WO2024053692A1 - Optical laminated body, concave mirror, and concave mirror production method - Google Patents

Optical laminated body, concave mirror, and concave mirror production method Download PDF

Info

Publication number
WO2024053692A1
WO2024053692A1 PCT/JP2023/032590 JP2023032590W WO2024053692A1 WO 2024053692 A1 WO2024053692 A1 WO 2024053692A1 JP 2023032590 W JP2023032590 W JP 2023032590W WO 2024053692 A1 WO2024053692 A1 WO 2024053692A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
concave mirror
layer
optical laminate
base
Prior art date
Application number
PCT/JP2023/032590
Other languages
French (fr)
Japanese (ja)
Inventor
孝洋 中井
徹 梅本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024053692A1 publication Critical patent/WO2024053692A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces

Definitions

  • the present invention relates to an optical laminate, a concave mirror using the same, and a method for manufacturing a concave mirror.
  • HUD head-up display
  • a head-up display device an image from a light source is focused as a virtual image on a windshield in a dashboard device, so that the image is visually recognized by the driver.
  • a mirror object with high specularity is required.
  • a mirror surface body with high visible light reflectance is required. From the perspective of improving driving safety, head-up displays, which require less movement of the viewpoint, are attracting more and more attention day by day, and demand for mirror-surfaced objects used as reflectors is also increasing.
  • plastic substrates especially polycarbonate substrates due to their high heat resistance, are used as supporting substrates for mirror surfaces because of their low risk of damage due to accidents such as vehicle collisions, and their light weight. There is.
  • Patent Document 2 discloses that a reflective mirror (concave mirror) including a substrate and a reflective sheet on which a reflective film is formed is manufactured by insert molding. Insert molding has high productivity because the reflective sheet can be integrally molded with the substrate.
  • a specular object needs to have high specularity. Therefore, it is conceivable to provide a protective film on the reflective film to prevent the reflective film from being scratched during manufacturing of the reflective film or concave mirror.
  • the present invention was completed in view of the above, and its object is to provide an optical laminate that can form a concave mirror with high specularity, a concave mirror using the same, and a method for manufacturing a concave mirror.
  • the present inventors have found that the above problem can be solved by setting the surface roughness and thermal deformation amount of the protective film within a specific range in an optical laminate comprising a reflective film and a protective film. I found it.
  • the present invention is as follows.
  • An optical laminate comprising a reflective film and a protective film on the reflective film
  • the protective film includes a first base film and an adhesive layer on the first base film, A surface of the protective film on the pressure-sensitive adhesive layer side is laminated to the reflective film, The surface roughness Ra of the surface of the adhesive layer side of the protective film is 180 nm or less,
  • the protective film is an optical laminate having a thermal deformation amount of less than 1% at 110°C.
  • the reflective film has a metal reflective layer and an optical adjustment layer in this order on a second base film, and the optical adjustment layer includes at least one high refractive index layer having a refractive index of 1.75 or more.
  • a concave mirror comprising the optical laminate according to [1] or [2] and a base having a concave shape, A concave mirror in which a surface of the optical laminate on the reflective film side and a surface of the concave base body on the concave side are laminated with an adhesive layer interposed therebetween.
  • a method for manufacturing a concave mirror comprising the optical laminate according to [1] or [2] and a base having a concave shape
  • a method for manufacturing a concave mirror comprising laminating the optical laminate on the concave side surface of the base having the concave shape via an adhesive layer.
  • the method for manufacturing a concave mirror according to [7] wherein the laminate is a vacuum laminate.
  • the present invention can provide an optical laminate that can form a concave mirror with high specularity, and a concave mirror using the optical laminate.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an optical laminate according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a concave mirror according to an embodiment of the invention.
  • FIG. 4 is a diagram for explaining a method of manufacturing a concave mirror using film insert molding.
  • FIG. 5 is a diagram for explaining a method of manufacturing a concave mirror using film insert molding.
  • FIG. 6 is a diagram for explaining a method of manufacturing a concave mirror using film insert molding.
  • FIG. 1 shows a schematic cross-sectional view of an optical laminate 1 according to an embodiment of the present invention.
  • the optical laminate 1 according to the embodiment of the present invention is an optical laminate including a reflective film 20 and a protective film 30 on the reflective film
  • the protective film 30 includes a first base film 14 and an adhesive layer 15 on the first base film 14, A surface of the protective film 30 on the adhesive layer 15 side is bonded to the reflective film 20, Surface roughness Ra of the surface of the adhesive layer 15 side of the protective film 30 is 180 nm or less,
  • the protective film 30 has a thermal deformation amount of less than 1% at 110°C.
  • the optical laminate 1 according to the embodiment of the present invention has a protective film 30 having a surface roughness Ra of 180 nm or less and a thermal deformation amount at 110° C. of less than 1%.
  • the mold temperature may be set at 60°C to 300°C, and it is thought that the optical laminate is exposed to high temperatures and the surface shape of the protective film is transferred to the reflective film. .
  • a protective film with high surface smoothness and low thermal deformation as described above, it is possible to reduce the unevenness of the surface shape transferred to the reflective film 20, and it is possible to manufacture a concave mirror with high specularity with high productivity. It becomes possible.
  • the surface roughness Ra of the adhesive layer side surface of the protective film is 180 nm or less. If the surface roughness Ra exceeds 180 nm, when the optical laminate is exposed to high temperatures during concave mirror manufacturing, the uneven shape of the surface of the adhesive layer side of the protective film will be transferred to the reflective film, which will cause the mirror surface of the concave mirror to deteriorate. Gender is lost.
  • the surface roughness Ra of the protective film is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 30 nm or less, from the viewpoint of improving specularity.
  • the surface roughness Ra of the protective film in the optical laminate according to the embodiment of the present invention is determined by peeling the protective film from the optical laminate and measuring the surface roughness of the surface of the peeled protective film on the adhesive layer side. This is what I did.
  • the surface roughness Ra of the protective film can be measured according to JIS B 0601:1994.
  • the amount of thermal deformation of the protective film at 110° C. is less than 1%. If the amount of thermal deformation is 1% or more, when the optical laminate is exposed to high temperatures during concave mirror manufacturing, the surface of the protective film will be greatly deformed, and the deformed surface shape will be transferred to the reflective film, resulting in the deformation of the concave mirror. Specularity is lost.
  • the thermal deformation amount of the protective film at 110° C. is preferably 0.5% or less, more preferably 0.3% or less, from the viewpoint of improving specularity.
  • the amount of thermal deformation of the protective film in the optical laminate according to the embodiment of the present invention is determined by peeling the protective film from the optical laminate and measuring the amount of thermal deformation of the peeled protective film.
  • the amount of thermal deformation of the protective film can be measured as the dimensional change rate when heated at 110° C. for 1 hour in accordance with JIS K7133 (1995).
  • the amount of thermal deformation of the protective film is less than 1% is calculated by measuring the dimensions of the protective film in the MD direction and TD direction, and the dimensional change rate (%) according to the above-mentioned measurement method.
  • the area change rate (%) of the protective film is less than 1%.
  • the dimensional change rate (%) of the protective film in the MD direction and the TD direction is each less than 1%.
  • the MD direction of the protective film is the length direction of the film (flow direction during film formation), and the TD direction is the width direction of the film.
  • the amount of thermal deformation can be adjusted by, for example, the material of the first base film 14 in the protective film 30 or annealing treatment.
  • the reflective film 20 in the optical laminate 1 according to the embodiment of the present invention has a metal reflective layer 11 and an optical adjustment layer 13 in this order on the second base film 10, and the optical adjustment layer 13 includes: Containing at least one high refractive index layer with a refractive index of 1.75 or more, It is preferable that the surface of the protective film 30 on the adhesive layer 15 side is bonded to the surface of the reflective film 20 on the optical adjustment layer 13 side.
  • the first base film 14 is made of, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyimide, polyamide, polyvinyl chloride, or polycarbonate. It is preferable to use a member made of a homopolymer or copolymer such as (PC), cycloolefin polymer (COP), polystyrene, polycycloolefin, polyurethane, acrylic (PMMA), or ABS.
  • PC polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PEN polybutylene terephthalate
  • polyimide polyamide
  • polyvinyl chloride or polycarbonate
  • PC polyethylene terephthalate
  • COP cycloolefin polymer
  • polystyrene polystyrene
  • polycycloolefin polyurethane
  • acrylic (PMMA) acrylic
  • the first base film 14 may be a single layer or a laminate.
  • the glass transition temperature of the material resin of the first base film is preferably 40°C or higher, more preferably 60°C or higher, from the viewpoint of reducing the amount of thermal deformation.
  • the thickness of the first base film 14 is preferably 6 ⁇ m to 250 ⁇ m, for example. More preferably, it is 20 ⁇ m or more, and still more preferably 30 ⁇ m or more. Moreover, it is more preferably 100 ⁇ m or less, and even more preferably 75 ⁇ m or less. Furthermore, in order to strengthen the adhesive force with the layer formed on the first base film, plasma treatment, corona treatment, further adhesion promoting treatment, etc. may be performed.
  • the adhesive layer can be formed from an adhesive.
  • the adhesive forming the adhesive layer 15 is preferably a transparent adhesive, such as an acrylic adhesive, a rubber adhesive, a silicone adhesive, a polyester adhesive, a urethane adhesive, an epoxy adhesive, and polyether pressure-sensitive adhesives may be used alone or in combination of two or more. From the viewpoints of transparency, processability, durability, etc., it is preferable to use an acrylic pressure-sensitive adhesive.
  • the adhesive layer 15 is protected by a release liner until it is attached to the reflective film 20.
  • the adhesive forming the adhesive layer 15 is preferably formed from an adhesive composition (hereinafter sometimes simply referred to as "adhesive composition") containing a base polymer.
  • a base polymer it is possible to use known polymers used in adhesives.
  • the base polymer refers to the main component of the polymer contained in the adhesive composition.
  • main component refers to a component contained in an amount exceeding 50% by mass, unless otherwise specified.
  • the adhesive layer can be formed, for example, by applying an adhesive composition onto the first base film and drying and removing the solvent and the like. When applying the adhesive composition, one or more solvents may be added as appropriate.
  • the adhesive layer can be formed, for example, by bonding the adhesive layer-side surface of a laminate of an adhesive layer formed on a release liner with an adhesive composition and a release liner to the first base film. It can also be formed.
  • the thickness of the adhesive layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 25 ⁇ m or more from the viewpoint of preventing foreign matter from being mixed in during bonding. Further, from the viewpoint of suppressing foaming caused by high-temperature heating, the thickness is preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the thickness of the adhesive layer can be measured with a dial gauge.
  • Various methods can be used to apply the adhesive composition. Specifically, for example, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples include methods such as extrusion coating.
  • the heat drying temperature is preferably 30°C to 200°C, more preferably 40°C to 180°C, even more preferably 80°C to 160°C. By setting the heating temperature within the above range, a pressure-sensitive adhesive layer having excellent adhesive properties can be obtained.
  • As the drying time an appropriate time can be adopted as needed.
  • the drying time is preferably 5 seconds to 20 minutes, more preferably 30 seconds to 10 minutes, even more preferably 1 minute to 8 minutes.
  • the adhesive layer can be formed by irradiation with active energy rays such as ultraviolet rays.
  • active energy rays such as ultraviolet rays.
  • a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a chemical light lamp, etc. can be used for ultraviolet irradiation.
  • the adhesive layer in the protective film can be protected with a release liner (separator) before lamination with the reflective film.
  • a release liner separator
  • the release liner described later in the section of the method for forming the adhesive layer can be preferably used.
  • the surface roughness Ra of the adhesive layer side surface of the protective film used for manufacturing the optical laminate according to the present embodiment is 180 nm or less.
  • the surface roughness Ra of the protective film before lamination is more preferably 100 nm or less, further preferably 50 nm or less, particularly preferably 30 nm or less from the viewpoint of improving specularity.
  • the reflective film 20 in the optical laminate 1 according to the embodiment of the present invention preferably has a laminated structure including a metal reflective layer 11 and an optical adjustment layer 13 in this order on the second base film 10. Further, from the viewpoint of improving the visible light reflection performance of the concave mirror, it is preferable that the optical adjustment layer 13 includes at least one high refractive index layer having a refractive index of 1.75 or more.
  • the material of the second base film 10 is not particularly limited, and includes, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer ( Members made of homopolymers or copolymers such as COP), polystyrene, polypropylene (PP), polyethylene, polycycloolefin, polyurethane, acrylic (PMMA), and ABS can be used. These members are transparent, have little optical absorption, and do not affect visual effects.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • cycloolefin polymer Members made of homopolymers or copolymers such as COP), polystyrene, polypropylene (PP), polyethylene, polycycloolefin, polyurethane, acrylic (PMMA), and ABS can be used. These members are transparent, have
  • the material can withstand high temperatures such as vapor deposition and sputtering. Therefore, among the above materials, for example, polyethylene terephthalate, polyethylene Phthalate, acrylic, polycarbonate, cycloolefin polymer, ABS, polypropylene, polyurethane are preferred. Among these, polyethylene terephthalate, cycloolefin polymer, polycarbonate, and acrylic are preferred because they have a good balance between heat resistance and cost.
  • the second base film 10 may be a single layer or a laminate.
  • the thickness of the second base film 10 is preferably 6 ⁇ m to 250 ⁇ m, for example. More preferably, it is 20 ⁇ m or more, and still more preferably 40 ⁇ m or more. Moreover, it is more preferably 100 ⁇ m or less, and still more preferably 75 ⁇ m or less. Further, in order to strengthen the adhesion with the layer formed on the second base film, plasma treatment, corona treatment, further adhesion promoting treatment, etc. may be performed.
  • a hard coat layer such as a smooth or anti-glare hard coat layer may be formed on the second base film 10 if necessary. By providing the hard coat layer, scratch resistance can be improved.
  • the hard coat layer can be formed from a hard coat composition. More specifically, it can be formed by applying a solution containing a curable resin to the second base film 10 as a hard coat composition.
  • the curable resin contained in the hard coat composition include thermosetting resins, ultraviolet curable resins, electron beam curable resins, and the like.
  • the curable resin include various resins such as polyester, acrylic, urethane, acrylic urethane, amide, silicone, silicate, epoxy, melamine, oxetane, and acrylic urethane.
  • acrylic resins, acrylic urethane resins, and epoxy resins are preferred because they have high hardness, can be cured by ultraviolet rays, and have excellent productivity.
  • the thickness of the hard coat layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and preferably 10 ⁇ m or less, more preferably 7.0 ⁇ m or less, and still more preferably 5.0 ⁇ m or less.
  • the thickness of the hard coat layer can be measured using, for example, a film thickness meter (digital dial gauge) or an optical interference type film thickness meter.
  • the metal reflective layer 11 in this embodiment is preferably formed on the second base film 10.
  • the metal reflective layer 11 is preferably a layer with metallic luster.
  • the material forming the metal reflective layer 11 is not particularly limited, and may include metal and resin.
  • the metal reflective layer 11 may be a metal layer. A case where the metal reflective layer 11 is a metal layer will be explained.
  • the metal reflective layer 11 is desirably made of a metal that not only exhibits sufficient glitter but also has a relatively low melting point. This is because the metal reflective layer 11 is preferably formed by thin film growth using sputtering. For these reasons, metals with a melting point of about 1000° C. or lower are suitable for the metal reflective layer 11, such as aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), silver ( It is preferable to include at least one metal selected from Ag) and an alloy containing the metal as a main component. In particular, it is preferable that the metal reflective layer 11 contains aluminum or an aluminum alloy for reasons such as the brightness, stability, and cost of the material. Moreover, when using an aluminum alloy, it is preferable that the aluminum content is 50% by mass or more.
  • the thickness of the metal reflective layer 11 is usually preferably 20 nm or more in order to exhibit sufficient glitter, and on the other hand, from the viewpoint of productivity, it is usually preferably 100 nm or less.
  • the thickness is preferably 20 nm to 100 nm, more preferably 30 nm to 70 nm. This thickness is suitable for forming a uniform film with good productivity, and also gives a good appearance to the concave mirror produced by laminating the optical laminate 1 on the base.
  • the optical laminate 1 preferably has an optical adjustment layer 13 on the surface of the metal reflective layer 11 opposite to the second base film 10.
  • the optical adjustment layer 13 according to the embodiment of the present invention preferably includes at least one high refractive index layer having a refractive index of 1.75 or more.
  • refractive index layer By including the high refractive index layer as an optical adjustment layer, the reflection spectrum can be adjusted and the reflectance in the visible light region can be increased.
  • the high refractive index layer preferably included in the optical adjustment layer according to the embodiment of the present invention is a layer having a refractive index of 1.75 or more, more preferably 1.75 to 3.2, and still more preferably 1.75 to 3.2. It ranges from 80 to 2.40.
  • the refractive indices of the high refractive index layers may be the same or different.
  • the high refractive index layer is preferably a layer made of metal oxide and/or metal nitride.
  • the metal elements contained in the metal oxides and metal nitrides herein include metalloid elements such as Si.
  • metal oxides and/or metal nitrides include metal oxynitrides.
  • the metal oxide may be an oxide of a single metal element (single oxide) or an oxide of multiple metal elements (composite oxide).
  • the metal nitride may be a nitride of a single metal element (single nitride) or a nitride of multiple metal elements (composite nitride). Examples of the metal element include Ce, Nb, Si, Sb, Ti, Ta, Zr, and Zn.
  • the material of the high refractive index layer for example, CeO 2 (2.30), NbO (2.33), Nb 2 O 3 (2.15), Nb 2 O 5 (2.32) , SiN (2.03), Sb 2 O 3 (2.10), TiO 2 (2.35), Ta 2 O 5 (2.10), ZrO 2 (2.05), ZnO (2.10) , ZnS (2.30), tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), etc. (the numerical value in parentheses for each material above is the refractive index).
  • the high refractive index layer preferably contains at least one selected from Nb, Si, and Ti, for example, preferably contains at least one selected from NbO x , SiN x , and TiO x , and preferably contains at least one selected from NbO x (oxidized Niobium) is more preferably included.
  • the thickness of the high refractive index layer is preferably 10 nm or more, more preferably 20 nm or more, and even more preferably 30 nm or more from the viewpoint of improving reflectance in the visible light region. Further, from the viewpoint of improving reflectance in the visible light region, the thickness is preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 70 nm or less.
  • the optical adjustment layer may be a laminate of layers having different refractive indexes, and may include a low refractive index layer in addition to the high refractive index layer.
  • the optical laminate 1 according to the embodiment of the present invention includes, as the optical adjustment layer 13, a first low refractive index layer 13a, the high refractive index layer 13b, and It is preferable to have the second low refractive index layer 13c in this order.
  • the low refractive index layer is a layer having a lower refractive index than the high refractive index layer, and its refractive index is, for example, 1.35 to 1.55, preferably 1.40 to 1.50.
  • One or more low refractive index layers may be provided, and when multiple low refractive index layers are provided, the refractive indices of the low refractive index layers may be the same or different.
  • the optical adjustment layer may include two low refractive index layers, a first low refractive index layer and a second low refractive index layer, and the refractive index of the first low refractive index layer is the same as that of the second low refractive index layer. It may be the same as or different from the second low refractive index layer.
  • Examples of the material for the low refractive index layer include metal oxides and metal fluorides.
  • the metal elements contained in the metal oxides and metal fluorides herein include metalloid elements such as Si.
  • metal oxides and/or metal fluorides include metal oxyfluorides.
  • the metal oxide may be an oxide of a single metal element (single oxide) or an oxide of multiple metal elements (composite oxide).
  • the metal fluoride may be a fluoride of a single metal element (single fluoride) or a fluoride of multiple metal elements (composite fluoride). Examples of the metal element include Si and Mg.
  • a specific example of the metal oxide is silicon oxide (SiO 2 : refractive index 1.46).
  • metal fluorides include magnesium fluoride and fluorosilicic acid.
  • the materials for the first low refractive index layer and the second low refractive index layer are preferably magnesium fluoride and fluorosilicic acid from the viewpoint of refractive index, and are preferably oxidized from the viewpoint of ease of manufacture, mechanical strength, moisture resistance, etc. Silicon is preferred, and silicon oxide is preferred when various characteristics are comprehensively considered.
  • the materials of the low refractive index layers may be the same or different, but it is preferable that all of the low refractive index layers contain silicon oxide.
  • the thickness of the first low refractive index layer is preferably 50 nm or more, more preferably 66 nm or more, and even more preferably 68 nm or more from the viewpoint of improving reflectance in the visible light region. Further, from the viewpoint of improving reflectance in the visible light region, the thickness is preferably 100 nm or less, more preferably 78 nm or less, and even more preferably 75 nm or less.
  • the upper limit of the thickness of the second low refractive index layer is preferably 50 nm or less, more preferably 45 nm or less, from the viewpoint of improving reflectance in the visible light region.
  • the laminated structure of the optical adjustment layer 13 preferably includes at least one high refractive index layer having a refractive index of 1.75 or more, but is not particularly limited.
  • the optical laminate 1 is made of, for example, titanium oxide or a mixture of the above-mentioned low refractive index material and high refractive index material (a mixture of titanium oxide and silicon oxide) as a medium refractive index layer with a refractive index of about 1.50 to 1.85. etc.) may further be provided.
  • the optical adjustment layer has, for example, the above-mentioned three-layer structure, from the metal reflective layer 11 side: the first low refractive index layer, the high refractive index layer, and the second low refractive index layer; the high refractive index layer; Four-layer structure: first low refractive index layer, high refractive index layer, and second low refractive index layer; first low refractive index layer, high refractive index layer, medium refractive index layer, and high refractive index layer; Examples include a five-layer structure including a refractive index layer and a second low refractive index layer. Further, the optical adjustment layer may be a laminate of six or more thin films.
  • the optical laminate 1 includes: Other layers may be included depending on the application. Examples of other layers include an adhesive layer, a protective layer, a hard coat layer, a barrier layer, an easy-adhesion layer, an antireflection layer, a light extraction layer, an anti-glare layer, an infrared absorption layer, and the like. For example, some oxides, such as niobium oxide, are reduced when exposed to ultraviolet light while laminated with an adhesive, so in order to prevent reduction, a layer of silicon oxide is further laminated as a protective layer. You may do so.
  • the optical laminate 1 according to the embodiment of the present invention can be used as a concave mirror 100 by being laminated onto a base 40 via an adhesive layer 12, for example.
  • the adhesive layer 12 is made of, for example, an acrylic adhesive, a polyester adhesive, a urethane adhesive, or two or more of them. can be formed by combining.
  • the adhesive layer 12 is protected by a release liner until it is applied to an adherend.
  • Adhesive layer 12 can be formed from an adhesive composition.
  • the adhesive layer can also be formed, for example, by applying an adhesive composition onto the second base film and drying and removing the solvent and the like. When applying the adhesive composition, one or more solvents may be added as appropriate.
  • the adhesive layer is formed by, for example, bonding the adhesive layer side surface of a laminate of the adhesive layer formed on the release liner with the adhesive composition and the release liner to the second base film. You can also. It may be formed by bonding an adhesive layer formed into a film on the release liner onto the second base film while heating.
  • the thickness of the adhesive layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 25 ⁇ m or more from the viewpoint of the appearance when the optical laminate and the substrate are laminated. Further, from the viewpoint of suppressing appearance defects due to film thickness unevenness, the thickness is preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the thickness of the adhesive layer can be measured using a dial gauge or the like.
  • Various methods can be used to apply the adhesive composition. Specifically, for example, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples include methods such as extrusion coating.
  • the heat drying temperature is preferably 30°C to 200°C, more preferably 40°C to 180°C, even more preferably 80°C to 160°C. By setting the heating temperature within the above range, an adhesive layer having excellent adhesive properties can be obtained.
  • As the drying time an appropriate time can be adopted as needed.
  • the drying time is preferably 5 seconds to 20 minutes, more preferably 30 seconds to 10 minutes, even more preferably 1 minute to 8 minutes.
  • Examples of the heating bonding method of the adhesive layer include methods such as roll lamination and vacuum pressing.
  • the pressure for pressure bonding by roll lamination is not particularly limited as long as lamination is performed, but is preferably 0.1 to 3 MPa, more preferably 0.2 to 1 MPa.
  • the heating temperature is, for example, preferably 60 to 150°C, more preferably 80 to 120°C.
  • the adhesive layer in an optical laminate can be protected by a release liner (separator).
  • a release liner separator
  • the adhesive layer is protected by a release liner, and then the release liner is peeled off and laminated with a substrate to produce a concave mirror.
  • the release liner is not particularly limited as long as it can protect the adhesive layer, and examples include porous materials such as plastic films, paper, cloth, and nonwoven fabrics, nets, foam sheets, metal foils, and these. Appropriate thin films such as laminates can be used, but plastic films are preferably used because of their excellent surface smoothness.
  • plastic film examples include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polybutylene terephthalate film, polyurethane film, and ethylene. -Vinyl acetate copolymer film, etc.
  • the thickness of the release liner is usually 5 to 200 ⁇ m, preferably 5 to 100 ⁇ m.
  • the release liner may be treated with silicone-based, fluorine-based, long-chain alkyl-based or fatty acid amide-based mold release agents, mold release and antifouling treatment with silica powder, coating type, kneading type, vapor deposition, etc., as necessary. It is also possible to perform antistatic treatment on molds, etc. In particular, by appropriately performing a release treatment such as silicone treatment, long-chain alkyl treatment, or fluorine treatment on the surface of the release liner, the releasability from the adhesive layer can be further improved.
  • the optical laminate 1 according to the embodiment of the present invention is preferably in the form of a film.
  • the thickness of the optical laminate is preferably 6 ⁇ m to 250 ⁇ m, more preferably 20 ⁇ m to 100 ⁇ m.
  • the optical laminate When the optical laminate is in the form of a film, it can be attached to a substrate having a concave shape, so that a concave mirror can be manufactured with high productivity.
  • the method for manufacturing the optical laminate according to the embodiment of the present invention is not particularly limited.
  • the metal reflective layer 11 is formed on one surface of the second base film 10, and the first low refractive index layer 13a
  • the reflective film 20 is manufactured by forming the high refractive index layer 13b and the second low refractive index layer 13c in this order.
  • a protective film 30 is produced by forming an adhesive layer 15 on one surface of the first base film 14.
  • the optical laminate 1 can be manufactured by bonding the surface of the reflective film 20 on the second low refractive index layer 13c side and the surface of the protective film 30 on the adhesive layer 15 side.
  • the optical laminate may further include an adhesive layer, and the adhesive layer 12 is formed by directly forming a composition capable of forming the adhesive layer 12 on the other surface of the second base film by coating or the like. Alternatively, it may be formed by bonding a separately formed adhesive layer 12.
  • the method of forming the metal reflective layer 11, the first low refractive index layer 13a, the high refractive index layer 13b, and the second low refractive index layer 13c is not particularly limited, but for example, a vacuum evaporation method, a sputtering method. , ion plating method, etc.
  • the sputtering method is preferable because the thickness can be precisely controlled even over a large area.
  • the adhesive layer 15 may be formed directly on one side of the first base film by applying a composition capable of forming the adhesive layer 15, or by bonding a separately formed adhesive layer 15. It may be formed by
  • the optical laminate according to the embodiment of the present invention can be used for a concave mirror. Furthermore, the optical laminate according to the embodiment of the present invention can also be used to decorate members. For example, it may be used by being attached to an adherend, and the adherend may be, for example, a member made of glass or plastic, but is not limited thereto.
  • a concave mirror according to an embodiment of the present invention is a concave mirror comprising the above-described optical laminate and a base having a concave shape, The reflective film side surface of the optical laminate and the concave side surface of the concave base are laminated with an adhesive layer interposed therebetween.
  • FIG. 3 is a schematic cross-sectional view of a concave mirror according to an embodiment of the invention.
  • the concave mirror 100 shown in FIG. ), an adhesive layer 15 , and a first base film 14 in this order, an optical laminate is attached to the concave side of the base 40 via the adhesive layer 12 .
  • each layer is schematically represented as a planar layer, but in reality, the base 40 has a concave shape with the surface on the a side being concave; Each layer laminated on the surface also has a concave shape.
  • the concave mirror according to the embodiment of the present invention can be attached to a substrate, so it can be manufactured with high productivity.
  • the material of the substrate is not particularly limited and may include resin, glass, metal, etc., but resin is preferably used because it can be used in film insert molding, which will be described later.
  • the resin include polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate; (meth)acrylic resins (acrylic resins and/or methacrylic resins) such as polymethacrylate; for example, polyethylene, polypropylene; , olefin resins such as cycloolefin polymers (e.g., norbornene series, cyclopentadiene series), such as polycarbonate resins, polyethersulfone resins, polyarylate resins, melamine resins, polyamide resins, polyimide resins, cellulose resins, polystyrene resins, etc. It will be done. These materials can be used alone or in combination of two or more. Among these, polycarbonate resin is
  • the surface roughness Ra of the adhesive layer side surface of the protective film is 180 nm or less, preferably 100 nm or less, more preferably 50 nm or less, from the viewpoint of improving specularity. , 30 nm or less is more preferable.
  • the surface roughness Ra of the protective film in the concave mirror according to the embodiment of the present invention is determined by peeling the protective film from the concave mirror and measuring the arithmetic mean surface roughness of the surface of the peeled protective film on the adhesive layer side. It is.
  • the protective film is intended to protect the reflective film during molding of the concave mirror, and in actual use, the protective film may be peeled off from the concave mirror, or it may be used by peeling it off. It may be used without. It is preferable to peel off the protective film from the concave mirror before use.
  • the concave mirror is a concave mirror in which the above-mentioned optical laminate and a base having a concave shape are laminated by film insert molding. Further, the concave mirror may be a concave mirror in which the above-described optical laminate and a base having a concave shape are laminated.
  • a method for manufacturing a concave mirror will be explained.
  • the method for manufacturing the concave mirror 100 is a method for manufacturing a concave mirror including the above-described optical laminate 1 and a base body 40 having the concave shape, by film insert molding.
  • a preferred method is to mold the base 40 and laminate the optical laminate 1 on the concave side surface of the base 40 having the concave shape via an adhesive layer.
  • 4 to 6 are explanatory diagrams for explaining the procedure for manufacturing the concave mirror 100 by film insert molding.
  • a mold for film insert molding the concave mirror 100 includes a convex mold 51 and a concave mold 52.
  • the optical laminate 1 is placed on the convex mold 51 side.
  • the convex mold 51 is pressed against the concave mold 52 to seal the molding space 53.
  • the molten resin material 41 for the base body is injected into the molding space 53 through the resin inflow path 54, and then the molten resin material is solidified.
  • the optical laminate 1 and the base 40 are laminated with the adhesive layer 12 in between.
  • the convex mold 51 is removed and moved in a predetermined direction.
  • the solidified base material resin remains in the concave mold 52.
  • this solidified material resin is released from the concave mold 52 by an ejector pin (not shown) provided in the concave mold 52, and unnecessary parts (runner parts) are cut. . Thereby, the concave mirror 100 is completed.
  • the optical laminate 1 and the base body 40 are integrally molded, so that the productivity of the concave mirror 100 can be improved.
  • the temperature of the mold during molding is preferably, for example, 200° C. or higher, and more preferably 250° C. or higher, from the viewpoint of flowability of the molten material resin 41 and moldability. Further, from the viewpoint of suppressing thermal deformation of the optical laminate, the temperature is preferably 300°C or lower, more preferably 270°C or lower.
  • the optical laminate is also exposed to high temperatures during film insert molding, but the optical laminate according to this embodiment has a protective film whose surface roughness and amount of thermal deformation are within predetermined ranges. Therefore, deterioration of the reflective film surface shape due to the protective film during concave mirror processing is suppressed, and it becomes possible to manufacture a concave mirror with high specularity.
  • the method for manufacturing a concave mirror 100 according to the present embodiment is a method for manufacturing a concave mirror including the above-described optical laminate 1 and a base body 40 having a concave shape, in which the concave surface of the base body 40 having a concave shape is A method may also be adopted in which the optical laminate 1 is laminated on the side surface via an adhesive layer.
  • the laminate may be a vacuum laminate.
  • Vacuum lamination can be performed using a vacuum laminator device.
  • Commercially available vacuum laminator devices include, for example, the vacuum pressure device 3D type manufactured by Mikado Technos, and the vacuum lamination precision single wafer lamination machine manufactured by Climb Products.
  • the degree of vacuum of the vacuum laminator device is not particularly limited as long as lamination is performed, but is preferably 10 kPa or less, more preferably 5 kPa or less, and still more preferably 1 kPa or less.
  • Pressure bonding by vacuum lamination may be performed while heating, and the heating temperature is, for example, preferably 20 to 180°C, more preferably 20 to 150°C.
  • the laminate may be a roll laminate.
  • Roll lamination can be performed using, for example, a curved surface robot pasting device manufactured by Suntech.
  • the pressure for pressure bonding by roll lamination is not particularly limited as long as lamination is carried out, but for example, it is preferably 0.1 to 3 MPa, more preferably 0.2 to 1 MPa.
  • Pressure bonding by roll lamination may be performed while heating, and the heating temperature is, for example, preferably 20 to 150°C, more preferably 60 to 100°C.
  • optical laminates and concave mirrors Applications of the optical laminate and concave mirror according to the embodiments of the present invention include, for example, structural parts for vehicles, vehicle-mounted products such as head-up displays, casings of electronic devices, casings of home appliances, structural parts, and mechanical parts. , various automobile parts, parts for electronic devices, household goods such as furniture and kitchen utensils, medical equipment, parts for construction materials, and other structural parts and exterior parts. More specifically, in the vehicle industry, instrument panels, console boxes, door knobs, door trims, shift levers, pedals, glove boxes, bumpers, bonnets, fenders, trunks, doors, roofs, pillars, seats, steering wheels.
  • ECU boxes electrical components, engine peripheral parts, drive system/gear peripheral parts, intake/exhaust system parts, cooling system parts, etc.
  • electronic devices and home appliances include refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, televisions, clocks, ventilation fans, projectors, speakers, and other home appliances, computers, and mobile phones.
  • electronic information devices such as smartphones, digital cameras, tablet PCs, portable music players, portable game machines, chargers, and batteries.
  • it can be particularly suitably used as a concave mirror for a head-up display.
  • Example 1 [Preparation of reflective film] ⁇ Second base film> As the second base film, a 1.5 ⁇ m thick ultraviolet curable resin layer (hard coat layer) was formed on Toray Industries, Inc. PET film 50-U483 (thickness 50 ⁇ m), and a second base film with a hard coat layer was formed. A material film was obtained.
  • a second base film with a hard coat layer on which an Al layer was formed using a laboratory magnetron sputtering device was set in the magnetron sputtering device, and silicon oxide ( SiO 2 ) 67 nm (refractive index 1.46), niobium oxide (Nb 2 O 5 ) 53 nm (refractive index 2.32) as a high refractive index layer, silicon oxide (SiO 2 ) 40 nm (refractive index) as a second low refractive index layer, etc.
  • a thin film of a transparent oxide having a refractive index of 1.46) was formed as an optical adjustment layer to prepare a reflective film.
  • a protective film (C1) As the first base film, one side of the PET film "Lumirror S10" (thickness 38 ⁇ m, manufactured by Toray Industries, Inc.) was subjected to corona treatment, and an acrylic adhesive solution (CB-1) was applied to this corona-treated side. It was dried at 80° C. for 1 minute to form an adhesive layer with a thickness of 5 ⁇ m, thereby producing a protective film (C1).
  • a film-like optical laminate 1 was prepared in which PET films having a thickness of 38 ⁇ m were laminated in this order.
  • the convex mold in which the laminate was placed was pressed against the concave mold to seal the molding space in the molding device, and the temperature of the mold was raised to 90°C.
  • a polycarbonate resin (L1225ZL, manufactured by Teijin Ltd.) melted at 270° C. was injected from the resin inflow path of the molding device, and the polycarbonate resin was solidified.
  • a concave mirror in which an optical laminate was laminated on the concave side of a polycarbonate base via an adhesive layer was taken out from the mold. The thickness of the base of the obtained concave mirror was 3 mm.
  • Example 2 An optical laminate and a concave mirror were produced in the same manner as in Example 1 except that the thickness of the adhesive layer of the protective film was changed to 21 ⁇ m.
  • Example 3 An optical laminate and a concave mirror were produced in the same manner as in Example 1, except that the thickness of the first base film was changed to 125 ⁇ m (“Lumirror #125-U48” manufactured by Toray Industries, Inc.).
  • Example 2 An optical laminate and a concave mirror were produced in the same manner as in Example 1, except that the first base film was changed to a PE (polyethylene) film (75-7H52 (thickness 75 ⁇ m)) manufactured by Toray Film Processing Co., Ltd.
  • PE polyethylene
  • ⁇ Arithmetic mean surface roughness Ra> The protective films were peeled off from the optical laminates obtained in Examples and Comparative Examples. The peeled protective film was fixed on a smooth table so as not to bend, and the examples and comparisons were carried out under the following conditions in accordance with JISB0633 using an optical surface texture measuring instrument ZYGO New View 7300 manufactured by Zygo Co., Ltd. The arithmetic mean surface roughness Ra of the adhesive layer side surface of the protective film of the example was measured. Measurement magnification: Objective lens x 10x Zoom x 1x Measurement range: 720 ⁇ m x 480 ⁇ m
  • the protective films were peeled off from the optical laminates obtained in Examples and Comparative Examples.
  • the dimensional change behavior of the peeled protective film upon heating was analyzed using TMA (Thermomechanical Analysis).
  • the measurement conditions were: sample width: 4 mm, load: 20 mN/4 mm, initial length: 10 mm, and the dimensional change rate in the MD direction and TD direction of the protective film after heating at 110° C. for 1 hour was measured.
  • the rate of dimensional change was determined by forming two gauge marks (scratches) on the base material surface of the peeled protective film at an interval of about 80 mm in the MD direction and the TD direction, and measuring the distance between the gauge marks before heating L 0 and the heating The subsequent gauge distance L was measured using a two-dimensional length measuring machine to determine the dimensional change rate (%).
  • the optical laminate of this example can form a concave mirror with high specularity.
  • the Ra of the surface on the agent layer side was also measured in the same manner as above. The results are also shown in Table 2 below.
  • “before lamination” refers to the protective film before lamination used to manufacture the optical laminate
  • optical laminate refers to the protective film peeled from the optical laminate
  • concave mirror refers to the protective film peeled from the concave mirror.
  • an optical laminate that can form a concave mirror with high specularity, a concave mirror using the optical laminate, and a method for manufacturing a concave mirror can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The present invention pertains to an optical laminated body provided with a reflection film, and a protection film on the reflection film. The protection film is provided with a first base film and an adhesive layer on the first base film. A face of the protection film on the adhesive layer side is bonded to the reflection film. The surface roughness Ra of a surface of the protection film on the adhesive layer side is not greater than 180 nm. The protection film exhibits a thermal deformation amount of less than 1% at 110°C.

