed but no vapor deposition was performed. However, the same applies to the case where tin is formed as an insulating metal by a series of vapor deposition. It is estimated that it is the amount of adhesion.
(Example 10)
In the same manner as in Example 6, 700 ng / cm 2 of tin was used as Example 10. Although the radio wave permeability tended to be as large as 0.68 dB, it was within the practical range and a good one was obtained.
(Example 11)
In the same manner as in Example 7, 300 ng / cm 2 of copper as a metal thin film layer was provided on the surface of the protective resin layer by a sputtering method, and tin as an insulating metal was deposited so as to have a Tr of 18%. Although it was a good result in the corrosion resistance test, the metallic luster after peeling of the base film was slightly red-eyed due to the influence of the copper metal with the core, and the radio wave transmission exceeded 1 dB.
(Example 12)
In the same manner as in Example 1, the insulating metal layer was 95.8 nm. Since the radio wave permeability deteriorated to 1.23 dB, it became difficult to use for applications that require radio wave transmission, but it could be used suitably for applications that require only normal metallic luster. .
(Example 13)
As in Example 4, when the adhesion amount of the metal thin film is 15 ng / cm 2 and the total light transmittance is 22%, the change in transmittance is 2.6 times, which is slightly insufficient for corrosion resistance. It was.
(Example 14)
Plasma treatment was performed in a vacuum vapor deposition machine in the same manner as in Examples 8 and 9, and tin was continuously deposited. The plasma treatment electrode was a glass-covered electrode, and the power source was a high frequency of 110 kHz. Plasma treatment was performed at an intensity of 50 W · min / m 2 . The discharge gas was oxygen, and substantially no sputtering of the discharge electrode material occurred. However, the result was that Formula 1 was satisfied, and the radio wave permeability and corrosion resistance were excellent.
(Comparative Examples 1 and 2)
The tin vapor deposition film was provided at Tr = 6% and 17% without providing the metal thin film layer, and the other conditions were the same as in Example 1, and the characteristics were evaluated as Comparative Example 1 and Comparative Example 2, respectively. The evaluation results are shown in Table 1. In Comparative Example 1, the radio wave permeability was low and the insulation was insufficient. Further, both Comparative Examples 1 and 2 were low in corrosion resistance. A TEM cross-sectional photograph of Comparative Example 2 is shown in FIG.
(Comparative Example 3)
A metal thin film layer was formed by the same sputtering method as in Example 1 with an adhesion amount of 10 ng / cm 2 , and tin was formed so that the light transmittance Tr was 14%. Other conditions were set to Comparative Example 3 in the same manner as in Example 1, the performance was evaluated, and the results are shown in Table 1. In the corrosion resistance test, the rate of change of Tr before and after the corrosion resistance test exceeded 2.5 times and was insufficient.
(Comparative Example 4)
A metal thin film layer was formed by the same sputtering method as in Example 1 with an adhesion amount of 800 ng / cm 2 , and tin was formed so that the light transmittance Tr was 15%. The other conditions were set to Comparative Example 4 in the same manner as in Example 1, the performance was evaluated, and the results are shown in Table 1. The radio wave permeability deteriorated to 1.56 dB, and the insulation was insufficient. It is presumed that the amount of metal attached increased and the radio wave permeability deteriorated.
(Comparative Examples 5 and 6)
In the same manner as in Example 1, the thickness of the insulating metal layer was 4.5 nm and 108 nm, and the total light transmittance was 74% and 2.6%, respectively. In Comparative Example 5, the total light transmittance was high and the metallic luster was insufficient. In Comparative Example 6, insulation could not be ensured and radio wave permeability deteriorated.
(Comparative Example 7)
In the same manner as in Example 13, plasma treatment was performed using a glass-coated electrode in a vacuum vapor deposition machine. However, when the treatment strength was 6 W · min / m 2 , Equation 1 was not satisfied and corrosion resistance was insufficient. It became a thing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
1  保護樹脂層
2  絶縁性金属薄膜層
1 Protective resin layer 2 Insulating metal thin film layer

Claims (8)

