WO2011086852A1 - 熱交換プロセスの異常検知方法および熱交換装置 - Google Patents

熱交換プロセスの異常検知方法および熱交換装置 Download PDF

Info

Publication number
WO2011086852A1
WO2011086852A1 PCT/JP2010/073711 JP2010073711W WO2011086852A1 WO 2011086852 A1 WO2011086852 A1 WO 2011086852A1 JP 2010073711 W JP2010073711 W JP 2010073711W WO 2011086852 A1 WO2011086852 A1 WO 2011086852A1
Authority
WO
WIPO (PCT)
Prior art keywords
process fluid
heat
heat medium
molten salt
heat exchange
Prior art date
Application number
PCT/JP2010/073711
Other languages
English (en)
French (fr)
Inventor
忍 丸野
功 江藤
ワサナ コウハクル
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US13/521,927 priority Critical patent/US20120312079A1/en
Priority to CN2010800609880A priority patent/CN102695949A/zh
Priority to EP10843204A priority patent/EP2525203A1/en
Priority to KR1020127021088A priority patent/KR20120123416A/ko
Priority to SG2012050704A priority patent/SG182440A1/en
Publication of WO2011086852A1 publication Critical patent/WO2011086852A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/228Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators for radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material

Definitions

  • the present invention relates to an abnormality detection method in a heat exchange process between a heat medium and a process fluid, and a heat exchange device in which an abnormality is detected by the abnormality detection method.
  • molten salt, water, or the like is used as a heat medium, and the temperature of the process fluid is adjusted to a predetermined temperature by heat exchange between the heat medium and the process fluid.
  • a molten salt that is a mixture of sodium nitrite, potassium nitrate, etc. (1) has excellent heat transfer capability, (2) is chemically very stable even at high temperatures, and (3) temperature control is easy. It has certain properties. For this reason, it is used as a high-temperature heat medium for heating or cooling various process fluids.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-83833
  • a method has been proposed.
  • the process fluid is a secondary alcohol
  • the method for detecting nitrogen oxides causes the process fluid to leak. It took time to detect the abnormality, and when the abnormality was detected, the heat medium and the process fluid were already sufficiently mixed, and there was a risk that a secondary disaster such as an explosion would occur.
  • the present invention provides an abnormality in a heat exchange process that can quickly detect leakage of a process fluid in a heat exchange process between the heat medium and the process fluid when the process fluid contains a secondary alcohol or a dehydrated product thereof. It is an object to provide a detection method. Another object of the present invention is to provide a heat exchange device in which an abnormality is detected by such an abnormality detection method.
  • the present inventors have conducted a heat exchange process in which heat exchange is performed between a heat medium and a process fluid (including secondary alcohols and / or dehydrated products thereof). Focusing on the fact that a large amount of hydrogen gas is generated by contact and reaction between the leaked process fluid and the heat medium, and by detecting this hydrogen gas at the gas phase in the flow path of the heat medium, The present inventors have found a new fact that leakage can be detected quickly, and have completed the present invention.
  • the present invention provides an abnormality detection of a heat exchange process in which heat exchange is performed between a heat medium that is a molten salt containing nitrate and / or nitrite and a process fluid that is a secondary alcohol and / or a dehydrated product thereof.
  • a method is provided that includes a detection step of detecting hydrogen gas generated by contact between the process fluid and the heat medium in a gas phase portion in a flow path of the heat medium.
  • the molten salt preferably contains nitrate and 20 to 90% by weight of nitrite and has a melting point of 100 to 200 ° C.
  • the present invention also provides a process fluid flow path through which a process fluid containing secondary alcohols and / or a dehydrated product thereof flows, and a heat medium flow path through which a heat medium that is a molten salt containing nitrate and / or nitrite flows.
  • a heat exchanger that performs heat exchange between the process fluid and the heat medium, and a hydrogen gas detector that detects hydrogen gas generated by the contact between the process fluid and the heat medium, the hydrogen gas detector comprising:
  • a heat exchange device provided in a gas phase portion in the heat medium flow path.
  • the “heat exchange process” in the present invention is a concept including a dehydration reaction process of alcohol.