Description

光学積層体、凹面鏡、及び凹面鏡の製造方法Optical laminate, concave mirror, and method for manufacturing concave mirror
 本発明は、光学積層体及びこれを用いた凹面鏡、並びに凹面鏡の製造方法に関する。 The present invention relates to an optical laminate, a concave mirror using the same, and a method for manufacturing a concave mirror.
 車両の運転者は、フロントガラスを通して前方を注視すると共に、インストルメントパネル上の計器類を目視しながら運転を実施する。すなわち、視線が前方と下方の計器類とへ移動する。前方を見たままで、計器類を見ることができれば、視線の移動がなく、運転性(最終的に安全性)の向上が期待できる。この知見からヘッドアップディスプレイ(HUD)装置が開発され、実用に供されるようになってきている。 The driver of the vehicle looks ahead through the windshield and visually monitors the instruments on the instrument panel while driving. That is, the line of sight moves forward and downward to the instruments. If you can look at the instruments while looking straight ahead, you won't have to shift your line of sight, and you can expect improved drivability (and ultimately safety). Based on this knowledge, head-up display (HUD) devices have been developed and are now being put into practical use.
 ヘッドアップディスプレイ装置においては、ダッシュボード装置内において、光源からの映像をフロントガラスに虚像として像を結ぶことで、運転者に映像として視認されている。光源からの映像情報を歪みなく投影させるためには、高い鏡面性を有する鏡面体が必要となる。また、光源からの映像情報の輝度を低下させることなく、投影させるためには、高い可視光反射率を有した鏡面体が必要となる。
 運転の安全性を高める観点より、視点の移動が少なくて済むヘッドアップディスプレイは、日に日に注目を高めており、その反射鏡として利用される鏡面体の需要も高まっている。また車両の衝突等の事故により破損するリスクが低いこと、質量が軽いことなどの理由から、鏡面体を構成する支持基板としては、プラスチック基板、特に耐熱性の高さよりポリカーボネート基板等が用いられている。
In a head-up display device, an image from a light source is focused as a virtual image on a windshield in a dashboard device, so that the image is visually recognized by the driver. In order to project image information from a light source without distortion, a mirror object with high specularity is required. Furthermore, in order to project the image information from the light source without reducing the brightness, a mirror surface body with high visible light reflectance is required.
From the perspective of improving driving safety, head-up displays, which require less movement of the viewpoint, are attracting more and more attention day by day, and demand for mirror-surfaced objects used as reflectors is also increasing. In addition, plastic substrates, especially polycarbonate substrates due to their high heat resistance, are used as supporting substrates for mirror surfaces because of their low risk of damage due to accidents such as vehicle collisions, and their light weight. There is.
 従来の鏡面体の製法ではバッチ式の蒸着・スパッタ装置を用いて、ポリカーボネート基板等の支持基板に金属薄膜を形成する手法が一般的であった(例えば、特許文献1)。しかし、バッチ式製法は生産の効率が低く、日々鏡面体の需要が高まる傾向に対し、供給不足となるという課題があり、生産性良く製造し得る鏡面体が望まれている。また、鏡面体には、高い反射率と反射光の歪みを抑えることが要求される。 In the conventional manufacturing method of mirror-finished bodies, a method of forming a metal thin film on a support substrate such as a polycarbonate substrate using a batch-type vapor deposition/sputtering apparatus has been common (for example, Patent Document 1). However, batch-type manufacturing methods have low production efficiency, and while the demand for mirror-finished bodies is increasing day by day, there is a problem in that there is a shortage of supply, and there is a desire for mirror-finished bodies that can be manufactured with high productivity. Further, the mirror surface body is required to have high reflectance and suppress distortion of reflected light.
 そこで、支持体に貼付し得る反射フィルムを用いた凹面鏡の製造方法が検討されている。例えば、特許文献2には、基板と、反射膜が形成された反射シートと、を備えた反射ミラー(凹面鏡)を、インサート成形により製造する旨が開示されている。インサート成形では反射シートを基板と一体成形できるため、生産性が高い。 Therefore, a method of manufacturing a concave mirror using a reflective film that can be attached to a support is being considered. For example, Patent Document 2 discloses that a reflective mirror (concave mirror) including a substrate and a reflective sheet on which a reflective film is formed is manufactured by insert molding. Insert molding has high productivity because the reflective sheet can be integrally molded with the substrate.
日本国特開2009-265287号公報Japanese Patent Application Publication No. 2009-265287 日本国特開2019-28422号公報Japanese Patent Application Publication No. 2019-28422
 上述のように、光源からの映像情報を歪みなく投影させるためには、鏡面体は高い鏡面性が必要である。そのため、反射フィルムや凹面鏡製造時に反射膜にキズが付かないように、反射膜上に保護フィルムを設けることが考えられる。 As mentioned above, in order to project image information from a light source without distortion, a specular object needs to have high specularity. Therefore, it is conceivable to provide a protective film on the reflective film to prevent the reflective film from being scratched during manufacturing of the reflective film or concave mirror.
 しかし、特許文献2に記載されているようなインサート成形を行う場合には、適用する保護フィルムによっては、凹面鏡の鏡面性を低下する原因となることが本発明者らの検討により明らかになってきた。 However, when insert molding as described in Patent Document 2 is performed, studies by the present inventors have revealed that depending on the protective film applied, the specularity of the concave mirror may be reduced. Ta.
 本発明は、上記に鑑みて完成されたものであり、その課題は、鏡面性の高い凹面鏡を形成し得る光学積層体、これを用いた凹面鏡、及び凹面鏡の製造方法を提供することにある。 The present invention was completed in view of the above, and its object is to provide an optical laminate that can form a concave mirror with high specularity, a concave mirror using the same, and a method for manufacturing a concave mirror.
 本発明者らは、鋭意研究を重ねた結果、反射フィルムと保護フィルムとを備える光学積層体において、保護フィルムの表面粗さ及び熱変形量を特定範囲とすることにより、上記課題を解決できることを見出した。 As a result of extensive research, the present inventors have found that the above problem can be solved by setting the surface roughness and thermal deformation amount of the protective film within a specific range in an optical laminate comprising a reflective film and a protective film. I found it.
 すなわち、本発明は以下の通りである。
〔1〕
 反射フィルムと、前記反射フィルム上に保護フィルムとを備える光学積層体であって、
 前記保護フィルムは、第1の基材フィルムと、前記第1の基材フィルム上に粘着剤層を備え、
 前記保護フィルムにおける前記粘着剤層側の面が前記反射フィルムに貼合されており、
 前記保護フィルムにおける前記粘着剤層側の表面の表面粗さRaが180nm以下であり、
 前記保護フィルムは、110℃における熱変形量が1%未満である、光学積層体。
〔2〕
 前記反射フィルムは、第2の基材フィルム上に、金属反射層と、光学調整層とをこの順に有し、前記光学調整層は、屈折率が1.75以上の高屈折率層を少なくとも1層含み、
 前記保護フィルムにおける前記粘着剤層側の面が前記反射フィルムにおける前記光学調整層側の面に貼合された、〔1〕に記載の光学積層体。
〔3〕
 〔1〕又は〔2〕に記載の光学積層体と、凹面形状を有する基体とを備えた凹面鏡であって、
 前記光学積層体における前記反射フィルム側の面と、前記凹面形状を有する基体における凹面側の面とが接着剤層を介して積層された凹面鏡。
〔4〕
 前記光学積層体と、前記凹面形状を有する基体とがフィルムインサート成形により積層された、〔3〕に記載の凹面鏡。
〔5〕
 前記光学積層体と、前記凹面形状を有する基体とがラミネートにより積層された、〔3〕に記載の凹面鏡。
〔6〕
 〔1〕又は〔2〕に記載の光学積層体と、凹面形状を有する基体とを備えた凹面鏡の製造方法であって、
 フィルムインサート成形により、前記凹面形状を有する基体を成形し、前記凹面形状を有する基体における凹面側の面に接着剤層を介して前記光学積層体を積層する、凹面鏡の製造方法。
〔7〕
 〔1〕又は〔2〕に記載の光学積層体と、凹面形状を有する基体とを備えた凹面鏡の製造方法であって、
 ラミネートにより、前記凹面形状を有する基体における凹面側の面に、接着剤層を介して前記光学積層体を積層する、凹面鏡の製造方法。
〔8〕
 前記ラミネートが真空ラミネートである、〔7〕に記載の凹面鏡の製造方法。
〔9〕
 前記ラミネートがロールラミネートである、〔7〕に記載の凹面鏡の製造方法。
That is, the present invention is as follows.
[1]
An optical laminate comprising a reflective film and a protective film on the reflective film,
The protective film includes a first base film and an adhesive layer on the first base film,
A surface of the protective film on the pressure-sensitive adhesive layer side is laminated to the reflective film,
The surface roughness Ra of the surface of the adhesive layer side of the protective film is 180 nm or less,
The protective film is an optical laminate having a thermal deformation amount of less than 1% at 110°C.
[2]
The reflective film has a metal reflective layer and an optical adjustment layer in this order on a second base film, and the optical adjustment layer includes at least one high refractive index layer having a refractive index of 1.75 or more. Including layers,
The optical laminate according to [1], wherein the surface of the protective film on the pressure-sensitive adhesive layer side is bonded to the surface of the reflective film on the optical adjustment layer side.
[3]
A concave mirror comprising the optical laminate according to [1] or [2] and a base having a concave shape,
A concave mirror in which a surface of the optical laminate on the reflective film side and a surface of the concave base body on the concave side are laminated with an adhesive layer interposed therebetween.
[4]
The concave mirror according to [3], wherein the optical laminate and the base having a concave shape are laminated by film insert molding.
[5]
The concave mirror according to [3], wherein the optical laminate and the base having a concave shape are laminated.
[6]
A method for manufacturing a concave mirror comprising the optical laminate according to [1] or [2] and a base having a concave shape,
A method for manufacturing a concave mirror, comprising forming the base having the concave shape by film insert molding, and laminating the optical laminate on the concave side surface of the base having the concave shape via an adhesive layer.
[7]
A method for manufacturing a concave mirror comprising the optical laminate according to [1] or [2] and a base having a concave shape,
A method for manufacturing a concave mirror, comprising laminating the optical laminate on the concave side surface of the base having the concave shape via an adhesive layer.
[8]
The method for manufacturing a concave mirror according to [7], wherein the laminate is a vacuum laminate.
[9]
The method for manufacturing a concave mirror according to [7], wherein the laminate is a roll laminate.
 本発明は、鏡面性の高い凹面鏡を形成し得る光学積層体及び該光学積層体を用いた凹面鏡を提供し得る。 The present invention can provide an optical laminate that can form a concave mirror with high specularity, and a concave mirror using the optical laminate.
図1は、本発明の一実施形態による光学積層体の概略断面図である。FIG. 1 is a schematic cross-sectional view of an optical laminate according to an embodiment of the present invention. 図2は、本発明の一実施形態による光学積層体の概略断面図である。FIG. 2 is a schematic cross-sectional view of an optical laminate according to an embodiment of the present invention. 図3は、本発明の一実施形態による凹面鏡の概略断面図である。FIG. 3 is a schematic cross-sectional view of a concave mirror according to an embodiment of the invention. 図4は、フィルムインサート成形を用いた凹面鏡の製造方法を説明するための図である。FIG. 4 is a diagram for explaining a method of manufacturing a concave mirror using film insert molding. 図5は、フィルムインサート成形を用いた凹面鏡の製造方法を説明するための図である。FIG. 5 is a diagram for explaining a method of manufacturing a concave mirror using film insert molding. 図6は、フィルムインサート成形を用いた凹面鏡の製造方法を説明するための図である。FIG. 6 is a diagram for explaining a method of manufacturing a concave mirror using film insert molding.
 以下、本発明を実施するための形態について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。 Hereinafter, modes for carrying out the present invention will be described in detail. Note that the present invention is not limited to the embodiments described below.
[光学積層体]
 図1に、本発明の一実施形態による光学積層体1の概略断面図を示す。
 本発明の実施形態に係る光学積層体1は、反射フィルム20と、前記反射フィルム上に保護フィルム30とを備える光学積層体であって、
 前記保護フィルム30は、第1の基材フィルム14と、前記第1の基材フィルム14上に粘着剤層15を備え、
 前記保護フィルム30における前記粘着剤層15側の面が前記反射フィルム20に貼合されており、
 前記保護フィルム30における前記粘着剤層15側の表面の表面粗さRaが180nm以下であり、
 前記保護フィルム30は、110℃における熱変形量が1%未満である。
[Optical laminate]
FIG. 1 shows a schematic cross-sectional view of an optical laminate 1 according to an embodiment of the present invention.
The optical laminate 1 according to the embodiment of the present invention is an optical laminate including a reflective film 20 and a protective film 30 on the reflective film,
The protective film 30 includes a first base film 14 and an adhesive layer 15 on the first base film 14,
A surface of the protective film 30 on the adhesive layer 15 side is bonded to the reflective film 20,
Surface roughness Ra of the surface of the adhesive layer 15 side of the protective film 30 is 180 nm or less,
The protective film 30 has a thermal deformation amount of less than 1% at 110°C.
 本発明の実施形態に係る光学積層体1は、表面粗さRaが180nm以下であり、110℃における熱変形量が1%未満である保護フィルム30を有する。例えば、後述するインサート成形による凹面鏡製造時には金型温度を60℃~300℃に設定する場合があり、光学積層体は高温に晒され、保護フィルムの表面形状が反射フィルムに転写されると考えられる。このように表面平滑性が高く熱変形が少ない保護フィルムを用いることにより、反射フィルム20に転写される表面形状の凹凸を小さくすることができ、鏡面性の高い凹面鏡を生産性高く製造することが可能となる。 The optical laminate 1 according to the embodiment of the present invention has a protective film 30 having a surface roughness Ra of 180 nm or less and a thermal deformation amount at 110° C. of less than 1%. For example, when manufacturing concave mirrors by insert molding, which will be described later, the mold temperature may be set at 60°C to 300°C, and it is thought that the optical laminate is exposed to high temperatures and the surface shape of the protective film is transferred to the reflective film. . By using a protective film with high surface smoothness and low thermal deformation as described above, it is possible to reduce the unevenness of the surface shape transferred to the reflective film 20, and it is possible to manufacture a concave mirror with high specularity with high productivity. It becomes possible.
(光学積層体における保護フィルムの表面粗さRa)
 本発明の実施形態に係る光学積層体において、保護フィルムの粘着剤層側の表面の表面粗さRaは180nm以下である。表面粗さRaが180nm超であると、光学積層体が凹面鏡製造時に高温に晒された場合に、保護フィルムの粘着剤層側の表面の凹凸形状が反射フィルムに転写されるため、凹面鏡の鏡面性が失われる。
 保護フィルムの表面粗さRaは、鏡面性向上の観点から100nm以下であることが好ましく、50nm以下がより好ましく、30nm以下がさらに好ましい。
(Surface roughness Ra of protective film in optical laminate)
In the optical laminate according to the embodiment of the present invention, the surface roughness Ra of the adhesive layer side surface of the protective film is 180 nm or less. If the surface roughness Ra exceeds 180 nm, when the optical laminate is exposed to high temperatures during concave mirror manufacturing, the uneven shape of the surface of the adhesive layer side of the protective film will be transferred to the reflective film, which will cause the mirror surface of the concave mirror to deteriorate. Gender is lost.
The surface roughness Ra of the protective film is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 30 nm or less, from the viewpoint of improving specularity.
 ここで、本発明の実施形態に係る光学積層体における保護フィルムの表面粗さRaは、光学積層体から保護フィルムを剥離し、剥離した保護フィルムにおける粘着剤層側の表面の表面粗さを測定したものである。
 保護フィルムの表面粗さRaは、JIS B 0601:1994に準じて測定することができる。
Here, the surface roughness Ra of the protective film in the optical laminate according to the embodiment of the present invention is determined by peeling the protective film from the optical laminate and measuring the surface roughness of the surface of the peeled protective film on the adhesive layer side. This is what I did.
The surface roughness Ra of the protective film can be measured according to JIS B 0601:1994.
(熱変形量)
 本発明の実施形態に係る光学積層体において、保護フィルムの110℃における熱変形量は1%未満である。熱変形量が1%以上であると、光学積層体が凹面鏡製造時に高温に晒された場合に、保護フィルム表面の変形が大きくなり、変形した表面形状が反射フィルムに転写されるため、凹面鏡の鏡面性が失われる。
 保護フィルムの110℃における熱変形量は、鏡面性向上の観点から0.5%以下が好ましく、0.3%以下がより好ましい。
(Thermal deformation amount)
In the optical laminate according to the embodiment of the present invention, the amount of thermal deformation of the protective film at 110° C. is less than 1%. If the amount of thermal deformation is 1% or more, when the optical laminate is exposed to high temperatures during concave mirror manufacturing, the surface of the protective film will be greatly deformed, and the deformed surface shape will be transferred to the reflective film, resulting in the deformation of the concave mirror. Specularity is lost.
The thermal deformation amount of the protective film at 110° C. is preferably 0.5% or less, more preferably 0.3% or less, from the viewpoint of improving specularity.
 本発明の実施形態に係る光学積層体における保護フィルムの熱変形量は、光学積層体から保護フィルムを剥離し、剥離した保護フィルムの熱変形量を測定したものである。
 保護フィルムの熱変形量は、JIS K7133(1995)に準拠して、110℃で1時間加熱した際の寸法変化率として測定することができる。
The amount of thermal deformation of the protective film in the optical laminate according to the embodiment of the present invention is determined by peeling the protective film from the optical laminate and measuring the amount of thermal deformation of the peeled protective film.
The amount of thermal deformation of the protective film can be measured as the dimensional change rate when heated at 110° C. for 1 hour in accordance with JIS K7133 (1995).
 なお、本明細書において、保護フィルムの熱変形量が1%未満であるとは、保護フィルムのMD方向及びTD方向の寸法、及び寸法変化率(%)を上述の測定方法に従って測定して算出した保護フィルムの面積変化率(%)が1%未満であることを意味する。さらに、保護フィルムのMD方向及びTD方向の寸法変化率(%)もそれぞれ1%未満であることが好ましい。ここで、保護フィルムのMD方向とはフィルムの長さ方向(フィルム成膜時の流れ方向)であり、TD方向とは、フィルムの幅方向である。 In addition, in this specification, the amount of thermal deformation of the protective film is less than 1% is calculated by measuring the dimensions of the protective film in the MD direction and TD direction, and the dimensional change rate (%) according to the above-mentioned measurement method. This means that the area change rate (%) of the protective film is less than 1%. Furthermore, it is preferable that the dimensional change rate (%) of the protective film in the MD direction and the TD direction is each less than 1%. Here, the MD direction of the protective film is the length direction of the film (flow direction during film formation), and the TD direction is the width direction of the film.
