WO2011085933A2 - Tank mit schlauchförmig gewickelter folie nebst verfahren - Google Patents

Tank mit schlauchförmig gewickelter folie nebst verfahren Download PDF

Info

Publication number
WO2011085933A2
WO2011085933A2 PCT/EP2010/070520 EP2010070520W WO2011085933A2 WO 2011085933 A2 WO2011085933 A2 WO 2011085933A2 EP 2010070520 W EP2010070520 W EP 2010070520W WO 2011085933 A2 WO2011085933 A2 WO 2011085933A2
Authority
WO
WIPO (PCT)
Prior art keywords
tank
film
resistant
pressure
dimensionally stable
Prior art date
Application number
PCT/EP2010/070520
Other languages
English (en)
French (fr)
Other versions
WO2011085933A3 (de
WO2011085933A8 (de
Inventor
Horst Jan Moddemann
Original Assignee
Air-Lng Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air-Lng Gmbh filed Critical Air-Lng Gmbh
Priority to EP10798562A priority Critical patent/EP2516917A2/de
Publication of WO2011085933A2 publication Critical patent/WO2011085933A2/de
Publication of WO2011085933A3 publication Critical patent/WO2011085933A3/de
Publication of WO2011085933A8 publication Critical patent/WO2011085933A8/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/02Tanks
    • B64D37/06Constructional adaptations thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/30Fuel systems for specific fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0166Shape complex divided in several chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0171Shape complex comprising a communication hole between chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0176Shape variable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0176Shape variable
    • F17C2201/0185Shape variable with separating membrane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/013Reinforcing means in the vessel, e.g. columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0337Granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0607Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/068Special properties of materials for vessel walls
    • F17C2203/0685Special properties of materials for vessel walls flexible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0149Vessel mounted inside another one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/225Spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/227Assembling processes by adhesive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/228Assembling processes by screws, bolts or rivets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/018Adapting dimensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0189Planes

