WO2011089773A1 - Dielectric material for plasma display panel and glass plate for plasma display panel - Google Patents

Dielectric material for plasma display panel and glass plate for plasma display panel Download PDF

Info

Publication number
WO2011089773A1
WO2011089773A1 PCT/JP2010/069719 JP2010069719W WO2011089773A1 WO 2011089773 A1 WO2011089773 A1 WO 2011089773A1 JP 2010069719 W JP2010069719 W JP 2010069719W WO 2011089773 A1 WO2011089773 A1 WO 2011089773A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
plasma display
display panel
dielectric material
content
Prior art date
Application number
PCT/JP2010/069719
Other languages
French (fr)
Japanese (ja)
Inventor
大島 洋
近藤 久美子
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2011089773A1 publication Critical patent/WO2011089773A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/16Compositions for glass with special properties for dielectric glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/38Dielectric or insulating layers

Definitions

  • the present invention relates to a dielectric material for a plasma display panel and a glass plate for the plasma display panel.
  • Plasma display is a self-luminous flat panel display.
  • the plasma display panel has excellent characteristics such as light weight and thinness and a high viewing angle, and can have a large screen. For this reason, the market of plasma display panels is rapidly expanding.
  • the plasma display panel includes a front glass substrate and a back glass substrate.
  • the front glass substrate and the rear glass substrate are opposed to each other with a certain distance.
  • the periphery of the front glass substrate and the back glass substrate is hermetically sealed with sealing glass.
  • the inside is filled with a rare gas such as Ne or Xe.
  • a protective plate for protecting the front glass substrate is attached to the outer surface side of the front glass substrate.
  • a color filter is mounted on the protective plate.
  • a plasma discharge scan electrode is formed on the front glass substrate of the plasma display panel, and a transparent dielectric layer having a thickness of about 10 to 40 ⁇ m is formed thereon to protect the scan electrode.
  • address electrodes for determining the position of plasma discharge are formed on the rear glass substrate.
  • an address electrode protective dielectric layer having a thickness of about 10 to 20 ⁇ m is formed to protect the address electrode.
  • barrier ribs for partitioning a plurality of discharge cells are formed on the address electrode protection dielectric layer.
  • a red (R), green (G) or blue (B) phosphor is applied in the cell. In the plasma display panel, the phosphor is stimulated to emit light by generating plasma discharge in the cell and generating ultraviolet rays.
  • soda lime glass and high strain point glass are used for the front glass substrate and the back glass substrate of the plasma display panel.
  • Inexpensive Ag and Cr—Cu—Cr are widely used for the scan electrode and the address electrode.
  • a method of forming a dielectric layer on an electrode formed on a glass substrate in general, in order to prevent deformation of the glass substrate and suppress deterioration of characteristics due to reaction with the electrode, 500 to 600 ° C. A method of firing in a temperature range of about is employed. Therefore, the dielectric material for forming the dielectric layer is required to be able to be fired at about 500 to 600 ° C. and not to react with the electrode.
  • the transparent dielectric layer is also required to have high transparency.
  • the dielectric material for forming the transparent dielectric layer is also required to easily remove bubbles during firing.
  • Patent Document 1 proposes a dielectric material containing a PbO—B 2 O 3 —SiO 2 based lead glass powder as shown in Patent Document 1 to satisfy the above required characteristics.
  • Patent Document 2 proposes a dielectric material containing ZnO—B 2 O 3 —SiO 2 based lead-free glass powder as a dielectric material not containing PbO.
  • An object of the present invention is to provide a dielectric material for a plasma display panel capable of obtaining a dielectric layer having a high transmittance and a low dielectric constant, and a dielectric layer having a high transmittance and a low dielectric constant. It is to provide a glass plate for a plasma display panel.
  • the dielectric material for a plasma display panel of the present invention is substantially free of PbO and has a mole percentage of B 2 O 3 of 26 to 45%, SiO 2 of more than 42 to 57%, Al 2 O 3 of 1 to 8%, Contains Na 2 O 0-10%, K 2 O 1-15% (however, Na 2 O + K 2 O 4-20%), ZnO 0-5%, and CuO + MoO 3 + CeO 2 + MnO 2 + CoO 0-6% Made of glass powder.
  • the glass plate for a plasma display panel according to the present invention includes a dielectric layer formed of the dielectric material for a plasma display panel according to the present invention.
  • a dielectric material for a plasma display panel capable of obtaining a dielectric layer having a high transmittance and a low dielectric constant, and a dielectric layer having a high transmittance and a low dielectric constant are provided.
  • a glass plate for a plasma display panel can be provided.
  • the dielectric material for the plasma display panel includes a glass powder having a basic composition of B 2 O 3 —SiO 2 based lead-free glass that easily obtains a low dielectric constant.
  • the dielectric material for the plasma display panel is substantially free of PbO and has a molar percentage of B 2 O 3 of 26 to 45%, SiO 2 of more than 42 to 57%, Al 2 O 3 of 1 to 8%, and Na 2 O.
  • “more than SiO 2 42 to 57%” means that SiO 2 is more than 42 mol% and not more than 57 mol%.
  • the dielectric material for the plasma display panel has a mole percentage, the content of Na 2 O + K 2 O in the glass powder is 5 to 20%, and the content of ZnO is less than 0 to 1%.
  • the phrase “ZnO content is 0 to less than 1%” means that the ZnO content is 0% or more and less than 1%.
  • the dielectric material for plasma display panel has a mole percentage
  • the content of Na 2 O in the glass powder is 0 to 3%
  • the content of K 2 O is 1 to 10%
  • Na 2 O + K 2 It is preferable that the O content is 4 to 10% and the ZnO content is 1 to 5%.
  • B 2 O 3 is a component that forms a glass skeleton.
  • the content of B 2 O 3 is 26 to 45 mol%.
  • the dielectric constant of the glass tends to increase.
  • the softening point of the glass tends to increase. Therefore, the dielectric material for the plasma display panel is difficult to be fired at a low temperature.
  • the weather resistance of the glass tends to decrease. Therefore, when the content of B 2 O 3 is too large, glass will be altered glass in the middle of processing the powder, it is difficult to manufacture a high-quality plasma display panel dielectric glass powder.
  • the content of B 2 O 3 is preferably 29 to 40 mol%, more preferably 30 to less than 38 mol% (30 mol% or more and less than 38 mol%).
  • SiO 2 is a component that forms a glass skeleton and lowers the dielectric constant.
  • the content of SiO 2 is more than 42 to 57 mol% (more than 42 mol% and not more than 57 mol%).
  • the content of SiO 2 decreases, the dielectric constant of the glass tends to increase.
  • the content of SiO 2 increases, the softening point of the glass tends to increase. Therefore, the dielectric material for the plasma display panel is difficult to be fired at a low temperature. Further, there is a case where the content of SiO 2 is the increased thermal expansion coefficient of the glass becomes too low.
  • the content of SiO 2 is preferably 42.5 to 56 mol%, and more preferably 43 to 55 mol%.
  • the molar ratio of B 2 O 3 to SiO 2 (B 2 O 3 / SiO 2 ) is preferably in the range of 0.55 to 0.80. If B 2 O 3 / SiO 2 becomes too small, the strength of the dielectric layer tends to decrease. On the other hand, when B 2 O 3 / SiO 2 becomes too large, the weather resistance of the glass tends to decrease.
  • B 2 O 3 / SiO 2 is more preferably 0.60 to 0.80, and further preferably 0.67 to 0.80.
  • Al 2 O 3 is a component that improves the weather resistance of the glass, stabilizes the glass, and suppresses the phase separation of the glass during firing.
  • the content of Al 2 O 3 is 1 to 8 mol%. When the content of Al 2 O 3 decreases, the weather resistance of the glass may be reduced. Further, when the content of Al 2 O 3 is reduced, glass is likely to be phase-separated in a firing step or the like, and thus it is difficult to obtain a dielectric layer having high transmittance. Further, even if the content of Al 2 O 3 increases, the glass is likely to be phase-divided in the firing step and the like, and it becomes difficult to obtain a dielectric layer having high transmittance.
  • the content of Al 2 O 3 is preferably 1.0 to 7.4 mol%, more preferably 1.0 to 6.8 mol%, and 1.0 to 6.0 mol%. More preferably, it is 1.4 to 5.4 mol%.
  • Na 2 O is a component that lowers the softening point of the glass and adjusts the thermal expansion coefficient.
  • the content of Na 2 O is 0 to 10 mol%.
  • the content ratio of Na 2 O increases, for example, when the dielectric material is baked on the electrode containing Ag, the dielectric material and Ag easily react. Accordingly, the formed dielectric layer is easily colored.
  • Na 2 O content is increased, there is a case where the thermal expansion coefficient of the glass becomes too large.
  • the content of Na 2 O is preferably 0 to 8 mol%, and more preferably 0 to 6 mol%.
  • the ZnO content is 1 mol% or more and the Na 2 O content is 0 to 3 mol%.
  • the content of Na 2 O is more preferably 0-1 mol%. More preferably, the content of Na 2 O is not substantially contained. By doing so, the phase separation of the glass can be more effectively suppressed at the time of firing the dielectric material for the plasma display panel without increasing the softening point and the dielectric constant of the glass.
  • the ZnO content is preferably 5 mol% or less.
  • the content of K 2 O is preferably 1 to 10 mol%.
  • the total amount of Na 2 O + K 2 O is preferably 4 to 10 mol%.
  • K 2 O is a component that lowers the softening point of the glass and adjusts the thermal expansion coefficient.
  • the content of K 2 O is 1 to 15 mol%.
  • the content of K 2 O is decreased, the softening point of the glass is increased, and firing at a low temperature may be difficult.
  • the content of K 2 O increases, for example, when the dielectric material is baked on the electrode containing Ag, the dielectric material and Ag are likely to react. Accordingly, the formed dielectric layer is easily colored. Further, when the K 2 O content is increased, there is a case where the thermal expansion coefficient of the glass becomes too large.
  • the content of K 2 O is preferably 1 to 14 mol%, and more preferably 4 to 12 mol%.
  • ZnO is preferably contained in an amount of 1 mol% or more, and the content of K 2 O is preferably 1 to 10 mol%. In this case, the content of K 2 O is more preferably 4 to 10 mol%, and further preferably 4 to 9 mol%. By doing so, it is possible to make phase separation difficult during firing without increasing the softening point and dielectric constant of the glass.
  • the total amount of Na 2 O and K 2 O is 4 to 20 mol%.
  • the total amount of Na 2 O and K 2 O decreases, the softening point of the glass rises and it becomes difficult to fire at low temperatures.
  • the total amount of Na 2 O and K 2 O increases, when the dielectric material is baked on the electrode containing Ag, the dielectric material and Ag easily react. Accordingly, the formed dielectric layer is easily colored.
  • the thermal expansion coefficient of the glass may become too large.
  • the stability of the glass tends to decrease and phase separation tends to occur.
  • the total amount of Na 2 O and K 2 O is preferably 4 to 18 mol%, and more preferably 5 to 15 mol%.
  • the ZnO content is preferably 0 to less than 1 mol%, and the total amount of Na 2 O and K 2 O is preferably 5 to 20 mol%. In this case, the total amount of Na 2 O and K 2 O is more preferably 7 to 18 mol%, and further preferably 8 to 15 mol%. Further, the content of K 2 O is more preferably 4 to 9 mol%. By doing so, the raise of the softening point and dielectric constant of glass can be suppressed.
  • ZnO is preferably contained in an amount of 1 mol% or more, and the total amount of Na 2 O and K 2 O is preferably 4 to 10 mol%. In this case, the total amount of Na 2 O and K 2 O is more preferably 4 to 9 mol%, and further preferably 5 to 9 mol%.
  • the total amount of CuO, MoO 3 , CeO 2 , MnO 2 and CoO is preferably 0 to 6 mol%.
  • a dielectric layer formed by a reaction between a dielectric material and Ag when a dielectric layer is formed on an Ag electrode (in this specification, “Ag electrode” means an electrode containing Ag). The coloring of can be suppressed.
  • the total amount of CuO, MoO 3 , CeO 2 , MnO 2 and CoO is increased, the dielectric layer is likely to be colored by these components.
  • the total amount of CuO, MoO 3 , CeO 2 , MnO 2 and CoO is preferably 0.005 to 5 mol%, and more preferably 0.005 to 3 mol%.
  • the CuO content is preferably 0.01 to 3.0 mol%, and more preferably 0.02 to 2.5 mol%.
  • Each content of MoO 3 , CeO 2 , MnO 2 and CoO is preferably 0 to 5 mol%, more preferably 0.01 to 3 mol%. More preferably, the CuO content is 0.005 to 0.20 mol%, and the total amount of CuO, MoO 3 , CeO 2 , MnO 2 and CoO is 0.005 to 6 mol%. By doing so, the unevenness of the coloring degree of the dielectric layer when the dielectric layer is formed on the Ag electrode can be reduced.
  • B 2 O 3 / (Na 2 O + K 2 O) becomes too large, the stability of the glass is lowered, and the glass tends to be phase-separated when firing the dielectric material for the plasma display panel.
  • B 2 O 3 / (Na 2 O + K 2 O) becomes too large, the softening point of the glass tends to increase, and the dielectric material for the plasma display panel is difficult to be fired at a low temperature.
  • B 2 O 3 / (Na 2 O + K 2 O) is more preferably 3.3 to 5.1, still more preferably 3.3 to 4.9, and 3.4 to 4.8. Even more preferably.
  • ZnO is a component that lowers the softening point of the glass and stabilizes the glass.
  • the content of ZnO is 0 to 5 mol%. When the ZnO content increases, the dielectric constant of the glass tends to increase.
  • the total amount of Na 2 O and K 2 O is set to 5 to 20 mol%, and ZnO
  • the content of is preferably 0 to less than 1 mol%.
  • the content of ZnO is more preferably 0 to 0.9 mol%, and further preferably 0.1 to 0.7 mol%.