  • the abnormality detection method or heat exchange apparatus of the heat exchange process of the present invention in the heat exchange process for performing heat exchange between the heat medium and the process fluid (including secondary alcohols and / or dehydrated products thereof), By detecting the hydrogen gas generated by the reaction between the leaked secondary alcohol and / or the dehydrated product thereof and the heat medium, the leakage of the process fluid can be detected quickly and easily.
  • FIG. 1 is a schematic view showing an embodiment of a heat exchange device of the present invention.
  • an abnormality in process fluid leakage is detected by the abnormality detection method of the present invention.
  • the heat exchange apparatus shown in FIG. 1 has a process fluid flow path through which a process fluid containing secondary alcohols and / or dehydrated products thereof flows, and heat through which a heat medium that is a molten salt containing nitrate and / or nitrite flows.
  • a medium flow path, a heat exchanger 1 that performs heat exchange between the process fluid and the heat medium, and a hydrogen gas detector 5 that detects hydrogen gas generated by the contact between the process fluid and the heat medium are provided.
  • the process fluid flow path is not particularly limited as long as the process fluid flows.
  • the process fluid is supplied to the heat exchanger 1 via the pipe 2, and after heat exchange in the heat exchanger 1, the process fluid is sent out from the pipe 10.
  • the process fluid flow path includes a flow path (pipe 2, 10 and pipe in the heat exchanger 1) through which the process fluid flows and a flow path branched from these (for example, a circulation path and a vent line). means.
  • the heat medium flow path is not particularly limited as long as the heat medium flows.
  • the heat medium flow path includes the heat exchanger 1, the pipe 3, the heat medium tank 4, the pump 8, the cooling heater 9 and the filter, the flow paths in these related devices, and from these It means a branched flow path (for example, a circulation path, a vent line).
  • the hydrogen gas detector may be provided in the gas phase portion in the heat medium flow path.
  • the hydrogen gas detector 5 is provided in the gas phase section 7 in the heat medium tank 4.
  • process fluid (secondary alcohols or dehydrated products thereof, the same applies hereinafter) flows into the heat medium side due to corrosion of piping in the heat exchanger 1 and contacts the heat medium.
  • the hydrogen gas generated by this is sent to the heat medium tank 4 through the pipe 3 together with the heat medium
  • the process fluid is detected by the hydrogen gas detector 5 provided in the gas phase section 7 for detecting the hydrogen gas. Detect leaks quickly. That is, in the heat exchange apparatus shown in FIG. 1, the hydrogen gas detector 5 detects a hydrogen gas generated when the process fluid leaks and comes into contact with the heat medium, thereby detecting the heat exchange process. Detect abnormalities.
  • the heat exchanger 1 is not particularly limited as long as the process fluid and the heat medium exchange heat through a partition such as a tube or a flat plate.
  • a multi-tube cylindrical heat exchanger that is a partition type heat exchanger Plate heat exchangers, spiral heat exchangers, block heat exchangers, etc. can be used.
  • the heat exchanger includes not only a heat exchanger that simply performs heat exchange but also a reactor such as a multi-tubular catalyst packed reactor that performs heat exchange together with the reaction.
  • a molten salt is used as the heat medium.
  • a composition containing 20 to 90% by weight of sodium nitrite (NaNO 2 ) and having a melting point in the range of about 100 to 200 ° C. is preferable.
  • NaNO 2 sodium nitrite
  • NaNO 3 sodium nitrate
  • KNO 3 potassium nitrate
  • a composition comprising NaNO 2 and KNO 3
  • these components are in the range of 20 to 90% by weight and 80 to 10% by weight, respectively.
  • a composition (melting point 142 ° C.) composed of NaNO 2 (40 wt%), NaNO 3 (7 wt%) and KNO 3 (53 wt%), NaNO 2 (34 wt%), NaNO 3 ( 13% by weight) and KNO 3 (53% by weight) (melting point: 152 ° C.), NaNO 2 (50% by weight) and KNO 3 (50% by weight) (melting point: 139 ° C.), etc.
  • water may be added and used in order to lower the freezing point of these molten salts and facilitate the temperature operation.
  • Process fluid contains secondary alcohols and / or dehydrated products thereof.
  • this process fluid flows into the heat medium flow path, the leaked process fluid and the heat medium come into contact with each other and react to generate hydrogen gas, which is detected at the gas phase in the heat medium flow path.
