WO2011085552A1 - 兼容实现pdm-bpsk和qpsk调制的方法及装置 - Google Patents

兼容实现pdm-bpsk和qpsk调制的方法及装置 Download PDF

Info

Publication number
WO2011085552A1
WO2011085552A1 PCT/CN2010/070193 CN2010070193W WO2011085552A1 WO 2011085552 A1 WO2011085552 A1 WO 2011085552A1 CN 2010070193 W CN2010070193 W CN 2010070193W WO 2011085552 A1 WO2011085552 A1 WO 2011085552A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
polarization state
phase
bpsk
pdm
Prior art date
Application number
PCT/CN2010/070193
Other languages
English (en)
French (fr)
Inventor
杨彦甫
吕超
曾理
李朝晖
程凌浩
刘磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES10842836.8T priority Critical patent/ES2616564T3/es
Priority to PCT/CN2010/070193 priority patent/WO2011085552A1/zh
Priority to CA2782145A priority patent/CA2782145C/en
Priority to CN201080003331.0A priority patent/CN102204201B/zh
Priority to EP10842836.8A priority patent/EP2495925B1/en
Publication of WO2011085552A1 publication Critical patent/WO2011085552A1/zh
Priority to US13/545,637 priority patent/US8737844B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5161Combination of different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2096Arrangements for directly or externally modulating an optical carrier

