WO2011088777A1 - 一种磁集成双端变换器 - Google Patents

一种磁集成双端变换器 Download PDF

Info

Publication number
WO2011088777A1
WO2011088777A1 PCT/CN2011/070353 CN2011070353W WO2011088777A1 WO 2011088777 A1 WO2011088777 A1 WO 2011088777A1 CN 2011070353 W CN2011070353 W CN 2011070353W WO 2011088777 A1 WO2011088777 A1 WO 2011088777A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
secondary winding
double
winding
ended
Prior art date
Application number
PCT/CN2011/070353
Other languages
English (en)
French (fr)
Inventor
卢增艺
朱勇发
白亚东
陈为
晋兆国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14175172.7A priority Critical patent/EP2806551B1/en
Priority to BR112012010900-6A priority patent/BR112012010900B1/pt
Priority to EP11734359.0A priority patent/EP2512025B1/en
Priority to RU2012124058/07A priority patent/RU2524385C2/ru
Publication of WO2011088777A1 publication Critical patent/WO2011088777A1/zh
Priority to US13/451,381 priority patent/US8848397B2/en
Priority to US14/466,326 priority patent/US9160244B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a magnetic integrated double-ended converter having the functions of an integrated transformer and an inductor.
  • the integrated magnetic component adopts an EE core, and the winding N p and the winding N s are wound around the center pillar of the EE core to form a transformer, and the winding N L1 And the winding N u is wound around the side column of the EE core to form an inductance.
  • the prior art has at least a problem that the winding loss is large and the leakage inductance is large.
  • Embodiments of the present invention provide a magnetic integrated double-ended converter capable of reducing winding loss and leakage inductance of the primary and secondary sides, and achieving efficient energy conversion.
  • a double-ended symmetric inverter circuit acts on the primary winding
  • An integrated magnetic piece of a three-magnetic core includes at least three windings and an energy storage air gap, wherein the primary winding and the first secondary winding are wound around the first magnetic column, and the second secondary winding is wound around the second magnetic The column flows through the total output current;
  • a set of synchronous rectifiers whose gate drive signals respectively complement the gate drive signals of a set of power switch tubes of the double-ended symmetrically operated inverter circuit.
  • a double-ended symmetric inverter circuit acts on the primary winding
  • An integrated magnetic piece of a three-magnetic core includes at least three windings and an energy storage air gap, wherein the primary winding and the first secondary winding are wound around the second magnetic column and the third magnetic column, and the second secondary winding Around the first Two magnetic columns and flow through the total output current;
  • the switching device can be reduced by winding the primary winding and the first secondary winding on the same magnetic column and using a synchronous rectifier instead of the rectifier diode in the prior art.
  • the conduction loss acts as a zero voltage drop clamp on the secondary winding; this allows the primary side winding to be used to transfer the primary side energy to the secondary side, reducing winding losses and leakage inductance of the primary and secondary sides. Achieve efficient transformation of energy.
  • Embodiment 2 is a magnetic integrated half bridge converter according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram showing an analysis of an integrated magnetic component of a magnetic integrated double-ended converter according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of an operation waveform of a magnetic integrated half-bridge converter according to Embodiment 1 of the present invention
  • FIG. 5 is a magnetic integrated half-bridge converter according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic diagram of an operation waveform of a magnetic integrated half-bridge converter according to Embodiment 2 of the present invention
  • FIG. 7 is a magnetic integrated half-bridge converter according to Embodiment 3 of the present invention
  • FIG. 9 is a magnetic integrated push-pull converter according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a magnetic integrated dual-ended converter according to an embodiment of the present invention when the secondary windings are simultaneously one turn;
  • FIG. 11 is a schematic diagram of another magnetic integrated double-ended converter according to an embodiment of the present invention when the secondary winding is simultaneously ;
  • FIG. 12 is a magnetic integrated half-bridge converter according to Embodiment 4 of the present invention; .
  • a double-ended symmetric inverter circuit acts on the primary winding
  • An integrated magnetic piece of a three-magnetic core includes at least three windings and an energy storage air gap, wherein the primary winding and the first secondary winding are wound around the first magnetic column, and the second secondary winding is wound around the second magnetic column And flow through the total output current;
  • a set of synchronous rectifiers whose gate drive signals respectively complement the gate drive signals of a set of power switch tubes of the double-ended symmetrically operated inverter circuit.
  • the inverter circuit working symmetrically at both ends may be any one of a half bridge inverter circuit, a full bridge inverter circuit or a push pull circuit.
  • the double-ended symmetric working inverter circuit is a half-bridge inverter circuit
  • the magnetic integrated double-ended converter provided by the embodiment of the present invention may also be referred to as a magnetic integrated half-bridge converter; similarly, when the double-ended symmetric operation is reversed
  • the variable circuit is a full-bridge inverter circuit or a push-pull circuit
  • the magnetic integrated double-ended converter provided by the embodiment of the present invention may also be referred to as a magnetic integrated full-bridge converter or a magnetic integrated push-pull converter.
  • the inverter integrated circuit operates as a half-bridge inverter circuit.
  • the magnetic integrated double-ended converter provided by the embodiment of the present invention may have the following specific structure.
  • the primary half-bridge inverter circuit includes voltage dividing capacitors d, C 2 and power switching tubes Si, S 2 .
  • the integrated magnetic member includes an EE-type magnetic core including three windings and two energy storage air gaps.
  • the primary winding N p and the first secondary winding N sl are wound around the first magnetic column 1, the second secondary winding N s2 is wound around the second magnetic column 2, and the second magnetic column 2 is provided with an energy storage air gap 1
  • An energy storage air gap 2 is disposed on the third magnetic column 3.
  • the two ends of the primary winding N p are respectively connected to the connection point A of the power switch tube S 2 bridge arm of the half bridge inverter circuit and the connection point B of the voltage dividing capacitors d and C 2 .
  • a first synchronous rectifier S constitutes a power circuit of the secondary side; a second secondary winding N s2 and an output filter capacitor C.
  • the step rectifier SR 2 constitutes another power loop of the secondary side.
  • the series branch of the first synchronous rectifier 8 and the first secondary winding N sl is connected in parallel with the second synchronous rectifier SR 2 , and the current flowing through the second secondary winding N s2 is the current of the synchronous rectifier S and SR 2 Sum.
  • the primary side power switch Si and S 2 are staggered in phase 180.
  • the driving voltage V gl and V g2 will form a square wave inverter voltage VAB across the primary winding Np;
  • the driving voltages of the secondary synchronous rectifier 8 and SR 2 are V GSL and V gs2 , respectively, Complementing V g2 , V gs2 and V gl work complementarily. Therefore, the working process of the circuit can be divided into four stages:
  • P section UW The primary side power switch tube Si is turned on, S 2 is turned off, the secondary side synchronous rectifier tube S is turned on, and SR 2 is turned off.
  • the voltage applied across the primary winding N p is V m /2, the zero of the first magnetic column 1 where the primary winding is located rises linearly, and the magnetic fluxes ⁇ 2 and ⁇ 3 of the other two magnetic columns also rise accordingly.
  • the current i SR1 of the first secondary winding N sl is equal to the current i of the second secondary winding N s2 .
  • P segment 2[t r t 2 ] The primary side power switch tubes Si and S 2 are all turned off, and the secondary side synchronous rectifier tubes S and SR 2 are all turned on.
  • the primary winding current i p is zero.
  • the first secondary winding N sl is SiU.
  • the short circuit of SR 2 is such that the voltages of the windings Np and N sl wound around the first magnetic column 1 are zero, the magnetic flux remains unchanged, and the amount of magnetic flux drop of the second magnetic column 2 is equal to the magnetic flux rise of the third magnetic column 3. the amount.
  • Both side synchronous rectifiers are turned on, and the current i SR1 flowing through S is transferred to a part of SR 2 , and the sum of the currents is equal to i. Ut .
  • the voltage applied across the primary winding N p is -V m /2, the zero of the first magnetic column 1 where the primary winding is located decreases linearly, and the magnetic fluxes ⁇ 2 and ⁇ 3 of the other two magnetic columns also decrease accordingly.
  • the current iout of the second secondary winding N s2 flows through the synchronous rectifier SR 2 .
  • the primary side power switch tubes Si and S 2 are all turned off, and the secondary side synchronous rectifier tubes S and SR 2 are all turned on.
  • the primary winding current i p is zero.
  • the first secondary winding N sl is SiU.
  • the short circuit of SR 2 is such that the voltages of the windings Np and N sl wound around the first magnetic column 1 are zero, the magnetic flux remains unchanged, and the amount of magnetic flux drop of the second magnetic column 2 is equal to the magnetic flux rise of the third magnetic column 3. the amount.
  • Both side synchronous rectifiers are turned on, and the current i SR2 flowing through SR 2 is transferred to a portion, and the sum of the currents is equal to i. Ut . According to the continuity of the flux, the input-output voltage conversion ratio can be derived:
  • ⁇ - , where D is the duty cycle, which is the power-on time of the switching transistor Si divided by the switching period.
  • the magnetic integrated half-bridge converter of the second embodiment is different from the magnetic integrated half-bridge converter of the first embodiment in that: the EE type magnetic core of the second embodiment includes three windings and one energy storage gas. Gap.
  • the primary winding N p and the first secondary winding N sl are wound around the first magnetic column 1
  • the second secondary winding N s2 is wound around the second magnetic column 2
  • the third magnetic column 3 is provided with an energy storage air gap.
  • the number of the first secondary winding N sl turns is equal to twice the number of turns of the second secondary winding N s2 .
  • the working process of the circuit of the second embodiment can also be divided into four stages: P segment l[t 0 -t!]: the primary power switch Si is turned on, S 2 is cut off, the secondary side The synchronous rectifier S is turned on and the SR 2 is turned off.
  • the voltage applied across the primary winding N p is V m /2, the polarity of the first magnetic column 1 where the primary winding is located rises, the magnetic flux ⁇ 2 of the second magnetic column 2 rises linearly, and the magnetic flux of the third magnetic column 3 ⁇ 3 decreases linearly.
  • the current i SR1 of the first secondary winding N sl is equal to the current i of the second secondary winding N s2 .
  • P segment 2[t r t 2 ] The primary side power switch tubes Si and S 2 are all turned off, and the secondary side synchronous rectifier tubes S and SR 2 are all turned on.
  • the primary winding current i p is zero.
  • the first secondary winding N sl is SiU.
  • the short circuit of SR 2 is such that the voltages of the windings Np and N sl wound around the first magnetic column 1 are zero, the magnetic flux remains unchanged, and the amount of magnetic flux drop of the second magnetic column 2 is equal to the magnetic flux rise of the third magnetic column 3. the amount.
  • Both side synchronous rectifiers are turned on, and the current i SR1 flowing through S is equal to the current i SR2 flowing through SR 2 , and the sum of the currents is equal to i. Ut .
  • the voltage applied across the primary winding N p is -V m /2, the zero of the first magnetic column 1 where the primary winding is located decreases linearly, and the magnetic fluxes ⁇ 2 and ⁇ 3 of the other two magnetic columns also decrease linearly.
  • the current of N s2 flows through the synchronous rectifier SR 2 .
  • the primary side power switch tubes Si and S 2 are all turned off, and the secondary side synchronous rectifier tubes S and SR 2 are all turned on.
  • the primary winding current i p is zero.
  • the first secondary winding N sl is SiU.
  • the short circuit of SR 2 is such that the voltages of the windings N p and N sl wound around the first magnetic column 1 are zero, the magnetic flux remains unchanged, and the second magnetic
  • the amount of magnetic flux drop of the column 2 is equal to the amount of magnetic flux rise of the third magnetic column 3.
  • Both side synchronous rectifiers are turned on, and the current i SR1 flowing through S is equal to the current i SR2 flowing through SR 2 , and the sum of the currents is equal to i. Ut .
  • the input-output voltage conversion ratio can be derived:
  • ⁇ - , where D is the duty cycle, which is the power-on time of the switching transistor Si divided by the switching period.
  • the magnetic integrated half-bridge converter according to a third embodiment of the present is based on the above-described second embodiment, addition of a third secondary winding N s3 cylinders 3 in the third.
  • the EE type magnetic core of the third embodiment includes four windings and one energy storage air gap.
  • the primary winding N p and the first secondary winding N sl are wound around the first magnetic column 1
  • the second secondary winding N s2 is wound around the second magnetic column 2
  • the third winding N s3 is wound around the third magnetic column 3.
  • the third magnetic column 3 is provided with an energy storage air gap 1
  • the number of the first secondary windings N sl is equal to twice the number of turns of the second secondary winding N s2 .
  • the first secondary winding N sl , the second secondary winding N s2 , the third secondary winding N s3 , and the output filter capacitor C are output.
  • the first synchronous rectifier S constitutes a power circuit of the secondary side; the second secondary winding N s2 , the third secondary winding N s3 , and the output filter capacitor C.
  • the second synchronous rectifier SR 2 constitutes another power loop of the secondary side.
  • the series branch of the first secondary winding N sl is connected in parallel with the second synchronous rectifier SR 2 .
  • the second secondary winding N s2 and the third secondary winding N s3 are connected in series to enhance the output filtering inductance, and the current flowing is the sum of the currents of the synchronous rectifier S and the SR 2 .
  • the output filtering inductance of the circuit can be improved, and the operating mode of the circuit is not affected at the same time. Therefore, the operation timing of the synchronous rectifier current and the output current can still refer to FIG. 6.
  • the magnetic integrated half-bridge converter of the fourth embodiment is different from the magnetic integrated half-bridge converter of the first embodiment in that the EE core of the fourth embodiment includes three windings and one energy storage gas. Gap.