 熱変形量は、例えば、保護フィルム30における第1の基材フィルム14の材質やアニール処理により調整することができる。 The amount of thermal deformation can be adjusted by, for example, the material of the first base film 14 in the protective film 30 or annealing treatment.
 本発明の実施形態に係る光学積層体1における反射フィルム20は、第2の基材フィルム10上に、金属反射層11と、光学調整層13とをこの順に有し、光学調整層13は、屈折率が1.75以上の高屈折率層を少なくとも1層含み、
 保護フィルム30における粘着剤層15側の面が反射フィルム20における光学調整層13側の面に貼合されていることが好ましい。
 反射フィルムを上記積層構造とすることによって、可視光反射性能に優れた凹面鏡とすることができるため好ましい。
The reflective film 20 in the optical laminate 1 according to the embodiment of the present invention has a metal reflective layer 11 and an optical adjustment layer 13 in this order on the second base film 10, and the optical adjustment layer 13 includes: Containing at least one high refractive index layer with a refractive index of 1.75 or more,
It is preferable that the surface of the protective film 30 on the adhesive layer 15 side is bonded to the surface of the reflective film 20 on the optical adjustment layer 13 side.
By forming the reflective film into the above-mentioned laminated structure, a concave mirror with excellent visible light reflection performance can be obtained, which is preferable.
 以下、各層について詳細に説明する。 Hereinafter, each layer will be explained in detail.
〔保護フィルム〕
<第1の基材フィルム>
 第1の基材フィルム14の材料は、保護フィルムの熱変形量を小さくする観点から、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート、ポリイミド、ポリアミド、ポリ塩化ビニル、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリスチレン、ポリシクロオレフィン、ポリウレタン、アクリル(PMMA)、ABSなどの単独重合体や共重合体からなる部材を用いることが好ましい。上記材料の中でも、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、アクリル、ポリカーボネート、シクロオレフィンポリマー、ABS、ポリウレタンが好ましい。なかでも、耐熱性とコストとのバランスがよいことからポリエチレンテレフタレートやシクロオレフィンポリマー、ポリカーボネート、アクリルが好ましい。第1の基材フィルム14は、単層でもよいし積層体でもよい。
〔Protective film〕
<First base film>
From the viewpoint of reducing the amount of thermal deformation of the protective film, the first base film 14 is made of, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyimide, polyamide, polyvinyl chloride, or polycarbonate. It is preferable to use a member made of a homopolymer or copolymer such as (PC), cycloolefin polymer (COP), polystyrene, polycycloolefin, polyurethane, acrylic (PMMA), or ABS. Among the above materials, for example, polyethylene terephthalate, polyethylene naphthalate, acrylic, polycarbonate, cycloolefin polymer, ABS, and polyurethane are preferable. Among these, polyethylene terephthalate, cycloolefin polymer, polycarbonate, and acrylic are preferred because they have a good balance between heat resistance and cost. The first base film 14 may be a single layer or a laminate.
 第1の基材フィルムの材料樹脂のガラス転移温度としては、熱変形量低減の観点から、40℃以上であることが好ましく、60℃以上がより好ましい。 The glass transition temperature of the material resin of the first base film is preferably 40°C or higher, more preferably 60°C or higher, from the viewpoint of reducing the amount of thermal deformation.
 第1の基材フィルム14の厚さには特に制限が無い。加工のし易さ等から、第1の基材フィルム14の厚さは、例えば、6μm~250μmが好ましい。より好ましくは20μm以上であり、更に好ましくは30μm以上である。また、より好ましくは100μm以下、更に好ましくは75μm以下である。また、第1の基材フィルム上に形成される層との付着力を強くするために、プラズマ処理やコロナ処理、さらには易接着処理などが施されてもよい。 There is no particular restriction on the thickness of the first base film 14. For ease of processing, the thickness of the first base film 14 is preferably 6 μm to 250 μm, for example. More preferably, it is 20 μm or more, and still more preferably 30 μm or more. Moreover, it is more preferably 100 μm or less, and even more preferably 75 μm or less. Furthermore, in order to strengthen the adhesive force with the layer formed on the first base film, plasma treatment, corona treatment, further adhesion promoting treatment, etc. may be performed.
<粘着剤層>
 粘着剤層は、粘着剤から形成することができる。
 粘着剤層15を形成する粘着剤は透明粘着剤であることが好ましく、例えばアクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、エポキシ系粘着剤、及びポリエーテル系粘着剤のいずれかを単独で、或いは、2種類以上を組み合わせて使用することができる。透明性、加工性及び耐久性などの観点から、アクリル系粘着剤を用いることが好ましい。
<Adhesive layer>
The adhesive layer can be formed from an adhesive.
The adhesive forming the adhesive layer 15 is preferably a transparent adhesive, such as an acrylic adhesive, a rubber adhesive, a silicone adhesive, a polyester adhesive, a urethane adhesive, an epoxy adhesive, and polyether pressure-sensitive adhesives may be used alone or in combination of two or more. From the viewpoints of transparency, processability, durability, etc., it is preferable to use an acrylic pressure-sensitive adhesive.
 粘着剤層15は、反射フィルム20に貼付される際まではく離ライナーにより保護されていることが好ましい。 It is preferable that the adhesive layer 15 is protected by a release liner until it is attached to the reflective film 20.
 粘着剤層15を形成する粘着剤は、ベースポリマーを含有する粘着剤組成物(以下、単に「粘着剤組成物」と称する場合がある)により形成されることが好ましい。ベースポリマーとしては、粘着剤に用いられる公知のポリマーを用いることが可能である。ここで、ベースポリマーとは、粘着剤組成物に含まれるポリマーの主成分をいう。また、この明細書において「主成分」とは、特記しない場合、50質量%を超えて含まれる成分を指す。 The adhesive forming the adhesive layer 15 is preferably formed from an adhesive composition (hereinafter sometimes simply referred to as "adhesive composition") containing a base polymer. As the base polymer, it is possible to use known polymers used in adhesives. Here, the base polymer refers to the main component of the polymer contained in the adhesive composition. Furthermore, in this specification, the term "main component" refers to a component contained in an amount exceeding 50% by mass, unless otherwise specified.
(粘着剤層の形成方法)
 粘着剤層は、例えば、粘着剤組成物を第1の基材フィルム上に塗布し、溶剤等を乾燥除去することにより形成することができる。粘着剤組成物の塗布にあたっては、適宜に一種以上の溶剤を加えてもよい。
 また、粘着剤層は、例えば、粘着剤組成物によりはく離ライナー上に形成した粘着剤層とはく離ライナーとの積層体の粘着剤層側の面と、第1の基材フィルムを貼り合せることにより形成することもできる。
(Method for forming adhesive layer)
The adhesive layer can be formed, for example, by applying an adhesive composition onto the first base film and drying and removing the solvent and the like. When applying the adhesive composition, one or more solvents may be added as appropriate.
The adhesive layer can be formed, for example, by bonding the adhesive layer-side surface of a laminate of an adhesive layer formed on a release liner with an adhesive composition and a release liner to the first base film. It can also be formed.
 粘着剤層の厚みは、貼合時の異物混入を防止する観点から5μm以上であることが好ましく、10μm以上であることがより好ましく、25μm以上であることがさらに好ましい。また、高温加熱により発生する発泡を抑制する観点から100μm以下であることが好ましく、75μm以下であることがより好ましく、50μm以下であることがさらに好ましい。
 粘着剤層の厚さは、ダイヤルゲージにより測定することができる。
The thickness of the adhesive layer is preferably 5 μm or more, more preferably 10 μm or more, and even more preferably 25 μm or more from the viewpoint of preventing foreign matter from being mixed in during bonding. Further, from the viewpoint of suppressing foaming caused by high-temperature heating, the thickness is preferably 100 μm or less, more preferably 75 μm or less, and even more preferably 50 μm or less.
The thickness of the adhesive layer can be measured with a dial gauge.
 粘着剤組成物の塗布方法としては、各種方法が用いられる。具体的には、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、ダイコーター等による押出しコート法等の方法が挙げられる。 Various methods can be used to apply the adhesive composition. Specifically, for example, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples include methods such as extrusion coating.
 前記加熱乾燥温度は、30℃~200℃が好ましく、40℃~180℃がより好ましく、80℃~160℃がさらに好ましい。加熱温度を上記の範囲とすることによって、優れた粘着特性を有する粘着剤層を得ることができる。乾燥時間は、適宜、適切な時間が採用され得る。上記乾燥時間は、5秒~20分が好ましく、30秒~10分がより好ましく、1分~8分がさらに好ましい。 The heat drying temperature is preferably 30°C to 200°C, more preferably 40°C to 180°C, even more preferably 80°C to 160°C. By setting the heating temperature within the above range, a pressure-sensitive adhesive layer having excellent adhesive properties can be obtained. As the drying time, an appropriate time can be adopted as needed. The drying time is preferably 5 seconds to 20 minutes, more preferably 30 seconds to 10 minutes, even more preferably 1 minute to 8 minutes.
 前記粘着剤組成物が、活性エネルギー線硬化型粘着剤の場合には、紫外線等の活性エネルギー線を照射することにより粘着剤層を形成することができる。紫外線照射には、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、ケミカルライトランプ等を用いることができる。 When the adhesive composition is an active energy ray-curable adhesive, the adhesive layer can be formed by irradiation with active energy rays such as ultraviolet rays. A high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a chemical light lamp, etc. can be used for ultraviolet irradiation.
 保護フィルムにおける粘着剤層は、反射フィルムとの貼合前まではく離ライナー(セパレータ)により保護することができる。
 はく離ライナーとしては、接着剤層の形成方法の項において後述するはく離ライナーを好ましく用い得る。
The adhesive layer in the protective film can be protected with a release liner (separator) before lamination with the reflective film.
As the release liner, the release liner described later in the section of the method for forming the adhesive layer can be preferably used.
(貼合前の保護フィルムの表面粗さRa)
 本実施形態に係る光学積層体の製造に用いられる保護フィルム、すなわち、反射フィルムとの貼合前における保護フィルムの粘着剤層側の表面の表面粗さRaは180nm以下であることが好ましい。貼合前の保護フィルムの表面粗さRaは、鏡面性向上の観点から100nm以下であることがより好ましく、50nm以下がさらに好ましく、30nm以下が特に好ましい。
(Surface roughness Ra of protective film before lamination)
It is preferable that the surface roughness Ra of the adhesive layer side surface of the protective film used for manufacturing the optical laminate according to the present embodiment, that is, the surface of the protective film before lamination with the reflective film, is 180 nm or less. The surface roughness Ra of the protective film before lamination is more preferably 100 nm or less, further preferably 50 nm or less, particularly preferably 30 nm or less from the viewpoint of improving specularity.
〔反射フィルム〕
 本発明の実施形態に係る光学積層体1における反射フィルム20は、第2の基材フィルム10上に、金属反射層11と、光学調整層13とをこの順に有する積層構造であることが好ましい。また、凹面鏡の可視光反射性能向上の観点から、光学調整層13は、屈折率が1.75以上の高屈折率層を少なくとも1層含むことが好ましい。
[Reflective film]
The reflective film 20 in the optical laminate 1 according to the embodiment of the present invention preferably has a laminated structure including a metal reflective layer 11 and an optical adjustment layer 13 in this order on the second base film 10. Further, from the viewpoint of improving the visible light reflection performance of the concave mirror, it is preferable that the optical adjustment layer 13 includes at least one high refractive index layer having a refractive index of 1.75 or more.
<第2の基材フィルム>
 第2の基材フィルム10の材料は、特に限定はされず、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート、ポリアミド、ポリ塩化ビニル、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリスチレン、ポリプロピレン(PP)、ポリエチレン、ポリシクロオレフィン、ポリウレタン、アクリル(PMMA)、ABSなどの単独重合体や共重合体からなる部材を用いることができる。これらの部材によれば、透明で光学吸収は少なく、視覚効果に影響を与えることもない。但し、後に第2の基材フィルム10上に種々の層を形成するため、蒸着やスパッタ等の高温に耐え得るものであることが好ましく、従って、上記材料の中でも、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、アクリル、ポリカーボネート、シクロオレフィンポリマー、ABS、ポリプロピレン、ポリウレタンが好ましい。なかでも、耐熱性とコストとのバランスがよいことからポリエチレンテレフタレートやシクロオレフィンポリマー、ポリカーボネート、アクリルが好ましい。第2の基材フィルム10は、単層でもよいし積層体でもよい。
<Second base film>
The material of the second base film 10 is not particularly limited, and includes, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer ( Members made of homopolymers or copolymers such as COP), polystyrene, polypropylene (PP), polyethylene, polycycloolefin, polyurethane, acrylic (PMMA), and ABS can be used. These members are transparent, have little optical absorption, and do not affect visual effects. However, since various layers are later formed on the second base film 10, it is preferable that the material can withstand high temperatures such as vapor deposition and sputtering. Therefore, among the above materials, for example, polyethylene terephthalate, polyethylene Phthalate, acrylic, polycarbonate, cycloolefin polymer, ABS, polypropylene, polyurethane are preferred. Among these, polyethylene terephthalate, cycloolefin polymer, polycarbonate, and acrylic are preferred because they have a good balance between heat resistance and cost. The second base film 10 may be a single layer or a laminate.
 第2の基材フィルム10の厚さには特に制限が無い。加工のし易さ等から、第2の基材フィルム10の厚さは、例えば、6μm~250μmが好ましい。より好ましくは20μm以上であり、更に好ましくは40μm以上である。また、より好ましくは100μm以下、更に好ましくは75μm以下である。また、第2の基材フィルム上に形成される層との付着力を強くするために、プラズマ処理やコロナ処理、さらには易接着処理などが施されてもよい。 There is no particular restriction on the thickness of the second base film 10. For ease of processing, the thickness of the second base film 10 is preferably 6 μm to 250 μm, for example. More preferably, it is 20 μm or more, and still more preferably 40 μm or more. Moreover, it is more preferably 100 μm or less, and still more preferably 75 μm or less. Further, in order to strengthen the adhesion with the layer formed on the second base film, plasma treatment, corona treatment, further adhesion promoting treatment, etc. may be performed.
 第2の基材フィルム10には、必要に応じて平滑性、或いは防眩性ハードコート層等のハードコート層が形成されていてもよい。ハードコート層が設けられることにより、耐傷性を向上させることができる。 A hard coat layer such as a smooth or anti-glare hard coat layer may be formed on the second base film 10 if necessary. By providing the hard coat layer, scratch resistance can be improved.
 ハードコート層は、ハードコート組成物から形成することができる。より具体的には、硬化性樹脂を含有する溶液をハードコート組成物として第2の基材フィルム10に塗布することにより形成できる。
 ハードコート組成物が含有する硬化性樹脂としては、熱硬化型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂等が挙げられる。硬化性樹脂の種類としてはポリエステル系、アクリル系、ウレタン系、アクリルウレタン系、アミド系、シリコーン系、シリケート系、エポキシ系、メラミン系、オキセタン系、アクリルウレタン系等の各種の樹脂が挙げられる。これら硬化性樹脂は、一種又は二種以上を、適宜選択して使用できる。これらの中でも、硬度が高く、紫外線硬化が可能で生産性に優れることから、アクリル系樹脂、アクリルウレタン系樹脂、及びエポキシ系樹脂が好ましい。
The hard coat layer can be formed from a hard coat composition. More specifically, it can be formed by applying a solution containing a curable resin to the second base film 10 as a hard coat composition.
Examples of the curable resin contained in the hard coat composition include thermosetting resins, ultraviolet curable resins, electron beam curable resins, and the like. Examples of the curable resin include various resins such as polyester, acrylic, urethane, acrylic urethane, amide, silicone, silicate, epoxy, melamine, oxetane, and acrylic urethane. One or more of these curable resins can be selected and used as appropriate. Among these, acrylic resins, acrylic urethane resins, and epoxy resins are preferred because they have high hardness, can be cured by ultraviolet rays, and have excellent productivity.
 ハードコート層の厚みは、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、また、好ましくは10μm以下、より好ましくは7.0μm以下、更に好ましくは5.0μm以下である。ハードコート層の厚みは、例えば、膜厚計(デジタルダイアルゲージ)や光学干渉式膜厚計を用いて測定することができる。 The thickness of the hard coat layer is preferably 0.5 μm or more, more preferably 1.0 μm or more, and preferably 10 μm or less, more preferably 7.0 μm or less, and still more preferably 5.0 μm or less. The thickness of the hard coat layer can be measured using, for example, a film thickness meter (digital dial gauge) or an optical interference type film thickness meter.
<金属反射層>
 本実施形態における金属反射層11は、第2の基材フィルム10の上に形成されることが好ましい。金属反射層11は、金属光沢を有する層であることが好ましい。金属反射層11を形成する材料に特に限定はなく、金属及び樹脂を含んでいてもよい。金属反射層11は金属層であってもよい。
 金属反射層11が金属層である場合について説明する。
<Metal reflective layer>
The metal reflective layer 11 in this embodiment is preferably formed on the second base film 10. The metal reflective layer 11 is preferably a layer with metallic luster. The material forming the metal reflective layer 11 is not particularly limited, and may include metal and resin. The metal reflective layer 11 may be a metal layer.
A case where the metal reflective layer 11 is a metal layer will be explained.
 金属反射層11は、十分な光輝性を発揮し得ることは勿論、融点が比較的低い金属により形成したものであることが望ましい。金属反射層11は、スパッタリングを用いた薄膜成長によって形成するのが好ましいためである。このような理由から、金属反射層11としては、融点が約1000℃以下の金属が適しており、例えば、アルミニウム(Al)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)から選択された少なくとも一種の金属、および該金属を主成分とする合金のいずれかを含むことが好ましい。
 特に、物質の光輝性や安定性、価格等の理由から金属反射層11は、アルミニウムまたはアルミニウム合金を含むことが好ましい。また、アルミニウム合金を用いる場合には、アルミニウム含有量を50質量%以上とすることが好ましい。
The metal reflective layer 11 is desirably made of a metal that not only exhibits sufficient glitter but also has a relatively low melting point. This is because the metal reflective layer 11 is preferably formed by thin film growth using sputtering. For these reasons, metals with a melting point of about 1000° C. or lower are suitable for the metal reflective layer 11, such as aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), silver ( It is preferable to include at least one metal selected from Ag) and an alloy containing the metal as a main component.
In particular, it is preferable that the metal reflective layer 11 contains aluminum or an aluminum alloy for reasons such as the brightness, stability, and cost of the material. Moreover, when using an aluminum alloy, it is preferable that the aluminum content is 50% by mass or more.