  1. 透明基材フィルムの少なくとも片面に、離型樹脂層、保護樹脂層、絶縁性金属薄膜層および接着剤層がこの順に積層された金属薄膜転写材料であって、絶縁性金属薄膜層の厚さXが5nm~100nmであり、全光線透過率をTr(%)としたときに、
    Tr≧87.522×Exp(-0.0422×X)
    の関係を満足する金属薄膜転写材料。
    A metal thin film transfer material in which a release resin layer, a protective resin layer, an insulating metal thin film layer, and an adhesive layer are laminated in this order on at least one surface of a transparent substrate film, and the thickness X of the insulating metal thin film layer Is 5 nm to 100 nm, and the total light transmittance is Tr (%),
    Tr ≧ 87.522 × Exp (−0.0422 × X)
    Metal thin film transfer material that satisfies this relationship.
  2. 透明基材フィルムの少なくとも片面に、離型樹脂層、保護樹脂層、金属薄膜層、絶縁性金属薄膜層および接着剤層がこの順に積層された金属薄膜転写材料であって、金属薄膜層の付着量が15ng/cm~700ng/cm、絶縁性金属薄膜層の厚さXが5nm~100nmであり、全光線透過率をTr(%)としたときに、
    Tr≧87.522×Exp(-0.0422×X)
    の関係を満足する金属薄膜転写材料。
    A metal thin film transfer material in which a release resin layer, a protective resin layer, a metal thin film layer, an insulating metal thin film layer, and an adhesive layer are laminated in this order on at least one surface of a transparent substrate film, amount 15ng / cm 2 ~ 700ng / cm 2, the thickness X of the insulating metallic thin film layer is 5 nm ~ 100 nm, the total light transmittance when formed into a Tr (%),
    Tr ≧ 87.522 × Exp (−0.0422 × X)
    Metal thin film transfer material that satisfies this relationship.
  3. KEC法による800MHzの電波透過試験において、電波の減衰率が1dB以下であることを特徴とする、請求項1または2に記載の金属薄膜転写材料。 3. The metal thin film transfer material according to claim 1, wherein an attenuation rate of radio waves is 1 dB or less in an 800 MHz radio wave transmission test by the KEC method. 4.
  4. 透明基体に転写したものを温度85℃、湿度85%RHの環境下に48時間さらした後の全光線透過率が前記環境下にさらす前の全光線透過率に対して1~2.5倍である請求項1~3いずれかに記載の金属薄膜転写材料。 The total light transmittance after exposure to a transparent substrate transferred to an environment of 85 ° C. and 85% RH for 48 hours is 1 to 2.5 times the total light transmittance before exposure to the environment. The metal thin film transfer material according to any one of claims 1 to 3.
  5. 前記絶縁性金属薄膜層がスズ、インジウム、亜鉛からなる群から選ばれた一種又は二種以上の金属を含有する請求項1~4いずれかに記載の金属薄膜転写材料。 The metal thin film transfer material according to any one of claims 1 to 4, wherein the insulating metal thin film layer contains one or more metals selected from the group consisting of tin, indium and zinc.
  6. 全光線透過率Tr(%)と絶縁性金属薄膜層の厚みX(nm)との関係が、
    Tr≧120.52×Exp(-0.0418×X)
    を満足する請求項1~5いずれかに記載の金属薄膜転写材料。
    The relationship between the total light transmittance Tr (%) and the thickness X (nm) of the insulating metal thin film layer is
    Tr ≧ 120.52 × Exp (−0.0418 × X)
    The metal thin film transfer material according to any one of claims 1 to 5, wherein:
  7. 請求項1~6いずれかに記載の金属薄膜転写材料の製造方法であって、透明基材フィルムの少なくとも片面に、離型樹脂層と保護樹脂層を積層し、この保護樹脂層の表面に、減圧下でのプラズマ処理により表面処理を行い、その上に絶縁性金属薄膜層を形成し、該絶縁性金属薄膜層上に接着性樹脂層を積層することを特徴とする金属薄膜転写材料の製造方法。 The method for producing a metal thin film transfer material according to any one of claims 1 to 6, wherein a release resin layer and a protective resin layer are laminated on at least one surface of the transparent substrate film, and the surface of the protective resin layer is Production of a metal thin film transfer material characterized in that a surface treatment is performed by plasma treatment under reduced pressure, an insulating metal thin film layer is formed thereon, and an adhesive resin layer is laminated on the insulating metal thin film layer Method.
  8. 前記減圧下でのプラズマ処理により、絶縁性金属薄膜と同種の金属を前記保護樹脂層上に15ng/cm~700ng/cm積層することを特徴とする請求項7に記載の金属薄膜転写材料の製造方法。 The plasma treatment in the reduced pressure, the metal thin film transfer material according to claim 7, characterized in that 15ng / cm 2 ~ 700ng / cm 2 is laminated on a metal insulator metal thin film of the same kind the protective resin layer Manufacturing method.
PCT/JP2011/050699 2010-01-25 2011-01-18 Thin metal film transfer material and production method of same WO2011090010A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127015435A KR101780661B1 (en) 2010-01-25 2011-01-18 Thin metal film transfer material and production method of same
JP2011502958A JP5692602B2 (en) 2010-01-25 2011-01-18 Metal thin film transfer material and method for producing the same
CN201180005987.0A CN103003063B (en) 2010-01-25 2011-01-18 Thin metal film transfer material and production method of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010012758 2010-01-25
JP2010-012758 2010-01-25

Publications (1)

Publication Number Publication Date
WO2011090010A1 true WO2011090010A1 (en) 2011-07-28

Family

ID=44306813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050699 WO2011090010A1 (en) 2010-01-25 2011-01-18 Thin metal film transfer material and production method of same

Country Status (5)

Country Link
JP (1) JP5692602B2 (en)
KR (1) KR101780661B1 (en)
CN (1) CN103003063B (en)
TW (1) TWI507288B (en)
WO (1) WO2011090010A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013028591A3 (en) * 2011-08-22 2013-07-18 Adhesives Research, Inc. Polymeric coated busbar tape for photovoltaic systems
JP2018192808A (en) * 2016-10-24 2018-12-06 日東電工株式会社 Electromagnetic wave transmissive metallic sheen member, article using the same and thin metallic film
JP2019031079A (en) * 2017-08-04 2019-02-28 積水化学工業株式会社 Laminate
EP3738762A4 (en) * 2018-01-12 2021-10-27 Nitto Denko Corporation Radio wave-transmitting lustrous metal member, article using same, and method for producing same
US11383478B2 (en) 2016-10-24 2022-07-12 Nitto Denko Corporation Metallic lustrous member with electromagnetic wave transmissibility, article using the member, and metal thin film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102636972B1 (en) 2018-10-25 2024-02-15 삼성디스플레이 주식회사 Display device and method for manufacturing display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249688A (en) * 1987-04-03 1988-10-17 Reiko Co Ltd Transfer material
JP2008207337A (en) * 2007-02-23 2008-09-11 Reiko Co Ltd Half tone metallic luster transfer film excellent in corrosion resistance and design property, and molded article obtained by using it

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047260A (en) * 1987-02-06 1991-09-10 Key-Tech, Inc. Method for producing a shielded plastic enclosure to house electronic equipment
WO1991010562A1 (en) * 1990-01-08 1991-07-25 Nippon Carbide Kogyo Kabushiki Kaisha Laminated resin film having metallic appearance
JPH10329496A (en) * 1997-05-29 1998-12-15 Nissha Printing Co Ltd Half vapor-deposited film of chrominum luster tone
US6818291B2 (en) * 2002-08-17 2004-11-16 3M Innovative Properties Company Durable transparent EMI shielding film
DE102004014645A1 (en) * 2004-03-25 2005-10-13 Mitsubishi Polyester Film Gmbh Transparent, electrically conductive, coated polyester film, process for its preparation and its use
JP2006281591A (en) * 2005-03-31 2006-10-19 Nissha Printing Co Ltd Decorative sheet with metallic gloss and decorative molding using the sheet
JP4067109B2 (en) * 2006-06-08 2008-03-26 株式会社麗光 Insulating transfer film with excellent corrosion resistance and molded product obtained using the same
TW200927477A (en) * 2007-12-24 2009-07-01 Metal Ind Res Anddevelopment Ct Electromagnetic wave-permeable coating with metallic luster

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249688A (en) * 1987-04-03 1988-10-17 Reiko Co Ltd Transfer material
JP2008207337A (en) * 2007-02-23 2008-09-11 Reiko Co Ltd Half tone metallic luster transfer film excellent in corrosion resistance and design property, and molded article obtained by using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013028591A3 (en) * 2011-08-22 2013-07-18 Adhesives Research, Inc. Polymeric coated busbar tape for photovoltaic systems
JP2018192808A (en) * 2016-10-24 2018-12-06 日東電工株式会社 Electromagnetic wave transmissive metallic sheen member, article using the same and thin metallic film
US11383478B2 (en) 2016-10-24 2022-07-12 Nitto Denko Corporation Metallic lustrous member with electromagnetic wave transmissibility, article using the member, and metal thin film
JP2019031079A (en) * 2017-08-04 2019-02-28 積水化学工業株式会社 Laminate
EP3738762A4 (en) * 2018-01-12 2021-10-27 Nitto Denko Corporation Radio wave-transmitting lustrous metal member, article using same, and method for producing same
US11577491B2 (en) 2018-01-12 2023-02-14 Nitto Denko Corporation Metallic lustrous member with radio wave transmissibility, article using same, and production method therefor

Also Published As

Publication number Publication date
JPWO2011090010A1 (en) 2013-05-23
TW201136758A (en) 2011-11-01
JP5692602B2 (en) 2015-04-01
CN103003063B (en) 2015-05-13
TWI507288B (en) 2015-11-11
CN103003063A (en) 2013-03-27
KR101780661B1 (en) 2017-09-21
KR20120123030A (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5692602B2 (en) Metal thin film transfer material and method for producing the same
JP2014529642A (en) Optically transparent conductive adhesive and article made therefrom
JP4308861B2 (en) Half-tone metallic glossy transfer film with excellent corrosion resistance and design, and molded products obtained using the same
TW200405791A (en) Durable EMI shielding film
WO2018169062A1 (en) Metal coating for electromagnetic wave penetration, method for forming metal coating for electromagnetic wave penetration, and radar device for vehicle installation
WO2021025054A1 (en) Electromagnetic wave transmissive layered product
CN106707385B (en) A kind of plating silver type reflectance coating and preparation method thereof
JP4036465B1 (en) Insulating material with excellent metallic luster and molded product using the same
JP2019188806A (en) Electromagnetic wave transmissive metal sheen object and decorative member
JP2019001002A (en) Conductive film
WO2019208493A1 (en) Electromagnetic-wave-permeable metallic-luster article, and decorative member
WO2021006130A1 (en) Electromagnetic wave transmitting metallic luster article
JP4067109B2 (en) Insulating transfer film with excellent corrosion resistance and molded product obtained using the same
JP2022529574A (en) Antistatic silicone release film
JP2006142544A (en) Antistatic biaxially stretched polyester film
JP6210110B2 (en) Rainbow nonuniformity generation reduction laminate, rainbow nonuniformity generation reduction sheet, and rainbow nonuniformity generation reduction method
KR20200074860A (en) Conductive film
WO2008032813A1 (en) Plasma display filter
JP2005353656A (en) Transparent electromagnetic wave shield film and its manufacturing method, and front filter for plasma display panel using the same and plasma display
JP4876850B2 (en) Metal thin film transfer material and method for producing the same
CN103046432A (en) Matte release agent used for mold release material
WO2021261433A1 (en) Film mirror laminate and mirror member
JP6596591B2 (en) Hard coat film with optical adjustment layer for transparent conductive film, and transparent conductive film
JP7156858B2 (en) Transparent conductive film for light control film and light control film
JP2004149747A (en) Metal foil support material resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011502958

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127015435

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734616

Country of ref document: EP

Kind code of ref document: A1