  • Examples of the process fluid include those containing methyl cyclohexyl carbinol (MCC) which is a secondary alcohol or cyclohexyl ethylene (CHE) which is a dehydrated product thereof.
  • examples of the process fluid include those containing 4-methyl-2-pentanol, which is a secondary alcohol, or 4-methyl-2-pentene, which is a dehydrated product thereof.
  • a dehydration reaction process (a kind of heat exchange process) in which molten salt containing NaNO 2 is used as a heat medium, the MCC is used as a process fluid, and CHE is generated by dehydrating the MCC will be described in detail.
  • MCC is introduced into the heat exchanger 1 (reactor) through the pipe 2, and heat-exchanged with a molten salt of about 300 to 400 ° C. in the heat exchanger 1, and CHE is converted from MCC by dehydration in the gas phase reaction. It is generated and sent to the next process through the pipe 10.
  • the molten salt that has exchanged heat with the process fluid is discharged from the heat exchanger 1 and sent to the heat medium tank 4 through the pipe 3.
  • a predetermined amount of molten salt is stored in the heat medium tank 4 and is composed of a liquid phase part 6 (molten salt) and a gas phase part 7.
  • the molten salt in the liquid phase portion 6 is fed by a pump 8 to a cooling heater 9 for cooling and / or heating the molten salt, cooled or heated, and then supplied to the heat exchanger 1 again.
  • the leakage of the process fluid is detected at an early stage by having a detection step of detecting the generation of the hydrogen gas by the hydrogen gas detector 5 provided in the gas phase section 7. Thereby, an interlock can be operated, supply of the process fluid and molten salt into the heat exchanger 1 is stopped, and expansion of damage can be prevented beforehand.
  • a catalytic combustion type hydrogen detector can be used, but is not limited to this, and various hydrogen detectors can be employed.
  • FIG. 2 shows a schematic diagram of the entire test apparatus used in the confirmation test. Using this test apparatus, the gas generated when a molten salt containing NaNO 2 and a process fluid containing MCC or CHE were mixed was evaluated.
  • a stainless steel container 22 for evaluating the mixing risk of the molten salt and the introduced gas a molten salt 23 placed in the stainless steel container 22, and the MCC in the thermostatic chamber 21.
  • a supply pipe 35 for supplying an introduction gas containing gas or CHE gas to the molten salt 23 in the container 22 and a molten salt collecting container 34 for preventing the molten salt 23 from flowing backward to the upstream side of the apparatus are provided.
  • a pipe 24 for collecting exhaust gas is attached to the stainless steel container 22. The exhaust gas is cooled by a glass container 26 immersed in the cooler 25, and a part thereof is collected by a fluororesin sampling bag 28 through a pipe 27.
  • the introduced gas is prepared by bubbling the N 2 gas supplied from the N 2 cylinder 29 into the glass container 31 containing the process fluid 32 (MCC or CHE) heated by the oil bath 33. Moreover, the piping between the glass container 31 and the molten salt collection container 34 can be prevented from being condensed in the piping by heating the boiling point of MCC or CHE above the ribbon heater 36.
  • the gas flow rate of the N 2 cylinder 29 is adjusted by the gas flow meter 30. In FIG. 2, T indicates a temperature sensor.
  • tests 1 to 6 were performed according to the following procedure.
  • the following procedure (1) was not performed, and the procedure (2) was started.
  • 10 g of molten salt NaNO 2 : 40 wt%, NaNO 3 : 7 wt%, KNO 3 : 53 wt% was charged into a 150 ml stainless steel container 22.
  • the stainless steel container 22 was placed in the thermostatic chamber 21 and heated so as to be isothermal at 380 ° C.
  • the line from the N 2 cylinder 29 to the pipe 27 through which the exhaust gas passes was replaced with nitrogen gas.
  • NO x gas was measured by ion chromatography, and other gases were measured by gas chromatography, and the volume composition of the exhaust gas was examined. The test results are shown in Table 1.
  • Test 4 the MCC and the molten salt were heated to 380 ° C. in the stainless steel container 22, but H 2 , CO, CO 2 , and NO x increased as compared with Tests 2 and 3. As a result. In particular, since a large amount of hydrogen gas was generated, it was found that hydrogen gas is effective as a detection target gas for detecting that the process fluid has come into contact with the molten salt.
  • Test 5 CHE was heated to 380 ° C. in the stainless steel container 22, but compared to Test 1, H 2 , CO, and CO 2 increased. Therefore, it was found that CHE was locally decomposed under the conditions. In Test 6, heating was performed at 380 ° C.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