 金属反射層11の厚さは、十分な光輝性を発揮するように、通常20nm以上が好ましく、一方、生産性の観点から、通常100nm以下が好ましい。例えば、20nm~100nmが好ましく、30nm~70nmがより好ましい。この厚さは、均一な膜を生産性良く形成するのにも適しており、また、光学積層体1を基体に積層して作製した凹面鏡の見栄えも良い。 The thickness of the metal reflective layer 11 is usually preferably 20 nm or more in order to exhibit sufficient glitter, and on the other hand, from the viewpoint of productivity, it is usually preferably 100 nm or less. For example, the thickness is preferably 20 nm to 100 nm, more preferably 30 nm to 70 nm. This thickness is suitable for forming a uniform film with good productivity, and also gives a good appearance to the concave mirror produced by laminating the optical laminate 1 on the base.
<光学調整層>
 本発明の実施形態に係る光学積層体1は、金属反射層11の第2の基材フィルム10とは反対側の面上に光学調整層13を有することが好ましい。本発明の実施形態に係る光学調整層13は、屈折率が1.75以上の高屈折率層を少なくとも1層含むことが好ましい。
 光学調整層として上記高屈折率層を含むことにより、反射スペクトルを調整し、可視光領域内の反射率を上げることができる。
 本明細書において、「屈折率」は、特に言及しない限り、温度25℃で波長λ=550nmの光を用いて、JIS K0062:1992の規定に準拠して測定された値を意味する。
<Optical adjustment layer>
The optical laminate 1 according to the embodiment of the present invention preferably has an optical adjustment layer 13 on the surface of the metal reflective layer 11 opposite to the second base film 10. The optical adjustment layer 13 according to the embodiment of the present invention preferably includes at least one high refractive index layer having a refractive index of 1.75 or more.
By including the high refractive index layer as an optical adjustment layer, the reflection spectrum can be adjusted and the reflectance in the visible light region can be increased.
In this specification, "refractive index" means a value measured in accordance with the provisions of JIS K0062:1992 using light with a wavelength λ = 550 nm at a temperature of 25°C, unless otherwise specified.
(高屈折率層)
 本発明の実施形態に係る光学調整層において好ましく含まれる高屈折率層は、屈折率が1.75以上の層であり、より好ましくは1.75~3.2であり、さらに好ましくは1.80~2.40の範囲である。高屈折率層を複数備える場合は、高屈折率層の屈折率は、同じであってもよく、異なっていてもよい。
(High refractive index layer)
The high refractive index layer preferably included in the optical adjustment layer according to the embodiment of the present invention is a layer having a refractive index of 1.75 or more, more preferably 1.75 to 3.2, and still more preferably 1.75 to 3.2. It ranges from 80 to 2.40. When a plurality of high refractive index layers are provided, the refractive indices of the high refractive index layers may be the same or different.
 高屈折率層は、金属酸化物及び/又は金属窒化物からなる層であることが好ましい。なお、ここでいう金属酸化物、金属窒化物に含有される金属元素には、Si等の半金属元素が包含される。また、金属酸化物及び/又は金属窒化物には、金属酸窒化物が包含される。また、金属酸化物は、単独の金属元素の酸化物(単独酸化物)であってもよく、複数の金属元素の酸化物(複合酸化物)であってもよい。同様に、金属窒化物は、単独の金属元素の窒化物(単独窒化物)であってもよく、複数の金属元素の窒化物(複合窒化物)であってもよい。
 金属元素としては、例えば、Ce、Nb、Si、Sb、Ti、Ta、Zr、Znなどが挙げられる。
The high refractive index layer is preferably a layer made of metal oxide and/or metal nitride. Note that the metal elements contained in the metal oxides and metal nitrides herein include metalloid elements such as Si. Furthermore, metal oxides and/or metal nitrides include metal oxynitrides. Further, the metal oxide may be an oxide of a single metal element (single oxide) or an oxide of multiple metal elements (composite oxide). Similarly, the metal nitride may be a nitride of a single metal element (single nitride) or a nitride of multiple metal elements (composite nitride).
Examples of the metal element include Ce, Nb, Si, Sb, Ti, Ta, Zr, and Zn.
 高屈折率層の材料として、より具体的には、例えば、CeO(2.30)、NbO(2.33)、Nb(2.15)、Nb(2.32)、SiN(2.03)、Sb(2.10)、TiO(2.35)、Ta(2.10)、ZrO(2.05)、ZnO(2.10)、ZnS(2.30)、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)等などが挙げられる(上記各材料の括弧内の数値は屈折率である)。
 特に、高屈折率層は、Nb、Si、Tiより選択される少なくとも一種を含むことが好ましく、例えばNbO、SiN、TiOより選択される少なくとも一種を含むことが好ましく、NbO(酸化ニオブ)を含むことがより好ましい。
More specifically, as the material of the high refractive index layer, for example, CeO 2 (2.30), NbO (2.33), Nb 2 O 3 (2.15), Nb 2 O 5 (2.32) , SiN (2.03), Sb 2 O 3 (2.10), TiO 2 (2.35), Ta 2 O 5 (2.10), ZrO 2 (2.05), ZnO (2.10) , ZnS (2.30), tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), etc. (the numerical value in parentheses for each material above is the refractive index).
In particular, the high refractive index layer preferably contains at least one selected from Nb, Si, and Ti, for example, preferably contains at least one selected from NbO x , SiN x , and TiO x , and preferably contains at least one selected from NbO x (oxidized Niobium) is more preferably included.
 高屈折率層の厚みは、可視光領域内の反射率向上の観点から10nm以上であることが好ましく、20nm以上であることがより好ましく、30nm以上であることがさらに好ましい。また、可視光領域内の反射率向上の観点から100nm以下であることが好ましく、80nm以下であることがより好ましく、70nm以下であることがさらに好ましい。 The thickness of the high refractive index layer is preferably 10 nm or more, more preferably 20 nm or more, and even more preferably 30 nm or more from the viewpoint of improving reflectance in the visible light region. Further, from the viewpoint of improving reflectance in the visible light region, the thickness is preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 70 nm or less.
 光学調整層は屈折率の異なる層の積層体であってもよく、高屈折率層の他に低屈折率層を備えていてもよい。
 図2に示すように、本発明の実施形態に係る光学積層体1は、光学調整層13として、金属反射層11側から、第一の低屈折率層13a、上記高屈折率層13b、及び第二の低屈折率層13cをこの順に有することが好ましい。
The optical adjustment layer may be a laminate of layers having different refractive indexes, and may include a low refractive index layer in addition to the high refractive index layer.
As shown in FIG. 2, the optical laminate 1 according to the embodiment of the present invention includes, as the optical adjustment layer 13, a first low refractive index layer 13a, the high refractive index layer 13b, and It is preferable to have the second low refractive index layer 13c in this order.
(低屈折率層)
 低屈折率層は、高屈折率層よりも低い屈折率を有する層であり、その屈折率は、例えば1.35~1.55であり、好ましくは1.40~1.50である。低屈折率層は1つまたは複数設けられていてよく、複数設けられている場合の低屈折率層の屈折率は、それぞれ同じであってもよく、異なっていてもよい。例えば、光学調整層は、第一の低屈折率層及び第二の低屈折率層の二層の低屈折率層を含んでいてもよく、第一の低屈折率層の屈折率は、第二の低屈折率層と同じであってもよく、異なっていてもよい。
(Low refractive index layer)
The low refractive index layer is a layer having a lower refractive index than the high refractive index layer, and its refractive index is, for example, 1.35 to 1.55, preferably 1.40 to 1.50. One or more low refractive index layers may be provided, and when multiple low refractive index layers are provided, the refractive indices of the low refractive index layers may be the same or different. For example, the optical adjustment layer may include two low refractive index layers, a first low refractive index layer and a second low refractive index layer, and the refractive index of the first low refractive index layer is the same as that of the second low refractive index layer. It may be the same as or different from the second low refractive index layer.
 低屈折率層の材料としては、例えば、金属酸化物及び金属フッ化物が挙げられる。
 なお、ここでいう金属酸化物、金属フッ化物に含有される金属元素には、Si等の半金属元素が包含される。また、金属酸化物及び/又は金属フッ化物には、金属酸フッ化物が包含される。また、金属酸化物は、単独の金属元素の酸化物(単独酸化物)であってもよく、複数の金属元素の酸化物(複合酸化物)であってもよい。同様に、金属フッ化物は、単独の金属元素のフッ化物(単独フッ化物)であってもよく、複数の金属元素のフッ化物(複合フッ化物)であってもよい。
 金属元素としては、例えば、Si、Mgなどが挙げられる。
Examples of the material for the low refractive index layer include metal oxides and metal fluorides.
Note that the metal elements contained in the metal oxides and metal fluorides herein include metalloid elements such as Si. Moreover, metal oxides and/or metal fluorides include metal oxyfluorides. Furthermore, the metal oxide may be an oxide of a single metal element (single oxide) or an oxide of multiple metal elements (composite oxide). Similarly, the metal fluoride may be a fluoride of a single metal element (single fluoride) or a fluoride of multiple metal elements (composite fluoride).
Examples of the metal element include Si and Mg.
 金属酸化物の具体例としては、酸化珪素(SiO:屈折率1.46)が挙げられる。金属フッ化物の具体例としては、フッ化マグネシウム、フッ化珪素酸が挙げられる。第一の低屈折率層及び第二の低屈折率層の材料は、屈折率の観点からフッ化マグネシウム及びフッ化珪素酸が好ましく、製造容易性、機械的強度、耐湿性などの観点から酸化珪素、が好ましく、各種特性を総合的に考慮すると酸化珪素が好ましい。低屈折率層を複数備える場合は、低屈折率層の材料は、同じであってもよく、異なっていてもよいが、低屈折率層のいずれもが酸化珪素を含有することが好ましい。 A specific example of the metal oxide is silicon oxide (SiO 2 : refractive index 1.46). Specific examples of metal fluorides include magnesium fluoride and fluorosilicic acid. The materials for the first low refractive index layer and the second low refractive index layer are preferably magnesium fluoride and fluorosilicic acid from the viewpoint of refractive index, and are preferably oxidized from the viewpoint of ease of manufacture, mechanical strength, moisture resistance, etc. Silicon is preferred, and silicon oxide is preferred when various characteristics are comprehensively considered. When a plurality of low refractive index layers are provided, the materials of the low refractive index layers may be the same or different, but it is preferable that all of the low refractive index layers contain silicon oxide.
 第一の低屈折率層の厚みは、可視光領域内の反射率向上の観点から50nm以上であることが好ましく、66nm以上であることがより好ましく、68nm以上であることがさらに好ましい。また、可視光領域内の反射率向上の観点から100nm以下であることが好ましく、78nm以下であることがより好ましく、75nm以下であることがさらに好ましい。 The thickness of the first low refractive index layer is preferably 50 nm or more, more preferably 66 nm or more, and even more preferably 68 nm or more from the viewpoint of improving reflectance in the visible light region. Further, from the viewpoint of improving reflectance in the visible light region, the thickness is preferably 100 nm or less, more preferably 78 nm or less, and even more preferably 75 nm or less.
 第二の低屈折率層の厚みは、可視光領域内の反射率向上の観点から、上限値は50nm以下であることが好ましく、45nm以下であることがより好ましい。 The upper limit of the thickness of the second low refractive index layer is preferably 50 nm or less, more preferably 45 nm or less, from the viewpoint of improving reflectance in the visible light region.
 また、光学調整層13の積層構成としては、屈折率が1.75以上の高屈折率層を少なくとも1層含んでいることが好ましいが、特に制限は無い。 Further, the laminated structure of the optical adjustment layer 13 preferably includes at least one high refractive index layer having a refractive index of 1.75 or more, but is not particularly limited.
 光学積層体1は、屈折率1.50~1.85程度の中屈折率層として、例えば、酸化チタンや、上記低屈折率材料と高屈折率材料の混合物(酸化チタンと酸化珪素との混合物等)からなる層をさらに備えていてもよい。
 光学調整層は、例えば、金属反射層11側から、第一の低屈折率層と、高屈折率層と、第二の低屈折率層との上述の3層構成;高屈折率層と、第一の低屈折率層と、高屈折率層と、第二の低屈折率層との4層構成;第一の低屈折率層と、高屈折率層と、中屈折率層と、高屈折率層と、第二の低屈折率層との5層構成等が挙げられる。
 また、光学調整層は、6層以上の薄膜の積層体でもよい。
The optical laminate 1 is made of, for example, titanium oxide or a mixture of the above-mentioned low refractive index material and high refractive index material (a mixture of titanium oxide and silicon oxide) as a medium refractive index layer with a refractive index of about 1.50 to 1.85. etc.) may further be provided.
The optical adjustment layer has, for example, the above-mentioned three-layer structure, from the metal reflective layer 11 side: the first low refractive index layer, the high refractive index layer, and the second low refractive index layer; the high refractive index layer; Four-layer structure: first low refractive index layer, high refractive index layer, and second low refractive index layer; first low refractive index layer, high refractive index layer, medium refractive index layer, and high refractive index layer; Examples include a five-layer structure including a refractive index layer and a second low refractive index layer.
Further, the optical adjustment layer may be a laminate of six or more thin films.
<その他の層>
 本発明の実施形態に係る光学積層体1は、上述の第1の基材フィルム14、粘着剤層15、第2の基材フィルム10、金属反射層11、及び光学調整層13の他に、用途に応じてその他の層を備えていてもよい。
 その他の層としては、例えば、接着剤層、保護層、ハードコート層、バリア層、易接着層、反射防止層、光取出し層、アンチグレア層、赤外線吸収層等が挙げられる。
 例えば、酸化物によっては、酸化ニオブのように、粘着剤と積層された状態で紫外光を受けると還元される物質もあり、還元作用を防ぐために、更に保護層として酸化珪素からなる層を積層していてもよい。
<Other layers>
In addition to the above-described first base film 14, adhesive layer 15, second base film 10, metal reflective layer 11, and optical adjustment layer 13, the optical laminate 1 according to the embodiment of the present invention includes: Other layers may be included depending on the application.
Examples of other layers include an adhesive layer, a protective layer, a hard coat layer, a barrier layer, an easy-adhesion layer, an antireflection layer, a light extraction layer, an anti-glare layer, an infrared absorption layer, and the like.
For example, some oxides, such as niobium oxide, are reduced when exposed to ultraviolet light while laminated with an adhesive, so in order to prevent reduction, a layer of silicon oxide is further laminated as a protective layer. You may do so.
<接着剤層>
 本発明の実施形態に係る光学積層体1は、図3に示すように、例えば、接着剤層12を介して基体40に積層し、凹面鏡100として用いることができる。
 接着剤層12は、光学積層体1と基体40への接着性などの観点から、例えばアクリル系接着剤、ポリエステル系接着剤、ウレタン系接着剤、のいずれかを単独で、或いは、2種類以上を組み合わせて形成することができる。
<Adhesive layer>
As shown in FIG. 3, the optical laminate 1 according to the embodiment of the present invention can be used as a concave mirror 100 by being laminated onto a base 40 via an adhesive layer 12, for example.
From the viewpoint of adhesion to the optical laminate 1 and the substrate 40, the adhesive layer 12 is made of, for example, an acrylic adhesive, a polyester adhesive, a urethane adhesive, or two or more of them. can be formed by combining.
 接着剤層12は、被着部材に貼付される際まではく離ライナーにより保護されていることが好ましい。 It is preferable that the adhesive layer 12 is protected by a release liner until it is applied to an adherend.
(接着剤層の形成方法)
 接着剤層12は接着剤組成物により形成することができる。
 接着剤層は、例えば、接着剤組成物を第2の基材フィルム上に塗布し、溶剤等を乾燥除去することにより形成することもできる。接着剤組成物の塗布にあたっては、適宜に一種以上の溶剤を加えてもよい。接着剤層は、例えば、前記接着剤組成物によりはく離ライナー上に形成した接着剤層とはく離ライナーとの積層体の接着剤層側の面と、第2の基材フィルムを貼り合せることにより形成することもできる。剥離ライナー上にフィルム状に成型された接着剤層を、第2の基材フィルム上へ加熱しながら貼り合わせることにより形成してもよい。
(Method of forming adhesive layer)
Adhesive layer 12 can be formed from an adhesive composition.
The adhesive layer can also be formed, for example, by applying an adhesive composition onto the second base film and drying and removing the solvent and the like. When applying the adhesive composition, one or more solvents may be added as appropriate. The adhesive layer is formed by, for example, bonding the adhesive layer side surface of a laminate of the adhesive layer formed on the release liner with the adhesive composition and the release liner to the second base film. You can also. It may be formed by bonding an adhesive layer formed into a film on the release liner onto the second base film while heating.
 接着剤層の厚みは、光学積層体と基体との積層時の外観の観点から5μm以上であることが好ましく、10μm以上であることがより好ましく、25μm以上であることがさらに好ましい。また、膜厚ムラによる外観不良抑制の観点から100μm以下であることが好ましく、75μm以下であることがより好ましく、50μm以下であることがさらに好ましい。
 接着剤層の厚さは、ダイヤルゲージなどにより測定することができる。
The thickness of the adhesive layer is preferably 5 μm or more, more preferably 10 μm or more, and even more preferably 25 μm or more from the viewpoint of the appearance when the optical laminate and the substrate are laminated. Further, from the viewpoint of suppressing appearance defects due to film thickness unevenness, the thickness is preferably 100 μm or less, more preferably 75 μm or less, and even more preferably 50 μm or less.
The thickness of the adhesive layer can be measured using a dial gauge or the like.
 接着剤組成物の塗布方法としては、各種方法が用いられる。具体的には、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、ダイコーター等による押出しコート法等の方法が挙げられる。 Various methods can be used to apply the adhesive composition. Specifically, for example, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples include methods such as extrusion coating.
 前記加熱乾燥温度は、30℃~200℃が好ましく、40℃~180℃がより好ましく、80℃~160℃がさらに好ましい。加熱温度を上記の範囲とすることによって、優れた接着特性を有する接着剤層を得ることができる。乾燥時間は、適宜、適切な時間が採用され得る。上記乾燥時間は、5秒~20分が好ましく、30秒~10分がより好ましく、1分~8分がさらに好ましい。 The heat drying temperature is preferably 30°C to 200°C, more preferably 40°C to 180°C, even more preferably 80°C to 160°C. By setting the heating temperature within the above range, an adhesive layer having excellent adhesive properties can be obtained. As the drying time, an appropriate time can be adopted as needed. The drying time is preferably 5 seconds to 20 minutes, more preferably 30 seconds to 10 minutes, even more preferably 1 minute to 8 minutes.
 接着剤層の加熱貼り合わせ方法としては、ロールラミネート、真空プレス等の方法が挙げられる。
 ロールラミネートによって圧着する場合の圧力としては、ラミネートが実行される限りにおいては特に限定されないが、例えば、0.1~3MPaとすることが好ましく、0.2~1MPaとすることがより好ましい。加熱温度としては、例えば、60~150℃が好ましく、80~120℃がより好ましい。
Examples of the heating bonding method of the adhesive layer include methods such as roll lamination and vacuum pressing.
The pressure for pressure bonding by roll lamination is not particularly limited as long as lamination is performed, but is preferably 0.1 to 3 MPa, more preferably 0.2 to 1 MPa. The heating temperature is, for example, preferably 60 to 150°C, more preferably 80 to 120°C.
 光学積層体における接着剤層は、はく離ライナー(セパレータ)により保護することができる。
