WO2011089638A1 - 容積型膨張機及びこの容積型膨張機を用いた冷凍サイクル装置 - Google Patents

容積型膨張機及びこの容積型膨張機を用いた冷凍サイクル装置 Download PDF

Info

Publication number
WO2011089638A1
WO2011089638A1 PCT/JP2010/000257 JP2010000257W WO2011089638A1 WO 2011089638 A1 WO2011089638 A1 WO 2011089638A1 JP 2010000257 W JP2010000257 W JP 2010000257W WO 2011089638 A1 WO2011089638 A1 WO 2011089638A1
Authority
WO
WIPO (PCT)
Prior art keywords
expander
refrigerant
positive displacement
pressure
scroll
Prior art date
Application number
PCT/JP2010/000257
Other languages
English (en)
French (fr)
Inventor
高山啓輔
島津裕輔
角田昌之
永田英彰
鳩村傑
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/000257 priority Critical patent/WO2011089638A1/ja
Priority to CN201080061816.5A priority patent/CN102713156B/zh
Priority to ES10843804T priority patent/ES2732350T3/es
Priority to EP10843804.5A priority patent/EP2527591B1/en
Priority to JP2011550707A priority patent/JP5414811B2/ja
Priority to US13/518,042 priority patent/US9121278B2/en
Publication of WO2011089638A1 publication Critical patent/WO2011089638A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/24Control of, monitoring of, or safety arrangements for, machines or engines characterised by using valves for controlling pressure or flow rate, e.g. discharge valves
    • F01C20/26Control of, monitoring of, or safety arrangements for, machines or engines characterised by using valves for controlling pressure or flow rate, e.g. discharge valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • F01C1/0223Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C13/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01C13/04Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby for driving pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/06Control of, monitoring of, or safety arrangements for, machines or engines specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant

Definitions

  • the present invention relates to a positive displacement expander capable of recovering power of fluid energy in an expansion process, and a refrigeration cycle apparatus using the positive displacement expander.
  • a compressor having an orbiting scroll that is driven by an electric motor to compress refrigerant, a radiator that dissipates heat of the refrigerant compressed by the compressor, and the refrigerant that has passed through the radiator is decompressed.
  • a refrigeration cycle apparatus including an expander having an oscillating piston and an evaporator for evaporating the refrigerant decompressed by the expander, an expansion process intermediate position in the expansion chamber (the expansion chamber is partitioned by the oscillating piston) One of the chambers) is connected to the outflow position (outlet port side), and when the pressure in the expansion chamber drops excessively, the outflow side fluid can be returned to the expansion chamber to prevent overexpansion
  • Patent Document 1 there is known one that suppresses a decrease in power recovery efficiency
  • a scroll type expander that recovers power by expanding and reducing the refrigerant cooled by a radiator, and a scroll type that is driven by the power recovered by the expander and compresses the refrigerant in an auxiliary manner
  • Auxiliary compressor is provided, and the auxiliary compressor compresses the refrigerant in an auxiliary manner, thereby reducing the load imposed on the main compressor and reducing the power required for the drive motor of the main compressor.
  • control can be performed by determining the position at which the refrigerant in the expansion chamber is opened to a low pressure. For this purpose, a communication path for bypassing the refrigerant to the low pressure side from the middle of the expansion chamber is required.
  • the technical problem of the present invention is to be able to control the stop position of the swing scroll or swing piston of the expander so that the expander can obtain a sufficient driving force when it is restarted.
  • a positive displacement expander includes an expansion mechanism that generates power by fluid energy when a high-pressure fluid supplied to a plurality of expansion chambers partitioned by a swing scroll or a swing piston is expanded and depressurized.
  • the expansion type expander includes a communication passage that communicates each expansion chamber and the discharge side of the expander, the communication passage is provided with an opening / closing device, and the opening / closing device The swing scroll or swing piston is stopped at a predetermined position by opening until the high pressure and low pressure between the compressor and the expander discharge side are equalized.
  • the stop position of the swing scroll or swing piston can be controlled so that the expander can be easily started again. It is possible to prevent the occurrence of a starting failure that the dynamic scroll or the swing piston does not swing.
  • FIG. 1 is a refrigerant circuit diagram during cooling operation of a refrigeration cycle apparatus using a positive displacement expander according to Embodiment 1 of the present invention, for example, an air conditioner.
  • the air conditioner of the present embodiment includes a main compressor 1 that is driven by an electric motor (not shown) and compresses and discharges the refrigerant sucked as shown in FIG. 1, and the internal refrigerant is heated during cooling operation. And an outdoor heat exchanger 4 serving as an evaporator that evaporates the internal refrigerant during heating operation.
  • the expander 8 that decompresses the refrigerant passing through the interior, and the indoor heat exchanger 32 that serves as an evaporator in which the internal refrigerant evaporates during the cooling operation and serves as a radiator that dissipates heat during the heating operation.
  • the drive shaft 52 that recovers the power generated when the refrigerant is decompressed by the expander 8 is connected to the expander 8 and the drive shaft 52 and is driven by the power recovered by the drive shaft 52 to supplement the coolant.
  • a scroll-type auxiliary compressor 2 for compressing is connected to the expander 8 and the drive shaft 52 and is driven by the power recovered by the drive shaft 52 to supplement the coolant.
  • This air conditioner uses carbon dioxide as a refrigerant. Carbon dioxide has a zero ozone depletion coefficient and a low global warming coefficient compared to conventional fluorocarbon refrigerants.
  • a main compressor 1, an auxiliary compressor 2, a first four-way valve 3, a second four-way valve 6, which is a refrigerant flow switching device, an outdoor heat exchanger 4, a bypass valve 5, and a pre-expansion valve 7, the expander 8 and the accumulator 9 are accommodated in the outdoor unit 101.
  • the expansion valve 31 and the indoor heat exchanger 32 are accommodated in the indoor unit 102.
  • a control device 103 that regulates the overall control of the air conditioner is housed in the outdoor unit 101.
  • the number of indoor units 102 (indoor heat exchanger 32) is one, but the number of indoor units 102 (indoor heat exchanger 32) is arbitrary.
  • the outdoor unit 101 and the indoor unit 102 are connected by a liquid pipe 27 and a gas pipe 28.
  • the auxiliary compressor 2 and the expander 8 are accommodated in a container 51.
  • the auxiliary compressor 2 is connected to the expander 8 via the drive shaft 52, and the power generated by the expander 8 is recovered by the drive shaft 52 and transmitted to the auxiliary compressor 2. Therefore, the auxiliary compressor 2 sucks the refrigerant discharged from the main compressor 1 and further compresses it.
  • the refrigerant flow path between the auxiliary compressor 2 and the outdoor heat exchanger 4 and the refrigerant flow path between the indoor heat exchanger 32 and the accumulator 9 are the first four sides that serve as the refrigerant flow switching device. Connected to valve 3.
  • the refrigerant flow path between the outdoor heat exchanger 4 and the expander 8 and the refrigerant flow path between the expander 8 and the expansion valve 31 are connected to the second four-way valve 6.
  • the four-way valve 3 and the four-way valve 6 are configured to switch the flow path corresponding to the operation mode related to air conditioning based on an instruction from the control device 103 and switch the refrigerant path.
  • the refrigerant flows from the auxiliary compressor 2 to the outdoor heat exchanger 4, and the refrigerant flows from the indoor heat exchanger 32 to the accumulator 9. Further, the refrigerant flows from the outdoor heat exchanger 4 through the expander 8 to the indoor heat exchanger 32.
  • the refrigerant flows from the auxiliary compressor 2 to the indoor heat exchanger 32, and the refrigerant flows from the outdoor heat exchanger 4 to the accumulator 9. Further, the refrigerant flows from the indoor heat exchanger 32 through the expander 8 to the outdoor heat exchanger 4.
  • the direction of the refrigerant passing through the expander 3 and the auxiliary compressor 2 is the same regardless of the cooling operation and the heating operation.
  • the outdoor heat exchanger 4 includes, for example, a heat transfer tube through which a refrigerant passes and fins (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the outside air. ).
  • a refrigerant passes and fins (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the outside air.
  • it functions as an evaporator during heating operation, and evaporates the refrigerant to be gasified.
  • it functions as a condenser or a gas cooler (hereinafter referred to as a condenser) during cooling operation.
  • the gas may not be completely gasified or liquefied, but may be in a two-phase mixed state of gas and liquid (gas-liquid two-phase refrigerant).
  • the accumulator 9 functions to store excess refrigerant in the refrigeration cycle circuit and to prevent the main compressor 1 from being damaged by returning a large amount of refrigerant liquid to the main compressor 1.
  • a pre-expansion valve 7 for adjusting the flow rate of the refrigerant passing through the expander 8 is provided.
  • a bypass circuit 25 that bypasses the second four-way valve 6, the pre-expansion valve 7, and the expander 8, and the bypass circuit 25 are provided.
  • a bypass valve 5 for adjusting the flow rate of the refrigerant passing therethrough is provided.
  • the flow rate of the refrigerant passing through the expander 8 can be adjusted to adjust the pressure on the high pressure side, and the refrigeration cycle can be maintained in a highly efficient state.
  • the pressure on the high-pressure side may be adjusted not only by adjusting the bypass valve 5 and the pre-expansion valve 7 but by other methods.
  • a pressure sensor 11 that detects the pressure of the refrigerant entering the expander 8 is provided.
  • a pressure sensor 12 that detects the pressure of the refrigerant discharged from the expander 8 is provided at the outlet of the expander 8. Note that the installation positions of the pressure sensor 11 and the pressure sensor 12 are not limited to the above positions, and may be positions where the pressure of the refrigerant entering the expander 8 and the pressure of the refrigerant exiting the expander 8 can be detected.
  • the pressure sensor 11 and the pressure sensor 12 may be temperature sensors that detect the temperature of the refrigerant as long as the pressure can be estimated.
  • the indoor heat exchanger 32 has, for example, a heat transfer tube that allows the refrigerant to pass therethrough and fins (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the air.
  • Heat exchange For example, it functions as an evaporator during cooling operation, and evaporates the refrigerant to gas (gas).
  • a condenser or a gas cooler (hereinafter referred to as a condenser) during heating operation.
  • the expansion valve 31 is connected to the indoor heat exchanger 32.
  • the expansion valve 31 adjusts the flow rate of the refrigerant flowing into the indoor heat exchanger 32.
  • the high / low pressure is adjusted by the expansion valve 31.
  • the level of the pressure in the refrigeration cycle circuit or the like is not determined by the relationship with the reference pressure, but by the compression of the main compressor 1 and the auxiliary compressor 2, the pressure reduction of the bypass valve 5 and the expander 8, and the like.
  • the relative pressure that can be expressed is expressed as high pressure and low pressure. The same applies to the temperature level.
  • the low-pressure refrigerant sucked into the main compressor 1 is compressed to a high temperature and intermediate pressure, and is discharged from the main compressor 1.
  • the refrigerant discharged from the main compressor 1 is sucked into the auxiliary compressor 2 and further compressed to become high temperature and pressure, and is discharged from the auxiliary compressor 2.
  • the refrigerant discharged from the auxiliary compressor 2 passes through the first four-way valve 3, enters the outdoor heat exchanger 4, dissipates heat, transfers heat to the outdoor air, and becomes low temperature and high pressure.
  • the refrigerant that has exited the outdoor heat exchanger 4 branches into a path toward the second four-way valve 6 and a path toward the bypass valve 5.
  • the refrigerant that has passed through the second four-way valve 6 passes through the pre-expansion valve 7 and enters the expander 8, where it is decompressed to a low pressure, and the dryness is low.
  • power is generated as the refrigerant is depressurized. This power is recovered by the drive shaft 52 and transmitted to the auxiliary compressor 2 to be used for refrigerant compression by the auxiliary compressor 2.
  • the refrigerant discharged from the expander 8 passes through the second four-way valve 6 and then merges with the refrigerant from the bypass circuit 25 that has passed through the bypass valve 5, exits the outdoor unit 101, and passes through the liquid pipe 27. Then, it enters the indoor unit 102, goes to the expansion valve 31, and is further depressurized by the expansion valve 31.
  • the refrigerant that has exited the expansion valve 31 absorbs heat from the indoor air in the indoor heat exchanger 32 and evaporates, and remains in a low-pressure state with a low pressure. Thereby, indoor air is cooled.
  • the low-pressure refrigerant sucked into the main compressor 1 is compressed to a high temperature and intermediate pressure, and is discharged from the main compressor 1.
  • the refrigerant discharged from the main compressor 1 is sucked into the auxiliary compressor 2 and further compressed to become high temperature and pressure, and is discharged from the auxiliary compressor 2.
  • the refrigerant discharged from the auxiliary compressor 2 passes through the first four-way valve 3 and exits the outdoor unit 101.
  • the refrigerant exiting the outdoor unit 101 passes through the gas pipe 28, enters the indoor unit 102, travels to the indoor heat exchanger 32, dissipates heat in the indoor heat exchanger 32, and transfers heat to the indoor air. It becomes low temperature and high pressure.
  • the refrigerant that has exited the indoor heat exchanger 32 is decompressed by the expansion valve 31 and exits the expansion valve 31.
  • the refrigerant that has exited the expansion valve 31 exits the indoor unit 102, passes through the liquid pipe 27, enters the outdoor unit 101, and branches into a path toward the second four-way valve 6 and a path toward the bypass valve 5. To do.
  • the refrigerant that has passed through the second four-way valve 6 passes through the pre-expansion valve 7 and enters the expander 8, where it is decompressed to a low pressure, and the dryness is low.
  • power is generated as the refrigerant is depressurized. This power is recovered by the drive shaft 52 and transmitted to the auxiliary compressor 2 to be used for refrigerant compression by the auxiliary compressor 2.
  • the refrigerant that has left the expander 8 passes through the second four-way valve 6, and then merges with the refrigerant from the bypass circuit 25 that has passed through the bypass valve 5, and enters the outdoor heat exchanger 4.
  • the refrigerant absorbs heat from the outdoor air and evaporates, and the dryness is high while the pressure is low.
  • the refrigerant that has exited the outdoor heat exchanger 4 passes through the first four-way valve 3, enters the accumulator 9, and is sucked into the main compressor 1 again.
  • auxiliary compressor 2 and the expander 8 are not limited to the scroll type, but may be other positive displacement types such as a swinging piston type.
  • FIG. 2 is a cross-sectional view showing a scroll type expander 8 integrated with the auxiliary compressor 2.
  • the expander 8 that expands the refrigerant and collects power includes the spiral teeth 67 of the expander fixed scroll 59 and the spiral teeth 65 on the lower surface of the swing scroll 57.
  • the auxiliary compressor 2 that compresses the refrigerant by the power recovered by the expander 8 includes the spiral teeth 66 of the compressor fixed scroll 58 and the spiral teeth 64 on the upper surface of the swing scroll 57.
  • the spiral teeth 65 of the expander 8 and the spiral teeth 64 of the auxiliary compressor 2 are integrally formed on both surfaces of the common base plate in the swing scroll 57 so as to be back-to-back. For this reason, when the swing scroll 57 swings, it can be compressed on the one hand and expanded on the other hand.
  • the high-temperature medium-pressure refrigerant discharged from the main compressor 1 is sucked from the suction pipe 53 of the auxiliary compressor 2 and formed by the spiral teeth 66 of the compressor fixed scroll 58 and the spiral teeth 64 of the swing scroll 57. It is introduced on the outer peripheral side of the auxiliary compressor 2. As the swing scroll 57 swings, the refrigerant gradually moves the auxiliary compressor 2 toward the inner peripheral side and is compressed to a high temperature and a high pressure. The compressed refrigerant is discharged from the discharge pipe 54 of the auxiliary compressor 2.
  • the high-pressure refrigerant cooled by the outdoor heat exchanger 4 or the indoor heat exchanger 32 is sucked from the suction pipe 55 of the expander 8 and swirled by the swirl teeth 67 of the expander fixed scroll 59 and the swirl scroll 57. It is introduced into the inner peripheral side of the expander 8 formed by the teeth 65. As the swing scroll 57 swings, the refrigerant gradually moves the expander 8 to the outer peripheral side and expands to a low pressure. The expanded refrigerant is discharged from the discharge pipe 56 of the expander 8. The power that expands the refrigerant by the expander 8 is collected via the drive shaft 52 and transmitted to the auxiliary compressor 2 as compression power.
  • the expander 8 includes a communication pipe 71 that connects the expansion chamber in the expansion process and the discharge pipe 56 of the expander 8, and the communication pipe 71 serves as an opening / closing device.
  • An electromagnetic valve 72 is provided.
  • the communication tube 71 communicates with an expansion chamber 82a rotated about 90 ° in the winding start direction from the winding end 73 of the spiral tooth 67 and an expansion chamber 81a rotated about 270 ° in the winding start direction from the winding end 73. .
  • an expansion chamber 81 a is configured by a space sandwiched between the outer surface of the spiral tooth 67 of the expander fixed scroll 59 and the inner surface of the spiral tooth 65 of the swing scroll 57.
  • an expansion chamber 82 a is configured by a space sandwiched between the inner surface of the spiral teeth 67 of the expander fixed scroll 59 and the outer surface of the spiral teeth 65 of the swing scroll 57.
  • the crank angle of the drive shaft 52 is set to 0 ° in a state where the winding start side end portion of the spiral tooth 67 is in contact with the inner surface of the spiral tooth 65.
  • the crank angle is 0 °
  • the refrigerant is partitioned into the expansion chamber 81a and the expansion chamber 82b.
  • the high-pressure refrigerant flows into the expansion chamber 81a and the expansion chamber 82a until just before the crank angle reaches 360 °.
  • the swing scroll 57 is driven.
  • the expansion process of the expansion chamber 81a and the expansion chamber 82a is completed, and the refrigerant is discharged into the expander discharge space 85.
  • the expansion chamber 81a and the expansion chamber 82a opened to the expander discharge space 85 are represented as an expansion chamber 81b and an expansion chamber 82b.
  • the discharged refrigerant passes through the discharge pipe 56 and is discharged to the low pressure side.
  • the orbiting scroll 57 continues to oscillate while gradually decreasing the rotational speed until the main compressor 1 is stopped and the high and low pressures are equalized.
  • the driving force of the expander 8 becomes smaller than the frictional force between the swing scroll 57 and the compressor fixed scroll 58 or the expander fixed scroll 59, the swing scroll 57 is completely stopped.
  • the solenoid valve 72 is opened until the high pressure and the low pressure are equalized. Then, while the orbiting scroll 57 is oscillating until the high pressure and the low pressure are equalized, immediately after the contact 91 b between the outer surface of the spiral tooth 67 and the inner surface of the spiral tooth 65 passes through the communication pipe 71.
  • the expansion chamber 81a communicates with the discharge pipe 56. That is, the expansion chamber 81a has a low pressure.
  • the expansion chamber 82 a communicates with the discharge pipe 56 immediately after the contact 92 b between the outer surface of the spiral tooth 65 and the inner surface of the spiral tooth 67 passes through the communication pipe 71. That is, the expansion chamber 82a has a low pressure.
  • the expansion chamber 81a and the expansion chamber 82a become low pressure, the pressure difference between the expansion chamber 81a and the expansion chamber 82a and the expander discharge space 85 disappears, so that the orbiting scroll 57 loses driving force and stops. It becomes easy. That is, the orbiting scroll 57 stops immediately after the contact 91b and the contact 92b pass through the communication pipe 71. That is, the communication pipe 71 is connected to the expansion chamber 81a and the expansion chamber 82a on the locus of the contact 91b and the contact 92b when the swing scroll 57 swings (revolves).
  • the solenoid valve 71 is closed.
  • the complete stop of the expander 8 means that the swing (revolution) of the swing scroll 57 stops, and the pressure detected by the pressure sensor 11 and the pressure detected by the pressure sensor 12 become approximately equal. It can be determined that the expander 8 has stopped after 1 to 2 minutes.
  • FIG. 5 is a view when the expansion chamber 81b and the expansion chamber 82b are stopped after being opened to the expander discharge space 85 as in the prior art, and the swing scroll 57 of the swing scroll 57 when the crank angle is 0 ° (360 °) is shown. Indicates the position. Actually, the orbiting scroll 57 stops when the crank angle is between 270 ° and 360 °.
  • FIG. 6 is a diagram when the stop position of the orbiting scroll 57 is controlled in the present embodiment, and shows the position of the orbiting scroll 57 when the crank angle is 270 °. Actually, the rocking scroll 57 stops when the crank angle is between 180 ° and 270 °.
  • the high pressure and low pressure of the air conditioner are equalized, so that the pressure inside the circuit becomes almost equal. Also in the expander 8, the pressures in the expansion chamber 81a, the expansion chamber 82a, and the expander discharge space 85 are equal.
  • the refrigerant is gradually discharged from the discharge pipe 56, and the pressure in the expander discharge space 85 decreases.
  • the expansion chamber 81a is partitioned by the spiral teeth 65 and the spiral teeth 67 and is not opened to the expander discharge space 85, the pressure when equalized is maintained. Therefore, a pressure difference is generated between the pressure in the expansion chamber 81a and the expander discharge space 85.
  • the pressure receiving portion 95a or the pressure receiving portion 95b that receives this pressure difference is a portion between the contact 92b and the contact 91b of the spiral tooth 65.
  • the pressure receiving portion 95b that receives the pressure difference between the pressure when the pressure is equalized and the low pressure when the air conditioner is activated can be increased, the orbiting scroll 57 is stopped. The force in the swinging direction to be driven from this state can be further increased.
  • the expansion chamber 81a and the expansion chamber 82a are connected to the communication pipe 71 at a crank angle 90 ° before the crank angle at which the expansion chamber discharge space 85 is opened, the air again The pressure receiving part 95b when starting a harmony machine can be enlarged.
  • the angular position where the connecting portion with the communication pipe 71 is provided is not limited to the above-described position, and the expansion chamber 81a and the expansion chamber 82a may be provided anywhere as long as the pressure receiving portion 95b can be enlarged. It is effective to provide between 90 ° and the position from which it is opened to the expander discharge space 85.
  • two communication pipes 71 are provided, but may be provided in one place in order to improve workability.
  • the driving force of the orbiting scroll 57 is smaller than the static frictional force applied to various sliding parts such as the orbiting scroll 57 and the orbiting bearing 63 when the air conditioner is activated, and the Since the starting failure that the scroll 57 does not swing can be reduced, the reliability of the air conditioner can be further improved.
  • the scroll type expander has been described as an example using the present invention, but not limited to the scroll type, for example, a rotary type expander using a swinging piston, The present invention is applicable.
  • the stop position of the oscillating piston can be controlled by communicating each room defined by the oscillating piston with the discharge pipe (low pressure side) through the communication pipe 71, thereby increasing the pressure receiving area. This can make it difficult for startup failures to occur.
  • the swing scroll 57 can be swung only by the fluid energy when the refrigerant is decompressed, and thus the structure of the expander 8 can be simplified.
  • the opening / closing device of the communication passage 71 is the electromagnetic valve 72, but it goes without saying that other opening / closing devices may be used.
  • FIG. 7 is a view when the valve is opened in such a case
  • FIG. 8 is a view when the valve is closed.
  • valve 7 shows a state where the valve 112 is lowered by the electromagnetic force by energizing the coil 111 (valve open state). At this time, the expansion chamber 82 and the expander discharge space 85 are communicated with each other through the communication path 114, and thus the refrigerant in the expansion chamber 82 is discharged to the expander discharge space 85. This is the state when the air conditioner is stopped as described in the first embodiment.
  • the coil 111, the valve 112, and the spring 113 provide the same function as the above-described electromagnetic valve 72, and the air conditioner can be miniaturized because it is built in the container 51.
  • coil 111, valve 112, spring 113, and communication passage 114 have been shown and described, but another one is provided so that the expansion chamber 81 and the expander discharge space 85 communicate with each other.
  • a coil 111, a valve 112, a spring 113, and a communication passage 114 are provided. Moreover, you may comprise only these.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 揺動スクロールまたは揺動ピストンにより区画される複数の膨張室(81a,82a)に供給された高圧流体が膨張して減圧される際の流体エネルギーにより動力が発生する膨張機構を備えた容積型膨張機であって、各膨張室(81a,82a)と膨張機吐出側とをそれぞれ連通する連通路(71)を備え、連通路(71)には開閉装置(72)を設け、開閉装置(72)は高圧流体の供給停止時に、各膨張室(81a,82a)と膨張機吐出側との間の高圧と低圧が均圧するまでの間に開口して、揺動スクロールまたは揺動ピストンを所定の位置に止めることで、再起動時に、膨張機(8)が十分な駆動力を得られるようにする。

Description

容積型膨張機及びこの容積型膨張機を用いた冷凍サイクル装置
 本発明は、膨張過程の流体エネルギーを動力回収することのできる容積型膨張機及びこの容積型膨張機を用いた冷凍サイクル装置に関する。
 従来より、電動機により駆動されて冷媒を圧縮する揺動スクロールを有する圧縮機と、前記圧縮機により圧縮された前記冷媒の熱を放散する放熱器と、前記放熱器を通過した前記冷媒を減圧する揺動ピストンを有する膨張機と、前記膨張機により減圧された前記冷媒が蒸発する蒸発器とを備えた冷凍サイクル装置において、膨張室における膨張過程中間位置(膨張室内に揺動ピストンにより区画される部屋の1つ)と流出位置(流出ポート側)とを連通する連通路を設け、膨張室の圧力が過度に低下した場合に流出側の流体を膨張室に戻せるようにして、過膨張を防止し、動力回収効率の低下を抑えるようにしたものが知られている(例えば、特許文献1参照)。
 また、冷凍空調装置において、放熱器で冷却された冷媒を膨張減圧して動力を回収するスクロール式の膨張機と、前記膨張機で回収した動力により駆動されて冷媒を補助的に圧縮するスクロール式の補助圧縮機を設け、補助圧縮機で冷媒を補助的に圧縮することで、主圧縮機のかかる負荷を軽減して、主圧縮機の駆動モーターに必要な電力を減少させ、冷凍サイクル装置の高率を高めるようにしたものが知られている(例えば、特許文献2参照)。
特開2004-190559号公報(図4、図15) 特開2009-109158号公報(第1図)
 特許文献2のように、膨張機の駆動軸にモーターや発電機が接続されておらず、冷媒の流体エネルギーのみで膨張機を起動させる場合、膨張機を構成する揺動スクロールの停止位置によっては、冷凍サイクル装置を再度起動するときに十分な駆動力が得られずに、膨張機の起動不良を引き起こす可能性があった。
 膨張機の揺動スクロール(または揺動ピストン)を所定の位置に停止させるには、膨張室内の冷媒を低圧に開放させる位置を決めることによって、制御が可能である。そのためには、膨張室の途中から冷媒を低圧側へバイパスさせる連通路が必要となる。
 ところで、膨張室の途中から冷媒を低圧側へバイパスさせる連通路として、特許文献1の膨張室における膨張過程中間位置(膨張室内に揺動ピストンにより区画される部屋の1つ)と流出位置(流出ポート側)とを連通する連通路を用い、例えば膨張室の冷媒を流出側へ排出できるようにすることが考えられる。しかし、このように低圧側に連通する連通路を、膨張室における揺動スクロール(または揺動ピストン)により区画される部屋の1つに接続して、膨張室の冷媒を流出させると、冷媒を減圧する際に発生する流体エネルギーにより駆動される動力回収型の膨張機にあっては、その揺動ピストンや揺動スクロールが膨張過程中間位置で停止してしまい、再度冷凍サイクル装置を起動するときに、膨張機が十分な駆動力を得られなくなるという危惧が存在していた。
 本発明の技術的課題は、膨張機の揺動スクロールまたは揺動ピストンの停止位置を制御できて、再起動するときに、膨張機が十分な駆動力を得られるようにすることにある。
 本発明に係る容積型膨張機は、揺動スクロールまたは揺動ピストンにより区画される複数の膨張室に供給された高圧流体が膨張して減圧される際の流体エネルギーにより動力が発生する膨張機構を備えた容積型膨張機であって、各膨張室と膨張機吐出側とをそれぞれ連通する連通路を備え、連通路には開閉装置を設け、開閉装置は高圧流体の供給停止時に、各膨張室と膨張機吐出側との間の高圧と低圧が均圧するまでの間に開口して、揺動スクロールまたは揺動ピストンを所定の位置に止めるものである。
 本発明に係る容積型膨張機によれば、高圧流体の供給停止時に、再度膨張機が起動しやすいように揺動スクロールまたは揺動ピストンの停止位置を制御することができるので、再起動時に揺動スクロールまたは揺動ピストンが揺動しないという起動不良の発生を防止することができる。
本発明の実施の形態1に係る容積型膨張機を用いた冷凍サイクル装置の冷媒回路図である。 本発明の実施の形態1に係る容積型膨張機の縦断面図である。 本発明の実施の形態1に係る容積型膨張機の渦巻歯部分の概略横断面図である。 本発明の実施の形態1に係る容積型膨張機の動作を示す渦巻歯部分の概略横断面図である。 容積型膨張機の比較例における渦巻歯部分の停止位置の一例を示す概略横断面図である。 本発明の実施の形態1に係る容積型膨張機の渦巻歯部分の停止位置の一例を示す概略横断面図である。 本発明の実施の形態2に係る容積型膨張機の要部である開閉装置が開口している状態を示す概略縦断面図である。 本発明の実施の形態2に係る容積型膨張機の要部である開閉装置が閉口している状態を示す概略縦断面図である。
実施の形態1.
 図1は本発明の実施の形態1に係る容積型膨張機を用いた冷凍サイクル装置、例えば空気調和機の冷房運転時における冷媒回路図である。
 本実施の形態の空気調和機は、図1のように電気モーター(図示せず)により駆動されて吸入した冷媒を圧縮して吐出する主圧縮機1と、冷房運転時には、内部の冷媒が熱を放散する放熱器となり、暖房運転時には、内部の冷媒が蒸発する蒸発器となる室外熱交換器4とを備えている。また、内部を通過する冷媒を減圧する膨張機8と、冷房運転時には、内部の冷媒が蒸発する蒸発器となり、暖房運転時には、内部の冷媒が熱を放散する放熱器となる室内熱交換器32とを備えている。更に、膨張機8によって冷媒が減圧される際に発生する動力を回収する駆動軸52と、膨張機8と駆動軸52で接続され、駆動軸52で回収した動力により駆動されて冷媒を補助的に圧縮するスクロール式の補助圧縮機2とを備えている。
 本空気調和機は、冷媒として二酸化炭素が用いられている。二酸化炭素は、従来のフロン系の冷媒と比較して、オゾン層破壊係数がゼロであり、地球温暖化係数が小さい。
 本実施の形態では、主圧縮機1、補助圧縮機2、冷媒流路切替装置である第1の四方弁3、第2の四方弁6、室外熱交換器4、バイパス弁5、予膨張弁7、膨張機8、及びアキュームレーター9を、室外機101に収容している。膨張弁31及び室内熱交換器32は、室内機102に収容している。空気調和機全体の制御を統制する制御装置103は、室外機101に収容している。なお、本実施の形態では、室内機102(室内熱交換器32)の台数を1台としているが、室内機102(室内熱交換器32)の台数は任意である。また、室外機101と室内機102は、液管27、ガス管28で接続されている。
 これを更に詳述すると、補助圧縮機2と膨張機8は、容器51に収容されている。補助圧縮機2は、駆動軸52を介して膨張機8に接続されており、膨張機8で発生した動力が、駆動軸52によって回収されて、補助圧縮機2へ伝達される。よって、補助圧縮機2は主圧縮機1から吐出された冷媒を吸入して、さらに圧縮することになる。
 補助圧縮機2と室外熱交換器4との間の冷媒の流路、及び室内熱交換器32とアキュームレーター9との間の冷媒の流路は、冷媒流路切替装置となる第1の四方弁3に接続されている。また、室外熱交換器4と膨張機8との間の冷媒の流路、及び膨張機8と膨張弁31との間の冷媒の流路は、第2の四方弁6に接続されている。四方弁3及び四方弁6は、制御装置103の指示に基づいて、冷暖房に係る運転モードに対応した流路の切り替えを行い、冷媒の経路を切り替えるものである。
 冷房運転時には、補助圧縮機2から室外熱交換器4へ冷媒が流れ、室内熱交換器32からアキュームレーター9へ冷媒が流れる。また、室外熱交換器4から膨張機8を通って室内熱交換器32へ冷媒が流れる。
 暖房運転時には、補助圧縮機2から室内熱交換器32へ冷媒が流れ、室外熱交換器4からアキュームレーター9へ冷媒が流れる。また、室内熱交換器32から膨張機8を通って室外熱交換器4へ冷媒が流れる。
 第1の四方弁3及び第2の四方弁6により、膨張機3及び補助圧縮機2を通過する冷媒の方向は、冷房運転時及び暖房運転時によらず、同一方向になる。
 室外熱交換器4は、例えば冷媒を通過させる伝熱管及びその伝熱管を流れる冷媒と外気との間の伝熱面積を大きくするためのフィン(図示せず)を有し、冷媒と空気(外気)との熱交換を行う。例えば、暖房運転時においては蒸発器として機能し、冷媒を蒸発させてガス(気体)化させる。一方、冷房運転時においては凝縮器またはガスクーラー(以下では凝縮器とする)として機能する。場合によっては、完全にガス化、液化させず、液体とガスとの二相混合(気液二相冷媒)の状態にすることもある。
 アキュームレーター9は冷凍サイクル回路中の過剰な冷媒を貯留したり、主圧縮機1に
冷媒液が多量に戻って主圧縮機1が破損したりするのを防止する働きがある。
 第2の四方弁6と膨張機8の入口との間の冷媒の流路23には、膨張機8を通過する冷媒の流量を調整する予膨張弁7が設けられている。
 室外熱交換器4と室内熱交換器32との間の冷媒の流路には、第2の四方弁6、予膨張弁7、膨張機8をバイパスするバイパス回路25と、このバイパス回路25を通過する冷媒の流量を調整するバイパス弁5とが設けられている。
 バイパス弁5と予膨張弁7とを調整することで、膨張機8を通過する冷媒の流量を調整して高圧側の圧力を調整し、冷凍サイクルを高効率の状態に保つことができる。
 なお、バイパス弁5と予膨張弁7とを調節することに限らず、その他の方法で、高圧側の圧力を調整するようにしてもよい。
 膨張機8の入口には、膨張機8に入る冷媒の圧力を検知する圧力センサー11が設けられている。また、膨張機8の出口には、膨張機8から出る冷媒の圧力を検知する圧力センサー12が設けられている。なお、圧力センサー11及び圧力センサー12の設置位置は、前記位置に限るものでなく、それぞれが膨張機8に入る冷媒の圧力及び膨張機8から出る冷媒の圧力を検知できる位置であればよい。
 また、圧力センサー11及び圧力センサー12は、圧力が推定可能であれば、冷媒の温度を検知する温度センサーであってもよい。
 室内熱交換器32は、例えば冷媒を通過させる伝熱管及びその伝熱管を流れる冷媒と空気との間の伝熱面積を大きくするためのフィン(図示せず)を有し、冷媒と室内空気との熱交換を行う。例えば、冷房運転時においては蒸発器として機能し、冷媒を蒸発させてガス(気体)化させる。一方、暖房運転時においては凝縮器またはガスクーラー(以下では凝縮器とする)として機能する。
 室内熱交換器32には、膨張弁31が接続されている。膨張弁31は、室内熱交換器32に流入する冷媒の流量を調整する。膨張機8で冷媒が十分に減圧されないときは、膨張弁31によって高低圧を調整する。
<空気調和機の運転動作>
 次に、本実施の形態の冷凍サイクル装置すなわち空気調和機の冷房運転時の動作について、図1の冷媒回路図で説明する。ここで、冷凍サイクル回路等における圧力の高低については、基準となる圧力との関係により定まるものではなく、主圧縮機1及び補助圧縮機2の圧縮、バイパス弁5や膨張機8の減圧等によりできる相対的な圧力として高圧、低圧として表すものとする。また、温度の高低についても同様であるものとする。
 冷房運転時には、まず主圧縮機1に吸入された低圧の冷媒は、圧縮されて高温中圧になり、主圧縮機1から吐出される。主圧縮機1から吐出された冷媒は、補助圧縮機2に吸入され、さらに圧縮されて高温高圧になり、補助圧縮機2から吐出される。補助圧縮機2から吐出された冷媒は、第1の四方弁3を通過して、室外熱交換器4に入り、熱を放散して室外空気に熱を伝達し、低温高圧になる。
 室外熱交換器4を出た冷媒は、第2の四方弁6へ向かう経路と、バイパス弁5へ向かう経路とに分岐する。第2の四方弁6を通過した冷媒は、予膨張弁7を通過して、膨張機8に入り、減圧されて低圧となり、乾き度が低い状態になる。このとき、膨張機8では、冷媒の減圧に伴って動力が発生する。この動力は、駆動軸52によって回収され、補助圧縮機2に伝達されて、補助圧縮機2による冷媒の圧縮に使用される。
 膨張機8から吐出された冷媒は、第2の四方弁6を通過した後、バイパス弁5を通過してきたバイパス回路25からの冷媒と合流し、室外機101を出て、液管27を通過して、室内機102に入り、膨張弁31へ向かい、膨張弁31にてさらに減圧される。
 膨張弁31を出た冷媒は、室内熱交換器32で室内空気から吸熱して蒸発し、低圧のまま、乾き度が高い状態になる。これにより、室内空気は冷却される。
 室内熱交換器32を出た冷媒は、室内機102を出て、ガス管28を通過して、室外機101に入り、第1の四方弁3を通過して、アキュームレーター9に入り、再び主圧縮機1に吸入される。
 以上の動作を繰り返すことで、室内の空気の熱が室外の空気へ伝達されて、室内が冷房される。
 次に、本実施の形態の冷凍サイクル装置すなわち空気調和機の暖房運転時の動作について説明する。
 暖房運転時には、まず主圧縮機1に吸入された低圧の冷媒は、圧縮されて高温中圧になり、主圧縮機1から吐出される。主圧縮機1から吐出された冷媒は、補助圧縮機2に吸入され、さらに圧縮されて高温高圧になり、補助圧縮機2から吐出される。補助圧縮機2から吐出された冷媒は、第1の四方弁3を通過して、室外機101を出る。
 室外機101を出た冷媒は、ガス管28を通過して、室内機102に入り、室内熱交換器32に向かい、室内熱交換器32で熱を放散して室内空気に熱を伝達し、低温高圧になる。
 室内熱交換器32を出た冷媒は、膨張弁31で減圧され、膨張弁31を出る。膨張弁31を出た冷媒は、室内機102を出て、液管27を通過して、室外機101に入り、第2の四方弁6へ向かう経路と、バイパス弁5に向かう経路とに分岐する。第2の四方弁6を通過した冷媒は、予膨張弁7を通過して、膨張機8に入り、減圧されて低圧となり、乾き度が低い状態になる。このとき、膨張機8では、冷媒の減圧に伴って動力が発生する。この動力は、駆動軸52によって回収され、補助圧縮機2に伝達されて、補助圧縮機2による冷媒の圧縮に使用される。
 膨張機8を出た冷媒は、第2の四方弁6を通過した後、バイパス弁5を通過してきたバイパス回路25からの冷媒と合流し、室外熱交換器4へ入る。
 室外熱交換器4では、冷媒は、室外空気から吸熱して蒸発し、低圧のまま、乾き度が高い状態になる。
 室外熱交換器4を出た冷媒は、第1の四方弁3を通過して、アキュームレーター9に入り、再び主圧縮機1に吸入される。
 以上の動作を繰り返すことで、室外の空気の熱が室内の空気へ伝達されて、室内が暖房される。
 次に、補助圧縮機2と膨張機8の一例として、スクロール型の膨張機8とスクロール型の補助圧縮機2の構造及び動作について説明する。なお、補助圧縮機2及び膨張機8は、スクロール式に限らず、その他の容積式、例えば揺動ピストン式であってもよい。
 図2は補助圧縮機2と一体のスクロール型の膨張機8を示す断面図である。冷媒を膨張させ、動力を回収する膨張機8を、膨張機固定スクロール59の渦巻歯67と、揺動スクロール57の下面の渦巻歯65とで構成する。また、膨張機8で回収した動力によって冷媒を圧縮する補助圧縮機2を、圧縮機固定スクロール58の渦巻歯66と揺動スクロール57の上面の渦巻歯64とで構成する。すなわち、膨張機8の渦巻歯65と補助圧縮機2の渦巻歯64は、揺動スクロール57で共通の台板の両面に背面合わせに一体に形成している。このため、揺動スクロール57が揺動したときに、一方で圧縮、一方で膨張できるようになっている。
 主圧縮機1から吐出された高温中圧の冷媒は、補助圧縮機2の吸入管53から吸入され、圧縮機固定スクロール58の渦巻歯66と揺動スクロール57の渦巻歯64とで形成される補助圧縮機2の外周側に導入される。そして、揺動スクロール57の揺動により、冷媒は、補助圧縮機2を内周側に漸次移動して高温高圧に圧縮される。圧縮された冷媒は、補助圧縮機2の吐出管54から吐出される。
 一方で、室外熱交換器4または室内熱交換器32で冷却された高圧の冷媒は、膨張機8の吸入管55から吸入され、膨張機固定スクロール59の渦巻歯67と揺動スクロール57の渦巻歯65とで形成される膨張機8の内周側に導入される。そして、揺動スクロール57の揺動により、冷媒は、膨張機8を外周側に漸次移動して低圧に膨張する。膨張した冷媒は、膨張機8の吐出管56から吐出される。膨張機8により冷媒が膨張する動力は、駆動軸52を介して回収し、補助圧縮機2に伝達して圧縮動力としている。
 補助圧縮機2及び膨張機8を構成する前述の機構は、容器51に収容されている。
 そして、本発明の特徴として、膨張機8には、図3に示すように膨張過程の膨張室と膨張機8の吐出管56とを連通する連通管71と、連通管71には開閉装置として電磁弁72が設けられている。連通管71は、渦巻歯67の巻き終わり73から巻き始め方向におよそ90°回転させた膨張室82aと、巻き終わり73から巻き始め方向におよそ270°回転させた膨張室81aに連通させている。
<膨張機の運転動作>
 次に、膨張機8の運転動作について、図4を用いて説明する。膨張機8は、膨張機固定スクロール59の渦巻歯67の外側面と揺動スクロール57の渦巻歯65の内側面とに挟まれた空間により、膨張室81aが構成されている。また、膨張機固定スクロール59の渦巻歯67の内側面と揺動スクロール57の渦巻歯65の外側面とに挟まれた空間により、膨張室82aが構成されている。
 渦巻歯67の巻き始め側端部が渦巻歯65の内側面に接する状態で駆動軸52のクランク角度を0°としている。クランク角度が0°のとき、膨張室81aと膨張室82bに冷媒が仕切られる。膨張室81a、膨張室82aへの高圧冷媒の流入は、クランク角度が360°に達する直前まで続く。閉じ込み状態となった膨張室81aと膨張室82aの冷媒が膨張することにより、揺動スクロール57が駆動される。
 クランク角度が270°から360°(0°)に至る途中で、膨張室81aと膨張室82aの膨張過程が終了して膨張機吐出空間85に冷媒が吐出される。図4の360°の位置では、膨張機吐出空間85に開放した膨張室81a及び膨張室82aを膨張室81b及び膨張室82bと表している。吐出された冷媒は、吐出管56を通って低圧側に排出される。
<揺動スクロールを停止させる動作>
 次に、本実施の形態の冷凍サイクル装置すなわち空気調和機を停止させるときの膨張機8の動作について、図1乃至図4を用いて説明する。空気調和機の停止とは、主圧縮機1の運転を停止させることを意味する。
 主圧縮機1を停止して高圧と低圧が均圧するまで、揺動スクロール57は徐々に回転速度を低下させながら揺動を続ける。そして、膨張機8の駆動力が揺動スクロール57と圧縮機固定スクロール58または膨張機固定スクロール59との摩擦力より小さくなると、揺動スクロール57が完全に停止する。
 ここで、本実施の形態では、主圧縮機1を停止した後、高圧と低圧が均圧するまでの間に電磁弁72を開く。すると、高圧と低圧が均圧するまでの間で揺動スクロール57が揺動している間に、渦巻歯67の外側面と渦巻歯65の内側面の接点91bが連通管71を通過した直後に膨張室81aが吐出管56と連通される。すなわち、膨張室81aが低圧となる。同様に、渦巻歯65の外側面と渦巻歯67の内側面の接点92bが連通管71を通過した直後に膨張室82aが吐出管56と連通される。すなわち、膨張室82aが低圧となる。
 前述のように、膨張室81a及び膨張室82aが低圧になると、膨張室81a及び膨張室82aと膨張機吐出空間85との圧力差がなくなるため、揺動スクロール57が駆動力を失い、停止し易くなる。すなわち、揺動スクロール57は接点91b、接点92bが連通管71を通過した直後に停止することになる。つまり、連通管71は、揺動スクロール57の揺動時(公転時)の接点91bと接点92bの軌跡上で、膨張室81aと膨張室82aに接続されている。
 主圧縮機1と膨張機8が完全に停止した後、電磁弁71を閉じる。膨張機8の完全停止とは、揺動スクロール57の揺動(公転)が停止することを意味し、圧力センサー11の検出する圧力と圧力センサー12の検出する圧力がおよそ均等になってから、1~2分後に膨張機8が停止したと判断できる。
<揺動スクロール停止位置による起動性向上効果>
 本実施の形態のように、揺動スクロール57の停止位置を制御した場合の、起動性向上効果について説明する。
 図5は従来のように膨張室81b及び膨張室82bが膨張機吐出空間85に開放された後に停止した場合の図であり、クランク角度が0°(360°)のときの揺動スクロール57の位置を示している。実際には、クランク角度が270°から360°の間で揺動スクロール57は停止する。
 図6は本実施の形態で揺動スクロール57の停止位置を制御した場合の図であり、クランク角度が270°のときの揺動スクロール57の位置を示している。実際には、クランク角度が180°から270°の間で揺動スクロール57は停止する。
 主圧縮機1及び膨張機8が完全に停止した後は、空気調和機の高圧と低圧が均圧するため、回路内部の圧力はほぼ等しくなる。膨張機8でも、膨張室81a及び膨張室82a、膨張機吐出空間85の圧力が等しくなる。この停止した状態から、主圧縮機1を再び起動させると、吐出管56から徐々に冷媒が排出されて膨張機吐出空間85の圧力が低下していく。
 一方で、膨張室81aは、渦巻歯65と渦巻歯67で仕切られており、膨張機吐出空間85に開放されていないため、均圧したときの圧力のままである。よって、膨張室81aの圧力と膨張機吐出空間85に圧力差が生じる。この圧力差を受ける受圧部95aまたは受圧部95bは、渦巻歯65の接点92bから接点91bの間の部分である。
 受圧部95aまたは受圧部95bが受ける圧力差による駆動力が、揺動スクロール57や揺動軸受部63などの種々の摺動部にかかる静止摩擦力より大きくなると、停止状態である揺動スクロール57が揺動を開始する。
 ここで、本実施の形態のように揺動スクロール57の停止位置を制御して停止させた場合(図6)の受圧部95bと、図5の従来手法により揺動スクロール57を停止させた場合の受圧部95aを比較する。図5では、膨張室81b及び膨張室82bが膨張機吐出空間85に開放された後に揺動スクロール57が停止している。一方、図6では、膨張室81a及び膨張室82aが膨張機吐出空間85に開放される前に揺動スクロール57が停止しているので、図5の受圧部95aよりも図6の受圧部95bの方が受圧面積を大きくすることができる。
 以上のように、本実施の形態では、均圧したときの圧力と空気調和機の起動時の低圧との圧力差を受ける受圧部95bをより大きくすることができるため、揺動スクロール57が停止した状態から駆動させようとする揺動方向の力をより大きくすることができる。
 また、本実施の形態では、膨張室81a及び膨張室82aが膨張室吐出空間85に開放されるクランク角度よりもクランク角度90°手前に連通管71との接続部を設けているので、再度空気調和機を起動させるときの受圧部95bを大きくすることができる。なお、連通管71との接続部を設ける角度位置は、前述の位置に限定されるものでなく、受圧部95bを大きくすることができれば、どこに設けてもよいが、膨張室81a及び膨張室82aが膨張機吐出空間85に開放される位置から90°手前までの間に設けるのが効果的である。
 また、本実施の形態では、連通管71を2箇所設けているが、加工性をよくするために1箇所としてもよい。
 また、本実施の形態では、空気調和機の起動時に揺動スクロール57や揺動軸受部63などの種々の摺動部にかかる静止摩擦力よりも揺動スクロール57の駆動力が小さく、揺動スクロール57が揺動しないという起動不良を少なくすることができるため、空気調和機の信頼性をより高めることができる。
 また、本実施の形態では、スクロール式の膨張機に本発明を用いたものを例に挙げて説明したが、スクロール式に限らず、例えば揺動ピストンを用いたロータリ式の膨張機についても、本発明を適用可能である。
 すなわち、ロータリ式の膨張機の場合でも、揺動ピストンの停止位置によっては、受圧面積が異なり、空調機を起動させるときに揺動ピストンの回転不良が生じる恐れがある。そこで、揺動ピストンで画成される各部屋を連通管71で吐出管(低圧側)と連通させることで、揺動ピストンの停止位置を制御することができ、これによって受圧面積を大きくして、起動不良を起きにくくすることができる。
 また、本実施の形態では、膨張機8を起動するときに、例えば動力を回収する発電機をモーターとして使用するなど、強制的に揺動スクロール57を揺動させる手段を必要とせず、膨張機によって冷媒が減圧される際の流体エネルギーのみで揺動スクロール57を揺動させることができるので、膨張機8の構造を簡単にすることができる。
 また、本実施の形態では、連通路71の開閉装置を電磁弁72としたが、その他の開閉装置であってもよいことは言うまでもない。
実施の形態2.
 前述の実施の形態1では、連通管71と電磁弁72を容器51の外に設けるようにしたものであるが、次に連通管71と弁を容器51に内蔵するようにした実施の形態2について説明する。図7はこのような場合の、弁が開いたときの図、図8は弁が閉じたときの図である。
 図7ではコイル111に通電することで、電磁力によって弁112が下に下がっている状態(弁開状態)である。このとき、連通路114によって、膨張室82と膨張機吐出空間85が連通されるので、膨張室82の冷媒が膨張機吐出空間85に排出される。前述の実施の形態1で説明した空気調和機の停止動作のとき、この状態となる。
 一方で、図8では、コイル111への通電を停止して、ばね113の弾性力で弁112を押し上げているので、膨張室82と膨張機吐出空間85は連通されない。空気調和機が運転中であるとき、及び膨張機8が完全に停止した後、この状態となる。
 本実施の形態では、コイル111、弁112、ばね113によって、前述の電磁弁72と同じ機能を持たせており、容器51に内蔵しているので、空気調和機を小型化することができる。
 なお、ここでは、説明の都合上、コイル111、弁112、ばね113、及び連通路114を1つのみ図示し説明したが、膨張室81と膨張機吐出空間85を連通させるようにもう1つコイル111、弁112、ばね113、及び連通路114を設けている。また、これらを1つのみで構成してもよい。
 1 主圧縮機
 2 補助圧縮機
 3 第1の四方弁
 4 室外熱交換器
 5 バイパス弁
 6 第2の四方弁
 7 予膨張弁
 8 膨張機
 9 アキュームレーター
 11,12 圧力センサー
 21 主圧縮機1の吐出配管
 22 室外熱交換器の入口または出口配管
 23 膨張機8の吸入配管
 24 膨張機8の吐出配管
 25 バイパス配管
 26 配管
 27 液管
 28 ガス管
 29 アキュームレーター9の入口配管
 31 膨張弁
 32 室内熱交換器
 51 容器
 52 駆動軸
 53 補助圧縮機2の吸入管
 54 補助圧縮機2の吐出管
 55 膨張機8の吸入管
 56 膨張機8の吐出管
 57 揺動スクロール
 58 圧縮機固定スクロール
 59 膨張機固定スクロール
 60 オルダムリング
 61 スライダー
 62 軸嵌入孔
 63 揺動軸受部
 64 揺動スクロール57上面の渦巻歯
 65 揺動スクロール57下面の渦巻歯
 66 圧縮機固定スクロール58の渦巻歯
 67 膨張機固定スクロール59の渦巻歯
 68 油ポンプ
 69 潤滑油
 70 バランサー
 71 連通管
 72 電磁弁
 73 渦巻歯67の巻き終わり
 81a,81b 膨張室
 82a,82b 膨張室
 85 膨張機吐出空間
 91a,91b 渦巻歯67の外側面と渦巻歯65の内側面の接点
 92a,92b 渦巻歯65の外側面と渦巻歯67の内側面の接点
 95a,95b 受圧部
 111 コイル
 112 弁
 113 ばね
 114 連通路

Claims (7)

  1.  揺動スクロールまたは揺動ピストンにより区画される複数の膨張室に供給された高圧流体が膨張して減圧される際の流体エネルギーにより動力が発生する膨張機構を備えた容積型膨張機であって、
     各前記膨張室と膨張機吐出側とをそれぞれ連通する連通路を備え、
     前記連通路には開閉装置を設け、
     前記開閉装置は、前記高圧流体の供給停止時に、各前記膨張室と前記膨張機吐出側との間の高圧と低圧が均圧するまでの間に開口して、前記揺動スクロールまたは前記揺動ピストンを所定の位置に止めることを特徴とする容積型膨張機。
  2.  前記揺動スクロールまたは前記揺動ピストンの停止位置は、前記膨張室への高圧流体供給開始時に、前記揺動スクロールまたは前記揺動ピストンにかかる駆動力が、膨張機内部の摺動部にかかる静止摩擦力よりも大きくなる位置であることを特徴とする請求項1に記載の容積型膨張機。
  3.  前記揺動スクロールまたは前記揺動ピストンの停止位置は、前記膨張室の空間が最大となる位置であることを特徴とする請求項1に記載の容積型膨張機。
  4.  前記開閉装置は、電磁弁であることを特徴とする請求項1乃至請求項3のいずれかに記載の容積型膨張機。
  5.  前記連通路は、各前記膨張室が吐出側に開放される位置から、前記揺動スクロールまたは前記揺動ピストンが公転する方向と反対方向に90°戻る位置の間にそれぞれ設けられていることを特徴とする請求項1乃至請求項4のいずれかに記載の容積型膨張機。
  6.  前記冷媒は、二酸化炭素であることを特徴とする請求項1乃至請求項5のいずれかに記載の容積型膨張機。
  7.  膨張機が、請求項1乃至請求項6のいずれかに記載の容積型膨張機であることを特徴とする冷凍サイクル装置。
PCT/JP2010/000257 2010-01-19 2010-01-19 容積型膨張機及びこの容積型膨張機を用いた冷凍サイクル装置 WO2011089638A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/000257 WO2011089638A1 (ja) 2010-01-19 2010-01-19 容積型膨張機及びこの容積型膨張機を用いた冷凍サイクル装置
CN201080061816.5A CN102713156B (zh) 2010-01-19 2010-01-19 容积型膨胀机以及使用该容积型膨胀机的冷冻循环装置
ES10843804T ES2732350T3 (es) 2010-01-19 2010-01-19 Expansor de desplazamiento positivo y dispositivo de ciclo de refrigeración que utiliza el expansor de desplazamiento positivo
EP10843804.5A EP2527591B1 (en) 2010-01-19 2010-01-19 Positive displacement expander and refrigeration cycle device using the positive displacement expander
JP2011550707A JP5414811B2 (ja) 2010-01-19 2010-01-19 容積型膨張機及びこの容積型膨張機を用いた冷凍サイクル装置
US13/518,042 US9121278B2 (en) 2010-01-19 2010-01-19 Positive displacement expander and refrigeration cycle apparatus including positive displacement expander

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000257 WO2011089638A1 (ja) 2010-01-19 2010-01-19 容積型膨張機及びこの容積型膨張機を用いた冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2011089638A1 true WO2011089638A1 (ja) 2011-07-28

Family

ID=44306462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000257 WO2011089638A1 (ja) 2010-01-19 2010-01-19 容積型膨張機及びこの容積型膨張機を用いた冷凍サイクル装置

Country Status (6)

Country Link
US (1) US9121278B2 (ja)
EP (1) EP2527591B1 (ja)
JP (1) JP5414811B2 (ja)
CN (1) CN102713156B (ja)
ES (1) ES2732350T3 (ja)
WO (1) WO2011089638A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153983A1 (ja) * 2012-04-09 2013-10-17 ダイキン工業株式会社 空気調和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140219844A1 (en) * 2013-02-06 2014-08-07 Daimler Ag Expansion device for use in a working medium circuit and method for operating an expansion device
JP5891192B2 (ja) * 2013-03-25 2016-03-22 株式会社神戸製鋼所 発電装置及び発電システム
CN112240224B (zh) 2019-07-19 2023-08-15 艾默生环境优化技术(苏州)有限公司 流体循环系统及其操作方法、计算机可读介质和控制器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190559A (ja) 2002-12-11 2004-07-08 Daikin Ind Ltd 容積型膨張機及び流体機械
JP2007332819A (ja) * 2006-06-13 2007-12-27 Hitachi Appliances Inc 容積形流体機械
JP2008180148A (ja) * 2007-01-24 2008-08-07 Nippon Soken Inc 流体機械
JP2009109158A (ja) 2007-11-01 2009-05-21 Mitsubishi Electric Corp 冷凍空調装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716311A (en) * 1968-07-11 1973-02-13 G Woodling Independent control means for fluid pressure device
JPS6162291U (ja) * 1984-09-28 1986-04-26
US5607288A (en) * 1993-11-29 1997-03-04 Copeland Corporation Scroll machine with reverse rotation protection
US5591014A (en) * 1993-11-29 1997-01-07 Copeland Corporation Scroll machine with reverse rotation protection
JP3194076B2 (ja) * 1995-12-13 2001-07-30 株式会社日立製作所 スクロール形流体機械
JP4561225B2 (ja) * 2004-08-05 2010-10-13 ダイキン工業株式会社 容積型膨張機及び流体機械
JP4682795B2 (ja) * 2005-10-19 2011-05-11 パナソニック株式会社 膨張機一体型圧縮機及び冷凍サイクル装置
JP4864689B2 (ja) * 2006-04-17 2012-02-01 株式会社デンソー 流体機械およびランキンサイクル
CN101981274B (zh) * 2008-04-07 2014-07-02 三菱电机株式会社 涡旋流体机械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190559A (ja) 2002-12-11 2004-07-08 Daikin Ind Ltd 容積型膨張機及び流体機械
JP2007332819A (ja) * 2006-06-13 2007-12-27 Hitachi Appliances Inc 容積形流体機械
JP2008180148A (ja) * 2007-01-24 2008-08-07 Nippon Soken Inc 流体機械
JP2009109158A (ja) 2007-11-01 2009-05-21 Mitsubishi Electric Corp 冷凍空調装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153983A1 (ja) * 2012-04-09 2013-10-17 ダイキン工業株式会社 空気調和装置
JP2013217576A (ja) * 2012-04-09 2013-10-24 Daikin Industries Ltd 空気調和装置

Also Published As

Publication number Publication date
EP2527591B1 (en) 2019-05-29
US20120321497A1 (en) 2012-12-20
JP5414811B2 (ja) 2014-02-12
US9121278B2 (en) 2015-09-01
JPWO2011089638A1 (ja) 2013-05-20
ES2732350T3 (es) 2019-11-22
EP2527591A1 (en) 2012-11-28
CN102713156A (zh) 2012-10-03
EP2527591A4 (en) 2016-12-14
CN102713156B (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
EP2565555B1 (en) Refrigeration cycle apparatus
EP2765369B1 (en) Refrigeration cycle device
JP5599403B2 (ja) 冷凍サイクル装置
JP4053082B2 (ja) 冷凍サイクル装置
JP2009127902A (ja) 冷凍装置及び圧縮機
EP2551613B1 (en) Refrigeration cycle apparatus and method for operating same
JP2008190377A (ja) 多段圧縮機
JP5036593B2 (ja) 冷凍サイクル装置
WO2011042959A1 (ja) 冷凍サイクル装置
JP4039024B2 (ja) 冷凍装置
JP6541804B2 (ja) スクロール圧縮機およびヒートポンプ装置
JP5414811B2 (ja) 容積型膨張機及びこの容積型膨張機を用いた冷凍サイクル装置
JP4622193B2 (ja) 冷凍装置
JP4991255B2 (ja) 冷凍サイクル装置
JP2012172581A (ja) スクロール圧縮機及びヒートポンプ装置
JP2699723B2 (ja) 逆止弁装置を備えた2段圧縮冷凍装置
JP2004251528A (ja) 冷凍空調装置
JP2009063247A (ja) 冷凍サイクル装置およびそれに用いる流体機械
JP2006214610A (ja) 冷凍装置
JP2007147228A (ja) 冷凍装置
JP2006125794A (ja) 冷凍サイクル装置
JP2007298207A (ja) 冷凍サイクル装置およびその制御法
WO2011099057A1 (ja) 冷凍空調装置
WO2012107959A1 (ja) 冷凍空調装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061816.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843804

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550707

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010843804

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13518042

Country of ref document: US