Definitions

  • the present invention relates to the field of optical modulation technologies, and in particular, to a method and apparatus compatible with PDM-BPSK and QPSK modulation. Background technique
  • the single-wave capacity of the fiber-optic backbone DWDM (Dense Wavelength Division Multiplexing System) network has been upgraded from 1 OGb/s to 40Gb/s.
  • the single-wave rate of 100G has become the next point of interest for operators.
  • the key technology to achieve this technology upgrade is a variety of advanced modulation techniques, such as: P-BPSK (Poly izat ion Divi s ion Mul t iplexing Binary Phase Shift Keying) modulation technology And QPSK (Quadature Phase Shift Keying) modulation technology.
  • Embodiments of the present invention provide a method and apparatus compatible with PDM-BPSK and QPSK modulation, which are compatible with PDM-BPSK and QPSK modulation modes, and save design cost.
  • a method compatible with implementing PDM-BPSK and QPSK modulation including:
  • the first optical signal and the second optical signal subjected to the polarization state control and the phase shift are combined to maintain a polarization state, and a PDM-BPSK modulated optical signal or a QPSK modulated optical signal is output.
  • a device compatible with PDM-BPSK and QPSK modulation including:
  • a splitting module configured to divide the direct current into the first light and the second light of the same power;
  • the first modulation module is configured to perform photoelectric modulation on the first light, and output a first optical signal in a BPSK format;
  • a second modulation module configured to perform photoelectric modulation on the second path light, and output a second optical signal in a BPSK format
  • a polarization state control module configured to perform polarization state control on the first optical signal, wherein polarization states of the first optical signal and the second optical signal controlled by polarization state are vertically orthogonal or consistent; phase shift a module, configured to perform phase shifting on the first optical signal or the second optical signal, and the phase difference between the first optical signal and the second optical signal that is phase-shifted is ⁇ /2 or remains unchanged;
  • the combining module is configured to combine the first optical signal and the second optical signal subjected to the polarization state control and the phase shift into an optical signal that maintains a polarization state, and output a PDM-BPSK modulated optical signal or a QPSK modulated optical signal.
  • the method and device for implementing PDM-BPSK and QPSK modulation are provided by the embodiment of the present invention, and the first optical signal or the second optical signal is phase-shifted by performing polarization state control on the first optical signal, and is subjected to polarization state control. And combining the phase-shifted first optical signal and the second optical signal to maintain a polarization state, so that the relationship between the polarization states of the first optical signal and the second optical signal, and the first optical signal and the first optical signal may be combined
  • the phase difference between the two optical signals outputs a PDM-BPSK modulated optical signal or a QPSK modulated optical signal.
  • the invention can be compatible with implementing two modulation modes of PDM-BPSK and QPSK, thereby saving design cost and increasing modulation flexibility.
  • DRAWINGS In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the embodiments or the description of the prior art will be briefly described below. Obviously, the drawings in the following description are only It is a certain embodiment of the present invention, and other drawings can be obtained from those skilled in the art without any inventive labor.
  • Embodiment 1 is a flowchart of a method according to Embodiment 1 of the present invention.
  • Embodiment 3 is a flowchart of a method according to Embodiment 3 of the present invention.
  • Embodiment 4 is a flowchart of a method according to Embodiment 4 of the present invention.
  • FIG. 5 is a flowchart of a method according to Embodiment 5 of the present invention.
  • FIG. 6 is a flowchart of a method according to Embodiment 6 of the present invention.
  • Embodiment 7 is a flowchart of a method according to Embodiment 7 of the present invention.
  • Embodiment 8 is a schematic structural diagram of an apparatus according to Embodiment 8 of the present invention.
  • Embodiment 9 is a schematic structural diagram of a device according to Embodiment 9 of the present invention.
  • FIG. 9a is a schematic diagram of outputting a QPSK modulated optical signal by using the apparatus provided in Embodiment 9 of the present invention
  • FIG. 9b is a schematic diagram of outputting a PDM-BPSK modulated optical signal by using the apparatus provided in Embodiment 9 of the present invention
  • FIG. 10 is a schematic structural diagram of a device according to Embodiment 10 of the present invention.
  • FIG. 1 is a schematic structural diagram of a device according to Embodiment 11 of the present invention. detailed description
  • Embodiment 1 An embodiment of the present invention provides a method for implementing PDM-BPSK and QPSK modulation. As shown in FIG. 1, the method includes:
  • Step 102 Perform photoelectric modulation on the first path light and the second path light respectively, and correspondingly output a first optical signal and a second optical signal in a BPSK (Binary Pha s e Shift Keying) format;
  • BPSK Binary Pha s e Shift Keying
  • the method for implementing PDM-BPSK and QPSK modulation performs phase shift on the first optical signal or the second optical signal by performing polarization state control on the first optical signal, and performs polarization state control and phase
  • the shifted first optical signal and the second optical signal are combined to perform optical signals in a polarization state, so that the relationship between the polarization states of the first optical signal and the second optical signal, and the first optical signal and the second light may be
  • the phase difference between the signals outputs a PDM-BPSK modulated optical signal or a QPSK modulated optical signal.
  • the invention can be compatible with the implementation of PDM-BPSK and QPSK modulation modes, thereby saving design cost and increasing modulation flexibility.
  • a 40 Gb/s QPSK optical signal and a 40 Gb/s PDM-BPSK optical signal are generated by compatible modulation.
  • the light propagation method can utilize the method of spatial optical coupling or the method of using the TU L- ghtwave C i rcui t s (planar optical waveguide).
  • the compatible method for implementing PDM-BPSK and QPSK modulation includes:
  • the direct current light is divided into a first path light and a second path light with the same power, and the first path light and the first path light Both lights have a first polarization state.
  • the direct current light may be output by an LD (Laser Diode), but is not limited thereto.
  • LD Laser Diode
  • the direct current light can be split by a PS (Power Splitter).
  • PS Power Splitter
  • the input light is specularly reflected and transmitted into two bundles of output light;
  • the silicon-based PLC method it is realized by a silicon-based Y-type optical waveguide.
  • the silicon-based Y-type optical waveguide it is not limited to the manner described above.
  • photoelectric modulation can be performed in the following manner:
  • the first path light is injected into the first MZM (MachZender Modulator), the DC offset of the first MZM is set to the lowest point of the transmission curve, and the two 20 Gb/s electrical signals are separately driven in a differential manner.
  • the second path light is injected into the second MZM (MachZender Modulator), the DC offset of the second MZM is set to the lowest point of the transmission curve, and the two 20 Gb/s electrical signals are separately driven in a differential manner.
  • the manner of the photoelectric modulation is not limited thereto, and may be performed in other manners.
  • the first optical signal after the polarization state control is divided into two cases:
  • Case 1 The first optical signal after the polarization state control has a first polarization state
  • Case 2 The first optical signal after the polarization state control has a second polarization state.
  • the polarization state control can be performed in the following manner:
  • the polarization state is controlled by setting the operating state of the OPC (Opica ica Polarization Control).
  • OPC Opapica ica Polarization Control
  • a half-wave plate is inserted into the spatial light path, and by rotating the axial position of the half-wave plate, when the axial direction of the half-wave plate is the same as the polarization state of the light, the output polarization state is the same as the input polarization state.
  • the output polarization state and the input polarization state are perpendicular to each other; when using the silicon-based PLC method, the electronic control based on lithium niobate is integrated on the silicon substrate.
  • the cascade wave plate controls the output polarization state by applying an appropriate power source to the wave plate.
  • the manner of controlling the polarization state is not limited thereto, and may be performed in other manners.
  • the optical carrier phase of the first optical signal may be an arbitrary value, that is, the phase shift of the first optical signal may not be performed. That is, the phase difference between the phase-shifted second optical signal and the first optical signal remains unchanged.
  • phase shift can be performed in the following manner:
  • the carrier phase of the optical signal is changed by adjusting the OPS (Optical Phase Shifter).
  • OPS Optical Phase Shifter
  • the carrier phase of the optical signal is changed by fine-tuning the optical path of the spatial optical path;
  • the silicon-based PLC method is used, the refractive index of the material of the optical waveguide is changed by heating the silicon-based optical waveguide, thereby changing the optical signal.
  • Carrier phase is adjusted by adjusting the OPS (Optical Phase Shifter).
  • phase shift is not limited to this, and may be performed in other manners.
  • the combination of the optical signals in the polarization state means that the two optical signals can be combined regardless of the polarization state of the two optical signals, and the two optical signals can be stably transmitted during the combination of the optical signals.
  • the road light signal keeps the polarization state of the two optical signals unchanged.
  • the first optical signal and the second optical signal both have a first polarization state, and the phase difference between the phase-shifted first optical signal and the second optical signal is ⁇ /2, the first light is After the signal is combined with the optical signal in which the second optical signal is in a polarization state, a QPSK modulated optical signal having a first polarization state of 40 Gb/s is output;
  • optical signal combining can be performed in the following manner:
  • the manner in which the optical signals are combined is not limited thereto, and may be performed in other manners.
  • the method for implementing PDM-BPSK and QPSK modulation provided by the embodiment of the present invention controls the polarization state of the first optical signal, and performs phase shift on the first optical signal after the polarization state control, and the first phase after phase shifting
  • the optical signal is combined with the optical signal of the second optical signal in a polarization state, so that the relationship between the polarization states of the first optical signal and the second optical signal, and between the first optical signal and the second optical signal may be Phase difference, output PDM-BPSK modulated optical signal or QPSK modulated optical signal.
  • the present invention can be compatible with both PDM-BPSK and QPSK modulation modes, thereby saving design cost and increasing modulation flexibility.
  • a 40 Gb/s QPSK optical signal and a 40 Gb/s PDM-BPSK optical signal are generated by compatible modulation.
  • the method for implementing PDM-BPSK and QPSK modulation is as follows: 301: The direct current light is divided into a first path light and a second path light having the same power, the first path light has a first polarization state, and the second path light has a second polarization state, the first polarization state It is perpendicular to the second polarization state.