 熱媒体とプロセス流体との熱交換プロセスにおいて、プロセス流体の漏洩を迅速に検知することができる熱交換プロセスの異常検知方法を提供する。本発明は、硝酸塩および/または亜硝酸塩を含む溶融塩である熱媒体と、第二級アルコール類および/またはその脱水生成物を含むプロセス流体との熱交換プロセスにおいて、漏洩したプロセス流体と熱媒体とが接触することによって水素ガスが多量に発生することに着目し、この水素ガスを熱媒体の流路内における気相部で検知する検知工程を有する、熱交換プロセスの異常検知方法である。

Description

熱交換プロセスの異常検知方法および熱交換装置
 本発明は、熱媒体とプロセス流体との熱交換プロセスにおける異常検知方法および当該異常検知方法により異常が検知される熱交換装置に関する。
 熱交換プロセスでは、熱媒体として溶融塩や水等が使用され、この熱媒体とプロセス流体との熱交換によりプロセス流体の温度が所定の温度に調整される。例えば、亜硝酸ナトリウム、硝酸カリウム等の混合物である溶融塩は、(1)熱伝達能力が優れている、(2)高温下でも化学的に非常に安定である、(3)温度制御が容易である等の性質を有している。このため、種々のプロセス流体を加熱または冷却するための高温用熱媒体として使用されている。
 熱交換プロセス中においては、配管の腐食等によりプロセス流体が漏洩することがある。このため、プロセス流体の漏洩を検知するために種々の方法が検討されている。例えば、特開2003-83833号公報(特許文献1)では、漏洩したプロセス流体が熱媒体と反応したときに発生するガス成分(窒素酸化物)を熱媒体の流路内における気相部で検知する方法が提案されている。
特開2003-83833号公報
 しかしながら、プロセス流体が第二級アルコール類である場合、上記熱媒体の溶融塩と反応して生じる窒素酸化物の発生量が少ないため、窒素酸化物を検知する方法ではプロセス流体が漏洩してから異常を検知できるまでに時間を要し、異常を検知した時点では既に熱媒体とプロセス流体等が十分に混合され、爆発等の二次災害が発生する等の危険性があった。
 本発明は、プロセス流体が第二級アルコール類またはその脱水生成物を含む場合における熱媒体とプロセス流体との熱交換プロセスにおいて、プロセス流体の漏洩を迅速に検知することができる熱交換プロセスの異常検知方法を提供することを課題とする。また、このような異常検知方法により異常が検知される熱交換装置を提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、熱媒体とプロセス流体(第二級アルコール類および/またはその脱水生成物を含む)の熱交換を行なう熱交換プロセスにおいて、漏洩したプロセス流体と熱媒体とが接触し反応することにより水素ガスが多量に発生することに着目し、この水素ガスを熱媒体の流路内における気相部で検知することにより、プロセス流体の漏洩を迅速に検知することができるという新たな事実を見出し、本発明を完成するに至った。
 すなわち、本発明は、硝酸塩および/または亜硝酸塩を含む溶融塩である熱媒体と、第二級アルコール類および/またはその脱水生成物であるプロセス流体との熱交換を行なう熱交換プロセスの異常検知方法であって、上記プロセス流体と上記熱媒体とが接触することによって発生する水素ガスを、上記熱媒体の流路内の気相部で検知する検知工程を有する方法を提供する。
 上述の本発明の異常検知方法において、上記溶融塩は、好ましくは、硝酸塩および20~90重量%の亜硝酸塩を含み、融点が100~200℃である。
 また本発明は、第二級アルコール類および/またはその脱水生成物を含むプロセス流体が流れるプロセス流体流路と、硝酸塩および/または亜硝酸塩を含む溶融塩である熱媒体が流れる熱媒体流路と、プロセス流体と熱媒体との熱交換を行なう熱交換器と、プロセス流体と熱媒体とが接触することによって発生する水素ガスを検知する水素ガス検知器と、を備え、当該水素ガス検知器が上記熱媒体流路内の気相部に設けられている、熱交換装置を提供する。
 なお、本発明における「熱交換プロセス」とは、アルコールの脱水反応プロセスも含む概念である。
 本発明の熱交換プロセスの異常検知方法または熱交換装置によれば、熱媒体とプロセス流体(第二級アルコール類および/またはその脱水生成物を含む)との熱交換を行なう熱交換プロセスにおいて、漏洩した第二級アルコール類および/またはその脱水生成物と熱媒体とが反応することにより発生する水素ガスを検知することによって、プロセス流体の漏洩を迅速かつ容易に検知することが出来る。
本発明の熱交換装置の一実施形態を示す概略図である。 本発明の確認試験で用いた試験装置を示す概略図である。
 以下、図面を参照して本発明を詳細に説明する。図1は、本発明の熱交換装置の一実施形態を示した概略図である。図1に示す熱交換装置においては、本発明の異常検知方法によりプロセス流体の漏洩の異常が検知される。
 図1に示す熱交換装置は、第二級アルコール類および/またはその脱水生成物を含むプロセス流体が流れるプロセス流体流路と、硝酸塩および/または亜硝酸塩を含む溶融塩である熱媒体が流れる熱媒体流路と、プロセス流体と熱媒体との熱交換を行なう熱交換器1と、プロセス流体と熱媒体とが接触することによって発生する水素ガスを検知する水素ガス検知器5と、を備える。