  • Na 2 O and K 2 O The total amount is preferably 4 to 10 mol%, and the ZnO content is preferably 1 to 5 mol%. In this case, the ZnO content is more preferably 1 to 4 mol%, and further preferably 2 to 4 mol%.
  • the dielectric material for a plasma display panel may contain various components in addition to the above components as long as required characteristics are not impaired.
  • the dielectric material for a plasma display panel may contain, for example, at least one of MgO, CaO, SrO, BaO, and TiO 2 that are components for adjusting the thermal expansion coefficient in a total amount of up to 15 mol%.
  • the dielectric material for a plasma display panel may contain, for example, at least one of Cs 2 O, Rb 2 O, and the like, which are components that lower the softening point of glass, up to 10 mol%.
  • the dielectric material for the plasma display panel is, for example, ZrO 2 , Y 2 O 3 , La 2 O 3 , Ta 2 O 5 , which is a component that stabilizes glass or improves water resistance and acid resistance.
  • At least one of SnO 2 , WO 3 , Nb 2 O 5 , Sb 2 O 5 , P 2 O 5 and the like may be contained up to 10 mol% in total.
  • the content of P 2 O 5 is preferably 5 mol% or less. When the content of P 2 O 5 is too large, the light transmittance of the dielectric layer formed by firing the dielectric material may be lowered.
  • Bi 2 O 3 is a component that lowers the softening point of the glass, but is a component that increases the dielectric constant of the glass and increases the cost. Therefore, it is preferable that the content of Bi 2 O 3 is not more than 5 mol%, and more preferably substantially zero.
  • the dielectric material does not substantially contain PbO because it is an environmental load substance.
  • substantially not containing means a level that is not actively used as a raw material but mixed as an impurity, and specifically means that the content is 0.1 mol% or less. To do.
  • the average particle diameter D 50 of the dielectric material for a plasma display panel is 3.0 ⁇ m or less.
  • the maximum particle diameter Dmax of the dielectric material for a plasma display panel is preferably 20 ⁇ m or less. If the particle size of the dielectric material for the plasma display panel is too large, bubbles tend to remain in the dielectric film obtained by firing. Therefore, it is difficult to obtain a dielectric layer having a stable withstand voltage.
  • the dielectric material for plasma display panel may contain ceramic powder in addition to the above glass powder in order to adjust the thermal expansion coefficient, strength after firing, and appearance.
  • the ceramic powder is preferably at least one of alumina, zirconia, zircon, titania, cordierite, mullite, silica, willemite, tin oxide and zinc oxide, for example.
  • the ceramic powder is preferably spherical.
  • the light transmittance of the dielectric layer formed by baking the dielectric material can be increased.
  • the spherical shape means that there is no angular portion on the particle surface and the radius of the whole surface is within ⁇ 20% from the particle center in the state observation with a photograph.
  • the content of the ceramic powder in the dielectric material is preferably 0 to 20% by mass, and more preferably 0 to 10% by mass.
  • the content of the ceramic powder in the dielectric material is preferably 0 to 50% by mass, more preferably 5 to 40% by mass, More preferably, it is 10 to 40% by mass.
  • the average particle size of the ceramic powder is preferably 5.0 ⁇ m or less.
  • the maximum particle size of the ceramic powder is preferably 20 ⁇ m or less. If the particle size of the ceramic powder is too large, the denseness of the dielectric layer formed by firing may be reduced.
  • the dielectric material for the plasma display panel can be used in any application of the transparent dielectric layer for the front glass substrate or the address electrode protective dielectric layer for the rear glass substrate.
  • the dielectric material for the plasma display panel should be used as a material for any one of the dielectric layers on the electrode side and the dielectric layer on the opposite side of the electrode of the two or more dielectric layers. Is possible.
  • the glass plate for a plasma display panel according to the present invention includes a dielectric layer formed of the dielectric material for a plasma display panel according to the present invention. For this reason, in the glass plate for plasma display panels which concerns on this invention, the light transmittance of a dielectric material layer is high, and a dielectric constant is low.
  • the glass plate for a plasma display panel may further include a glass substrate and an electrode formed on the glass substrate and containing Ag, and a dielectric layer formed on the electrode. But in this invention, the electrode does not need to contain Ag.
  • the glass plate for the plasma display panel may be a front glass plate.
  • the dielectric material for a plasma display panel of the present invention can be used in the form of, for example, a paste or a green sheet.
  • the paste can be produced by adding a thermoplastic resin, a plasticizer, a solvent, or the like to the dielectric material for the plasma display panel. Note that the ratio of the dielectric material in the entire paste is generally about 30 to 90% by mass.
  • the thermoplastic resin is a component that increases the film strength after drying and imparts flexibility.
  • the content of the thermoplastic resin in the paste is generally about 0.1 to 20% by mass.
  • thermoplastic resin polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate, ethyl cellulose, or a mixture of two or more thereof can be used.
  • the plasticizer is a component that controls the drying speed and imparts flexibility to the dry film.
  • the content of the plasticizer is generally about 0 to 10% by mass.
  • the plasticizer butylbenzyl phthalate, dioctyl phthalate, diisooctyl phthalate, dicapryl phthalate, dibutyl phthalate, or a mixture of two or more thereof can be used.
  • Solvent is a material for pasting the material.
  • the content of the solvent is generally about 10 to 35% by mass.
  • the solvent for example, terpineol, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate or the like can be used alone or in combination.
  • Preparation of the paste can be performed by preparing the above dielectric material, thermoplastic resin, plasticizer, solvent and the like and kneading them at a predetermined ratio.
  • a paste is applied onto a glass substrate or the like on which an electrode is formed using a screen printing method, a batch coating method, or the like, and a predetermined film is formed. After forming a thick coating layer, it is dried. Thereafter, by holding and baking at a temperature of 500 to 600 ° C. for 5 to 20 minutes, a predetermined dielectric layer can be obtained. If the firing temperature is too low or the holding time is too short, sufficient sintering cannot be performed, making it difficult to form a dense dielectric layer. On the other hand, if the firing temperature is too high or the holding time is long, the glass substrate is deformed or the dielectric layer is liable to be discolored by reaction with the electrodes.
  • a laminate of two or more dielectric layers can be formed, for example, in the following manner. First, a lower layer dielectric forming paste is applied on a glass substrate or the like on which electrodes have been formed in advance by a screen printing method, a batch coating method or the like, dried, and then fired in the same manner as described above. Subsequently, an upper-layer dielectric forming paste is applied thereon by screen printing or a batch coating method and dried. Thereafter, the dielectric layer laminate can be obtained by firing in the same manner as described above.
  • the green sheet may be formed using a material obtained by adding a thermoplastic resin, a plasticizer, or the like to the plasma display panel dielectric material. it can.
  • the proportion of the dielectric material in the green sheet is generally about 60 to 80% by mass.
  • thermoplastic resin and the plasticizer the same thermoplastic resin and plasticizer as those used in the preparation of the paste can be used.
  • the mixing ratio of the thermoplastic resin is generally about 5 to 30% by mass.
  • the mixing ratio of the plasticizer is generally about 0 to 10% by mass.
  • the green sheet can be formed by forming a slurry containing a dielectric material on a polyethylene terephthalate film or the like by a doctor blade method or the like and drying it.
  • a solvent such as toluene or isopropyl alcohol can be used.
  • a method of forming a dielectric layer using a green sheet there is a method in which a green sheet is placed on a glass substrate or the like on which an electrode is formed, and a coating layer is formed by thermocompression and then fired.
  • a laminate of two or more dielectric layers can be formed, for example, in the following manner.
  • a lower dielectric layer forming green sheet is thermocompression-bonded on a glass substrate or the like on which an electrode has been formed in advance to form a lower dielectric layer and fired.
  • a dielectric layer stack can be formed by thermocompression bonding and firing an upper dielectric forming green sheet thereon.
  • the subsequent dielectric layer by firing at a temperature in the range of about ⁇ 20 ° C. of the firing temperature of the dielectric layer formed by firing first. By doing so, coloring of the dielectric layer due to reaction between the dielectric layer and the electrode, generation of bubbles, and the like can be suppressed.
  • a part of the dielectric layers may be formed using a paste, and the remaining dielectric layers may be formed using a green sheet.
  • raw materials were prepared so as to have glass compositions shown in mol% in Tables 1 to 4 below, and mixed uniformly to obtain batches.
  • the batch was then placed in a platinum crucible and melted at 1350 ° C. for 2 hours. Thereafter, a part of the molten glass was poured out on the carbon plate, formed into a plate shape, and gradually cooled.
  • the obtained glass lump was cut and polished using a # 600 abrasive to obtain a glass sample having a size of 10 mm ⁇ 10 mm ⁇ 5 mm. The weather resistance was evaluated using the glass sample.
  • the remaining molten glass was formed into a thin plate shape. Subsequently, they were pulverized in a ball mill, the average particle diameter D 50 3.0 ⁇ m or less by air classification, the maximum particle diameter D max is obtained the following glass powder sample 20 [mu] m. The glass powder sample was evaluated for softening point, thermal expansion coefficient, and dielectric constant.
  • the above glass powder sample was mixed with a terpineol solution containing 5 mol% of ethyl cellulose and kneaded using a three-roll mill to prepare a paste.
  • this paste was applied on a glass substrate by a screen printing method, dried, held in an electric furnace at 600 ° C. for 10 minutes and baked to form a dielectric layer having a thickness of about 25 ⁇ m.
  • the presence or absence of phase separation was inspected and the transmittance was measured.
  • a dielectric layer of about 25 ⁇ m was formed on the Ag electrode on the glass substrate by the same method as described above. Then, the degree of yellowing of the formed dielectric layer was evaluated.
  • the Ag electrode was formed using H-4040A manufactured by Shoei Chemical Industry Co., Ltd.
  • As the glass substrate PP-8 manufactured by Nippon Electric Glass Co., Ltd. having a thickness of 1.8 mm and 5 cm square was used.
  • Tables 1 to 4 show the evaluation results of Examples (Sample Nos. 1 to 18) and Comparative Examples (Sample Nos. 19 to 21).
  • sample No. 1 to 18 had a small weight loss rate ( ⁇ W) of 0.96 or less.
  • Sample No. The dielectric constants of 1 to 18 were as low as 5.3 or less. Furthermore, sample no. In 1 to 18, almost no phase separation was observed.
  • Sample No. which is a comparative example, is used. 19 and No. In No. 21, the weight reduction rate ( ⁇ W) was as large as 1.14 or more, and the weather resistance of the glass was low. In addition, Sample No. 19 and No. In 21, a phase separation was observed. Sample No. 19 and No. The transmittance of 21 was as low as 51%. Sample No. The dielectric constant of 20 was as high as 6.6.
  • the weather resistance of glass was measured in the following manner. First, the obtained glass sample was washed with water and dried at 120 ° C. for 30 minutes, and then the weight was measured to obtain the weight of the glass sample before the weather resistance evaluation. Next, the glass sample was immersed in pure water at 60 ° C. for 1 hour, dried at 120 ° C. for 30 minutes, and then weighed to obtain the weight of the glass sample after the weather resistance evaluation. And the weather resistance of glass was evaluated by calculating
  • the softening point of the glass was measured by using a macro type differential thermal analyzer, and obtained by calculating the temperature of the fourth inflection point.
  • the thermal expansion coefficient of glass was measured in the following manner. First, each glass powder sample was press-molded. Next, after baking at 600 ° C. for 10 minutes, it was polished into a cylindrical shape having a diameter of 4 mm and a length of 20 mm. Then, using the obtained sample, the thermal expansion coefficient in a temperature range of 30 to 300 ° C. was measured based on JIS R3102.
  • the thermal expansion coefficient of the glass substrate used for the plasma display panel is generally about 83 ⁇ 10 ⁇ 7 / ° C., and the thermal expansion coefficient of the dielectric material is 55 to 80 ⁇ 10 ⁇ 7 / ° C.
  • Dielectric constant was measured based on JIS C2141 using a sample obtained by press molding each sample, firing at 600 ° C. for 10 minutes, and polishing to a 2 mm plate.
  • the dielectric constant means a dielectric constant at 25 ° C. and 1 MHz.
  • the diffuse transmittance at a wavelength of 550 nm was measured using a spectrophotometer equipped with an integrating sphere.
  • the light transmittance was measured using U-4000 manufactured by Shimadzu Corporation.
  • the light transmittance is the light transmittance of only the dielectric layer obtained by subtracting the light transmittance of the glass plate.
  • the color tone of the dielectric layer was evaluated by measuring the b * value using a color difference meter. In addition, it shows that it has changed into yellow, so that b * value becomes large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Glass Compositions (AREA)

Abstract

Disclosed are a dielectric material which is for a plasma display panel and which enables a dielectric layer having high transmittance and a low dielectric constant to be obtained, and a glass plate which is for a plasma display panel and which comprises a dielectric layer having high transmittance and a low dielectric constant. The dielectric material for a plasma display panel contains a glass powder which contains virtually no PbO and contains, by mole percentage, 26-45% B2O3, 42-57% SiO2, 1-8% Al2O3, 0-10% Na2O, 1-15% K2O (wherein Na2O + K2O is 4-20%), 0-5% ZnO, and 0-6% CuO + MoO3 + CeO2 + MnO2 + CoO.

Description

プラズマディスプレイパネル用誘電体材料及びプラズマディスプレイパネル用ガラス板Dielectric material for plasma display panel and glass plate for plasma display panel
 本発明は、プラズマディスプレイパネル用誘電体材料及びプラズマディスプレイパネル用ガラス板に関する。 The present invention relates to a dielectric material for a plasma display panel and a glass plate for the plasma display panel.
 プラズマディスプレイは、自己発光型のフラットパネルディスプレイである。プラズマディスプレイパネルは、軽量薄型、高視野角等の優れた特性を備えており、また大画面化が可能である。このため、プラズマディスプレイパネルの市場が急速に拡大している。 Plasma display is a self-luminous flat panel display. The plasma display panel has excellent characteristics such as light weight and thinness and a high viewing angle, and can have a large screen. For this reason, the market of plasma display panels is rapidly expanding.
 プラズマディスプレイパネルは、前面ガラス基板と背面ガラス基板とを備えている。前面ガラス基板と背面ガラス基板とは、一定の間隔を隔てて対向している。前面ガラス基板と背面ガラス基板との周囲は、封着ガラスで気密封止されている。内部には、Ne、Xe等の希ガスが充填されている。尚、前面ガラス基板の外面側には、前面ガラス基板を保護するための保護板が貼り付けられている。保護板の上にはカラーフィルタが取り付けられている。 The plasma display panel includes a front glass substrate and a back glass substrate. The front glass substrate and the rear glass substrate are opposed to each other with a certain distance. The periphery of the front glass substrate and the back glass substrate is hermetically sealed with sealing glass. The inside is filled with a rare gas such as Ne or Xe. A protective plate for protecting the front glass substrate is attached to the outer surface side of the front glass substrate. A color filter is mounted on the protective plate.
 プラズマディスプレイパネルの前面ガラス基板には、プラズマ放電用の走査電極が形成され、その上には走査電極を保護するために、10~40μm程度の厚みの透明誘電体層が形成されている。 A plasma discharge scan electrode is formed on the front glass substrate of the plasma display panel, and a transparent dielectric layer having a thickness of about 10 to 40 μm is formed thereon to protect the scan electrode.
 また、背面ガラス基板には、プラズマ放電の位置を定めるためのアドレス電極が形成されている。アドレス電極の上には、アドレス電極を保護するために、10~20μm程度の厚みのアドレス電極保護誘電体層が形成されている。アドレス電極保護誘電体層上には、複数の放電用セルを仕切るための隔壁が形成されている。セル内には、赤(R)、緑(G)または青(B)の蛍光体が塗布されている。プラズマディスプレイパネルでは、セルにおいてプラズマ放電を起こして紫外線を発生させることにより、蛍光体が刺激されて発光する。 Also, address electrodes for determining the position of plasma discharge are formed on the rear glass substrate. On the address electrode, an address electrode protective dielectric layer having a thickness of about 10 to 20 μm is formed to protect the address electrode. On the address electrode protection dielectric layer, barrier ribs for partitioning a plurality of discharge cells are formed. A red (R), green (G) or blue (B) phosphor is applied in the cell. In the plasma display panel, the phosphor is stimulated to emit light by generating plasma discharge in the cell and generating ultraviolet rays.
 一般に、プラズマディスプレイパネルの前面ガラス基板や背面ガラス基板には、ソーダライムガラスや高歪点ガラスが使用されている。走査電極やアドレス電極には、安価なAgやCr-Cu-Crが広く用いられている。ガラス基板上に形成された電極の上に誘電体層を形成する方法としては、一般的に、ガラス基板の変形を防止し、電極との反応による特性の劣化を抑えるために、500~600℃程度の温度域で焼成する方法が採られている。それ故、誘電体層を形成するための誘電体材料には、500~600℃程度で焼成でき、しかも、電極と反応しないことが求められている。 Generally, soda lime glass and high strain point glass are used for the front glass substrate and the back glass substrate of the plasma display panel. Inexpensive Ag and Cr—Cu—Cr are widely used for the scan electrode and the address electrode. As a method of forming a dielectric layer on an electrode formed on a glass substrate, in general, in order to prevent deformation of the glass substrate and suppress deterioration of characteristics due to reaction with the electrode, 500 to 600 ° C. A method of firing in a temperature range of about is employed. Therefore, the dielectric material for forming the dielectric layer is required to be able to be fired at about 500 to 600 ° C. and not to react with the electrode.
 また、透明誘電体層においては、上記特性に加え、高い透明性を有することも求められる。このため、透明誘電体層を形成するための誘電体材料には、焼成時に泡が抜けやすいことも求められている。 In addition to the above characteristics, the transparent dielectric layer is also required to have high transparency. For this reason, the dielectric material for forming the transparent dielectric layer is also required to easily remove bubbles during firing.
 従来、上記の要求特性を満たすものとして、特許文献1に示すようなPbO-B-SiO系の鉛ガラス粉末を含む誘電体材料が使用されてきた。しかしながら、近年、環境保護の高まりや環境負荷物質の使用削減の動きから、Pbを含有するガラスの使用が規制されつつある。これに鑑み、例えば、特許文献2には、PbOを含有しない誘電体材料として、ZnO-B-SiO系非鉛ガラス粉末を含む誘電体材料が提案されている。 Conventionally, a dielectric material containing a PbO—B 2 O 3 —SiO 2 based lead glass powder as shown in Patent Document 1 has been used to satisfy the above required characteristics. However, in recent years, the use of glass containing Pb is being regulated due to the increase in environmental protection and the movement to reduce the use of environmentally hazardous substances. In view of this, for example, Patent Document 2 proposes a dielectric material containing ZnO—B 2 O 3 —SiO 2 based lead-free glass powder as a dielectric material not containing PbO.
特開平11-60272号公報Japanese Patent Laid-Open No. 11-60272 特開2008-60064号公報JP 2008-60064 A
 近年、プラズマディスプレイパネルのさらなる高コントラスト化が求められている。これに伴い、誘電体層の光透過率をさらに高くしたいという要望が高まってきている。また、プラズマディスプレイパネルのさらなる低消費電力化も求められるようになってきている。これに伴い、誘電体層の誘電率を低くしたいという要望も高まってきている。 In recent years, there has been a demand for higher contrast in plasma display panels. Accordingly, there is an increasing demand for further increasing the light transmittance of the dielectric layer. Further, further reduction in power consumption of plasma display panels has been demanded. Accordingly, there is an increasing demand for reducing the dielectric constant of the dielectric layer.
 本発明の目的は、高い透過率を有すると共に低い誘電率を有する誘電体層を得ることが可能なプラズマディスプレイパネル用誘電体材料及び高い透過率を有すると共に低い誘電率を有する誘電体層を備えるプラズマディスプレイパネル用ガラス板を提供することである。 An object of the present invention is to provide a dielectric material for a plasma display panel capable of obtaining a dielectric layer having a high transmittance and a low dielectric constant, and a dielectric layer having a high transmittance and a low dielectric constant. It is to provide a glass plate for a plasma display panel.
 本発明のプラズマディスプレイパネル用誘電体材料は、実質的にPbOを含まず、モル百分率で、B 26~45%、SiO 42超~57%、Al 1~8%、NaO 0~10%、KO 1~15%(但し、NaO+KO 4~20%)、ZnO 0~5%、及びCuO+MoO+CeO+MnO+CoO 0~6%を含有するガラス粉末からなる。 The dielectric material for a plasma display panel of the present invention is substantially free of PbO and has a mole percentage of B 2 O 3 of 26 to 45%, SiO 2 of more than 42 to 57%, Al 2 O 3 of 1 to 8%, Contains Na 2 O 0-10%, K 2 O 1-15% (however, Na 2 O + K 2 O 4-20%), ZnO 0-5%, and CuO + MoO 3 + CeO 2 + MnO 2 + CoO 0-6% Made of glass powder.
 また、本発明のプラズマディスプレイパネル用ガラス板は、上記本発明に係るプラズマディスプレイパネル用誘電体材料により形成された誘電体層を備えている。 The glass plate for a plasma display panel according to the present invention includes a dielectric layer formed of the dielectric material for a plasma display panel according to the present invention.
 本発明によれば、高い透過率を有すると共に低い誘電率を有する誘電体層を得ることが可能なプラズマディスプレイパネル用誘電体材料及び高い透過率を有すると共に低い誘電率を有する誘電体層を備えるプラズマディスプレイパネル用ガラス板を提供することができる。 According to the present invention, a dielectric material for a plasma display panel capable of obtaining a dielectric layer having a high transmittance and a low dielectric constant, and a dielectric layer having a high transmittance and a low dielectric constant are provided. A glass plate for a plasma display panel can be provided.
 プラズマディスプレイパネル用誘電体材料は、低い誘電率を得やすいB-SiO系非鉛ガラスを基本組成とするガラス粉末を含む。 The dielectric material for the plasma display panel includes a glass powder having a basic composition of B 2 O 3 —SiO 2 based lead-free glass that easily obtains a low dielectric constant.
 プラズマディスプレイパネル用誘電体材料は、実質的にPbOを含まず、モル百分率で、B 26~45%、SiO 42超~57%、Al 1~8%、NaO 0~10%、KO 1~15%(但し、NaO+KO 4~20%)、ZnO 0~5%、及びCuO+MoO+CeO+MnO+CoO 0~6%を含有するガラス粉末を含む。尚、「SiO 42超~57%」は、SiOが42モル%より多く57モル%以下であることを意味している。 The dielectric material for the plasma display panel is substantially free of PbO and has a molar percentage of B 2 O 3 of 26 to 45%, SiO 2 of more than 42 to 57%, Al 2 O 3 of 1 to 8%, and Na 2 O. A glass powder containing 0-10%, K 2 O 1-15% (however, Na 2 O + K 2 O 4-20%), ZnO 0-5%, and CuO + MoO 3 + CeO 2 + MnO 2 + CoO 0-6% Including. Incidentally, “more than SiO 2 42 to 57%” means that SiO 2 is more than 42 mol% and not more than 57 mol%.
 プラズマディスプレイパネル用誘電体材料は、モル百分率で、ガラス粉末におけるNaO+KOの含有率が5~20%であり、ZnOの含有率が0~1%未満であるものであることが好ましい。なお、「ZnOの含有率が0~1%未満」とは、ZnOの含有率が0%以上1%未満であることを意味する。 It is preferable that the dielectric material for the plasma display panel has a mole percentage, the content of Na 2 O + K 2 O in the glass powder is 5 to 20%, and the content of ZnO is less than 0 to 1%. . The phrase “ZnO content is 0 to less than 1%” means that the ZnO content is 0% or more and less than 1%.
 また、プラズマディスプレイパネル用誘電体材料は、モル百分率で、ガラス粉末におけるNaOの含有率が0~3%であり、KOの含有率が1~10%であり、NaO+KOの含有率が4~10%であり、かつZnOの含有率が1~5%であるものであることが好ましい。 Further, the dielectric material for plasma display panel has a mole percentage, the content of Na 2 O in the glass powder is 0 to 3%, the content of K 2 O is 1 to 10%, and Na 2 O + K 2 It is preferable that the O content is 4 to 10% and the ZnO content is 1 to 5%.
 Bはガラスの骨格を形成する成分である。Bの含有率は、26~45モル%である。Bの含有率が少なくなると、ガラスの誘電率が高くなる傾向にある。一方、Bの含有率が多くなりすぎると、ガラスの軟化点が高くなる傾向にある。従って、プラズマディスプレイパネル用誘電体材料が、低温で焼成し難いものとなる。また、Bの含有率が多くなりすぎると、ガラスの耐候性が低下する傾向にある。このため、Bの含有率が多くなりすぎると、ガラスを粉末状に加工する途中においてガラスが変質してしまい、高品位なプラズマディスプレイパネル用誘電体ガラス粉末の製造が困難となる。また、Bの含有率が多くなりすぎると、ガラスの安定性が低下する傾向にある。このため、Bの含有率が多くなりすぎると、誘電体層を焼成する際にガラスが分相し、高い透過率を有する誘電体層が得難くなる。Bの含有率は、29~40モル%であることが好ましく、30~38モル%未満(30モル%以上38モル%未満)であることがより好ましい。 B 2 O 3 is a component that forms a glass skeleton. The content of B 2 O 3 is 26 to 45 mol%. When the content of B 2 O 3 decreases, the dielectric constant of the glass tends to increase. On the other hand, when the content of B 2 O 3 is too large, the softening point of the glass tends to increase. Therefore, the dielectric material for the plasma display panel is difficult to be fired at a low temperature. Further, if the content of B 2 O 3 is too large, the weather resistance of the glass tends to decrease. Therefore, when the content of B 2 O 3 is too large, glass will be altered glass in the middle of processing the powder, it is difficult to manufacture a high-quality plasma display panel dielectric glass powder. Further, if the content of B 2 O 3 is too large, stability of the glass tends to decrease. Therefore, when the content of B 2 O 3 is too large, the glass phase separation when fired dielectric layer, the dielectric layer having a high transmittance is difficult to obtain. The content of B 2 O 3 is preferably 29 to 40 mol%, more preferably 30 to less than 38 mol% (30 mol% or more and less than 38 mol%).
 SiOは、ガラスの骨格を形成すると共に、誘電率を低下させる成分である。SiOの含有率は、42超~57モル%(42モル%より多く、57モル%以下)である。SiOの含有率が少なくなると、ガラスの誘電率が上昇する傾向にある。一方、SiOの含有率が多くなると、ガラスの軟化点が高くなる傾向にある。従って、プラズマディスプレイパネル用誘電体材料が、低温で焼成し難いものとなる。また、SiOの含有率が多くなると、ガラスの熱膨張係数が小さくなりすぎる場合がある。SiOの含有率は、42.5~56モル%であることが好ましく、43~55モル%であることがより好ましい。 SiO 2 is a component that forms a glass skeleton and lowers the dielectric constant. The content of SiO 2 is more than 42 to 57 mol% (more than 42 mol% and not more than 57 mol%). When the content of SiO 2 decreases, the dielectric constant of the glass tends to increase. On the other hand, when the content of SiO 2 increases, the softening point of the glass tends to increase. Therefore, the dielectric material for the plasma display panel is difficult to be fired at a low temperature. Further, there is a case where the content of SiO 2 is the increased thermal expansion coefficient of the glass becomes too low. The content of SiO 2 is preferably 42.5 to 56 mol%, and more preferably 43 to 55 mol%.