  • the primary winding N p and the first secondary winding N sl are wound around the first magnetic column 1
  • the second secondary winding N s2 is wound around the third magnetic column 3
  • the third magnetic column 3 is provided with an energy storage air gap. 1
  • the number of the first secondary winding N sl is equal to twice the number of turns of the second secondary winding N s2 , wherein the second secondary winding N s2 is extracted from the first secondary winding N sl .
  • the inverter circuit operating in double-ended symmetry is a half-bridge inverter circuit.
  • the magnetic integrated double-ended converter provided by the embodiment of the present invention is wound by winding the primary winding and the first secondary winding.
  • the conduction loss of the switching device can be reduced, and the first secondary winding N sl can be placed in the second and fourth P sections described above.
  • the voltage is clamped to 0, which acts as a zero voltage drop clamp on the secondary winding; this allows the primary side winding to be used to transfer the primary side energy to the secondary side, reducing winding losses and leakage of the primary and secondary sides. Sense, the efficient transformation of energy.
  • the magnetic integrated full-bridge converter of FIG. 8 has the same topology as the magnetic integrated half-bridge converter of FIG. 2, 5 or 7 except that the topology of the primary-side inverter circuit is different from that of the magnetic integrated half-bridge converter of FIG. 2, 5 or 7.
  • the primary and secondary windings of the magnetic integrated half-bridge converter of Figures 2, 5 or 7 are identical;
  • the magnetically integrated push-pull converter of Figure 9 has two primary windings, Np ⁇ . N p2 , one more than the primary winding of the full bridge and the half bridge, but the primary windings N pl and N p2 are wound around the same magnetic column, and the secondary winding structure and the magnetic integrated half bridge converter the same. Therefore, the operation sequence of the magnetic integrated full-bridge converter of FIG. 8 and the magnetic integrated push-pull converter of FIG. 9, the magnetic flux internal ⁇ , ⁇ 2 , ⁇ 3 of the magnetic core and the magnetic integrated half bridge of the present invention, respectively The converter is the same.
  • the shaded area in Figure 10 represents the copper skin of the secondary winding power loop, showing an E-shape with an open upward, consisting of three parts: two parts of the copper skin pass through the core window, respectively, the winding N Sl and N s2 ; The third part is connected to the secondary side rectifier SR 2 outside the core, which is the wiring part.
  • the primary winding N p is wound around the first magnetic column 1, a part and N sl are in the same winding window, a part is exposed outside the magnetic core window, and the wiring ensures a good coupling relationship, so that the energy of the primary winding N p can be realized. Efficient switching to the secondary windings N sl and N s2 while ensuring effective zero dropout clamping of S and SR 2 to the secondary winding.
  • the present invention can also bypass the primary winding Np and the first secondary winding N sl simultaneously around the second magnetic column 2 and the third magnetic column 3, and the other structures remain unchanged.
  • the shaded area in Fig. 11 represents the copper skin of the secondary winding power loop, which has an E-shape with an upward opening, and includes three parts: two portions of the copper skin pass through the magnetic
  • the core window is the windings N sl and N s2 respectively ; the third part is connected to the secondary side rectifier SR 2 outside the core, which is a wire portion.
  • the primary winding N p is wound around the second magnetic column 2 and the third magnetic column 3, and a portion and N sl are in the same winding window, and a part is exposed outside the magnetic core window, and the wiring ensures a good coupling relationship. And Figure 10 is different, then the trace portion of the primary winding N p follow around to the outside of the second magnetic column 2, to ensure that the primary side and still maintain good coupling portion.
  • an embodiment of the present invention provides another magnetic integrated double-ended converter, including:
  • a double-ended symmetric inverter circuit acts on the primary winding;
  • An integrated magnetic piece of a three-magnetic core includes at least three windings and at least one energy storage air gap, wherein the primary winding and the first secondary winding are wound around the second magnetic column and the third magnetic column, and the second secondary side The winding is wound around the second magnetic column and flows through the total output current;
  • a set of synchronous rectifiers whose gate drive signals respectively complement the gate drive signals of a set of power switch tubes of the double-ended symmetrically operated inverter circuit.
  • the integrated magnetic component of the three-magnetic core includes three windings and two energy storage air gaps, wherein the primary winding and the first secondary winding are wound around the second magnetic pole and the third magnetic cylinder, The second secondary winding is wound around the second magnetic column and flows through the total output current, and an energy storage air gap is respectively disposed on the second magnetic column and the third magnetic column.
  • the number of turns of the first secondary winding and the number of turns of the second secondary winding are not limited, and may be the same or different.
  • the integrated magnetic component of the three-magnetic core includes three windings and an energy storage air gap, wherein the primary winding and the first secondary winding are wound around the second magnetic pole and the third magnetic cylinder, The secondary side windings are wound around the second magnetic column and flow through the total output current, and only the third magnetic column is provided with an energy storage air gap.
  • This embodiment requires that the number of turns of the first secondary winding be twice the number of turns of the second secondary winding.
  • the integrated magnetic component of the three-magnetic core includes four windings and an energy storage air gap, wherein the primary winding and the first secondary winding are wound around the second magnetic pole and the third magnetic cylinder, The second secondary winding is wound around the second magnetic column, the third secondary winding is wound around the third magnetic column, and the third secondary winding is connected in series with the second secondary winding and flows through the total output current, only on the third magnetic column.
  • An energy storage air gap is provided.
  • This embodiment also requires that the number of turns of the first secondary winding be twice the number of turns of the second secondary winding.
  • the magnetic integrated double-ended converter includes a double-ended symmetric working circuit, which can be any one of a half-bridge inverter circuit, a full-bridge inverter circuit or a push-pull circuit, and can generate a square.
  • the wave voltage signal acts on the primary winding.
  • the primary winding and the first secondary winding are coaxially wound around the first magnetic column not provided with the energy storage air gap, or the second magnetic column and the third coaxially disposed with at least one energy storage air gap.
  • the magnetic column when the first secondary winding and/or the second secondary winding are one turn, can reduce the winding loss while satisfying the actual needs due to the reduction of the winding length.
  • the magnetic integrated double-ended converter provided by the embodiment of the present invention can be used as a communication device for a DC-DC secondary power module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

一种具有集成变压器和电感器功能的磁集成双端变换器,包括:一个三磁柱磁芯的集成磁件,其至少包含三个绕组(NP、NS1、NS2)和一个储能气隙,其中原边绕组(NP)和第一副边绕组(NS1)共同绕于第一磁柱或者共同绕于第二磁柱和第三磁柱,第二副边绕组(NS2)绕于第二磁柱且流过总的输出电流;一双端对称工作的逆变电路,其作用于原边绕组(NP);以及一组同步整流管(SR1、SR2),其门极驱动信号分别和该双端对称工作的逆变电路的一组功率开关管(S1、S2)的门极驱动信号互补工作。该磁集成双端变换器能够减小绕组损耗和原、副边的漏感,实现能量的高效变换。

Description

一种磁集成双端变换器 技术领域
本发明涉及一种具有集成变压器和电感器功能的磁集成双端变换器。
背景技术 在宽范围输入电压的直流变换器应用场合, 根据功率等级的要求, 可选 用单端变换器 (如反激变换器、 正激变换器等)或双端变换器 (如半桥变换 器、 全桥变换器、 推挽变换器等)作为主功率拓朴。
附图 1所示为现有的一种磁集成半桥变换器, 集成磁件采用 EE型磁芯, 绕组 Np和绕组 Ns绕在 EE型磁芯的中柱以构成变压器, 绕组 NL1和绕组 Nu 分别绕在 EE型磁芯的边柱以构成电感。 发明人在实现本发明的过程中, 发现现有技术至少存在绕组损耗大, 漏 感大的问题。
发明内容
本发明的实施例提供了一种磁集成双端变换器, 能够减小绕组损耗和原、 副边的漏感, 实现能量的高效变换。
本发明的实施例提供的一种磁集成双端变换器, 包括:
一双端对称工作的逆变电路作用于原边绕组;
一个三磁柱磁芯的集成磁件至少包含三个绕组和一个储能气隙, 其中原 边绕组和第一副边绕组共同绕于第一磁柱, 第二副边绕组绕于第二磁柱且流 过总的输出电流;
一组同步整流管, 其门极驱动信号分别和所述双端对称工作的逆变电路 的一组功率开关管的门极驱动信号互补工作。
本发明的实施例提供的另一种磁集成双端变换器, 包括:
一双端对称工作的逆变电路作用于原边绕组;
一个三磁柱磁芯的集成磁件至少包含三个绕组和一个储能气隙, 其中原 边绕组和第一副边绕组共同绕于第二磁柱和第三磁柱, 第二副边绕组绕于第 二磁柱且流过总的输出电流;
一组同步整流管, 其门极驱动信号分别和所述双端对称工作的逆变电路 的一组功率开关管的门极驱动信号互补工作。 由本发明的实施例提供的技术方案可知, 通过将原边绕组和第一副边绕 组绕制在相同的磁柱上, 并使用同步整流管替代现有技术中的整流二极管, 可以降低开关器件的导通损耗, 起到对副边绕组的零压降钳位作用; 这样可 以采用最少的原边绕组来实现原边能量到副边的传递, 减小绕组损耗和原、 副边的漏感, 实现能量的高效变换。
附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对现有技术及本 发明实施例描述中所需要使用的附图作一简单地介绍。
图 1为现有技术中的一种磁集成半桥变换器;
图 2为本发明实施例一提供的一种磁集成半桥变换器;
图 3 为对本发明实施例一提供的磁集成双端变换器集成磁件的分析示意 图;
图 4为本发明实施例一提供的磁集成半桥变换器的工作波形示意图; 图 5为本发明实施例二提供的一种磁集成半桥变换器;
图 6为本发明实施例二提供的磁集成半桥变换器的工作波形示意图; 图 7为本发明实施例三提供的一种磁集成半桥变换器;
图 8为本发明的实施例提供的一种磁集成全桥变换器;
图 9为本发明的实施例提供的一种磁集成推挽变换器;
图 10为当副边绕组同时为一匝时, 本发明的实施例提供的一种磁集成双 端变换器的示意图;
图 11为当副边绕组同时为一匝时, 本发明的实施例提供的另一种磁集成 双端变换器的示意图; 图 12为本发明实施例四提供的一种磁集成半桥变换器。
具体实施方式 为使本发明的目的、 技术方案、 及优点更加清楚明白, 下面结合附图并 举实施例, 对本发明提供的技术方案进一步详细描述。
本发明的实施例提供的一种磁集成双端变换器, 包括:
一双端对称工作的逆变电路作用于原边绕组;
一个三磁柱磁芯的集成磁件至少包含三个绕组和一个储能气隙, 其中原 边绕组和第一副边绕组绕于第一磁柱, 第二副边绕组绕于第二磁柱且流过总 的输出电流;
一组同步整流管, 其门极驱动信号分别和所述双端对称工作的逆变电路 的一组功率开关管的门极驱动信号互补工作。
其中, 双端对称工作的逆变电路可以为半桥逆变电路、 全桥逆变电路或 推挽电路中任一种。 当双端对称工作的逆变电路为半桥逆变电路时, 本发明 的实施例提供的磁集成双端变换器又可称为磁集成半桥变换器; 同样, 当双 端对称工作的逆变电路为全桥逆变电路或推挽电路时, 本发明的实施例提供 的磁集成双端变换器对应又可称为磁集成全桥变换器或磁集成推挽变换器。
以双端对称工作的逆变电路为半桥逆变电路为例, 本发明的实施例提供 的磁集成双端变换器可以有如下的具体结构。
实施例一
参见附图 2, 本实施例一的磁集成半桥变换器, 其原边的半桥逆变电路包 括分压电容 d、 C2和功率开关管 Si、 S2。 其集成磁件包含一个 EE型磁芯, 所述 EE型磁芯包括三个绕组和两个储能气隙。 其中原边绕组 Np和第一副边 绕组 Nsl绕于第一磁柱 1,第二副边绕组 Ns2绕于第二磁柱 2,第二磁柱 2上设 置有储能气隙 1, 第三磁柱 3上设置有储能气隙 2。 原边绕组 Np两端分别连 接半桥逆变电路的功率开关管 S2桥臂的连接点 A和分压电容 d、 C2的连 接点 B。
第一副边绕组 Nsl、 第二副边绕组 Ns2、 输出滤波电容 C。和第一同步整流 管 S 构成副边的一功率电路; 第二副边绕组 Ns2、输出滤波电容 C。和第二同 步整流管 SR2构成副边的另一功率回路。第一同步整流管 8 和第一副边绕组 Nsl的串联支路和第二同步整流管 SR2并联, 在第二副边绕组 Ns2流过的电流 为同步整流管 S 和 SR2的电流之和。
参见附图 3和附图 4, 根据对称半桥的工作原理, 原边的功率开关管 Si 和 S2在相位交错 180。的驱动电压 Vgl和 Vg2作用下, 将在原边绕组 Np两端形 成方波逆变电压 VAB; 副边的同步整流管 8 和 SR2的驱动电压分别为 VGSL 和 Vgs2, 其中, V 和 Vg2互补工作, Vgs2和 Vgl互补工作。 因此, 电路的工 作过程可以分为四个阶段:
P介段 U W:原边的功率开关管 Si导通, S2截止, 副边的同步整流管 S 导通, SR2截止。 加在原边绕组 Np两端的电压为 Vm/2, 原边绕组所在的第一 磁柱 1的0 线性上升, 其他两磁柱的磁通 Φ 2、 Φ 3也相应的上升。 第一副边绕 组 Nsl的电流 iSR1等于第二副边绕组 Ns2的电流 i。ut
P介段 2[trt2]: 原边的功率开关管 Si、 S2均截止, 副边的同步整流管 S 、 SR2均导通。 原边绕组电流 ip为零。 第一副边绕组 Nsl被 SiU。 SR2短路, 使 得绕在第一磁柱 1的绕组 Np和 Nsl的电压均为零, 磁通 保持不变, 第二磁 柱 2的磁通下降量等于第三磁柱 3的磁通上升量。 两副边同步整流管均导通, 流过 S 的电流 iSR1转移一部分到 SR2, 电流之和等于 i。ut
P介段 3[t2-t3]:原边的功率开关管 S2导通, Si截止, 副边的同步整流管 SR2 导通, S 截止。 加在原边绕组 Np两端的电压为 -Vm/2, 原边绕组所在的第一 磁柱 1的0 线性下降, 其他两磁柱的磁通 Φ 2、 Φ 3也相应的下降。 第二副边绕 组 Ns2的电流 iout全部流过同步整流管 SR2
P介段 4[t3-t4]: 原边的功率开关管 Si、 S2均截止, 副边的同步整流管 S 、 SR2均导通。 原边绕组电流 ip为零。 第一副边绕组 Nsl被 SiU。 SR2短路, 使 得绕在第一磁柱 1的绕组 Np和 Nsl的电压均为零, 磁通 保持不变, 第二磁 柱 2的磁通下降量等于第三磁柱 3的磁通上升量。 两副边同步整流管均导通, 流过 SR2的电流 iSR2转移一部分到 S , 电流之和等于 i。ut。 根据磁通连续性, 可以推导出输入输出电压转换比:
^ = ^- ,其中 D是指占空比,为功率开关管 Si开通时间除以开关周期。
Vm Np 2 实施例二
参见附图 5, 本实施例二的磁集成半桥变换器, 与实施例一的磁集成半桥 变换器结构不同在于: 本实施例二的 EE 型磁芯包括三个绕组和一个储能气 隙。 其中原边绕组 Np和第一副边绕组 Nsl绕于第一磁柱 1, 第二副边绕组 Ns2 绕于第二磁柱 2, 在第三磁柱 3上设置有储能气隙 1, 且第一副边绕组 Nsl匝 数等于第二副边绕组 Ns2匝数的两倍。
参见附图 6, 本实施例二的电路的工作过程同样可以分为四个阶段: P介段 l[t0-t!]:原边的功率开关管 Si导通, S2截止, 副边的同步整流管 S 导通, SR2截止。 加在原边绕组 Np两端的电压为 Vm/2, 原边绕组所在的第一 磁柱 1的 性上升, 第二磁柱 2的磁通 Φ 2线性上升, 第三磁柱 3的磁通 Φ 3 线性下降。 第一副边绕组 Nsl的电流 iSR1等于第二副边绕组 Ns2的电流 i。ut
P介段 2[trt2]: 原边的功率开关管 Si、 S2均截止, 副边的同步整流管 S 、 SR2均导通。 原边绕组电流 ip为零。 第一副边绕组 Nsl被 SiU。 SR2短路, 使 得绕在第一磁柱 1的绕组 Np和 Nsl的电压均为零, 磁通 保持不变, 第二磁 柱 2的磁通下降量等于第三磁柱 3的磁通上升量。 两副边同步整流管均导通, 流过 S 的电流 iSR1等于流过 SR2的电流 iSR2, 二者电流之和等于 i。ut
P介段 3[t2-t3]:原边的功率开关管 S2导通, Si截止, 副边的同步整流管 SR2 导通, S 截止。 加在原边绕组 Np两端的电压为 -Vm/2, 原边绕组所在的第一 磁柱 1的0 线性下降, 其他两磁柱的磁通 Φ 2、 Φ 3也线性下降。 第二副边绕组
Ns2的电流 全部流过同步整流管 SR2
P介段 4[t3-t4]: 原边的功率开关管 Si、 S2均截止, 副边的同步整流管 S 、 SR2均导通。 原边绕组电流 ip为零。 第一副边绕组 Nsl被 SiU。 SR2短路, 使 得绕在第一磁柱 1的绕组 Np和 Nsl的电压均为零, 磁通 保持不变, 第二磁 柱 2的磁通下降量等于第三磁柱 3的磁通上升量。 两副边同步整流管均导通, 流过 S 的电流 iSR1等于流过 SR2的电流 iSR2, 二者电流之和等于 i。ut
根据磁通连续性, 可以推导出输入输出电压转换比:
^ = ^- ,其中 D是指占空比,为功率开关管 Si开通时间除以开关周期。
Vm Np 2 由于第一磁柱 1和第二磁柱 2上未设置储能气隙, 可以认为该磁柱的等 效磁阻为零。 因此本实施例二的等效输出滤波电感 。 ^可表示为:
Lout = ^ , 其中 Rm3为第三磁柱 3的等效磁阻。 实施例三
参见附图 7, 本实施例三的磁集成半桥变换器, 是在上述实施例二的基础 上, 在第三磁柱 3上增加第三副边绕组 Ns3。 具体而言, 本实施例三的 EE型 磁芯包括四个绕组和一个储能气隙。 其中原边绕组 Np和第一副边绕组 Nsl绕 于第一磁柱 1,第二副边绕组 Ns2绕于第二磁柱 2,第三绕组 Ns3绕于第三磁柱 3, 第三磁柱 3设置有储能气隙 1, 且第一副边绕组 Nsl匝数等于第二副边绕 组 Ns2匝数的两倍。
此时, 第一副边绕组 Nsl、 第二副边绕组 Ns2、 第三副边绕组 Ns3、 输出滤 波电容 C。和第一同步整流管 S 构成副边的一功率电路; 第二副边绕组 Ns2、 第三副边绕组 Ns3、输出滤波电容 C。和第二同步整流管 SR2构成副边的另一功 率回路。第一同步整流管 SR^。第一副边绕组 Nsl的串联支路和第二同步整流 管 SR2并联。 第二副边绕组 Ns2和第三副边绕组 Ns3串联, 增强输出滤波电感 量, 流过的电流为同步整流管 S 和 SR2的电流之和。
本实施例三与上述实施例二相比, 通过在第三磁柱 3 上增加第三副边绕 组 3, 能够提高电路的输出滤波电感量, 同时对电路的工作模式没有影响。 因此, 同步整流管电流及输出电流的工作时序仍可以参考附图 6。 此时本实施 例三的等效输出滤波电感量 L。ut可表示为: Lout = d + )2, 其中 Rm3为第三磁柱 3的等效磁阻。 实施例四