 プロセス流体流路は、プロセス流体が流れるところであれば特に制限されるものではない。プロセス流体は、配管2を介して熱交換器1に供給され、熱交換器1内で熱交換された後に、配管10より送出される。本実施形態において、プロセス流体流路は、プロセス流体が流される流路(配管2,10、熱交換器1内の管路)およびこれらから分岐した流路(例えば、循環路、ベントライン)を意味する。熱媒体流路は、熱媒体が流れるところであれば特に制限されるものではない。本実施形態において、熱媒体流路は、熱交換器1、配管3、熱媒体タンク4、ポンプ8、冷却加熱器9およびフィルターを含む流路、これらの関連機器内の流路、およびこれらから分岐した流路(例えば、循環路、ベントライン)を意味する。水素ガス検知器は、熱媒体流路内の気相部に設けられていればよい。本実施形態において、水素ガス検知器5は、熱媒体タンク4内の気相部7に設けられている。
 図1に示す熱交換装置においては、熱交換器1内において配管の腐食等によりプロセス流体(第二級アルコール類またはその脱水生成物、以下同じ)が熱媒体側へ流入し、熱媒体と接触することにより発生する水素ガスが、熱媒体とともに配管3を通じて熱媒体タンク4に送られた際に、この水素ガスを検知するために気相部7に設けられた水素ガス検知器5によりプロセス流体の漏洩を迅速に検知する。すなわち、図1に示す熱交換装置においては、プロセス流体が漏洩して熱媒体と接触することにより発生する水素ガスを、水素ガス検知器5により検知する検知工程を行なうことにより、熱交換プロセスの異常を検知する。
 熱交換器1としては、プロセス流体と熱媒体とが管、平板等の隔壁を介して熱交換するものであれば特に限定されず、例えば隔壁式熱交換器である多管円筒型熱交換器、プレート式熱交換器、スパイラル熱交換器、ブロック熱交換器等が使用できる。熱交換器には、単に熱交換を行なう熱交換器の他に、反応と共に熱交換を行なう多管式触媒充填反応器等の反応器も含まれる。
 熱媒体としては、上記したように、溶融塩が使用される。この溶融塩としては、亜硝酸ナトリウム(NaNO)を20~90重量%含む組成物であって、融点が約100~200℃の範囲内にあるものが好ましい。溶融塩としてNaNO、硝酸ナトリム(NaNO)および硝酸カリウム(KNO)からなる組成物を使用する場合、これらの各成分がそれぞれ20~50重量%、5~15重量%および45~65重量%の範囲内にあるものが挙げられる。また、溶融塩としてNaNOおよびKNOからなる組成物を使用する場合、これらの各成分がそれぞれ20~90重量%および80~10重量%の範囲内にあるものが挙げられる。具体的には、例えばNaNO(40重量%)、NaNO(7重量%)およびKNO(53重量%)からなる組成物(融点142℃)、NaNO(34重量%)、NaNO(13重量%)およびKNO(53重量%)からなる組成物(融点152℃)、NaNO(50重量%)およびKNO(50重量%)からなる組成物(融点139℃)等が挙げられる。また、これらの溶融塩の凝固点を下げ、温度操作をしやすくするために水を添加して使用してもよい。
 プロセス流体は第二級アルコール類および/またはその脱水生成物を含む。このプロセス流体が熱媒体流路内に流入すると、漏洩したプロセス流体と熱媒体とが接触して反応することにより水素ガスを発生し、熱媒体流路内の気相部で水素ガスが検知される。
 プロセス流体としては、例えば第二級アルコールであるメチルシクロヘキシルカルビノール(MCC)またはその脱水生成物であるシクロヘキシルエチレン(CHE)を含むもの等が挙げられる。その他、プロセス流体としては、例えば第二級アルコールである4-メチル-2-ペンタノール、またはその脱水生成物である4-メチル-2-ペンテン等を含むものが挙げられる。これらのプロセス流体は、溶融塩と反応して、水素ガスを発生する。
 以下、熱媒体としてNaNOを含む溶融塩を使用し、プロセス流体として上記MCCを使用し、このMCCを脱水することによってCHEを生成する脱水反応プロセス(熱交換プロセスの一種)について詳しく説明する。
 すなわち、MCCは、配管2を通じて熱交換器1(反応器)に導入され、熱交換器1内で約300~400℃の溶融塩と熱交換され、気相反応での脱水によりMCCからCHEが生成され、配管10を通じて次工程へ送られる。
 プロセス流体と熱交換した溶融塩は、熱交換器1から排出され配管3を通って熱媒体タンク4へ送られる。この熱媒体タンク4内には所定量の溶融塩が貯蔵されており、液相部6(溶融塩)と気相部7とで構成されている。液相部6の溶融塩は、この溶融塩を冷却および/または加熱するための冷却加熱器9にポンプ8により送液され、冷却または加熱された後、再度熱交換器1に供給される。
 上記熱交換プロセスにおける熱交換器1内のプロセス流体流路(隔壁)に応力や腐食によって亀裂等が発生し、MCCおよび/またはCHEを含むプロセス流体が溶融塩の流路内に漏洩した時には、特に顕著に水素ガスが発生する。