 尚、ガラスの低い誘電率を維持しながら、焼成時におけるガラスの分相を抑えて高い透過率を有する誘電体層を得やすくするために、SiOに対するBのモル比(B/SiO)を0.55~0.80の範囲とすることが好ましい。B/SiOが小さくなりすぎると、誘電体層の強度が低下する傾向にある。一方、B/SiOが大きくなりすぎると、ガラスの耐候性が低下する傾向にある。このため、B/SiOが大きくなりすぎると、ガラスを粉末状に加工する途中においてガラスが変質してしまい、高品位なプラズマディスプレイパネル用誘電体ガラス粉末の製造が困難となる。また、B/SiOが大きくなりすぎると、誘電体層を焼成する際にガラスが分相し、高い透過率を有する誘電体層が得難くなる。B/SiOは0.60~0.80であることがより好ましく、0.67~0.80であることがさらに好ましい。 In order to make it easy to obtain a dielectric layer having a high transmittance by suppressing the phase separation of the glass during firing while maintaining the low dielectric constant of the glass, the molar ratio of B 2 O 3 to SiO 2 (B 2 O 3 / SiO 2 ) is preferably in the range of 0.55 to 0.80. If B 2 O 3 / SiO 2 becomes too small, the strength of the dielectric layer tends to decrease. On the other hand, when B 2 O 3 / SiO 2 becomes too large, the weather resistance of the glass tends to decrease. For this reason, if B 2 O 3 / SiO 2 becomes too large, the glass is altered during the processing of the glass into a powder form, making it difficult to produce a high-quality dielectric glass powder for a plasma display panel. On the other hand, if B 2 O 3 / SiO 2 becomes too large, the glass is phase-divided when the dielectric layer is fired, making it difficult to obtain a dielectric layer having high transmittance. B 2 O 3 / SiO 2 is more preferably 0.60 to 0.80, and further preferably 0.67 to 0.80.
 Alはガラスの耐候性を向上させたり、ガラスを安定化させ、焼成時におけるガラスの分相を抑えたりする成分である。Alの含有率は1~8モル%である。Alの含有率が少なくなると、ガラスの耐候性が低下してしまう場合がある。また、Alの含有率が少なくなると、焼成工程などにおいてガラスが分相しやすくなるため、高い透過率を有する誘電体層が得難くなる。また、Alの含有率が多くなっても、焼成工程などにおいてガラスが分相しやすくなるため、高い透過率を有する誘電体層が得難くなる。Alの含有率は1.0~7.4モル%であることが好ましく、1.0~6.8モル%であることがより好ましく、1.0~6.0モル%であることがさらに好ましく、1.4~5.4モル%であることがなお好ましい。 Al 2 O 3 is a component that improves the weather resistance of the glass, stabilizes the glass, and suppresses the phase separation of the glass during firing. The content of Al 2 O 3 is 1 to 8 mol%. When the content of Al 2 O 3 decreases, the weather resistance of the glass may be reduced. Further, when the content of Al 2 O 3 is reduced, glass is likely to be phase-separated in a firing step or the like, and thus it is difficult to obtain a dielectric layer having high transmittance. Further, even if the content of Al 2 O 3 increases, the glass is likely to be phase-divided in the firing step and the like, and it becomes difficult to obtain a dielectric layer having high transmittance. The content of Al 2 O 3 is preferably 1.0 to 7.4 mol%, more preferably 1.0 to 6.8 mol%, and 1.0 to 6.0 mol%. More preferably, it is 1.4 to 5.4 mol%.
 NaOはガラスの軟化点を低下させたり、熱膨張係数を調整したりする成分である。NaOの含有率は0~10モル%である。NaOの含有率が多くなると、例えば、Agを含む電極の上で誘電体材料の焼成を行う場合に、誘電体材料とAgとが反応しやすくなる。従って、形成される誘電体層が着色しやすくなる。また、NaOの含有率が多くなると、ガラスの熱膨張係数が大きくなりすぎる場合がある。さらに、NaOの含有率が多くなると、ガラスの安定性が低下し、分相しやすくなる傾向にある。NaOの含有率は、0~8モル%であることが好ましく、0~6モル%であることがより好ましい。 Na 2 O is a component that lowers the softening point of the glass and adjusts the thermal expansion coefficient. The content of Na 2 O is 0 to 10 mol%. When the content ratio of Na 2 O increases, for example, when the dielectric material is baked on the electrode containing Ag, the dielectric material and Ag easily react. Accordingly, the formed dielectric layer is easily colored. Also, if Na 2 O content is increased, there is a case where the thermal expansion coefficient of the glass becomes too large. Furthermore, when the content of Na 2 O increases, the stability of the glass tends to decrease and phase separation tends to occur. The content of Na 2 O is preferably 0 to 8 mol%, and more preferably 0 to 6 mol%.
 また、ZnOの含有率を1モル%以上とすると共に、NaOの含有率を0~3モル%にすることが好ましい。この場合、NaOの含有率は、0~1モル%にすることがより好ましい。NaOの含有率を実質的に含有しないことがさらに好ましい。そうすることにより、ガラスの軟化点と誘電率を上昇させることなく、プラズマディスプレイパネル用誘電体材料の焼成時においてガラスの分相をより効果的に抑制することができる。また、この場合は、ZnOの含有率が5モル%以下であることが好ましい。KOの含有率が1~10モル%であることが好ましい。NaO+KOの合量が4~10モル%であることが好ましい。 Further, it is preferable that the ZnO content is 1 mol% or more and the Na 2 O content is 0 to 3 mol%. In this case, the content of Na 2 O is more preferably 0-1 mol%. More preferably, the content of Na 2 O is not substantially contained. By doing so, the phase separation of the glass can be more effectively suppressed at the time of firing the dielectric material for the plasma display panel without increasing the softening point and the dielectric constant of the glass. In this case, the ZnO content is preferably 5 mol% or less. The content of K 2 O is preferably 1 to 10 mol%. The total amount of Na 2 O + K 2 O is preferably 4 to 10 mol%.
 KOはガラスの軟化点を低下させたり、熱膨張係数を調整したりする成分である。KOの含有率は、1~15モル%である。KOの含有率が少なくなると、ガラスの軟化点が上昇して、低温での焼成が難しくなる場合がある。一方、KOの含有率が多くなると、例えば、Agを含む電極の上で誘電体材料の焼成を行う場合に、誘電体材料とAgとが反応しやすくなる。従って、形成される誘電体層が着色しやすくなる。また、KOの含有率が多くなると、ガラスの熱膨張係数が大きくなりすぎる場合がある。さらに、KOの含有率が多くなると、ガラスの安定性が低下し、プラズマディスプレイパネル用誘電体材料の焼成時にガラスが分相しやすくなる傾向にある。KOの含有率は、1~14モル%であることが好ましく、4~12モル%であることがより好ましい。 K 2 O is a component that lowers the softening point of the glass and adjusts the thermal expansion coefficient. The content of K 2 O is 1 to 15 mol%. When the content of K 2 O is decreased, the softening point of the glass is increased, and firing at a low temperature may be difficult. On the other hand, when the content of K 2 O increases, for example, when the dielectric material is baked on the electrode containing Ag, the dielectric material and Ag are likely to react. Accordingly, the formed dielectric layer is easily colored. Further, when the K 2 O content is increased, there is a case where the thermal expansion coefficient of the glass becomes too large. Furthermore, when the content of K 2 O increases, the stability of the glass decreases, and the glass tends to phase-separate when firing the dielectric material for the plasma display panel. The content of K 2 O is preferably 1 to 14 mol%, and more preferably 4 to 12 mol%.
 また、ZnOを1モル%以上含有させると共に、KOの含有率を1~10モル%にすることが好ましい。この場合、KOの含有率は、4~10モル%であることがより好ましく、4~9モル%であることがさらに好ましい。そうすることにより、ガラスの軟化点と誘電率を上昇させることなく、焼成時において分相し難くすることができる。 Further, ZnO is preferably contained in an amount of 1 mol% or more, and the content of K 2 O is preferably 1 to 10 mol%. In this case, the content of K 2 O is more preferably 4 to 10 mol%, and further preferably 4 to 9 mol%. By doing so, it is possible to make phase separation difficult during firing without increasing the softening point and dielectric constant of the glass.
 NaO及びKOの合量は、4~20モル%である。NaO及びKOの合量が少なくなると、ガラスの軟化点が上昇して、低温で焼成し難くなる。一方、NaO及びKOの合量が多くなると、Agを含む電極の上で誘電体材料の焼成を行う場合に、誘電体材料とAgとが反応しやすくなる。従って、形成される誘電体層が着色しやすくなる。また、NaO及びKOの合量が多くなると、ガラスの熱膨張係数が大きくなりすぎる場合がある。さらに、NaO及びKOの合量が多くなると、ガラスの安定性が低下し、分相しやすくなる傾向にある。NaO及びKOの合量は4~18モル%であることが好ましく、5~15モル%であることがより好ましい。 The total amount of Na 2 O and K 2 O is 4 to 20 mol%. When the total amount of Na 2 O and K 2 O decreases, the softening point of the glass rises and it becomes difficult to fire at low temperatures. On the other hand, when the total amount of Na 2 O and K 2 O increases, when the dielectric material is baked on the electrode containing Ag, the dielectric material and Ag easily react. Accordingly, the formed dielectric layer is easily colored. Moreover, when the total amount of Na 2 O and K 2 O increases, the thermal expansion coefficient of the glass may become too large. Furthermore, when the total amount of Na 2 O and K 2 O increases, the stability of the glass tends to decrease and phase separation tends to occur. The total amount of Na 2 O and K 2 O is preferably 4 to 18 mol%, and more preferably 5 to 15 mol%.
 また、ZnOの含有率を0~1モル%未満とすると共に、NaO及びKOの合量を5~20モル%にすることが好ましい。この場合、NaO及びKOの合量は、7~18モル%であることがより好ましく、8~15モル%であることがさらに好ましい。また、KOの含有率を4~9モル%とすることがなお好ましい。そうすることにより、ガラスの軟化点と誘電率の上昇を抑えることができる。 In addition, the ZnO content is preferably 0 to less than 1 mol%, and the total amount of Na 2 O and K 2 O is preferably 5 to 20 mol%. In this case, the total amount of Na 2 O and K 2 O is more preferably 7 to 18 mol%, and further preferably 8 to 15 mol%. Further, the content of K 2 O is more preferably 4 to 9 mol%. By doing so, the raise of the softening point and dielectric constant of glass can be suppressed.
 また、ZnOを1モル%以上含有させると共に、NaO及びKOの合量を4~10モル%にすることが好ましい。この場合、NaO及びKOの合量は、4~9モル%であることがより好ましく、5~9モル%であることがさらに好ましい。そうすることにより、ガラスの軟化点と誘電率を上昇させることなく、プラズマディスプレイパネル用誘電体材料の焼成時におけるガラスの分相をより効果的に抑制することができる。 Further, ZnO is preferably contained in an amount of 1 mol% or more, and the total amount of Na 2 O and K 2 O is preferably 4 to 10 mol%. In this case, the total amount of Na 2 O and K 2 O is more preferably 4 to 9 mol%, and further preferably 5 to 9 mol%. By doing so, the phase separation of the glass during firing of the dielectric material for the plasma display panel can be more effectively suppressed without increasing the softening point and the dielectric constant of the glass.
 CuO、MoO、CeO、MnO及びCoOの合量は、0~6モル%であることが好ましい。この場合、Ag電極(本明細書において、「Ag電極」とは、Agを含む電極を意味する。)上に誘電体層形成する際に誘電体材料とAgとが反応することによる誘電体層の着色を抑制することができる。CuO、MoO、CeO、MnO及びCoOの合量が多くなると、これらの成分による誘電体層の着色が生じやすくなる。CuO、MoO、CeO、MnO及びCoOの合量は、0.005~5モル%であることが好ましく、0.005~3モル%であることがより好ましい。 The total amount of CuO, MoO 3 , CeO 2 , MnO 2 and CoO is preferably 0 to 6 mol%. In this case, a dielectric layer formed by a reaction between a dielectric material and Ag when a dielectric layer is formed on an Ag electrode (in this specification, “Ag electrode” means an electrode containing Ag). The coloring of can be suppressed. When the total amount of CuO, MoO 3 , CeO 2 , MnO 2 and CoO is increased, the dielectric layer is likely to be colored by these components. The total amount of CuO, MoO 3 , CeO 2 , MnO 2 and CoO is preferably 0.005 to 5 mol%, and more preferably 0.005 to 3 mol%.
 尚、CuO、MoO、CeO、MnO及びCoOの少なくともひとつを添加する場合、CuO、MoO、CeO、MnO及びCoOの中でも、CuOを必須成分とすることが好ましい。その場合、Ag電極と誘電体材料との反応性をより低くできるためである。従って、CuOの含有率は、0.01~3.0モル%であることが好ましく、0.02~2.5モル%であることがより好ましい。 Incidentally, CuO, MoO 3, CeO 2 , when adding at least one MnO 2 and CoO, CuO, MoO 3, among CeO 2, MnO 2 and CoO, it is preferable that an essential component CuO. In this case, the reactivity between the Ag electrode and the dielectric material can be further reduced. Therefore, the CuO content is preferably 0.01 to 3.0 mol%, and more preferably 0.02 to 2.5 mol%.
 MoO、CeO、MnO及びCoOのそれぞれの含有率は、0~5モル%であることが好ましく、0.01~3モル%であることがより好ましい。CuOの含有率を0.005~0.20モル%とし、CuO、MoO、CeO、MnO及びCoOの合量を0.005~6モル%とすることがより好ましい。そうすることにより、Ag電極の上に誘電体層を形成する際の誘電体層の着色度合いのむらを小さくすることができる。 Each content of MoO 3 , CeO 2 , MnO 2 and CoO is preferably 0 to 5 mol%, more preferably 0.01 to 3 mol%. More preferably, the CuO content is 0.005 to 0.20 mol%, and the total amount of CuO, MoO 3 , CeO 2 , MnO 2 and CoO is 0.005 to 6 mol%. By doing so, the unevenness of the coloring degree of the dielectric layer when the dielectric layer is formed on the Ag electrode can be reduced.
 また、Ag電極の上で誘電体材料を焼成することにより誘電体層を形成する場合における誘電体層の着色を抑制し、誘電体層の光透過率を高くする観点からは、(NaO+KO)に対するBのモル比(B/(NaO+KO))を3.3~7.2とすることが好ましい。B/(NaO+KO)が小さくなりすぎると、Ag電極上に誘電体層を形成した場合に誘電体層が着色しやすくなる場合がある。一方、B/(NaO+KO)が大きくなりすぎると、ガラスの安定性が低下し、プラズマディスプレイパネル用誘電体材料の焼成に際してガラスが分相しやすくなる傾向にある。また、B/(NaO+KO)が大きくなりすぎると、ガラスの軟化点が上昇する傾向にあり、プラズマディスプレイパネル用誘電体材料が低温で焼成し難いものとなる。B/(NaO+KO)は、3.3~5.1であることがより好ましく、3.3~4.9であることがさらに好ましく、3.4~4.8であることがなお好ましい。 From the viewpoint of suppressing coloring of the dielectric layer when the dielectric layer is formed by firing the dielectric material on the Ag electrode and increasing the light transmittance of the dielectric layer, (Na 2 O + K it is preferable that the molar ratio of B 2 O 3 with respect to 2 O) (B 2 O 3 / (Na 2 O + K 2 O)) to 3.3 to 7.2. If B 2 O 3 / (Na 2 O + K 2 O) becomes too small, the dielectric layer may be easily colored when the dielectric layer is formed on the Ag electrode. On the other hand, if B 2 O 3 / (Na 2 O + K 2 O) becomes too large, the stability of the glass is lowered, and the glass tends to be phase-separated when firing the dielectric material for the plasma display panel. On the other hand, if B 2 O 3 / (Na 2 O + K 2 O) becomes too large, the softening point of the glass tends to increase, and the dielectric material for the plasma display panel is difficult to be fired at a low temperature. B 2 O 3 / (Na 2 O + K 2 O) is more preferably 3.3 to 5.1, still more preferably 3.3 to 4.9, and 3.4 to 4.8. Even more preferably.
 ZnOはガラスの軟化点を下げると共に、ガラスを安定化させる成分である。ZnOの含有率は、0~5モル%である。ZnOの含有率が多くなると、ガラスの誘電率が上昇する傾向にある。 ZnO is a component that lowers the softening point of the glass and stabilizes the glass. The content of ZnO is 0 to 5 mol%. When the ZnO content increases, the dielectric constant of the glass tends to increase.
 尚、誘電率を上昇させずに、より低い温度で焼成することが可能な誘電体層を得たい場合は、NaO及びKOの合量を5~20モル%とすると共に、ZnOの含有率を0~1モル%未満にすることが好ましい。この場合は、ZnOの含有率は、0~0.9モル%であることがより好ましく、0.1~0.7モル%であることがさらに好ましい。 In order to obtain a dielectric layer that can be fired at a lower temperature without increasing the dielectric constant, the total amount of Na 2 O and K 2 O is set to 5 to 20 mol%, and ZnO The content of is preferably 0 to less than 1 mol%. In this case, the content of ZnO is more preferably 0 to 0.9 mol%, and further preferably 0.1 to 0.7 mol%.
 また、誘電率を上昇させずに、プラズマディスプレイパネル用誘電体材料の焼成時におけるガラスの分相を抑えて高い透過率を有する誘電体層を得たい場合は、NaO及びKOの合量を4~10モル%とすると共に、ZnOの含有率を1~5モル%にすることが好ましい。この場合は、ZnOの含有率は、1~4モル%であることがより好ましく、2~4モル%であることがさらに好ましい。 Further, when it is desired to obtain a dielectric layer having a high transmittance by suppressing the phase separation of the glass during the firing of the dielectric material for the plasma display panel without increasing the dielectric constant, Na 2 O and K 2 O The total amount is preferably 4 to 10 mol%, and the ZnO content is preferably 1 to 5 mol%. In this case, the ZnO content is more preferably 1 to 4 mol%, and further preferably 2 to 4 mol%.
 プラズマディスプレイパネル用誘電体材料は、上記成分以外にも、要求される特性を損なわない範囲で種々の成分を含有していてもよい。プラズマディスプレイパネル用誘電体材料は、例えば、熱膨張係数を調整する成分であるMgO、CaO、SrO、BaO及びTiOのうちの少なくともひとつを合量で15モル%まで含有していてもよい。プラズマディスプレイパネル用誘電体材料は、例えば、ガラスの軟化点を低下させる成分であるCsO、RbO等のうちの少なくともひとつを合量で10モル%まで含有していてもよい。プラズマディスプレイパネル用誘電体材料は、例えば、ガラスを安定化させたり、耐水性や耐酸性を向上させたりする成分である、ZrO、Y、La、Ta、SnO、WO、Nb、Sb、P等のうちの少なくともひとつを合量で10モル%まで含有していてもよい。但し、Pの含有量は、5モル%以下であることが好ましい。Pの含有量が多すぎると、誘電体材料を焼成することにより形成される誘電体層の光透過率が低下する場合がある。 The dielectric material for a plasma display panel may contain various components in addition to the above components as long as required characteristics are not impaired. The dielectric material for a plasma display panel may contain, for example, at least one of MgO, CaO, SrO, BaO, and TiO 2 that are components for adjusting the thermal expansion coefficient in a total amount of up to 15 mol%. The dielectric material for a plasma display panel may contain, for example, at least one of Cs 2 O, Rb 2 O, and the like, which are components that lower the softening point of glass, up to 10 mol%. The dielectric material for the plasma display panel is, for example, ZrO 2 , Y 2 O 3 , La 2 O 3 , Ta 2 O 5 , which is a component that stabilizes glass or improves water resistance and acid resistance. At least one of SnO 2 , WO 3 , Nb 2 O 5 , Sb 2 O 5 , P 2 O 5 and the like may be contained up to 10 mol% in total. However, the content of P 2 O 5 is preferably 5 mol% or less. When the content of P 2 O 5 is too large, the light transmittance of the dielectric layer formed by firing the dielectric material may be lowered.
 Biは、ガラスの軟化点を低下させる成分であるが、ガラスの誘電率を大きくしたり、コストを上昇させたりする成分である。このため、Biの含有率は5モル%以下であることが好ましく、実質的にゼロであることがより好ましい。 Bi 2 O 3 is a component that lowers the softening point of the glass, but is a component that increases the dielectric constant of the glass and increases the cost. Therefore, it is preferable that the content of Bi 2 O 3 is not more than 5 mol%, and more preferably substantially zero.
 また、PbOは、ガラスの融点を低下させる成分であるが、環境負荷物質であるため、誘電体材料は、PbOを実質的に含有しないことが好ましい。 Moreover, although PbO is a component that lowers the melting point of glass, it is preferable that the dielectric material does not substantially contain PbO because it is an environmental load substance.
 尚、本発明で言う「実質的に含有しない」とは、積極的に原料として用いず不純物として混入するレベルをいい、具体的には、含有率が0.1モル%以下であることを意味する。 In the present invention, “substantially not containing” means a level that is not actively used as a raw material but mixed as an impurity, and specifically means that the content is 0.1 mol% or less. To do.
 プラズマディスプレイパネル用誘電体材料の平均粒子径D50は3.0μm以下であることが好ましい。プラズマディスプレイパネル用誘電体材料の最大粒子径Dmaxは、20μm以下であることが好ましい。プラズマディスプレイパネル用誘電体材料の粒子径が大きすぎると、焼成することにより得られる誘電体膜内に泡が残存しやすくなる。従って、安定した耐電圧を有する誘電体層が得難くなる。 It is preferable that the average particle diameter D 50 of the dielectric material for a plasma display panel is 3.0μm or less. The maximum particle diameter Dmax of the dielectric material for a plasma display panel is preferably 20 μm or less. If the particle size of the dielectric material for the plasma display panel is too large, bubbles tend to remain in the dielectric film obtained by firing. Therefore, it is difficult to obtain a dielectric layer having a stable withstand voltage.
 プラズマディスプレイパネル用誘電体材料は、熱膨張係数や焼成後の強度及び外観の調節の為に、上記ガラス粉末に加えてセラミック粉末を含有していてもよい。セラミック粉末は、例えば、アルミナ、ジルコニア、ジルコン、チタニア、コージエライト、ムライト、シリカ、ウイレマイト、酸化錫及び酸化亜鉛のうちの少なくとも一種であることが好ましい。 The dielectric material for plasma display panel may contain ceramic powder in addition to the above glass powder in order to adjust the thermal expansion coefficient, strength after firing, and appearance. The ceramic powder is preferably at least one of alumina, zirconia, zircon, titania, cordierite, mullite, silica, willemite, tin oxide and zinc oxide, for example.
 セラミック粉末は、球状であることが好ましい。この場合、誘電体材料を焼成することにより形成される誘電体層の光透過率を高めることができる。なお、球状とは、写真での状態観察において、粒子表面に角張った個所がなく、且つ粒子中心から表面全体の半径が±20%以内であるものをいう。 The ceramic powder is preferably spherical. In this case, the light transmittance of the dielectric layer formed by baking the dielectric material can be increased. In addition, the spherical shape means that there is no angular portion on the particle surface and the radius of the whole surface is within ± 20% from the particle center in the state observation with a photograph.
 また、誘電体層の光透過率を高める観点から、誘電体材料におけるセラミック粉末の含有率は、0~20質量%であることが好ましく、0~10質量%であることがより好ましい。 Also, from the viewpoint of increasing the light transmittance of the dielectric layer, the content of the ceramic powder in the dielectric material is preferably 0 to 20% by mass, and more preferably 0 to 10% by mass.
 また、誘電体層に高い光透過率が要求されない場合は、誘電体材料におけるセラミック粉末の含有率は、0~50質量%であることが好ましく、5~40質量%であることがより好ましく、10~40質量%であることがさらに好ましい。 In the case where high light transmittance is not required for the dielectric layer, the content of the ceramic powder in the dielectric material is preferably 0 to 50% by mass, more preferably 5 to 40% by mass, More preferably, it is 10 to 40% by mass.
 セラミック粉末の平均粒子径は、5.0μm以下であることが好ましい。セラミック粉末の最大粒子径は20μm以下であることが好ましい。セラミック粉末の粒子径が大きすぎると、焼成により形成される誘電体層の緻密性が低下してしまう場合がある。 The average particle size of the ceramic powder is preferably 5.0 μm or less. The maximum particle size of the ceramic powder is preferably 20 μm or less. If the particle size of the ceramic powder is too large, the denseness of the dielectric layer formed by firing may be reduced.
 プラズマディスプレイパネル用誘電体材料は、前面ガラス基板用の透明誘電体層もしくは背面ガラス基板用のアドレス電極保護誘電体層のいずれの用途においても使用することが可能である。また、プラズマディスプレイパネル用誘電体材料は、2層以上の誘電体層のうちの電極側の誘電体層及び電極とは反対側の誘電体層のいずれの誘電体層の材料としても使用することが可能である。 The dielectric material for the plasma display panel can be used in any application of the transparent dielectric layer for the front glass substrate or the address electrode protective dielectric layer for the rear glass substrate. The dielectric material for the plasma display panel should be used as a material for any one of the dielectric layers on the electrode side and the dielectric layer on the opposite side of the electrode of the two or more dielectric layers. Is possible.
 本発明に係るプラズマディスプレイパネル用ガラス板は、上記本発明に係るプラズマディスプレイパネル用誘電体材料により形成された誘電体層を備える。このため、本発明に係るプラズマディスプレイパネル用ガラス板では、誘電体層の光透過率が高く、誘電率が低い。 The glass plate for a plasma display panel according to the present invention includes a dielectric layer formed of the dielectric material for a plasma display panel according to the present invention. For this reason, in the glass plate for plasma display panels which concerns on this invention, the light transmittance of a dielectric material layer is high, and a dielectric constant is low.
 プラズマディスプレイパネル用ガラス板は、ガラス基板と、ガラス基板の上に形成されておりAgを含む電極をさらに有し、誘電体層がその電極の上に形成されたものであってもよい。もっとも、本発明において、電極は、Agを含んでいなくてもよい。 The glass plate for a plasma display panel may further include a glass substrate and an electrode formed on the glass substrate and containing Ag, and a dielectric layer formed on the electrode. But in this invention, the electrode does not need to contain Ag.
 また、プラズマディスプレイパネル用ガラス板は、前面ガラス板であってもよい。 The glass plate for the plasma display panel may be a front glass plate.
 次に、本発明のプラズマディスプレイパネル用誘電体材料の使用方法を説明する。本発明のプラズマディスプレイパネル用誘電体材料は、例えばペーストやグリーンシートなどの形態で使用することができる。 Next, a method of using the dielectric material for the plasma display panel of the present invention will be described. The dielectric material for a plasma display panel of the present invention can be used in the form of, for example, a paste or a green sheet.
 プラズマディスプレイパネル用誘電体材料をペーストの形態で使用する場合、ペーストは、プラズマディスプレイパネル用誘電体材料に対して、熱可塑性樹脂、可塑剤、溶剤等を添加することにより作製することができる。尚、ペースト全体に占める誘電体材料の割合は、30~90質量%程度であることが一般的である。 When the dielectric material for a plasma display panel is used in the form of a paste, the paste can be produced by adding a thermoplastic resin, a plasticizer, a solvent, or the like to the dielectric material for the plasma display panel. Note that the ratio of the dielectric material in the entire paste is generally about 30 to 90% by mass.
 熱可塑性樹脂は、乾燥後の膜強度を高め、また柔軟性を付与する成分である。ペーストにおける熱可塑性樹脂の含有率は、0.1~20質量%程度であることが一般的である。熱可塑性樹脂としては、ポリブチルメタアクリレート、ポリビニルブチラール、ポリメチルメタアクリレート、ポリエチルメタアクリレート、エチルセルロースまたはこれらのうちの2種以上の混合物等が使用可能である。 The thermoplastic resin is a component that increases the film strength after drying and imparts flexibility. The content of the thermoplastic resin in the paste is generally about 0.1 to 20% by mass. As the thermoplastic resin, polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate, ethyl cellulose, or a mixture of two or more thereof can be used.
 可塑剤は、乾燥速度をコントロールすると共に、乾燥膜に柔軟性を与える成分である。可塑剤の含有率は0~10質量%程度であることが一般的である。可塑剤としてはブチルベンジルフタレート、ジオクチルフタレート、ジイソオクチルフタレート、ジカプリルフタレート、ジブチルフタレートまたはこれらのうちの2種以上の混合物等が使用可能である。 The plasticizer is a component that controls the drying speed and imparts flexibility to the dry film. The content of the plasticizer is generally about 0 to 10% by mass. As the plasticizer, butylbenzyl phthalate, dioctyl phthalate, diisooctyl phthalate, dicapryl phthalate, dibutyl phthalate, or a mixture of two or more thereof can be used.
 溶剤は材料をペースト化するための材料である。溶剤の含有率は10~35質量%程度であることが一般的である。溶剤としては、例えばターピネオール、ジエチレングリコールモノブチルエーテルアセテート、2,2,4-トリメチル-1,3-ペンタジオールモノイソブチレート等を単独または混合して使用することができる。 Solvent is a material for pasting the material. The content of the solvent is generally about 10 to 35% by mass. As the solvent, for example, terpineol, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate or the like can be used alone or in combination.
 ペーストの作製は、上記の誘電体材料、熱可塑性樹脂、可塑剤、溶剤等を用意し、これを所定の割合で混練することにより行うことができる。 Preparation of the paste can be performed by preparing the above dielectric material, thermoplastic resin, plasticizer, solvent and the like and kneading them at a predetermined ratio.
 このようなペーストを用いて、誘電体層を形成するには、まず、電極が形成されたガラス基板などの上に、ペーストをスクリーン印刷法や一括コート法等を用いて塗布し、所定の膜厚の塗布層を形成した後、乾燥させる。その後、500~600℃の温度で5~20分間保持し焼成することで所定の誘電体層を得ることができる。尚、焼成温度が低すぎたり、保持時間が短くなりすぎたりすると、十分に焼結が行えず、緻密な誘電体層を形成することが難しくなる。一方、焼成温度が高すぎたり、保持時間が長くなると、ガラス基板が変形したり、電極との反応によって誘電体層が変色しやすくなる。 In order to form a dielectric layer using such a paste, first, a paste is applied onto a glass substrate or the like on which an electrode is formed using a screen printing method, a batch coating method, or the like, and a predetermined film is formed. After forming a thick coating layer, it is dried. Thereafter, by holding and baking at a temperature of 500 to 600 ° C. for 5 to 20 minutes, a predetermined dielectric layer can be obtained. If the firing temperature is too low or the holding time is too short, sufficient sintering cannot be performed, making it difficult to form a dense dielectric layer. On the other hand, if the firing temperature is too high or the holding time is long, the glass substrate is deformed or the dielectric layer is liable to be discolored by reaction with the electrodes.
 2層以上の誘電体層の積層体は、例えば、以下の要領で形成することができる。まず、予め電極が形成されたガラス基板などの上に、下層誘電体形成用ペーストをスクリーン印刷法や一括コート法等によって塗布し、乾燥させた後、上記と同様に焼成する。続いて、その上に上層誘電体形成用ペーストをスクリーン印刷や一括コート法等によって塗布し、乾燥させる。その後、上記と同様に焼成することで誘電体層積層体を得ることができる。 A laminate of two or more dielectric layers can be formed, for example, in the following manner. First, a lower layer dielectric forming paste is applied on a glass substrate or the like on which electrodes have been formed in advance by a screen printing method, a batch coating method or the like, dried, and then fired in the same manner as described above. Subsequently, an upper-layer dielectric forming paste is applied thereon by screen printing or a batch coating method and dried. Thereafter, the dielectric layer laminate can be obtained by firing in the same manner as described above.