  • the direct current light may be output by the LD, but is not limited thereto.
  • the direct current light can be split by using a PBS (Polar Ion Beam Beam Splitter).
  • PBS Polar Ion Beam Beam Splitter
  • step 202 The manner of the photoelectric modulation can be referred to as described in step 202.
  • the first optical signal after the polarization state control is divided into two cases:
  • Case 1 The first optical signal after the polarization state control has a first polarization state
  • Case 2 The first optical signal after the polarization state control has a second polarization state.
  • the manner of controlling the polarization state may be as described in step 203.
  • the optical carrier phase of the first optical signal may be an arbitrary value, that is, the phase shift of the first optical signal may not be performed. That is, the phase difference between the phase-shifted second optical signal and the first optical signal remains unchanged;
  • the phase difference between the first optical signal and the second optical signal is ⁇ /2.
  • the manner of the phase shift may be as described in step 204.
  • optical signals may be as described in step 205.
  • the method for implementing PDM-BPSK and QPSK modulation controls the polarization state of the first optical signal, and performs phase shift on the first optical signal after the polarization state control, and the first phase after phase shifting
  • the optical signal is combined with the optical signal of the second optical signal in a polarization state, so that the relationship between the polarization states of the first optical signal and the second optical signal, and between the first optical signal and the second optical signal may be Phase difference, output PDM-BPSK modulated optical signal or QPSK modulated optical signal.
  • the present invention can be compatible with both PDM-BPSK and QPSK modulation modes, thereby saving design cost and increasing modulation flexibility.
  • a 40 Gb/s QPSK optical signal and a 40 Gb/s PDM-BPSK optical signal are generated by compatible modulation.
  • the method for implementing PDM-BPSK and QPSK modulation is as follows:
  • the phase-shifted first optical signal is divided into two cases:
  • Case 1 the phase difference between the phase-shifted first optical signal and the second optical signal is ⁇ /2;
  • Case 2 the phase between the phase-shifted first optical signal and the second optical signal
  • the difference is an arbitrary value, that is, the phase shift of the first optical signal may not be performed, that is, the phase difference between the phase-shifted second optical signal and the first optical signal remains unchanged.
  • phase shift may be as described in step 204.
  • 404. Control a phase shifted first optical signal between a first polarization state and a second polarization state, wherein the first polarization state and the second polarization state are perpendicular to each other.
  • the first optical signal is controlled to have a first polarization state
  • the first optical signal is controlled to have the second polarization state.
  • the manner of controlling the polarization state may be as described in step 203.
  • optical signals may be as described in step 205.
  • the method for implementing PDM-BPSK and QPSK modulation performs phase shifting on the first optical signal, and performs polarization state control on the phase-shifted first optical signal, and firstly controls the polarization state.
  • the optical signal is combined with the optical signal of the second optical signal in a polarization state, so that the relationship between the polarization states of the first optical signal and the second optical signal, and between the first optical signal and the second optical signal may be Phase difference, output PDM-BPSK modulated optical signal or QPSK modulated optical signal.
  • the present invention can be compatible with both PDM-BPSK and QPSK modulation modes, thereby saving design cost and increasing modulation flexibility.
  • Embodiment 5 In this embodiment, a 40 Gb/s QPSK optical signal and a 40 Gb/s PDM-BPSK optical signal are generated by compatible modulation. For other bit rate cases, reference may be made to this embodiment.
  • the compatible method for implementing PDM-BPSK and QPSK modulation includes:
  • the phase-shifted first optical signal is divided into two cases:
  • Case 1 the phase difference between the phase-shifted first optical signal and the second optical signal is ⁇ /2;
  • Case 2 the phase between the phase-shifted first optical signal and the second optical signal
  • the difference is an arbitrary value, that is, the phase shift of the first optical signal may not be performed, that is, the phase difference between the phase-shifted second optical signal and the first optical signal remains unchanged.
  • the manner of the phase shift may be as described in step 204.
  • the first optical signal is controlled to have a first polarization state.
  • the manner of controlling the polarization state may be as described in step 203.
  • the second optical signal when the first optical signal has a first polarization state, the second optical signal has a second polarization state, and the phase difference between the phase-shifted first optical signal and the second optical signal is an arbitrary value, Combining the optical signal of the first optical signal and the second optical signal in a polarization state, and outputting 40 Gb/s PDM-BPSK modulates the optical signal.
  • optical signals may be as described in step 205.
  • the method for implementing PDM-BPSK and QPSK modulation performs phase shifting on the first optical signal, and performs polarization state control on the phase-shifted first optical signal, and firstly controls the polarization state.
  • the optical signal is combined with the optical signal of the second optical signal in a polarization state, so that the relationship between the polarization states of the first optical signal and the second optical signal, and between the first optical signal and the second optical signal may be Phase difference, output PDM-BPSK modulated optical signal or QPSK modulated optical signal.
  • the present invention can be compatible with both PDM-BPSK and QPSK modulation modes, thereby saving design cost and increasing modulation flexibility.
  • a 40 Gb/s QPSK optical signal and a 40 Gb/s PDM-BPSK optical signal are generated by compatible modulation.
  • the compatible method for implementing PDM-BPSK and QPSK modulation includes:
  • 601-602 refer to steps 201-202, and will not be mentioned here.
  • the first optical signal after the polarization state control is divided into two cases:
  • Case 1 The first optical signal after the polarization state control has a first polarization state
  • Case 2 The first optical signal after the polarization state control has a second polarization state.
  • the manner of controlling the polarization state may be as described in step 203.
  • the phase difference between the second optical signal and the first optical signal is ⁇ /2;
  • the optical carrier phase of the second optical signal may be an arbitrary value, that is, the second optical signal may not be phase-shifted. That is, the phase difference between the phase-shifted second optical signal and the first optical signal remains unchanged.
  • the manner of the phase shift may be as described in step 204.
  • the second optical signal has the first polarization state
  • the phase difference between the phase-shifted second optical signal and the polarization-controlled first optical signal is an arbitrary value.
  • the optical signal combining manner can be referred to as described in step 205.
  • the method for implementing PDM-BPSK and QPSK modulation controls the polarization state of the first optical signal, and performs phase shift on the second optical signal to adjust the first optical signal and phase after the polarization state control.
  • the shifted second optical signal performs an optical signal combining to maintain a polarization state, according to a relationship between polarization states of the first optical signal and the second optical signal, and a phase between the first optical signal and the second optical signal Poor, output PDM-BPSK modulated optical signal or QPSK modulated optical signal.
  • the present invention can be compatible with both PDM-BPSK and QPSK modulation modes, thereby saving design cost and increasing modulation flexibility.
  • a 40 Gb/s QPSK optical signal and a 40 Gb/s PDM-BPSK optical signal are generated by compatible modulation.
  • the compatible method for implementing PDM-BPSK and QPSK modulation includes:
  • the first optical signal after the polarization state control is divided into two cases: Case 1: The first optical signal after the polarization state control has a first polarization state;
  • Case 2 The first optical signal after the polarization state control has a second polarization state.
  • the manner of controlling the polarization state may be as described in step 203.
  • the optical carrier phase of the second optical signal may be an arbitrary value, that is, the second optical signal may not be phase-shifted. , that is, the phase difference between the phase-shifted second optical signal and the first optical signal remains unchanged;
  • the phase difference between the second optical signal and the first optical signal is ⁇ / 2 .
  • the manner of the phase shift may be as described in step 204.
  • the second optical signal has a second polarization state
  • the phase difference between the phase-shifted second optical signal and the polarization-controlled first optical signal is arbitrary.
  • the output is 4001)/8? 03 ⁇ 4 ⁇ _8?81 modulated optical signal;
  • optical signals may be as described in step 205.
  • the method for implementing PDM-BPSK and QPSK modulation controls the polarization state of the first optical signal, and performs phase shift on the second optical signal to adjust the first optical signal and phase after the polarization state control.
  • the shifted second optical signal is combined with the optical signal that maintains the polarization state, so that the relationship between the polarization states of the first optical signal and the second optical signal and the relationship between the first optical signal and the second optical signal may be Phase difference, output PDM-BPSK modulated optical signal or QPSK modulated optical signal.
  • the invention can be compatible with the implementation of PDM-BPSK and QPSK modulation modes, thereby saving design cost and increasing modulation flexibility.
  • connection between the modules may utilize a method of spatial optical coupling or a method using a WIFI PLC.
  • This embodiment provides a device compatible with PDM-BPSK and QPSK modulation. As shown in FIG. 8, the device includes:
  • the splitting module 81 is configured to divide the direct current light into the first path light and the second path light of the same power; wherein the direct current light may be output by the LD, but is not limited thereto.
  • the beam splitting module 81 can be implemented by using PS.
  • the input light is specularly reflected and transmitted, and is divided into two output lights;
  • the silicon-based PLC method it is realized by a silicon-based Y-type optical waveguide.
  • it can also be implemented by other devices.
  • a first modulation module 82 configured to perform photoelectric modulation on the first path light, and output a first optical signal in a BPSK format;
  • the first modulation module 82 can be implemented by using MZM, and the DC offset of the MZM is set to be the lowest point of the transmission curve, and the two electrical signals having the same bit rate respectively drive the MZE in a differential manner.
  • the first light is phase-modulated, and the first optical signal of the BPSK format of the bit rate whose polarization state is not changed is output;
  • the MZM may be implemented by using a lithium niobate material, but is not limited thereto. Of course, it can also be implemented by other devices.
  • a second modulation module 83 configured to perform photoelectric modulation on the second path light, and output a second optical signal in BPSK format
  • the second modulation module 83 can be implemented by using MZM, and the DC offset of the MZM is set to be the lowest point of the transmission curve, and the two electrical signals having the same bit rate respectively drive the MZE in a differential manner.