Definitions

  • the invention relates to a tank for cryogenic liquid gas and indeed
  • the invention further relates to an aircraft with such a tank and to a method for producing a similar tank,
  • cryogenic liquefied gas In contrast to a conventional fuel such as kerosene, low-temperature fuels such as LNG in the tank evaporate due to temperature increases due to the usually prevailing outside temperatures. Such vaporized fuel is called "boil-off" gas. With the occurrence of boil-off gas, the pressure in the tank increases. Therefore, a tank for cryogenic liquefied gas must be such that it does not only have very low temperatures In addition, such a tank should be light in order to be able to be used as unreservedly as possible in a means of transport such as a vehicle.
  • the document DE 1 9543 1 63 discloses a vehicle with tanks for a deep-chopped fuel, which is located in the hull or as an outer tank
  • the present invention is based on the object of providing a tank for cryogenic liquefied gas plus production gas, with which in particular an aircraft can also be retrofitted a,
  • a thermally insulated tank which comprises an outer, dimensionally stable shell and a pressure-resistant, cold-resistant foil located therein which is capable of adequately absorbing an overpressure arising in the tank due to boil-off gas.
  • the foil is thus wound been that thereby a tubular casing is formed.
  • a sufficiently pressure-resistant, cold-resistant, light Ta nk for the storage of cryogenic liquefied liquid which can also be incorporated later in a F aircraft, mainly due to the flexibility or flexibility of the film, the formstabi le shell contributes significantly to the thermal insulation and in particular in comparison to the film, with the help of the dimensionally stable Hüll can also
  • a pressure-resistant film in the sense of the invention is able to withstand an overpressure which can be formed in the correspondingly designed pressure tank due to boil-off gas.
  • a film is particularly resistant to pressure in the sense of the present invention 2 bar absolute, preferably at least 3 bar absolute, is able to withstand these conditions.
  • These figures refer to the storage temperature of the fuel or cryogenic liquefied gas.
  • a foil is not resistant to cold in the sense of the present invention if it has grown to the storage temperature of the cryogenic fuel stored in the tank.
  • a foil is not cold-resistant in the sense of the present invention, if it is suitable for use at normal ambient temperatures on the Earth is suitable, for example from -20 ° C to 40 ° C, within the tubular envelope thus formed, in one embodiment, the film extends from an inner wall region to one
  • Means of transport which may be a vehicle, so accelerated that excessively large forces from the tank and thus from the means of transport such as
  • sections of the film which divide the interior of the tubular envelope into regions are preferably provided with wall regions
  • hose-like H ülle firmly connected and in particular by means of a screw or rivet connection.
  • a fixed connection is preferably still supported by plates or strips pressed against one another due to screw or nail connections, between which the
  • Such an embodiment is capable of providing a slit-like casing formed by the film, which is particularly well-grown for internal printing without having to operate a great technical effort for it.
  • Portions of the film which extend from an inner wall region to an opposite inner wall region are preferably completely or partially perforated so that gas and liquid pass through them
  • the width of the areas by means of one or more rigid, so dimensionally stable plates set to
  • Wall portions of the hose-like space are attached.
  • the areas inside the tank can be made large enough.
  • plates are stiff, but still narrow enough in principle, not to complicate a subsequent installation of the tank overly. These plates extend in particular over the entire length of the tubular casing.
  • the plates may for example consist of a suitable cold-resistant plastic or sheet metal. Instead of plates and corresponding profiles can be used, which may also consist of a suitable cold-resistant plastic or metal.
  • a sealant and / or adhesive to provide a gas-tight connection. This helps to prevent fluid from passing through
  • overlapping portions can pass in wall portions of the tubular sheath.
  • This embodiment contributes to provide a suitably liquid-tight and gas-tight tank in a technically simple manner.
  • a gas-tight mat for example made of the material Gore Tex membrane (PTFE) may be provided, which is located between overlapping wall portions of the pressure-resistant, cold-resistant film.
  • PTFE Gore Tex membrane
  • the film is an aramide-reinforced or aramid-containing film, for example an aramid-fiber-reinforced film, which is referred to below as an aramid film.
  • Aramid fibers are sold by DuPont under the trade name Kevlar (R) sold commercially, By such a pressure-resistant film pressure can be compensated, which is caused by Boil-off gas, an internal pressure in the tank of 2 to 3 bar absolute, compared to the outer dimensionally stable shell by a Aramid film to be collected. Due to the flexibility, the film can be easily adapted to predetermined geometries, which makes retrofitting a means of transport such as aircraft or ship with a
  • tanks such as a tank of a means of transport but also, for example, one in the ground
  • the tank can easily be retrofitted by inserting into an already existing dimensionally stable shell of a tank
  • LNG is usually cooled down to -161 ° C to -164 ° C.
  • the material of the film is then to be selected to be at least equal to the temperatures to which LNG stored in the tank has been cooled.
  • There are aramid films at temperatures of -194 ° C are still resilient. An aramid film is therefore particularly well suited for the storage of LNG.
  • the aramid film is preferably 100% aramid. In one embodiment, this comprises hollow fibers,
  • the film is impregnated with a gas-tight rubber material such as rubber or coated with a thin 1 to 1.5 mm layer of flexible thermal insulation and sealants, such as sprayable polyurethanes, ⁇
  • the film is preferably 1 to 10 mm, more preferably 3 to 7 mm, for example approx. 5 mm thick,
  • aramid is used as the material of the film, the safety is increased in a special Ma ß, which is particularly important for aircraft, as such films are particularly light, flexible and sta biler than steel or
  • the ends of the tubular, formed by the film envelope are suitably closed in one embodiment, and in particular ebenfa lls using a pressure-resistant, cold-resistant, flexible film.
  • a tank for storing cryogenic liquefied petroleum gas which is capable of absorbing pressure with the foil and therefore capable of withstanding the pressure due to boil-off gas.
  • the film which is used for closing the schla uchförmigen E countries in turn, is flexible or flexible, a pressure-resistant tank interior can also be subsequently incorporated into a means of transport even when tight spatial conditions prevail. Since the film is already able to absorb a build-up caused by boil-off gas, the rest of the tank structure can be flexibly designed and easily adapted to the respective requirements.
  • a tank comprises in particular in the case of a new equipment in one embodiment, two dimensionally stable half-shells, as two half-shells can usually be easily brought into a room that is able to absorb the entire volume of the two Halbscha len.
  • a tank can be provided as an additional tank to already existing tanks.
  • the half-shells of such a tank can be firmly and in particular gas-tightly closed by screws, nuts, gluing or welding, as soon as the film is in the inner space the two half-shells are formed,
  • the tan k preferably comprises at the bottom of the tubular, horizontally extending shell a container with which the supply, for example an airplane with fuel is ensured even if the aircraft is in an inclined position, for example, due to a curved flight.
  • the container is stiff, but sufficiently small so as not to obstruct the subsequent tank installation in a means of transport excessively, preferably only from above (when installed) can flow into the container liquid, preferably through an opening which is small or narrow compared to the other dimensions of the container.
  • means are provided, with which liquid can be removed from the container and fed to a drive of the means of transport.
  • Such means comprise at least one conduit which leads from the container to a drive such as a turbine.
  • such means usually comprises a pump or a compressor, which is responsible for the transport of liquid or the
  • the dimensionally stable shell may be composed of several parts, such as two half-shells, which are double-walled, if a particularly good thermal insulation is to be achieved.
  • double-walled rigid casing is correspondingly heavy. If it comes before ollem on a low weight, as is the case with a use in the aircraft, it is basically on the provision of a
  • the dimensionally stable shell is then preferably executed single-walled. Inside a double-walled, dimensionally stable shell, namely in a gas-tight sealed or gas-tight space of preferably 5 mm to 20 mm thickness such as 12 mm thickness, there is a vacuum or at least a high negative pressure, Alternatively, a
  • connection possibility can be generated in the dimensionally stable shell.
  • the thus provided, dimensionally stable, double-walled shell contributes significantly to the thermal insulation of the tank and can the mass forces of
  • a dimensionally stable shell can absorb the mass forces of the tank filling. It suffices for this purpose, a wall thickness or wall thickness of 0.5 to 3 mm, for example, of 1.5 mm, even in a single-walled dimensionally stable shell.
  • Walls of the dimensionally stable shell are preferably made of aluminum, particularly preferably of scandium, on the one hand the desired
  • CFRP carbon fiber reinforced material
  • a vacuum is generated between the film and the dimensionally stable shell, which contributes to the thermal insulation.
  • a vacuum is generated between the film and the dimensionally stable shell, which contributes to the thermal insulation.
  • Spacer for example in the form of beads between the
  • the tank interior formed by one or more pressure-resistant, cold-resistant, flexible films is in a dimensionally stable shell.
  • the grains are in one embodiment preferably loosely in a retaining ring or spacer, which may be formed from a conventional air-permeable plastic film.
  • This retaining ring with the grains is placed during assembly, for example, the pressure-resistant, cold-resistant film and / or glued to this pressure-resistant, cold-resistant film before the rigid casing is covered and sealed gas-tight. Subsequently, a negative pressure between the dimensionally stable shell and the pressure-resistant, cold-resistant foil, for example by means of an air pump can be generated via located in the dimensionally stable shell valves.
  • the grains are made of a pressure-resistant plastic, as used for example in helicopter composite plastic rotor blades.
  • This embodiment contributes to the thermal insulation as well as to a low weight.
  • pressure-resistant film may be a deformation-reversible insulation foam to thermally insulate with low weight. It can also be provided a pressure-resistant foaming, for example, polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the dimensionally stable envelope is in the
  • Plastic material embedded for example in the aircraft which contributes to the thermal insulation.
  • a polyurethane existing Materia l used and in particular in the form of a Scha ums so to m example in the form of a soft foam.
  • polyurethane can also be present as a mounting foam, so as to provide supplementary thermal insulation with little resistance.
  • An aircraft which is to be retrofitted with tanks according to the invention is preferably retrofitted with tanks which are installed, for example, on the left and right of a central tank of a aircraft, in the fuselage of the aircraft or in main wing tanks near the fuselage.
  • Figure 1 shows a section through a tank which is installed in the fuselage 1 of a aircraft. The interior of the tank is replaced by a
  • aramid film 2 preferably consisting of aramid film 2 limited, which is hose-like wound here to the right and includes an overlapping region 3.
  • the two adjoining sections of the film are adhesively bonded or welded to one another over the entire surface so that no liquid can escape from the inner space through the overlapping region.
  • At one end of the overlap area is using
  • the container 7 is located at the deepest portion of the Tan ks, then the film 2 runs as besc written two more times from a réellewa to the opposite and is finally, in turn, through exploratory links 1 0 and one
  • the film 2 thus forms a hose-like envelope with an interior which is subdivided by the film 2 into five regions 1 1, 1 2, 1 3, 1 4 and 1 5 of approximately equal size.
  • the width of the areas 1 2 and 1 4 and thus their size is set.
  • the width of the container 7 influences the size of the area 1 3.
  • the portions 1 6 of the film 2, which delimit two areas from each other, are perforated so that liquid from one
  • the container 7 has on the upper side a relatively narrow opening 1 7, which extends in the form of a slot parallel to the tubular sheath, flowing through the opening liquid into the container 7, Im
  • Containers are means not shown, with which liquid from the container 7 out to a drive, such as a Gastu rbi ne can be passed.
  • a drive such as a Gastu rbi ne
  • the tubular casing is located within a dimensionally stable shell 25 between two dimensionally stable half-shells, which are screwed together.
  • Each bowl is single-walled.
  • Between the walls made of metal of each half-shell and the film or films are 3 to 5 mm Riegeichen 1 8 made of a pressure-resistant plastic, I m prevails in Zwisch henraum between the half-shells and the or, the films a vacuum, 3 bis 5 mm large kusichen 1 8 made of a pressure-resistant plastic to provide the space to a spacer ring consisting of an air-permeable
  • Plastic film tube uniformly held at a distance and wound like a string of pearls around the film and attached thereto punctiform with a silicone adhesive this is achieved by using the Globules only mass acceleration forces are transmitted to the dimensionally stable shell, for example, because the tank filling is moved, A build-up inside the tank pressure due to Boil-off gas, however, is collected by the film and not or at least not to the extent practical to that of two Half-sound formed dimensionally stable shell 25 transmitted.
  • dimensionally stable shell 25 is stabilized by preferably adjustable supports 19 within the aircraft fuselage.
  • the container formed by the two half-shells or rigid shell 25 rests on frames of the aircraft fuselage, Remaining gaps between the fuselage 1 and the container 25 formed by the half-shells are foamed with polyurethane 20,
  • FIG. 2 shows a further section AA through the tank according to FIG. 1.
  • Each tubular end of the pressure-resistant, cold-resistant foil 2 is closed by another pressure-resistant, cold-resistant foil 21 serving as cover.
  • overlapping regions are formed the pressure-resistant, cold-resistant films 2 and 21 pressed against each other gas-tight, so that no tank contents can escape through this overlap.
  • the overlapping area may be provided with a sealant or adhesive to prevent leakage of tank contents through the overlapping area.
  • the perforated sections 16 of the film 2 are fixed to the film 21 by means of plates and screw connections as shown and can thus absorb the compressive stress of expanding boil-off gas.
  • the perforated portions 16 stabilize due to the fasteners, the compressive strength of the interior formed by the films 2 and 21.
  • frame 24 becomes, for example, one
  • the Fa ll is because of the fact that the tank has been installed in a wing of a F aircraft.
  • An inventive tank, as well as the tanks shown in the figures are provided with conventional, not shown in the figures tank connections, for example, to fill a tank as well as to empty or to meet safety requirements.
  • the connections can be retrofitted and / or by appropriate
  • Screw connections can also be used for rivet connections.
  • the film 2 can be wrapped in a tube in a double layer and a mat, for example a gas-tight Gore Tex membrane mat (PTF E), can be provided between both layers in order to increase the tightness in the next

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Die Erfindung betrifft einen Tank für ein kryogenes Flüssiggas und zwar insbesondere für LNG, also für flüssiges Erdgas bzw. flüssiges Methan. Die Erfindung betrifft ferner ein Flugzeug mit einem solchen Tank sowie ein Verfahren für das Herstellen eines derartigen Tanks. Es wird ein Tank hergestellt, der eine äußere, formstabile Struktur und eine druckfeste, kälteresistente Folie umfasst, die einen im Tank aufgrund von Boil-Off Gas entstehenden Überdruck geeignet aufzufangen vermag. Die geeignet flexible Folie ist bzw. wird so gewickelt, dass dadurch ein schlauchartiger Raum bzw. eine schlauchartige Hülle gebildet wird. Es kann mit Hilfe der Folie ein hinreichend druckfester, kälteresistenter, leichter Tank für die Lagerung von kryogenem Flüssiggas bereitgestellt werden, der vor allem aufgrund der Flexibilität der Folie auch nachträglich in ein Flugzeug eingebaut werden kann.

Description

Tank mit schla uchförmig gewickelter Folie nebst Verfa hren
Die Erfindung betrifft einen Tank für kryogenes Flüssiggas und zwar
insbesondere für LNG, also f ür flüssiges E rdgas bzw. flüssiges Methan . Die E rfindung betrifft ferner ein Flugzeug mit einem solchen Tank sowie ein Verfahren für das Herstellen eines dera rtigen Tanks ,
Im Unterschied zu einem konventionellen Treibstoff wie Kerosin verdampfen tiefkalte Treibstoffe wie LNG im Tank durch Temperaturerhöhungen aufgrund von üblicherweise herrschenden Außentemperaturen . Derart verdampfter Treibstoff wird„Boil -Off"-Gas genannt, Mit dem Auftreten von Boil-Off Gas erhöht sich im Tank der Druck, Ein Tank für kryogenes Flüssiggas muss daher so beschaffen sein, dass dieser n icht nur sehr tiefen Temperatu ren , sondern außerdem entstehendem Boil-Off Gas gewachsen ist, Darüber hinaus soll ein solcher Tank leicht sein, um in einem Transportmittel wie einem F lugzeug möglichst vorbehaltslos eingesetzt werden zu können .
Es gibt Stahltanks, die mit einer inneren flexiblen Folie versehen sind, um so den Tank zuverlässig gegen ein Auslaufen zu sichern , Dies ist beispielsweise bei Erdtanks, in denen Heizöl gelagert wird , regelmäßig der Fall , Ein
Folienmaterial, welches in d iesen Fällen eingesetzt wird, ist n icht
kä lteresistent, um kryogenes Flüssiggas darin lagern zu können , Auch ist eine solche Folie nicht druckfest a usgeführt, da daf ür kein Bedarf besteht,
Aus der Druckschrift DE 1 9543 1 63 geht ein F lugzeug mit Tanks für einen tiefkaiten Treibstoff hervor, die im Rumpf oder als Außentanks a n den
Tragflächen vorgesehen sind , Aus der Druckschrift DE 1 98 1 6651 C2 geht eine Vakuumisolieru ng für einen Tank der eingangs genannten Art hervor. Die Druckschrift US 2006278761 A offenba rt d ie Unterbringung von Ta nks in Tragflächen eines F lugzeuges . Die Druckschrift DE 3309768 AI besch reibt einen Flugzeug-Trapezflügel, der einen Kraftstofftank umfasst,
Der vorliegenden Erfind ung liegt die Aufgabe zugrunde, einen Tank für kryogenes F lüssiggas nebst Herstellun gsverfa hren bereitzustellen, mit dem insbesondere ein Flugzeug auch nachträglich a usgestattet werden kann ,
Zur Lösung der Aufgabe wird ein thermisch isolierter Tank bereit gestellt, der eine äußere , formstabile Hülle und e ine darin befindliche druckfeste, kälteresistente Folie umfasst, die einen im Tank aufgrund von Boil-Off Gas entstehenden Überdruck geeignet aufzufangen vermag , Die Folie ist so gewickelt worden, dass dadurch eine schlauchartige Hülle gebildet wird . Es kann mit Hilfe der Folie ein hinreichend druckfester, kälteresistenter, leichter Ta nk für die Lagerung von kryogenem F lüssiggas bereitgestellt werden, der vor allem aufgrund der Flexibilität oder Biegsamkeit der Folie auch nachträglich in ein F lugzeug eingeba ut werden kann , Die formstabi le Hülle trägt maßgeblich zur thermischen Isolation bei und zwar insbesondere im Vergleich zur Folie, M it H ilfe der formstabilen H ülle können außerdem
Massen-Beschleunigungskräfte übertragen werden ,
Eine druckfeste Folie im Sinn der E rfindung vermag einem Überdruck zu widerstehen, der sich im dafür entsprechend ausgelegten Drucktank aufgrund von Boil-Off Gas zu bilden vermag , Eine Folie ist insbesondere da n n druc kfest im Sinne der vorliegenden Erfindung, wenn diese einem Druck von 2 ba r absolut , vorzugsweise von 3 bar absolut wenigstens zu widerstehen vermag , Diese Angaben beziehen sich auf die Lagertemperatur des Brennstoffs bzw, kryogenen Flüssiggases. Eine Folie ist kälteresistent im Sinne der vorliegenden E rfindung, wenn d iese der Lagertemperatur des i m Tank gelagerten kryogenen Brennstoffs gewachsen ist, Eine Folie ist nicht kälteresistent im Sinne der vorliegenden Erfindung , wenn diese led iglic h für einen Einsatz bei üblic hen Umgebungstemperaturen auf der Erde geeignet ist, so zum Beispiel von - 20°C bis 40°C , I nnerhalb der so gebildeten , schlauchartigen Hülle verläuft die Folie in einer Ausfü hrungsform von einem inneren Wandbereich zu einem
gegenüberliegenden Wa ndbereich und zwar bevorzugt insbesondere mehrfach hin und zurück, so dass die schlauchartige Hülle in wenigstens zwei Bereiche unterteilt wird . Durch die Unterteilung wird vermieden, dass ein flüssiger Tankinhalt aufg rund von Besch leunigungen des zugehörigen
Transportmittels , das ein F lugzeug sein kann, so beschleu nigt wird, dass übermäßig große Kräfte vom Tank und damit vom Transportmittel wie
F lugzeug oder Fahrzeug aufzufangen sind , Eine solche Unterteilung eines Ta nks wird auf besonders einfache Weise bereitgestellt.
Die Abschnitte der Folie, die den Innenraum der schlauchartigen H ülle in Bereiche unterteilen, sind vorzugsweise mit Wandbereichen der
schlauchartigen H ülle fest verbunden und zwar insbesondere mittels einer Schraub- oder Nietverbindung . E ine solche feste Verbindung wird bevorzugt noch d urch aufgrund von Schraub- oder N ietverbindungen gegeneina nder gepresste Platten oder Leisten unterstützt, zwischen denen sich die
betreffenden Abschnitte der Folie befinden . Eine derartige Ausführungsform vermag eine durch d ie Folie gebildete schla uchartige Hülle bereitzustellen , die einem Innen druck besonders gut gewachsen, ohne dafü r einen großen technischen Aufwand betreiben zu m üssen . Abschnitte der Folie, die sich von einem inneren Wand bereich zu einem gegenüberliegenden in neren Wandbereich erstrecken , sind vorzugsweise ganz oder teilweise perforiert, so dass Gas und Flüssigkeit durch diese
Absc hnitte hind urch treten ka nn . Einerseits verhindern die inneren
Wandbereiche nach wie vor das Auftreten von übermäßig schnellen
Beweg ungen eines flüssigen Tankinhalts, da durch die Perforation nur verhältnismäßig kleine F lüssigkeitsmengen pro Zeiteinheit hindurchtreten kön nen . Andererseits trägt die Perforation zumindest dazu bei, dass ein Flüssigkeitsausgleich zwischen den einzelnen Bereichen stattfinden kann , was eine zumindest nahezu vollständige Entleerung des Tanks ermöglicht, ohne dafür einen übermäßigen technischen Aufwand betreiben zu müssen.
In einer Ausführungsform wird die Breite der Bereiche mit Hilfe von ein oder mehreren steifen, also formstabilen Platten eingestellt, die an
Wandbereichen des schlauchartigen Raums befestigt sind. Die Bereiche innerhalb des Tanks können so geeignet groß bereitgestellt werden.
Eingesetzte Platten sind zwar steif, aber dennoch grundsätzlich schmal genug, um einen nachträglichen Einbau des Tanks nicht übermäßig zu erschweren. Diese Platten erstrecken sich insbesondere über die gesamte Länge der schlauchartigen Hülle. Die Platten können beispielsweise aus einem geeignet kälteresistenten Kunststoff oder Blech bestehen. Anstelle von Platten können auch entsprechende Profile eingesetzt werden, die ebenfalls aus einem geeignet kälteresistenten Kunststoff oder Blech bestehen können.
Zwischen sich überlappenden Abschnitten der Folie befindet sich
vorzugsweise ein Dicht- und/ oder Klebmittel, um eine gasdichte Verbindung bereitzustellen. Dies trägt dazu bei, dass Flüssigkeit nicht durch
überlappende Abschnitte in Wandbereichen der schlauchförmigen Hülle hindurchtreten kann. Diese Ausführungsform trägt dazu bei, auf technisch einfache Weise einen geeignet flüssigkeitsdichten und gasdichten Tank bereitzustellen. Als Dichtmittel kann eine gasdichte Matte zum Beispiel aus dem Material Gore Tex Membran (PTFE) vorgesehen sein, die sich zwischen überlappenden Wandbereichen der druckfesten, kälteresistenten Folie befindet.
Insbesondere handelt es sich bei der Folie um eine durch Aramid verstärkte oder aus Aramid bestehende Folie, so zum Beispiel um eine mit Aramid- Fasern verstärkte Folie, die nachfolgend Aramid-Folie genannt wird, Aramid- Fasern werden von der Firma DuPont unter der Marke Kevlar(R) kommerziell vertrieben, Durch eine solche druckfeste Folie kann Druck kompensiert werden, der durch Boil-Off Gas entsteht, Ein Innendruck im Tank von 2 bis 3 bar absolut kann gegenüber der äußeren formstabilen Hülle durch eine Aramid- Folie aufgefangen werden. Aufgrund der Flexibilität kann die Folie leicht an vorgegebene Geometrien angepasst werden, was ein Nachrüsten eines Transportmittels wie Flugzeug oder Schiff mit einem
erfindungsgemäßen Tank erleichtert, Tanks, so zum Beispiel ein Tank von einem Transportmittel aber beispielsweise auch ein im Erdboden
eingelassener Tank, können außerdem leicht umgerüstet werden, indem in eine bereits vorhandene formstabile Hülle eines Tanks eine
anspruchsgemäße Folie hineingebracht wird. Um einen druckfesten Tank für LNG bereitzustellen, wird dieser nach dem Stand der Technik regelmäßig aus einem kälteresistenten Stahl gefertigt, Eine druckfeste Folie ist im Vergleich dazu sehr leicht, so dass durch die Erfindung ein vergleichsweise leichter Tank bereit gestellt werden kann, Die Bereitstellung eines leichten Tanks ist für einen mobilen Einsatz wichtig, um das Gewicht des Transportmittels und damit den für den Antrieb benötigten Treibstoff minimieren zu können,
LNG wird üblicherweise auf -161°C bis - 164°C abgekühlt, Das Material der Folie ist dann so auszuwählen, dass es wenigstens den Temperaturen gewachsen ist, auf die im Tank gelagertes LNG abgekühlt wurde, Es gibt Aramid - Folien, die bei Temperaturen von -194 °C noch belastbar sind. Eine Aramid-Folie ist daher für die Lagerung von LNG besonders gut geeignet.
Die aus Aramid bestehende Folie besteht bevorzugt zu 100% aus Aramid. In einer Ausführungsform umfasst diese Hohlfasern,
In einer anderen Ausführungsform ist die Folie mit einem gasdichten Kautschukmaterial wie Gummi getränkt bzw. mit einer dünnen 1 bis 1,5 mm Schicht aus flexiblen Wärmeisolier- und Dichtstoffen überzogen, wie aufspritzbare Polyurethane, ό
Die Folie ist bevorzugt 1 bis 1 0 mm, besonders bevorzugt 3 bis 7 mm, so zum Beispiel ca . 5 mm dick,
Wird Aramid als Material der Folie eingesetzt, so wird die Sicherheit in besonderem Ma ß erhöht, die gerade bei Flugzeugen besonders wichtig ist, da solche Folien besonders leicht, flexibel und sta biler als Stahl oder
Aluminium sind .
Die Enden der schlauchartigen, durch die Folie gebildeten Hülle werden in einer Ausführungsform geeignet verschlossen und zwar insbesondere ebenfa lls unter Verwendung einer druckfesten, kälteresistenten, f lexiblen Folie. Es steht so ein Tank für die Lagerung von kryogenem F lüssiggas bereit, der m ittels der Folie n Druck aufzufangen und der daher dem Druck aufgrund von Boil-Off Gas geeignet zu widerstehen vermag . Da die Folie, die für das Verschließen der schla uchförmigen E nden eingesetzt wird, wiederum flexibel bzw. biegsam ist, kann ein druckfester Tankinnenraum auch nachträglich in ein Transportmittel selbst dann eingeba ut werden, wenn enge räumliche Verhältnisse herrschen . Da bereits die Folie einen d urch Boil-Off Gas entstehenden Innend ruck a ufzufangen vermag, kann der übrige Tankaufba u flexi bel gestaltet und an die jeweiligen Anforderungen leicht a ngepasst werden . Wird ein Tank umgerüstet, so ka nn die ursprüngliche Form bestehen bleiben . So umfasst ein Tank insbesondere im Fall einer Neueinrüstung in einer Ausführungsform zwei formstabile Halbschalen, da zwei Halbschalen in der Regel problemlos in einen Raum gebracht werden können, der das gesamte Volumen der zwei Halbscha len aufzunehmen vermag . Ein solcher Ta n k kan n als Zusatztank zu bereits bestehenden Tanks vorgesehen sein , Die Halbschalen eines solchen Tanks können insbesondere durch Schrauben, N ieten, Kleben oder Verschweißen fest und zwar insbesondere gasdicht verschlossen werden, sobald sich die Folie im Innenra um befindet, der durch die beiden Halbscha llen gebildet wird ,
Der Tan k umfasst bevorzugt am Grund der schlauchartigen, sich horizontal erstreckenden Hülle einen Behälter, mit dem die Versorgung beispielsweise eines Flugzeugs mit Treibstoff auch dann sichergestellt wird, wenn das Flugzeug sich in einer Schräglage zum Beispiel aufgrund eines Kurvenflugs befindet. Der Behälter ist zwar steif, aber hinreichend klein, um den nachträglichen Tankeinbau in ein Transportmittel nicht übermäßig zu behindern, Vorzugsweise nur von oben (im eingebauten Zustand) kann in den Behälter Flüssigkeit hineinfließen und zwar vorzugsweise durch eine Öffnung hindurch, die klein oder schmal ist im Vergleich zu den übrigen Abmessungen des Behälters. Darüber hinaus sind Mittel vorgesehen, mit denen Flüssigkeit aus dem Behälter entnommen und einem Antrieb des Transportmittels zugeführt werden kann. Solche Mittel umfassen zumindest eine Leitung, die vom Behälter zu einem Antrieb wie zum Beispiel eine Turbine führt, Darüber hinaus umfasst solche Mittel in der Regel eine Pumpe oder einen Kompressor, die dem Transport von Flüssigkeit oder der
Verdichtung von Gas dienen, Diese Ausführungsform sowie die nachfolgend genannten weiteren Ausführungsformen können - soweit nicht ausdrücklich auf die schlauchförmige Wicklung der Folie Bezug genommen wird - auch mit einer anspruchsgemäßen Folie realisiert werden, die zwar einen druckfesten Tankinnenraum bildet oder Teil eines druckfesten Innenraums ist, die aber nicht schlauchförmig gewickelt ist,
In einer Ausführungsform befindet sich der durch ein oder mehrere
druckfeste, kälteresistente Folien gebildete Tankinnenraum in einer formstabilen, doppelwandigen Hülle, Der Raum zwischen zwei Wänden der formstabiien Hülle ist gasdicht verschließbar oder gasdicht verschlossen. Die formstabile Hülle kann aus mehreren Teilen zusammengesetzt sein, so zum Beispiel aus zwei Halbschalen, die doppelwandig ausgeführt sind, wenn eine besonders gute thermische Isolation erreicht werden soll. Eine
doppelwandige formstabile Hülle ist jedoch entsprechend schwer. Kommt es vor ollem auch auf ein geringes Gewicht an, wie dies bei einer Verwendung im Flugzeug der Fall, so wird grundsätzlich auf das Vorsehen einer
Doppelwand verzichtet. Die formstabile Hülle ist dann also bevorzugt einwandig ausgeführt. Im Inneren einer doppelwandig ausgeführten, formstabilen Hülle, nämlich in einem gasdicht verschlossenen oder gasdicht verschließbaren Raum von vorzugsweise 5 mm bis 20 mm Dicke wie zum Beispiel 12 mm Dicke herrscht ein Vakuum oder zumindest ein hoher Unterdruck, Alternativ kann ein
Unterdruck oder ein Vakuum aufgrund einer dafür geeigneten
Anschlussmöglichkeit in der formstabilen Hülle erzeugt werden. Die so bereitgestellte, formstabile, doppelwandige Hülle trägt maßgeblich zur thermischen Isolation des Tanks bei und kann die Massenkräfte der
Tankfüllung aufnehmen.
Eine formstabile Hülle kann die Massenkräfte der Tankfüllung aufnehmen. Es genügt hierfür eine Wandstärke bzw. Wanddicke von 0,5 bis 3 mm, so zum Beispiel von 1,5 mm und zwar auch bei einer einwandig ausgeführten formstabilen Hülle.
Wände der formstabilen Hülle bestehen vorzugsweise aus Aluminium, besonders bevorzugt aus Scandium, um einerseits die gewünschte
Formstabilität zu erhalten und andererseits kein übermäßig hohes Gewicht in Kauf nehmen zu müssen. Ein weiteres geeignet leichtes Material ist ein kohlefaserverstärkter Werkstoff (CFK).
In einer Ausführungsform der Erfindung wird zwischen der Folie und der formstabilen Hülle ein Vakuum erzeugt, das zur thermischen Isolation beiträgt. Um einen entsprechenden Zwischenraum zwischen der formstabilen Hülle und der Folie zu gewährleisten, befinden sich vorzugsweise
Abstandshalter zum Beispiel in Form von Kügelchen zwischen der
formstabilen Hülle und der Folie. Diese Ausführungsform erfüllt einerseits Anforderungen an ein geringes Gewicht und andererseits Anforderungen an eine gute thermische Isolation. Der Zwischenraum kann 5 mm bis 20 mm, so zum Beispiel 12 mm dick sein. In einer Ausführungsform der Erfindung befindet sich der durch ein oder mehrere druckfeste, kälteresistente, flexible Folien gebildete Tankinnenraum in einer formstabilen Hülle. Zwischen der oder den Innenwänden der formstabilen Hülle und der oder den Außenwänden der Folie befinden sich Körner mit einem Durchmesser von vorzugsweise 2 bis 10 mm, besonders bevorzugt von 3 bis 5 mm. Die Körner liegen in einer Ausführungsform bevorzugt locker in einem Haltering oder Abstandshalter, der aus einer herkömmlichen luftdurchlässigen Kunststofffolie gebildet sein kann. Dieser Haltering mit den Körnern wird bei der Montage zum Beispiel um die druckfeste, kälteresistente Folie gelegt und/ oder mit dieser druckfesten, kälteresistenten Folie verklebt, bevor die formstabile Hülle übergelegt und gasdicht verschlossen wird. Anschließend kann über in der formstabilen Hülle befindliche Ventile ein Unterdruck zwischen der formstabilen Hülle und der druckfesten, kälteresistenten Folie zum Beispiel mittels einer Luftpumpe erzeugt werden.
Aufgrund der lockeren Unterbringung der Körner übertragen diese keinen aufgrund von Boil-Off Gas hervorgerufenen Druck von der Folie auf die formstabiie Hülle, selbst wenn sich die kälteresistente, druckfeste Folie aufgrund einer Erwärmung des Tankinhalts ein wenig ausdehnen sollte.
Vorzugsweise bestehen die Körner aus einem druckfesten Kunststoff, wie diese zum Beispiel bei Hubschrauber-Verbundkunststoff-Rotorblättern verwendet werden. Diese Ausführungsform trägt zur thermischen Isolation sowie zu einem geringen Gewicht bei.
Zwischen der Innenwand der formstabilen Hülle und der Außenwand der kälteresistenten, druckfesten Folie kann sich eine verformungsreversible Isolationsschäumung befinden, um thermisch mit geringem Gewicht zu isolieren. Es kann auch eine druckfeste Ausschäumung zum Beispiel aus Polytetrafluorehen (PTFE) vorgesehen sein. I n einer Ausführungsform der Erfi ndung ist die formstabile H ülle im
eingeba uten Zustand des Tanks in ei n vorzugsweise geschä umtes
Kunststoffmaterial zum Beispiel im Flugzeug eingebettet, welches ergänzend zur Wärmeisolierung beiträgt. So wird beispielsweise für die Wärmeisolierung ein aus Polyurethan bestehendes Materia l eingesetzt und zwar insbesondere in Form eines Scha ums, so zu m Beispiel in Form eines Weichschaums .
Polyurethan kann aber auch als Montageschaum vorliegen , um so eine ergänzende Wärmeisolation mit geringem Gewic ht bereitzustellen .
Ein Flugzeug, welches nachträglich mit erfindungsgemäßen Tanks versehen werden soll, wird bevorzugt mit Tanks nachgerüstet, die beispielsweise links und rechts von einem Zentraltank eines F lugzeugs, im Rumpf des Flugzeugs oder in Flügelhaupttanks nahe dem Rumpf eingebaut werden .
Figur 1 zeigt einen Schnitt durch einen Tank, der in den Rumpf 1 eines F lugzeugs eingebaut ist. Der Innenraum des Tanks wird durch eine
vorzugsweise aus Aramid bestehende Folie 2 begrenzt, die schlauchartig hier rechtsherum gewickelt ist und einen überlappenden Bereich 3 umfasst. Im überlappenden Bereich 3 sind die beiden a neinander a ngrenzenden Abschnitte der Folie miteina nder vollflächig verklebt oder verschweißt, so dass keine F lüssigkeit d urch den Überlappungsbereich aus dem I nnenraum austreten kann . An einem Ende wird der Überlappungsbereichs mittels
Sch raubverbindungen 4 nebst einer Profilleiste gehalten . Von hier a us wird die Folie 2 zu einer gegenüberliegenden Innenwand geführt und an der gegenüberliegenden Innenwand mit H ilfe von zwei gegeneinander gepressten Platten 5 sowie mittels Schraubverbind u ngen 6 befestigt, Die Folie 2 f ü hrt zwischen den beiden Platten 5 hindurch und anschließend zur gegenüberliegenden Innenwand zu rück, Die Folie führt hier zwischen einen Behälter 7 und einer Platte 8 hind u rch und ist hier ebenfalls mit
Schraubverbindungen 9 befestigt. Der Behälter 7 befindet sich beim tiefsten Bereich des Tan ks, Anschließend verläuft die Folie 2 wie besc hrieben zwei weitere Male von einer Innenwa nd zur gegenüberliegenden und ist abschließend wiederum durch Sch raubverbindu ng en 1 0 nebst einer
Profilleiste befestigt.
Die Folie 2 bildet so eine schlauchartige H ülle mit einem Innenraum, der durch die Folie 2 in fünf, etwa gleich große Bereiche 1 1 , 1 2, 1 3 , 1 4 und 1 5 unterteilt ist. Durch die Breite der Platten 5, die innerhalb der Hülle
angeordnet sind, wird die Breite der Bereiche 1 2 und 1 4 und damit auch ihre Größe eingestellt. I n gleicher Weise beeinflusst die Breite des Behälters 7 die Größe des Bereichs 1 3. Die Abschnitte 1 6 der Folie 2 , die zwei Bereiche voneina nder abgrenzen , sind so perforiert, dass Flüssigkeit von einem
Bereich in einen benac hba rten Bereich gelangen kann . Diese Abschnitte 1 6 sind zug leich Festigkeitsstege im Tank, die den Gasdruck der durch Off Bölling entsteht, aufnehmen und zwar sowohl in vertikaler als auch in horizontaler Richtung ,
Der Behälter 7 weist auf der Oberseite eine relativ schmale Öffnung 1 7 auf, die sich schlitzförmig parallel zur schlauchförm igen Hülle erstreckt, Durch die Öffnung hindurch ka nn F lüssigkeit in den Behälter 7 hineinfließen , Im
Behälter befinden sich nicht dargestellte Mittel, mit denen Flüssigkeit aus dem Behälter 7 heraus zu einem Antrieb, so zum Beispiel eine Gastu rbi ne geleitet werden kann .
Die schlauchartige Hülle befindet sich innerhalb einer formstabilen Hülle 25 und zwar zwischen zwei formstabilen Halbschalen, die miteinander verschraubt sind . Jede Ha lbschale ist einwandig a usgeführt . Zwischen den aus Metall bestehenden Wänden einer jeden Halbschale und der oder den Folien befinden sich 3 bis 5 mm große Kügeichen 1 8 aus einem druckfesten Kunststoff , I m Übrigen herrscht im Zwisc henraum zwischen den Halbschalen und der bzw, den Folien ein Vakuum , 3 bis 5 mm große Kügeichen 1 8 aus einem druckfesten Kunststoff werden zur Bereitstellung des Raums zu einem Abstandshaltering bestehend aus einem luftdurchlässigen
Kunststofffolienschlauch gleichförmig auf Distanz gehalten und wie eine Perlenschnur um die Folie gewickelt und daran zum Beispiel punktförmig mit einem Silikon kleber befestigt, Hierdurch wird erreicht, dass mit Hilfe der Kügelchen nur Massenbeschleunigungskräfte an die formstabile Hülle übertragen werden, weil zum Beispiel die Tankfüllung bewegt wird, Ein sich im Inneren des Tanks aufbauender Druck aufgrund von Boil-Off Gas wird dagegen durch die Folie aufgefangen und nicht oder zumindest nicht im praxisrelevanten Umfang an die aus zwei Halbschallen gebildete formstabile Hülle 25 übertragen.
Die Lage des durch die beiden Halbschalen gebildeten Behälters bzw.
formstabile Hülle 25 wird durch vorzugsweise justierbare Auflager 19 innerhalb des Flugzeugrumpfes stabilisiert. Darüber hinaus liegt der durch die beiden Halbschalen gebildete Behälter bzw. formstabile Hülle 25 auf Spanten des Flugzeugrumpfes auf, Verbleibende Zwischenräume zwischen dem Flugzeugrumpf 1 und dem durch die Halbschalen gebildeten Behälter 25 sind mit Polyurethan 20 ausgeschäumt,
Figur 2 zeigt einen weiteren Schnitt AA durch den Tank gemäß Figur 1 , Ein jedes schlauchförmige Ende der druckfesten, kälteresistenten Folie 2 ist mit einer weiteren, als Abdeckung dienenden druckfesten, kälteresistenten Folie 21 verschlossen, Mit Hilfe eines Innenrings 22 und Schraubverbindungen 23 werden überlappende Bereiche der druckfesten, kälteresistenten Folien 2 und 21 gasdicht aufeinander gepresst, so dass durch diese Überlappung hindurch kein Tankinhalt entweichen kann. Alternativ oder ergänzend kann der überlappende Bereich mit einem Dichtmittel oder Klebstoff versehen sein, um ein Austreten von Tankinhalt durch den überlappenden Bereich hindurch zu verhindern. Die perforierten Abschnitte 16 der Folie 2 sind mit Hilfe von Platten und Verschraubungen wie dargestellt an der Folie 21 befestigt und können so die Druckspannung von expandierendem Boil-Off Gas aufnehmen. Die perforierten Abschnitte 16 stabilisieren aufgrund der Befestigungen die Druckfestigkeit des durch die Folien 2 und 21 gebildeten Innenraums. In der Figur 2 werden Spante 24 beispielsweise eines
Flugzeugrumpfes dargestellt, auf denen die gezeigte untere Halbschale aufliegt. In der Figur 3 wird der Fa ll da rgestellt, dass der Tank in einen Flügel eines F lugzeugs eingebaut worden ist.
Ein erfindungsgemäßer Tank, so auch die in den F iguren gezeigten Tanks sind mit üblichen, in den Figuren nicht dargestellten Tankanschlüssen versehen, um zum Beispiel einen Tank füllen sowie entleeren zu können oder aber um Sicherheitsanforderungen zu erfüllen . Die Anschlüsse können nachträglich angebracht werden und/ oder durch entsprechende
Vorsorgemaßnahmen von Anfang an vorhanden sein . Anstelle von
Schraubverbind ungen können auch Nietverbind ungen verwendet werden . Die Folie 2 kann doppellagig schlauchförmig gewickelt sein und zwischen beiden Schichten eine Matte, so zum Beispiel eine gasdichte Gore Tex Membran M atte aus (PTF E) enthalten , um die Dichtigkeit in weiter
verbesserter Weise sicherzustellen .

Claims

Ansprüche
1. Tank für kryogenes Flüssiggas mit einem durch eine druckfeste,
kälteresistente, schlauchartig gewickelte Folie (2) bereitgestellten Innenraum.
2. Tank nach Anspruch 1, bei dem ein oder mehrere Innenwände (16) durch die Folie (2) bereitgestellt sind, die den Innenraum in wenigste zwei Bereiche (11, 12, 13, 14, 15) unterteilen.
3. Tank nach Anspruch 1 oder 2 mit perforierten Innenwänden (16)
innerhalb der schlauchartig gewickelten Folie (2).
Tank nach einem der vorhergehenden Ansprüche mit ein oder mehreren formstabilen Platten (5), die innen an der schlauchartig gewickelten Folie (2) befestigt sind und mit denen die Größe eines mit Hilfe einer Innenwand abgetrennten Bereichs (12, 14) eingestellt ist.
Tank nach einem der vorhergehenden Ansprüche mit einem Kleb- und/ oder Dichtmittel, welches sich zwischen überlappenden Bereichen (3) der Folie (2) befindet, wobei als Dichtmittel eine gasdichte Matte eingesetzt sein kann.
Tank nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Folie (2) durch Aramid verstärkt oder aus Aramid gebildet ist.
Tank nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die beiden Enden der schlauchförmig
gewickelten Folie (2) mit Hilfe von Abdeckungen verschlossen sind, die vorzugsweise ebenfalls eine druckfeste, kälteresistente Folie (21) umfassen.
8. Tank nac h einem der vorhergehen den Ansprüche, dadurch gekennzeichnet, dass am Grund des d urch die Folie gebildeten
Innenra ums ein Behälter ( 7) für d ie Versorgung eines Transportmittels mit Treibstoff vorhanden ist.
9. Tank insbesondere nach einem der vorhergehenden Ansprüche,
dadurc h gekennzeichnet, dass ein durch ein oder mehrere druckfeste, kälteresistente Folien (2, 2 1 ) gebildeter Tankinnenraum von einer formstabilen Hülle ( 25) umhüllt wird .
1 0. Tank nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass im Zwischenra um zwischen formstabiler Hülle und Folie(n) (2 , 2 1 ) ein Vakuum herrscht und/ oder sich in diesem Zwischenraum Körner ( 1 8) befinden .
1 1 . Ta nk insbesondere nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass sich ein durch ein oder mehrere d ruckfeste, kälteresistente Folien (2, 2 1 ) gebildeter Tankinnenraum zwischen zwei formstabilen Halbschalen befindet,
1 2. Tank nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass der Tank in geschäumtes Kunststoffmaterial (20) eingebettet ist.
Tank nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass sich im Tankinnenra um LN G befindet.
1 4. Flugzeug mit einem Tank nach einem der vorhergehenden Ansprüche. 1 5. Verfahren zur Herstellung eines Tanks nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine d ruckfeste,
kä lteresistente Folie (2) schlauchartig gewickelt wird, überlappende Bereiche (3) der Fol ie miteinander verklebt werden , die beiden Enden der schlauchartig gewickelten Fol ie mit Hilfe von kälteresistenten , druckfesten Folien (21) verschlossen werden und der dadurch bereitgestellte Tankinnenraum in ein formstabiles Gehäuse gebracht wird.
PCT/EP2010/070520 2009-12-21 2010-12-22 Tank mit schlauchförmig gewickelter folie nebst verfahren WO2011085933A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10798562A EP2516917A2 (de) 2009-12-21 2010-12-22 Tank mit schlauchförmig gewickelter folie nebst verfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009055108.5 2009-12-21
DE102009055108.5A DE102009055108B4 (de) 2009-12-21 2009-12-21 Tank mit schlauchförmig gewickelter Folie nebst Verfahren

Publications (3)

Publication Number Publication Date
WO2011085933A2 true WO2011085933A2 (de) 2011-07-21
WO2011085933A3 WO2011085933A3 (de) 2012-05-03
WO2011085933A8 WO2011085933A8 (de) 2012-07-19

Family

ID=44170004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/070520 WO2011085933A2 (de) 2009-12-21 2010-12-22 Tank mit schlauchförmig gewickelter folie nebst verfahren

Country Status (3)

Country Link
EP (1) EP2516917A2 (de)
DE (1) DE102009055108B4 (de)
WO (1) WO2011085933A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110242855A (zh) * 2019-06-06 2019-09-17 吕大明 柔性高压储氢罐

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3131359A1 (fr) * 2021-12-28 2023-06-30 Jean Michel SCHULZ Réservoir cryogenique embarqué léger de forme quelconque optimisé structurellement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3309768A1 (de) 1983-03-18 1984-09-20 Kildiševa, Klavdia Sergeevna, Moskva Flugzeug-trapezfluegel
DE19543163C1 (de) 1995-11-18 1997-03-13 Daimler Benz Aerospace Ag Anordnung von Auslaßvorrichtungen
DE19816651C2 (de) 1998-04-15 2000-06-29 Gmbh Ges Fuer Innovative En Un Speicheranordnung für tiefkalte Fluide
US20060278761A1 (en) 2005-06-10 2006-12-14 Cutler Theron L Aerial refueling system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3409061A (en) * 1967-03-06 1968-11-05 Arthur D. Struble Jr. All-plastic, non-rigid cryogenic container
US3508677A (en) * 1968-08-20 1970-04-28 Whittaker Corp Vessel for storing high-pressure gases
DE2608459C2 (de) * 1975-03-04 1986-09-18 Technigaz S.A., Paris Verbundwerkstoff für Dichtsperren an Wandungen von Behältern oder Leitungen für Flüssiggas
US5150812A (en) * 1990-07-05 1992-09-29 Hoechst Celanese Corporation Pressurized and/or cryogenic gas containers and conduits made with a gas impermeable polymer
DE19524681A1 (de) * 1995-07-06 1997-01-09 Linde Ag Speicherbehälter für kryogene Medien
US6655156B1 (en) * 2002-08-28 2003-12-02 Cortec Corporation Biodegradable cryogenic bag
CN100430301C (zh) * 2002-09-17 2008-11-05 亚历山大·S·波奇察雷夫 多层压力容器及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3309768A1 (de) 1983-03-18 1984-09-20 Kildiševa, Klavdia Sergeevna, Moskva Flugzeug-trapezfluegel
DE19543163C1 (de) 1995-11-18 1997-03-13 Daimler Benz Aerospace Ag Anordnung von Auslaßvorrichtungen
DE19816651C2 (de) 1998-04-15 2000-06-29 Gmbh Ges Fuer Innovative En Un Speicheranordnung für tiefkalte Fluide
US20060278761A1 (en) 2005-06-10 2006-12-14 Cutler Theron L Aerial refueling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110242855A (zh) * 2019-06-06 2019-09-17 吕大明 柔性高压储氢罐
CN110242855B (zh) * 2019-06-06 2023-09-19 吕大明 柔性高压储氢罐

Also Published As

Publication number Publication date
DE102009055108A1 (de) 2011-06-22
WO2011085933A3 (de) 2012-05-03
DE102009055108B4 (de) 2021-03-18
EP2516917A2 (de) 2012-10-31
WO2011085933A8 (de) 2012-07-19

Similar Documents

Publication Publication Date Title
DE2316859C2 (de) Speicherbehälter zur Aufnahme von verflüssigtem Gas mit Temperaturen bis-253°C
EP1128123B1 (de) Speicherbehälter für kryogene Flüssigkeiten mit verstärkten Wandungen
EP3167223B1 (de) Vorrichtung zum schutz eines hochdruckgasbehälters eines kraftfahrzeugs, hochdruckgasbehälter für ein kraftfahrzeug sowie verfahren zur herstellung eines hochdruckgasbehälters
WO2015014517A1 (de) Tank
EP3168522B1 (de) Tank
DE2608459A1 (de) Bauwerkstoff insbesondere fuer kryogene behaelter und mit einem derartigen werkstoff versehener behaelter
DE102009029245B4 (de) Tank für Flugzeuge
DE2815473A1 (de) Isolierter behaelter fuer verfluessigtes gas und verfahren zu seiner herstellung
EP2516917A2 (de) Tank mit schlauchförmig gewickelter folie nebst verfahren
DE202013101162U1 (de) Tank für kryogene Fluide
DE102008054090A1 (de) Behälter zum Aufnehmen und Speichern von Flüssigkeiten und viskosen Stoffen, insbesondere von kryogenen Fluiden, und dessen Verwendung
DE102018129898B4 (de) Vorrichtung zum Mitführen von Treibstoff in einem Luft- und Raumfahrzeug
DE1501753A1 (de) Membran-Tankaufbauten
DE19816651C2 (de) Speicheranordnung für tiefkalte Fluide
DE10335246A1 (de) Kryotank für ein Kraftfahrzeug
DE102015204910A1 (de) Kraftfahrzeug mit einem Druckbehälter
DE102013019810A1 (de) Vorrichtung zum Speichern von Gas
DE102016220148A1 (de) Druckbehälter mit einer den Behälter umgebenden Leitung sowie Herstellungsverfahren
DE102014209916A1 (de) Hochdruckbehälter
DE102016206994A1 (de) Kryogen betankbarer Hochdruckgasbehälter
WO2020052810A1 (de) Tank
WO2022136183A1 (de) Tanksystem zur lagerung kühler medien
DE10259553A1 (de) Kältegerät
DE102014209919A1 (de) Kryodruckbehälter
DE10247504A1 (de) Druckbehälter für kondensierte Gase, insbesondere Kryotank für ein Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10798562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010798562

Country of ref document: EP