 この水素ガスの発生を気相部7に設けられた水素ガス検知器5によって検知する検知工程を有することで、プロセス流体の漏洩が早期に検知される。これにより、インターロックを作動させることができ、熱交換器1内へのプロセス流体および溶融塩の供給が停止され、被害の拡大を未然に防止することができる。
 水素ガス検知器5としては、接触燃焼式の水素検知器が使用できるが、これに限定されるものではなく、種々の水素検知器が採用可能である。
 以下において、本発明の異常検知方法が有効であることを確認する確認試験を行なった。
 図2は、確認試験で使用した試験装置全体の概略図を示している。この試験装置を用いて、NaNOを含む溶融塩と、MCCまたはCHEを含むプロセス流体とを混合した場合に発生するガスについて評価した。
 図2に示す試験装置においては、恒温槽21内に、溶融塩と導入ガスとの混合危険性を評価するステンレス製容器22と、該ステンレス製容器22内に入れられた溶融塩23と、MCCガスまたはCHEガスを含む導入ガスを容器22内の溶融塩23へ供給するための供給管35と、溶融塩23が装置の上流側に逆流することを予防する溶融塩捕集容器34が備えられている。ステンレス製容器22には、排出ガスを捕集するための配管24が取り付けられている。排出ガスは、クーラー25の中に浸されているガラス製容器26で冷却され、一部が配管27を通じてフッ素樹脂製サンプリングバッグ28で捕集される。
 導入ガスは、Nボンベ29から供給されるNガスを、オイルバス33で加熱したプロセス流体32(MCCまたはCHE)を入れたガラス製容器31中へ、バブリングすることで調製される。また、ガラス容器31と溶融塩捕集容器34の間の配管は、リボンヒーター36でMCCまたはCHEの沸点以上に加熱することで、導入ガスが配管中に凝縮することを防止できる。Nボンベ29のガス流量は、ガス流量計30により調整される。尚、図2において、Tは温度センサーを示す。
 上記のような試験装置を使用して、以下の手順で試験1~6を行った。なお、試験1,3,5においては、以下の手順(1)を行なわず、手順(2)からスタートした。
(1)溶融塩(NaNO:40重量%、NaNO:7重量%、KNO:53重量%)を、150mlのステンレス製容器22内に10g仕込んだ。
(2)ステンレス製容器22を恒温槽21内に設置し、380℃の等温になるように加熱した。
(3)溶融塩が所定温度に到達した後、Nボンベ29から排出ガスが通る配管27までのラインを窒素ガスで置換した。
(4)MCCと窒素の混合ガス(試験3,4)、CHEと窒素の混合ガス(試験5,6)または窒素のみ(試験1,2)を約2000mL/minの流量にてステンレス製容器22内に供給した。
(5)MCCと窒素の混合ガス、CHEと窒素の混合ガスまたは窒素のみの供給によって発生したガスをフッ素樹脂製サンプリングバッグ28に所定時間捕集した。
(6)捕集した排出ガスのうち、NOガスはイオンクロマトグラフィーで、その他のガスはガスクロマトグラフィーでそれぞれ測定し、排出ガスの容量組成を調べた。試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較のために行なった試験1(溶融塩仕込まず、窒素のみ流通した)から、試験装置内には、水素(H)、一酸化炭素(CO)、二酸化炭素(CO)、窒素酸化物(NO)は存在しないとみなすことができることがわかった。試験2では、ステンレス製容器22内で溶融塩が380℃に加熱されたが、試験1と比較してNOの増加が見られたため、当該温度で溶融塩が局部的に分解することがわかった。試験3では、ステンレス製容器22内でMCCが380℃に加熱されたが、試験1と比較した時、H、COおよびNOが増加した。よって当該条件下では、局部的にMCCが分解することがわかった。
 試験4では、ステンレス製容器22内でMCCと溶融塩とが接触した状態で380℃に加熱されたが、試験2、3と比較して、H、CO、CO、NOが増加する結果となった。特に水素ガスは多量に発生していることから、プロセス流体が溶融塩に接触したことを検知する検知対象ガスとして、水素ガスが有効であることがわかった。試験5では、ステンレス製容器22内でCHEが380℃に加熱されたが、試験1と比較した時、H、CO、COが増加した。よって当該条件下では局部的にCHEが分解することがわかった。試験6では、ステンレス製容器22内でCHEと溶融塩とが接触した状態で380℃に加熱されたが、試験2、5と比較して、H、NOが増加する結果となった。特に水素ガスは多量に発生していることから、プロセス流体が溶融塩に接触したことを検知する検知対象ガスとして、水素ガスが有効であることがわかった。
 1 熱交換器、2 配管、3 配管、4 熱媒体タンク、5 水素ガス検知器、6 液相部、7 気相部、8 ポンプ、9 冷却加熱器、10 配管、21 恒温槽、22 ステンレス製容器、23 溶融塩、24 配管、25 クーラー、26 ガラス製容器、27 配管、28 フッ素樹脂製サンプリングバッグ、29 Nボンベ、30 ガス流量計、31 ガラス製容器、32 プロセス流体(MCCまたはCHE)、33 オイルバス、34 溶融塩捕集容器、35 供給管、36 リボンヒーター。