  • the second light is phase-modulated, and the second optical signal of the BPSK format of the bit rate whose polarization state is not changed is output;
  • the MZM may be implemented by using a lithium niobate material, but is not limited thereto. Of course, it can also be implemented by other devices.
  • the polarization state control module 84 is configured to perform polarization state control on the first optical signal, and the polarization states of the first optical signal and the second optical signal controlled by the polarization state are vertically orthogonal or consistent;
  • the polarization state control module 84 can be implemented by using 0PC, and the polarization state is controlled by setting the working state of the 0PC.
  • a half-wave plate is inserted into the spatial light path, and by rotating the axial position of the half-wave plate, when the axial direction of the half-wave plate is the same as the polarization state of the light, the output polarization state is the same as the input polarization state.
  • the output polarization state and the input polarization state are perpendicular to each other; when using the silicon-based PLC method, the electronic control based on lithium niobate is integrated on the silicon substrate.
  • the cascade wave plate controls the output polarization state by applying an appropriate power source to the wave plate.
  • it can also be implemented by other devices.
  • the phase shifting module 85 is configured to perform phase shifting on the first optical signal or the second optical signal, and the phase difference between the first optical signal and the second optical signal that is phase-shifted is ⁇ /2 or remains unchanged Change
  • the phase shifting module 85 can be implemented by using OPS.
  • OPS optical phase shifting method
  • the carrier phase of the optical signal is changed by fine-tuning the optical path of the spatial optical path;
  • the silicon-based PLC method is used, the refractive index of the material of the optical waveguide is changed by heating the silicon-based optical waveguide, thereby changing the light.
  • the carrier phase of the signal can also be implemented by other devices.
  • the combining module 86 is configured to combine the optical signals of the first optical signal and the second optical signal that are subjected to polarization state control and phase shift in a polarization state, and output a PDM-BPSK modulated optical signal or a QPSK modulated optical signal.
  • the combining module 86 can be implemented by using a PC with a polarization maintaining coupling function.
  • the two input lights are combined and output as a beam of light by reflection or transmission; when using the silicon-based PLC method, it is realized by a silicon-based Y-type waveguide.
  • the silicon-based PLC method it is realized by a silicon-based Y-type waveguide.
  • other devices can also be used.
  • the apparatus for implementing PDM-BPSK and QPSK modulation performs phase shift on the first optical signal or the second optical signal by performing polarization state control on the first optical signal, and performs polarization state control and phase Moving the first optical signal and the second optical signal to maintain a polarization state of the optical signal a path, thereby outputting a PDM-BPSK modulated optical signal or a QPSK modulated optical signal according to a relationship between polarization states of the first optical signal and the second optical signal, and a phase difference between the first optical signal and the second optical signal .
  • the present invention can implement PDM-BPSK and QPSK modulation modes compatible with one device, thereby saving design cost and increasing modulation flexibility.
  • This embodiment provides a device compatible with PDM-BPSK and QPSK modulation. As shown in FIG. 9, the device includes:
  • the splitting module 81 is configured to divide the direct current into the first light and the second light of the same power; the first modulation module 82 is configured to perform photoelectric modulation on the first light, and output the first light in the BPSK format.
  • a second modulation module 83 configured to perform photoelectric modulation on the second path light, and output a second optical signal in BPSK format
  • the polarization state control module 84 is configured to perform polarization state control on the first optical signal, and the polarization states of the first optical signal and the second optical signal controlled by the polarization state are vertically orthogonal or consistent;
  • the phase shifting module 85 is configured to perform phase shifting on the second optical signal, and the phase difference between the first optical signal and the second optical signal that is phase-shifted is ⁇ /2 or remains unchanged;
  • the combining module 86 is configured to combine the polarization-controlled first optical signal and the phase-shifted second optical signal to maintain a polarization state, and output a PDM-BPSK modulated optical signal or QPSK modulation.
  • Optical signal Optical signal.
  • the polarization state control module 84 is specifically configured to perform polarization state control on the first optical signal of the BPSK format until the polarization states of the first optical signal and the second optical signal are consistent;
  • the phase shifting module 85 is specifically configured to phase shift the second optical signal of the BPSK format to a phase difference between the first optical signal and the second optical signal of ⁇ /2;
  • the combining module 86 will pass the first optical signal of the polarization state control module 84 and The second optical signal of the phase shifting module 85 performs an optical signal combining polarization state to output a QPSK modulated optical signal.
  • the polarization state control module 84 is specifically configured to perform polarization state control on a first optical signal of the BPSK format to a vertical orthogonal state of polarization states of the first optical signal and the second optical signal. ;
  • the phase shifting module 85 is specifically configured to phase shift the second optical signal of the BPSK format by an arbitrary value, or the phase shifting module 85 does not phase shift the second optical signal, that is, after the phase shift The phase difference between the two optical signals and the first optical signal remains unchanged;
  • the combining module 86 combines the first optical signal that passes through the polarization state control module 84 with the optical signal that is in a polarization state through the second optical signal of the phase shifting module 85, and outputs PDM-BPSK modulates the optical signal.
  • each module refers to the corresponding modules in the eighth embodiment.
  • the apparatus for implementing PDM-BPSK and QPSK modulation controls the polarization state of the first optical signal, performs phase shift on the second optical signal, and controls the first optical signal after the polarization state control.
  • the phase-shifted second optical signal is combined with the optical signal in a polarization state, so that the relationship between the polarization states of the first optical signal and the second optical signal, and between the first optical signal and the second optical signal may be
  • the phase difference is outputted by a PDM-BPSK modulated optical signal or a QPSK modulated optical signal.
  • the present invention can implement PDM-BPSK and QPSK modulation modes by using one device, thereby saving design cost and increasing modulation flexibility.
  • the embodiment provides a device compatible with PDM-BPSK and QPSK modulation. As shown in FIG. 10, the device includes:
  • the splitting module 81 is configured to divide the direct current into the first light and the second light of the same power; the first modulation module 82 is configured to perform photoelectric modulation on the first light, and output the first light in the BPSK format.
  • a second modulation module 83 configured to perform photoelectric modulation on the second path light, and output the BPSK format Second optical signal
  • the phase shifting module 85 is configured to perform phase shifting on the first optical signal, and the phase difference between the first optical signal and the second optical signal that is phase-shifted is ⁇ /2 or remains unchanged;
  • a polarization state control module 84 configured to perform polarization state control on the phase-shifted first optical signal, wherein a polarization state of the first optical signal and the second optical signal controlled by a polarization state is vertically orthogonal or be consistent;
  • the combining module 86 is configured to combine the first optical signal after the polarization state control and the optical signal in which the second optical signal is in a polarization state, and output a PDM-BPSK modulated optical signal or a QPSK modulated optical signal.
  • each module refers to the corresponding modules in the eighth embodiment.
  • the apparatus for implementing PDM-BPSK and QPSK modulation performs phase shifting on the first optical signal, and performs polarization state control on the phase-shifted first optical signal, and firstly controls the polarization state.
  • the optical signal is combined with the optical signal of the second optical signal in a polarization state, so that the relationship between the polarization states of the first optical signal and the second optical signal, and between the first optical signal and the second optical signal may be
  • the phase difference is outputted by a PDM-BPSK modulated optical signal or a QPSK modulated optical signal.
  • the present invention can implement PDM-BPSK and QPSK modulation modes by using one device, thereby saving design cost and increasing modulation flexibility.
  • the embodiment provides a device compatible with PDM-BPSK and QPSK modulation. As shown in FIG. 11, the device includes:
  • the splitting module 81 is configured to divide the direct current into the first light and the second light of the same power; the first modulation module 82 is configured to perform photoelectric modulation on the first light, and output the first light in the BPSK format.
  • a second modulation module 83 configured to perform photoelectric modulation on the second path light, and output the BPSK format Second optical signal
  • the polarization state control module 84 is configured to perform polarization state control on the first optical signal, and the polarization states of the first optical signal and the second optical signal controlled by the polarization state are vertically orthogonal or consistent;
  • the phase shifting module 85 is configured to perform phase shifting on the first optical signal after the polarization state control, and the phase difference of the phase difference between the first optical signal and the second optical signal is ⁇ /2 or remain unchanged Change
  • the combining module 86 is configured to combine the phase-shifted first optical signal and the second optical signal to maintain an optical signal of a polarization state, and output a PDM-BPSK modulated optical signal or a QPSK modulated optical signal.
  • each module refers to the corresponding modules in the eighth embodiment.
  • the apparatus for implementing PDM-BPSK and QPSK modulation controls the polarization state of the first optical signal, and performs phase shift on the first optical signal after the polarization state control, and the first phase after phase shifting
  • the optical signal is combined with the optical signal of the second optical signal in a polarization state, so that the relationship between the polarization states of the first optical signal and the second optical signal, and between the first optical signal and the second optical signal may be Phase difference, output PDM-BPSK modulated optical signal or QPSK modulated optical signal.
  • the present invention can implement PDM-BPSK and QPSK modulation modes by using one device, thereby saving design cost and increasing modulation flexibility.
  • the apparatus for implementing PDM-BPSK and QPSK modulation provided by the embodiments of the present invention can implement the method embodiments provided above.
  • the method and apparatus compatible with implementing PDM-BPSK and QPSK modulation provided by the embodiments of the present invention can be applied to compatible modulation of PDM-BPSK and QPSK, but is not limited thereto.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • ROM read-only memory
  • RAM random access memory