 本発明のプラズマディスプレイパネル用誘電体材料をグリーンシートの形態で使用する場合、グリーンシートは、プラズマディスプレイパネル用誘電体材料に熱可塑性樹脂、可塑剤等を添加した材料を用いて形成することができる。グリーンシート中に占める誘電体材料の割合は、60~80質量%程度であることが一般的である。 When the plasma display panel dielectric material of the present invention is used in the form of a green sheet, the green sheet may be formed using a material obtained by adding a thermoplastic resin, a plasticizer, or the like to the plasma display panel dielectric material. it can. The proportion of the dielectric material in the green sheet is generally about 60 to 80% by mass.
 熱可塑性樹脂及び可塑剤としては、上記ペーストの調製の際に用いられるのと同様の熱可塑性樹脂及び可塑剤を用いることがでる。熱可塑性樹脂の混合割合としては、5~30質量%程度であることが一般的である。可塑剤の混合割合としては、0~10質量%程度であることが一般的である。 As the thermoplastic resin and the plasticizer, the same thermoplastic resin and plasticizer as those used in the preparation of the paste can be used. The mixing ratio of the thermoplastic resin is generally about 5 to 30% by mass. The mixing ratio of the plasticizer is generally about 0 to 10% by mass.
 グリーンシートは、誘電体材料を含むスラリーをドクターブレード法などによってポリエチレンテレフタレートフィルム等の上にシート状に形成し、乾燥させることによって形成することができる。スラリーの調整には、トルエンやイソプロピルアルコールなどの溶媒を用いることができる。 The green sheet can be formed by forming a slurry containing a dielectric material on a polyethylene terephthalate film or the like by a doctor blade method or the like and drying it. For adjusting the slurry, a solvent such as toluene or isopropyl alcohol can be used.
 グリーンシートを用いて誘電体層を形成する方法としては、電極が形成されたガラス基板などの上に、グリーンシートを配置し、熱圧着して塗布層を形成した後に焼成する方法が挙げられる。 As a method of forming a dielectric layer using a green sheet, there is a method in which a green sheet is placed on a glass substrate or the like on which an electrode is formed, and a coating layer is formed by thermocompression and then fired.
 2層以上の誘電体層の積層体は、例えば、以下の要領で形成することができる。まず、予め電極が形成されたガラス基板などの上に、下層誘電体形成用グリーンシートを熱圧着して下層誘電体膜を形成し、焼成する。その上に上層誘電体形成用グリーンシートを熱圧着し、焼成することにより誘電体層積層体を形成することができる。 A laminate of two or more dielectric layers can be formed, for example, in the following manner. First, a lower dielectric layer forming green sheet is thermocompression-bonded on a glass substrate or the like on which an electrode has been formed in advance to form a lower dielectric layer and fired. A dielectric layer stack can be formed by thermocompression bonding and firing an upper dielectric forming green sheet thereon.
 誘電体層積層体を形成する場合は、先に焼成により形成する誘電体層の焼成温度の±20℃程度の範囲の温度で後の誘電体層を焼成により形成することが好ましい。そうすることにより、誘電体層と電極との反応による誘電体層の着色や、泡の発生等を抑制することができる。 When the dielectric layer laminate is formed, it is preferable to form the subsequent dielectric layer by firing at a temperature in the range of about ± 20 ° C. of the firing temperature of the dielectric layer formed by firing first. By doing so, coloring of the dielectric layer due to reaction between the dielectric layer and the electrode, generation of bubbles, and the like can be suppressed.
 また、誘電体層積層体を形成する際に、一部の誘電体層をペーストを用いて形成し、残り誘電体層をグリーンシートを用いて形成してもよい。 Further, when forming the dielectric layer laminate, a part of the dielectric layers may be formed using a paste, and the remaining dielectric layers may be formed using a green sheet.
 以下、本発明のプラズマディスプレイ用誘電体材料を実施例に基づいて詳細に説明する。 Hereinafter, the dielectric material for plasma display of the present invention will be described in detail based on examples.
 まず、下記の表1~4にモル%で示すガラス組成となるように原料を調合し、均一に混合し、バッチを得た。次いで、バッチを白金ルツボに入れて1350℃で2時間溶融した。その後、溶融ガラスの一部をカーボン板の上に流し出して板状に成形し、徐冷した。次に、得られたガラス塊を切断し、#600の研磨材を用いて研磨加工することで、10mm×10mm×5mmの大きさのガラス試料を得た。そのガラス試料を用いて耐候性を評価した。 First, raw materials were prepared so as to have glass compositions shown in mol% in Tables 1 to 4 below, and mixed uniformly to obtain batches. The batch was then placed in a platinum crucible and melted at 1350 ° C. for 2 hours. Thereafter, a part of the molten glass was poured out on the carbon plate, formed into a plate shape, and gradually cooled. Next, the obtained glass lump was cut and polished using a # 600 abrasive to obtain a glass sample having a size of 10 mm × 10 mm × 5 mm. The weather resistance was evaluated using the glass sample.
 また、残りの溶融ガラスを薄板状に成形した。続いて、これらをボールミルにて粉砕し、気流分級して平均粒子径D50が3.0μm以下、最大粒子径Dmaxが20μm以下のガラス粉末試料を得た。このガラス粉末試料の軟化点、熱膨張係数及び誘電率を評価した。 The remaining molten glass was formed into a thin plate shape. Subsequently, they were pulverized in a ball mill, the average particle diameter D 50 3.0μm or less by air classification, the maximum particle diameter D max is obtained the following glass powder sample 20 [mu] m. The glass powder sample was evaluated for softening point, thermal expansion coefficient, and dielectric constant.
 次に、上記のガラス粉末試料を、エチルセルロースを5モル%含有するターピネオール溶液と混合し、3本ロールミルを用いて混練してペーストを作製した。次いで、このペーストを、ガラス基板上にスクリーン印刷法で塗布し、乾燥後、電気炉で600℃で10分間保持し焼成することにより厚みが約25μmの誘電体層を形成した。この試料を用いて分相の有無を検査すると共に及び透過率を測定した。 Next, the above glass powder sample was mixed with a terpineol solution containing 5 mol% of ethyl cellulose and kneaded using a three-roll mill to prepare a paste. Next, this paste was applied on a glass substrate by a screen printing method, dried, held in an electric furnace at 600 ° C. for 10 minutes and baked to form a dielectric layer having a thickness of about 25 μm. Using this sample, the presence or absence of phase separation was inspected and the transmittance was measured.
 さらに、上記と同様の方法で、ガラス基板上のAg電極の上に約25μmの誘電体層を形成した。そして、形成された誘電体層の黄変の度合いを評価した。 Furthermore, a dielectric layer of about 25 μm was formed on the Ag electrode on the glass substrate by the same method as described above. Then, the degree of yellowing of the formed dielectric layer was evaluated.
 尚、Ag電極は、昭栄化学工業(株)製のH-4040Aを用いて形成した。ガラス基板には、厚み1.8mm、5cm角の日本電気硝子株式会社製PP-8を用いた。 The Ag electrode was formed using H-4040A manufactured by Shoei Chemical Industry Co., Ltd. As the glass substrate, PP-8 manufactured by Nippon Electric Glass Co., Ltd. having a thickness of 1.8 mm and 5 cm square was used.
 表1~表4に、実施例(試料No.1~18)及び比較例(試料No.19~21)の評価結果を示す。 Tables 1 to 4 show the evaluation results of Examples (Sample Nos. 1 to 18) and Comparative Examples (Sample Nos. 19 to 21).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~4に示す結果から明らかなように、試料No.1~18は、重量減少率(ΔW)が0.96以下と小さかった。また、試料No.1~18は、軟化点が603℃以下であり、600℃以下の温度で十分に焼成できるものであった。また、試料No.1~18の熱膨張係数は56~75×10-7/℃で、通常のプラズマディスプレイパネル用に用いられるガラス基板の熱膨張係数と整合するものであった。また、試料No.1~18の誘電率は5.3以下と低かった。さらに、試料No.1~18では、ほとんど分相は認められなかった。試料No.1~18の波長550nmにおける透過率は81%以上と高かった。また、試料No.1~18では、b*が+5.0以下であり、Ag電極との反応による黄変も殆ど認められなかった。 As is apparent from the results shown in Tables 1 to 4, sample No. 1 to 18 had a small weight loss rate (ΔW) of 0.96 or less. Sample No. Nos. 1 to 18 had a softening point of 603 ° C. or lower and could be sufficiently fired at a temperature of 600 ° C. or lower. Sample No. The thermal expansion coefficient of 1 to 18 was 56 to 75 × 10 −7 / ° C., which was consistent with the thermal expansion coefficient of a glass substrate used for a normal plasma display panel. Sample No. The dielectric constants of 1 to 18 were as low as 5.3 or less. Furthermore, sample no. In 1 to 18, almost no phase separation was observed. Sample No. The transmittance of 1 to 18 at a wavelength of 550 nm was as high as 81% or more. Sample No. For 1 to 18, b * was +5.0 or less, and yellowing due to reaction with the Ag electrode was hardly observed.
 これに対し、比較例である試料No.19及びNo.21では、重量減少率(ΔW)が1.14以上と大きく、ガラスの耐候性は低かった。しかも、試料No.19及びNo.21では、分相が認められた。試料No.19及びNo.21の透過率は51%と低かった。また、試料No.20の誘電率は6.6と高かった。 In contrast, Sample No., which is a comparative example, is used. 19 and No. In No. 21, the weight reduction rate (ΔW) was as large as 1.14 or more, and the weather resistance of the glass was low. In addition, Sample No. 19 and No. In 21, a phase separation was observed. Sample No. 19 and No. The transmittance of 21 was as low as 51%. Sample No. The dielectric constant of 20 was as high as 6.6.
 尚、ガラスの耐候性は、以下の要領で測定した。まず、得られたガラス試料を、水で洗浄し、120℃で30分間乾燥した後、重量を測定し、耐候性評価前のガラス試料の重量とした。次いで、ガラス試料を、60℃の純水に1時間浸漬し、120℃で30分間乾燥し後、重量を測定し、耐候性評価後のガラス試料の重量とした。そして、評価前のガラス試料の重量から評価後のガラス試料の重量を減算することにより、ガラス試料の重量減少率(ΔW)を求めることによってガラスの耐候性を評価した。尚、重量減少率(ΔW)が大きいほど、耐候性が低いことを示す。また、重量減少率(ΔW)が1%より大きくなると、大気中の水分でガラスが変質しやすくなる傾向にあり、粉末ガラスに加工することが難しくなったり、焼成時に、ガラスが分相しやすくなったりする。 In addition, the weather resistance of glass was measured in the following manner. First, the obtained glass sample was washed with water and dried at 120 ° C. for 30 minutes, and then the weight was measured to obtain the weight of the glass sample before the weather resistance evaluation. Next, the glass sample was immersed in pure water at 60 ° C. for 1 hour, dried at 120 ° C. for 30 minutes, and then weighed to obtain the weight of the glass sample after the weather resistance evaluation. And the weather resistance of glass was evaluated by calculating | requiring the weight decreasing rate ((DELTA) W) of a glass sample by subtracting the weight of the glass sample after evaluation from the weight of the glass sample before evaluation. In addition, it shows that a weather resistance is so low that a weight decreasing rate ((DELTA) W) is large. Further, if the weight reduction rate (ΔW) is greater than 1%, the glass tends to be altered by moisture in the atmosphere, making it difficult to process into powdered glass, and the glass tends to separate during firing. It becomes.
 ガラスの軟化点は、マクロ型示差熱分析計を用いて測定し、第四の変曲点の温度を算出することにより求めた。 The softening point of the glass was measured by using a macro type differential thermal analyzer, and obtained by calculating the temperature of the fourth inflection point.
 ガラスの熱膨張係数は、以下の要領で測定した。まず、各ガラス粉末試料をプレス成型した。次に、600℃、10分間焼成した後、直径4mm、長さ20mmの円柱状に研磨加工した。そして、得られたサンプルを用いて、JIS R3102に基づいて30~300℃の温度範囲における熱膨張係数を測定した。尚、プラズマディスプレイパネルに用いられているガラス基板の熱膨張係数は、一般的には、83×10-7/℃程度であり、誘電体材料の熱膨張係数が55~80×10-7/℃であれば、ガラス基板の熱膨張係数と整合しやすく、ガラス基板上に誘電体層を形成しても、焼成時にガラス基板に反りが発生しにくいものとなる。 The thermal expansion coefficient of glass was measured in the following manner. First, each glass powder sample was press-molded. Next, after baking at 600 ° C. for 10 minutes, it was polished into a cylindrical shape having a diameter of 4 mm and a length of 20 mm. Then, using the obtained sample, the thermal expansion coefficient in a temperature range of 30 to 300 ° C. was measured based on JIS R3102. The thermal expansion coefficient of the glass substrate used for the plasma display panel is generally about 83 × 10 −7 / ° C., and the thermal expansion coefficient of the dielectric material is 55 to 80 × 10 −7 / ° C. If it is 0 degreeC, it will become easy to match | combine with the thermal expansion coefficient of a glass substrate, and even if it forms a dielectric material layer on a glass substrate, it will become a thing which does not generate | occur | produce a curvature in a glass substrate at the time of baking.
 誘電率は、各試料をプレス成型し、600℃、10分間焼成した後、2mmの板状体に研磨加工して得られたサンプルを用いて、JIS C2141に基づいて測定した。尚、ここでいう誘電率は、25℃、1MHzにおける誘電率を意味する。 Dielectric constant was measured based on JIS C2141 using a sample obtained by press molding each sample, firing at 600 ° C. for 10 minutes, and polishing to a 2 mm plate. Here, the dielectric constant means a dielectric constant at 25 ° C. and 1 MHz.
 分相の有無については、焼成後の誘電体層の表面を目視で観察し、全く白濁がなく分相が認められなかったものを「◎」、極僅かに白濁し一部分相が認められたもの「○」、白濁が認められ明らかに分相しているものを「×」として評価した。 Regarding the presence or absence of phase separation, the surface of the dielectric layer after firing was visually observed, and “◎” indicates that there was no white turbidity and no phase separation was observed. “○”, and those that were clearly clouded with white turbidity were evaluated as “x”.
 透過率については、波長550nmにおける拡散透過率を、積分球を取り付けた分光光度計を用いて測定した。尚、光透過率の測定は、透過率測定は島津製作所製U-4000を用いて行った。また、光透過率は、ガラス板の光透過率を差し引いた誘電体層のみの光透過率である。 For the transmittance, the diffuse transmittance at a wavelength of 550 nm was measured using a spectrophotometer equipped with an integrating sphere. The light transmittance was measured using U-4000 manufactured by Shimadzu Corporation. The light transmittance is the light transmittance of only the dielectric layer obtained by subtracting the light transmittance of the glass plate.
 黄変の度合いについては、誘電体層の色調を色彩色差計を用いてb*値を測定することにより評価した。尚、b*値が大きくなるほど、黄色に変色していることを示す。 About the degree of yellowing, the color tone of the dielectric layer was evaluated by measuring the b * value using a color difference meter. In addition, it shows that it has changed into yellow, so that b * value becomes large.

Claims (8)

  1.  実質的にPbOを含まず、モル百分率で、
     B 26~45%、
     SiO 42超~57%、
     Al 1~8%、
     NaO 0~10%、
     KO 1~15%(但し、NaO+KO 4~20%)、
     ZnO 0~5%、及び
     CuO+MoO+CeO+MnO+CoO 0~6%
    を含有するガラス粉末を含むプラズマディスプレイパネル用誘電体材料。
    Substantially free of PbO, in mole percentages,
    B 2 O 3 26-45%,
    SiO 2 > 42 to 57%,
    Al 2 O 3 1-8%,
    Na 2 O 0-10%,
    K 2 O 1-15% (however, Na 2 O + K 2 O 4-20%),
    ZnO 0-5%, and CuO + MoO 3 + CeO 2 + MnO 2 + CoO 0-6%
    A dielectric material for a plasma display panel, comprising a glass powder comprising
  2.  モル百分率で、前記ガラス粉末におけるNaO+KOの含有率が5~20%であり、ZnOの含有率が0~1%未満である請求項1に記載のプラズマディスプレイパネル用誘電体材料。 The dielectric material for a plasma display panel according to claim 1, wherein the glass powder has a Na 2 O + K 2 O content of 5 to 20% and a ZnO content of 0 to less than 1%.
  3.  モル百分率で、前記ガラス粉末におけるNaOの含有率が0~3%であり、KOの含有率が1~10%であり、NaO+KOの含有率が4~10%であり、かつZnOの含有率が1~5%の範囲内である請求項1に記載のプラズマディスプレイパネル用誘電体材料。 In mole percentage, the content of Na 2 O in the glass powder is 0 to 3%, the content of K 2 O is 1 to 10%, and the content of Na 2 O + K 2 O is 4 to 10%. The dielectric material for a plasma display panel according to claim 1, wherein the dielectric material is present and the ZnO content is in the range of 1 to 5%.
  4.  前記ガラス粉末におけるSiOに対するBのモル比(B/SiO)が0.55~0.80の範囲内にある請求項1~3の何れかに記載のプラズマディスプレイパネル用誘電体材料。 The plasma display panel according to any one of claims 1 to 3, wherein a molar ratio (B 2 O 3 / SiO 2 ) of B 2 O 3 to SiO 2 in the glass powder is in the range of 0.55 to 0.80. Dielectric material.
  5.  前記ガラス粉末における(NaO+KO)に対するBのモル比(B/(NaO+KO))が3.3~7.2の範囲内にある請求項1~4の何れかに記載のプラズマディスプレイパネル用誘電体材料。 Molar ratio of B 2 O 3 in the glass powder to (Na 2 O + K 2 O ) (B 2 O 3 / (Na 2 O + K 2 O)) is according to claim 1 which is in the range of 3.3 to 7.2 4. The dielectric material for a plasma display panel according to any one of 4 above.
  6.  請求項1~5の何れかに記載の誘電体材料により形成された誘電体層を備えるプラズマディスプレイパネル用ガラス板。 A glass plate for a plasma display panel comprising a dielectric layer formed of the dielectric material according to any one of claims 1 to 5.
  7.  ガラス基板と、前記ガラス基板の上に形成されており、Agを含む電極とをさらに備え、前記誘電体層は、前記電極の上に形成されている請求項6に記載のプラズマディスプレイパネル用ガラス板。 The glass for a plasma display panel according to claim 6, further comprising: a glass substrate; and an electrode containing Ag formed on the glass substrate, wherein the dielectric layer is formed on the electrode. Board.
  8.  前面ガラス基板である請求項6に記載のプラズマディスプレイパネル用ガラス板。 The glass plate for a plasma display panel according to claim 6, which is a front glass substrate.
PCT/JP2010/069719 2010-01-21 2010-11-05 Dielectric material for plasma display panel and glass plate for plasma display panel WO2011089773A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-010585 2010-01-21
JP2010010585 2010-01-21
JP2010148663 2010-06-30
JP2010-148663 2010-06-30
JP2010226166A JP2012033454A (en) 2010-01-21 2010-10-06 Dielectric material for plasma display panel
JP2010-226166 2010-10-06

Publications (1)

Publication Number Publication Date
WO2011089773A1 true WO2011089773A1 (en) 2011-07-28

Family

ID=44306589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069719 WO2011089773A1 (en) 2010-01-21 2010-11-05 Dielectric material for plasma display panel and glass plate for plasma display panel

Country Status (2)

Country Link
JP (1) JP2012033454A (en)
WO (1) WO2011089773A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857368B1 (en) 2012-05-25 2019-01-02 Toray Industries, Inc. Partition paste, method for manufacturing member having partitions, and members having partition
JP2017048061A (en) * 2015-08-31 2017-03-09 日本電気硝子株式会社 Glass paste composition and method for producing film formation glass member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102222A (en) * 2007-10-05 2009-05-14 Asahi Glass Co Ltd Electrode coating non-lead glass and plasma display device
JP2010138001A (en) * 2008-12-09 2010-06-24 Nippon Electric Glass Co Ltd Dielectric material for plasma display panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102222A (en) * 2007-10-05 2009-05-14 Asahi Glass Co Ltd Electrode coating non-lead glass and plasma display device
JP2010138001A (en) * 2008-12-09 2010-06-24 Nippon Electric Glass Co Ltd Dielectric material for plasma display panel

Also Published As

Publication number Publication date
JP2012033454A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP2005041734A (en) Glass for dielectric formation and dielectric formation material for plasma display panel
JP2001052621A (en) Material for plasma display panel and glass powder
JP5370909B2 (en) Dielectric material for plasma display panel
JP4924985B2 (en) Dielectric material for plasma display panel
JP2007126350A (en) Barrier rib forming material for plasma display panel and glass composition for barrier rib forming material
JP2007246382A (en) Dielectric material for plasma display panel
JP2001048577A (en) Material for plasma display panel, and glass powder
JP4725045B2 (en) Lead-free glass, electrode coating glass powder and plasma display device
JP2008150272A (en) Partition wall-forming material for plasma display panel and glass composition for partition wall-forming material
JP2009021205A (en) Dielectric material for plasma display panel
JP2010159198A (en) Dielectric material for plasma display panel
WO2011089773A1 (en) Dielectric material for plasma display panel and glass plate for plasma display panel
JP5343545B2 (en) Dielectric material for plasma display panel
JP2011219334A (en) Dielectric formation glass paste for plasma display panel
JP2001080934A (en) Material for plasma display panel and glass powder
KR101417009B1 (en) Lead-free borosilicate glass frit for forming insulating layer and glass paste thereof
JP4075298B2 (en) Low melting point glass for electrode coating
JP2009102199A (en) Dielectric material for plasma display panel
JP5093761B2 (en) Dielectric material for plasma display panel
JP2007091566A (en) Dielectric material for plasma display panel
JP2009048927A (en) Dielectric material for plasma display panel
JP4161102B2 (en) Dielectric material for plasma display panel
JP4958078B2 (en) A material for a plasma display panel, a method for producing a rear glass substrate for a plasma display panel, and a rear glass substrate for a plasma display panel produced by the method.
JP2012134079A (en) Dielectric forming glass paste for plasma display panel
JP2007112686A (en) Glass for covering electrode and plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843937

Country of ref document: EP

Kind code of ref document: A1