 例えば、光学積層体の出荷時には接着剤層をはく離ライナーにより保護した状態であり、その後、はく離ライナーを剥離し基体と積層し、凹面鏡を製造することができる。
The adhesive layer in an optical laminate can be protected by a release liner (separator).
For example, when the optical laminate is shipped, the adhesive layer is protected by a release liner, and then the release liner is peeled off and laminated with a substrate to produce a concave mirror.
 はく離ライナーとしては、接着剤層を保護することができるものであれば特に制限はなく、例えば、プラスチックフィルム、紙、布、不織布等の多孔質材料、ネット、発泡シート、金属箔、及びこれらのラミネート体等の適宜な薄葉体等を挙げることができるが、表面平滑性に優れる点からプラスチックフィルムが好適に用いられる。 The release liner is not particularly limited as long as it can protect the adhesive layer, and examples include porous materials such as plastic films, paper, cloth, and nonwoven fabrics, nets, foam sheets, metal foils, and these. Appropriate thin films such as laminates can be used, but plastic films are preferably used because of their excellent surface smoothness.
 前記プラスチックフィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフイルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン-酢酸ビニル共重合体フィルム等が挙げられる。 Examples of the plastic film include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polybutylene terephthalate film, polyurethane film, and ethylene. -Vinyl acetate copolymer film, etc.
 前記はく離ライナーの厚みは、通常5~200μm、好ましくは5~100μmである。前記はく離ライナーには、必要に応じて、シリコーン系、フッ素系、長鎖アルキル系もしくは脂肪酸アミド系の離型剤、シリカ粉等による離型及び防汚処理や、塗布型、練り込み型、蒸着型等の帯電防止処理もすることもできる。特に、前記はく離ライナーの表面にシリコーン処理、長鎖アルキル処理、フッ素処理等の剥離処理を適宜行うことにより、接着剤層からの剥離性をより高めることができる。 The thickness of the release liner is usually 5 to 200 μm, preferably 5 to 100 μm. The release liner may be treated with silicone-based, fluorine-based, long-chain alkyl-based or fatty acid amide-based mold release agents, mold release and antifouling treatment with silica powder, coating type, kneading type, vapor deposition, etc., as necessary. It is also possible to perform antistatic treatment on molds, etc. In particular, by appropriately performing a release treatment such as silicone treatment, long-chain alkyl treatment, or fluorine treatment on the surface of the release liner, the releasability from the adhesive layer can be further improved.
 本発明の実施形態に係る光学積層体1は、フィルム状であることが好ましい。具体的には、光学積層体の厚みが6μm~250μmであることが好ましく、20μm~100μmであることがより好ましい。
 光学積層体をフィルム状とすると、凹面形状を有する基体に貼付し得るため、生産性良く凹面鏡を製造することができる。
The optical laminate 1 according to the embodiment of the present invention is preferably in the form of a film. Specifically, the thickness of the optical laminate is preferably 6 μm to 250 μm, more preferably 20 μm to 100 μm.
When the optical laminate is in the form of a film, it can be attached to a substrate having a concave shape, so that a concave mirror can be manufactured with high productivity.
[光学積層体の製造]
 本発明の実施形態に係る光学積層体の製造方法は特に限定されない。例えば、図2に示す光学積層体1を製造する場合、第2の基材フィルム10の一方の面に金属反射層11を形成し、金属反射層11上に第一の低屈折率層13a、高屈折率層13b、及び第二の低屈折率層13cをこの順に形成して反射フィルム20を作製する。別途、第1の基材フィルム14の一方の面に粘着剤層15を形成して保護フィルム30を作製する。そして、反射フィルム20の第二の低屈折率層13c側の面と保護フィルム30の粘着剤層15側の面とを貼り合わせることにより光学積層体1を製造することができる。
 光学積層体は更に接着剤層を備えていてもよく、接着剤層12は、第2の基材フィルムの他方の面に、接着剤層12を形成し得る組成物を塗布等により直接形成してもよく、別途形成した接着剤層12を貼り合せることにより形成してもよい。
[Manufacture of optical laminate]
The method for manufacturing the optical laminate according to the embodiment of the present invention is not particularly limited. For example, when manufacturing the optical laminate 1 shown in FIG. 2, the metal reflective layer 11 is formed on one surface of the second base film 10, and the first low refractive index layer 13a, The reflective film 20 is manufactured by forming the high refractive index layer 13b and the second low refractive index layer 13c in this order. Separately, a protective film 30 is produced by forming an adhesive layer 15 on one surface of the first base film 14. Then, the optical laminate 1 can be manufactured by bonding the surface of the reflective film 20 on the second low refractive index layer 13c side and the surface of the protective film 30 on the adhesive layer 15 side.
The optical laminate may further include an adhesive layer, and the adhesive layer 12 is formed by directly forming a composition capable of forming the adhesive layer 12 on the other surface of the second base film by coating or the like. Alternatively, it may be formed by bonding a separately formed adhesive layer 12.
 金属反射層11、第一の低屈折率層13a、高屈折率層13b、及び第二の低屈折率層13cを形成する場合の形成方法は特に限定されないが、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等が挙げられる。大面積でも厚さを厳密に制御できる点から、スパッタリング法が好ましい。 The method of forming the metal reflective layer 11, the first low refractive index layer 13a, the high refractive index layer 13b, and the second low refractive index layer 13c is not particularly limited, but for example, a vacuum evaporation method, a sputtering method. , ion plating method, etc. The sputtering method is preferable because the thickness can be precisely controlled even over a large area.
 粘着剤層15は、第1の基材フィルムの一方の面に、粘着剤層15を形成し得る組成物を塗布等により直接形成してもよく、別途形成した粘着剤層15を貼り合わせることにより形成してもよい。 The adhesive layer 15 may be formed directly on one side of the first base film by applying a composition capable of forming the adhesive layer 15, or by bonding a separately formed adhesive layer 15. It may be formed by
 本発明の実施形態に係る光学積層体は、凹面鏡に用いることができる。
 また、本発明の実施形態に係る光学積層体は、部材の加飾に用いることもできる。例えば、被着部材に貼付して用いてもよく、被着部材としては、例えば、ガラスやプラスチックからなる部材を使用することができるが、これに限定されるものではない。
The optical laminate according to the embodiment of the present invention can be used for a concave mirror.
Furthermore, the optical laminate according to the embodiment of the present invention can also be used to decorate members. For example, it may be used by being attached to an adherend, and the adherend may be, for example, a member made of glass or plastic, but is not limited thereto.
[凹面鏡]
 本発明の実施形態に係る凹面鏡は、上述の光学積層体と、凹面形状を有する基体とを備えた凹面鏡であって、
 前記光学積層体における前記反射フィルム側の面と、前記凹面形状を有する基体における凹面側の面とが接着剤層を介して積層されている。
[concave mirror]
A concave mirror according to an embodiment of the present invention is a concave mirror comprising the above-described optical laminate and a base having a concave shape,
The reflective film side surface of the optical laminate and the concave side surface of the concave base are laminated with an adhesive layer interposed therebetween.
 図3は、本発明の一実施形態による凹面鏡の概略断面図である。図3に示す凹面鏡100は、第2の基材フィルム10、金属反射層11、光学調整層13(第一の低屈折率層13a、高屈折率層13b、及び第二の低屈折率層13c)、粘着剤層15、及び第1の基材フィルム14をこの順に有する光学積層体が、接着剤層12を介して基体40の凹面側に貼付されている。
 なお、図3における凹面鏡の概略断面図においては各層が平面的な層として模式的に表されているが、実際は、基体40はa側の面が凹面側である凹面形状を有し、この上に積層された各層についても凹面形状を有する。
FIG. 3 is a schematic cross-sectional view of a concave mirror according to an embodiment of the invention. The concave mirror 100 shown in FIG. ), an adhesive layer 15 , and a first base film 14 in this order, an optical laminate is attached to the concave side of the base 40 via the adhesive layer 12 .
Note that in the schematic cross-sectional view of the concave mirror in FIG. 3, each layer is schematically represented as a planar layer, but in reality, the base 40 has a concave shape with the surface on the a side being concave; Each layer laminated on the surface also has a concave shape.
 本発明の実施形態に係る凹面鏡は、フィルム状の光学積層体を用いた場合、基体に貼付することが可能なため、生産性良く製造することができる。 When a film-like optical laminate is used, the concave mirror according to the embodiment of the present invention can be attached to a substrate, so it can be manufactured with high productivity.
<基体>
 基体の材料としては、特に限定はなく、樹脂、ガラス、金属等が挙げられるが、後述するフィルムインサート成形に用い得ることから、樹脂を用いることが好ましい。樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、例えば、ポリメタクリレートなどの(メタ)アクリル樹脂(アクリル樹脂および/またはメタクリル樹脂)、例えば、ポリエチレン、ポリプロピレン、シクロオレフィンポリマー(例えば、ノルボルネン系、シクロペンタジエン系)などのオレフィン樹脂、例えば、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリスチレン樹脂などが挙げられる。これらの材料は、単独使用または2種以上併用することができる。中でも、黒色にすることが可能であり遮光性の観点からポリカーボネート樹脂が好ましい。
<Base>
The material of the substrate is not particularly limited and may include resin, glass, metal, etc., but resin is preferably used because it can be used in film insert molding, which will be described later. Examples of the resin include polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate; (meth)acrylic resins (acrylic resins and/or methacrylic resins) such as polymethacrylate; for example, polyethylene, polypropylene; , olefin resins such as cycloolefin polymers (e.g., norbornene series, cyclopentadiene series), such as polycarbonate resins, polyethersulfone resins, polyarylate resins, melamine resins, polyamide resins, polyimide resins, cellulose resins, polystyrene resins, etc. It will be done. These materials can be used alone or in combination of two or more. Among these, polycarbonate resin is preferred because it can be made black and has light-shielding properties.
(凹面鏡における保護フィルムの表面粗さRa)
 本発明の実施形態に係る凹面鏡において、保護フィルムの粘着剤層側の表面の表面粗さRaは、鏡面性向上の観点から180nm以下であり、100nm以下であることが好ましく、50nm以下がより好ましく、30nm以下がさらに好ましい。
(Surface roughness Ra of protective film in concave mirror)
In the concave mirror according to the embodiment of the present invention, the surface roughness Ra of the adhesive layer side surface of the protective film is 180 nm or less, preferably 100 nm or less, more preferably 50 nm or less, from the viewpoint of improving specularity. , 30 nm or less is more preferable.
 ここで、本発明の実施形態に係る凹面鏡における保護フィルムの表面粗さRaは、凹面鏡から保護フィルムを剥離し、剥離した保護フィルムにおける粘着剤層側の表面の算術平均表面粗さを測定したものである。 Here, the surface roughness Ra of the protective film in the concave mirror according to the embodiment of the present invention is determined by peeling the protective film from the concave mirror and measuring the arithmetic mean surface roughness of the surface of the peeled protective film on the adhesive layer side. It is.
 なお、本発明の実施形態に係る凹面鏡において、保護フィルムは凹面鏡成形時の反射フィルムの保護を目的としており、実使用の際には、凹面鏡から保護フィルムを剥離して用いてもよいし、剥離せずに用いてもよい。凹面鏡から保護フィルムを剥離して用いることが好ましい。 In addition, in the concave mirror according to the embodiment of the present invention, the protective film is intended to protect the reflective film during molding of the concave mirror, and in actual use, the protective film may be peeled off from the concave mirror, or it may be used by peeling it off. It may be used without. It is preferable to peel off the protective film from the concave mirror before use.
[凹面鏡の製造]
 本実施形態に係る凹面鏡の製造方法は特に限定されないが、凹面鏡は、上述の光学積層体と、凹面形状を有する基体とがフィルムインサート成形により積層された凹面鏡であることが好ましい。
 また、凹面鏡は、上述の光学積層体と、凹面形状を有する基体とがラミネートにより積層された凹面鏡であってもよい。
 以下、凹面鏡の製造方法について説明する。
[Manufacture of concave mirror]
Although the method for manufacturing the concave mirror according to this embodiment is not particularly limited, it is preferable that the concave mirror is a concave mirror in which the above-mentioned optical laminate and a base having a concave shape are laminated by film insert molding.
Further, the concave mirror may be a concave mirror in which the above-described optical laminate and a base having a concave shape are laminated.
Hereinafter, a method for manufacturing a concave mirror will be explained.
<フィルムインサート成形>
 本実施形態おいて、凹面鏡100の製造方法としては、上述の光学積層体1と、凹面形状を有する基体40とを備えた凹面鏡の製造方法であって、フィルムインサート成形により、前記凹面形状を有する基体40を成形し、前記凹面形状を有する基体40における凹面側の面に、接着剤層を介して前記光学積層体1を積層する方法であることが好ましい。
<Film insert molding>
In this embodiment, the method for manufacturing the concave mirror 100 is a method for manufacturing a concave mirror including the above-described optical laminate 1 and a base body 40 having the concave shape, by film insert molding. A preferred method is to mold the base 40 and laminate the optical laminate 1 on the concave side surface of the base 40 having the concave shape via an adhesive layer.
 図4~図6は、凹面鏡100をフィルムインサート成形により製造する手順を説明するための説明図である。 4 to 6 are explanatory diagrams for explaining the procedure for manufacturing the concave mirror 100 by film insert molding.
 凹面鏡100をフィルムインサート成形するための金型は、凸型金型51と、凹型金型52と、を有している。 A mold for film insert molding the concave mirror 100 includes a convex mold 51 and a concave mold 52.
 図4に示すように、凸型金型51側に光学積層体1を配置する。図4には図示していないが、例えば図3に示す積層構造の凹面鏡100を製造する場合、光学積層体1の接着剤層12側の面が凹型金型52側となるように光学積層体1を配置すればよい。
 次に、凸型金型51を凹型金型52に押し当てて、成形空間53を密閉する。その後、図5に示すように、樹脂流入路54を通じて、成形空間53に溶融させた基体の材料樹脂41を注入した後、この溶融した材料樹脂を固化させる。これにより、光学積層体1と基体40とは、接着剤層12を介して積層される。
As shown in FIG. 4, the optical laminate 1 is placed on the convex mold 51 side. Although not shown in FIG. 4, for example, when manufacturing the concave mirror 100 with the laminated structure shown in FIG. 1 should be placed.
Next, the convex mold 51 is pressed against the concave mold 52 to seal the molding space 53. Thereafter, as shown in FIG. 5, the molten resin material 41 for the base body is injected into the molding space 53 through the resin inflow path 54, and then the molten resin material is solidified. Thereby, the optical laminate 1 and the base 40 are laminated with the adhesive layer 12 in between.
 次に、凸型金型51を所定方向に抜き移動する。凹型金型52には、固化した基体の材料樹脂が残る。最後に、図6に示すように、この固化した材料樹脂を凹型金型52に設けられるイジェクターピン(図示せず)により凹型金型52から離型させて、不要部分(ランナー部)をカットする。これにより、凹面鏡100は完成する。 Next, the convex mold 51 is removed and moved in a predetermined direction. The solidified base material resin remains in the concave mold 52. Finally, as shown in FIG. 6, this solidified material resin is released from the concave mold 52 by an ejector pin (not shown) provided in the concave mold 52, and unnecessary parts (runner parts) are cut. . Thereby, the concave mirror 100 is completed.
 このような本実施形態における凹面鏡100の製造方法は、光学積層体1と基体40とを一体成形したため、凹面鏡100の生産性を向上させることができる。 In the method for manufacturing the concave mirror 100 in this embodiment, the optical laminate 1 and the base body 40 are integrally molded, so that the productivity of the concave mirror 100 can be improved.
 成形時の金型の温度としては、溶融した材料樹脂41の流入性や成形性の観点から、例えば200℃以上が好ましく、250℃以上がより好ましい。また、光学積層体の熱変形抑制の観点から300℃以下が好ましく、270℃以下がより好ましい。 The temperature of the mold during molding is preferably, for example, 200° C. or higher, and more preferably 250° C. or higher, from the viewpoint of flowability of the molten material resin 41 and moldability. Further, from the viewpoint of suppressing thermal deformation of the optical laminate, the temperature is preferably 300°C or lower, more preferably 270°C or lower.
 上記のように、フィルムインサート成形時には光学積層体も高温に晒されることになるが、本実施形態に係る光学積層体は表面粗さと熱変形量が所定の範囲内である保護フィルムを有しているため、凹面鏡加工時の保護フィルムに起因する反射フィルム表面形状の劣化が抑制され、高い鏡面性を有する凹面鏡を製造することが可能となる。 As mentioned above, the optical laminate is also exposed to high temperatures during film insert molding, but the optical laminate according to this embodiment has a protective film whose surface roughness and amount of thermal deformation are within predetermined ranges. Therefore, deterioration of the reflective film surface shape due to the protective film during concave mirror processing is suppressed, and it becomes possible to manufacture a concave mirror with high specularity.
<ラミネート成形>
 本実施形態に係る凹面鏡100の製造方法は、上述の光学積層体1と、凹面形状を有する基体40とを備えた凹面鏡の製造方法であって、ラミネートにより、前記凹面形状を有する基体40における凹面側の面に、接着剤層を介して前記光学積層体1を積層する方法であってもよい。
<Laminate molding>
The method for manufacturing a concave mirror 100 according to the present embodiment is a method for manufacturing a concave mirror including the above-described optical laminate 1 and a base body 40 having a concave shape, in which the concave surface of the base body 40 having a concave shape is A method may also be adopted in which the optical laminate 1 is laminated on the side surface via an adhesive layer.
 ラミネートは、真空ラミネートであってもよい。
 真空ラミネートは、真空ラミネーター装置を用いて行うことができる。市販の真空ラミネーター装置としては、例えば、ミカドテクノス社製の真空加圧装置3Dタイプやクライムプロダクツ社製の真空貼合精密枚葉貼合機等が挙げられる。
The laminate may be a vacuum laminate.
Vacuum lamination can be performed using a vacuum laminator device. Commercially available vacuum laminator devices include, for example, the vacuum pressure device 3D type manufactured by Mikado Technos, and the vacuum lamination precision single wafer lamination machine manufactured by Climb Products.
 真空ラミネーター装置の真空度は、ラミネートが実行される限りにおいては特に限定されないが、好ましくは10kPa以下、より好ましくは5kPa以下、さらに好ましくは1kPa以下である。 The degree of vacuum of the vacuum laminator device is not particularly limited as long as lamination is performed, but is preferably 10 kPa or less, more preferably 5 kPa or less, and still more preferably 1 kPa or less.
 真空ラミネートによる圧着は加熱しながら行ってもよく、加熱温度としては、例えば、20~180℃が好ましく、20~150℃がより好ましい。 Pressure bonding by vacuum lamination may be performed while heating, and the heating temperature is, for example, preferably 20 to 180°C, more preferably 20 to 150°C.
 また、ラミネートは、ロールラミネートであってもよい。
 ロールラミネートは、例えば、サンテック社製の曲面ロボット貼付装置により行うことができる。
Additionally, the laminate may be a roll laminate.