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开了一种兼容实现PDM-BPSK和QPSK调制的方法及装置,所述方法包括:将直流光分为功率相同的第一路光和第二路光;分别对所述第一路光和第二路光进行光电调制,对应输出BPSK格式的第一光信号和第二光信号;对所述第一光信号进行偏振态控制,经过偏振态控制的所述第一光信号与所述第二光信号的偏振态为垂直正交或保持一致;对所述第一光信号或第二光信号进行相移,经过相移的所述第一光信号与所述第二光信号的相位差为π/2或保持不变;将经过偏振态控制和相移的第一光信号和第二光信号进行保持偏振状态的光信号合路,输出PDM-BPSK调制光信号或QPSK调制光信号。本发明适用于兼容实现PDM-BPSK和QPSK两种调制方式。

Description

兼容实现 PDM- BPSK和 QPSK调制的方法及装置 技术领域
本发明涉及光调制技术领域, 特别涉及一种兼容实现 PDM-BPSK和 QPSK调 制的方法及装置。 背景技术
近年来,随着传输业务容量的急剧增加,光纤主干 DWDM( Dense wavelength divi s ion mul t iplexing , 密集波分复用系统) 网络的单波容量已经从 1 OGb/s 向 40Gb/s进行升级。 同时单波速率达到 100G已经成为运营商的下一个兴趣点。 而实现这一技术升级的关键技术便是各种高级调制技术, 例如: P丽 -BPSK ( Polar izat ion Divi s ion Mul t iplexing Binary Phase Shif t Keying , 偏 振复用双相移键控)调制技术和 QPSK ( Quadrature Phase Shif t Keying , 正 交相移键控)调制技术。
在现有技术中, 需要针对不同的调制方式, 分别设计不同的装置, 以实 现 PDM-BPSK调制和 QPSK调制。
在实现本发明的过程中, 发明人发现现有技术中至少存在如下问题: 同一种装置只能实现一种调制方式, 为了实现 PDM-BPSK调制和 QPSK调制, 需要设计两种不同的装置, 增加了设计成本。 发明内容
本发明的实施例提供一种兼容实现 PDM-BPSK和 QPSK调制的方法及装置, 能够兼容实现 PDM-BPSK和 QPSK两种调制方式, 节省了设计成本。
本发明的实施例釆用的技术方案为:
一种兼容实现 PDM-BPSK和 QPSK调制的方法, 包括:
将直流光分为功率相同的第一路光和第二路光;
分别对所述第一路光和第二路光进行光电调制, 对应输出 BPSK格式的第 一光信号和第二光信号; 对所述第一光信号进行偏振态控制, 经过偏振态控制的所述第一光信号 与所述第二光信号的偏振态为垂直正交或保持一致;
对所述第一光信号或第二光信号进行相移, 经过相移的所述第一光信号 与所述第二光信号的相位差为 π /2或保持不变;
将经过偏振态控制和相移的第一光信号和第二光信号进行保持偏振状态 的光信号合路, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。
一种兼容实现 PDM-BPSK和 QPSK调制的装置, 包括:
分光模块, 用于将直流光分为功率相同的第一路光和第二路光; 第一调制模块, 用于对所述第一路光进行光电调制, 输出 BPSK格式的第 一光信号;
第二调制模块, 用于对所述第二路光进行光电调制, 输出 BPSK格式的第 二光信号;
偏振态控制模块, 用于对所述第一光信号进行偏振态控制, 经过偏振态 控制的所述第一光信号与所述第二光信号的偏振态为垂直正交或保持一致; 相移模块, 用于对所述第一光信号或第二光信号进行相移, 经过相移的 所述第一光信号与所述第二光信号的相位差为 π /2或保持不变;
合路模块, 用于将经过偏振态控制和相移的第一光信号和第二光信号进 行保持偏振状态的光信号合路, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。
本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的方法及装置, 通过 对第一光信号进行偏振态控制, 对第一光信号或第二光信号进行相移, 并将 经过偏振态控制和相移的第一光信号和第二光信号进行保持偏振状态的光信 号合路, 从而可以根据第一光信号和第二光信号的偏振态之间的关系, 以及 第一光信号与第二光信号之间的相位差, 输出 PDM-BPSK调制光信号或 QPSK调 制光信号。 与现有技术相比, 本发明可以兼容实现 PDM-BPSK和 QPSK两种调制 方式, 从而节省了设计成本, 增加了调制的灵活性。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其它的附图。
图 1为本发明实施例一提供的方法流程图;
图 2为本发明实施例二提供的方法流程图;
图 3为本发明实施例三提供的方法流程图;
图 4为本发明实施例四提供的方法流程图;
图 5为本发明实施例五提供的方法流程图;
图 6为本发明实施例六提供的方法流程图;
图 7为本发明实施例七提供的方法流程图;
图 8为本发明实施例八提供的装置结构示意图;
图 9为本发明实施例九提供的装置结构示意图;
图 9a为利用本发明实施例九提供的装置输出 QPSK调制光信号的示意图; 图 9b为利用本发明实施例九提供的装置输出 PDM-BPSK调制光信号的示意 图;
图 1 0为本发明实施例十提供的装置结构示意图;
图 1 1为本发明实施例十一提供的装置结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
为使本发明技术方案的优点更加清楚, 下面结合附图和实施例对本发明 作详细说明。
实施例一 本发明实施例提供一种兼容实现 PDM-BPSK和 QPSK调制的方法, 如图 1所 示, 所述方法包括:
101、 将直流光分为功率相同的第一路光和第二路光;
102、 分别对所述第一路光和第二路光进行光电调制, 对应输出 BPSK ( Binary Pha s e Shi f t Keying , 双相移键控)格式的第一光信号和第二光信 号;
103、 对所述第一光信号进行偏振态控制, 经过偏振态控制的所述第一光 信号与所述第二光信号的偏振态为垂直正交或保持一致;
104、 对所述第一光信号或第二光信号进行相移, 经过相移的所述第一光 信号与所述第二光信号的相位差为 π / 2或保持不变;
105、 将经过偏振态控制和相移的第一光信号和第二光信号进行保持偏振 状态的光信号合路, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。
本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的方法, 通过对第一 光信号进行偏振态控制, 对第一光信号或第二光信号进行相移, 并将经过偏 振态控制和相移的第一光信号和第二光信号进行保持偏振状态的光信号合 路, 从而可以根据第一光信号和第二光信号的偏振态之间的关系, 以及第一 光信号与第二光信号之间的相位差, 输出 PDM-BPSK调制光信号或 QPSK调制光 信号。 与现有技术相比, 本发明可以兼容实现 PDM-BPSK和 QPSK两种调制方式, 从而节省了设计成本, 增加了调制的灵活性。
实施例二
在本实施例中, 以兼容调制产生 40Gb/ s QPSK光信号和 40Gb/ s PDM-BPSK 光信号为例, 其它比特率的情形可以参照该实施例。 光传播方式可以利用空 间光学耦合的方法, 或者利用石圭基 PLC ( P lan L i ghtwave C i rcui t s , 平面光 波导线路) 的方法。
如图 2所示, 所述兼容实现 PDM-BPSK和 QPSK调制的方法包括:
201、 将直流光分为功率相同的第一路光和第二路光, 所述第一路光和第 二路光均具有第一偏振态。
其中, 所述直流光可以由 LD (Laser Diode, 激光二极管)输出, 但不仅 限于此。
在本实施例, 可以釆用 PS ( Power Splitter, 光分波器)对所述直流光 进行分光。 当利用空间光学耦合方法时, 输入光经镜面反射和透射, 分为两 束输出光; 当利用硅基 PLC方法时, 通过基于硅基的 Y型光波导实现。 当然, 不仅限于以上所述的方式。
202、 对所述第一路光进行光电调制, 输出具有第一偏振态的 BPSK格式的 第一光信号, 对所述第二路光进行光电调制, 输出具有第一偏振态的 BPSK格 式的第二光信号。
具体地, 可以釆用以下方式进行光电调制:
将所述第一路光注入第一 MZM(MachZender Modulator,马赫曾德调制器 ), 设置第一 MZM的直流偏置为传输曲线的最低点, 两路 20Gb/s的电信号以差分方 式分别驱动该第一 MZE, 对所述第一路光进行相位调制, 输出具有第一偏振态 的 20Gb/s的 BPSK格式的第一光信号; 所述 MZM可以釆用铌酸锂材料实现, 但不 仅限于此。
将所述第二路光注入第二 MZM(MachZender Modulator,马赫曾德调制器 ), 设置第二 MZM的直流偏置为传输曲线的最低点, 两路 20Gb/s的电信号以差分方 式分别驱动该第二 MZE, 对所述第二路光进行相位调制, 输出具有第一偏振态 的 20Gb/s的 BPSK格式的第二光信号; 所述 MZM可以釆用铌酸锂材料实现, 但不 仅限于此。
当然, 所述光电调制的方式不仅限于此, 也可以釆用其它方式进行。
203、 对所述第一光信号在第一偏振态和第二偏振态之间进行控制, 所述 第一偏振态与第二偏振态互为垂直关系。
将偏振态控制后的第一光信号分为两种情况:
情况 1: 偏振态控制后的第一光信号具有第一偏振态; 情况 2: 偏振态控制后的第一光信号具有第二偏振态。
具体地, 可以釆用以下方式进行偏振态控制:
通过设置 OPC ( Opt ica l Polar izat ion Control ler,光偏振开关) 的工作 状态, 进行偏振态的控制。 当利用空间光学耦合方法时, 在空间光路中插入 一块半波片, 通过旋转半波片的轴向位置, 当半波片轴向与光偏振态相同时, 输出偏振态与输入偏振态相同, 当半波片轴向与光偏振态呈 45度夹角时, 输 出偏振态与输入偏振态互为垂直关系; 当利用硅基 PLC方法时, 通过在硅基上 集成基于铌酸锂的电控级联波片, 通过对波片施加适当电源, 实现输出偏振 态的控制。
当然, 所述偏振态控制的方式不仅限于此, 也可以釆用其它方式进行。
204、 对偏振态控制后的第一光信号进行相移。
对应情况 1 , 当偏振态控制后的第一光信号具有第一偏振态时, 将该第一 光信号相移为与所述第二光信号之间的相位差为 π /2;
对应情况 2 , 当偏振态控制后的第一光信号具有第二偏振态时, 该第一光 信号的光载波相位可以为任意值, 也就是说, 可以不对该第一光信号进行相 移, 即相移后的第二光信号与所述第一光信号的相位差保持不变。
具体地, 可以釆用以下方式进行相移:
通过调节 OPS ( Opt ica l Phase Shif ter , 光相移器), 改变光信号的载波 相位。 当利用空间光学耦合方法时, 通过微调空间光路的光程改变光信号的 载波相位; 当利用硅基 PLC方法时, 通过对硅基光波导加热, 改变光波导的材 料折射率, 从而改变光信号的载波相位。
当然, 所述相移的方式不仅限于此, 也可以釆用其它方式进行。
205、 将相移后的第一光信号与所述第二光信号进行保持偏振状态的光信 号合路, 输出 QPSK调制光信号或 PDM-BPSK调制光信号。
所述保持偏振状态的光信号合路, 是指不论两路光信号具有哪种偏振态, 都能够将该两路光信号合路, 且在光信号合路的过程中, 能够稳定地传输两 路光信号, 并保持两路光信号的偏振态不变。
对应情况 1 , 当第一光信号和第二光信号都具有第一偏振态, 且相移后的 第一光信号与所述第二光信号的相位差为 π /2时, 将第一光信号与所述第二 光信号进行保持偏振状态的光信号合路后, 输出具有第一偏振态的 40Gb/ s的 QPSK调制光信号;
对应情况 2 , 当第一光信号具有第二偏振态,第二光信号具有第一偏振态, 相移后的第一光信号与所述第二光信号的相位差为任意值时, 将第一光信号 与所述第二光信号进行保持偏振状态的光信号合路后, 输出 40Gb/ s的 PDM-BPSK调制光信号。
具体地, 可以釆用以下方式进行光信号合路:
釆用具有保偏耦合功能的 PC ( Power Combiner , 光合波器)。 当利用空间 光学耦合方法时, 釆用空间耦合方法, 将两束输入光通过反射或透射方式合 并输出为一束光; 当釆用平面波导耦合方法时, 通过在硅基 Y型波导器件中, 釆用平面光波导的方式来实现。