Claims (3)

  1.  硝酸塩および/または亜硝酸塩を含む溶融塩である熱媒体と、第二級アルコール類および/またはその脱水生成物を含むプロセス流体との熱交換を行なう熱交換プロセスの異常検知方法であって、
     前記プロセス流体と前記熱媒体とが接触することによって発生する水素ガスを、前記熱媒体の流路内の気相部で検知する検知工程を有する、熱交換プロセスの異常検知方法。
  2.  前記溶融塩が、前記硝酸塩および20~90重量%の前記亜硝酸塩を含み、融点が100~200℃である、請求項1に記載の熱交換プロセスの異常検知方法。
  3.  第二級アルコール類および/またはその脱水生成物を含むプロセス流体が流れるプロセス流体流路と、
     硝酸塩および/または亜硝酸塩を含む溶融塩である熱媒体が流れる熱媒体流路と、
     前記プロセス流体と前記熱媒体との熱交換を行なう熱交換器と、
     前記プロセス流体と前記熱媒体とが接触することによって発生する水素ガスを検知する水素ガス検知器と、を備え、
     前記水素ガス検知器が前記熱媒体流路内の気相部に設けられている、熱交換装置。
PCT/JP2010/073711 2010-01-13 2010-12-28 熱交換プロセスの異常検知方法および熱交換装置 WO2011086852A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/521,927 US20120312079A1 (en) 2010-01-13 2010-12-28 Method of sensing abnormal condition in heat exchange process and heat exchange apparatus
CN2010800609880A CN102695949A (zh) 2010-01-13 2010-12-28 热交换工艺的异常检测方法及热交换装置
EP10843204A EP2525203A1 (en) 2010-01-13 2010-12-28 Method for detecting abnormality in heat-exchange process, and heat exchanger
KR1020127021088A KR20120123416A (ko) 2010-01-13 2010-12-28 열교환 프로세스의 이상 검지 방법 및 열교환 장치
SG2012050704A SG182440A1 (en) 2010-01-13 2010-12-28 Method of sensing abnormal conditon in heat exchange process and heat exchange apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010004812A JP2011145125A (ja) 2010-01-13 2010-01-13 熱交換プロセスの異常検知方法
JP2010-004812 2010-01-13

Publications (1)

Publication Number Publication Date
WO2011086852A1 true WO2011086852A1 (ja) 2011-07-21

Family

ID=44304134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073711 WO2011086852A1 (ja) 2010-01-13 2010-12-28 熱交換プロセスの異常検知方法および熱交換装置

Country Status (7)