Roll lamination can be performed using, for example, a curved surface robot pasting device manufactured by Suntech.
 ロールラミネートによって圧着する場合の圧力としては、ラミネートが実行される限りにおいては特に限定されないが、例えば、0.1~3MPaとすることが好ましく、0.2~1MPaとすることがより好ましい。 The pressure for pressure bonding by roll lamination is not particularly limited as long as lamination is carried out, but for example, it is preferably 0.1 to 3 MPa, more preferably 0.2 to 1 MPa.
 ロールラミネートによる圧着は加熱しながら行ってもよく、加熱温度としては、例えば、20~150℃が好ましく、60~100℃がより好ましい。 Pressure bonding by roll lamination may be performed while heating, and the heating temperature is, for example, preferably 20 to 150°C, more preferably 60 to 100°C.
 ラミネート成形により凹面鏡を製造する場合、基体40の凹面側の表面の少なくとも一部をコロナ処理し、該基体40のコロナ処理面に、接着剤層12を介して前記光学積層体1をラミネートにより積層してもよい。 When manufacturing a concave mirror by lamination molding, at least a portion of the concave surface of the base 40 is subjected to corona treatment, and the optical laminate 1 is laminated on the corona-treated surface of the base 40 via the adhesive layer 12. You may.
[光学積層体及び凹面鏡の用途]
 本発明の実施形態に係る光学積層体及び凹面鏡の用途としては例えば、車両用構造部品、ヘッドアップディスプレイ等の車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。より具体的には、車両関係では、インスツルメントパネル、コンソールボックス、ドアノブ、ドアトリム、シフトレバー、ペダル類、グローブボックス、バンパー、ボンネット、フェンダー、トランク、ドア、ルーフ、ピラー、座席シート、ステアリングホイール、ECUボックス、電装部品、エンジン周辺部品、駆動系・ギア周辺部品、吸気・排気系部品、冷却系部品等が挙げられる。電子機器及び家電機器としてより具体的には、冷蔵庫、洗濯機、掃除機、電子レンジ、エアコン、照明機器、電気湯沸かし器、テレビ、時計、換気扇、プロジェクター、スピーカー等の家電製品類、パソコン、携帯電話、スマートフォン、デジタルカメラ、タブレット型PC、携帯音楽プレーヤー、携帯ゲーム機、充電器、電池等電子情報機器等が挙げられる。
 上記の中でも、特にヘッドアップディスプレイ用の凹面鏡として好適に用い得る。
[Applications of optical laminates and concave mirrors]
Applications of the optical laminate and concave mirror according to the embodiments of the present invention include, for example, structural parts for vehicles, vehicle-mounted products such as head-up displays, casings of electronic devices, casings of home appliances, structural parts, and mechanical parts. , various automobile parts, parts for electronic devices, household goods such as furniture and kitchen utensils, medical equipment, parts for construction materials, and other structural parts and exterior parts. More specifically, in the vehicle industry, instrument panels, console boxes, door knobs, door trims, shift levers, pedals, glove boxes, bumpers, bonnets, fenders, trunks, doors, roofs, pillars, seats, steering wheels. , ECU boxes, electrical components, engine peripheral parts, drive system/gear peripheral parts, intake/exhaust system parts, cooling system parts, etc. More specifically, electronic devices and home appliances include refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, televisions, clocks, ventilation fans, projectors, speakers, and other home appliances, computers, and mobile phones. Examples include electronic information devices such as smartphones, digital cameras, tablet PCs, portable music players, portable game machines, chargers, and batteries.
Among the above, it can be particularly suitably used as a concave mirror for a head-up display.
 以下、本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be explained based on Examples, but the present invention is not limited to these.
〔実施例1〕
[反射フィルムの作製]
<第2の基材フィルム>
 第2の基材フィルムとして、東レ株式会社製PETフィルム50-U483(厚さ50μm))に厚み1.5μmの紫外線硬化樹脂層(ハードコート層)を形成し、ハードコート層付き第2の基材フィルムを得た。
[Example 1]
[Preparation of reflective film]
<Second base film>
As the second base film, a 1.5 μm thick ultraviolet curable resin layer (hard coat layer) was formed on Toray Industries, Inc. PET film 50-U483 (thickness 50 μm), and a second base film with a hard coat layer was formed. A material film was obtained.
<金属反射層の作製>
 Alターゲット、及びハードコート層付き第2の基材フィルムを、ラボ用のマグネトロンスパッタリング装置にセットし、ハードコート層付き第2の基材フィルムのハードコート層側の面上に、金属反射層として、厚み44nmのアルミニウム層(Al層)を形成した。
<Preparation of metal reflective layer>
The Al target and the second base film with a hard coat layer were set in a laboratory magnetron sputtering device, and a metal reflective layer was placed on the surface of the second base film with a hard coat layer on the hard coat layer side. , an aluminum layer (Al layer) with a thickness of 44 nm was formed.
<光学調整層の作製>
 ラボ用のマグネトロンスパッタリング装置を用いてAl層を形成したハードコート層付き第2の基材フィルムを、マグネトロンスパッタリング装置にセットし、Al層の上に、第一の低屈折率層として酸化珪素(SiO)67nm(屈折率1.46)、高屈折率層として酸化ニオブ(Nb)53nm(屈折率2.32)、第二の低屈折率等として酸化珪素(SiO)40nm(屈折率1.46)の順で、透明酸化物の薄膜を形成して光学調整層とし、反射フィルムを作製した。酸化珪素と酸化ニオブの薄膜の形成にあたっては、ターゲットとしては純珪素ターゲット、純ニオブターゲットを用い、アルゴンガスに加え、酸素ガスを導入し、反応性スパッタリングを実施することで、それぞれ透明酸化物の薄膜を得た。
<Preparation of optical adjustment layer>
A second base film with a hard coat layer on which an Al layer was formed using a laboratory magnetron sputtering device was set in the magnetron sputtering device, and silicon oxide ( SiO 2 ) 67 nm (refractive index 1.46), niobium oxide (Nb 2 O 5 ) 53 nm (refractive index 2.32) as a high refractive index layer, silicon oxide (SiO 2 ) 40 nm (refractive index) as a second low refractive index layer, etc. A thin film of a transparent oxide having a refractive index of 1.46) was formed as an optical adjustment layer to prepare a reflective film. In forming thin films of silicon oxide and niobium oxide, pure silicon and pure niobium targets are used as targets, oxygen gas is introduced in addition to argon gas, and reactive sputtering is performed to form transparent oxides. A thin film was obtained.
[保護フィルムの作製]
(溶剤型アクリル系ポリマー溶液(CA-1)の調製)
 撹拌羽根、温度計、窒素ガス導入管、および冷却器を備えた四つ口フラスコに、ブチルアクリレート100質量部、アクリル酸5質量部、重合開始剤として過酸化ベンゾイル0.2質量部、および酢酸エチル200質量部を仕込み、緩やかに撹拌しながら窒素ガスを導入し、フラスコ内の液温を65℃付近に保って約6時間重合反応を行い、溶剤型アクリル系ポリマー溶液(CA-1)(濃度30質量%)を得た。
[Production of protective film]
(Preparation of solvent-based acrylic polymer solution (CA-1))
100 parts by mass of butyl acrylate, 5 parts by mass of acrylic acid, 0.2 parts by mass of benzoyl peroxide as a polymerization initiator, and acetic acid in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a condenser. 200 parts by mass of ethyl was charged, nitrogen gas was introduced while stirring gently, and the polymerization reaction was carried out for about 6 hours while maintaining the liquid temperature in the flask at around 65°C to form a solvent-type acrylic polymer solution (CA-1). A concentration of 30% by mass) was obtained.
(アクリル系粘着剤溶液(CB-1)の調製)
 溶剤型アクリル系ポリマー溶液(CA-1)(濃度30質量%)を酢酸エチルで20質量%に希釈し、この溶液中のアクリル系ポリマー固形分100質量部あたり、エポキシ系化合物(TETRAD-C、三菱瓦斯化学社製)6.0質量部を加えて、25℃で約1分間混合撹拌を行い、アクリル系粘着剤溶液(CB-1)を得た。
(Preparation of acrylic adhesive solution (CB-1))
A solvent-type acrylic polymer solution (CA-1) (concentration 30% by mass) was diluted to 20% by mass with ethyl acetate, and an epoxy compound (TETRAD-C, 6.0 parts by mass (manufactured by Mitsubishi Gas Chemical Co., Ltd.) was added thereto and mixed and stirred at 25° C. for about 1 minute to obtain an acrylic adhesive solution (CB-1).
(保護フィルム(C1)の製造)
 第1の基材フィルムとして、PETフィルム「ルミラーS10」(厚み38μm、東レ社製)の片面にコロナ処理を施し、このコロナ処理面に、アクリル系粘着剤溶液(CB-1)を塗布し、80℃で1分間乾燥し、厚み5μmの粘着剤層を形成し、保護フィルム(C1)を製造した。
(Manufacture of protective film (C1))
As the first base film, one side of the PET film "Lumirror S10" (thickness 38 μm, manufactured by Toray Industries, Inc.) was subjected to corona treatment, and an acrylic adhesive solution (CB-1) was applied to this corona-treated side. It was dried at 80° C. for 1 minute to form an adhesive layer with a thickness of 5 μm, thereby producing a protective film (C1).
[光学積層体の作製]
 上記反射フィルムの光学調整層側の面と保護フィルム(C1)の粘着剤層側の面とを貼り合わせた。
[Preparation of optical laminate]
The surface of the reflective film on the optical adjustment layer side and the surface of the protective film (C1) on the pressure-sensitive adhesive layer side were bonded together.
 以上により、厚さ51.5μmのハードコート層付きPETフィルムの片面上に、アルミニウム44nm、酸化珪素67nm、酸化ニオブ53nm、酸化珪素40nmの順で薄層が形成され、さらに、粘着剤層5μm、厚さ38μmのPETフィルムがこの順で積層されたフィルム状の光学積層体1を作製した。 As described above, a thin layer of 44 nm of aluminum, 67 nm of silicon oxide, 53 nm of niobium oxide, and 40 nm of silicon oxide was formed on one side of the PET film with a hard coat layer having a thickness of 51.5 μm, and an adhesive layer of 5 μm thick, A film-like optical laminate 1 was prepared in which PET films having a thickness of 38 μm were laminated in this order.
[凹面鏡の作製]
 光学積層体1の第2の基材フィルムのスパッタ成膜のされていない面に、結晶性共重合ポリエステル樹脂「バイロンGM-920」(東洋紡株式会社製)をトルエンで溶解し、スクリーン印刷で塗布、90℃1分間で乾燥し、膜厚10μmの接着剤層が積層された積層体を得た。
 成形装置(日精樹脂工業株式会社製NEX1000)の凸型金型側に、得られた積層体を第1の基材フィルム側が凸型金型に接するように配置した。
 次に、積層体が配置された凸型金型を凹型金型に押し当てて、成形装置における成形空間を密閉し、金型の温度を90℃に昇温した。成形装置の樹脂流入路より、270℃にて溶融したポリカーボネート樹脂(帝人株式会社製L1225ZL)を注入し、ポリカーボネート樹脂を固化させた。
 金型から、ポリカーボネート基体の凹面側に光学積層体が接着剤層を介して積層された凹面鏡を取り出した。得られた凹面鏡の基体の厚みは3mmであった。
[Fabrication of concave mirror]
Crystalline copolymer polyester resin "Vylon GM-920" (manufactured by Toyobo Co., Ltd.) was dissolved in toluene and applied by screen printing on the surface of the second base film of the optical laminate 1 on which the sputtering film was not formed. , and dried at 90° C. for 1 minute to obtain a laminate having an adhesive layer laminated with a thickness of 10 μm.
The obtained laminate was placed on the convex mold side of a molding device (NEX1000 manufactured by Nissei Jushi Kogyo Co., Ltd.) such that the first base film side was in contact with the convex mold.
Next, the convex mold in which the laminate was placed was pressed against the concave mold to seal the molding space in the molding device, and the temperature of the mold was raised to 90°C. A polycarbonate resin (L1225ZL, manufactured by Teijin Ltd.) melted at 270° C. was injected from the resin inflow path of the molding device, and the polycarbonate resin was solidified.
A concave mirror in which an optical laminate was laminated on the concave side of a polycarbonate base via an adhesive layer was taken out from the mold. The thickness of the base of the obtained concave mirror was 3 mm.
〔実施例2〕
 保護フィルムの粘着剤層の厚みを21μmに変更した以外は実施例1と同様にして光学積層体及び凹面鏡を作製した。
[Example 2]
An optical laminate and a concave mirror were produced in the same manner as in Example 1 except that the thickness of the adhesive layer of the protective film was changed to 21 μm.
〔実施例3〕
 第1の基材フィルムの厚みを125μm(東レ株式会社製「ルミラー#125-U48」)に変更した以外は実施例1と同様にして光学積層体及び凹面鏡を作製した。
[Example 3]
An optical laminate and a concave mirror were produced in the same manner as in Example 1, except that the thickness of the first base film was changed to 125 μm (“Lumirror #125-U48” manufactured by Toray Industries, Inc.).
〔比較例1〕
 第1の基材フィルムをフタムラ化学株式会社製PP(ポリプロピレン)フィルム(FSA020M(厚さ30μm))に変更した以外は実施例1と同様にして光学積層体及び凹面鏡を作製した。
[Comparative example 1]
An optical laminate and a concave mirror were produced in the same manner as in Example 1, except that the first base film was changed to a PP (polypropylene) film (FSA020M (thickness: 30 μm)) manufactured by Futamura Chemical Co., Ltd.
〔比較例2〕
 第1の基材フィルムを東レフィルム加工株式会社製PE(ポリエチレン)フィルム(75-7H52(厚さ75μm))に変更した以外は実施例1と同様にして光学積層体及び凹面鏡を作製した。
[Comparative example 2]
An optical laminate and a concave mirror were produced in the same manner as in Example 1, except that the first base film was changed to a PE (polyethylene) film (75-7H52 (thickness 75 μm)) manufactured by Toray Film Processing Co., Ltd.
<算術平均表面粗さRa>
 実施例及び比較例で得られた光学積層体から保護フィルムを剥離した。
 剥離した保護フィルムを平滑な台の上にたわみの無いように固定し、ザイゴ株式会社製光学式表面性状測定機 ZYGO New View 7300を用い、JISB0633に準拠し、下記の条件にて実施例及び比較例の保護フィルムの粘着剤層側表面の算術平均表面粗さRaを測定した。
 測定倍率:対物レンズ×10倍 ズーム×1倍 
 測定範囲:720μm×480μm
<Arithmetic mean surface roughness Ra>
The protective films were peeled off from the optical laminates obtained in Examples and Comparative Examples.
The peeled protective film was fixed on a smooth table so as not to bend, and the examples and comparisons were carried out under the following conditions in accordance with JISB0633 using an optical surface texture measuring instrument ZYGO New View 7300 manufactured by Zygo Co., Ltd. The arithmetic mean surface roughness Ra of the adhesive layer side surface of the protective film of the example was measured.
Measurement magnification: Objective lens x 10x Zoom x 1x
Measurement range: 720μm x 480μm
<熱変形量>
 実施例及び比較例で得られた光学積層体から保護フィルムを剥離した。
 剥離した保護フィルムの加熱時の寸法変化挙動をTMA(Thermomechanical Analysis)にて解析した。測定条件は、試料幅:4mm、荷重:20mN/4mm、初期長さ:10mmとし、110℃、1時間加熱後の保護フィルムのMD方向及びTD方向の寸法変化率を測定した。
 寸法変化率は、剥離した保護フィルムの基材面に、MD方向及びTD方向に約80mmの間隔で2点の標点(傷)を形成し、加熱前の標点間距離Lおよび、加熱後の標点間距離Lを、二次元測長機により測定して、寸法変化率(%)を求めた。
<Thermal deformation amount>
The protective films were peeled off from the optical laminates obtained in Examples and Comparative Examples.
The dimensional change behavior of the peeled protective film upon heating was analyzed using TMA (Thermomechanical Analysis). The measurement conditions were: sample width: 4 mm, load: 20 mN/4 mm, initial length: 10 mm, and the dimensional change rate in the MD direction and TD direction of the protective film after heating at 110° C. for 1 hour was measured.
The rate of dimensional change was determined by forming two gauge marks (scratches) on the base material surface of the peeled protective film at an interval of about 80 mm in the MD direction and the TD direction, and measuring the distance between the gauge marks before heating L 0 and the heating The subsequent gauge distance L was measured using a two-dimensional length measuring machine to determine the dimensional change rate (%).
<鏡面性>
 実施例及び比較例で得られた凹面鏡から保護フィルムを剥離した。
 保護フィルムを剥離した凹面鏡の反射フィルム側表面の外観について、以下の指標にて評価した。
◎:反射像の歪みがない
○:反射像の歪みがほとんどない
△:反射像の歪みがある
×:反射像の歪みが著しい
<Specularity>
The protective films were peeled off from the concave mirrors obtained in Examples and Comparative Examples.
The appearance of the reflective film side surface of the concave mirror after the protective film was removed was evaluated using the following index.
◎: There is no distortion in the reflected image ○: There is almost no distortion in the reflected image △: There is distortion in the reflected image ×: There is significant distortion in the reflected image
 結果を下記表1に示す。 The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、本実施例の光学積層体は鏡面性の高い凹面鏡を形成し得る。 As shown in Table 1, the optical laminate of this example can form a concave mirror with high specularity.
 なお、実施例及び比較例の光学積層体製造に使用した貼合前の保護フィルムの粘着剤層側表面のRaと、実施例及び比較例において製造した凹面鏡から保護フィルムを剥離した保護フィルムの粘着剤層側表面のRaについても、上記と同様に測定した。その結果についても以下の表2に示す。表2において、「貼合前」は光学積層体製造に使用した貼合前の保護フィルム、「光学積層体」は光学積層体から剥離した保護フィルム、「凹面鏡」は凹面鏡から剥離した保護フィルムについての測定結果である。 In addition, the Ra of the surface of the adhesive layer side of the protective film before lamination used for manufacturing the optical laminates of Examples and Comparative Examples, and the adhesion of the protective film after peeling the protective film from the concave mirror manufactured in Examples and Comparative Examples. The Ra of the surface on the agent layer side was also measured in the same manner as above. The results are also shown in Table 2 below. In Table 2, "before lamination" refers to the protective film before lamination used to manufacture the optical laminate, "optical laminate" refers to the protective film peeled from the optical laminate, and "concave mirror" refers to the protective film peeled from the concave mirror. These are the measurement results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明は前述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and can be modified in various ways within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present invention.
 本発明によれば、鏡面性の高い凹面鏡を形成し得る光学積層体、該光学積層体を用いた凹面鏡、及び凹面鏡の製造方法することができる。 According to the present invention, an optical laminate that can form a concave mirror with high specularity, a concave mirror using the optical laminate, and a method for manufacturing a concave mirror can be provided.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2022年9月9日出願の日本特許出願(特願2022-143871)に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2022-143871) filed on September 9, 2022, the contents of which are incorporated herein by reference.
 1 光学積層体
 10 第2の基材フィルム
 11 金属反射層
 12 接着剤層
 13 光学調整層
 13a 第一の低屈折率層
 13b 高屈折率層
 13c 第二の低屈折率層
 14 第1の基材フィルム
 15 粘着剤層
 20 反射フィルム
 30 保護フィルム
 40 基体
 41 材料樹脂
 51 凸型金型
 52 凹型金型
 53 成形空間
 54 樹脂流入路
 100 凹面鏡
 a  凹面側
1 Optical laminate 10 Second base film 11 Metal reflective layer 12 Adhesive layer 13 Optical adjustment layer 13a First low refractive index layer 13b High refractive index layer 13c Second low refractive index layer 14 First base material Film 15 Adhesive layer 20 Reflective film 30 Protective film 40 Substrate 41 Material resin 51 Convex mold 52 Concave mold 53 Molding space 54 Resin inflow path 100 Concave mirror a Concave side

Claims (9)

  1.  反射フィルムと、前記反射フィルム上に保護フィルムとを備える光学積層体であって、
     前記保護フィルムは、第1の基材フィルムと、前記第1の基材フィルム上に粘着剤層を備え、
     前記保護フィルムにおける前記粘着剤層側の面が前記反射フィルムに貼合されており、
     前記保護フィルムにおける前記粘着剤層側の表面の表面粗さRaが180nm以下であり、
     前記保護フィルムは、110℃における熱変形量が1%未満である、光学積層体。
    An optical laminate comprising a reflective film and a protective film on the reflective film,
    The protective film includes a first base film and an adhesive layer on the first base film,
    A surface of the protective film on the pressure-sensitive adhesive layer side is laminated to the reflective film,
    The surface roughness Ra of the surface of the adhesive layer side of the protective film is 180 nm or less,
    The protective film is an optical laminate having a thermal deformation amount of less than 1% at 110°C.
  2.  前記反射フィルムは、第2の基材フィルム上に、金属反射層と、光学調整層とをこの順に有し、前記光学調整層は、屈折率が1.75以上の高屈折率層を少なくとも1層含み、
     前記保護フィルムにおける前記粘着剤層側の面が前記反射フィルムにおける前記光学調整層側の面に貼合された、請求項1に記載の光学積層体。
    The reflective film has a metal reflective layer and an optical adjustment layer in this order on a second base film, and the optical adjustment layer includes at least one high refractive index layer having a refractive index of 1.75 or more. Including layers,
    The optical laminate according to claim 1, wherein a surface of the protective film on the pressure-sensitive adhesive layer side is bonded to a surface of the reflective film on the optical adjustment layer side.
  3.  請求項1又は2に記載の光学積層体と、凹面形状を有する基体とを備えた凹面鏡であって、
     前記光学積層体における前記反射フィルム側の面と、前記凹面形状を有する基体における凹面側の面とが接着剤層を介して積層された凹面鏡。
    A concave mirror comprising the optical laminate according to claim 1 or 2 and a base having a concave shape,
    A concave mirror in which a surface of the optical laminate on the reflective film side and a surface of the concave base body on the concave side are laminated with an adhesive layer interposed therebetween.
  4.  前記光学積層体と、前記凹面形状を有する基体とがフィルムインサート成形により積層された、請求項3に記載の凹面鏡。 The concave mirror according to claim 3, wherein the optical laminate and the base having a concave shape are laminated by film insert molding.
  5.  前記光学積層体と、前記凹面形状を有する基体とがラミネートにより積層された、請求項3に記載の凹面鏡。 The concave mirror according to claim 3, wherein the optical laminate and the base having a concave shape are laminated together.
  6.  請求項1又は2に記載の光学積層体と、凹面形状を有する基体とを備えた凹面鏡の製造方法であって、
     フィルムインサート成形により、前記凹面形状を有する基体を成形し、前記凹面形状を有する基体における凹面側の面に接着剤層を介して前記光学積層体を積層する、凹面鏡の製造方法。
    A method for manufacturing a concave mirror comprising the optical laminate according to claim 1 or 2 and a base having a concave shape,
    A method for manufacturing a concave mirror, comprising forming the base having the concave shape by film insert molding, and laminating the optical laminate on the concave side surface of the base having the concave shape via an adhesive layer.
  7.  請求項1又は2に記載の光学積層体と、凹面形状を有する基体とを備えた凹面鏡の製造方法であって、
     ラミネートにより、前記凹面形状を有する基体における凹面側の面に、接着剤層を介して前記光学積層体を積層する、凹面鏡の製造方法。
    A method for manufacturing a concave mirror comprising the optical laminate according to claim 1 or 2 and a base having a concave shape,
    A method for manufacturing a concave mirror, comprising laminating the optical laminate on the concave side surface of the base having the concave shape via an adhesive layer.
  8.  前記ラミネートが真空ラミネートである、請求項7に記載の凹面鏡の製造方法。 The method for manufacturing a concave mirror according to claim 7, wherein the laminate is a vacuum laminate.
  9.  前記ラミネートがロールラミネートである、請求項7に記載の凹面鏡の製造方法。 The method for manufacturing a concave mirror according to claim 7, wherein the laminate is a roll laminate.
PCT/JP2023/032590 2022-09-09 2023-09-06 Optical laminated body, concave mirror, and concave mirror production method WO2024053692A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022143871 2022-09-09
JP2022-143871 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053692A1 true WO2024053692A1 (en) 2024-03-14

Family

ID=90191263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032590 WO2024053692A1 (en) 2022-09-09 2023-09-06 Optical laminated body, concave mirror, and concave mirror production method

Country Status (1)

Country Link
WO (1) WO2024053692A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193545A (en) * 2013-03-28 2014-10-09 Fujifilm Corp Concave mirror and processing method thereof
JP2019028422A (en) * 2017-07-28 2019-02-21 日本精機株式会社 Reflection mirror and method for manufacturing the same
WO2021251475A1 (en) * 2020-06-12 2021-12-16 日東電工株式会社 Film mirror laminate and mirror member
WO2021251476A1 (en) * 2020-06-12 2021-12-16 日東電工株式会社 Film mirror laminate, and mirror member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193545A (en) * 2013-03-28 2014-10-09 Fujifilm Corp Concave mirror and processing method thereof
JP2019028422A (en) * 2017-07-28 2019-02-21 日本精機株式会社 Reflection mirror and method for manufacturing the same
WO2021251475A1 (en) * 2020-06-12 2021-12-16 日東電工株式会社 Film mirror laminate and mirror member
WO2021251476A1 (en) * 2020-06-12 2021-12-16 日東電工株式会社 Film mirror laminate, and mirror member

Similar Documents

Publication Publication Date Title
US7070849B2 (en) Anti-reflective formed article and method for preparation thereof, and mold for anti-reflective formed article
JP4816183B2 (en) Optically laminated biaxially stretched polyester film and hard coat film using the same
US20100136276A1 (en) Pressure-sensitive adhesive layer-carrying transparent conductive film and method for production thereof
JP2014202928A (en) Half mirror front plate
JPWO2018043155A1 (en) Protective film and laminated film
US20200223150A1 (en) Laminate, method of forming optical body, and camera module-mounted device
WO2024053692A1 (en) Optical laminated body, concave mirror, and concave mirror production method
JP5497789B2 (en) Surface protection panel and liquid crystal image display device
WO2021251476A1 (en) Film mirror laminate, and mirror member
WO2021251475A1 (en) Film mirror laminate and mirror member
JP2006243421A (en) Plate object for nameplate formation
EP4170394A1 (en) Film mirror laminate and mirror member
JP2023110548A (en) Optical laminate and mirror member
JP2023086368A (en) Optical laminate and mirror member
WO2021200292A1 (en) Layered body, electromagnetic wave permeable layered body, and article
JP2022131590A (en) Metallic sheen member, decorative member, and manufacturing method of metallic sheen member
JP2005227415A (en) Reflection preventive film and plate for display
WO2022080137A1 (en) Polarizing plate provided with antireflective layer, and image display device
JP2022102748A (en) Laminate and decorative member
JP2004226732A (en) Front filter for display, and its manufacturing method
JP2022102747A (en) Laminate and decorative member
JP2023024147A (en) Article
JP2023013743A (en) Laminate and decorative member
JP2022131589A (en) Film having hard coat layer, laminate and manufacturing method of laminate
JP2022103314A (en) Optical laminate and article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863230

Country of ref document: EP

Kind code of ref document: A1