当然, 所述光信号合路的方式不仅限于此, 也可以釆用其它方式进行。 本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的方法, 通过对第一 光信号进行偏振态控制, 并对偏振态控制后的第一光信号进行相移, 将相移 后的第一光信号与第二光信号进行保持偏振状态的光信号合路, 从而可以根 据第一光信号和第二光信号的偏振态之间的关系, 以及第一光信号与第二光 信号之间的相位差, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。 与现有技 术相比, 本发明可以兼容实现 PDM-BPSK和 QPSK两种调制方式, 从而节省了设 计成本, 增加了调制的灵活性。
实施例三
在本实施例中, 以兼容调制产生 40Gb/s QPSK光信号和 40Gb/ s PDM-BPSK 光信号为例, 其它比特率的情形可以参照该实施例。
如图 3所示, 所述兼容实现 PDM-BPSK和 QPSK调制的方法包括: 301、 将直流光分为功率相同的第一路光和第二路光, 所述第一路光具有 第一偏振态, 所述第二路光具有第二偏振态, 所述第一偏振态与第二偏振态 互为垂直关系。
其中, 所述直流光可以由 LD输出, 但不仅限于此。
在本实施例中, 可以釆用 PBS ( Polar i za t ion Beam Spl i t ter , 偏振分束 器)对所述直流光进行分光。 当然, 不仅限于此。
302、 对所述第一路光进行光电调制, 输出具有第一偏振态的 BPSK格式的 第一光信号, 对所述第二路光进行光电调制, 输出具有第二偏振态的 BPSK格 式的第二光信号。
其中, 所述光电调制的方式可以参照步骤 202中所述。
303、 对所述第一光信号在第一偏振态和第二偏振态之间进行控制。
偏振态控制后的第一光信号分为两种情况:
情况 1: 偏振态控制后的第一光信号具有第一偏振态;
情况 2: 偏振态控制后的第一光信号具有第二偏振态。
其中, 所述偏振态控制的方式可以参照步骤 203中所述。
304、 对偏振态控制后的第一光信号进行相移。
对应情况 1 , 当偏振态控制后的第一光信号具有第一偏振态时, 该第一光 信号的光载波相位可以为任意值, 也就是说, 可以不对该第一光信号进行相 移, 即相移后的第二光信号与所述第一光信号的相位差保持不变;
对应情况 2 , 当偏振态控制后的第一光信号具有第二偏振态时, 将该第一 光信号相移为与所述第二光信号之间的相位差为 π /2。
其中, 所述相移的方式可以参照步骤 204中所述。
305、 将相移后的第一光信号与所述第二光信号进行保持偏振状态的光信 号合路, 输出 QPSK调制光信号或 PDM-BPSK调制光信号。
对应情况 1 , 当第一光信号具有第一偏振态,第二光信号具有第二偏振态, 相移后的第一光信号与所述第二光信号之间的相位差为任意值时, 将第一光 信号与所述第二光信号进行保持偏振状态的光信号合路后, 输出 40Gb/ s的 PDM-BPSK调制光信号;
对应情况 2 , 当第一光信号和第二光信号都具有第二偏振态, 且相移后的 第一光信号与所述第二光信号之间的相位差为 π /2时, 将第一光信号与所述 第二光信号进行保持偏振状态的光信号合路后, 输出具有第二偏振态的 40Gb/s的 QPSK调制光信号。
其中 , 所述光信号合路的方式可以参照步骤 205中所述。
本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的方法, 通过对第一 光信号进行偏振态控制, 并对偏振态控制后的第一光信号进行相移, 将相移 后的第一光信号与第二光信号进行保持偏振状态的光信号合路, 从而可以根 据第一光信号和第二光信号的偏振态之间的关系, 以及第一光信号与第二光 信号之间的相位差, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。 与现有技 术相比, 本发明可以兼容实现 PDM-BPSK和 QPSK两种调制方式, 从而节省了设 计成本, 增加了调制的灵活性。
实施例四
在本实施例中, 以兼容调制产生 40Gb/s QPSK光信号和 40Gb/ s PDM-BPSK 光信号为例, 其它比特率的情形可以参照该实施例。
如图 4所示, 所述兼容实现 PDM-BPSK和 QPSK调制的方法包括:
401-402、 可以参照步骤 201-202 , 在此不再赞述。
403、 对所述第一光信号进行相移。
将相移后的第一光信号分为两种情况:
情况 1 : 相移后的第一光信号与所述第二光信号之间的相位差为 π /2; 情况 2: 相移后的第一光信号与所述第二光信号之间的相位差为任意值, 也就是说, 可以不对该第一光信号进行相移, 即相移后的第二光信号与所述 第一光信号的相位差保持不变。
其中, 所述相移的方式可以参照步骤 204中所述。 404、 对相移后的第一光信号在第一偏振态和第二偏振态之间进行控制, 所述第一偏振态与第二偏振态互为垂直关系。
对应情况 1 , 当相移后的第一光信号与所述第二光信号之间的相位差为 π /2时, 将该第一光信号控制为具有第一偏振态;
对应情况 2 , 当相移后的第一光信号与所述第二光信号之间的相位差为任 意值时, 将该第一光信号控制为具有第二偏振态。
其中, 所述偏振态控制的方式可以参照步骤 203中所述。
405、 将偏振态控制后的第一光信号与所述第二光信号进行保持偏振状态 的光信号合路, 输出 QPSK调制光信号或 PDM-BPSK调制光信号。
对应情况 1 , 当第一光信号和第二光信号都具有第一偏振态, 且相移后的 第一光信号与所述第二光信号之间的相位差为 π /2时, 将第一光信号与所述 第二光信号进行保持偏振状态的光信号合路后, 输出具有第一偏振态的 40Gb/s的 QPSK调制光信号;
对应情况 2 , 当第一光信号具有第二偏振态,第二光信号具有第一偏振态, 相移后的第一光信号与所述第二光信号之间的相位差为任意值时, 将第一光 信号与所述第二光信号进行保持偏振状态的光信号合路后, 输出 40Gb/ s的 PDM-BPSK调制光信号。
其中 , 所述光信号合路的方式可以参照步骤 205中所述。
本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的方法, 通过对第一 光信号进行相移, 并对相移后的第一光信号进行偏振态控制, 将偏振态控制 后的第一光信号与第二光信号进行保持偏振状态的光信号合路, 从而可以根 据第一光信号和第二光信号的偏振态之间的关系, 以及第一光信号与第二光 信号之间的相位差, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。 与现有技 术相比, 本发明可以兼容实现 PDM-BPSK和 QPSK两种调制方式, 从而节省了设 计成本, 增加了调制的灵活性。
实施例五 在本实施例中, 以兼容调制产生 40Gb/s QPSK光信号和 40Gb/s PDM-BPSK 光信号为例, 其它比特率的情形可以参照该实施例。
如图 5所示, 所述兼容实现 PDM-BPSK和 QPSK调制的方法包括:
501-502、 可以参照步骤 301-302 , 在此不再赞述。
503、 对所述第一光信号进行相移。
将相移后的第一光信号分为两种情况:
情况 1 : 相移后的第一光信号与所述第二光信号之间的相位差为 π /2; 情况 2: 相移后的第一光信号与所述第二光信号之间的相位差为任意值, 也就是说, 可以不对该第一光信号进行相移, 即相移后的第二光信号与所述 第一光信号的相位差保持不变。
其中, 所述相移的方式可以参照步骤 204中所述。
504、 对相移后的第一光信号在第一偏振态和第二偏振态之间进行控制。 对应情况 1 , 当相移后的第一光信号与所述第二光信号之间的相位差为 π
/2时, 将该第一光信号控制为具有第二偏振态;
对应情况 2 , 当相移后的第一光信号与所述第二光信号之间的相位差为任 意值时, 将该第一光信号控制为具有第一偏振态。
其中, 所述偏振态控制的方式可以参照步骤 203中所述。
505、 将偏振态控制后的第一光信号与所述第二光信号进行保持偏振状态 的光信号合路, 输出 QPSK调制光信号或 PDM-BPSK调制光信号。
对应情况 1 , 当第一光信号和第二光信号都具有第二偏振态, 且相移后的 第一光信号与所述第二光信号之间的相位差为 π /2时, 将第一光信号与所述 第二光信号进行保持偏振状态的光信号合路后, 输出具有第二偏振态的 40Gb/s的 QPSK调制光信号;
对应情况 2 , 当第一光信号具有第一偏振态,第二光信号具有第二偏振态, 相移后的第一光信号与所述第二光信号之间的相位差为任意值时, 将第一光 信号与所述第二光信号进行保持偏振状态的光信号合路后, 输出 40Gb/ s的 PDM-BPSK调制光信号。
其中 , 所述光信号合路的方式可以参照步骤 205中所述。
本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的方法, 通过对第一 光信号进行相移, 并对相移后的第一光信号进行偏振态控制, 将偏振态控制 后的第一光信号与第二光信号进行保持偏振状态的光信号合路, 从而可以根 据第一光信号和第二光信号的偏振态之间的关系, 以及第一光信号与第二光 信号之间的相位差, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。 与现有技 术相比, 本发明可以兼容实现 PDM-BPSK和 QPSK两种调制方式, 从而节省了设 计成本, 增加了调制的灵活性。
实施例六
在本实施例中, 以兼容调制产生 40Gb/s QPSK光信号和 40Gb/ s PDM-BPSK 光信号为例, 其它比特率的情形可以参照该实施例。
如图 6所示, 所述兼容实现 PDM-BPSK和 QPSK调制的方法包括:
601-602、 可以参照步骤 201-202 , 在此不再赞述。
603、 对所述第一光信号在第一偏振态和第二偏振态之间进行控制, 所述 第一偏振态与第二偏振态互为垂直关系。
将偏振态控制后的第一光信号分为两种情况:
情况 1: 偏振态控制后的第一光信号具有第一偏振态;
情况 2: 偏振态控制后的第一光信号具有第二偏振态。
其中, 所述偏振态控制的方式可以参照步骤 203中所述。
604、 对所述第二光信号进行相移。
对应情况 1 , 当偏振态控制后的第一光信号具有第一偏振态时, 将所述第 二光信号相移为与所述第一光信号之间的相位差为 π /2 ;
对应情况 2 , 当偏振态控制后的第一光信号具有第二偏振态时, 所述第二 光信号的光载波相位可以为任意值, 也就是说, 可以不对该第二光信号进行 相移, 即相移后的第二光信号与所述第一光信号的相位差保持不变。 其中, 所述相移的方式可以参照步骤 204中所述。
605、 将偏振态控制后的第一光信号与相移后的第二光信号进行保持偏振 状态的光信号合路, 输出 QPSK调制光信号或 PDM-BPSK调制光信号。
对应情况 1 , 当第一光信号和第二光信号都具有第一偏振态, 且相移后的 第二光信号与偏振态控制后的第一光信号的相位差为 π /2时, 将第一光信号 与第二光信号进行保持偏振状态的光信号合路后, 输出具有第一偏振态的 40Gb/s的 QPSK调制光信号;
对应情况 2 , 当第一光信号具有第二偏振态,第二光信号具有第一偏振态, 相移后的第二光信号与偏振态控制后的第一光信号的相位差为任意值时, 将 第一光信号与第二光信号进行保持偏振状态的光信号合路后, 输出 40Gb/ s的 PDM-BPSK调制光信号。
其中, 所述光信号合路方式可以参照步骤 205中所述。
本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的方法, 通过对第一 光信号进行偏振态控制, 并对第二光信号进行相移, 将偏振态控制后的第一 光信号与相移后的第二光信号进行进行保持偏振状态的光信号合路, 根据第 一光信号和第二光信号的偏振态之间的关系, 以及第一光信号与第二光信号 之间的相位差, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。 与现有技术相 比, 本发明可以兼容实现 PDM-BPSK和 QPSK两种调制方式, 从而节省了设计成 本, 增加了调制的灵活性。
实施例七
在本实施例中, 以兼容调制产生 40Gb/s QPSK光信号和 40Gb/ s PDM-BPSK 光信号为例, 其它比特率的情形可以参照该实施例。
如图 7所示, 所述兼容实现 PDM-BPSK和 QPSK调制的方法包括:
701-702、 可以参照步骤 301-302 , 在此不再赞述。
703、 对所述第一光信号在第一偏振态和第二偏振态之间进行控制。
偏振态控制后的第一光信号分为两种情况: 情况 1: 偏振态控制后的第一光信号具有第一偏振态;
情况 2: 偏振态控制后的第一光信号具有第二偏振态。
其中, 所述偏振态控制的方式可以参照步骤 203中所述。
704、 对所述第二光信号进行相移。
对应情况 1 , 当偏振态控制后的第一光信号具有第一偏振态时, 所述第二 光信号的光载波相位可以为任意值, 也就是说, 可以不对该第二光信号进行 相移, 即相移后的第二光信号与所述第一光信号的相位差保持不变;
对应情况 2 , 当偏振态控制后的第一光信号具有第二偏振态时, 将所述第 二光信号相移为与所述第一光信号之间的相位差为 π / 2。