Country Link
US (1) US20120312079A1 (ja)
EP (1) EP2525203A1 (ja)
JP (1) JP2011145125A (ja)
KR (1) KR20120123416A (ja)
CN (1) CN102695949A (ja)
SG (1) SG182440A1 (ja)
WO (1) WO2011086852A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201508512D0 (en) * 2015-05-18 2015-07-01 Johnson Matthey Davy Technologies Ltd Apparatus
US11300372B2 (en) 2018-08-09 2022-04-12 Multi-Chem Group, Llc System for hydrogen detection in cooling towers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196375A (ja) * 1975-02-21 1976-08-24
JP2003083833A (ja) 2001-06-26 2003-03-19 Sumitomo Chem Co Ltd 熱交換プロセスの異常検知方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248031A (ja) * 1990-02-27 1991-11-06 Mitsubishi Heavy Ind Ltd 漏洩個所の特定方法
US6918442B2 (en) * 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation in a reducing environment
US6981548B2 (en) * 2001-04-24 2006-01-03 Shell Oil Company In situ thermal recovery from a relatively permeable formation
TW534972B (en) * 2001-06-26 2003-06-01 Sumitomo Chemical Co Method and device for detecting abnormality in process for exchanging heat
US7090013B2 (en) * 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
CN2700860Y (zh) * 2004-06-04 2005-05-18 刘庆坤 氢冷发电机漏水在线检测装置
CN101451899A (zh) * 2007-12-04 2009-06-10 上海宝钢工业检测公司 充油变压器内部进水的检测诊断方法
US7886580B2 (en) * 2007-12-06 2011-02-15 Apv North America, Inc. Heat exchanger leak testing method and apparatus
WO2010058602A1 (ja) * 2008-11-20 2010-05-27 パナソニック株式会社 水素生成装置及びそれを備える燃料電池システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196375A (ja) * 1975-02-21 1976-08-24
JP2003083833A (ja) 2001-06-26 2003-03-19 Sumitomo Chem Co Ltd 熱交換プロセスの異常検知方法

Also Published As

Publication number Publication date
JP2011145125A (ja) 2011-07-28
CN102695949A (zh) 2012-09-26
SG182440A1 (en) 2012-08-30
EP2525203A1 (en) 2012-11-21
KR20120123416A (ko) 2012-11-08
US20120312079A1 (en) 2012-12-13

Similar Documents

Publication Publication Date Title
Dong et al. Experimental investigation on the heat transfer performance of molten salt flowing in an annular tube
WO2011086853A1 (ja) 熱交換プロセスの異常検知方法および熱交換装置
Chen et al. Experimental study on critical heat flux characteristics of R134a flow boiling in horizontal helically-coiled tubes
TW201020708A (en) Reactor temperature control using probability distribution
WO2011086852A1 (ja) 熱交換プロセスの異常検知方法および熱交換装置
TW534972B (en) Method and device for detecting abnormality in process for exchanging heat
JP2014025874A (ja) プロセス流体の混入検知方法および熱交換システムの運転方法
Zhang Air adsorption on the gas-liquid interface in vapor condensation across horizontal tube
Leimert et al. Hydrogen inactivation of liquid metal heat pipes
Bhosale et al. CO2 capture using an aqueous formulated solvent containing ethylaminoethanol, N-methyl-2-pyrolidone, and hydroxyl radical scavengers: study of solvent degradation and absorption kinetics
JP2010204017A (ja) 酸化反応プロセスの異常検知方法
JP2003083833A (ja) 熱交換プロセスの異常検知方法
JP2012047616A (ja) プロセス流体の漏洩検知方法
US10981105B2 (en) Carbon dioxide capturing system and operation method of carbon dioxide capturing system
Fuerst et al. Tritium Transport Phenomena in Molten-Salt Reactors: Molten Salt Tritium Transport Experiment Design
TW200902151A (en) Method for leakage monitoring in a tube bundle reactor
CN100470227C (zh) 一种热管积气量的检测方法
Shen et al. A safe and efficient process for the preparation of difluoromethane in continuous flow
JP2014024708A (ja) 熱交換システムに用いられる配管および熱交換システム
Summers et al. Heat-transfer parameters for an annular packed bed
CN208260724U (zh) 在线甲醛催化剂对比中试实验装置
CN116223738A (zh) 碳捕集吸收剂性能测试系统
Kaiqiang et al. Pitting Behavior of Two Stainless Steels in Simulated Heavy Water Reactor Primary Solution and 3.5% NaCl Solution
JP2014025674A (ja) 熱交換システムおよび熱交換システムの運転方法
CN114965191A (zh) 传热管结垢行为模拟系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010843204

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13521927

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127021088

Country of ref document: KR

Kind code of ref document: A