WO2021025054A1 - Electromagnetic wave transmissive layered product - Google Patents

Electromagnetic wave transmissive layered product Download PDF

Info

Publication number
WO2021025054A1
WO2021025054A1 PCT/JP2020/029984 JP2020029984W WO2021025054A1 WO 2021025054 A1 WO2021025054 A1 WO 2021025054A1 JP 2020029984 W JP2020029984 W JP 2020029984W WO 2021025054 A1 WO2021025054 A1 WO 2021025054A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electromagnetic wave
metallic luster
substrate
laminate according
Prior art date
Application number
PCT/JP2020/029984
Other languages
French (fr)
Japanese (ja)
Inventor
正義 片桐
幸大 宮本
秀行 米澤
孝洋 中井
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2021025054A1 publication Critical patent/WO2021025054A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties

Definitions

  • the present invention relates to an electromagnetic wave transmitting laminate.
  • a member having electromagnetic wave transmission and metallic luster has both a high-class appearance derived from the metallic luster and electromagnetic wave transmission, and is therefore suitably used for an apparatus for transmitting and receiving electromagnetic waves.
  • metal is used for the metallic luster member, the transmission and reception of electromagnetic waves is substantially impossible or disturbed. Therefore, in order not to interfere with the transmission and reception of electromagnetic waves and not to impair the design, an electromagnetic wave transmitting laminate having both metallic luster and electromagnetic wave transmission is required.
  • Such an electromagnetic wave transmissive laminate is used as a device for transmitting and receiving electromagnetic waves to various devices that require communication, such as an automobile door handle provided with a smart key, an in-vehicle communication device, a mobile phone, and an electronic device such as a personal computer. It is expected to be applied to such applications. Furthermore, in recent years, with the development of IoT technology, it is expected to be applied in a wide range of fields such as home appliances such as refrigerators and household appliances, which have not been used for communication in the past. From the viewpoint of design, these electromagnetic wave-transmitting laminates may be required to have a matte texture having a metallic luster and suppressed brilliance.
  • Patent Document 1 discloses a resin product containing a metal film made of chromium (Cr) or indium (In).
  • This resin product has a resin base material, an inorganic base film containing an inorganic compound formed on the resin base material, and a brilliant film formed on the inorganic base film by a physical vapor deposition method. It contains a metal film made of chromium (Cr) or indium (In) having a continuous structure.
  • Patent Document 2 describes a metal layer having high reflectivity and diffusivity and excellent reflection efficiency in light reflection with respect to incident light at a low angle. A light reflecting laminate or a white reflecting film including the above, and a light reflecting laminated body including a light diffusing layer are described.
  • the present invention has been made to solve these problems in the prior art, and provides an electromagnetic wave-transmitting laminate having an excellent metallic appearance, which has excellent electromagnetic wave transmission, has metallic luster, and suppresses brilliance.
  • the purpose is to provide.
  • the present inventors have provided a metallic luster layer and reflected the reflected light in the wavelength range of 380 nm to 780 nm in the SCE measurement of the CIE-XYZ color system.
  • a substrate, a metallic luster layer formed on the substrate, and a resin layer are provided.
  • An electromagnetic wave transmissive laminate having a reflectance Y of 1 to 60% in SCE measurement of the CIE-XYZ color system of reflected light in the wavelength range of 380 nm to 780 nm.
  • the metallic luster layer is a metal layer,
  • the ratio of the thickness of the metallic luster layer to the thickness of the indium oxide-containing layer is 0.02 to 100 [6] to [10].
  • the electromagnetic wave transmissive laminate according to any one item [12] The electromagnetic wave transmissive laminate according to any one of [1] to [11], which has a sheet resistance of 100 ⁇ / ⁇ or more. [13] The electromagnetic wave transmitting laminate according to [2], wherein the plurality of portions are formed in an island shape. [14] The electromagnetic wave transmissive laminate according to any one of [1] to [13], wherein the substrate is a substrate film, a resin molded substrate, a glass substrate, or an article to which metallic luster should be imparted. body.
  • an electromagnetic wave transmitting laminate having an excellent metallic appearance, having excellent electromagnetic wave transmission, having a metallic luster, and suppressing brilliance.
  • FIG. 1 is a schematic cross-sectional view of an electromagnetic wave transmitting laminated body according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an electromagnetic wave transmitting laminated body according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of an electromagnetic wave transmitting laminated body according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of an electromagnetic wave transmitting laminated body according to an embodiment of the present invention.
  • FIG. 5 is an electron micrograph of the surface of the electromagnetic wave transmitting laminate according to the embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a method of measuring the film thickness of the metal layer of the electromagnetic wave transmitting laminate according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing a transmission electron micrograph (TEM image) of a cross section of a metal layer according to an embodiment of the present invention.
  • TEM image transmission electron micrograph
  • the electromagnetic wave transmitting laminate according to the embodiment of the present invention includes a substrate, a metallic luster layer formed on the substrate, and a resin layer, and has a CIE-XYZ table of reflected light in a wavelength range of 380 nm to 780 nm.
  • the reflectance Y in the SCE measurement of the color system is 1 to 60%.
  • the metallic luster layer is preferably a metal layer, and the metal layer includes a plurality of portions that are discontinuous with each other at least in part.
  • the metallic luster layer is a metal layer may be described, but the present invention is not limited to the following description.
  • 1 to 4 show schematic cross-sectional views of the electromagnetic wave transmitting laminated body 1 according to the embodiment of the present invention.
  • FIG. 5 shows an electron micrograph (SEM image) of the surface of the metal layer of the electromagnetic wave transmitting laminate in order to explain the discontinuous structure of the metal layer.
  • FIG. 7 shows a transmission electron micrograph (TEM image) of a cross-sectional view of the metal layer 12 having an island-like structure according to the embodiment of the present invention.
  • the electromagnetic wave transmissive laminate 1 includes a substrate 10, a metallic luster layer (metal layer 12) formed on the substrate 10, and a resin layer 13.
  • the metal layer 12 is formed on the substrate 10.
  • the metal layer 12 includes a plurality of portions 12a. These plurality of portions 12a in the metal layer 12 are separated from each other by a gap 12b at least in a discontinuous state, that is, in at least a part. Since they are separated by the gap 12b, the sheet resistance of these plurality of portions 12a becomes large, and the interaction with the radio wave decreases, so that the radio wave can be transmitted.
  • Each of these portions 12a may be an aggregate of sputtered particles formed by vapor deposition, sputtering, or the like of a metal.
  • the "discontinuous state” referred to in the present specification means a state in which they are separated from each other by a gap 12b, and as a result, they are electrically insulated from each other. By being electrically insulated, the sheet resistance becomes large, and the desired electromagnetic wave transmission can be obtained. That is, according to the metal layer 12 formed in a discontinuous state, sufficient brilliance can be easily obtained, and electromagnetic wave transmission can be ensured.
  • the discontinuous form is not particularly limited, and includes, for example, an island-like structure, a crack structure, and the like.
  • the “island-like structure” means that the metal particles are independent of each other, and the metal particles are spread so as to be slightly separated from each other or partially in contact with each other. Means the structure.
  • the crack structure is a structure in which a metal thin film is divided by cracks.
  • the metal layer 12 having a crack structure can be formed, for example, by providing a metal thin film layer on a base film and bending and stretching it to generate cracks in the metal thin film layer. At this time, the metal layer 12 having a crack structure can be easily formed by providing a brittle layer made of a material having poor elasticity, that is, easily forming cracks by stretching, between the base film and the metal thin film layer. ..
  • the mode in which the metal layer 12 is discontinuous is not particularly limited, but from the viewpoint of productivity, an island-like structure is preferable.
  • the electromagnetic wave transmissive laminate 1 has a reflectance Y of 1 to 60% of the reflected light in the wavelength range of 380 nm to 780 nm in the SCE (specular reflection light removal) measurement of the CIE-XYZ color system. ..
  • a reflectance Y of 1 to 60% of the reflected light in the wavelength range of 380 nm to 780 nm in the SCE (specular reflection light removal) measurement of the CIE-XYZ color system. ..
  • the reflectance Y represents the visual reflectance, and when the reflectance Y is 1% or more, the brilliance can be suppressed.
  • the reflectance Y is more preferably 10% or more, and further preferably 20% or more.
  • the reflectance Y can be measured by a measuring device such as a spectrocolorimeter CM-2600d manufactured by Konica Minolta Co., Ltd. using D65 as a standard light source, and can be measured by the method described in Examples.
  • a measuring device such as a spectrocolorimeter CM-2600d manufactured by Konica Minolta Co., Ltd. using D65 as a standard light source, and can be measured by the method described in Examples.
  • the electromagnetic wave transmittance of the electromagnetic wave transmissive laminate 1 can be evaluated by, for example, the amount of radio wave transmission attenuation. It should be noted that there is a correlation between the amount of electromagnetic wave transmission attenuation in the microwave band (5 GHz) and the amount of electromagnetic wave transmission attenuation in the frequency band (76 to 80 GHz) of the millimeter wave radar, and the values are relatively close to each other.
  • the electromagnetic wave transmissive laminate having excellent electromagnetic wave transmission in the wave band is also excellent in electromagnetic wave transmission in the frequency band of the millimeter wave radar.
  • the amount of radio wave transmission attenuation in the microwave band (5 GHz) is preferably 10 [ ⁇ dB] or less, more preferably 5 [ ⁇ dB] or less, and further preferably 2 [ ⁇ dB] or less. .. If it is larger than 10 [ ⁇ dB], there is a problem that 90% or more of the radio waves are blocked.
  • the sheet resistance of the electromagnetic wave transmissive laminate 1 also has a correlation with the electromagnetic wave transmissivity.
  • the sheet resistance of the electromagnetic wave transmitting laminated body 1 is preferably 100 ⁇ / ⁇ or more, and in this case, the amount of radio wave transmission attenuation in the microwave band (5 GHz) is about 10 to 0.01 [ ⁇ dB].
  • the sheet resistance of the electromagnetic wave transmitting laminated body 1 is more preferably 200 ⁇ / ⁇ or more, further preferably 600 ⁇ / ⁇ or more, and particularly preferably 1000 ⁇ / ⁇ or more.
  • the sheet resistance of the electromagnetic wave transmitting laminated body 1 can be measured by an eddy current measuring method according to JIS-Z2316-1: 2014.
  • the amount of radio wave transmission attenuation and sheet resistance of the electromagnetic wave transmission laminate 1 are affected by the material and thickness of the metallic luster layer. Further, when the electromagnetic wave transmitting laminate 1 includes the indium oxide-containing layer 11, it is also affected by the material and thickness of the indium oxide-containing layer 11.
  • the substrate 10 include resins, glasses, ceramics, and the like from the viewpoint of electromagnetic wave transmission.
  • the substrate 10 may be a substrate film, a resin molded substrate, a glass substrate, or an article to which metallic luster should be imparted.
  • the base film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer (COP), and polystyrene.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PEN polybutylene terephthalate
  • polyamide polyvinyl chloride
  • PC polycarbonate
  • COP cycloolefin polymer
  • polystyrene Polypropylene
  • PP Polypropylene
  • polyethylene, polycycloolefin, polyurethane, acrylic (PMMA), ABS and other homopolymers and copolymers can be
  • the layer can withstand high temperatures such as vapor deposition and sputtering. Therefore, among the above materials, for example, polyethylene terephthalate, polyethylene naphthalate, etc. Acrylic, polycarbonate, cycloolefin polymer, ABS, polypropylene and polyurethane are preferable. Of these, polyethylene terephthalate, cycloolefin polymer, polycarbonate, and acrylic are preferable because they have a good balance between heat resistance and cost.
  • the base film may be a single-layer film or a laminated film.
  • the thickness is preferably about 6 ⁇ m to 250 ⁇ m, for example, from the viewpoint of ease of processing.
  • plasma treatment or easy-adhesion treatment may be performed.
  • the metallic luster layer may be provided on at least a part of the base film, may be provided on only one side of the base film, or may be provided on both sides.
  • the base film is only an example of an object (base 10) capable of forming a metallic luster layer on its surface.
  • the substrate 10 includes, as described above, a resin molded substrate, a glass substrate, and the article itself to which metallic luster should be imparted.
  • the resin molded base material and the articles to which metallic luster should be imparted include structural parts for vehicles, vehicle-mounted products, housings for electronic devices, housings for home appliances, structural parts, mechanical parts, and various automobiles. Examples include parts for household appliances such as parts for electronic devices, furniture, kitchen utensils, medical equipment, parts for building materials, other structural parts and exterior parts.
  • the metallic luster layer can be formed on all of these substrates, and may be formed on a part of the surface of the substrate or on the entire surface of the substrate.
  • the substrate 10 to which the metallic luster layer is to be provided preferably satisfies the same materials and conditions as the above-mentioned substrate film.
  • the electromagnetic wave transmissive laminate 1 may further include an indium oxide-containing layer 11 between the substrate 10 and the metallic luster layer (metal layer 12).
  • the indium oxide-containing layer 11 may be provided directly on the surface of the substrate 10, or may be indirectly provided via a protective film or the like provided on the surface of the substrate 10.
  • the indium oxide-containing layer 11 is preferably provided continuously on the surface of the substrate 10 to be imparted metallic luster, in other words, without gaps.
  • the smoothness and corrosion resistance of the indium oxide-containing layer 11, the metal layer 12, and the electromagnetic wave-transmitting laminate 1 can be improved, and the indium oxide-containing layer 11 can be provided without in-plane variation. It also facilitates film formation.
  • the indium oxide-containing layer 11 is further provided between the substrate 10 and the metal layer 12, that is, the indium oxide-containing layer 11 is formed on the substrate 10 and the metal layer 12 is formed on the indium oxide-containing layer 11.
  • the metal layer 12 is easily formed in a discontinuous state, which is preferable.
  • the details of the mechanism are not always clear, but when sputtered particles by metal deposition or sputtering form a thin film on the substrate, the surface diffusivity of the particles on the substrate affects the shape of the thin film, and the substrate It is considered that the higher the temperature, the smaller the wettability of the metal layer with respect to the substrate, and the lower the melting point of the material of the metal layer, the easier it is to form a discontinuous structure. Then, it is considered that by providing the indium oxide-containing layer on the substrate, the surface diffusibility of the metal particles on the surface thereof is promoted, and the metal layer can be easily grown in a discontinuous state.
  • Indium oxide (In 2 O 3 ) itself can be used as the indium oxide-containing layer 11, or a metal-containing substance such as indium tin oxide (ITO) or indium zinc oxide (IZO) is used. You can also do it.
  • ITO and IZO containing a second metal are more preferable because they have high discharge stability in the sputtering process.
  • a continuous film can be formed along the surface of the substrate, and in this case, a metal layer laminated on the indium oxide-containing layer can be formed. For example, it is preferable because it tends to have an island-like discontinuous structure.
  • chromium (Cr) or indium (In) but also aluminum or the like which is usually difficult to have a discontinuous structure and is difficult to apply to this application, is used in the metal layer. It becomes easier to include various metals.
  • the thickness of the indium oxide-containing layer 11 is usually preferably 1000 nm or less, more preferably 50 nm or less, still more preferably 20 nm or less, from the viewpoint of sheet resistance, electromagnetic wave transmission, and productivity.
  • it is preferably 1 nm or more, and in order to ensure the discontinuous state, it is more preferably 2 nm or more, and 5 nm or more. Is more preferable.
  • the metallic luster layer is formed on the substrate 10.
  • the metallic luster layer is a layer having a metallic appearance, and is preferably a layer having a metallic luster.
  • the material forming the metallic luster layer is not particularly limited and may contain a metal or a resin, or may contain a metal and a resin. When the metallic luster layer is made of only resin, metallic luster can be obtained by laminating resins having different refractive indexes.
  • the thickness of the metallic luster layer is usually preferably 5 nm or more so as to exhibit sufficient metallic luster, while it is usually preferably 100 nm or less from the viewpoint of sheet resistance and electromagnetic wave transmission.
  • the metallic luster layer is preferably a metal layer, and the metal layer preferably includes a plurality of portions that are discontinuous with each other at least in part.
  • the metal layer 12 is formed on the substrate and includes a plurality of portions that are discontinuous with each other at least in part. When the metal layer 12 is in a continuous state on the substrate, a sufficient metallic luster can be obtained, but the amount of radio wave transmission attenuation becomes very large, and therefore electromagnetic wave transmission cannot be ensured.
  • the details of the mechanism by which the metal layer 12 becomes discontinuous on the substrate are not always clear, but it is presumed to be roughly as follows. That is, in the thin film forming process of the metal layer 12, the ease of forming the discontinuous structure is related to the surface diffusion on the substrate to which the metal layer 12 is applied, the temperature of the substrate is high, and the metal layer with respect to the substrate is formed. The smaller the wettability of the metal layer and the lower the melting point of the metal layer material, the easier it is to form a discontinuous structure. Therefore, with respect to metals other than aluminum (Al) particularly used in the following examples, metals having a relatively low melting point such as zinc (Zn), lead (Pb), copper (Cu), and silver (Ag) are used. , It is considered that a discontinuous structure can be formed by the same method.
  • the metal layer 12 has a relatively low melting point as well as being able to exhibit sufficient brilliance. This is because the metal layer 12 is preferably formed by thin film growth using sputtering. For this reason, a metal having a melting point of about 1000 ° C. or lower is suitable as the metal layer 12, and for example, aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), and silver (Ag). ), And any of an alloy containing the metal as a main component is preferably contained. In particular, it is preferable to contain Al or an alloy thereof for the reason of brilliance, stability, price and the like of the substance, and Al and its alloy are more preferable. When an aluminum alloy is used, the aluminum content is preferably 50% by mass or more.
  • the equivalent circle diameter of the portion 12a of the metal layer 12 is not particularly limited, but is usually about 10 to 1000 nm.
  • the average particle diameter of the plurality of portions 12a means the average value of the equivalent circle diameters of the plurality of portions 12a.
  • the circle-equivalent diameter of the portion 12a is the diameter of a perfect circle corresponding to the area of the portion 12a.
  • the distance between the portions 12a is not particularly limited, but is usually about 10 to 1000 nm.
  • the thickness of the metal layer 12 is usually preferably 5 nm or more so as to exhibit sufficient metallic luster, while it is usually preferably 100 nm or less from the viewpoint of sheet resistance and electromagnetic wave transmission. For example, 10 nm to 100 nm is preferable, and 15 nm to 70 nm is more preferable. This thickness is also suitable for forming a uniform film with good productivity, and the appearance of the final resin molded product is also good.
  • the ratio of the thickness of the metallic luster layer to the thickness of the indium oxide-containing layer is preferably in the range of 0.02 to 100.
  • the range of 0.1 to 100 is more preferable, and the range of 0.3 to 35 is even more preferable.
  • the sheet resistance of the metallic luster layer is preferably 100 ⁇ / ⁇ or more.
  • the electromagnetic wave transmission property is about 10 to 0.01 [ ⁇ dB] at a wavelength of 5 GHz. More preferably, it is 1000 ⁇ / ⁇ or more.
  • the sheet resistance of the metallic luster layer and the indium oxide-containing layer as a laminate is preferably 100 ⁇ / ⁇ or more.
  • the electromagnetic wave transmission property is about 10 to 0.01 [ ⁇ dB] at a wavelength of 5 GHz. More preferably, it is 1000 ⁇ / ⁇ or more.
  • the value of this sheet resistance is greatly affected not only by the material and thickness of the metallic luster layer but also by the material and thickness of the indium oxide-containing layer which is the base layer. Therefore, when the indium oxide-containing layer is provided, it is necessary to consider the relationship with the indium oxide-containing layer.
  • the electromagnetic wave transmitting laminate 1 may have a barrier layer 14 on a surface of the metallic luster layer (metal layer 12) opposite to the substrate 10 side.
  • the barrier layer 14 may be laminated on the metal layer 12, and the gap 12b does not necessarily have to be completely filled.
  • the barrier layer 14 is a layer for suppressing oxidation (corrosion) of the metal layer 12.
  • the barrier layer preferably contains at least one selected from the group consisting of at least one oxide of metal and metalloid, nitrides, carbides, oxynitrides, carbides, carbides and carbides.
  • the metal for example, aluminum, titanium, indium, magnesium and the like
  • the metalloid for example, silicon, bismuth, germanium and the like
  • ZnO + Al 2 O 3 AZO
  • IZO indium zinc oxide
  • ITO indium tin oxide
  • SiOCN silicon nitride film
  • SiON silicon nitride film
  • SiN silicon nitride film
  • the network structure (mesh-like structure) in the barrier layer is made dense. It preferably contains carbon and nitrogen. In order to further improve the transparency, it is preferable that oxygen is contained. That is, the barrier layer preferably contains at least one carbide oxide of metal and metalloid.
  • the barrier layer does not easily allow water vapor to permeate.
  • the degree of water vapor permeation of the barrier layer can be evaluated by various methods, and for example, it can be evaluated using the amount of water vapor permeation measured by the method described in the column of Examples.
  • the water vapor permeation amount is less than 3g / m 2 ⁇ day, more preferably at most 1g / m 2 ⁇ day, 0.5g / m 2 ⁇ day or less Is more preferable.
  • the thickness of the barrier layer 14 is not particularly limited, but in order to improve the barrier property, 5 nm or more is preferable, 10 nm or more is more preferable, and 20 nm or more is further preferable. Further, in order to improve the electromagnetic wave transmission and the metallic luster of the appearance, 100 nm or less is preferable, 70 nm or less is more preferable, and 50 nm or less is further preferable.
  • the barrier layer may be further provided between the metal layer and the substrate.
  • the electromagnetic wave transmissive laminate 1 includes an indium oxide-containing layer
  • a barrier layer may be provided between the indium oxide-containing layer and the metal layer, and a barrier layer is provided on the side opposite to the metal layer of the indium oxide-containing layer. You may. Moreover, it may be provided in both of them.
  • the electromagnetic wave transmitting laminate may be provided with other layers depending on the application, in addition to the above-mentioned metal layer, indium oxide-containing layer, and barrier layer.
  • Other layers include an optical adjustment layer (color adjustment layer) such as a high-refractive material for adjusting the appearance such as color, and a protective layer (scratch resistance layer) for improving durability such as scratch resistance. , Easy-adhesion layer, hard coat layer, antireflection layer, light extraction layer, anti-glare layer and the like.
  • the electromagnetic wave transmitting laminate of the present embodiment includes a resin layer 13. As shown in FIG. 1, the resin layer 13 is preferably formed on the metallic luster layer.
  • the resin layer 13 is an optical adjustment layer (color adjustment layer) such as a high-refractive material for adjusting the appearance such as color, and a protective layer (scratch resistance) for improving durability such as moisture resistance and scratch resistance. It may be a sex layer), an easy-adhesion layer, an adhesive layer, a hard coat layer, an antireflection layer, a light extraction layer, an anti-glare layer, or the like.
  • a plurality of resin layers 13 can be provided, and it is preferable that at least one layer is a layer having light diffusivity.
  • the resin layer 13 is a layer having light diffusivity
  • the light diffusive fine particles diffuse the light, so that the reflected light from the metallic luster layer is diffused, and the reflectance Y in the SCE measurement of the CIE-XYZ color system is set to 1. It is easy to set it to ⁇ 60%.
  • the layer having light diffusivity is preferably a layer containing light diffusible fine particles.
  • the pressure-sensitive adhesive layer may be a light-diffusing pressure-sensitive adhesive layer containing light-diffusing fine particles.
  • the electromagnetic wave-transmitting laminate may be provided with another resin layer depending on the intended use, and the other resin layer may be a layer having light diffusivity.
  • FIG. 3 is a schematic cross-sectional view of an electromagnetic wave transmitting laminated body according to an embodiment of the present invention.
  • the electromagnetic wave transmitting laminate 1 may include a substrate 10, an indium oxide-containing layer 11, a metal layer 12, and a light diffusing adhesive layer 13a and a hard coat layer 13b as resin layers. Good.
  • an indium oxide-containing layer 11, a metal layer 12, and a light diffusing pressure-sensitive adhesive layer 13a are provided on a substrate 10 provided with a hard coat layer 13b.
  • the electromagnetic wave transmitting laminated body 1 of the present embodiment may be used by being attached to an adherend member via a light diffusing pressure-sensitive adhesive layer 13a.
  • the adherend member can be decorated from the inside by attaching the electromagnetic wave transmissive laminate 1 to the transparent adherend member via the light diffusing adhesive layer 13a.
  • the electromagnetic wave transmitting laminated body 1 is interposed via the light diffusing adhesive layer 13a with respect to the surface of the transparent adherend member on the side opposite to the visible side (hereinafter, also referred to as the outside) (hereinafter, also referred to as the inside).
  • the light diffusing adhesive layer 13a and the metal layer 12 are visually recognized through the adherend member.
  • the electromagnetic wave transmissive laminate 1 of the present embodiment has high light diffusivity, and can obtain an excellent metallic appearance that exhibits metallic luster and suppresses brilliance.
  • the transparent adherend member for example, a member made of glass or plastic can be used, but the transparent member is not limited to this.
  • the haze value of the resin layer is preferably 10% or more, more preferably 20% or more, still more preferably 50% or more from the viewpoint of realizing a matte appearance.
  • the haze value of the resin layer can be measured by a measuring device such as a spectrocolorimeter CM-2600d manufactured by Konica Minolta Co., Ltd., and can be measured by the method described in Examples.
  • the ratio of the thickness of the metallic luster layer to the thickness of the resin layer can be changed depending on the type and number of the resin layers, and is not particularly limited, but is bonded. From the viewpoint of step absorption at the time, 0.0001 or more is preferable, 0.0003 or more is more preferable, and 0.001 or more is further preferable. Further, from the viewpoint of thinning the housing, 0.01 or less is preferable, 0.006 or less is more preferable, and 0.003 or less is further preferable.
  • the thickness of the resin layer is the thickness of each resin layer when a plurality of resin layers are provided.
  • the ratio of the thickness of the metallic luster layer to the thickness of the light diffusing adhesive layer is determined at the time of bonding. From the viewpoint of step absorption, 0.0001 or more is preferable, 0.0003 or more is more preferable, and 0.001 or more is further preferable. Further, from the viewpoint of thinning the housing, 0.01 or less is preferable, 0.006 or less is more preferable, and 0.003 or less is further preferable.
  • the light diffusing pressure-sensitive adhesive layer containing the light diffusing fine particles can be formed from the base pressure-sensitive adhesive composition and the light diffusing fine particles.
  • (1-1) Base Adhesive Composition The base adhesive composition preferably contains a (meth) acrylic polymer (A) as the base polymer.
  • the (meth) acrylic polymer (A) preferably contains an alkyl (meth) acrylate (a1) constituting the main skeleton of the (meth) acrylic polymer (A) as a monomer unit.
  • (meth) acrylate means acrylate and / or methacrylate.
  • alkyl (meth) acrylate (a1) examples include linear or branched alkyl groups having 1 to 18 carbon atoms.
  • the alkyl group includes methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, amyl group, hexyl group, cyclohexyl group, heptyl group, 2-ethylhexyl group, isooctyl group, nonyl group and decyl.
  • Examples thereof include a group, an isodecyl group, a dodecyl group, an isomyristyl group, a lauryl group, a tridecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group and the like. These can be used alone or in combination.
  • the blending ratio of the alkyl (meth) acrylate (a1) is preferably 50% by mass or more, preferably 50 to mass%, based on the total constituent monomers (100% by mass) constituting the (meth) acrylic polymer (A). It is more preferably 100% by mass, further preferably 60 to 100% by mass, and particularly preferably 70 to 90% by mass.
  • the (meth) acrylic polymer (A) is composed of a group consisting of a carboxyl group-containing monomer (a2), a hydroxyl group-containing monomer (a3), and a nitrogen-containing monomer (a4) for the purpose of improving adhesiveness and heat resistance. It is preferable to contain one or more selected monomers as a monomer component.
  • carboxyl group-containing monomer (a2) those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a carboxyl group can be used without particular limitation. ..
  • the carboxyl group-containing monomer include (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, isocrotonic acid and the like. Can be used alone or in combination. These anhydrides can be used for itaconic acid and maleic acid. Among these, acrylic acid and methacrylic acid are preferable, and acrylic acid is particularly preferable.
  • the blending ratio of the carboxyl group-containing monomer (a2) is preferably 10% by mass or less, preferably 0.05% by mass or less, based on the total constituent monomers (100% by mass) constituting the (meth) acrylic polymer (A). It is more preferably to 10% by mass, further preferably 0.1 to 10% by mass, and particularly preferably 0.5 to 5% by mass.
  • hydroxyl group-containing monomer (a3) a monomer having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a hydroxyl group can be used without particular limitation. ..
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 6-hydroxyhexyl ( Hydroxyalkyl (meth) acrylates such as meta) acrylates, 8-hydroxyoctyl (meth) acrylates, 10-hydroxydecyl (meth) acrylates, 12-hydroxylauryl (meth) acrylates; (4-hydroxymethylcyclohexyl) methyl ( Examples thereof include hydroxyalkylcycloalkalane (meth) acrylates such as meta) acrylates.
  • hydroxyethyl (meth) acrylamide examples include hydroxyethyl (meth) acrylamide, allyl alcohol, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether and the like. These can be used alone or in combination. Among these, hydroxyalkyl (meth) acrylate is preferable, and 2-hydroxyethyl (meth) acrylate is more preferable.
  • the blending ratio of the hydroxyl group-containing monomer (a3) is preferably 20% by mass or less, preferably 0.05% by mass or less, based on the total constituent monomers (100% by mass) constituting the (meth) acrylic polymer (A). It is more preferably about 20% by mass, further preferably 0.1 to 15% by mass, and particularly preferably 1 to 15% by mass.
  • the nitrogen-containing monomer (a4) one having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a functional group having a nitrogen atom is used without particular limitation. be able to.
  • the blending ratio of the nitrogen-containing monomer (a4) is preferably 20% by mass or less, preferably 0.05 to mass%, based on the total constituent monomers (100% by mass) constituting the (meth) acrylic polymer (A). It is more preferably 20% by mass, further preferably 0.1 to 15% by mass, and particularly preferably 1 to 15% by mass.
  • the (meth) acrylic polymer (A) is further added.
  • the (meth) acrylic polymer (A) is further added.
  • one or more copolymerized monomers having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group by copolymerization for the purpose of improving adhesiveness and heat resistance. be able to.
  • Such copolymerizable monomers include caprolactone adducts of acrylic acid; containing sulfonic acid groups such as styrene sulfonic acid, allyl sulfonic acid, sulfopropyl (meth) acrylate, and (meth) acryloyloxynaphthalene sulfonic acid.
  • Monomer examples thereof include a sulfonic acid group-containing monomer such as 2-hydroxyethylacryloyl phosphate.
  • the ratio of the copolymerization monomer other than the carboxyl group-containing monomer (a2), the hydroxyl group-containing monomer (a3), and the nitrogen-containing monomer (a4) is not particularly limited, but all of the (meth) acrylic polymer (A) is composed.
  • the monomer it is preferably 10% by mass or less, more preferably 0.1 to 10% by mass, still more preferably 0.1 to 5% by mass.
  • the (meth) acrylic polymer (A) can be obtained by polymerizing the above monomers in an appropriate combination according to the purpose and desired properties.
  • the obtained (meth) acrylic polymer (A) may be any of a random copolymer, a block copolymer, and a graft copolymer.
  • the (meth) acrylic polymer (A) can be synthesized by any appropriate method. For example, it can be synthesized by referring to "Adhesion / Adhesive Chemistry and Applications" by Katsuhiko Nakamae published by Dainippon Tosho Co., Ltd. ..
  • any appropriate method can be adopted as the polymerization method of the (meth) acrylic polymer (A).
  • Specific examples include solution polymerization, bulk polymerization, emulsion polymerization, and various radical polymerizations.
  • the polymerization initiator, chain transfer agent, emulsifier, etc. used for radical polymerization are not particularly limited and can be appropriately selected and used.
  • the weight average molecular weight of the (meth) acrylic polymer can be controlled by the amount of the polymerization initiator and the chain transfer agent used, and the reaction conditions, and the amount of the (meth) acrylic polymer used is appropriately adjusted according to these types.
  • solution polymerization and the like ethyl acetate, toluene and the like are used as the polymerization solvent.
  • the reaction is carried out under an inert gas stream such as nitrogen, a polymerization initiator is added, and usually at about 50 to 70 ° C. under reaction conditions of about 5 to 30 hours.
  • thermal polymerization initiator used for solution polymerization and the like examples include azo-based initiators such as 2,2'-azobisisobutyronitrile; peroxide-based initiators, peroxides and reducing agents. Examples thereof include a combined redox-based initiator, but the present invention is not limited thereto.
  • the polymerization initiator may be used alone or in combination of two or more, but with respect to 100 parts by mass of all the monomer components constituting the (meth) acrylic polymer (A). It is preferably about 1 part by mass or less, more preferably about 0.005 to 1 part by mass, and further preferably about 0.02 to 0.5 part by mass.
  • the amount of the polymerization initiator used is the total amount of the monomer components. It is preferably about 0.2 parts by mass or less, and more preferably about 0.06 to 0.2 parts by mass with respect to 100 parts by mass.
  • the (meth) acrylic polymer (A) when produced by radiation polymerization, it can be produced by polymerizing the monomer component by irradiating it with radiation such as an electron beam or UV.
  • radiation polymerization When the radiation polymerization is carried out by an electron beam, it is not particularly necessary to include a photopolymerization initiator in the monomer component, but when the radiation polymerization is carried out by UV polymerization, the polymerization time is particularly short.
  • a photopolymerization initiator can be contained in the monomer component because of the advantages of the above.
  • the photopolymerization initiator may be used alone or in combination of two or more.
  • the weight average molecular weight of the (meth) acrylic polymer (A) used in the present invention is preferably 400,000 to 2.5 million, more preferably 600,000 to 2.2 million. By setting the weight average molecular weight to more than 400,000, it is possible to satisfy the durability of the pressure-sensitive adhesive layer and suppress the cohesive force of the pressure-sensitive adhesive layer from causing adhesive residue.
  • the weight average molecular weight is a value calculated by gel permeation chromatography (GPC) and converted to polystyrene. It is difficult to measure the molecular weight of the (meth) acrylic polymer obtained by radiation polymerization.
  • the base pressure-sensitive adhesive composition used in the present invention may contain a cross-linking agent.
  • the cross-linking agent include an organic cross-linking agent and a polyfunctional metal chelate.
  • the organic cross-linking agent include isocyanate-based cross-linking agents, peroxide-based cross-linking agents, epoxy-based cross-linking agents, and imine-based cross-linking agents.
  • a polyfunctional metal chelate is one in which a polyvalent metal is covalently or coordinated to an organic compound.
  • the polyvalent metal include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn and Ti. Can be mentioned.
  • Examples of the organic compound include alkyl esters, alcohol compounds, carboxylic acid compounds, ether compounds, and ketone compounds.
  • Examples of the atom in the organic compound having a covalent bond or a coordination bond include an oxygen atom.
  • an isocyanate-based cross-linking agent is preferable as the cross-linking agent.
  • the isocyanate-based cross-linking agent typically refers to a compound having two or more isocyanate groups in one molecule.
  • isocyanate monomers such as tolylene diisocyanate, chlorphenylene diisocyanate, tetramethylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, and hydrogenated diphenylmethane diisocyanate, and isocyanate compounds obtained by adding these isocyanate monomers to trimethylpropane and the like.
  • Examples thereof include isocyanurates, bullet-type compounds, and urethane prepolymer-type isocyanates which have been subjected to an addition reaction with polyether polyols, polyester polyols, acrylic polyols, polybutadiene polyols, polyisoprene polyols, and the like.
  • Particularly preferred is a polyisocyanate compound, which is one selected from the group consisting of hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, and isophorone diisocyanate, or a polyisocyanate compound derived thereto.
  • one type selected from the group consisting of hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, and isophorone diisocyanate or a polyisocyanate compound derived from the same includes hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, and polyol modification.
  • Hexamethylene diisocyanate, polyol-modified hydrogenated xylylene diisocyanate, trimmer-type hydrogenated xylylene diisocyanate, polyol-modified isophorone diisocyanate and the like are included.
  • any suitable compound capable of generating radically active species by heating or light irradiation to promote cross-linking of the base polymer can be adopted.
  • a peroxide having a one-minute half-life temperature of 80 ° C. to 160 ° C. is preferable, and a peroxide having a half-life temperature of 90 ° C. to 140 ° C. is more preferable.
  • Specific examples of peroxides include di (2-ethylhexyl) peroxydicarbonate (1 minute half-life temperature: 90.6 ° C.) and di (4-t-butylcyclohexyl) peroxydicarbonate (1 minute half-life).
  • the half-life of peroxide is an index showing the decomposition rate of peroxide, and means the time until the residual amount of peroxide is halved. Therefore, the 1-minute half-life temperature of peroxide means the temperature at which the residual amount of peroxide is halved in 1 minute.
  • the decomposition temperature for obtaining a half-life at an arbitrary temperature and the half-life time at an arbitrary temperature are described in the manufacturer's catalog, etc. For example, "Organic Peroxide Catalog No. 9" of Nippon Oil & Fats Co., Ltd. Edition ( May 2003) ”etc.
  • the amount of the cross-linking agent used is preferably 0.01 to 20 parts by mass, more preferably 0.03 to 10 parts by mass with respect to 100 parts by mass of the (meth) acrylic polymer (A). If the amount of the cross-linking agent used is less than 0.01 parts by mass, the cohesive force of the pressure-sensitive adhesive tends to be insufficient, and foaming may occur during heating. If the amount of the cross-linking agent used exceeds 20 parts by mass, the moisture resistance is not sufficient and peeling or the like may easily occur.
  • the base pressure-sensitive adhesive composition may contain any suitable additive.
  • the additive include an antistatic agent, an antioxidant, and a coupling agent.
  • the type, amount and combination of additives can be appropriately set according to the purpose.
  • the content of the base pressure-sensitive adhesive composition in the light-diffusing pressure-sensitive adhesive layer used in the present invention is preferably 50 to 99.7% by mass, more preferably 52 to 97% by mass, and 70 to 97% by mass. Is even more preferable.
  • the refractive index of the base pressure-sensitive adhesive composition is preferably 1.44 or more, more preferably 1.44 to 1.60, and even more preferably 1.44 to 1.55.
  • the refractive index of the base pressure-sensitive adhesive composition is within the above range, the difference in refractive index from the light-diffusing fine particles described later can be set within a desired range.
  • a light diffusing pressure-sensitive adhesive layer having excellent light diffusivity can be obtained after curing, which is preferable.
  • the light-diffusing fine particles are dispersed in the pressure-sensitive adhesive layer formed from the base pressure-sensitive adhesive composition.
  • the light diffusing fine particles any suitable one can be used as long as the effects of the present invention can be obtained. Specific examples include inorganic fine particles and polymer fine particles, and among these, polymer fine particles are preferable.
  • the material of the polymer fine particles examples include silicone resin, methacrylic resin (for example, polymethyl methacrylate), polystyrene resin, polyurethane resin, and melamine resin. Since these resins have excellent dispersibility with respect to the base pressure-sensitive adhesive composition and an appropriate difference in refractive index from the base pressure-sensitive adhesive composition, a light-diffusing pressure-sensitive adhesive layer having excellent diffusion performance can be obtained. Among these, silicone resin and polymethyl methacrylate are particularly preferable.
  • the shape of the light diffusing fine particles can be, for example, a true spherical shape, a flat shape, or an indefinite shape.
  • the light diffusing fine particles may be used alone or in combination of two or more.
  • the refractive index of the light diffusing fine particles used in the present invention is preferably lower than the refractive index of the base pressure-sensitive adhesive composition.
  • the refractive index of the light diffusing fine particles is preferably 1.30 to 1.70, more preferably 1.40 to 1.65.
  • the refractive index of the light diffusing fine particles is within the above range, a light diffusing pressure-sensitive adhesive layer having excellent light diffusivity can be obtained, and the reflectance Y of the electromagnetic wave transmitting laminate can be easily set within a desired range, which is preferable.
  • the absolute value of the difference in refractive index between the light diffusing fine particles and the base pressure-sensitive adhesive composition is preferably more than 0 and 0.2 or less, more preferably more than 0 and 0.15 or less, and 0. It is more preferably 0.01 to 0.13.
  • the volume average particle diameter of the light diffusing fine particles is preferably about 1 to 5 ⁇ m, more preferably about 2 to 5 ⁇ m, and even more preferably about 2 to 4 ⁇ m.
  • the volume average particle size can be measured using, for example, an ultracentrifugal automatic particle size distribution measuring device.
  • the content of the light diffusing fine particles in the light diffusing pressure-sensitive adhesive layer is not particularly limited, but is preferably 0.3 to 50% by mass, more preferably 3 to 48% by mass, and 3 It is more preferably to 30% by mass.
  • the light diffusing performance of the light diffusing pressure-sensitive adhesive layer can be controlled by adjusting the constituent material of the matrix (adhesive), the constituent material of the light diffusing fine particles, the volume average particle size, the blending amount, and the like.
  • the method for forming the pressure-sensitive adhesive layer is not particularly limited.
  • the pressure-sensitive adhesive composition is applied onto various substrates, a solvent or the like is dried and removed, and the like. If necessary, a cross-linking treatment may be performed to form a pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer may be transferred onto the metallic luster layer.
  • the pressure-sensitive adhesive composition may be directly applied onto the metallic luster layer. It may be applied to form an adhesive layer. For example, it can be formed by applying a light-diffusing pressure-sensitive adhesive composition in which light-diffusing fine particles are dispersed in the base pressure-sensitive adhesive composition onto a metallic luster layer and drying and removing a solvent or the like.
  • the base pressure-sensitive adhesive composition is an active energy ray-curable type
  • a prepolymer obtained by polymerizing a part of the base pressure-sensitive adhesive composition is produced, and light-diffusing fine particles are dispersed in the prepolymer.
  • a light-diffusing pressure-sensitive adhesive layer can be formed by applying the pressure-sensitive adhesive composition on a metallic glossy layer and irradiating the coating layer with active energy rays such as ultraviolet rays.
  • the light diffusing pressure-sensitive adhesive composition can be applied onto the transparent conductive layer to form the light diffusing pressure-sensitive adhesive layer.
  • the thickness of the light diffusing pressure-sensitive adhesive layer is preferably 5 to 300 ⁇ m, more preferably 5 to 250 ⁇ m, further preferably 10 to 250 ⁇ m, and even more preferably 15 to 200 ⁇ m. It is particularly preferable that the thickness is more than 15 ⁇ m and 150 ⁇ m or less. When the thickness of the light diffusing pressure-sensitive adhesive layer is 5 ⁇ m or more, it is preferable because it is possible to follow the minute unevenness of the material to be bonded or the uneven portion for imparting an optical function. Further, it is preferable that the thickness of the light diffusing pressure-sensitive adhesive layer is 300 ⁇ m or less, and from the viewpoint of thinning the housing.
  • the thickness of the light-diffusing pressure-sensitive adhesive layer is about 5 to 100 ⁇ m, which affects the peripheral members due to the physical properties of the light-diffusing pressure-sensitive adhesive. It is preferable from the viewpoint that it does not affect the bonding effect of the above, and more preferably about 5 to 30 ⁇ m.
  • the total thickness of all the light diffusing pressure-sensitive adhesive layers may be within the above range.
  • Various methods are used as the method for applying the light diffusing pressure-sensitive adhesive composition. Specifically, for example, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples include a method such as an extrusion coating method.
  • the heating and drying temperature is preferably about 30 ° C. to 200 ° C., more preferably 40 ° C. to 180 ° C., and even more preferably 80 ° C. to 160 ° C. By setting the heating temperature in the above range, an adhesive layer having excellent adhesive properties can be obtained.
  • As the drying time an appropriate time can be adopted as appropriate. The drying time is preferably about 5 seconds to 20 minutes, more preferably 30 seconds to 10 minutes, and even more preferably 1 minute to 8 minutes.
  • a light-diffusing pressure-sensitive adhesive layer can be formed by irradiating with active energy rays such as ultraviolet rays.
  • active energy rays such as ultraviolet rays.
  • a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a chemical light lamp, or the like can be used for ultraviolet irradiation.
  • the various base materials function as a support, and for example, a peeled sheet can be used.
  • a silicone release liner is preferably used as the release-treated sheet.
  • the pressure-sensitive adhesive layer When the pressure-sensitive adhesive layer is exposed, the pressure-sensitive adhesive layer may be protected by a peel-treated sheet (separator) until it is put into practical use. .. In practical use, the peeled sheet is peeled off.
  • constituent material of the separator examples include porous materials such as plastic film, paper, cloth, and non-woven fabric, nets, foam sheets, metal foils, and appropriate thin leaves such as laminates thereof.
  • a plastic film is preferably used because of its excellent surface smoothness.
  • plastic film examples include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polybutylene terephthalate film, polyurethane film, and ethylene.
  • -Vinyl acetate copolymer film and the like can be mentioned.
  • the thickness of the separator is usually about 5 to 200 ⁇ m, preferably about 5 to 100 ⁇ m.
  • the separator may be used for mold release and antifouling treatment with a silicone-based, fluorine-based, long-chain alkyl-based or fatty acid amide-based mold release agent, silica powder, etc., as well as a coating type, a kneading type, and a vapor deposition type. It is also possible to carry out antistatic treatment such as.
  • the peelability from the pressure-sensitive adhesive layer can be further enhanced by appropriately performing a peeling treatment such as a silicone treatment, a long-chain alkyl treatment, or a fluorine treatment on the surface of the separator.
  • the electromagnetic wave transmitting laminate 1 may further include a hard coat layer.
  • the hard coat layer 13b is formed from, for example, a hard coat composition.
  • the hard coat composition contains a resin component, preferably composed of a resin component.
  • the resin component examples include a curable resin, a thermoplastic resin (for example, a polyolefin resin), and preferably a curable resin.
  • the thickness of the hard coat layer is, for example, 0.5 ⁇ m or more, preferably 1.0 ⁇ m or more, and for example, 10 ⁇ m or less, preferably 3.0 ⁇ m or less, more preferably 2.0 ⁇ m or less.
  • the thickness of the hard coat layer can be measured using, for example, a film thickness meter (digital dial gauge).
  • the metallic luster layer is a metal layer
  • a method such as vacuum deposition or sputtering can be used to form the metal layer 12 on the substrate 10.
  • the metallic luster layer is a resin layer
  • a method such as a feed block method or a multi-manifold method for resin having different refractive indexes.
  • the indium oxide-containing layer 11 is formed on the substrate 10, the indium oxide-containing layer 11 is formed by vacuum deposition, sputtering, ion plating, or the like prior to the formation of the metallic luster layer.
  • sputtering is preferable because the thickness can be strictly controlled even in a large area.
  • the indium oxide-containing layer 11 is provided between the substrate 10 and the metallic luster layer, it is preferable that the indium oxide-containing layer 11 and the metallic luster layer are in direct contact with each other without interposing another layer.
  • electromagnetic wave transmissive laminates and metal thin films Since the electromagnetic wave transmissive laminate of the present embodiment has electromagnetic wave transmissivity, it is preferable to use it for an apparatus, an article, a component thereof, or the like that transmits and receives electromagnetic waves.
  • applications for household goods such as structural parts for vehicles, vehicle-mounted products, housings for electronic devices, housings for home appliances, structural parts, mechanical parts, various automobile parts, electronic device parts, furniture, kitchen supplies, etc. , Medical equipment, building material parts, other structural parts, exterior parts, etc.
  • ECU box electrical parts, engine peripheral parts, drive system / gear peripheral parts, intake / exhaust system parts, cooling system parts and the like.
  • home appliances such as refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, TVs, watches, ventilation fans, projectors, speakers, personal computers, mobile phones , Smartphones, digital cameras, tablet PCs, portable music players, portable game machines, chargers, electronic information devices such as batteries, and the like.
  • the produced electromagnetic wave-transmitting laminate is attached to a glass plate (S200S200 manufactured by Matsunami Glass Industry Co., Ltd.) having a thickness of 1.3 mm, and a spectrocolorimeter CM-2600d manufactured by Konica Minolta is used to obtain a wavelength.
  • the reflectance Y (%) in the SCE measurement was measured for visible light in the range of 380 nm to 780 nm. These measured values are values via the glass plate.
  • D65 was used as a standard light source, and the visible light was incident on the side of the surface of the obtained electromagnetic wave transmitting laminate where the metallic luster layer was provided.
  • a square region 3 having a side of 5 cm is appropriately extracted from the electromagnetic wave transmitting laminate, and the center lines A of the vertical side and the horizontal side of the square region 3 are appropriately extracted.
  • And B were divided into four equal parts, and a total of five points "a" to "e” obtained were selected as measurement points.
  • TEM image transmission electron micrograph
  • the total cross-sectional area of the metal layer in the viewing angle region extracted at each of the five measurement points divided by the width of the viewing angle region is defined as the film thickness of the metal layer in each viewing angle region.
  • the average value of the film thickness of the metal layer in each viewing angle region was defined as the metal layer thickness (nm).
  • Example 1 Manufacturing of light diffusing pressure-sensitive adhesive composition
  • 100 parts by mass of butyl acrylate, 5 parts by mass of acrylic acid, 1 part by mass of hydroxyethyl acrylate, and 2,2'-as a polymerization initiator 100 parts by mass of butyl acrylate, 5 parts by mass of acrylic acid, 1 part by mass of hydroxyethyl acrylate, and 2,2'-as a polymerization initiator.
  • 0.1 part by mass of azobisisobutyronitrile was charged together with 100 parts by mass of ethyl acetate (monomer concentration 50%), nitrogen gas was introduced with gentle stirring to replace nitrogen, and then the liquid temperature in the flask was 55.
  • the polymerization reaction was carried out for 8 hours while keeping the temperature at around ° C. to prepare a solution of acrylic polymer 1 having a weight average molecular weight (Mw) of 1.8 million.
  • Mw weight average molecular weight
  • An isocyanate-based cross-linking agent (trade name: Coronate L, trimethylolpropane / tolylene diisocyanate trimer adduct, Nippon Polyurethane Industry Co., Ltd.) with respect to 100 parts by mass of the solid content of the acrylic polymer 1 solution obtained above. 0.66 parts by mass, benzoyl peroxide (Niper BMT, manufactured by Nippon Polyurethane Industry Co., Ltd.) 0.3 parts by mass, silane coupling agent (trade name: KBM403, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 0.2 mass Part was added to obtain a base pressure-sensitive adhesive composition 1.
  • benzoyl peroxide Niper BMT, manufactured by Nippon Polyurethane Industry Co., Ltd.
  • silane coupling agent (trade name: KBM403, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 0.2 mass Part was added to obtain a base pressure-sensitive adhesive composition 1.
  • Silicone resin fine particles (trade name: Tospearl 145, volume average particle diameter: 4 ⁇ m, refractive index: 1.43, silicone) as light diffusible fine particles with respect to 100 parts by mass of the solid content of the obtained base pressure-sensitive adhesive composition 1.
  • a light diffusing pressure-sensitive adhesive composition 1 was prepared by blending 2 parts by mass of resin-based fine particles and Momentive Performance Materials Co., Ltd.).
  • a PET film (thickness 50 ⁇ m) on which a hard coat layer was formed was used.
  • DC magnetron sputtering was used to form an ITO layer with a thickness of 5 nm directly on the surface of the base film.
  • the temperature of the base film when forming the ITO layer was set to 130 ° C.
  • AC sputtering (AC: 40 kHz) was used to form an aluminum (Al) layer having a thickness of 17 nm on the ITO layer.
  • the obtained aluminum layer was a discontinuous layer.
  • the temperature of the base film when forming the Al layer was set to 130 ° C.
  • DC direct current sputtering
  • AZO aluminum-doped zinc oxide
  • the temperature at which the AZO layer was formed was set to 130 ° C.
  • the amount of radio wave transmission attenuation of the obtained laminated body 1 was measured and found to be ⁇ 0.02 dB.
  • the light diffusion pressure-sensitive adhesive composition obtained above on one side of a polyethylene terephthalate film (polyester film manufactured by Mitsubishi Chemical Co., Ltd., trade name "MRF-38", separator film) treated with a silicone-based release agent.
  • the pressure-sensitive adhesive layer was applied so as to have a thickness of 20 ⁇ m and dried at 155 ° C. for 1 minute to form a pressure-sensitive adhesive layer on the surface of the separator film.
  • the pressure-sensitive adhesive layer formed on the separator film was transferred to the surface of the laminate 1 obtained above on the metal layer side to obtain an electromagnetic wave-transmitting laminate.
  • Examples 2 to 5 The electromagnetic wave transmitting laminates of Examples 2 to 5 were produced in the same manner as in Example 1 except that the amount of the silicone resin fine particles used for preparing the light diffusing pressure-sensitive adhesive composition was changed as shown in Table 1.
  • Comparative Example 1 An electromagnetic wave transmitting laminate of Comparative Example 1 was produced in the same manner as in Example 1 except that silicone resin fine particles were not added to the preparation of the light diffusing pressure-sensitive adhesive composition. The obtained aluminum layer was a discontinuous layer.
  • Example 6 to 10 Electromagnetic wave transmissive lamination of Examples 6 to 10 in the same manner as in Example 1 except that the amount of silicone resin fine particles used for preparing the light diffusing pressure-sensitive adhesive composition and the thickness of the aluminum layer were changed as shown in Table 1. Manufactured the body. The obtained aluminum layer was a discontinuous layer.
  • Comparative Example 2 An electromagnetic wave transmitting laminate of Comparative Example 2 was produced in the same manner as in Example 6 except that silicone resin fine particles were not added to the preparation of the light diffusing pressure-sensitive adhesive composition. The obtained aluminum layer was a discontinuous layer. The evaluation results are shown in Table 1 below.
  • the reflectance Y was in the range of 1 to 60%, and an electromagnetic wave transmissive laminate having a good metallic appearance with suppressed brilliance was obtained.
  • the electromagnetic wave transmitting laminates of Comparative Examples 1 and 2 had a reflectance Y of less than 1%, which was inferior in appearance to metal as compared with Examples 1 to 10.
  • metals other than aluminum (Al) particularly used in the above examples metals having a relatively low melting point such as zinc (Zn), lead (Pb), copper (Cu), and silver (Ag) are used. , It is considered that a discontinuous structure can be formed by the same method.
  • the electromagnetic wave transmissive laminate according to the present invention can be used for devices and articles that transmit and receive electromagnetic waves, and parts thereof.
  • applications for household goods such as structural parts for vehicles, vehicle-mounted supplies, housings for electronic devices, housings for home appliances, structural parts, mechanical parts, various automobile parts, electronic device parts, furniture, kitchen supplies, etc.
  • It can also be used for various applications that require both design and electromagnetic wave transmission, such as medical equipment, building material parts, other structural parts and exterior parts.
  • Electromagnetic wave transmissive laminate 10 Base 11 Indium oxide-containing layer 12 Metal layer 12a Part 12b Gap 13 Resin layer 13a Light diffusion adhesive layer 13b Hard coat layer

Landscapes

  • Laminated Bodies (AREA)

Abstract

The present invention relates to an electromagnetic wave transmissive layered product provided with: a substrate; a metallic luster layer formed on the substrate; and a resin layer, wherein reflectivity Y of reflected light in the wavelength range of 380-780 nm according to SCE measurement in a CIE-XYZ colorimetric system is 1-60%.

Description

電磁波透過性積層体Electromagnetic wave transmissive laminate
 本発明は、電磁波透過性積層体に関する。 The present invention relates to an electromagnetic wave transmitting laminate.
 従来、電磁波透過性及び金属光沢を有する部材が、その金属光沢に由来する外観の高級感と、電磁波透過性とを兼ね備えることから、電磁波を送受信する装置に好適に用いられている。
 金属光沢調の部材に金属を使用した場合には、電磁波の送受信が実質的に不可能、或いは、妨害されてしまう。したがって、電磁波の送受信を妨げることなく、意匠性を損なわせないために、金属光沢と電磁波透過性の双方を兼ね備えた電磁波透過性積層体が必要とされている。
Conventionally, a member having electromagnetic wave transmission and metallic luster has both a high-class appearance derived from the metallic luster and electromagnetic wave transmission, and is therefore suitably used for an apparatus for transmitting and receiving electromagnetic waves.
When metal is used for the metallic luster member, the transmission and reception of electromagnetic waves is substantially impossible or disturbed. Therefore, in order not to interfere with the transmission and reception of electromagnetic waves and not to impair the design, an electromagnetic wave transmitting laminate having both metallic luster and electromagnetic wave transmission is required.
 このような電磁波透過性積層体は、電磁波を送受信する装置として、通信を必要とする様々な機器、例えば、スマートキーを設けた自動車のドアハンドル、車載通信機器、携帯電話、パソコン等の電子機器等への応用が期待されている。更に、近年では、IoT技術の発達に伴い、従来は通信等行われることがなかった、冷蔵庫等の家電製品、生活機器等、幅広い分野での応用も期待されている。
 そしてこれらの電磁波透過性積層体は、意匠性の観点から、金属光沢を有しかつ光輝性を抑えたマット調の質感を有するものが求められる場合がある。
Such an electromagnetic wave transmissive laminate is used as a device for transmitting and receiving electromagnetic waves to various devices that require communication, such as an automobile door handle provided with a smart key, an in-vehicle communication device, a mobile phone, and an electronic device such as a personal computer. It is expected to be applied to such applications. Furthermore, in recent years, with the development of IoT technology, it is expected to be applied in a wide range of fields such as home appliances such as refrigerators and household appliances, which have not been used for communication in the past.
From the viewpoint of design, these electromagnetic wave-transmitting laminates may be required to have a matte texture having a metallic luster and suppressed brilliance.
 電磁波透過性積層体に関して、特許文献1には、クロム(Cr)又はインジウム(In)より成る金属被膜を含む樹脂製品が開示されている。この樹脂製品は、樹脂基材と、当該樹脂基材の上に成膜された無機化合物を含む無機質下地膜と、当該無機質下地膜の上に物理蒸着法により成膜された光輝性を有する不連続構造のクロム(Cr)又はインジウム(In)よりなる金属皮膜を含む。
 一方、電磁波透過性を有していない電磁波透過性積層体として、特許文献2には、低角度の入射光に対する光反射において、反射度と拡散度の両方が高く反射効率に優れた、金属層を含む光反射体あるいは白色反射フィルムと、光拡散層とからなる光反射用積層体が記載されている。
Regarding the electromagnetic wave transmitting laminate, Patent Document 1 discloses a resin product containing a metal film made of chromium (Cr) or indium (In). This resin product has a resin base material, an inorganic base film containing an inorganic compound formed on the resin base material, and a brilliant film formed on the inorganic base film by a physical vapor deposition method. It contains a metal film made of chromium (Cr) or indium (In) having a continuous structure.
On the other hand, as an electromagnetic wave transmissive laminate having no electromagnetic wave transmissivity, Patent Document 2 describes a metal layer having high reflectivity and diffusivity and excellent reflection efficiency in light reflection with respect to incident light at a low angle. A light reflecting laminate or a white reflecting film including the above, and a light reflecting laminated body including a light diffusing layer are described.
日本国特開2007-144988号公報Japanese Patent Application Laid-Open No. 2007-144988 国際公開第2009/139402号International Publication No. 2009/139402
 しかしながら、従来技術における金属膜は、光輝性のコントロールが難しく、優れた電磁波透過性を示し、金属光沢を有しかつ光輝性を抑えた、優れた金属外観の積層体を提供するのは困難であった。
 本願発明は、これら従来技術における問題点を解決するためになされたものであり、電磁波透過性に優れ、金属光沢を有しかつ光輝性を抑えた、優れた金属外観の電磁波透過性積層体を提供することを目的とする。
However, it is difficult to control the brilliance of the metal film in the prior art, and it is difficult to provide a laminate having an excellent metallic appearance, which exhibits excellent electromagnetic wave transmission, has a metallic luster, and suppresses the brilliance. there were.
The present invention has been made to solve these problems in the prior art, and provides an electromagnetic wave-transmitting laminate having an excellent metallic appearance, which has excellent electromagnetic wave transmission, has metallic luster, and suppresses brilliance. The purpose is to provide.
 本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、金属光沢層を設け、かつ、波長380nm~780nmの範囲における反射光の、CIE-XYZ表色系のSCE測定における反射率Yを1~60%とすることにより、電磁波透過性に優れ、金属光沢を有しかつ光輝性を抑えた、優れた金属外観の電磁波透過性積層体が得られることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have provided a metallic luster layer and reflected the reflected light in the wavelength range of 380 nm to 780 nm in the SCE measurement of the CIE-XYZ color system. We have found that by setting the rate Y to 1 to 60%, an electromagnetic wave-transmitting laminate having an excellent metallic appearance, which has excellent electromagnetic wave transmission, has metallic luster, and suppresses brilliance can be obtained. It came to be completed.
〔1〕
 基体と、前記基体上に形成された金属光沢層と、樹脂層とを備え、
波長380nm~780nmの範囲における反射光の、CIE-XYZ表色系のSCE測定における反射率Yが1~60%である電磁波透過性積層体。
〔2〕
 前記金属光沢層が、金属層であり、
前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含む、〔1〕に記載の電磁波透過性積層体。
〔3〕
 前記金属層が、アルミニウム又はアルミニウム合金を含有する層である〔2〕に記載の電磁波透過性積層体。
〔4〕
 前記樹脂層が光拡散性微粒子を含有する層を含む〔1〕~〔3〕のいずれか1項に記載の電磁波透過性積層体。
〔5〕
 前記樹脂層が光拡散粘着剤層を含む〔1〕~〔4〕のいずれか1項に記載の電磁波透過性積層体。
〔6〕
 前記基体と前記金属光沢層の間に、酸化インジウム含有層をさらに備える〔1〕~〔5〕のいずれか1項に記載の電磁波透過性積層体。
〔7〕
 前記酸化インジウム含有層は連続状態で設けられている〔6〕に記載の電磁波透過性積層体。
〔8〕
 前記酸化インジウム含有層は、酸化インジウム(In)、インジウム錫酸化物(ITO)、又はインジウム亜鉛酸化物(IZO)のいずれかを含む〔6〕又は〔7〕に記載の電磁波透過性積層体。
〔9〕
 前記酸化インジウム含有層の厚さは、1nm~1000nmである〔6〕~〔8〕のいずれか1項に記載の電磁波透過性積層体。
〔10〕
 前記金属光沢層の厚さは、5nm~100nmである〔6〕~〔9〕のいずれか1項に記載の電磁波透過性積層体。
〔11〕
 前記金属光沢層の厚さと前記酸化インジウム含有層の厚さとの比(前記金属光沢層の厚さ/前記酸化インジウム含有層の厚さ)は、0.02~100である〔6〕~〔10〕のいずれか1項に記載の電磁波透過性積層体。
〔12〕
 シート抵抗が、100Ω/□以上である〔1〕~〔11〕のいずれか1項に記載の電磁波透過性積層体。
〔13〕
 前記複数の部分は島状に形成されている〔2〕に記載の電磁波透過性積層体。
〔14〕
 前記基体は、基材フィルム、樹脂成型物基材、ガラス基材、又は金属光沢を付与すべき物品のいずれかである〔1〕~〔13〕のいずれか1項に記載の電磁波透過性積層体。
[1]
A substrate, a metallic luster layer formed on the substrate, and a resin layer are provided.
An electromagnetic wave transmissive laminate having a reflectance Y of 1 to 60% in SCE measurement of the CIE-XYZ color system of reflected light in the wavelength range of 380 nm to 780 nm.
[2]
The metallic luster layer is a metal layer,
The electromagnetic wave transmitting laminate according to [1], wherein the metal layer includes a plurality of portions that are discontinuous with each other at least in part.
[3]
The electromagnetic wave transmitting laminate according to [2], wherein the metal layer is a layer containing aluminum or an aluminum alloy.
[4]
The electromagnetic wave transmitting laminate according to any one of [1] to [3], wherein the resin layer contains a layer containing light diffusing fine particles.
[5]
The electromagnetic wave transmitting laminate according to any one of [1] to [4], wherein the resin layer contains a light diffusing pressure-sensitive adhesive layer.
[6]
The electromagnetic wave transmitting laminate according to any one of [1] to [5], further comprising an indium oxide-containing layer between the substrate and the metallic luster layer.
[7]
The electromagnetic wave transmitting laminate according to [6], wherein the indium oxide-containing layer is provided in a continuous state.
[8]
The electromagnetic wave transmittance according to [6] or [7], wherein the indium oxide-containing layer contains any one of indium oxide (In 2 O 3 ), indium tin oxide (ITO), or indium zinc oxide (IZO). Laminated body.
[9]
The electromagnetic wave transmitting laminate according to any one of [6] to [8], wherein the thickness of the indium oxide-containing layer is 1 nm to 1000 nm.
[10]
The electromagnetic wave transmissive laminate according to any one of [6] to [9], wherein the thickness of the metallic luster layer is 5 nm to 100 nm.
[11]
The ratio of the thickness of the metallic luster layer to the thickness of the indium oxide-containing layer (thickness of the metallic luster layer / thickness of the indium oxide-containing layer) is 0.02 to 100 [6] to [10]. ], The electromagnetic wave transmissive laminate according to any one item.
[12]
The electromagnetic wave transmissive laminate according to any one of [1] to [11], which has a sheet resistance of 100 Ω / □ or more.
[13]
The electromagnetic wave transmitting laminate according to [2], wherein the plurality of portions are formed in an island shape.
[14]
The electromagnetic wave transmissive laminate according to any one of [1] to [13], wherein the substrate is a substrate film, a resin molded substrate, a glass substrate, or an article to which metallic luster should be imparted. body.
 本発明によれば、電磁波透過性に優れ、金属光沢を有しかつ光輝性を抑えた、優れた金属外観の電磁波透過性積層体を提供することができる。 According to the present invention, it is possible to provide an electromagnetic wave transmitting laminate having an excellent metallic appearance, having excellent electromagnetic wave transmission, having a metallic luster, and suppressing brilliance.
図1は、本発明の一実施形態による電磁波透過性積層体の概略断面図である。FIG. 1 is a schematic cross-sectional view of an electromagnetic wave transmitting laminated body according to an embodiment of the present invention. 図2は、本発明の一実施形態による電磁波透過性積層体の概略断面図である。FIG. 2 is a schematic cross-sectional view of an electromagnetic wave transmitting laminated body according to an embodiment of the present invention. 図3は、本発明の一実施形態による電磁波透過性積層体の概略断面図である。FIG. 3 is a schematic cross-sectional view of an electromagnetic wave transmitting laminated body according to an embodiment of the present invention. 図4は、本発明の一実施形態による電磁波透過性積層体の概略断面図である。FIG. 4 is a schematic cross-sectional view of an electromagnetic wave transmitting laminated body according to an embodiment of the present invention. 図5は、本発明の一実施形態による電磁波透過性積層体の表面の電子顕微鏡写真である。FIG. 5 is an electron micrograph of the surface of the electromagnetic wave transmitting laminate according to the embodiment of the present invention. 図6は、本発明の一実施形態による電磁波透過性積層体の金属層の膜厚の測定方法を説明するための図である。FIG. 6 is a diagram for explaining a method of measuring the film thickness of the metal layer of the electromagnetic wave transmitting laminate according to the embodiment of the present invention. 図7は、本発明の一実施形態における金属層の断面の透過型電子顕微鏡写真(TEM画像)を示す図である。FIG. 7 is a diagram showing a transmission electron micrograph (TEM image) of a cross section of a metal layer according to an embodiment of the present invention.
 以下、添付図面を参照しつつ、本発明の一つの好適な実施形態について説明する。以下においては、説明の便宜のために本発明の好適な実施形態のみを示すが、勿論、これによって本発明を限定しようとするものではない。 Hereinafter, one preferred embodiment of the present invention will be described with reference to the accompanying drawings. In the following, for convenience of explanation, only preferred embodiments of the present invention will be shown, but of course, this is not intended to limit the present invention.
<1.基本構成>
 本発明の実施形態にかかる電磁波透過性積層体は、基体と、前記基体上に形成された金属光沢層と、樹脂層とを備え、波長380nm~780nmの範囲における反射光の、CIE-XYZ表色系のSCE測定における反射率Yが1~60%である。
 金属光沢層は金属層であることが好ましく、金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含む。
 以下、金属光沢層が金属層である場合について説明する場合があるが、本発明は下記の記載によって限定されるものではない。
 図1~4に、本発明の一実施形態による電磁波透過性積層体1の概略断面図を示す。また、図5に、金属層の不連続構造について説明するため、電磁波透過性積層体の金属層の表面の電子顕微鏡写真(SEM画像)を示す。また、図7に、本発明の一実施形態における島状構造の金属層12の断面図の透過型電子顕微鏡写真(TEM画像)を示す。
<1. Basic configuration>
The electromagnetic wave transmitting laminate according to the embodiment of the present invention includes a substrate, a metallic luster layer formed on the substrate, and a resin layer, and has a CIE-XYZ table of reflected light in a wavelength range of 380 nm to 780 nm. The reflectance Y in the SCE measurement of the color system is 1 to 60%.
The metallic luster layer is preferably a metal layer, and the metal layer includes a plurality of portions that are discontinuous with each other at least in part.
Hereinafter, the case where the metallic luster layer is a metal layer may be described, but the present invention is not limited to the following description.
1 to 4 show schematic cross-sectional views of the electromagnetic wave transmitting laminated body 1 according to the embodiment of the present invention. Further, FIG. 5 shows an electron micrograph (SEM image) of the surface of the metal layer of the electromagnetic wave transmitting laminate in order to explain the discontinuous structure of the metal layer. Further, FIG. 7 shows a transmission electron micrograph (TEM image) of a cross-sectional view of the metal layer 12 having an island-like structure according to the embodiment of the present invention.
 図1に示すように、電磁波透過性積層体1は、基体10と、基体10の上に形成された、金属光沢層(金属層12)と、樹脂層13とを含む。 As shown in FIG. 1, the electromagnetic wave transmissive laminate 1 includes a substrate 10, a metallic luster layer (metal layer 12) formed on the substrate 10, and a resin layer 13.
 金属層12は基体10の上に形成される。金属層12は複数の部分12aを含む。金属層12におけるこれらの複数の部分12aは、少なくとも一部において互いに不連続の状態、言い換えれば、少なくとも一部において隙間12bによって隔てられる。隙間12bによって隔てられるため、これらの複数の部分12aのシート抵抗は大きくなり、電波との相互作用が低下するため、電波を透過させることができる。これらの各部分12aは金属を蒸着、スパッタ等することによって形成されたスパッタ粒子の集合体であってもよい。 The metal layer 12 is formed on the substrate 10. The metal layer 12 includes a plurality of portions 12a. These plurality of portions 12a in the metal layer 12 are separated from each other by a gap 12b at least in a discontinuous state, that is, in at least a part. Since they are separated by the gap 12b, the sheet resistance of these plurality of portions 12a becomes large, and the interaction with the radio wave decreases, so that the radio wave can be transmitted. Each of these portions 12a may be an aggregate of sputtered particles formed by vapor deposition, sputtering, or the like of a metal.
 尚、本明細書でいう「不連続の状態」とは、隙間12bによって互いに隔てられており、この結果、互いに電気的に絶縁されている状態を意味する。電気的に絶縁されることにより、シート抵抗が大きくなり、所望とする電磁波透過性が得られることになる。すなわち、不連続の状態で形成された金属層12によれば、十分な光輝性が得られやすく、電磁波透過性を確保することもできる。不連続の形態は、特に限定されるものではなく、例えば、島状構造、クラック構造等が含まれる。ここで「島状構造」とは、図5に示されているように、金属粒子同士が各々独立しており、それらの粒子が、互いに僅かに離間し又は一部接触した状態で敷き詰められてなる構造を意味する。 The "discontinuous state" referred to in the present specification means a state in which they are separated from each other by a gap 12b, and as a result, they are electrically insulated from each other. By being electrically insulated, the sheet resistance becomes large, and the desired electromagnetic wave transmission can be obtained. That is, according to the metal layer 12 formed in a discontinuous state, sufficient brilliance can be easily obtained, and electromagnetic wave transmission can be ensured. The discontinuous form is not particularly limited, and includes, for example, an island-like structure, a crack structure, and the like. Here, as shown in FIG. 5, the “island-like structure” means that the metal particles are independent of each other, and the metal particles are spread so as to be slightly separated from each other or partially in contact with each other. Means the structure.
 クラック構造とは、金属薄膜がクラックにより分断された構造である。
 クラック構造の金属層12は、例えば基材フィルム上に金属薄膜層を設け、屈曲延伸して金属薄膜層にクラックを生じさせることにより形成することができる。この際、基材フィルムと金属薄膜層の間に伸縮性に乏しい、即ち延伸によりクラックを生成しやすい素材からなる脆性層を設けることにより、容易にクラック構造の金属層12を形成することができる。
The crack structure is a structure in which a metal thin film is divided by cracks.
The metal layer 12 having a crack structure can be formed, for example, by providing a metal thin film layer on a base film and bending and stretching it to generate cracks in the metal thin film layer. At this time, the metal layer 12 having a crack structure can be easily formed by providing a brittle layer made of a material having poor elasticity, that is, easily forming cracks by stretching, between the base film and the metal thin film layer. ..
 上述のとおり金属層12が不連続となる態様は特に限定されないが、生産性の観点からは島状構造とすることが好ましい。 As described above, the mode in which the metal layer 12 is discontinuous is not particularly limited, but from the viewpoint of productivity, an island-like structure is preferable.
 本実施形態に係る電磁波透過性積層体1は、波長380nm~780nmの範囲における反射光の、CIE-XYZ表色系のSCE(正反射光除去)測定における反射率Yが1~60%である。反射率Yをこの範囲とすることにより、金属光沢を有しかつ光輝性を抑えた、優れた金属外観の電磁波透過性積層体が得られる。反射率Yは視感反射率を表し、反射率Yが1%以上であると光輝性を抑えることができる。反射率Yは、10%以上であることがより好ましく、20%以上であることが更に好ましい。
 反射率Yは、標準光源としてD65を使用して、コニカミノルタ株式会社製分光測色計CM-2600d等の測定機器により測定することができ、実施例に記載の方法により測定することができる。
The electromagnetic wave transmissive laminate 1 according to the present embodiment has a reflectance Y of 1 to 60% of the reflected light in the wavelength range of 380 nm to 780 nm in the SCE (specular reflection light removal) measurement of the CIE-XYZ color system. .. By setting the reflectance Y in this range, an electromagnetic wave transmissive laminate having an excellent metallic appearance and having a metallic luster and suppressed brilliance can be obtained. The reflectance Y represents the visual reflectance, and when the reflectance Y is 1% or more, the brilliance can be suppressed. The reflectance Y is more preferably 10% or more, and further preferably 20% or more.
The reflectance Y can be measured by a measuring device such as a spectrocolorimeter CM-2600d manufactured by Konica Minolta Co., Ltd. using D65 as a standard light source, and can be measured by the method described in Examples.
 電磁波透過性積層体1の電磁波透過性は、例えば電波透過減衰量により評価することができる。
 なお、マイクロ波帯域(5GHz)における電波透過減衰量とミリ波レーダーの周波数帯域(76~80GHz)における電波透過減衰量との間には相関性があり、比較的近い値を示すことから、マイクロ波帯域における電磁波透過性に優れる電磁波透過性積層体は、ミリ波レーダーの周波数帯域における電磁波透過性にも優れる。
 マイクロ波帯域(5GHz)における電波透過減衰量は、10[-dB]以下であることが好ましく、5[-dB]以下であるのがより好ましく、2[-dB]以下であることが更に好ましい。10[-dB]より大きいと、90%以上の電波が遮断されるという問題がある。
The electromagnetic wave transmittance of the electromagnetic wave transmissive laminate 1 can be evaluated by, for example, the amount of radio wave transmission attenuation.
It should be noted that there is a correlation between the amount of electromagnetic wave transmission attenuation in the microwave band (5 GHz) and the amount of electromagnetic wave transmission attenuation in the frequency band (76 to 80 GHz) of the millimeter wave radar, and the values are relatively close to each other. The electromagnetic wave transmissive laminate having excellent electromagnetic wave transmission in the wave band is also excellent in electromagnetic wave transmission in the frequency band of the millimeter wave radar.
The amount of radio wave transmission attenuation in the microwave band (5 GHz) is preferably 10 [−dB] or less, more preferably 5 [−dB] or less, and further preferably 2 [−dB] or less. .. If it is larger than 10 [−dB], there is a problem that 90% or more of the radio waves are blocked.
 電磁波透過性積層体1のシート抵抗も電磁波透過性と相関を有する。
 電磁波透過性積層体1のシート抵抗は100Ω/□以上であることが好ましく、この場合、マイクロ波帯域(5GHz)における電波透過減衰量は、10~0.01[-dB]程度となる。
 電磁波透過性積層体1のシート抵抗は200Ω/□以上であることが更に好ましく、600Ω/□以上であることがより更に好ましく、1000Ω/□以上であることが特に好ましい。
 電磁波透過性積層体1のシート抵抗は、JIS-Z2316-1:2014に従って渦電流測定法により測定することができる。
The sheet resistance of the electromagnetic wave transmissive laminate 1 also has a correlation with the electromagnetic wave transmissivity.
The sheet resistance of the electromagnetic wave transmitting laminated body 1 is preferably 100Ω / □ or more, and in this case, the amount of radio wave transmission attenuation in the microwave band (5 GHz) is about 10 to 0.01 [−dB].
The sheet resistance of the electromagnetic wave transmitting laminated body 1 is more preferably 200 Ω / □ or more, further preferably 600 Ω / □ or more, and particularly preferably 1000 Ω / □ or more.
The sheet resistance of the electromagnetic wave transmitting laminated body 1 can be measured by an eddy current measuring method according to JIS-Z2316-1: 2014.
 電磁波透過性積層体1の電波透過減衰量及びシート抵抗は、金属光沢層の材質や厚さ等により影響を受ける。
 また、電磁波透過性積層体1が酸化インジウム含有層11を備える場合には酸化インジウム含有層11の材質や厚さ等によっても影響を受ける。
The amount of radio wave transmission attenuation and sheet resistance of the electromagnetic wave transmission laminate 1 are affected by the material and thickness of the metallic luster layer.
Further, when the electromagnetic wave transmitting laminate 1 includes the indium oxide-containing layer 11, it is also affected by the material and thickness of the indium oxide-containing layer 11.
<2.基体>
 基体10としては、電磁波透過性の観点から、樹脂、ガラス、セラミックス等が挙げられる。
 基体10は、基材フィルム、樹脂成型物基材、ガラス基材、又は金属光沢を付与すべき物品のいずれかであってもよい。
 より具体的には、基材フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート、ポリアミド、ポリ塩化ビニル、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリスチレン、ポリプロピレン(PP)、ポリエチレン、ポリシクロオレフィン、ポリウレタン、アクリル(PMMA)、ABSなどの単独重合体や共重合体からなる透明フィルムを用いることができる。
<2. Hypokeimenon>
Examples of the substrate 10 include resins, glasses, ceramics, and the like from the viewpoint of electromagnetic wave transmission.
The substrate 10 may be a substrate film, a resin molded substrate, a glass substrate, or an article to which metallic luster should be imparted.
More specifically, examples of the base film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer (COP), and polystyrene. , Polypropylene (PP), polyethylene, polycycloolefin, polyurethane, acrylic (PMMA), ABS and other homopolymers and copolymers can be used.
 これらの部材によれば、光輝性や電磁波透過性に影響を与えることもない。但し、酸化インジウム含有層11や金属光沢層を後に形成する観点から、蒸着やスパッタ等の高温に耐え得るものであることが好ましく、従って、上記材料の中でも、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、アクリル、ポリカーボネート、シクロオレフィンポリマー、ABS、ポリプロピレン、ポリウレタンが好ましい。なかでも、耐熱性とコストとのバランスがよいことからポリエチレンテレフタレートやシクロオレフィンポリマー、ポリカーボネート、アクリルが好ましい。 According to these members, it does not affect the brilliance or electromagnetic wave transmission. However, from the viewpoint of forming the indium oxide-containing layer 11 and the metallic glossy layer later, it is preferable that the layer can withstand high temperatures such as vapor deposition and sputtering. Therefore, among the above materials, for example, polyethylene terephthalate, polyethylene naphthalate, etc. Acrylic, polycarbonate, cycloolefin polymer, ABS, polypropylene and polyurethane are preferable. Of these, polyethylene terephthalate, cycloolefin polymer, polycarbonate, and acrylic are preferable because they have a good balance between heat resistance and cost.
 基材フィルムは、単層フィルムでもよいし積層フィルムでもよい。加工のし易さ等から、厚さは、例えば、6μm~250μm程度が好ましい。酸化インジウム含有層11や金属光沢層との付着力を強くするために、プラズマ処理や易接着処理などが施されてもよい。また、粒子を含有しないものであることが好ましい。
 基体10が基材フィルムの場合、金属光沢層は基材フィルム上の少なくとも一部に設ければよく、基材フィルムの片面のみに設けてもよく、両面に設けてもよい。
The base film may be a single-layer film or a laminated film. The thickness is preferably about 6 μm to 250 μm, for example, from the viewpoint of ease of processing. In order to strengthen the adhesive force with the indium oxide-containing layer 11 and the metallic luster layer, plasma treatment or easy-adhesion treatment may be performed. Moreover, it is preferable that it does not contain particles.
When the substrate 10 is a base film, the metallic luster layer may be provided on at least a part of the base film, may be provided on only one side of the base film, or may be provided on both sides.
 ここで、基材フィルムは、その表面上に金属光沢層を形成することができる対象(基体10)の一例にすぎない点に注意すべきである。基体10には、上記のとおり基材フィルムの他、樹脂成型物基材、ガラス基材、金属光沢を付与すべき物品それ自体も含まれる。樹脂成型物基材、及び金属光沢を付与すべき物品としては、例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。 It should be noted here that the base film is only an example of an object (base 10) capable of forming a metallic luster layer on its surface. As described above, the substrate 10 includes, as described above, a resin molded substrate, a glass substrate, and the article itself to which metallic luster should be imparted. Examples of the resin molded base material and the articles to which metallic luster should be imparted include structural parts for vehicles, vehicle-mounted products, housings for electronic devices, housings for home appliances, structural parts, mechanical parts, and various automobiles. Examples include parts for household appliances such as parts for electronic devices, furniture, kitchen utensils, medical equipment, parts for building materials, other structural parts and exterior parts.
 金属光沢層は、これら全ての基体上に形成することができ、基体の表面の一部に形成してもよく、基体の表面の全てに形成してもよい。この場合、金属光沢層を付与すべき基体10は、上記の基材フィルムと同様の材質、条件を満たしていることが好ましい。 The metallic luster layer can be formed on all of these substrates, and may be formed on a part of the surface of the substrate or on the entire surface of the substrate. In this case, the substrate 10 to which the metallic luster layer is to be provided preferably satisfies the same materials and conditions as the above-mentioned substrate film.
<3.酸化インジウム含有層>
 また、一実施形態に係る電磁波透過性積層体1は、図2に示されるように、基体10と金属光沢層(金属層12)の間に、酸化インジウム含有層11をさらに備えてもよい。酸化インジウム含有層11は、基体10の面に直接設けられていてもよいし、基体10の面に設けられた保護膜等を介して間接的に設けられてもよい。酸化インジウム含有層11は、金属光沢を付与すべき基体10の面に連続状態で、言い換えれば、隙間なく、設けるのが好ましい。連続状態で設けられることにより、酸化インジウム含有層11、ひいては、金属層12や電磁波透過性積層体1の平滑性や耐食性を向上させることができ、また、酸化インジウム含有層11を面内ばらつきなく成膜することも容易となる。
<3. Indium oxide-containing layer>
Further, as shown in FIG. 2, the electromagnetic wave transmissive laminate 1 according to the embodiment may further include an indium oxide-containing layer 11 between the substrate 10 and the metallic luster layer (metal layer 12). The indium oxide-containing layer 11 may be provided directly on the surface of the substrate 10, or may be indirectly provided via a protective film or the like provided on the surface of the substrate 10. The indium oxide-containing layer 11 is preferably provided continuously on the surface of the substrate 10 to be imparted metallic luster, in other words, without gaps. By providing the indium oxide-containing layer 11 in a continuous state, the smoothness and corrosion resistance of the indium oxide-containing layer 11, the metal layer 12, and the electromagnetic wave-transmitting laminate 1 can be improved, and the indium oxide-containing layer 11 can be provided without in-plane variation. It also facilitates film formation.
 このように、基体10と金属層12の間に、酸化インジウム含有層11をさらに備えること、すなわち、基体10の上に酸化インジウム含有層11を形成し、その上に金属層12を形成することによれば、金属層12を不連続の状態で形成しやすくなるため好ましい。そのメカニズムの詳細は必ずしも明らかではないが、金属の蒸着やスパッタによるスパッタ粒子が基体上で薄膜を形成する際には、基体上での粒子の表面拡散性が薄膜の形状に影響を及ぼし、基体の温度が高く、基体に対する金属層の濡れ性が小さく、金属層の材料の融点が低い方が不連続構造を形成しやすいと考えられる。そして、基体上に酸化インジウム含有層を設けることにより、その表面上の金属粒子の表面拡散性が促進されて、金属層を不連続の状態で成長させやすくなると考えられる。 As described above, the indium oxide-containing layer 11 is further provided between the substrate 10 and the metal layer 12, that is, the indium oxide-containing layer 11 is formed on the substrate 10 and the metal layer 12 is formed on the indium oxide-containing layer 11. According to the above, the metal layer 12 is easily formed in a discontinuous state, which is preferable. The details of the mechanism are not always clear, but when sputtered particles by metal deposition or sputtering form a thin film on the substrate, the surface diffusivity of the particles on the substrate affects the shape of the thin film, and the substrate It is considered that the higher the temperature, the smaller the wettability of the metal layer with respect to the substrate, and the lower the melting point of the material of the metal layer, the easier it is to form a discontinuous structure. Then, it is considered that by providing the indium oxide-containing layer on the substrate, the surface diffusibility of the metal particles on the surface thereof is promoted, and the metal layer can be easily grown in a discontinuous state.
 酸化インジウム含有層11として、酸化インジウム(In)そのものを使用することもできるし、例えば、インジウム錫酸化物(ITO)や、インジウム亜鉛酸化物(IZO)のような金属含有物を使用することもできる。但し、第二の金属を含有したITOやIZOの方が、スパッタリング工程での放電安定性が高い点で、より好ましい。これらの酸化インジウム含有層11を用いることにより、基体の面に沿って連続状態の膜を形成することもでき、また、この場合には、酸化インジウム含有層の上に積層される金属層を、例えば、島状の不連続構造としやすくなるため、好ましい。更に、後述するように、この場合には、金属層に、クロム(Cr)又はインジウム(In)だけでなく、通常は不連続構造になり難く、本用途には適用が難しかった、アルミニウム等の様々な金属を含めやすくなる。 Indium oxide (In 2 O 3 ) itself can be used as the indium oxide-containing layer 11, or a metal-containing substance such as indium tin oxide (ITO) or indium zinc oxide (IZO) is used. You can also do it. However, ITO and IZO containing a second metal are more preferable because they have high discharge stability in the sputtering process. By using these indium oxide-containing layers 11, a continuous film can be formed along the surface of the substrate, and in this case, a metal layer laminated on the indium oxide-containing layer can be formed. For example, it is preferable because it tends to have an island-like discontinuous structure. Further, as will be described later, in this case, not only chromium (Cr) or indium (In) but also aluminum or the like, which is usually difficult to have a discontinuous structure and is difficult to apply to this application, is used in the metal layer. It becomes easier to include various metals.
 ITOに含まれる酸化錫(SnО)の質量比率である含有率(含有率=(SnO/(In+SnO))×100)は特に限定されるものではないが、例えば、2.5質量%~30質量%、より好ましくは、3質量%~10質量%である。また、IZOに含まれる酸化亜鉛(ZnO)の質量比率である含有率(含有率=(ZnO/(In+ZnO))×100)は、例えば、2質量%~20質量%である。
 酸化インジウム含有層11の厚さは、シート抵抗や電磁波透過性、生産性の観点から、通常1000nm以下が好ましく、50nm以下がより好ましく、20nm以下が更に好ましい。一方、積層される金属層12を不連続状態としやすくするためには、1nm以上であることが好ましく、確実に不連続状態にしやすくするためには、2nm以上であることがより好ましく、5nm以上であることが更に好ましい。
The content rate (content rate = (SnO 2 / (In 2 O 3 + SnO 2 )) × 100), which is the mass ratio of tin oxide (SnО 2 ) contained in ITO, is not particularly limited, but for example, 2 It is 5.5% by mass to 30% by mass, more preferably 3% by mass to 10% by mass. Further, the content rate (content rate = (ZnO / (In 2 O 3 + ZnO)) × 100), which is the mass ratio of zinc oxide (ZnO) contained in IZO, is, for example, 2% by mass to 20% by mass.
The thickness of the indium oxide-containing layer 11 is usually preferably 1000 nm or less, more preferably 50 nm or less, still more preferably 20 nm or less, from the viewpoint of sheet resistance, electromagnetic wave transmission, and productivity. On the other hand, in order to facilitate the discontinuous state of the laminated metal layer 12, it is preferably 1 nm or more, and in order to ensure the discontinuous state, it is more preferably 2 nm or more, and 5 nm or more. Is more preferable.
<4.金属光沢層>
 金属光沢層は基体10の上に形成される。金属光沢層は、金属調の外観を有する層であり、金属光沢を有する層であることが好ましい。金属光沢層を形成する材料に特に限定はなく、金属、又は樹脂を含んでいてもよく、金属及び樹脂を含んでいてもよい。
 金属光沢層が樹脂のみで形成されたものである場合、屈折率の異なる樹脂を積層させることによっても金属調の光沢が得られる。
 金属光沢層の厚さは、十分な金属光沢を発揮するように、通常5nm以上が好ましく、一方、シート抵抗や電磁波透過性の観点から、通常100nm以下が好ましい。例えば、7nm~100nmがより好ましく、10nm~70nmが更に好ましい。この厚さは、均一な膜を生産性良く形成するのにも適しており、また、最終製品である樹脂成形品の見栄えも良い。
 金属光沢層は、金属層であることが好ましく、金属層は少なくとも一部において互いに不連続の状態にある複数の部分を含むことが好ましい。
<4. Metallic luster layer>
The metallic luster layer is formed on the substrate 10. The metallic luster layer is a layer having a metallic appearance, and is preferably a layer having a metallic luster. The material forming the metallic luster layer is not particularly limited and may contain a metal or a resin, or may contain a metal and a resin.
When the metallic luster layer is made of only resin, metallic luster can be obtained by laminating resins having different refractive indexes.
The thickness of the metallic luster layer is usually preferably 5 nm or more so as to exhibit sufficient metallic luster, while it is usually preferably 100 nm or less from the viewpoint of sheet resistance and electromagnetic wave transmission. For example, 7 nm to 100 nm is more preferable, and 10 nm to 70 nm is further preferable. This thickness is also suitable for forming a uniform film with good productivity, and the appearance of the final resin molded product is also good.
The metallic luster layer is preferably a metal layer, and the metal layer preferably includes a plurality of portions that are discontinuous with each other at least in part.
(金属層)
 金属層12は基体上に形成され、少なくとも一部において互いに不連続の状態にある複数の部分を含む。
 金属層12が基体上で連続状態である場合、十分な金属光沢が得られるものの、電波透過減衰量が非常に大きくなり、従って、電磁波透過性を確保することはできない。
(Metal layer)
The metal layer 12 is formed on the substrate and includes a plurality of portions that are discontinuous with each other at least in part.
When the metal layer 12 is in a continuous state on the substrate, a sufficient metallic luster can be obtained, but the amount of radio wave transmission attenuation becomes very large, and therefore electromagnetic wave transmission cannot be ensured.
 金属層12が基体上で不連続状態となるメカニズムの詳細は必ずしも明らかではないが、おおよそ、次のようなものであると推測される。即ち、金属層12の薄膜形成プロセスにおいて、不連続構造の形成しやすさは、金属層12が付与される基体上での表面拡散と関連性があり、基体の温度が高く、基体に対する金属層の濡れ性が小さく、金属層の材料の融点が低い方が不連続構造を形成しやすい、というものである。従って、以下の実施例で特に使用したアルミニウム(Al))以外の金属についても、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)などの比較的融点の低い金属については、同様の手法で不連続構造を形成しうると考えられる。 The details of the mechanism by which the metal layer 12 becomes discontinuous on the substrate are not always clear, but it is presumed to be roughly as follows. That is, in the thin film forming process of the metal layer 12, the ease of forming the discontinuous structure is related to the surface diffusion on the substrate to which the metal layer 12 is applied, the temperature of the substrate is high, and the metal layer with respect to the substrate is formed. The smaller the wettability of the metal layer and the lower the melting point of the metal layer material, the easier it is to form a discontinuous structure. Therefore, with respect to metals other than aluminum (Al) particularly used in the following examples, metals having a relatively low melting point such as zinc (Zn), lead (Pb), copper (Cu), and silver (Ag) are used. , It is considered that a discontinuous structure can be formed by the same method.
 金属層12は、十分な光輝性を発揮し得ることは勿論、融点が比較的低いものであることが望ましい。金属層12は、スパッタリングを用いた薄膜成長によって形成するのが好ましいためである。このような理由から、金属層12としては、融点が約1000℃以下の金属が適しており、例えば、アルミニウム(Al)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)から選択された少なくとも一種の金属、及び該金属を主成分とする合金のいずれかを含むことが好ましい。特に、物質の光輝性や安定性、価格等の理由からAl又はその合金を含むことが好ましく、Al及びその合金がより好ましい。また、アルミニウム合金を用いる場合には、アルミニウム含有量を50質量%以上とすることが好ましい。 It is desirable that the metal layer 12 has a relatively low melting point as well as being able to exhibit sufficient brilliance. This is because the metal layer 12 is preferably formed by thin film growth using sputtering. For this reason, a metal having a melting point of about 1000 ° C. or lower is suitable as the metal layer 12, and for example, aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), and silver (Ag). ), And any of an alloy containing the metal as a main component is preferably contained. In particular, it is preferable to contain Al or an alloy thereof for the reason of brilliance, stability, price and the like of the substance, and Al and its alloy are more preferable. When an aluminum alloy is used, the aluminum content is preferably 50% by mass or more.
 金属層12の部分12aの円相当径は特に限定されないが、通常10~1000nm程度である。複数の部分12aの平均粒径とは、複数の部分12aの円相当径の平均値を意味する。
 部分12aの円相当径とは、部分12aの面積に相当する真円の直径のことである。
 また、各部分12a同士の距離は特に限定されないが、通常は10~1000nm程度である。
The equivalent circle diameter of the portion 12a of the metal layer 12 is not particularly limited, but is usually about 10 to 1000 nm. The average particle diameter of the plurality of portions 12a means the average value of the equivalent circle diameters of the plurality of portions 12a.
The circle-equivalent diameter of the portion 12a is the diameter of a perfect circle corresponding to the area of the portion 12a.
The distance between the portions 12a is not particularly limited, but is usually about 10 to 1000 nm.
 金属層12の厚さは、十分な金属光沢を発揮するように、通常5nm以上が好ましく、一方、シート抵抗や電磁波透過性の観点から、通常100nm以下が好ましい。例えば、10nm~100nmが好ましく、15nm~70nmがより好ましい。この厚さは、均一な膜を生産性良く形成するのにも適しており、また、最終製品である樹脂成形品の見栄えも良い。 The thickness of the metal layer 12 is usually preferably 5 nm or more so as to exhibit sufficient metallic luster, while it is usually preferably 100 nm or less from the viewpoint of sheet resistance and electromagnetic wave transmission. For example, 10 nm to 100 nm is preferable, and 15 nm to 70 nm is more preferable. This thickness is also suitable for forming a uniform film with good productivity, and the appearance of the final resin molded product is also good.
 また、同様の理由から、金属光沢層の厚さと酸化インジウム含有層の厚さとの比(金属光沢層の厚さ/酸化インジウム含有層の厚さ)は、0.02~100の範囲が好ましく、0.1~100の範囲がより好ましく、0.3~35の範囲がより更に好ましい。 For the same reason, the ratio of the thickness of the metallic luster layer to the thickness of the indium oxide-containing layer (thickness of the metallic luster layer / thickness of the indium oxide-containing layer) is preferably in the range of 0.02 to 100. The range of 0.1 to 100 is more preferable, and the range of 0.3 to 35 is even more preferable.
 金属光沢層のシート抵抗は、100Ω/□以上であるのが好ましい。この場合、電磁波透過性は、5GHzの波長において、10~0.01[-dB]程度となる。更に好ましくは、1000Ω/□以上である。 The sheet resistance of the metallic luster layer is preferably 100Ω / □ or more. In this case, the electromagnetic wave transmission property is about 10 to 0.01 [−dB] at a wavelength of 5 GHz. More preferably, it is 1000 Ω / □ or more.
 酸化インジウム含有層を更に設ける場合、金属光沢層と酸化インジウム含有層の積層体としてのシート抵抗は、100Ω/□以上であるのが好ましい。この場合、電磁波透過性は、5GHzの波長において、10~0.01[-dB]程度となる。更に好ましくは、1000Ω/□以上である。このシート抵抗の値は、金属光沢層の材質や厚さは勿論のこと、下地層である酸化インジウム含有層の材質や厚さからも大きな影響を受ける。よって、酸化インジウム含有層を設ける場合は、酸化インジウム含有層との関係も考慮したうえで設定する必要がある。 When an indium oxide-containing layer is further provided, the sheet resistance of the metallic luster layer and the indium oxide-containing layer as a laminate is preferably 100 Ω / □ or more. In this case, the electromagnetic wave transmission property is about 10 to 0.01 [−dB] at a wavelength of 5 GHz. More preferably, it is 1000 Ω / □ or more. The value of this sheet resistance is greatly affected not only by the material and thickness of the metallic luster layer but also by the material and thickness of the indium oxide-containing layer which is the base layer. Therefore, when the indium oxide-containing layer is provided, it is necessary to consider the relationship with the indium oxide-containing layer.
<5.バリア層>
 電磁波透過性積層体1は、図4に示すように、金属光沢層(金属層12)の基体10側とは反対側の面上にバリア層14を備えていてもよい。なお、バリア層14は金属層12上に積層されていればよく、必ずしも隙間12bを完全に埋めていなくてもよい。
 バリア層14は、金属層12の酸化(腐食)を抑制するための層である。バリア層は、金属及び半金属の少なくとも1種の酸化物、窒化物、炭化物、酸化窒化物、酸化炭化物、窒化炭化物及び酸化窒化炭化物からなる群より選ばれる少なくとも1種を含むことが好ましい。金属としては、例えば、アルミニウム、チタン、インジウム、マグネシウムなどを用いることができ、半金属としては、例えば、ケイ素、ビスマス、ゲルマニウムなどを用いることができる。
 具体的には、例えばZnO+Al(AZO)、酸化インジウム亜鉛(IZO)、酸化インジウム錫(ITO)、酸化炭化窒化ケイ素膜(SiOCN)、酸化窒化ケイ素膜(SiON)、窒化ケイ素膜(SiN)、SiO、AlO、AlON、TiO等を用いることができる。
 バリア層14が金属層12の酸化(腐食)を抑制する性能(以下「バリア性」ともいう)の向上のためには、バリア層内におけるネットワーク構造(網目状の構造)を緻密にするような炭素、窒素を含むことが好ましい。さらに透明性を向上させるためには、酸素を含有していることが好ましい。すなわち、バリア層は、金属及び半金属の少なくとも1種の酸化窒化炭化物を含むことが好ましい。
<5. Barrier layer>
As shown in FIG. 4, the electromagnetic wave transmitting laminate 1 may have a barrier layer 14 on a surface of the metallic luster layer (metal layer 12) opposite to the substrate 10 side. The barrier layer 14 may be laminated on the metal layer 12, and the gap 12b does not necessarily have to be completely filled.
The barrier layer 14 is a layer for suppressing oxidation (corrosion) of the metal layer 12. The barrier layer preferably contains at least one selected from the group consisting of at least one oxide of metal and metalloid, nitrides, carbides, oxynitrides, carbides, carbides and carbides. As the metal, for example, aluminum, titanium, indium, magnesium and the like can be used, and as the metalloid, for example, silicon, bismuth, germanium and the like can be used.
Specifically, for example, ZnO + Al 2 O 3 (AZO), indium zinc oxide (IZO), indium tin oxide (ITO), silicon nitride silicon nitride film (SiOCN), silicon nitride film (SiON), silicon nitride film (SiN). ), SiO X , AlO X , AlON, TiO X and the like can be used.
In order to improve the ability of the barrier layer 14 to suppress oxidation (corrosion) of the metal layer 12 (hereinafter, also referred to as "barrier property"), the network structure (mesh-like structure) in the barrier layer is made dense. It preferably contains carbon and nitrogen. In order to further improve the transparency, it is preferable that oxygen is contained. That is, the barrier layer preferably contains at least one carbide oxide of metal and metalloid.
 また、バリア性の向上のためには、バリア層は水蒸気を透過しにくいことが好ましい。バリア層の水蒸気の透過の度合いは種々の方法により評価できるが、例えば実施例の欄に記載の方法により測定した水蒸気透過量を用いて評価することができる。バリア性の向上のためには、当該水蒸気透過量が3g/m・day以下であることが好ましく、1g/m・day以下であることがより好ましく、0.5g/m・day以下であることが更に好ましい。 Further, in order to improve the barrier property, it is preferable that the barrier layer does not easily allow water vapor to permeate. The degree of water vapor permeation of the barrier layer can be evaluated by various methods, and for example, it can be evaluated using the amount of water vapor permeation measured by the method described in the column of Examples. For the barrier properties improve, it is preferable that the water vapor permeation amount is less than 3g / m 2 · day, more preferably at most 1g / m 2 · day, 0.5g / m 2 · day or less Is more preferable.
 バリア層14の厚みは特に限定はされないが、バリア性を向上させるためには5nm以上が好ましく、10nm以上がより好ましく、20nm以上が更に好ましい。また、電磁波透過性や外観の金属光沢感を向上させるためには100nm以下が好ましく、70nm以下がより好ましく、50nm以下が更に好ましい。 The thickness of the barrier layer 14 is not particularly limited, but in order to improve the barrier property, 5 nm or more is preferable, 10 nm or more is more preferable, and 20 nm or more is further preferable. Further, in order to improve the electromagnetic wave transmission and the metallic luster of the appearance, 100 nm or less is preferable, 70 nm or less is more preferable, and 50 nm or less is further preferable.
 また、金属層12の酸化(腐食)をより一層抑制するために、バリア層は金属層と基体との間にさらに設けられてもよい。
 電磁波透過性積層体1が酸化インジウム含有層を備える場合は、酸化インジウム含有層と金属層の間にバリア層を設けてもよく、酸化インジウム含有層の金属層とは反対側にバリア層を設けてもよい。また、この両方に設けてもよい。
Further, in order to further suppress the oxidation (corrosion) of the metal layer 12, the barrier layer may be further provided between the metal layer and the substrate.
When the electromagnetic wave transmissive laminate 1 includes an indium oxide-containing layer, a barrier layer may be provided between the indium oxide-containing layer and the metal layer, and a barrier layer is provided on the side opposite to the metal layer of the indium oxide-containing layer. You may. Moreover, it may be provided in both of them.
 また、電磁波透過性積層体は、上述の金属層、酸化インジウム含有層、及びバリア層の他に、用途に応じてその他の層を備えてもよい。
 その他の層としては色味等の外観を調整するための高屈折材料等の光学調整層(色味調整層)、耐擦傷性等の耐久性を向上させるための保護層(耐擦傷性層)、易接着層、ハードコート層、反射防止層、光取出し層、アンチグレア層等が挙げられる。
Further, the electromagnetic wave transmitting laminate may be provided with other layers depending on the application, in addition to the above-mentioned metal layer, indium oxide-containing layer, and barrier layer.
Other layers include an optical adjustment layer (color adjustment layer) such as a high-refractive material for adjusting the appearance such as color, and a protective layer (scratch resistance layer) for improving durability such as scratch resistance. , Easy-adhesion layer, hard coat layer, antireflection layer, light extraction layer, anti-glare layer and the like.
<6.樹脂層>
 本実施形態の電磁波透過性積層体は、樹脂層13を備える。樹脂層13は、図1に示すように、金属光沢層上に形成することが好ましい。
 樹脂層13は、色味等の外観を調整するための高屈折材料等の光学調整層(色味調整層)、耐湿性や耐擦傷性等の耐久性を向上させるための保護層(耐擦傷性層)、易接着層、粘着剤層、ハードコート層、反射防止層、光取出し層、アンチグレア層等であってもよい。
 樹脂層13は複数設けることができ、少なくとも一層が光拡散性を有する層であることが好ましい。樹脂層13が光拡散性を有する層であると、光拡散性微粒子が光を拡散するため金属光沢層からの反射光を拡散し、CIE-XYZ表色系のSCE測定における反射率Yを1~60%とし易くなる。光拡散性を有する層は、光拡散性微粒子を含有する層であることが好ましい。
<6. Resin layer>
The electromagnetic wave transmitting laminate of the present embodiment includes a resin layer 13. As shown in FIG. 1, the resin layer 13 is preferably formed on the metallic luster layer.
The resin layer 13 is an optical adjustment layer (color adjustment layer) such as a high-refractive material for adjusting the appearance such as color, and a protective layer (scratch resistance) for improving durability such as moisture resistance and scratch resistance. It may be a sex layer), an easy-adhesion layer, an adhesive layer, a hard coat layer, an antireflection layer, a light extraction layer, an anti-glare layer, or the like.
A plurality of resin layers 13 can be provided, and it is preferable that at least one layer is a layer having light diffusivity. When the resin layer 13 is a layer having light diffusivity, the light diffusive fine particles diffuse the light, so that the reflected light from the metallic luster layer is diffused, and the reflectance Y in the SCE measurement of the CIE-XYZ color system is set to 1. It is easy to set it to ~ 60%. The layer having light diffusivity is preferably a layer containing light diffusible fine particles.
 例えば、樹脂層13が粘着剤層である場合、粘着剤層が光拡散性微粒子を含有する光拡散粘着剤層であってもよい。また、電磁波透過性積層体には、粘着剤層の他に、用途に応じてその他の樹脂層を設けてもよく、その他の樹脂層が光拡散性を有する層であってもよい。 For example, when the resin layer 13 is a pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer may be a light-diffusing pressure-sensitive adhesive layer containing light-diffusing fine particles. In addition to the pressure-sensitive adhesive layer, the electromagnetic wave-transmitting laminate may be provided with another resin layer depending on the intended use, and the other resin layer may be a layer having light diffusivity.
 図3は、本発明の一実施形態による電磁波透過性積層体の概略断面図である。電磁波透過性積層体1は、図3に示すとおり、基体10と、酸化インジウム含有層11と、金属層12と、樹脂層として光拡散粘着剤層13a及びハードコート層13bとを備えていてもよい。本実施形態の電磁波透過性積層体1は、ハードコート層13bを備えた基体10上に、酸化インジウム含有層11と、金属層12と、光拡散粘着剤層13aとが設けられている。 FIG. 3 is a schematic cross-sectional view of an electromagnetic wave transmitting laminated body according to an embodiment of the present invention. As shown in FIG. 3, the electromagnetic wave transmitting laminate 1 may include a substrate 10, an indium oxide-containing layer 11, a metal layer 12, and a light diffusing adhesive layer 13a and a hard coat layer 13b as resin layers. Good. In the electromagnetic wave transmitting laminate 1 of the present embodiment, an indium oxide-containing layer 11, a metal layer 12, and a light diffusing pressure-sensitive adhesive layer 13a are provided on a substrate 10 provided with a hard coat layer 13b.
 本実施形態の電磁波透過性積層体1は、光拡散粘着剤層13aを介して被着部材に貼付されて用いられてもよい。例えば、電磁波透過性積層体1を、光拡散粘着剤層13aを介して透明な被着部材に貼付することで被着部材を内側から装飾することができる。
 電磁波透過性積層体1が透明な被着部材の視認される側(以下、外側ともいう)の面とは反対側(以下、内側ともいう)の面に対して光拡散粘着剤層13aを介して貼付された場合、被着部材を通して光拡散粘着剤層13aと、金属層12が視認される。このため、本実施形態の電磁波透過性積層体1は光拡散性が高く、金属光沢を示しかつ光輝性を抑えた優れた金属外観が得られる。透明な被着部材としては、例えば、ガラスやプラスチックからなる部材を使用することができるが、これに限定されるものではない。
The electromagnetic wave transmitting laminated body 1 of the present embodiment may be used by being attached to an adherend member via a light diffusing pressure-sensitive adhesive layer 13a. For example, the adherend member can be decorated from the inside by attaching the electromagnetic wave transmissive laminate 1 to the transparent adherend member via the light diffusing adhesive layer 13a.
The electromagnetic wave transmitting laminated body 1 is interposed via the light diffusing adhesive layer 13a with respect to the surface of the transparent adherend member on the side opposite to the visible side (hereinafter, also referred to as the outside) (hereinafter, also referred to as the inside). The light diffusing adhesive layer 13a and the metal layer 12 are visually recognized through the adherend member. Therefore, the electromagnetic wave transmissive laminate 1 of the present embodiment has high light diffusivity, and can obtain an excellent metallic appearance that exhibits metallic luster and suppresses brilliance. As the transparent adherend member, for example, a member made of glass or plastic can be used, but the transparent member is not limited to this.
 樹脂層のヘイズ値は、マット調な外観を実現する観点から10%以上が好ましく、20%以上がより好ましく、50%以上が更に好ましい。樹脂層のヘイズ値を10%以上とすることで、反射率Yを所望の範囲としやすくなる。また、樹脂層のヘイズ値を調整することで、得られる電磁波透過性積層体の明度L値、及び色相a値、及びb値の制御が可能である。
 樹脂層のヘイズ値は、コニカミノルタ株式会社製分光測色計CM-2600d等の測定機器により測定することができ、実施例に記載の方法により測定することができる。
The haze value of the resin layer is preferably 10% or more, more preferably 20% or more, still more preferably 50% or more from the viewpoint of realizing a matte appearance. By setting the haze value of the resin layer to 10% or more, it becomes easy to set the reflectance Y in a desired range. Further, by adjusting the haze value of the resin layer, it is possible to control the brightness L * value, the hue a * value, and the b * value of the obtained electromagnetic wave transmitting laminate.
The haze value of the resin layer can be measured by a measuring device such as a spectrocolorimeter CM-2600d manufactured by Konica Minolta Co., Ltd., and can be measured by the method described in Examples.
 金属光沢層の厚さと樹脂層の厚さとの比(金属光沢層の厚さ/樹脂層の厚さ)は、樹脂層の種類及び数により変更することができ、特に制限は無いが、貼り合わせ時の段差吸収性の観点から0.0001以上が好ましく、0.0003以上がより好ましく、0.001以上が更に好ましい。また、筐体の薄型化の観点から0.01以下が好ましく、0.006以下がより好ましく、0.003以下が更に好ましい。なお、上記樹脂層の厚さは、樹脂層を複数設ける場合、それぞれの樹脂層の厚さである。
 樹脂層として光拡散粘着剤層を設ける場合、金属光沢層の厚さと光拡散粘着剤層の厚さとの比(金属光沢層の厚さ/光拡散粘着剤層の厚さ)は、貼り合わせ時の段差吸収性の観点から0.0001以上が好ましく、0.0003以上がより好ましく、0.001以上が更に好ましい。また、筐体の薄型化の観点から0.01以下が好ましく、0.006以下がより好ましく、0.003以下が更に好ましい。
The ratio of the thickness of the metallic luster layer to the thickness of the resin layer (thickness of the metallic luster layer / thickness of the resin layer) can be changed depending on the type and number of the resin layers, and is not particularly limited, but is bonded. From the viewpoint of step absorption at the time, 0.0001 or more is preferable, 0.0003 or more is more preferable, and 0.001 or more is further preferable. Further, from the viewpoint of thinning the housing, 0.01 or less is preferable, 0.006 or less is more preferable, and 0.003 or less is further preferable. The thickness of the resin layer is the thickness of each resin layer when a plurality of resin layers are provided.
When the light diffusing adhesive layer is provided as the resin layer, the ratio of the thickness of the metallic luster layer to the thickness of the light diffusing adhesive layer (thickness of the metallic luster layer / thickness of the light diffusing adhesive layer) is determined at the time of bonding. From the viewpoint of step absorption, 0.0001 or more is preferable, 0.0003 or more is more preferable, and 0.001 or more is further preferable. Further, from the viewpoint of thinning the housing, 0.01 or less is preferable, 0.006 or less is more preferable, and 0.003 or less is further preferable.
(光拡散粘着剤層)
 光拡散性微粒子を含有する光拡散粘着剤層は、ベース粘着剤組成物及び光拡散性微粒子から形成することができる。
(1-1)ベース粘着剤組成物
 ベース粘着剤組成物は、ベースポリマーとして(メタ)アクリル系ポリマー(A)を含むことが好ましい。(メタ)アクリル系ポリマー(A)は、モノマー単位として、(メタ)アクリル系ポリマー(A)の主骨格を構成するアルキル(メタ)アクリレート(a1)を含むことが好ましい。なお、(メタ)アクリレートはアクリレート及び/又はメタクリレートをいう。
(Light diffusion adhesive layer)
The light diffusing pressure-sensitive adhesive layer containing the light diffusing fine particles can be formed from the base pressure-sensitive adhesive composition and the light diffusing fine particles.
(1-1) Base Adhesive Composition The base adhesive composition preferably contains a (meth) acrylic polymer (A) as the base polymer. The (meth) acrylic polymer (A) preferably contains an alkyl (meth) acrylate (a1) constituting the main skeleton of the (meth) acrylic polymer (A) as a monomer unit. In addition, (meth) acrylate means acrylate and / or methacrylate.
 前記アルキル(メタ)アクリレート(a1)としては、直鎖状又は分岐鎖状の炭素数1~18のアルキル基を有するものを挙げることができる。例えば、前記アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、アミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、2-エチルヘキシル基、イソオクチル基、ノニル基、デシル基、イソデシル基、ドデシル基、イソミリスチル基、ラウリル基、トリデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等を例示できる。これらは単独であるいは組み合わせて使用することができる。 Examples of the alkyl (meth) acrylate (a1) include linear or branched alkyl groups having 1 to 18 carbon atoms. For example, the alkyl group includes methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, amyl group, hexyl group, cyclohexyl group, heptyl group, 2-ethylhexyl group, isooctyl group, nonyl group and decyl. Examples thereof include a group, an isodecyl group, a dodecyl group, an isomyristyl group, a lauryl group, a tridecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group and the like. These can be used alone or in combination.
 前記アルキル(メタ)アクリレート(a1)の配合割合は、(メタ)アクリル系ポリマー(A)を構成する全構成モノマー(100質量%)に対して、50質量%以上であることが好ましく、50~100質量%であることがより好ましく、60~100質量%であることがさらに好ましく、70~90質量%であることが特に好ましい。 The blending ratio of the alkyl (meth) acrylate (a1) is preferably 50% by mass or more, preferably 50 to mass%, based on the total constituent monomers (100% by mass) constituting the (meth) acrylic polymer (A). It is more preferably 100% by mass, further preferably 60 to 100% by mass, and particularly preferably 70 to 90% by mass.
 前記(メタ)アクリル系ポリマー(A)は、接着性や耐熱性の改善を目的に、カルボキシル基含有モノマー(a2)、ヒドロキシル基含有モノマー(a3)、及び窒素含有モノマー(a4)からなる群から選択される1種以上のモノマーをモノマー成分として含むことが好ましい。 The (meth) acrylic polymer (A) is composed of a group consisting of a carboxyl group-containing monomer (a2), a hydroxyl group-containing monomer (a3), and a nitrogen-containing monomer (a4) for the purpose of improving adhesiveness and heat resistance. It is preferable to contain one or more selected monomers as a monomer component.
 カルボキシル基含有モノマー(a2)としては、(メタ)アクリロイル基又はビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつカルボキシル基を有するものを特に制限なく用いることができる。カルボキシル基含有モノマーとしては、例えば、(メタ)アクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマール酸、クロトン酸、イソクロトン酸等が挙げられ、これらは単独で又は組み合わせて使用できる。イタコン酸、マレイン酸はこれらの無水物を用いることができる。これらの中でも、アクリル酸、メタクリル酸が好ましく、特にアクリル酸が好ましい。 As the carboxyl group-containing monomer (a2), those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a carboxyl group can be used without particular limitation. .. Examples of the carboxyl group-containing monomer include (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, isocrotonic acid and the like. Can be used alone or in combination. These anhydrides can be used for itaconic acid and maleic acid. Among these, acrylic acid and methacrylic acid are preferable, and acrylic acid is particularly preferable.
 前記カルボキシル基含有モノマー(a2)の配合割合は、(メタ)アクリル系ポリマー(A)を構成する全構成モノマー(100質量%)に対して、10質量%以下であることが好ましく、0.05~10質量%であることがより好ましく、0.1~10質量%であることがさらに好ましく、0.5~5質量%が特に好ましい。 The blending ratio of the carboxyl group-containing monomer (a2) is preferably 10% by mass or less, preferably 0.05% by mass or less, based on the total constituent monomers (100% by mass) constituting the (meth) acrylic polymer (A). It is more preferably to 10% by mass, further preferably 0.1 to 10% by mass, and particularly preferably 0.5 to 5% by mass.
 ヒドロキシル基含有モノマー(a3)としては、(メタ)アクリロイル基又はビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつヒドロキシル基を有するものを特に制限なく用いることができる。ヒドロキシル基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;(4-ヒドロキシメチルシクロへキシル)メチル(メタ)アクリレート等のヒドロキシアルキルシクロアルカン(メタ)アクリレートが挙げられる。その他、ヒドロキシエチル(メタ)アクリルアミド、アリルアルコール、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル等が挙げられる。これらは単独で又は組み合わせて使用できる。これらの中でも、ヒドロキシアルキル(メタ)アクリレートが好ましく、2-ヒドロキシエチル(メタ)アクリレートがより好ましい。 As the hydroxyl group-containing monomer (a3), a monomer having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a hydroxyl group can be used without particular limitation. .. Examples of the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 6-hydroxyhexyl ( Hydroxyalkyl (meth) acrylates such as meta) acrylates, 8-hydroxyoctyl (meth) acrylates, 10-hydroxydecyl (meth) acrylates, 12-hydroxylauryl (meth) acrylates; (4-hydroxymethylcyclohexyl) methyl ( Examples thereof include hydroxyalkylcycloalkalane (meth) acrylates such as meta) acrylates. Other examples include hydroxyethyl (meth) acrylamide, allyl alcohol, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether and the like. These can be used alone or in combination. Among these, hydroxyalkyl (meth) acrylate is preferable, and 2-hydroxyethyl (meth) acrylate is more preferable.
 前記ヒドロキシル基含有モノマー(a3)の配合割合は、(メタ)アクリル系ポリマー(A)を構成する全構成モノマー(100質量%)に対して、20質量%以下であることが好ましく、0.05~20質量%であることがより好ましく、0.1~15質量%であることがさらに好ましく、1~15質量%が特に好ましい。 The blending ratio of the hydroxyl group-containing monomer (a3) is preferably 20% by mass or less, preferably 0.05% by mass or less, based on the total constituent monomers (100% by mass) constituting the (meth) acrylic polymer (A). It is more preferably about 20% by mass, further preferably 0.1 to 15% by mass, and particularly preferably 1 to 15% by mass.
 窒素含有モノマー(a4)としては、(メタ)アクリロイル基又はビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつ窒素原子を有する官能基を有するものを特に制限なく用いることができる。 As the nitrogen-containing monomer (a4), one having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a functional group having a nitrogen atom is used without particular limitation. be able to.
 前記窒素含有モノマー(a4)の配合割合は、(メタ)アクリル系ポリマー(A)を構成する全構成モノマー(100質量%)に対して、20質量%以下であることが好ましく、0.05~20質量%であることがより好ましく、0.1~15質量%であることがさらに好ましく、1~15質量%が特に好ましい。 The blending ratio of the nitrogen-containing monomer (a4) is preferably 20% by mass or less, preferably 0.05 to mass%, based on the total constituent monomers (100% by mass) constituting the (meth) acrylic polymer (A). It is more preferably 20% by mass, further preferably 0.1 to 15% by mass, and particularly preferably 1 to 15% by mass.
 前記(メタ)アクリル系ポリマー(A)には、さらに、前記アルキル(メタ)アクリレート(a1)、カルボキシル基含有モノマー(a2)、ヒドロキシル基含有モノマー(a3)、窒素含有モノマー(a4)以外にも、接着性や耐熱性の改善を目的に、(メタ)アクリロイル基又はビニル基等の不飽和二重結合を有する重合性の官能基を有する、1種類以上の共重合モノマーを共重合により導入することができる。そのような共重合モノマーの具体例としては、例えば、アクリル酸のカプロラクトン付加物;スチレンスルホン酸やアリルスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェート等の燐酸基含有モノマー等が挙げられる。 In addition to the alkyl (meth) acrylate (a1), the carboxyl group-containing monomer (a2), the hydroxyl group-containing monomer (a3), and the nitrogen-containing monomer (a4), the (meth) acrylic polymer (A) is further added. Introduce one or more copolymerized monomers having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group by copolymerization for the purpose of improving adhesiveness and heat resistance. be able to. Specific examples of such copolymerizable monomers include caprolactone adducts of acrylic acid; containing sulfonic acid groups such as styrene sulfonic acid, allyl sulfonic acid, sulfopropyl (meth) acrylate, and (meth) acryloyloxynaphthalene sulfonic acid. Monomer; Examples thereof include a sulfonic acid group-containing monomer such as 2-hydroxyethylacryloyl phosphate.
 前記カルボキシル基含有モノマー(a2)、ヒドロキシル基含有モノマー(a3)、窒素含有モノマー(a4)以外の共重合モノマーの割合は、特に制限されないが、(メタ)アクリル系ポリマー(A)を構成する全モノマー中、10質量%以下であることが好ましく、0.1~10質量%がより好ましく、0.1~5質量%がさらに好ましい。 The ratio of the copolymerization monomer other than the carboxyl group-containing monomer (a2), the hydroxyl group-containing monomer (a3), and the nitrogen-containing monomer (a4) is not particularly limited, but all of the (meth) acrylic polymer (A) is composed. In the monomer, it is preferably 10% by mass or less, more preferably 0.1 to 10% by mass, still more preferably 0.1 to 5% by mass.
 (メタ)アクリル系ポリマー(A)は、上記のモノマーを目的や所望の特性に応じて適切に組み合わせて重合することにより得られ得る。得られる(メタ)アクリル系ポリマー(A)は、ランダム共重合体、ブロック共重合体、グラフト共重合体のいずれでもよい。(メタ)アクリル系ポリマー(A)は、任意の適切な方法で合成することができ、例えば、大日本図書(株)発行 中前勝彦著「接着・粘着の化学と応用」を参考に合成できる。 The (meth) acrylic polymer (A) can be obtained by polymerizing the above monomers in an appropriate combination according to the purpose and desired properties. The obtained (meth) acrylic polymer (A) may be any of a random copolymer, a block copolymer, and a graft copolymer. The (meth) acrylic polymer (A) can be synthesized by any appropriate method. For example, it can be synthesized by referring to "Adhesion / Adhesive Chemistry and Applications" by Katsuhiko Nakamae published by Dainippon Tosho Co., Ltd. ..
 例えば、(メタ)アクリル系ポリマー(A)の重合方法としては、任意の適切な方法を採用することができる。具体例としては、溶液重合、塊状重合、乳化重合、各種ラジカル重合が挙げられる。 For example, any appropriate method can be adopted as the polymerization method of the (meth) acrylic polymer (A). Specific examples include solution polymerization, bulk polymerization, emulsion polymerization, and various radical polymerizations.
 ラジカル重合に用いられる重合開始剤、連鎖移動剤、乳化剤等は特に限定されず適宜選択して使用することができる。なお、(メタ)アクリル系ポリマーの重量平均分子量は、重合開始剤、連鎖移動剤の使用量、反応条件により制御可能であり、これらの種類に応じて適宜のその使用量が調整される。 The polymerization initiator, chain transfer agent, emulsifier, etc. used for radical polymerization are not particularly limited and can be appropriately selected and used. The weight average molecular weight of the (meth) acrylic polymer can be controlled by the amount of the polymerization initiator and the chain transfer agent used, and the reaction conditions, and the amount of the (meth) acrylic polymer used is appropriately adjusted according to these types.
 例えば、溶液重合等においては、重合溶媒として、例えば、酢酸エチル、トルエン等が用いられる。具体的な溶液重合例としては、反応は窒素等の不活性ガス気流下で、重合開始剤を加え、通常、50~70℃程度で、5~30時間程度の反応条件で行われる。 For example, in solution polymerization and the like, ethyl acetate, toluene and the like are used as the polymerization solvent. As a specific example of solution polymerization, the reaction is carried out under an inert gas stream such as nitrogen, a polymerization initiator is added, and usually at about 50 to 70 ° C. under reaction conditions of about 5 to 30 hours.
 溶液重合等に用いられる、熱重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、等のアゾ系開始剤;過酸化物系開始剤、過酸化物と還元剤とを組み合わせたレドックス系開始剤等を挙げることができるが、これらに限定されるものではない。 Examples of the thermal polymerization initiator used for solution polymerization and the like include azo-based initiators such as 2,2'-azobisisobutyronitrile; peroxide-based initiators, peroxides and reducing agents. Examples thereof include a combined redox-based initiator, but the present invention is not limited thereto.
 前記重合開始剤は、単独で使用してもよく、また2種以上を混合して使用してもよいが、(メタ)アクリル系ポリマー(A)を構成する全モノマー成分100質量部に対して、1質量部以下程度であることが好ましく、0.005~1質量部程度であることがより好ましく、0.02~0.5質量部程度であることがさらに好ましい。 The polymerization initiator may be used alone or in combination of two or more, but with respect to 100 parts by mass of all the monomer components constituting the (meth) acrylic polymer (A). It is preferably about 1 part by mass or less, more preferably about 0.005 to 1 part by mass, and further preferably about 0.02 to 0.5 part by mass.
 なお、重合開始剤として、例えば、2,2’-アゾビスイソブチロニトリルを用いて(メタ)アクリル系ポリマー(A)を製造するには、重合開始剤の使用量は、モノマー成分の全量100質量部に対して、0.2質量部以下程度であることが好ましく、0.06~0.2質量部程度とするのがより好ましい。 In order to produce the (meth) acrylic polymer (A) using, for example, 2,2'-azobisisobutyronitrile as the polymerization initiator, the amount of the polymerization initiator used is the total amount of the monomer components. It is preferably about 0.2 parts by mass or less, and more preferably about 0.06 to 0.2 parts by mass with respect to 100 parts by mass.
 また、(メタ)アクリル系ポリマー(A)は、放射線重合により製造する場合には、前記モノマー成分を、電子線、UV等の放射線を照射することにより重合して製造することができる。前記放射線重合を電子線で行う場合には、前記モノマー成分には光重合開始剤を含有させることは特に必要ではないが、前記放射線重合をUV重合で行う場合には、特に、重合時間を短くすることができる利点等から、モノマー成分に光重合開始剤を含有させることができる。光重合開始剤は1種を単独で又は2種以上を組み合わせて使用することができる。 Further, when the (meth) acrylic polymer (A) is produced by radiation polymerization, it can be produced by polymerizing the monomer component by irradiating it with radiation such as an electron beam or UV. When the radiation polymerization is carried out by an electron beam, it is not particularly necessary to include a photopolymerization initiator in the monomer component, but when the radiation polymerization is carried out by UV polymerization, the polymerization time is particularly short. A photopolymerization initiator can be contained in the monomer component because of the advantages of the above. The photopolymerization initiator may be used alone or in combination of two or more.
 本発明で用いる(メタ)アクリル系ポリマー(A)の重量平均分子量は、40万~250万であることが好ましく、60万~220万であることがより好ましい。重量平均分子量が40万より大きくすることで、粘着剤層の耐久性を満足させたり、粘着剤層の凝集力が小さくなって糊残りが生じるのを抑えることができる。なお、重量平均分子量は、ゲルパーミネーション・クロマトグラフィー(GPC)により測定し、ポリスチレン換算により算出された値をいう。なお、放射線重合で得られた(メタ)アクリル系ポリマーについては、分子量測定は困難である。 The weight average molecular weight of the (meth) acrylic polymer (A) used in the present invention is preferably 400,000 to 2.5 million, more preferably 600,000 to 2.2 million. By setting the weight average molecular weight to more than 400,000, it is possible to satisfy the durability of the pressure-sensitive adhesive layer and suppress the cohesive force of the pressure-sensitive adhesive layer from causing adhesive residue. The weight average molecular weight is a value calculated by gel permeation chromatography (GPC) and converted to polystyrene. It is difficult to measure the molecular weight of the (meth) acrylic polymer obtained by radiation polymerization.
 本発明で用いるベース粘着剤組成物は、架橋剤を含有してもよい。架橋剤としては、例えば、有機系架橋剤、多官能性金属キレートが挙げられる。有機系架橋剤としては、例えば、イソシアネート系架橋剤、過酸化物系架橋剤、エポキシ系架橋剤、イミン系架橋剤が挙げられる。多官能性金属キレートは、多価金属が有機化合物と共有結合又は配位結合しているものである。多価金属としては、例えば、Al、Cr、Zr、Co、Cu、Fe、Ni、V、Zn、In、Ca、Mg、Mn、Y、Ce、Sr、Ba、Mo、La、Sn、Tiが挙げられる。有機化合物としては、例えば、アルキルエステル、アルコール化合物、カルボン酸化合物、エーテル化合物、ケトン化合物が挙げられる。共有結合又は配位結合する有機化合物中の原子としては、例えば酸素原子が挙げられる。これらの中でも、架橋剤としては、イソシアネート系架橋剤が好ましい。 The base pressure-sensitive adhesive composition used in the present invention may contain a cross-linking agent. Examples of the cross-linking agent include an organic cross-linking agent and a polyfunctional metal chelate. Examples of the organic cross-linking agent include isocyanate-based cross-linking agents, peroxide-based cross-linking agents, epoxy-based cross-linking agents, and imine-based cross-linking agents. A polyfunctional metal chelate is one in which a polyvalent metal is covalently or coordinated to an organic compound. Examples of the polyvalent metal include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn and Ti. Can be mentioned. Examples of the organic compound include alkyl esters, alcohol compounds, carboxylic acid compounds, ether compounds, and ketone compounds. Examples of the atom in the organic compound having a covalent bond or a coordination bond include an oxygen atom. Among these, an isocyanate-based cross-linking agent is preferable as the cross-linking agent.
 イソシアネート系架橋剤は、代表的には、2個以上のイソシアネート基を1分子中に有する化合物をいう。例えば、トリレンジイソシアネート、クロルフェニレンジイソシアナート、テトラメチレンジイソシアナート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添されたジフェニルメタンジイソシアネート等のイソシアネートモノマー及びこれらイソシアネートモノマーをトリメチロールプロパン等と付加したイソシアネート化合物やイソシアヌレート化物、ビュレット型化合物、さらにはポリエーテルポリオールやポリエステルポリオール、アクリルポリオール、ポリブタジエンポリオール、ポリイソプレンポリオール等と付加反応させたウレタンプレポリマー型のイソシアネート等が挙げられる。特に好ましくは、ポリイソシアネート化合物であり、ヘキサメチレンジイソシアネート、水添キシリレンジイソシアネート、及びイソホロンジイソシアネートからなる群より選択される1種又はそれに由来するポリイソシアネート化合物である。ここで、ヘキサメチレンジイソシアネート、水添キシリレンジイソシアネート、及びイソホロンジイソシアネートからなる群より選択される1種又はそれに由来するポリイソシアネート化合物には、ヘキサメチレンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、ポリオール変性ヘキサメチレンジイソシアネート、ポリオール変性水添キシリレンジイソシアネート、トリマー型水添キシリレンジイソシアネート、及びポリオール変性イソホロンジイソシアネート等が含まれる。 The isocyanate-based cross-linking agent typically refers to a compound having two or more isocyanate groups in one molecule. For example, isocyanate monomers such as tolylene diisocyanate, chlorphenylene diisocyanate, tetramethylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, and hydrogenated diphenylmethane diisocyanate, and isocyanate compounds obtained by adding these isocyanate monomers to trimethylpropane and the like. Examples thereof include isocyanurates, bullet-type compounds, and urethane prepolymer-type isocyanates which have been subjected to an addition reaction with polyether polyols, polyester polyols, acrylic polyols, polybutadiene polyols, polyisoprene polyols, and the like. Particularly preferred is a polyisocyanate compound, which is one selected from the group consisting of hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, and isophorone diisocyanate, or a polyisocyanate compound derived thereto. Here, one type selected from the group consisting of hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, and isophorone diisocyanate or a polyisocyanate compound derived from the same includes hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, and polyol modification. Hexamethylene diisocyanate, polyol-modified hydrogenated xylylene diisocyanate, trimmer-type hydrogenated xylylene diisocyanate, polyol-modified isophorone diisocyanate and the like are included.
 過酸化物としては、加熱又は光照射によりラジカル活性種を発生してベースポリマーの架橋を進行させ得る任意の適切な化合物を採用することができる。作業性及び安定性を考慮すると、1分間半減期温度が80℃~160℃である過酸化物が好ましく、90℃~140℃である過酸化物がより好ましい。過酸化物の具体例としては、ジ(2-エチルヘキシル)パーオキシジカーボネート(1分間半減期温度:90.6℃)、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(1分間半減期温度:92.1℃)、ジ-sec-ブチルパーオキシジカーボネート(1分間半減期温度:92.4℃)、t-ブチルパーオキシネオデカノエート(1分間半減期温度:103.5℃)、t-ヘキシルパーオキシピバレート(1分間半減期温度:109.1℃)、t-ブチルパーオキシピバレート(1分間半減期温度:110.3℃)、ジラウロイルパーオキシド(1分間半減期温度:116.4℃)、ジ-n-オクタノイルパーオキシド(1分間半減期温度:117.4℃)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(1分間半減期温度:124.3℃)、ジ(4-メチルベンゾイル)パーオキシド(1分間半減期温度:128.2℃)、ジベンゾイルパーオキシド(1分間半減期温度:130.0℃)、t-ブチルパーオキシイソブチレート(1分間半減期温度:136.1℃)、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン(1分間半減期温度:149.2℃)等が挙げられる。なお、過酸化物の半減期とは、過酸化物の分解速度を表す指標であり、過酸化物の残存量が半分になるまでの時間をいう。したがって、過酸化物の1分間半減期温度とは、過酸化物の残存量が1分間で半分になる温度をいう。任意の時間で半減期を得るための分解温度や、任意の温度での半減期時間に関しては、メーカーカタログ等に記載されており、例えば、日本油脂(株)の「有機過酸化物カタログ第9版(2003年5月)」等に記載されている。 As the peroxide, any suitable compound capable of generating radically active species by heating or light irradiation to promote cross-linking of the base polymer can be adopted. Considering workability and stability, a peroxide having a one-minute half-life temperature of 80 ° C. to 160 ° C. is preferable, and a peroxide having a half-life temperature of 90 ° C. to 140 ° C. is more preferable. Specific examples of peroxides include di (2-ethylhexyl) peroxydicarbonate (1 minute half-life temperature: 90.6 ° C.) and di (4-t-butylcyclohexyl) peroxydicarbonate (1 minute half-life). Temperature: 92.1 ° C), di-sec-butyl peroxydicarbonate (1 minute half-life temperature: 92.4 ° C), t-butyl peroxyneodecanoate (1 minute half-life temperature: 103.5 ° C) ), T-Hexyl peroxypivalate (1 minute half-life temperature: 109.1 ° C), t-butyl peroxypivalate (1 minute half-life temperature: 110.3 ° C), dilauroyl peroxide (1 minute half) Period temperature: 116.4 ° C), di-n-octanoyl peroxide (1 minute half-life temperature: 117.4 ° C), 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (1 minute half-life temperature: 124.3 ° C.), di (4-methylbenzoyl) peroxide (1 minute half-life temperature: 128.2 ° C.), dibenzoyl peroxide (1 minute half-life temperature: 130.0 ° C.) , T-Butylperoxyisobutyrate (1 minute half-life temperature: 136.1 ° C.), 1,1-di (t-hexylperoxy) cyclohexane (1 minute half-life temperature: 149.2 ° C.), etc. Be done. The half-life of peroxide is an index showing the decomposition rate of peroxide, and means the time until the residual amount of peroxide is halved. Therefore, the 1-minute half-life temperature of peroxide means the temperature at which the residual amount of peroxide is halved in 1 minute. The decomposition temperature for obtaining a half-life at an arbitrary temperature and the half-life time at an arbitrary temperature are described in the manufacturer's catalog, etc. For example, "Organic Peroxide Catalog No. 9" of Nippon Oil & Fats Co., Ltd. Edition (May 2003) ”etc.
 架橋剤の使用量は、(メタ)アクリル系ポリマー(A)100質量部に対して、0.01~20質量部が好ましく、0.03~10質量部がより好ましい。架橋剤の使用量が0.01質量部未満では、粘着剤の凝集力が不足する傾向があり、加熱時に発泡が生じる場合がある。架橋剤の使用量が20質量部を超えると、耐湿性が十分ではなく、剥がれ等が生じやすくなる場合がある。 The amount of the cross-linking agent used is preferably 0.01 to 20 parts by mass, more preferably 0.03 to 10 parts by mass with respect to 100 parts by mass of the (meth) acrylic polymer (A). If the amount of the cross-linking agent used is less than 0.01 parts by mass, the cohesive force of the pressure-sensitive adhesive tends to be insufficient, and foaming may occur during heating. If the amount of the cross-linking agent used exceeds 20 parts by mass, the moisture resistance is not sufficient and peeling or the like may easily occur.
 前記ベース粘着剤組成物は、任意の適切な添加剤を含んでいてもよい。添加剤としては、例えば、帯電防止剤、酸化防止剤、カップリング剤が挙げられる。添加剤の種類、添加量及び組み合わせ等は、目的に応じて適切に設定され得る。 The base pressure-sensitive adhesive composition may contain any suitable additive. Examples of the additive include an antistatic agent, an antioxidant, and a coupling agent. The type, amount and combination of additives can be appropriately set according to the purpose.
 本発明で用いる光拡散粘着剤層中におけるベース粘着剤組成物の含有量は、50~99.7質量%であることが好ましく、52~97質量%がより好ましく、70~97質量%であることがさらに好ましい。 The content of the base pressure-sensitive adhesive composition in the light-diffusing pressure-sensitive adhesive layer used in the present invention is preferably 50 to 99.7% by mass, more preferably 52 to 97% by mass, and 70 to 97% by mass. Is even more preferable.
 前記ベース粘着剤組成物の屈折率は、1.44以上であることが好ましく、1.44~1.60であることがより好ましく、1.44~1.55であることがさらに好ましい。ベース粘着剤組成物の屈折率が前記範囲であれば、後述する光拡散性微粒子との屈折率差を所望の範囲とすることができる。その結果、硬化後に優れた光拡散性を有する光拡散粘着剤層を得ることができるため好ましい。 The refractive index of the base pressure-sensitive adhesive composition is preferably 1.44 or more, more preferably 1.44 to 1.60, and even more preferably 1.44 to 1.55. When the refractive index of the base pressure-sensitive adhesive composition is within the above range, the difference in refractive index from the light-diffusing fine particles described later can be set within a desired range. As a result, a light diffusing pressure-sensitive adhesive layer having excellent light diffusivity can be obtained after curing, which is preferable.
 (1-2)光拡散性微粒子
 前記光拡散粘着剤層は、前記ベース粘着剤組成物から形成される粘着剤層中に光拡散性微粒子が分散していることが好ましい。前記光拡散性微粒子としては、本発明の効果が得られる限りにおいて、任意の適切なものを用いることができる。具体例としては、無機微粒子、高分子微粒子等が挙げられるが、これらの中でも、高分子微粒子が好ましい。
(1-2) Light-diffusing fine particles In the light-diffusing pressure-sensitive adhesive layer, it is preferable that the light-diffusing fine particles are dispersed in the pressure-sensitive adhesive layer formed from the base pressure-sensitive adhesive composition. As the light diffusing fine particles, any suitable one can be used as long as the effects of the present invention can be obtained. Specific examples include inorganic fine particles and polymer fine particles, and among these, polymer fine particles are preferable.
 前記高分子微粒子の材質としては、例えば、シリコーン樹脂、メタアクリル系樹脂(例えば、ポリメタクリル酸メチル)、ポリスチレン樹脂、ポリウレタン樹脂、メラミン樹脂が挙げられる。これらの樹脂は、前記ベース粘着剤組成物に対する優れた分散性及び前記ベース粘着剤組成物との適切な屈折率差を有するので、拡散性能に優れた光拡散粘着剤層が得られ得る。これらの中でも、シリコーン樹脂、ポリメタクリル酸メチルが特に好ましい。 Examples of the material of the polymer fine particles include silicone resin, methacrylic resin (for example, polymethyl methacrylate), polystyrene resin, polyurethane resin, and melamine resin. Since these resins have excellent dispersibility with respect to the base pressure-sensitive adhesive composition and an appropriate difference in refractive index from the base pressure-sensitive adhesive composition, a light-diffusing pressure-sensitive adhesive layer having excellent diffusion performance can be obtained. Among these, silicone resin and polymethyl methacrylate are particularly preferable.
 光拡散性微粒子の形状は、例えば、真球状、扁平状、不定形状であり得る。光拡散性微粒子は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The shape of the light diffusing fine particles can be, for example, a true spherical shape, a flat shape, or an indefinite shape. The light diffusing fine particles may be used alone or in combination of two or more.
 本発明で用いる光拡散性微粒子の屈折率は、前記ベース粘着剤組成物の屈折率よりも低いことが好ましい。光拡散性微粒子の屈折率は、1.30~1.70であることが好ましく、1.40~1.65であることがより好ましい。光拡散性微粒子の屈折率が前記範囲であれば、光拡散性に優れた光拡散粘着剤層を得ることができ、電磁波透過性積層体の反射率Yを所望の範囲としやすくなるため好ましい。 The refractive index of the light diffusing fine particles used in the present invention is preferably lower than the refractive index of the base pressure-sensitive adhesive composition. The refractive index of the light diffusing fine particles is preferably 1.30 to 1.70, more preferably 1.40 to 1.65. When the refractive index of the light diffusing fine particles is within the above range, a light diffusing pressure-sensitive adhesive layer having excellent light diffusivity can be obtained, and the reflectance Y of the electromagnetic wave transmitting laminate can be easily set within a desired range, which is preferable.
 光拡散性微粒子とベース粘着剤組成物との屈折率差の絶対値は、0を超えて0.2以下であることが好ましく、0を超えて0.15以下であることがより好ましく、0.01~0.13であることがさらに好ましい。 The absolute value of the difference in refractive index between the light diffusing fine particles and the base pressure-sensitive adhesive composition is preferably more than 0 and 0.2 or less, more preferably more than 0 and 0.15 or less, and 0. It is more preferably 0.01 to 0.13.
 光拡散性微粒子の体積平均粒子径は、1~5μm程度であることが好ましく、2~5μm程度であることがより好ましく、2~4μm程度であることがさらに好ましい。光拡散性微粒子の体積平均粒子径が前記範囲内であれば、光拡散性に優れた光拡散粘着剤層を得ることができ、電磁波透過性積層体の反射率Yを所望の範囲としやすくなるため好ましい。なお、体積平均粒子径は、例えば、超遠心式自動粒度分布測定装置を用いて測定することができる。 The volume average particle diameter of the light diffusing fine particles is preferably about 1 to 5 μm, more preferably about 2 to 5 μm, and even more preferably about 2 to 4 μm. When the volume average particle diameter of the light diffusing fine particles is within the above range, a light diffusing pressure-sensitive adhesive layer having excellent light diffusivity can be obtained, and the reflectance Y of the electromagnetic wave transmitting laminate can be easily set within a desired range. Therefore, it is preferable. The volume average particle size can be measured using, for example, an ultracentrifugal automatic particle size distribution measuring device.
 光拡散粘着剤層における光拡散性微粒子の含有量は、特に限定されるものではないが、0.3~50質量%であることが好ましく、3~48質量%であることがより好ましく、3~30量%であることがさらに好ましい。光拡散性微粒子の配合量を前記範囲にすることにより、優れた光拡散性能を有する光拡散粘着剤層を得ることができる。
 光拡散粘着剤層の光拡散性能は、マトリクス(粘着剤)の構成材料、ならびに、光拡散性微粒子の構成材料、体積平均粒子径及び配合量等を調整することにより制御することができる。
The content of the light diffusing fine particles in the light diffusing pressure-sensitive adhesive layer is not particularly limited, but is preferably 0.3 to 50% by mass, more preferably 3 to 48% by mass, and 3 It is more preferably to 30% by mass. By setting the blending amount of the light diffusing fine particles within the above range, a light diffusing pressure-sensitive adhesive layer having excellent light diffusing performance can be obtained.
The light diffusing performance of the light diffusing pressure-sensitive adhesive layer can be controlled by adjusting the constituent material of the matrix (adhesive), the constituent material of the light diffusing fine particles, the volume average particle size, the blending amount, and the like.
 (1-3)光拡散粘着剤層の形成方法
 前記粘着剤層の形成方法は特に限定されないが、例えば、各種基材上に前記粘着剤組成物を塗布し、溶剤等を乾燥除去し、また、必要に応じて架橋処理を施して粘着剤層を形成し、金属光沢層上に、当該粘着剤層を転写する方法であってもよく、前記金属光沢層上に直接前記粘着剤組成物を塗布して、粘着剤層を形成してもよい。
 例えば、前記ベース粘着剤組成物中に光拡散性微粒子を分散させた光拡散粘着剤組成物を金属光沢層上に塗布し、溶剤等を乾燥除去することにより形成することができる。光拡散粘着剤組成物の塗布にあたっては、適宜に一種以上の溶剤を加えてもよい。また、前記ベース粘着剤組成物が活性エネルギー線硬化型である場合、前記ベース粘着剤組成物の一部を重合したプレポリマーを作製し、当該プレポリマーに光拡散性微粒子を分散させた光拡散粘着剤組成物を金属光沢層上に塗布し、当該塗布層に紫外線等の活性エネルギー線を照射することにより光拡散粘着剤層を形成することができる。また、上述の透明導電層を設ける場合は、透明導電層上に、前記光拡散粘着剤組成物を塗布して光拡散粘着剤層を形成することもできる。
(1-3) Method for Forming Light Diffuse Adhesive Layer The method for forming the pressure-sensitive adhesive layer is not particularly limited. For example, the pressure-sensitive adhesive composition is applied onto various substrates, a solvent or the like is dried and removed, and the like. If necessary, a cross-linking treatment may be performed to form a pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer may be transferred onto the metallic luster layer. The pressure-sensitive adhesive composition may be directly applied onto the metallic luster layer. It may be applied to form an adhesive layer.
For example, it can be formed by applying a light-diffusing pressure-sensitive adhesive composition in which light-diffusing fine particles are dispersed in the base pressure-sensitive adhesive composition onto a metallic luster layer and drying and removing a solvent or the like. When applying the light diffusing pressure-sensitive adhesive composition, one or more solvents may be added as appropriate. When the base pressure-sensitive adhesive composition is an active energy ray-curable type, a prepolymer obtained by polymerizing a part of the base pressure-sensitive adhesive composition is produced, and light-diffusing fine particles are dispersed in the prepolymer. A light-diffusing pressure-sensitive adhesive layer can be formed by applying the pressure-sensitive adhesive composition on a metallic glossy layer and irradiating the coating layer with active energy rays such as ultraviolet rays. Further, when the above-mentioned transparent conductive layer is provided, the light diffusing pressure-sensitive adhesive composition can be applied onto the transparent conductive layer to form the light diffusing pressure-sensitive adhesive layer.
 前記光拡散粘着剤層の厚みは、5~300μmであることが好ましく、5~250μmであることがより好ましく、10~250μmであることがさらに好ましく、15~200μmであることがよりさらに好ましく、15μmを超え150μm以下であることが特に好ましい。光拡散粘着剤層の厚みが5μm以上であることで、貼り合せする材料の微小な凹凸、又は光学機能を付与するための凹凸部に追従して貼り合せすることができるため好ましい。また、光拡散粘着剤層の厚みが300μm以下であることで、また筐体の薄型化の観点から好ましい。
 また、光拡散粘着剤層に透明粘着剤層を貼り合せる場合には、前記光拡散粘着剤層の厚みは、5~100μm程度であることが、光拡散粘着剤の物性の影響が周辺部材への貼り合せ効果に影響しない点から好ましく、5~30μm程度であることがより好ましい。また、光拡散粘着剤層が2層以上からなる場合は、全ての光拡散粘着剤層の厚みの合計値が前記範囲内であればよい。
The thickness of the light diffusing pressure-sensitive adhesive layer is preferably 5 to 300 μm, more preferably 5 to 250 μm, further preferably 10 to 250 μm, and even more preferably 15 to 200 μm. It is particularly preferable that the thickness is more than 15 μm and 150 μm or less. When the thickness of the light diffusing pressure-sensitive adhesive layer is 5 μm or more, it is preferable because it is possible to follow the minute unevenness of the material to be bonded or the uneven portion for imparting an optical function. Further, it is preferable that the thickness of the light diffusing pressure-sensitive adhesive layer is 300 μm or less, and from the viewpoint of thinning the housing.
Further, when the transparent pressure-sensitive adhesive layer is bonded to the light-diffusing pressure-sensitive adhesive layer, the thickness of the light-diffusing pressure-sensitive adhesive layer is about 5 to 100 μm, which affects the peripheral members due to the physical properties of the light-diffusing pressure-sensitive adhesive. It is preferable from the viewpoint that it does not affect the bonding effect of the above, and more preferably about 5 to 30 μm. When the light diffusing pressure-sensitive adhesive layer is composed of two or more layers, the total thickness of all the light diffusing pressure-sensitive adhesive layers may be within the above range.
 光拡散粘着剤組成物の塗布方法としては、各種方法が用いられる。具体的には、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、ダイコーター等による押出しコート法等の方法が挙げられる。 Various methods are used as the method for applying the light diffusing pressure-sensitive adhesive composition. Specifically, for example, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples include a method such as an extrusion coating method.
 前記加熱乾燥温度は、30℃~200℃程度が好ましく、40℃~180℃がより好ましく、80℃~160℃がさらに好ましい。加熱温度を上記の範囲とすることによって、優れた粘着特性を有する粘着剤層を得ることができる。乾燥時間は、適宜、適切な時間が採用され得る。上記乾燥時間は、5秒~20分程度が好ましく、30秒~10分がより好ましく、1分~8分がさらに好ましい。 The heating and drying temperature is preferably about 30 ° C. to 200 ° C., more preferably 40 ° C. to 180 ° C., and even more preferably 80 ° C. to 160 ° C. By setting the heating temperature in the above range, an adhesive layer having excellent adhesive properties can be obtained. As the drying time, an appropriate time can be adopted as appropriate. The drying time is preferably about 5 seconds to 20 minutes, more preferably 30 seconds to 10 minutes, and even more preferably 1 minute to 8 minutes.
 前記ベース粘着剤組成物が、活性エネルギー線硬化型粘着剤の場合には、紫外線等の活性エネルギー線を照射することにより光拡散粘着剤層を形成することができる。紫外線照射には、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、ケミカルライトランプ等を用いることができる。 When the base pressure-sensitive adhesive composition is an active energy ray-curable pressure-sensitive adhesive, a light-diffusing pressure-sensitive adhesive layer can be formed by irradiating with active energy rays such as ultraviolet rays. A high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a chemical light lamp, or the like can be used for ultraviolet irradiation.
 前記各種基材は支持体として機能し、例えば、剥離処理したシートを用いることができる。剥離処理したシートとしては、シリコーン剥離ライナーが好ましく用いられる。 The various base materials function as a support, and for example, a peeled sheet can be used. A silicone release liner is preferably used as the release-treated sheet.
 剥離処理したシート上に粘着剤層を形成した粘着シートは、前記粘着剤層が露出する場合には、実用に供されるまで剥離処理したシート(セパレーター)で粘着剤層を保護してもよい。実用に際しては、前記剥離処理したシートは剥離される。 When the pressure-sensitive adhesive layer is exposed, the pressure-sensitive adhesive layer may be protected by a peel-treated sheet (separator) until it is put into practical use. .. In practical use, the peeled sheet is peeled off.
 セパレーターの構成材料としては、例えば、プラスチックフィルム、紙、布、不織布等の多孔質材料、ネット、発泡シート、金属箔、及びこれらのラミネート体等の適宜な薄葉体等を挙げることができるが、表面平滑性に優れる点からプラスチックフィルムが好適に用いられる。 Examples of the constituent material of the separator include porous materials such as plastic film, paper, cloth, and non-woven fabric, nets, foam sheets, metal foils, and appropriate thin leaves such as laminates thereof. A plastic film is preferably used because of its excellent surface smoothness.
 前記プラスチックフィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフイルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン-酢酸ビニル共重合体フィルム等が挙げられる。 Examples of the plastic film include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polybutylene terephthalate film, polyurethane film, and ethylene. -Vinyl acetate copolymer film and the like can be mentioned.
 前記セパレーターの厚みは、通常5~200μm、好ましくは5~100μm程度である。前記セパレーターには、必要に応じて、シリコーン系、フッ素系、長鎖アルキル系もしくは脂肪酸アミド系の離型剤、シリカ粉等による離型及び防汚処理や、塗布型、練り込み型、蒸着型等の帯電防止処理もすることもできる。特に、前記セパレーターの表面にシリコーン処理、長鎖アルキル処理、フッ素処理等の剥離処理を適宜行うことにより、前記粘着剤層からの剥離性をより高めることができる。 The thickness of the separator is usually about 5 to 200 μm, preferably about 5 to 100 μm. If necessary, the separator may be used for mold release and antifouling treatment with a silicone-based, fluorine-based, long-chain alkyl-based or fatty acid amide-based mold release agent, silica powder, etc., as well as a coating type, a kneading type, and a vapor deposition type. It is also possible to carry out antistatic treatment such as. In particular, the peelability from the pressure-sensitive adhesive layer can be further enhanced by appropriately performing a peeling treatment such as a silicone treatment, a long-chain alkyl treatment, or a fluorine treatment on the surface of the separator.
(ハードコート層)
 電磁波透過性積層体1は更にハードコート層を備えていてもよい。
 ハードコート層13bは、例えば、ハードコート組成物から形成される。ハードコート組成物は、樹脂成分を含有し、好ましくは、樹脂成分からなる。
(Hard coat layer)
The electromagnetic wave transmitting laminate 1 may further include a hard coat layer.
The hard coat layer 13b is formed from, for example, a hard coat composition. The hard coat composition contains a resin component, preferably composed of a resin component.
 樹脂成分としては、例えば、硬化性樹脂、熱可塑性樹脂(例えば、ポリオレフィン樹脂)などが挙げられ、好ましくは、硬化性樹脂が挙げられる。 Examples of the resin component include a curable resin, a thermoplastic resin (for example, a polyolefin resin), and preferably a curable resin.
 ハードコート層の厚みは、例えば、0.5μm以上、好ましくは、1.0μm以上であり、また、例えば、10μm以下、好ましくは、3.0μm以下、より好ましくは、2.0μm以下である。ハードコート層の厚みは、例えば、膜厚計(デジタルダイアルゲージ)を用いて測定することができる。 The thickness of the hard coat layer is, for example, 0.5 μm or more, preferably 1.0 μm or more, and for example, 10 μm or less, preferably 3.0 μm or less, more preferably 2.0 μm or less. The thickness of the hard coat layer can be measured using, for example, a film thickness meter (digital dial gauge).
<7.電磁波透過性積層体の製造>
 電磁波透過性積層体1の製造方法の一例について、説明する。特に説明しないが、基材フィルム以外の基体を用いた場合についても同様の方法で製造することができる。
<7. Manufacture of electromagnetic wave transmissive laminate>
An example of a method for manufacturing the electromagnetic wave transmitting laminated body 1 will be described. Although not particularly described, it can be produced by the same method when a substrate other than the substrate film is used.
 金属光沢層が金属層である場合、基体10上に金属層12を形成するにあたっては、例えば、真空蒸着、スパッタリング等の方法を用いることができる。
 金属光沢層が樹脂層である場合、屈折率の異なる樹脂層を積層形成することで金属光沢を実現することが可能であり、例えば屈折率の異なる樹脂をフィードブロック法やマルチマニホールド法等の方法によって作製することができる。
When the metallic luster layer is a metal layer, a method such as vacuum deposition or sputtering can be used to form the metal layer 12 on the substrate 10.
When the metallic luster layer is a resin layer, it is possible to realize metallic luster by laminating and forming resin layers having different refractive indexes. For example, a method such as a feed block method or a multi-manifold method for resin having different refractive indexes. Can be made by
 また、基体10上に酸化インジウム含有層11を形成する場合には、金属光沢層の形成に先立ち、酸化インジウム含有層11を、真空蒸着、スパッタリング、イオンプレーティング等によって形成する。但し、大面積でも厚さを厳密に制御できる点から、スパッタリングが好ましい。 When the indium oxide-containing layer 11 is formed on the substrate 10, the indium oxide-containing layer 11 is formed by vacuum deposition, sputtering, ion plating, or the like prior to the formation of the metallic luster layer. However, sputtering is preferable because the thickness can be strictly controlled even in a large area.
 尚、基体10と金属光沢層の間に酸化インジウム含有層11を設ける場合、酸化インジウム含有層11と金属光沢層の間には、他の層を介在させずに直接接触させるのが好ましい。 When the indium oxide-containing layer 11 is provided between the substrate 10 and the metallic luster layer, it is preferable that the indium oxide-containing layer 11 and the metallic luster layer are in direct contact with each other without interposing another layer.
<8.電磁波透過性積層体及び金属薄膜の用途>
 本実施形態の電磁波透過性積層体は、電磁波透過性を有することから電磁波を送受信する装置や物品及びその部品等に使用することが好ましい。例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。
 より具体的には、車両関係では、インスツルメントパネル、コンソールボックス、ドアノブ、ドアトリム、シフトレバー、ペダル類、グローブボックス、バンパー、ボンネット、フェンダー、トランク、ドア、ルーフ、ピラー、座席シート、ステアリングホイール、ECUボックス、電装部品、エンジン周辺部品、駆動系・ギア周辺部品、吸気・排気系部品、冷却系部品等が挙げられる。
 電子機器及び家電機器としてより具体的には、冷蔵庫、洗濯機、掃除機、電子レンジ、エアコン、照明機器、電気湯沸かし器、テレビ、時計、換気扇、プロジェクター、スピーカー等の家電製品類、パソコン、携帯電話、スマートフォン、デジタルカメラ、タブレット型PC、携帯音楽プレーヤー、携帯ゲーム機、充電器、電池等電子情報機器等が挙げられる。
<8. Applications of electromagnetic wave transmissive laminates and metal thin films>
Since the electromagnetic wave transmissive laminate of the present embodiment has electromagnetic wave transmissivity, it is preferable to use it for an apparatus, an article, a component thereof, or the like that transmits and receives electromagnetic waves. For example, applications for household goods such as structural parts for vehicles, vehicle-mounted products, housings for electronic devices, housings for home appliances, structural parts, mechanical parts, various automobile parts, electronic device parts, furniture, kitchen supplies, etc. , Medical equipment, building material parts, other structural parts, exterior parts, etc.
More specifically, in the vehicle industry, instrument panels, console boxes, doorknobs, door trims, shift levers, pedals, glove boxes, bumpers, bonnets, fenders, trunks, doors, roofs, pillars, seats, steering wheels. , ECU box, electrical parts, engine peripheral parts, drive system / gear peripheral parts, intake / exhaust system parts, cooling system parts and the like.
More specifically, as electronic devices and home appliances, home appliances such as refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, TVs, watches, ventilation fans, projectors, speakers, personal computers, mobile phones , Smartphones, digital cameras, tablet PCs, portable music players, portable game machines, chargers, electronic information devices such as batteries, and the like.
 以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。電磁波透過性積層体1に関して各種試料を準備し、反射率、ヘイズ値、シート抵抗、及び電波透過性を評価した。なお、基体10としては、基材フィルムを用いた。
 シート抵抗は、電磁波透過性に関する評価である。
 評価方法の詳細は以下のとおりである。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. Various samples were prepared for the electromagnetic wave transmissive laminate 1, and the reflectance, haze value, sheet resistance, and radio wave transmissivity were evaluated. As the substrate 10, a substrate film was used.
Sheet resistance is an evaluation of electromagnetic wave transmission.
The details of the evaluation method are as follows.
(1)反射率
 作製した電磁波透過性積層体を厚み1.3mmのガラス板(松波硝子工業株式会社製S200S200)に貼付し、コニカミノルタ社製の分光測色計CM-2600dを用いて、波長380nm~780nmの範囲の可視光線についてSCE測定における反射率Y(%)を測定した。これらの測定値は上記ガラス板を介しての値である。
 なお、測定する際は、標準光源としてD65を用い、得られた電磁波透過性積層体の表面の金属光沢層が設けられた側に上記可視光線を入射させるようにした。
(1) Reflectance The produced electromagnetic wave-transmitting laminate is attached to a glass plate (S200S200 manufactured by Matsunami Glass Industry Co., Ltd.) having a thickness of 1.3 mm, and a spectrocolorimeter CM-2600d manufactured by Konica Minolta is used to obtain a wavelength. The reflectance Y (%) in the SCE measurement was measured for visible light in the range of 380 nm to 780 nm. These measured values are values via the glass plate.
At the time of measurement, D65 was used as a standard light source, and the visible light was incident on the side of the surface of the obtained electromagnetic wave transmitting laminate where the metallic luster layer was provided.
(2)ヘイズ値
 実施例及び比較例で用いた各光拡散粘着剤層のヘイズ値について、JIS 7136で定める方法により、ヘイズメーター(消費名:HN-150、(株)村上色彩科学研究所製)を用いて測定した。
(2) Haze value The haze value of each light diffusing adhesive layer used in Examples and Comparative Examples is a haze meter (consumption name: HN-150, manufactured by Murakami Color Science Laboratory Co., Ltd.) by the method specified in JIS 7136. ) Was used for measurement.
(3)シート抵抗
 ナプソン社製非接触式抵抗測定装置NC-80MAPを用い、JIS-Z2316に準拠し、渦電流測定法により金属光沢層と酸化インジウム含有層の積層体としてのシート抵抗を測定した。得られたシート抵抗の値に応じて、電磁波透過性積層体の電磁波透過性を以下の基準で判断した。
(3) Sheet resistance Using a non-contact resistance measuring device NC-80MAP manufactured by Napson, the sheet resistance as a laminate of a metallic luster layer and an indium oxide-containing layer was measured by an eddy current measurement method in accordance with JIS-Z2316. .. The electromagnetic wave transmissivity of the electromagnetic wave transmissive laminate was judged according to the following criteria according to the obtained sheet resistance value.
(シート抵抗の評価基準)
 100Ω/□未満:×(不良)
 100Ω/□以上:○(良好)
(Evaluation criteria for sheet resistance)
Less than 100Ω / □: × (defective)
100Ω / □ or more: ○ (good)
(4)膜厚の評価方法
 まず、電磁波透過性積層体から、図6に示すように一辺5cmの正方形領域3を適当に抽出し、該正方形領域3の縦辺及び横辺それぞれの中心線A、Bをそれぞれ4等分することによって得られる計5箇所の点「a」~「e」を測定箇所として選択した。
 次いで、選択した測定箇所それぞれにおける、図7に示すような断面画像(透過型電子顕微鏡写真(TEM画像))を測定し、得られたTEM画像から、5個以上の金属の部分12aが含まれる視野角領域を抽出した。
 5箇所の測定箇所それぞれにおいて抽出された視野角領域における金属層の総断面積を視野角領域の横幅で割ったものを各視野角領域の金属層の膜厚とし、5箇所の測定箇所それぞれにおける、各視野角領域の金属層の膜厚の平均値を金属層厚み(nm)とした。
(4) Evaluation Method of Film Thickness First, as shown in FIG. 6, a square region 3 having a side of 5 cm is appropriately extracted from the electromagnetic wave transmitting laminate, and the center lines A of the vertical side and the horizontal side of the square region 3 are appropriately extracted. , And B were divided into four equal parts, and a total of five points "a" to "e" obtained were selected as measurement points.
Next, a cross-sectional image (transmission electron micrograph (TEM image)) as shown in FIG. 7 is measured at each of the selected measurement points, and the obtained TEM image includes five or more metal portions 12a. The viewing angle region was extracted.
The total cross-sectional area of the metal layer in the viewing angle region extracted at each of the five measurement points divided by the width of the viewing angle region is defined as the film thickness of the metal layer in each viewing angle region. The average value of the film thickness of the metal layer in each viewing angle region was defined as the metal layer thickness (nm).
[実施例1]
(光拡散粘着剤組成物の製造)
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート100質量部、アクリル酸5質量部、ヒドロキシエチルアクリレート1質量部、重合開始剤として2,2’-アゾビスイソブチロニトリル0.1質量部を酢酸エチル100質量部と共に仕込み(モノマーの濃度50%)、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を55℃付近に保って8時間重合反応を行い、重量平均分子量(Mw)180万のアクリル系ポリマー1の溶液を調製した。
[Example 1]
(Manufacturing of light diffusing pressure-sensitive adhesive composition)
In a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler, 100 parts by mass of butyl acrylate, 5 parts by mass of acrylic acid, 1 part by mass of hydroxyethyl acrylate, and 2,2'-as a polymerization initiator. 0.1 part by mass of azobisisobutyronitrile was charged together with 100 parts by mass of ethyl acetate (monomer concentration 50%), nitrogen gas was introduced with gentle stirring to replace nitrogen, and then the liquid temperature in the flask was 55. The polymerization reaction was carried out for 8 hours while keeping the temperature at around ° C. to prepare a solution of acrylic polymer 1 having a weight average molecular weight (Mw) of 1.8 million.
 上記で得られたアクリル系ポリマー1溶液の固形分100質量部に対して、イソシアネート系架橋剤(商品名:コロネートL、トリメチロールプロパン/トリレンジイソシアネート3量体付加物、日本ポリウレタン工業(株)製)0.66質量部、ベンゾイルパーオキサイド(ナイパーBMT、日本油脂(株)製)0.3質量部、シランカップリング剤(商品名:KBM403、信越化学工業(株)製)0.2質量部を添加し、ベース粘着剤組成物1を得た。 An isocyanate-based cross-linking agent (trade name: Coronate L, trimethylolpropane / tolylene diisocyanate trimer adduct, Nippon Polyurethane Industry Co., Ltd.) with respect to 100 parts by mass of the solid content of the acrylic polymer 1 solution obtained above. 0.66 parts by mass, benzoyl peroxide (Niper BMT, manufactured by Nippon Polyurethane Industry Co., Ltd.) 0.3 parts by mass, silane coupling agent (trade name: KBM403, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 0.2 mass Part was added to obtain a base pressure-sensitive adhesive composition 1.
 得られたベース粘着剤組成物1の固形分100質量部に対して、光拡散性微粒子として、シリコーン樹脂微粒子(商品名:トスパール145、体積平均粒子径:4μm、屈折率:1.43、シリコーン樹脂系微粒子、モメンティブ・パフォーマンス・マテリアルズ社製)2質量部を配合して、光拡散粘着剤組成物1を調製した。 Silicone resin fine particles (trade name: Tospearl 145, volume average particle diameter: 4 μm, refractive index: 1.43, silicone) as light diffusible fine particles with respect to 100 parts by mass of the solid content of the obtained base pressure-sensitive adhesive composition 1. A light diffusing pressure-sensitive adhesive composition 1 was prepared by blending 2 parts by mass of resin-based fine particles and Momentive Performance Materials Co., Ltd.).
(電磁波透過性積層体の製造)
 基材フィルムとして、ハードコート層が形成されたPETフィルム(厚さ50μm)を用いた。
 先ず、DCマグネトロンスパッタリングを用いて、基材フィルムの面に沿って、5nmの厚さのITO層をその上に直接形成した。ITO層を形成する際の基材フィルムの温度は、130℃に設定した。ITOに含まれる酸化錫(SnО)の含有率(含有率=(SnO/(In+SnO))×100)は10質量%である。
(Manufacturing of electromagnetic wave transmissive laminate)
As the base film, a PET film (thickness 50 μm) on which a hard coat layer was formed was used.
First, DC magnetron sputtering was used to form an ITO layer with a thickness of 5 nm directly on the surface of the base film. The temperature of the base film when forming the ITO layer was set to 130 ° C. The content of tin oxide (SnО 2 ) contained in ITO (content rate = (SnO 2 / (In 2 O 3 + SnO 2 )) × 100) is 10% by mass.
 次いで、交流スパッタリング(AC:40kHz)を用いて、ITO層の上に、17nmの厚さのアルミニウム(Al)層を形成した。得られたアルミニウム層は不連続層であった。Al層を形成する際の基材フィルムの温度は、130℃に設定した。
 その後、直流スパッタリング(DC:100kHz、1μsec)を用いて、アルミニウム層の上に、70nmの厚さのアルミドープ酸化亜鉛(AZO)層を形成し積層体1を得た。AZO層を形成する際の温度は、130℃に設定した。また、得られた積層体1の電波透過減衰量を測定すると-0.02dBとなった。
Next, AC sputtering (AC: 40 kHz) was used to form an aluminum (Al) layer having a thickness of 17 nm on the ITO layer. The obtained aluminum layer was a discontinuous layer. The temperature of the base film when forming the Al layer was set to 130 ° C.
Then, by using direct current sputtering (DC: 100 kHz, 1 μsec), an aluminum-doped zinc oxide (AZO) layer having a thickness of 70 nm was formed on the aluminum layer to obtain a laminate 1. The temperature at which the AZO layer was formed was set to 130 ° C. Further, the amount of radio wave transmission attenuation of the obtained laminated body 1 was measured and found to be −0.02 dB.
 上記で得られた光拡散粘着剤組成物を、シリコーン系剥離剤で処理されたポリエチレンテレフタレートフィルム(三菱ケミカル株式会社製ポリエステルフィルム、商品名「MRF-38」、セパレータフィルム)の片面に、乾燥後の粘着剤層の厚さが20μmになるように塗布し、155℃で1分間乾燥を行い、セパレータフィルムの表面に粘着剤層を形成した。次いで、上記で得られた積層体1の金属層側の面に、セパレータフィルム上に形成した粘着剤層を転写して、電磁波透過性積層体を得た。 After drying the light diffusion pressure-sensitive adhesive composition obtained above on one side of a polyethylene terephthalate film (polyester film manufactured by Mitsubishi Chemical Co., Ltd., trade name "MRF-38", separator film) treated with a silicone-based release agent. The pressure-sensitive adhesive layer was applied so as to have a thickness of 20 μm and dried at 155 ° C. for 1 minute to form a pressure-sensitive adhesive layer on the surface of the separator film. Next, the pressure-sensitive adhesive layer formed on the separator film was transferred to the surface of the laminate 1 obtained above on the metal layer side to obtain an electromagnetic wave-transmitting laminate.
[実施例2~5]
 光拡散粘着剤組成物の調製に用いるシリコーン樹脂微粒子の量を表1に記載の通り変更した以外は実施例1と同様にして、実施例2~5の電磁波透過性積層体を製造した。
[Examples 2 to 5]
The electromagnetic wave transmitting laminates of Examples 2 to 5 were produced in the same manner as in Example 1 except that the amount of the silicone resin fine particles used for preparing the light diffusing pressure-sensitive adhesive composition was changed as shown in Table 1.
[比較例1]
 光拡散粘着剤組成物の調製にシリコーン樹脂微粒子を添加しなかった以外は実施例1と同様にして、比較例1の電磁波透過性積層体を製造した。得られたアルミニウム層は不連続層であった。
[Comparative Example 1]
An electromagnetic wave transmitting laminate of Comparative Example 1 was produced in the same manner as in Example 1 except that silicone resin fine particles were not added to the preparation of the light diffusing pressure-sensitive adhesive composition. The obtained aluminum layer was a discontinuous layer.
[実施例6~10]
 光拡散粘着剤組成物の調製に用いるシリコーン樹脂微粒子の量、及びアルミニウム層の膜厚を表1に記載の通り変更した以外は実施例1と同様にして実施例6~10の電磁波透過性積層体を製造した。得られたアルミニウム層は不連続層であった。
[Examples 6 to 10]
Electromagnetic wave transmissive lamination of Examples 6 to 10 in the same manner as in Example 1 except that the amount of silicone resin fine particles used for preparing the light diffusing pressure-sensitive adhesive composition and the thickness of the aluminum layer were changed as shown in Table 1. Manufactured the body. The obtained aluminum layer was a discontinuous layer.
[比較例2]
 光拡散粘着剤組成物の調製にシリコーン樹脂微粒子を添加しなかった以外は実施例6と同様にして比較例2の電磁波透過性積層体を製造した。得られたアルミニウム層は不連続層であった。
 以下の表1に評価結果を示す。
[Comparative Example 2]
An electromagnetic wave transmitting laminate of Comparative Example 2 was produced in the same manner as in Example 6 except that silicone resin fine particles were not added to the preparation of the light diffusing pressure-sensitive adhesive composition. The obtained aluminum layer was a discontinuous layer.
The evaluation results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~10では反射率Yが1~60%の範囲となり、光輝性を抑えた良好な金属外観の電磁波透過性積層体が得られた。
 一方、比較例1及び2の電磁波透過性積層体は、反射率Yが1%未満であり、実施例1~10に比べ金属外観に劣るものとなった。
As is clear from Table 1, in Examples 1 to 10, the reflectance Y was in the range of 1 to 60%, and an electromagnetic wave transmissive laminate having a good metallic appearance with suppressed brilliance was obtained.
On the other hand, the electromagnetic wave transmitting laminates of Comparative Examples 1 and 2 had a reflectance Y of less than 1%, which was inferior in appearance to metal as compared with Examples 1 to 10.
 なお、以上の実施例で特に使用したアルミニウム(Al))以外の金属についても、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)などの比較的融点の低い金属については、同様の手法で不連続構造を形成しうると考えられる。 Regarding metals other than aluminum (Al) particularly used in the above examples, metals having a relatively low melting point such as zinc (Zn), lead (Pb), copper (Cu), and silver (Ag) are used. , It is considered that a discontinuous structure can be formed by the same method.
 本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。 The present invention is not limited to the above-described embodiment, and can be appropriately modified and embodied without departing from the spirit of the invention.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2019年8月8日出願の日本特許出願(特願2019-146674)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on August 8, 2019 (Japanese Patent Application No. 2019-146674), the contents of which are incorporated herein by reference.
 本発明に係る電磁波透過性積層体は、電磁波を送受信する装置や物品及びその部品等に使用することができる。例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等、意匠性と電磁波透過性の双方が要求される様々な用途にも利用できる。 The electromagnetic wave transmissive laminate according to the present invention can be used for devices and articles that transmit and receive electromagnetic waves, and parts thereof. For example, applications for household goods such as structural parts for vehicles, vehicle-mounted supplies, housings for electronic devices, housings for home appliances, structural parts, mechanical parts, various automobile parts, electronic device parts, furniture, kitchen supplies, etc. It can also be used for various applications that require both design and electromagnetic wave transmission, such as medical equipment, building material parts, other structural parts and exterior parts.
1 電磁波透過性積層体
10 基体
11 酸化インジウム含有層
12 金属層
12a 部分
12b 隙間
13 樹脂層
13a 光拡散粘着剤層
13b ハードコート層
1 Electromagnetic wave transmissive laminate 10 Base 11 Indium oxide-containing layer 12 Metal layer 12a Part 12b Gap 13 Resin layer 13a Light diffusion adhesive layer 13b Hard coat layer

Claims (14)

  1.  基体と、前記基体上に形成された金属光沢層と、樹脂層とを備え、
    波長380nm~780nmの範囲における反射光の、CIE-XYZ表色系のSCE測定における反射率Yが1~60%である電磁波透過性積層体。
    A substrate, a metallic luster layer formed on the substrate, and a resin layer are provided.
    An electromagnetic wave transmissive laminate having a reflectance Y of 1 to 60% in SCE measurement of the CIE-XYZ color system of reflected light in the wavelength range of 380 nm to 780 nm.
  2.  前記金属光沢層が、金属層であり、
    前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含む、請求項1に記載の電磁波透過性積層体。
    The metallic luster layer is a metal layer,
    The electromagnetic wave transmissive laminate according to claim 1, wherein the metal layer includes a plurality of portions that are discontinuous with each other at least in part.
  3.  前記金属層が、アルミニウム又はアルミニウム合金を含有する層である請求項2に記載の電磁波透過性積層体。 The electromagnetic wave transmitting laminate according to claim 2, wherein the metal layer is a layer containing aluminum or an aluminum alloy.
  4.  前記樹脂層が光拡散性微粒子を含有する層を含む請求項1~3のいずれか1項に記載の電磁波透過性積層体。 The electromagnetic wave transmitting laminate according to any one of claims 1 to 3, wherein the resin layer contains a layer containing light diffusing fine particles.
  5.  前記樹脂層が光拡散粘着剤層を含む請求項1~4のいずれか1項に記載の電磁波透過性積層体。 The electromagnetic wave transmitting laminate according to any one of claims 1 to 4, wherein the resin layer includes a light diffusing pressure-sensitive adhesive layer.
  6.  前記基体と前記金属光沢層の間に、酸化インジウム含有層をさらに備える請求項1~5のいずれか1項に記載の電磁波透過性積層体。 The electromagnetic wave transmitting laminate according to any one of claims 1 to 5, further comprising an indium oxide-containing layer between the substrate and the metallic luster layer.
  7.  前記酸化インジウム含有層は連続状態で設けられている請求項6に記載の電磁波透過性積層体。 The electromagnetic wave transmissive laminate according to claim 6, wherein the indium oxide-containing layer is provided in a continuous state.
  8.  前記酸化インジウム含有層は、酸化インジウム(In)、インジウム錫酸化物(ITO)、又はインジウム亜鉛酸化物(IZO)のいずれかを含む請求項6又は7に記載の電磁波透過性積層体。 The electromagnetic wave transmissive laminate according to claim 6 or 7, wherein the indium oxide-containing layer contains any one of indium oxide (In 2 O 3 ), indium tin oxide (ITO), and indium zinc oxide (IZO). ..
  9.  前記酸化インジウム含有層の厚さは、1nm~1000nmである請求項6~8のいずれか1項に記載の電磁波透過性積層体。 The electromagnetic wave transmissive laminate according to any one of claims 6 to 8, wherein the thickness of the indium oxide-containing layer is 1 nm to 1000 nm.
  10.  前記金属光沢層の厚さは、5nm~100nmである請求項6~9のいずれか1項に記載の電磁波透過性積層体。 The electromagnetic wave transmissive laminate according to any one of claims 6 to 9, wherein the thickness of the metallic luster layer is 5 nm to 100 nm.
  11.  前記金属光沢層の厚さと前記酸化インジウム含有層の厚さとの比(前記金属光沢層の厚さ/前記酸化インジウム含有層の厚さ)は、0.02~100である請求項6~10のいずれか1項に記載の電磁波透過性積層体。 The ratio of the thickness of the metallic luster layer to the thickness of the indium oxide-containing layer (thickness of the metallic luster layer / thickness of the indium oxide-containing layer) is 0.02 to 100, according to claims 6 to 10. The electromagnetic wave transmissive laminate according to any one item.
  12.  シート抵抗が、100Ω/□以上である請求項1~11のいずれか1項に記載の電磁波透過性積層体。 The electromagnetic wave transmissive laminate according to any one of claims 1 to 11, wherein the sheet resistance is 100 Ω / □ or more.
  13.  前記複数の部分は島状に形成されている請求項2に記載の電磁波透過性積層体。 The electromagnetic wave transmissive laminate according to claim 2, wherein the plurality of portions are formed in an island shape.
  14.  前記基体は、基材フィルム、樹脂成型物基材、ガラス基材、又は金属光沢を付与すべき物品のいずれかである請求項1~13のいずれか1項に記載の電磁波透過性積層体。 The electromagnetic wave transmitting laminate according to any one of claims 1 to 13, wherein the substrate is a substrate film, a resin molded substrate, a glass substrate, or an article to which metallic luster should be imparted.
PCT/JP2020/029984 2019-08-08 2020-08-05 Electromagnetic wave transmissive layered product WO2021025054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019146674A JP2021024251A (en) 2019-08-08 2019-08-08 Electromagnetic wave transmissible laminate
JP2019-146674 2019-08-08

Publications (1)

Publication Number Publication Date
WO2021025054A1 true WO2021025054A1 (en) 2021-02-11

Family

ID=74502672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029984 WO2021025054A1 (en) 2019-08-08 2020-08-05 Electromagnetic wave transmissive layered product

Country Status (3)

Country Link
JP (1) JP2021024251A (en)
TW (1) TW202112550A (en)
WO (1) WO2021025054A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190612A1 (en) * 2022-03-30 2023-10-05 日東電工株式会社 Laminate, light-emitting device, and sensing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132456A1 (en) * 2019-12-26 2021-07-01 大日本印刷株式会社 Metallic decorative sheet and metallic decorative molded body provided with same
US20230033148A1 (en) * 2019-12-27 2023-02-02 Dai Nippon Printing Co., Ltd. Metal tone decorative sheet and metal tone decorative molded body provided with metal tone decorative sheet
JPWO2022181528A1 (en) * 2021-02-24 2022-09-01
JP2023136218A (en) * 2022-03-16 2023-09-29 株式会社レゾナック Radio wave transmitting member, emblem and object detection structure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014408A (en) * 2003-06-26 2005-01-20 Yoshino Kogyosho Co Ltd Delustered decorative product
JP2005212461A (en) * 2004-02-02 2005-08-11 Seiko Epson Corp Decorative article, manufacturing process for decorative article and clock
JP2005249773A (en) * 2004-02-02 2005-09-15 Toyota Motor Corp Molding for inside of beam path in radar system
JP2007093241A (en) * 2005-09-27 2007-04-12 Toyoda Gosei Co Ltd Radar device cover and manufacturing method thereof
JP2009066996A (en) * 2007-09-14 2009-04-02 Nissha Printing Co Ltd Electric wave permeable transfer material and its manufacturing method
JP2009298052A (en) * 2008-06-13 2009-12-24 Nippon Kako Toryo Kk Article of differing color recognizable depending on viewing angle and method of manufacturing the same
WO2014126135A1 (en) * 2013-02-13 2014-08-21 東洋紡株式会社 Heat ray-reflecting, radio wave-transmitting transparent laminate
JP2018035402A (en) * 2016-08-31 2018-03-08 株式会社ファルテック Production method of radar cover
WO2018079547A1 (en) * 2016-10-24 2018-05-03 日東電工株式会社 Electromagnetic wave-permeable shiny metal member, article using same, and metal thin film
WO2019139154A1 (en) * 2018-01-12 2019-07-18 日東電工株式会社 Electromagnetic wave transmissive metallic luster film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014408A (en) * 2003-06-26 2005-01-20 Yoshino Kogyosho Co Ltd Delustered decorative product
JP2005212461A (en) * 2004-02-02 2005-08-11 Seiko Epson Corp Decorative article, manufacturing process for decorative article and clock
JP2005249773A (en) * 2004-02-02 2005-09-15 Toyota Motor Corp Molding for inside of beam path in radar system
JP2007093241A (en) * 2005-09-27 2007-04-12 Toyoda Gosei Co Ltd Radar device cover and manufacturing method thereof
JP2009066996A (en) * 2007-09-14 2009-04-02 Nissha Printing Co Ltd Electric wave permeable transfer material and its manufacturing method
JP2009298052A (en) * 2008-06-13 2009-12-24 Nippon Kako Toryo Kk Article of differing color recognizable depending on viewing angle and method of manufacturing the same
WO2014126135A1 (en) * 2013-02-13 2014-08-21 東洋紡株式会社 Heat ray-reflecting, radio wave-transmitting transparent laminate
JP2018035402A (en) * 2016-08-31 2018-03-08 株式会社ファルテック Production method of radar cover
WO2018079547A1 (en) * 2016-10-24 2018-05-03 日東電工株式会社 Electromagnetic wave-permeable shiny metal member, article using same, and metal thin film
WO2019139154A1 (en) * 2018-01-12 2019-07-18 日東電工株式会社 Electromagnetic wave transmissive metallic luster film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190612A1 (en) * 2022-03-30 2023-10-05 日東電工株式会社 Laminate, light-emitting device, and sensing device

Also Published As

Publication number Publication date
TW202112550A (en) 2021-04-01
JP2021024251A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
WO2021025054A1 (en) Electromagnetic wave transmissive layered product
KR101155286B1 (en) Self-tacky film
JP7319079B2 (en) Electromagnetic wave permeable metallic luster article and decorative member
WO2021006130A1 (en) Electromagnetic wave transmitting metallic luster article
WO2019208493A1 (en) Electromagnetic-wave-permeable metallic-luster article, and decorative member
WO2019139154A1 (en) Electromagnetic wave transmissive metallic luster film
WO2021200292A1 (en) Layered body, electromagnetic wave permeable layered body, and article
EP4166998A1 (en) Film mirror laminate, and mirror member
TW202208177A (en) Film mirror laminate and mirror member
WO2021261433A1 (en) Film mirror laminate and mirror member
JP2022072987A (en) Laminate for thermal transfer, joint structure, metallic glossy article, and method for manufacturing them
TW201418035A (en) Surface protection sheet
JP7319080B2 (en) Electromagnetic wave transparent metallic luster article and metal thin film
KR20130087961A (en) Composition for adhesive, adhesive for exterior-decoration and double sided non-carrier film using the same
JP2021098285A (en) Thermal transfer image-receiving sheet, metallic luster member, and communication device
JP2023086368A (en) Optical laminate and mirror member
JP2022069181A (en) Laminate for thermal transfer, joint structure, metallic glossy article, and method for manufacturing them
JP2023110548A (en) Optical laminate and mirror member
JP2022131590A (en) Metallic sheen member, decorative member, and manufacturing method of metallic sheen member
JP2023024147A (en) Article
WO2024053692A1 (en) Optical laminated body, concave mirror, and concave mirror production method
JP2022131589A (en) Film having hard coat layer, laminate and manufacturing method of laminate
WO2022137832A1 (en) Optical film
JP2022129029A (en) Electromagnetic wave transmissive metallic sheen member and decorative member
JP2022166713A (en) Laminate and article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851103

Country of ref document: EP

Kind code of ref document: A1