其中, 所述相移的方式可以参照步骤 204中所述。
705、 将偏振态控制后的第一光信号与相移后的第二光信号进行保持偏振 状态的光信号合路, 输出 QPSK调制光信号或 PDM-BPSK调制光信号。
对应情况 1 , 当第一光信号具有第一偏振态,第二光信号具有第二偏振态, 相移后的第二光信号与偏振态控制后的第一光信号之间的相位差为任意值 时, 将第一光信号与第二光信号进行保持偏振状态的光信号合路后, 输出 4001)/ 8的?0¾^_8?81调制光信号;
对应情况 2 , 当第一光信号和第二光信号都具有第二偏振态, 且相移后的 第二光信号与偏振态控制后的第一光信号之间的相位差为 π / 2时, 将第一光 信号与第二光信号进行保持偏振状态的光信号合路后, 输出具有第一偏振态 的 40Gb/ s的 QPSK调制光信号。
其中 , 所述光信号合路的方式可以参照步骤 205中所述。
本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的方法, 通过对第一 光信号进行偏振态控制, 并对第二光信号进行相移, 将偏振态控制后的第一 光信号与相移后的第二光信号进行保持偏振状态的光信号合路, 从而可以根 据第一光信号和第二光信号的偏振态之间的关系, 以及第一光信号与第二光 信号之间的相位差, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。 与现有技 术相比, 本发明可以兼容实现 PDM-BPSK和 QPSK两种调制方式, 从而节省了设 计成本, 增加了调制的灵活性。
实施例八
在本实施例中, 各模块之间的连接可以利用空间光学耦合的方法, 或者 利用娃基 PLC的方法。
本实施例提供一种兼容实现 PDM-BPSK和 QPSK调制的装置, 如图 8所示, 所 述装置包括:
分光模块 81 , 用于将直流光分为功率相同的第一路光和第二路光; 其中, 所述直流光可以由 LD输出, 但不仅限于此。
所述分光模块 81可以釆用 PS来实现。 当利用空间光学耦合方法时, 输入 光经镜面反射和透射, 分为两束输出光; 当利用硅基 PLC方法时, 通过基于硅 基的 Y型光波导实现。 当然, 也可以釆用其它器件实现。
第一调制模块 82 , 用于对所述第一路光进行光电调制, 输出 BPSK格式的 第一光信号;
其中, 所述第一调制模块 82可以釆用 MZM来实现, 设置 MZM的直流偏置为 传输曲线的最低点, 两路具有相同比特率的的电信号以差分方式分别驱动该 MZE , 对所述第一路光进行相位调制, 输出偏振态未发生改变的该比特率的 BPSK格式的第一光信号; 所述 MZM可以釆用铌酸锂材料实现, 但不仅限于此。 当然, 也可以釆用其它器件实现。
第二调制模块 83 , 用于对所述第二路光进行光电调制, 输出 BPSK格式的 第二光信号;
其中, 所述第二调制模块 83可以釆用 MZM来实现, 设置 MZM的直流偏置为 传输曲线的最低点, 两路具有相同比特率的的电信号以差分方式分别驱动该 MZE , 对所述第二路光进行相位调制, 输出偏振态未发生改变的该比特率的 BPSK格式的第二光信号; 所述 MZM可以釆用铌酸锂材料实现, 但不仅限于此。 当然, 也可以釆用其它器件实现。 偏振态控制模块 84 , 用于对所述第一光信号进行偏振态控制, 经过偏振 态控制的所述第一光信号与所述第二光信号的偏振态为垂直正交或保持一 致;
其中, 所述偏振态控制模块 84可以釆用 0PC来实现, 通过设置 0PC的工作 状态, 进行偏振态的控制。 当利用空间光学耦合方法时, 在空间光路中插入 一块半波片, 通过旋转半波片的轴向位置, 当半波片轴向与光偏振态相同时, 输出偏振态与输入偏振态相同, 当半波片轴向与光偏振态呈 45度夹角时, 输 出偏振态与输入偏振态互为垂直关系; 当利用硅基 PLC方法时, 通过在硅基上 集成基于铌酸锂的电控级联波片, 通过对波片施加适当电源, 实现输出偏振 态的控制。 当然, 也可以釆用其它器件实现。
相移模块 85 , 用于对所述第一光信号或第二光信号进行相移, 经过相移 的所述第一光信号与所述第二光信号的相位差为 π /2或保持不变;
其中,所述相移模块 85可以釆用 OPS来实现。 当利用空间光学耦合方法时, 通过微调空间光路的光程来改变光信号的载波相位; 当利用硅基 PLC方法时, 通过对硅基光波导加热, 改变光波导的材料折射率, 从而改变光信号的载波 相位。 当然, 也可以釆用其它器件实现。
合路模块 86 , 用于将经过偏振态控制和相移的第一光信号和第二光信号 进行保持偏振状态的光信号合路, 输出 PDM-BPSK调制光信号或 QPSK调制光信 号。
其中, 所述合路模块 86可以釆用具有保偏耦合功能的 PC来实现。 当利用 空间光学耦合方法时, 将两束输入光通过反射或透射方式合并输出为一束光; 当利用硅基 PLC方法时, 通过在硅基 Y型波导来实现。 当然, 也可以釆用其它 器件实现。
本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的装置, 通过对第一 光信号进行偏振态控制, 对第一光信号或第二光信号进行相移, 并将经过偏 振态控制和相移的第一光信号和第二光信号进行保持偏振状态的光信号合 路, 从而可以根据第一光信号和第二光信号的偏振态之间的关系, 以及第一 光信号与第二光信号之间的相位差, 输出 PDM-BPSK调制光信号或 QPSK调制光 信号。 与现有技术相比, 本发明可以釆用一种装置兼容实现 PDM-BPSK和 QPSK 两种调制方式, 从而节省了设计成本, 增加了调制的灵活性。
实施例九
本实施例提供一种兼容实现 PDM-BPSK和 QPSK调制的装置, 如图 9所示, 所 述装置包括:
分光模块 81 , 用于将直流光分为功率相同的第一路光和第二路光; 第一调制模块 82 , 用于对所述第一路光进行光电调制, 输出 BPSK格式的 第一光信号;
第二调制模块 83 , 用于对所述第二路光进行光电调制, 输出 BPSK格式的 第二光信号;
偏振态控制模块 84 , 用于对所述第一光信号进行偏振态控制, 经过偏振 态控制的所述第一光信号与所述第二光信号的偏振态为垂直正交或保持一 致;
相移模块 85 , 用于对所述第二光信号进行相移, 经过相移的所述第一光 信号与所述第二光信号的相位差为 π /2或保持不变;
合路模块 86 , 用于将偏振态控制后的所述第一光信号与相移后的所述第 二光信号进行保持偏振状态的光信号合路, 输出 PDM-BPSK调制光信号或 QPSK 调制光信号。
如图 9a所示, 所述偏振态控制模块 84 , 具体用于将所述 BPSK格式的第一 光信号进行偏振态控制至所述第一光信号和第二光信号的偏振态为保持一 致;
所述相移模块 85 , 具体用于将所述 BPSK格式的第二光信号相移至所述第 一光信号和第二光信号之间的相位差为 π /2;
则所述合路模块 86 , 将经过所述偏振态控制模块 84的所述第一光信号与 经过所述相移模块 85的所述第二光信号进行保持偏振状态的光信号合路, 输 出 QPSK调制光信号。
如图 9b所示, 所述偏振态控制模块 84 , 具体用于将所述 BPSK格式的第一 光信号进行偏振态控制至所述第一光信号和第二光信号的偏振态为垂直正 交;
所述相移模块 85 , 具体用于将所述 BPSK格式的第二光信号相移任意值, 或者, 所述相移模块 85不对所述第二光信号进行相移, 即相移后的第二光信 号与所述第一光信号的相位差保持不变;
则所述合路模块 86 , 将经过所述偏振态控制模块 84的所述第一光信号与 经过所述相移模块 85的所述第二光信号进行保持偏振状态的光信号合路, 输 出 PDM-BPSK调制光信号。
其中, 各模块的实现方式可以参照实施例八中相应的各模块。
本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的装置, 通过对第一 光信号的偏振态进行控制, 并对第二光信号进行相移, 将偏振态控制后的第 一光信号与相移后的第二光信号进行保持偏振状态的光信号合路, 从而可以 根据第一光信号和第二光信号的偏振态之间的关系, 以及第一光信号与第二 光信号之间的相位差, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。 与现有 技术相比, 本发明可以釆用一种装置兼容实现 PDM-BPSK和 QPSK两种调制方式, 从而节省了设计成本, 增加了调制的灵活性。
实施例十
本实施例提供一种兼容实现 PDM-BPSK和 QPSK调制的装置, 如图 10所示, 所述装置包括:
分光模块 81 , 用于将直流光分为功率相同的第一路光和第二路光; 第一调制模块 82 , 用于对所述第一路光进行光电调制, 输出 BPSK格式的 第一光信号;
第二调制模块 83 , 用于对所述第二路光进行光电调制, 输出 BPSK格式的 第二光信号;
相移模块 85 , 用于对所述第一光信号进行相移, 经过相移的所述第一光 信号与所述第二光信号的相位差为 π /2或保持不变;
偏振态控制模块 84 , 用于对相移后的所述第一光信号进行偏振态控制, 经过偏振态控制的所述第一光信号与所述第二光信号的偏振态为垂直正交或 保持一致;
合路模块 86 , 用于将偏振态控制后的所述第一光信号与所述第二光信号 进行保持偏振状态的光信号合路, 输出 PDM-BPSK调制光信号或 QPSK调制光信 号。
其中, 利用本实施例提供的装置输出 QPSK调制光信号或 PDM-BPSK调制光 信号的具体实现过程可以参照实施例九所述, 在此不再赘述。
其中, 各模块的实现方式可以参照实施例八中相应的各模块。
本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的装置, 通过对第一 光信号进行相移, 并对相移后的第一光信号进行偏振态控制, 将偏振态控制 后的第一光信号与第二光信号进行保持偏振状态的光信号合路, 从而可以根 据第一光信号和第二光信号的偏振态之间的关系, 以及第一光信号与第二光 信号的之间的相位差, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。 与现有 技术相比, 本发明可以釆用一种装置兼容实现 PDM-BPSK和 QPSK两种调制方式, 从而节省了设计成本, 增加了调制的灵活性。
实施例十一
本实施例提供一种兼容实现 PDM-BPSK和 QPSK调制的装置, 如图 11所示, 所述装置包括:
分光模块 81 , 用于将直流光分为功率相同的第一路光和第二路光; 第一调制模块 82 , 用于对所述第一路光进行光电调制, 输出 BPSK格式的 第一光信号;
第二调制模块 83 , 用于对所述第二路光进行光电调制, 输出 BPSK格式的 第二光信号;
偏振态控制模块 84 , 用于对所述第一光信号进行偏振态控制, 经过偏振 态控制的所述第一光信号与所述第二光信号的偏振态为垂直正交或保持一 致;
相移模块 85 , 用于对偏振态控制后的所述第一光信号进行相移, 经过相 移的所述第一光信号与所述第二光信号的相位差为 π /2或保持不变;
合路模块 86 , 用于将相移后的所述第一光信号与所述第二光信号进行保 持偏振状态的光信号合路, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。
其中, 利用本实施例提供的装置输出 QPSK调制光信号或 PDM-BPSK调制光 信号的具体实现过程可以参照实施例九所述, 在此不再赘述。
其中, 各模块的实现方式可以参照实施例八中相应的各模块。
本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的装置, 通过对第一 光信号进行偏振态控制, 并对偏振态控制后的第一光信号进行相移, 将相移 后的第一光信号与第二光信号进行保持偏振状态的光信号合路, 从而可以根 据第一光信号和第二光信号的偏振态之间的关系, 以及第一光信号与第二光 信号之间的相位差, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。 与现有技 术相比, 本发明可以釆用一种装置兼容实现 PDM-BPSK和 QPSK两种调制方式, 从而节省了设计成本, 增加了调制的灵活性。
本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的装置可以实现上述 提供的方法实施例。 本发明实施例提供的兼容实现 PDM-BPSK和 QPSK调制的方 法及装置, 可以适用于对 PDM-BPSK和 QPSK的兼容调制, 但不仅限于此。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存 己忆体 ( Random Access Memory, RAM )等。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应该以权利要求的保护范围为准。