参见附图 12, 本实施例四的磁集成半桥变换器, 与实施例一的磁集成半 桥变换器结构不同在于:本实施例四的 EE型磁芯包括三个绕组和一个储能气 隙。 其中原边绕组 Np和第一副边绕组 Nsl绕于第一磁柱 1, 第二副边绕组 Ns2 绕于第三磁柱 3, 在第三磁柱 3上设置有储能气隙 1, 且第一副边绕组 Nsl匝 数等于第二副边绕组 Ns2匝数的两倍, 其中第二副边绕组 Ns2从第一副边绕组 Nsl中抽出。
本实施例四的电路的工作过程同实施例二。 综上所述, 以双端对称工作的逆变电路为半桥逆变电路为例, 本发明的 实施例提供的磁集成双端变换器, 通过将原边绕组和第一副边绕组绕制在相 同的磁柱上, 并使用同步整流管替代现有技术中的整流二极管, 可以降低开 关器件的导通损耗,并可以在上述第 2和 4 P介段把第一副边绕组 Nsl的电压箝 位成 0,起到对副边绕组的零压降钳位作用; 这样可以采用最少的原边绕组来 实现原边能量到副边的传递, 减小绕组损耗和原、 副边的漏感, 实现能量的 高效变换。
可以理解的是, 根据逆变电路的拓朴结构不同, 本实施例的双端对称工 换器和附图 9的磁集成推挽变换器。
其中, 附图 8 中的磁集成全桥变换器, 除原边的逆变电路的拓朴结构与 附图 2、 5或 7中的磁集成半桥变换器不同外, 其原副边绕组与附图 2、 5或 7 中磁集成半桥变换器的原副边绕组完全相同; 附图 9 中磁集成推挽变换器的 原边绕组有两个, 分别为 Np^。Np2, 比全桥、 半桥的原边绕组多一个, 但是 原边绕组 Npl和 Np2绕于同一磁柱, 同时副边的绕组结构与磁集成半桥变换器 相同。 因此, 附图 8的磁集成全桥变换器和附图 9的磁集成推挽变换器的工 作时序、 构成的磁芯内部磁通 Φ 、 Φ 2、 Φ 3分别和本发明的磁集成半桥变换器 相同。
当原边绕组 Νρ和第一副边绕组 Nsl绕于第一磁柱 1, 第二副边绕组 Ns2绕 于第二磁柱 2时, 参见附图 10, 在副边绕组 Nsl和 Ns2同时为一匝时, 图 10 中阴影区域代表副边绕组功率回路的铜皮, 呈现开口向上的 E型状, 包含三 部分: 其中两部分铜皮穿过磁芯窗口, 分别为绕组 Nsl和 Ns2; 第三部分在磁 芯外部连接副边整流管 SR2, 为走线部分。 原边绕组 Np绕于第一磁柱 1, 一 部分和 Nsl在同一绕线窗口, 一部分暴露在磁芯窗口外, 和走线保证良好的耦 合关系, 这样能够实现原边绕组 Np的能量向副边绕组 Nsl和 Ns2的高效切换, 同时保证 S 和 SR2对副边绕组的有效的零压降钳位功能。
因为 E型磁芯的储能气隙分别设置于第二磁柱 2和第三磁柱 3或仅设置 在第三磁柱 3, 为了更加有效地控制集成磁件外部的磁场分布, 本发明的实施 例提供的磁集成双端变换器也可以将原边绕组 Np和第一副边绕组 Nsl同时绕 过第二磁柱 2和第三磁柱 3, 其他的结构保持不变。
当原边绕组 Np和第一副边绕组 Nsl同时绕过第二磁柱 2和第三磁柱 3,第 二副边绕组 Ns2绕于第二磁柱 2时, 参见附图 11, 在副边绕组 Nsl和 Ns2同时 为一匝时, 图 11中阴影区域代表副边绕组功率回路的铜皮, 呈现开口向上的 E型状, 包含三部分: 其中两部分铜皮穿过磁芯窗口, 分别为绕组 Nsl和Ns2; 第三部分在磁芯外部连接副边整流管 SR2, 为走线部分。 原边绕组 Np绕于第 二磁柱 2和第三磁柱 3, 一部分和 Nsl在同一绕线窗口, 一部分暴露在磁芯窗 口外, 和走线保证良好的耦合关系。 与附图 10不同的是, 此时走线部分跟随 原边绕组 Np绕于第二磁柱 2的外侧, 以保证和原边部分仍保持良好的耦合。
基于上述的说明, 本发明的实施例提供了另一种磁集成双端变换器, 包 括:
一双端对称工作的逆变电路作用于原边绕组; 一个三磁柱磁芯的集成磁件包含至少三个绕组和至少一个储能气隙, 其 中原边绕组和第一副边绕组共同绕于第二磁柱和第三磁柱, 第二副边绕组绕 于第二磁柱且流过总的输出电流;
一组同步整流管, 其门极驱动信号分别和所述双端对称工作的逆变电路 的一组功率开关管的门极驱动信号互补工作。
一种实施例, 三磁柱磁芯的集成磁件包含三个绕组和两个储能气隙, 其 中原边绕组和第一副边绕组共同绕于第二磁柱和第三磁柱, 第二副边绕组绕 于第二磁柱且流过总的输出电流, 在第二磁柱和第三磁柱上分别设置有储能 气隙。 此实施例对第一副边绕组的匝数与第二副边绕组的匝数未做限制, 可 以^]同或不同。
另一种实施例, 三磁柱磁芯的集成磁件包含三个绕组和一个储能气隙, 其中原边绕组和第一副边绕组共同绕于第二磁柱和第三磁柱, 第二副边绕组 绕于第二磁柱且流过总的输出电流, 仅在第三磁柱上设置有储能气隙。 此实 施例要求所述第一副边绕组的匝数为所述第二副边绕组匝数的两倍。
再一种实施例, 三磁柱磁芯的集成磁件包含四个绕组和一个储能气隙, 其中原边绕组和第一副边绕组共同绕于第二磁柱和第三磁柱, 第二副边绕组 绕于第二磁柱, 第三副边绕组绕于第三磁柱, 第三副边绕组与第二副边绕组 串联且流过总的输出电流, 仅在第三磁柱上设置有储能气隙。 此实施例也要 求所述第一副边绕组的匝数为所述第二副边绕组匝数的两倍。
同样可以理解的是, 该磁集成双端变换器包括的一双端对称工作的逆变 电路可以为半桥逆变电路、 全桥逆变电路或推挽电路中的任一种, 并且可以 产生方波电压信号作用于原边绕组。
需要说明的是, 原边绕组和第一副边绕组无论共同绕于未设置有储能气 隙的第一磁柱, 还是共同绕于至少设置一储能气隙的第二磁柱和第三磁柱, 当第一副边绕组和 /或所述第二副边绕组为一匝时, 由于绕组长度减少, 在满 足实际需要的同时, 能够减小绕组损耗。 最后需要说明的是, 本发明的实施例提供的磁集成双端变换器作为一种 通信设备可以用于直流 -直流(DC-DC ) 的二次电源模块。 上述具体实施例并不用以限制本发明, 对于本技术领域的普通技术人员 来说, 凡在不脱离本发明原理的前提下, 所作的任何修改、 等同替换、 改进 等, 均应包含在本发明的保护范围之内。

Claims

权利 要求 书
1、 一种磁集成双端变换器, 其特征在于, 包括:
一双端对称工作的逆变电路作用于原边绕组;
一个三磁柱磁芯的集成磁件至少包含三个绕组和一个储能气隙, 其中原边 绕组和第一副边绕组共同绕于第一磁柱, 第二副边绕组绕于第二磁柱且流过总 的输出电流;
一组同步整流管, 其门极驱动信号分别和所述双端对称工作的逆变电路的 一组功率开关管的门极驱动信号互补工作。
2、 如权利要求 1所述的磁集成双端变换器, 其特征在于, 在第二磁柱和第 三磁柱上分别设置有储能气隙。
3、 如权利要求 2所述的磁集成双端变换器, 其特征在于, 所述第一副边绕 组和 /或所述第二副边绕组的匝数为一匝。
4、 如权利要求 1所述的磁集成双端变换器, 其特征在于, 仅在第三磁柱上 设置有储能气隙, 且所述第一副边绕组的匝数为所述第二副边绕组匝数的两倍。
5、 如权利要求 4所述的磁集成双端变换器, 其特征在于, 在所述第三磁柱 上增加一第三副边绕组, 所述第三副边绕组与所述第二副边绕组串联且流过总 的输出电流。
6、 如权利要求 1所述的磁集成双端变换器, 其特征在于, 仅在第二磁柱上 设置有储能气隙, 且所述第一副边绕组的匝数为所述第二副边绕组匝数的两倍。
7、 如权利要求 6所述的磁集成双端变换器, 其特征在于, 在所述第二磁柱 上增加一第三副边绕组, 所述第三副边绕组与所述第二副边绕组串联且流过总 的输出电流。
8、 如权利要求 1-7任一项所述的磁集成双端变换器, 其特征在于, 所述双 端对称工作的逆变电路为如下任一种: 半桥逆变电路、 全桥逆变电路或推挽电 路。
9、 一种磁集成双端变换器, 其特征在于, 包括: 一双端对称工作的逆变电路作用于原边绕组;
一个三磁柱磁芯的集成磁件至少包含三个绕组和一个储能气隙, 其中原边 绕组和第一副边绕组共同绕于第二磁柱和第三磁柱, 第二副边绕组绕于第二磁 柱且流过总的输出电流;
一组同步整流管, 其门极驱动信号分别和所述双端对称工作的逆变电路的 一组功率开关管的门极驱动信号互补工作。
10、 如权利要求 9所述的磁集成双端变换器, 其特征在于, 在第二磁柱和 第三磁柱上分别设置有储能气隙。
11、 如权利要求 10所述的磁集成双端变换器, 其特征在于, 所述第一副边 绕组和 /或所述第二副边绕组的匝数为一匝。
12、 如权利要求 9所述的磁集成双端变换器, 其特征在于, 仅在第三磁柱 上设置有储能气隙, 且所述第一副边绕组的匝数为所述第二副边绕组匝数的两 倍。
13、 如权利要求 12所述的磁集成双端变换器, 其特征在于, 在所述第三磁 柱上增加一第三副边绕组, 所述第三副边绕组与所述第二副边绕组串联且流过 总的输出电流。
14、 如权利要求 9-13任一项所述的磁集成双端变换器, 其特征在于, 所述 双端对称工作的逆变电路为如下任一种: 半桥逆变电路、 全桥逆变电路或推挽 电路。
PCT/CN2011/070353 2010-01-19 2011-01-18 一种磁集成双端变换器 WO2011088777A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14175172.7A EP2806551B1 (en) 2010-01-19 2011-01-18 Magnetic integration double-ended converter
BR112012010900-6A BR112012010900B1 (pt) 2010-01-19 2011-01-18 conversor com terminal duplo de integração magnética
EP11734359.0A EP2512025B1 (en) 2010-01-19 2011-01-18 Magnetic integration double-ended converter
RU2012124058/07A RU2524385C2 (ru) 2010-01-19 2011-01-18 Магнитный интегральный симметричный конвертер
US13/451,381 US8848397B2 (en) 2010-01-19 2012-04-19 Magnetic integration double-ended converter
US14/466,326 US9160244B2 (en) 2010-01-19 2014-08-22 Magnetic integration double-ended converter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010004094A CN101728968A (zh) 2010-01-19 2010-01-19 一种磁集成双端变换器
CN201010004094.1 2010-01-19
CN201010266511.X 2010-08-30
CN201010266511.XA CN101951181B (zh) 2010-01-19 2010-08-30 一种磁集成双端变换器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/451,381 Continuation US8848397B2 (en) 2010-01-19 2012-04-19 Magnetic integration double-ended converter

Publications (1)

Publication Number Publication Date
WO2011088777A1 true WO2011088777A1 (zh) 2011-07-28

Family

ID=42449353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070353 WO2011088777A1 (zh) 2010-01-19 2011-01-18 一种磁集成双端变换器

Country Status (6)

Country Link
US (2) US8848397B2 (zh)
EP (2) EP2806551B1 (zh)
CN (3) CN101728968A (zh)
BR (1) BR112012010900B1 (zh)
RU (1) RU2524385C2 (zh)
WO (1) WO2011088777A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8848397B2 (en) 2010-01-19 2014-09-30 Huawei Technologies Co., Ltd. Magnetic integration double-ended converter
US20180204666A1 (en) * 2016-10-28 2018-07-19 Delta Electronics (Shanghai) Co., Ltd Coupled-inductor module and voltage regulating module comprising the same
US10438736B2 (en) 2016-10-28 2019-10-08 Delta Electronics (Shanghai) Co., Ltd. Magnetic component and manufacturing method thereof
US10643782B2 (en) 2016-10-28 2020-05-05 Delta Electronics (Shanghai) Co., Ltd. Magnetic component and power module

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130027170A1 (en) * 2011-06-30 2013-01-31 Analog Devices, Inc. Isolated power converter with magnetics on chip
CN103457454B (zh) 2013-08-21 2016-08-24 华为技术有限公司 一种电压变换器和共模噪声阻抗调整方法
WO2015070047A2 (en) * 2013-11-07 2015-05-14 Rompower Energy Systems, Inc. Soft switching converter with dual transformer by steering the magnetizing current
CN104701000B (zh) * 2013-12-04 2018-05-08 台达电子企业管理(上海)有限公司 集成磁性组件与应用其的全波整流变换器
CN104716837B (zh) * 2013-12-17 2018-06-15 通用电气公司 升降压变换器和升降压控制方法
CN104752045A (zh) * 2013-12-30 2015-07-01 联合汽车电子有限公司 一种变压器和电感器的集成结构及其实现方法
JP5983637B2 (ja) * 2014-01-10 2016-09-06 株式会社デンソー トランス装置
WO2015165107A1 (zh) * 2014-04-30 2015-11-05 深圳欧陆通电子有限公司 一种用电设备及电源装置
FR3025956B1 (fr) * 2014-09-12 2018-03-02 Valeo Siemens Eautomotive France Sas Convertisseur de tension continue et procede de commande associe
US9876437B2 (en) 2014-09-26 2018-01-23 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Interleaved transformer/inductor
EP3157022A1 (en) * 2015-10-16 2017-04-19 SMA Solar Technology AG Inductor assembly and power suppy system using the same
US10277141B2 (en) * 2016-09-15 2019-04-30 Psemi Corporation Current protected integrated transformer driver for isolating a DC-DC convertor
CN106936320B (zh) * 2017-05-11 2024-04-26 辽宁工程技术大学 一种交错并联磁集成双向全桥llc谐振变换器
CN107731481A (zh) * 2017-08-23 2018-02-23 广路智能科技有限公司 一种磁路拓扑集成磁体
CN108648899B (zh) * 2018-03-27 2022-02-11 华为数字能源技术有限公司 一种磁集成器件、变换器、功率因数校正电路及方法
CN108964646B (zh) * 2018-07-17 2022-05-13 武昌首义学院 一种功能集成的边沿调制igbt/mos驱动系统
CN109067186B (zh) * 2018-09-14 2024-02-13 广州金升阳科技有限公司 一种改进型输出零纹波变换器及其控制方法
CN109686538B (zh) * 2018-12-11 2020-07-28 华为技术有限公司 一种变压器以及电源
CN109617441B (zh) * 2019-01-30 2024-01-30 广州工程技术职业学院 三电平半桥型变换器及其换流方法
CN115001285B (zh) * 2022-08-01 2022-11-04 银河航天(西安)科技有限公司 一种功率转换电路及功率转换系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030732A (zh) * 2007-01-09 2007-09-05 南京航空航天大学 输出电流纹波最小化正激式磁集成变换器
CN201008125Y (zh) * 2007-01-09 2008-01-16 南京航空航天大学 有源钳位磁集成变换器
CN101517878A (zh) * 2006-10-02 2009-08-26 株式会社村田制作所 双端绝缘型dc-dc转换器
CN101728968A (zh) * 2010-01-19 2010-06-09 华为技术有限公司 一种磁集成双端变换器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK382687A (da) 1987-07-22 1989-04-14 Scanpower Stroemforsyningskredsloeb
US5555494A (en) * 1993-09-13 1996-09-10 Morris; George Q. Magnetically integrated full wave DC to DC converter
US5784266A (en) 1996-06-14 1998-07-21 Virginia Power Technologies, Inc Single magnetic low loss high frequency converter
US6351402B1 (en) 2000-09-29 2002-02-26 Compaq Information Technologies Group, L.P. AC adapter with current driven, zero-voltage switched synchronous rectifier
US6400249B1 (en) 2000-12-18 2002-06-04 Ascom Energy Systems Ag Transformer providing low output voltage
US7034647B2 (en) * 2001-10-12 2006-04-25 Northeastern University Integrated magnetics for a DC-DC converter with flexible output inductor
US6549436B1 (en) * 2002-02-21 2003-04-15 Innovative Technology Licensing Llc Integrated magnetic converter circuit and method with improved filtering
US6714428B2 (en) 2002-03-26 2004-03-30 Delta Electronics Inc. Combined transformer-inductor device for application to DC-to-DC converter with synchronous rectifier
CN1571259A (zh) * 2003-07-17 2005-01-26 中兴通讯股份有限公司 零电压开关脉宽调制全桥变换器的磁集成装置
US7012414B1 (en) * 2004-08-19 2006-03-14 Coldwatt, Inc. Vertically packaged switched-mode power converter
JP2008205466A (ja) * 2007-02-17 2008-09-04 Zhejiang Univ 磁気部品
CN101257255B (zh) * 2007-12-25 2011-10-12 南京航空航天大学 用于llc谐振系列拓扑磁集成变换器
KR100983033B1 (ko) * 2008-03-17 2010-09-17 삼성전기주식회사 집적화된 트랜스포머 및 이를 이용한 전원 장치
US7742318B2 (en) * 2008-06-10 2010-06-22 Virginia Tech Intellectual Properties, Inc. Multi-element resonant converters
CN101355308B (zh) * 2008-08-29 2010-07-21 浙江大学 一种磁集成的零电压零电流软开关全桥电路
CN101562404B (zh) * 2009-05-16 2011-12-07 旭丽电子(广州)有限公司 谐振转换装置及其同步整流电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517878A (zh) * 2006-10-02 2009-08-26 株式会社村田制作所 双端绝缘型dc-dc转换器
CN101030732A (zh) * 2007-01-09 2007-09-05 南京航空航天大学 输出电流纹波最小化正激式磁集成变换器
CN201008125Y (zh) * 2007-01-09 2008-01-16 南京航空航天大学 有源钳位磁集成变换器
CN101728968A (zh) * 2010-01-19 2010-06-09 华为技术有限公司 一种磁集成双端变换器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8848397B2 (en) 2010-01-19 2014-09-30 Huawei Technologies Co., Ltd. Magnetic integration double-ended converter
US9160244B2 (en) 2010-01-19 2015-10-13 Huawei Technologies Co., Ltd. Magnetic integration double-ended converter
US20180204666A1 (en) * 2016-10-28 2018-07-19 Delta Electronics (Shanghai) Co., Ltd Coupled-inductor module and voltage regulating module comprising the same
US10242791B2 (en) * 2016-10-28 2019-03-26 Delta Electronics (Shanghai) Co., Ltd Coupled-inductor module and voltage regulating module comprising the same
US10438736B2 (en) 2016-10-28 2019-10-08 Delta Electronics (Shanghai) Co., Ltd. Magnetic component and manufacturing method thereof
US10643782B2 (en) 2016-10-28 2020-05-05 Delta Electronics (Shanghai) Co., Ltd. Magnetic component and power module

Also Published As

Publication number Publication date
CN101951181A (zh) 2011-01-19
RU2524385C2 (ru) 2014-07-27
BR112012010900B1 (pt) 2019-11-19
EP2806551B1 (en) 2020-07-22
CN101728968A (zh) 2010-06-09
US8848397B2 (en) 2014-09-30
EP2806551A2 (en) 2014-11-26
EP2512025A4 (en) 2013-08-07
EP2512025A1 (en) 2012-10-17
CN101951181B (zh) 2014-02-19
EP2806551A3 (en) 2015-09-23
RU2012124058A (ru) 2013-12-20
US9160244B2 (en) 2015-10-13
CN103762853A (zh) 2014-04-30
BR112012010900A2 (pt) 2016-04-05
CN103762853B (zh) 2017-01-25
US20140362607A1 (en) 2014-12-11
EP2512025B1 (en) 2014-09-10
US20120201053A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
WO2011088777A1 (zh) 一种磁集成双端变换器
WO2021042773A1 (zh) 一种llc谐振变换器及控制方法
US8891261B2 (en) Three-phase three-level soft-switched PFC rectifiers
CN109217681A (zh) 一种双向谐振变换器
TW200304721A (en) Combined transformer-inductor device for application to DC-to-DC converter with synchronous rectifier
CN103595259B (zh) 双变压器串并联隔离软开关直流变换器及其控制方法
TWI737129B (zh) 直流/直流變換系統
CN105896986A (zh) 一种谐振变换器及其控制方法
CN101030732A (zh) 输出电流纹波最小化正激式磁集成变换器
WO2019080245A1 (zh) 一种宽范围双向软开关直流变换电路及其控制方法
CN201008125Y (zh) 有源钳位磁集成变换器
CN106849683A (zh) 一种输入并联输出串联的基于推挽拓扑结构的变换器
CN105553272A (zh) 一种抗直通半桥llc谐振变换器
CN106505866A (zh) 一种三电平全桥直流变换装置
CN114696601A (zh) 功率变换装置
CN106533181A (zh) 一种双变压器并串联式llc谐振dc‑dc变换器及其控制方法
CN111010044A (zh) 一种磁集成双有源桥变换器
WO2020034664A1 (zh) 一种多电平降压电路
CN110299849A (zh) 一种移相控制的交错并联双管正激变换器
CN103457471A (zh) 谐振变换器
CN101697456B (zh) 以双功率变压器实现整流管电压箝位的整流电路
WO2020134313A1 (zh) 全桥电路及全桥变换器
WO2019001218A1 (zh) 一种正激开关电源
CN107222110A (zh) 一种非隔离大变比直流‑直流变换器
CN211405871U (zh) 一种磁集成双有源桥变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734359

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1008/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012124058

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2011734359

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010900

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012010900

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120508