Claims

权 利 要求 书
1、 一种兼容实现 PDM-BPSK和 QPSK调制的方法, 其特征在于, 包括: 将直流光分为功率相同的第一路光和第二路光;
分别对所述第一路光和第二路光进行光电调制, 对应输出 BPSK格式的第一 光信号和第二光信号;
对所述第一光信号进行偏振态控制, 经过偏振态控制的所述第一光信号与 所述第二光信号的偏振态为垂直正交或保持一致;
对所述第一光信号或第二光信号进行相移, 经过相移的所述第一光信号与 所述第二光信号的相位差为 π / 2或保持不变;
将经过偏振态控制和相移的第一光信号和第二光信号进行保持偏振状态的 光信号合路, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。
2、 根据权利要求 1所述的方法, 其特征在于, 所述对所述第一光信号进行 偏振态控制具体为:
将所述第一光信号进行偏振态控制至所述第一光信号和第二光信号的偏振 态为垂直正交;
所述将经过偏振态控制和相移的第一光信号和第二光信号进行保持偏振状 态的光信号合路, 输出 PDM-BPSK调制光信号或 QPSK调制光信号具体为:
将经过偏振态控制和相移的第一光信号和第二光信号进行保持偏振状态的 光信号合路, 输出 PDM-BPSK调制光信号。
3、 根据权利要求 1所述的方法, 其特征在于, 所述对所述第一光信号进行 偏振态控制具体为:
将所述第一光信号进行偏振态控制至所述第一光信号和第二光信号的偏振 态为保持一致;
所述对所述第一光信号或第二光信号进行相移具体为:
将所述第一光信号或第二光信号相移至所述第一光信号和第二光信号之间 的相位差为 π / 2 ; 所述将经过偏振态控制和相移的第一光信号和第二光信号进行保持偏振状 态的光信号合路, 输出 PDM-BPSK调制光信号或 QPSK调制光信号具体为:
将经过偏振态控制和相移的第一光信号和第二光信号进行保持偏振状态的 光信号合路, 输出 QPSK调制光信号。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 所述保持偏振状态 的光信号合路通过空间光学耦合方法或者平面波导耦合方法实现。
5、 一种兼容实现 PDM-BPSK和 QPSK调制的装置, 其特征在于, 包括: 分光模块, 用于将直流光分为功率相同的第一路光和第二路光;
第一调制模块, 用于对所述第一路光进行光电调制, 输出 BPSK格式的第一 光信号;
第二调制模块, 用于对所述第二路光进行光电调制, 输出 BPSK格式的第二 光信号;
偏振态控制模块, 用于对所述第一光信号进行偏振态控制, 经过偏振态控 制的所述第一光信号与所述第二光信号的偏振态为垂直正交或保持一致;
相移模块, 用于对所述第一光信号或第二光信号进行相移, 经过相移的所 述第一光信号与所述第二光信号的相位差为 π /2或保持不变;
合路模块, 用于将经过偏振态控制和相移的第一光信号和第二光信号进行 保持偏振状态的光信号合路, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。
6、 根据权利要求 5所述的装置, 其特征在于, 所述相移模块, 具体用于对 所述第二光信号进行相移;
所述合路模块, 具体用于将偏振态控制后的所述第一光信号与相移后的所 述第二光信号进行保持偏振状态的光信号合路, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。
7、 根据权利要求 5所述的装置, 其特征在于, 所述相移模块, 具体用于对 所述第一光信号进行相移;
所述偏振态控制模块, 具体用于对相移后的所述第一光信号进行偏振态控 制;
所述合路模块, 具体用于将偏振态控制后的所述第一光信号与所述第二光 信号进行保持偏振状态的光信号合路, 输出 PDM-BPSK调制光信号或 QPSK调制光 信号。
8、 根据权利要求 5所述的装置, 其特征在于, 所述相移模块, 具体用于对 偏振态控制后的所述第一光信号进行相移;
所述合路模块, 具体用于将相移后的所述第一光信号与所述第二光信号进 行保持偏振状态的光信号合路, 输出 PDM-BPSK调制光信号或 QPSK调制光信号。
9、 根据权利要求 5至 8任一项所述的装置, 其特征在于, 所述偏振态控制模 块, 具体用于将所述第一光信号进行偏振态控制至所述第一光信号和第二光信 号的偏振态为保持一致;
所述相移模块, 具体用于将所述第一光信号或第二光信号相移至所述第一 光信号和第二光信号之间的相位差为 π /2。
10、 根据权利要求 5至 8任一项所述的装置, 其特征在于, 所述偏振态控制 模块, 具体用于将所述第一光信号进行偏振态控制至所述第一光信号和第二光 信号的偏振态为垂直正交。
11、 根据权利要求 5至 8任一项所述的装置, 其特征在于, 所述分光模块、 偏振态控制模块、 相移模块和合路模块, 利用空间光学耦合方法或平面光波导 线路方法实现。
PCT/CN2010/070193 2010-01-14 2010-01-14 兼容实现pdm-bpsk和qpsk调制的方法及装置 WO2011085552A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES10842836.8T ES2616564T3 (es) 2010-01-14 2010-01-14 Procedimiento y aparato para realizar de manera compatible una modulación PDM-BPSK y QPSK
PCT/CN2010/070193 WO2011085552A1 (zh) 2010-01-14 2010-01-14 兼容实现pdm-bpsk和qpsk调制的方法及装置
CA2782145A CA2782145C (en) 2010-01-14 2010-01-14 Method and apparatus for implementing pdm-bpsk modulation and qpsk modulation in compatible manner
CN201080003331.0A CN102204201B (zh) 2010-01-14 2010-01-14 兼容实现pdm-bpsk和qpsk调制的方法及装置
EP10842836.8A EP2495925B1 (en) 2010-01-14 2010-01-14 Method and apparatus for compatibly realizing pdm-bpsk and qpsk modulation
US13/545,637 US8737844B2 (en) 2010-01-14 2012-07-10 Method and apparatus for implementing PDM-BPSK modulation and QPSK modulation in compatible manner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070193 WO2011085552A1 (zh) 2010-01-14 2010-01-14 兼容实现pdm-bpsk和qpsk调制的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/545,637 Continuation US8737844B2 (en) 2010-01-14 2012-07-10 Method and apparatus for implementing PDM-BPSK modulation and QPSK modulation in compatible manner

Publications (1)

Publication Number Publication Date
WO2011085552A1 true WO2011085552A1 (zh) 2011-07-21

Family

ID=44303808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070193 WO2011085552A1 (zh) 2010-01-14 2010-01-14 兼容实现pdm-bpsk和qpsk调制的方法及装置

Country Status (6)

Country Link
US (1) US8737844B2 (zh)
EP (1) EP2495925B1 (zh)
CN (1) CN102204201B (zh)
CA (1) CA2782145C (zh)
ES (1) ES2616564T3 (zh)
WO (1) WO2011085552A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439887B (zh) * 2011-10-18 2015-01-07 华为技术有限公司 信号调制装置和调制方法
US9223184B2 (en) * 2011-12-22 2015-12-29 Nippon Telegraph And Telephone Corporation Optical modulator
US10187159B2 (en) * 2014-07-07 2019-01-22 Telefonaktiebolaget Lm Ericsson (Publ) Optical source
CN104218992B (zh) * 2014-09-15 2017-01-25 中国科学院半导体研究所 一种零差检测型相干光传输系统
US9634786B2 (en) 2015-02-13 2017-04-25 Georgia Tech Research Corporation Communication systems with phase-correlated orthogonally-polarized light-stream generator
US10551714B2 (en) * 2017-05-17 2020-02-04 Finisar Sweden Ab Optical device
CN112565138B (zh) * 2020-12-11 2023-03-17 武汉邮电科学研究院有限公司 一种信号调制传输方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266851A (zh) * 1999-03-16 2000-09-20 Sk株式会社 α-维生素E环丙烷羧酸酯、新的维生素E衍生物及其制备方法
US20050111582A1 (en) * 2003-10-17 2005-05-26 Sony Corporation Digital modulation circuit and method as well as digital demodulation circuit and method
CN101232479A (zh) * 2006-10-11 2008-07-30 鲍东山 在兼容dab的t-mmb系统中使用多种调制方式的方法和系统
CN101267255A (zh) * 2008-02-20 2008-09-17 上海大学 毫米波光纤传输系统中双路光相位调制毫米波生成及提供远程本振的系统和方法
JP2009100298A (ja) * 2007-10-17 2009-05-07 Panasonic Corp 受信装置および受信方法
KR20090050134A (ko) * 2007-11-15 2009-05-20 삼성전자주식회사 이동통신 시스템의 데이터 전송 장치 및 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100745749B1 (ko) 2002-04-25 2007-08-02 삼성전자주식회사 광섬유-라디오 혼합 양방향 통신 장치 및 방법
US7460793B2 (en) 2002-12-11 2008-12-02 Michael George Taylor Coherent optical detection and signal processing method and system
DE102004047028A1 (de) * 2004-09-28 2006-04-20 Siemens Ag Verfahren und Anordnung zur optischen Übertragung von Datensignalen mittels differentieller Phasenmodulation in einem Polarisations-Multiplexverfahren
CA2595628C (en) * 2005-01-26 2013-04-16 Nokia Siemens Networks Gmbh & Co. Kg Method for the optical transmission of polarization multiplex signals
US7398022B2 (en) * 2005-07-08 2008-07-08 Mario Zitelli Optical return-to-zero phase-shift keying with improved transmitters
CN101350673B (zh) 2007-07-20 2011-04-20 上海交通大学 混合码型光信号发射设备和方法
CN101505192B (zh) 2008-02-04 2011-09-21 华为技术有限公司 一种产生差分正交相移键控码光信号的方法及装置
US8238759B2 (en) * 2008-02-14 2012-08-07 Infinera Corporation High capacity transmitter implemented on a photonic integrated circuit
EP2109233B1 (en) * 2008-04-11 2010-08-04 Alcatel Lucent Modulation scheme with increased number of states of polarization
CN101577589B (zh) * 2008-05-05 2012-08-22 华为技术有限公司 一种光调制装置、方法和色散预补偿发射机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266851A (zh) * 1999-03-16 2000-09-20 Sk株式会社 α-维生素E环丙烷羧酸酯、新的维生素E衍生物及其制备方法
US20050111582A1 (en) * 2003-10-17 2005-05-26 Sony Corporation Digital modulation circuit and method as well as digital demodulation circuit and method
CN101232479A (zh) * 2006-10-11 2008-07-30 鲍东山 在兼容dab的t-mmb系统中使用多种调制方式的方法和系统
JP2009100298A (ja) * 2007-10-17 2009-05-07 Panasonic Corp 受信装置および受信方法
KR20090050134A (ko) * 2007-11-15 2009-05-20 삼성전자주식회사 이동통신 시스템의 데이터 전송 장치 및 방법
CN101267255A (zh) * 2008-02-20 2008-09-17 上海大学 毫米波光纤传输系统中双路光相位调制毫米波生成及提供远程本振的系统和方法

Also Published As

Publication number Publication date
CA2782145A1 (en) 2011-07-21
EP2495925A1 (en) 2012-09-05
US8737844B2 (en) 2014-05-27
EP2495925B1 (en) 2016-12-07
CN102204201B (zh) 2013-11-06
CA2782145C (en) 2014-12-02
EP2495925A4 (en) 2012-10-03
ES2616564T3 (es) 2017-06-13
CN102204201A (zh) 2011-09-28
US20120275791A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
US10148364B2 (en) Polarization demultiplexing of optical signals
US8831440B2 (en) Method and device for generating optical signals
WO2011085552A1 (zh) 兼容实现pdm-bpsk和qpsk调制的方法及装置
KR100703410B1 (ko) 오프셋 직교위상편이 변조 방법과 이를 이용한 광송신기
US20040208646A1 (en) System and method for multi-level phase modulated communication
US10491307B2 (en) Optical transmitter
US9337936B2 (en) Optical transmission apparatus, optical transmission method and program for optical transmission
CN101505192A (zh) 一种产生差分正交相移键控码光信号的方法及装置
WO2012157182A1 (ja) 信号同期送信システム、光変調器用同期駆動システム、信号同期送信方法及びそのプログラムが格納された非一時的なコンピュータ可読媒体
US9509411B2 (en) Phase shift keying optical modulation apparatus and method of encoding a symbol onto an optical carrier signal
CN111371499A (zh) 一种调制装置和光发射机
KR20130118957A (ko) 편광 분할 다중화를 이용하는 광 송신
JP7073540B2 (ja) 多変調フォーマットの互換性を備えた高速レーザー信号発生システム及び方法
CN107534488B (zh) 虚拟光生成装置、光传输装置及虚拟光生成方法
JP6863147B2 (ja) 光送信器、変調方法、及び光伝送装置
CN102439887A (zh) 信号调制装置和调制方法
JP7492158B2 (ja) 光送信器
EP2579484A1 (en) Method of generating PM iNRZ-xPSK modulation format
JP6106062B2 (ja) 光変調器
CN118715733A (zh) Ic-trosa点到多点光网络系统
JP2013247602A (ja) 16qam光信号を生成する送信装置および方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003331.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2782145

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2010842836

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010842836

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE