WO2011083760A1 - Optical microphone - Google Patents

Optical microphone Download PDF

Info

Publication number
WO2011083760A1
WO2011083760A1 PCT/JP2011/000016 JP2011000016W WO2011083760A1 WO 2011083760 A1 WO2011083760 A1 WO 2011083760A1 JP 2011000016 W JP2011000016 W JP 2011000016W WO 2011083760 A1 WO2011083760 A1 WO 2011083760A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
scattered light
interferometer
optical system
Prior art date
Application number
PCT/JP2011/000016
Other languages
French (fr)
Japanese (ja)
Inventor
潮 寒川
卓也 岩本
由利子 金子
雅彦 橋本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011083760A1 publication Critical patent/WO2011083760A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/008Transducers other than those covered by groups H04R9/00 - H04R21/00 using optical signals for detecting or generating sound

Definitions

  • the present invention relates to an optical microphone that detects an acoustic signal using light.
  • the conventional optical microphone 141 disclosed in Patent Document 1 includes a receiving mechanism unit 1410 and a laser Doppler vibrometer 148.
  • the receiving mechanism portion 1410 includes a base portion 143 having a recess and a transparent support plate 145 that is transparent to the laser beam 147.
  • a space formed by the concave portion of the base portion 143 and the transparent support plate 145 is filled with a nanoporous body 142 that is a propagation medium.
  • a nanoporous body 142 for example, a medium such as a dry gel disclosed in Patent Document 2 having a low sound velocity (acoustic impedance is small) and a small acoustic propagation loss is used.
  • the base portion 143 is provided with an opening 144 for introducing the acoustic signal 149 into the nanoporous body 142.
  • the bottom surface of the concave portion of the base portion 143 is a reflective surface 1411.
  • the laser Doppler vibrometer 148 irradiates laser light 147 from the outside of the reception mechanism unit 1410, and the laser light 147 passes through the transparent support plate 145 and the nanoporous body 142, is reflected by the reflecting surface 1411, and then nanoporous again. It is arranged to pass through the body 142 and the transparent support plate 145 and return to the laser Doppler vibrometer 148.
  • the external acoustic signal 149 enters the receiving mechanism 1410 through the opening 144, refracts at the interface between the air and the nanoporous body 142, and enters the nanoporous body 142 with high efficiency.
  • the incident acoustic signal 149 is converted into a dense wave 1412 traveling through the nanoporous body 142.
  • the generated dense wave 1412 is observed as a time variation of density. Since this density change causes a change in refractive index, the refractive index changes with time according to the acoustic signal 149 at the spot position.
  • the amount of phase variation that the transmitted laser beam 147 receives from the time variation of the refractive index is It is optically equivalent to the amount of phase fluctuation received when it is assumed that the reflecting surface 1411 oscillates in the normal direction according to the time fluctuation of the refractive index at the spot position. Therefore, the laser beam 147 reflected and returned from the reflecting surface 1411 undergoes a Doppler shift corresponding to the vibration motion of the reflecting surface 1411.
  • the laser Doppler vibrometer 148 obtains a light component for each frequency shift amount by obtaining a Fourier coefficient with respect to the frequency shift amount of the light component subjected to the Doppler shift included in the returning laser light 147 reflected by the reflecting surface 1411. Detect intensity.
  • the refractive index variation is generally proportional to the sound pressure of the acoustic signal 149, and the Doppler shift amount (frequency change amount) is proportional to the vibration motion speed.
  • the output signal from the laser Doppler vibrometer 148 outputs a signal that is approximately proportional to the time derivative of the acoustic signal 149.
  • An electrical signal corresponding to the acoustic signal can be obtained by performing integration processing or appropriate filter processing on the output signal. Thereby, the optical microphone 141 can be operated as a microphone having desired acoustic characteristics.
  • JP 2009-85868 A Japanese Patent No. 3633926 JP-A-7-260801 Toyohiko Yadagai, “Applied Optics-Introduction to Optical Measurement”, Maruzen Co., Ltd., 3rd edition (issued June 15, 1990), pages 60-63
  • An object of the present invention is to solve such problems of the prior art and to provide an optical microphone with high sensitivity, small size and low cost.
  • the optical microphone of the present invention divides the monochromatic light emitted from the light source and the monochromatic light emitted from the light source into two luminous fluxes, and propagates the divided luminous fluxes through two different paths, respectively.
  • Propagation medium comprising a two-beam interferometer that superimposes the two divided light beams and emits the superimposed light, and a nanoporous body having an incident portion for receiving an acoustic signal and having a sound velocity smaller than that of air
  • a first scattered light removing optical system that is provided between the two-beam interferometer and the photodetector and removes scattered light contained in the light emitted from the two-beam interferometer, the light source, Between the two-beam interferometer Vignetting,
  • each of the first scattered light removal optical system and the second scattered light removal optical system includes a single mode optical fiber.
  • the single mode optical fiber of the first scattered light removal optical system and the single mode optical fiber of the second scattered light removal optical system have the same optical characteristics.
  • the optical microphone further includes a sound collecting unit that is provided at an incident portion of the propagation medium unit and focuses the acoustic signal.
  • the nanoporous material is a silica dry gel.
  • the first scattered light removing optical system further includes at least one focusing lens, and the focal point of the focusing lens is located on the core of the end face of the single mode optical fiber.
  • the optical microphone further includes a signal processing unit that receives an output from the photodetector and generates a reception signal corresponding to the acoustic signal from the output by homodyne detection.
  • the optical microphone further includes a reference beat signal generation unit and a phase comparison unit
  • the light source emits two linearly polarized lights having different frequencies
  • the reference beat signal generation unit includes the two
  • a reference beat signal is generated based on linearly polarized light
  • the phase comparison unit generates a reception signal corresponding to the acoustic signal by heterodyne detection using an output from the photodetector and the reference beat signal.
  • a processing unit is further provided.
  • the two-beam interferometer is a Mach-Zehnder interferometer.
  • the two-beam interferometer is a Michelson interferometer.
  • the two-beam interferometer is a Fizeau interferometer.
  • the time variation of the refractive index of the propagation medium through which the acoustic signal to be detected propagates is determined as the time variation of the optical distance by using a two-beam interferometer which is a kind of distance measuring type interferometer.
  • the two-beam interferometer is relatively small and low cost and has a simple configuration, the configuration of the optical microphone can be reduced.
  • the scattered light removal optical system is used to remove the scattered light generated by passing through the propagation medium. For this reason, non-interfering components are removed or suppressed from the light detected by the detector, and fluctuations in the optical distance caused by the propagation of acoustic signals can be detected with high sensitivity as interference components in monochromatic light. Become. Therefore, a compact, high-sensitivity and low-cost optical microphone is realized.
  • 1 is a schematic configuration diagram showing a first embodiment of an optical microphone according to the present invention. It is a schematic block diagram which shows the sound collection part in 1st Embodiment. 6 is a graph showing temporal variation of an output signal obtained from the photodetector 7 when it is assumed that there is no scattered light removal optical system 2a, 2b in the first embodiment. It is a schematic block diagram which shows 2nd Embodiment of the optical microphone by this invention. It is a schematic block diagram which shows the 1st Example of the optical microphone by this invention. It is a schematic diagram for demonstrating the function of the scattered light removal optical systems 2a and 2b in a 1st Example.
  • the inventor of the present application examined a measurement method in place of a laser Doppler vibrometer in a conventional optical microphone.
  • an ordinary distance measuring interferometer having a simple structure is used. I found out that I could do it.
  • Examples of such a normal ranging interferometer include a two-beam interferometer such as a Mach-Zehnder interferometer, a Michelson interferometer, and a Fizeau interferometer. If the detection method of the interferometer is homodyne detection, high monochromaticity is not required for the light source, so the light source can be reduced in size and the entire optical microphone can be further reduced in size.
  • the present inventor conducted research on an optical microphone using a normal two-beam interferometer, it was found that the light transmitted through the nanoporous material as a propagation medium contains a lot of scattered light. When a lot of scattered light is included in the transmitted light, the scattered light becomes a non-interfering light component in the two-beam interferometer, and the interference light contrast is greatly reduced. For this reason, it has been found that a new problem arises that the measurement sensitivity of the interferometer deteriorates and the sensitivity of the optical microphone decreases.
  • the inventor of the present application uses an ordinary distance-measuring interferometer as detection means in the optical microphone disclosed in Patent Document 1, and the scattered light contained in the transmitted light from the nanoporous body 142. It was considered to remove.
  • FIG. 17 is a schematic configuration diagram of a scanning probe microscope disclosed in Patent Document 3.
  • the scanning probe microscope observes the shape of the sample 153 by optically measuring the amount of bending of the cantilever 152 caused by the interaction (for example, atomic force) between the sample 153 and the cantilever 152.
  • Measurement is performed by irradiating the cantilever 152 with a laser beam from the light source 151 for measuring the amount of bending of the cantilever and capturing the reflected light from the cantilever 152 with the light receiving means 156.
  • the measurement is performed using an optical lever, a homodyne type, or a heterodyne type ranging interferometer.
  • the light beam captured by the light receiving means 156 includes scattered light from the sample 153 in addition to the reflected light from the cantilever 152. Since the latter does not include the amount of bending of the cantilever 152 and deteriorates the measurement accuracy, the scattered light removing means 155 is provided to reduce it.
  • the scattered light removing means 155 in FIG. 17 is a light shielding plate having a minute opening. Since the scattered light removing unit 155 is set so that only the reflected light from the cantilever 152 passes through the opening, the scattered light does not reach the light receiving unit 156. For this reason, deterioration of measurement accuracy can be prevented.
  • FIG. 18 is a schematic optical system configuration diagram of the optical matched filter disclosed in Non-Patent Document 1.
  • the lens 162 and the lens 164 have the same focal length f, and are disposed at positions separated from each other by a distance 2f on the optical axis.
  • the three surfaces that are separated from the lens 162 and the lens 164 by a distance f are hereinafter referred to as an input surface 161, a Fourier transform surface 163, and an output surface 165.
  • a plane image of the monochromatic light 166 on the input surface 161 is represented by G.
  • the planar image G there is an apparatus configuration in which a negative film is placed on the input surface 161 and illuminated with monochromatic light from the back surface.
  • the planar image G is converted into an image F [G] that is two-dimensionally Fourier-transformed on the Fourier transform plane 163 by the action of the lens 162 (F [ ⁇ ] represents a two-dimensional Fourier transform image of ⁇ ).
  • F [G] on the Fourier transform plane 163 is converted into an image F [F [G]] that has been two-dimensionally Fourier transformed on the output plane 165 by the action of the lens 164.
  • a filter having an in-plane distribution in phase delay amount and transmittance that is, a spatial filter
  • the in-plane distribution of the phase delay amount and transmittance of the spatial filter is F [H].
  • the image reproduced on the output surface 165 is a convolution of G and H.
  • the light beam that has passed through the nanoporous material is composed of transmitted light (light beam having the same wavefront and amplitude distribution as the incident light) and scattered light (light beam having a wavefront and amplitude distribution different from the incident light). Therefore, if the transmitted light is G and the spatial filter having the in-plane distribution of the phase delay amount and transmittance of F [G] is inserted into the Fourier transform surface 163, the scattered light S is reduced on the output surface 2005. Light flux.
  • an optical matched filter can also be applied as a means for removing scattered light from an optical microphone.
  • the scattered light from the nanoporous body 142 exists with high intensity in the vicinity of the transmitted light.
  • the scattered light removing means 155 disclosed in Patent Document 3 is used for removing scattered light from the nanoporous body 142, if the opening of the scattered light removing means 155 is larger than the diameter of the transmitted light beam, high intensity is obtained. Scattered light is mixed into the transmitted light. Further, when the aperture diameter is reduced, the transmitted light intensity itself is weakened and the detection sensitivity of the acoustic signal is lowered.
  • Non-Patent Document 1 can effectively remove the scattered light of the nanoporous body 142 in the optical microphone disclosed in Patent Document 1.
  • an optical matched filter having the configuration shown in FIG. 18 needs to be added to the optical microphone.
  • the inventor of the present application removes the scattered light from the light transmitted through the nanoporous body by using a configuration other than the scattered light removing means disclosed in Patent Document 3 and Non-Patent Document 1.
  • the present inventors have found that a high-sensitivity, small-sized and low-cost optical microphone can be realized by using a normal ranging interferometer. Embodiments of an optical microphone according to the present invention will be described below.
  • FIG. 1 schematically shows a configuration of an optical microphone 201 of the present embodiment.
  • the optical microphone 201 includes a monochromatic light source 1, a scattered light removal optical system (first scattered light removal optical system) 2a, and a scattered light removal optical system (second scattered light removal optical system). ) 2b, a two-beam interferometer 3, a propagation medium unit 4, a sound collecting unit 5, a photodetector 7, and a signal processing unit 8.
  • the monochromatic light source 1 emits monochromatic light 10.
  • the monochromatic light 10 is preferably a coherent light beam, that is, a light beam having a momentum and a phase.
  • the monochromatic light source 1 may be a semiconductor laser, a solid laser, or a gas laser. However, it is preferable to use a semiconductor laser in order to reduce the overall outer shape of the optical microphone 201.
  • the two-beam interferometer 3 divides the monochromatic light 10 emitted from the monochromatic light source 1 into two light beams, propagates the two divided light beams through two different paths, and then splits the two light beams. Are superimposed on each other, and the superimposed light is emitted.
  • the two-beam interferometer 3 includes, for example, light beam splitting elements 17a and 17b and light beam reflecting elements 18a and 18b.
  • “dividing” means broadly dividing the light beam into two light beams, and does not mean only when the light beam is divided into two by a plane parallel to the optical axis.
  • a Mach-Zehnder interferometer will be described as an example of the two-beam interferometer 3.
  • the two-beam interferometer 3 may be a two-beam interferometer having another optical system configuration such as a Michelson interferometer (including a Twyman Green interferometer) or a Fizeau interferometer. Good. Since such a two-beam interferometer is also relatively small and has a simple configuration, a small and highly sensitive optical microphone can be realized at low cost.
  • the light beam splitting element 17a is, for example, a semi-transparent mirror.
  • the monochromatic light beam 10 is transmitted by the light beam splitting element 17a.
  • the reflected light is divided into two light fluxes.
  • the intensities of the two divided light beams do not need to be exactly the same. Desirably, the intensities of the two light beams are selected so that a parameter called “contrast” described later is maximized.
  • a polarization beam splitter may be used instead of the semi-transparent mirror.
  • the monochromatic light 10 incident on the polarization beam splitter has non-polarized light and a polarization plane having a predetermined angle which is not 0 degrees with respect to the polarization axis (P polarization direction or S polarization direction) of the deflection beam splitter.
  • the polarization plane direction is a temporally changing light such as linearly polarized light or circularly polarized light, reflected light and transmitted light are generated in the polarization beam splitter.
  • the polarization beam splitter is used for the light beam splitting element 17a, the divided reflected light and transmitted light have polarization planes orthogonal to each other.
  • the two divided light beams propagate along two different paths. Specifically, the two light beams propagate through the reference path 11 and the probe path 12. Thereafter, in the light beam splitting element 17b, the two light beams are superposed, and the superposed light is emitted from the output end 16.
  • the propagation medium unit 4 is disposed in the probe path 12 which is one of the two paths. As will be described in detail below, the propagation medium portion 4 includes a nanoporous material. When the acoustic signal 6 propagates through the propagation medium part 4 so as to intersect the probe path 12, the acoustic signal 6 is converted into a dense wave that travels through the nanoporous body of the propagation medium part 4.
  • the density of the nanoporous material changes, and the time variation of the refractive index of the nanoporous material according to the acoustic signal 6 occurs. Therefore, the optical path length of the probe path 12 changes. As a result, the phase of the light passing through the probe path 12 varies with time according to the acoustic signal 6.
  • the light splitting element 17b has two paths adjusted so that the light beam passing through the reference path 11 and the light beam passing through the probe path 12 interfere well.
  • good interference means that the cross sections of the two light beams are completely overlapped and the wave fronts of the two light beams are coincident.
  • such adjustment can be realized by adjusting the angles of the light beam splitting elements 17a and 17b and the light beam reflecting elements 18a and 18b.
  • the propagation medium part 4 has an incident part on which the acoustic signal 6 is incident, and includes a nanoporous material as described above.
  • the nanoporous material is preferably a solid propagation medium that transmits the monochromatic light 10 and has a sound velocity smaller than that of air.
  • the sound velocity of the nanoporous material is smaller than 340 m / sec, which is the sound velocity of air.
  • a material with a low sound velocity has a relatively low density, reflection at the boundary between an environmental fluid such as air and the nanoporous material is small, and an acoustic wave can be taken into the propagation medium unit 4 with relatively high efficiency.
  • the nanoporous material is a dry gel of an inorganic acid compound or an organic polymer.
  • the nanoporous material is a dry gel mainly composed of silica.
  • the nanoporous body has a structure in which silica particles having a diameter of several nm to several tens of nm are randomly and three-dimensionally bonded.
  • the sound velocity in the silica dry gel is approximately 50 m / sec or more and 150 m / sec or less, and the sound velocity in the air is small as described above.
  • the density of the silica dry gel is approximately 50 kg / m 3 or more and 200 kg / m 3 or less.
  • the size of the silica particles and the bonding structure cannot be ignored with respect to the wavelength of visible light (wavelength 400 nm to 800 nm)
  • visible light that passes through the nanoporous body is subjected to Rayleigh scattering by the nanoporous body. Therefore, the light flux that has passed through the nanoporous material includes strong scattered light (light flux having a wavefront / amplitude distribution different from that of incident light) in addition to transmitted light (light flux having the same wavefront / amplitude distribution as incident light).
  • the intensity of Rayleigh scattering is highly dependent on the size of the scatterer, and is proportional to the sixth power of the size of the scatterer and inversely proportional to the fourth power of the light wavelength.
  • the monochromatic light 10 it is conceivable to suppress Rayleigh scattering in order to reduce the intensity of scattered light generated in the nanoporous material.
  • long wavelength light may be used as the monochromatic light 10, or the size of the silica particles in the nanoporous material and the bonding structure of the silica particles may be reduced.
  • light having a shorter wavelength than the visible region such as infrared light. In this case, when adjusting the optical system in the optical microphone, the monochromatic light 10 cannot be visually recognized, and it becomes difficult to adjust the optical path.
  • the size of the silica particles in the nanoporous material and the bonded structure of the silica particles is reduced, it has good acoustic characteristics, particularly that the sound velocity is slower than that of air, and the silica particles and bonding It is necessary to develop a new nanoporous material with a small structure.
  • the optical microphone 201 of the present embodiment since it includes the scattered light removal optical system 2a and the scattered light removal optical system 2b, it contains a lot of scattered light. Even if the monochromatic light 10 is used or a nanoporous material that generates high-intensity scattered light is used, the sensitivity is not lowered by the scattered light.
  • the acoustic signal 6 may be incident on the incident portion of the propagation medium unit 4 using any introduction method and device configuration.
  • the acoustic signal 6 needs to be incident on the nanoporous body so as to propagate as a dense wave (longitudinal wave). There is. Further, it is necessary to reduce the reflection at the interface between the propagation medium section 4 and the environmental fluid around the propagation medium section 4, that is, the air, and to make the acoustic signal 6 enter the propagation medium section 4 with the highest possible efficiency. For this reason, the optical microphone 201 preferably includes the sound collection unit 5.
  • FIG. 2 shows an example of the configuration of the sound collection unit 5 that can be used in the optical microphone 201 of the present embodiment.
  • the sound collection unit 5 includes a horn 1801, an acoustic waveguide 1802, and a propagation medium unit 4.
  • the acoustic signal 6 that has propagated in the air is converted into a plane wave (the dense wave in the air) that travels through the acoustic waveguide 1802 by the horn 1801 and propagates toward the acoustic lens 1803.
  • the acoustic lens 1803 has a refractive surface 1804 and is composed of the above-described nanoporous material.
  • a non-reflective terminal 1806 for suppressing reverberation is provided at the end of the propagation medium section 4.
  • the refracting surface 1804 is configured such that the acoustic signal 6 incident on the propagation medium unit 4 is refracted toward the focal point 1805. That is, the refractive surface 1804 provided in the propagation medium unit 4 functions as an acoustic lens.
  • the acoustic signal 6 propagated through the acoustic waveguide 1802 is refracted at the refracting surface 1804 and converted into a spherical wave propagating through the propagation medium section 4. At this time, generation of a transverse wave on the refracting surface 1804 is suppressed, and the wave is converted into a longitudinal wave with high efficiency. For this reason, the detection sensitivity of the acoustic signal 6 is preferably increased.
  • the acoustic signal 6 incident on the propagation medium unit 4 propagates through the propagation medium unit 4 so as to be focused on the focal point 1805 by refraction at the refracting surface 1804.
  • the acoustic signals 6 are all concentrated in the same phase, and a high sound pressure concentration state is obtained. Therefore, the density fluctuation amplitude of the propagation medium unit 4 at the focal point 1805 becomes large, and the amplitude of the refractive index fluctuation becomes very large. Therefore, if the optical path is arranged so that the monochromatic light 10a propagating along the probe path 12 includes a region in the vicinity of the focal point 1805, the monochromatic light 10 that has passed through the propagation medium section 4 is transmitted through the propagation medium section 4. Crosses signal 6 and undergoes large phase variations in response to refractive index variations. For this reason, highly sensitive acoustic signal reception becomes possible.
  • the optical path of the monochromatic light 10 does not have to be as large as possible so as to include the focal point 1805.
  • the distribution of sound pressure is the Airy disk in which the sound pressure converges in phase, and a plurality of diffraction rings that surround it (this Sound pressure concentration also exists in the area).
  • the sound pressure is also concentrated in the diffraction ring, but the acoustic signals are concentrated at a phase different from that of the Airy disk.
  • the optical path of the laser beam 147 includes the Airy disc region and the diffraction ring region, the acoustic signal is weakened due to a phase shift. Therefore, the optical path of the laser beam 147 is preferably arranged so as to include only the Airy disk.
  • the scattered light removing optical systems 2a and 2b From the monochromatic light 10 emitted from the monochromatic light source 1, the scattered light is removed by the scattered light removing optical system 2b, and only the plane wave is filtered. As the parameter called contrast is increased, the measurement sensitivity of the two-beam interferometer 3 is improved.
  • one light beam is decomposed into two light beams having the same light intensity, and the two light beams are superposed so that each light beam passes through different paths and becomes one light beam again. Depending on the optical path length difference between the two paths, the light intensity of one superimposed light beam varies.
  • the optical path length difference is a value obtained by multiplying the physical length of the path by the refractive index of the medium.
  • the monochromatic light 10 is a plane wave immediately before entering the light beam splitting element 17a, and the light flux that has passed through each of the reference path 11 and the probe path 12 is the output end 16.
  • the measurement sensitivity of the two-beam interferometer 3 is maximized.
  • the monochromatic light 10 emitted from the monochromatic light source 1 is not a plane wave. Even if the monochromatic light 10 emitted from the monochromatic light source 1 is a plane wave, the monochromatic light 10 is no longer a plane wave when the monochromatic light 10 passes through the propagation medium portion 4 which is a light scattering medium. For this reason, the contrast is lowered, and the measurement sensitivity of the two-beam interferometer 3 is deteriorated from an ideal value.
  • the optical microphone 201 includes scattered light removal optical systems 2a and 2b in order to minimize this deterioration.
  • the scattered light removal optical system 2b removes the scattered light contained in the monochromatic light, and improves the flatness of the wavefront just before entering the light beam splitting element 17a. Further, the scattered light removal optical system 2 a removes the scattered light generated by the nanoporous body of the propagation medium portion 4 and improves the flatness of the wavefront of the light flux at the output end 16. For example, when a semiconductor laser is used as the monochromatic light source 1, since the emitted light from the semiconductor laser is not a plane wave, the scattered light removing optical system 2 b is necessary to improve the measurement sensitivity of the two-beam interferometer 3.
  • the scattered light removing optical systems 2b and 2b remove scattered light components whose propagation direction is not parallel to the optical axis direction, which is included in the monochromatic light 10.
  • Various optical elements and optical systems having such functions can be used as the scattered light removing optical systems 2a and 2b.
  • the scattered light removing optical systems 2b and 2b that remove scattered light can be suitably used.
  • a polarization-maintaining optical fiber can also be used.
  • the wavefront deviation from a complete plane in the cross section of the light beam emitted from the scattered light removal optical system 2 b is preferably less than one wavelength in terms of the wavelength of the monochromatic light 10.
  • the scattered light removal optical system 2a is also provided with the same optical system structure as the scattering optical system 2b, and is most preferably a single mode optical fiber. From the viewpoint of measurement sensitivity of the two-beam interferometer 3, the wavefront deviation from a complete plane in the section of the light beam emitted from the scattered light removal optical system 2 a may be less than one wavelength in terms of the wavelength of the monochromatic light 10. preferable.
  • interference light having high contrast is emitted from the two-beam interferometer 3. For this reason, it becomes possible to detect the acoustic signal 6 with high sensitivity.
  • the light emitted from the two-beam interferometer 3 is converted into an electrical signal by the photodetector 7, and homodyne detection is performed using the signal processing unit 8, whereby the acoustic signal 6 can be detected as the reception signal 9.
  • FIG. 3 is a graph showing the time variation of the output signal from the photodetector 7 when it is assumed that there is no scattered light removal optical system 2a and no scattered light removal optical system 2b.
  • the homodyne detection is a detection method that captures the time variation of the optical path length difference between the reference path 11 and the probe path 12 caused by the refractive index variation in the propagation medium unit 4 as the time variation of the interference light intensity. Therefore, when the scattered light removal optical system 2a and the scattered light removal optical system 2b are not provided, the output signal from the photodetector 7 includes a non-interference signal that does not include an acoustic signal in addition to an interference component that includes the acoustic signal.
  • the signal processing unit 8 includes a DC cut filter 13 and an amplifier 14, and after the DC component is removed by the DC cut filter 13 from the output signal from the photodetector 7, the signal is amplified by the amplifier 14 and the acoustic signal 6 is received. 9 is generated.
  • the monochromatic light source 1 is a light source whose output is stabilized. Therefore, the output light intensity of the monochromatic light source 1 is constant over time, and the maximum signal value in FIG. 3 is substantially constant. Therefore, if the gain of the amplifier 14 is constant over time, the amplitude of the received signal 9 is proportional to the ratio of the interference component to the maximum signal value in FIG. Therefore, without the scattered light removal optical system 2a and the scattered light removal optical system 2b, the non-interference component increases, and the amplitude of the received signal 9 obtained decreases. That is, the reception sensitivity of the acoustic signal 6 is deteriorated.
  • the scattered light removing optical system 2a and the scattered light removing optical system 2b by using the scattered light removing optical system 2a and the scattered light removing optical system 2b, the scattered light component, that is, the non-interference component is excluded from the light beam incident on the photodetector 7, thereby increasing the amplitude.
  • the received signal 9 is obtained, and the amplitude ratio (S / N ratio) of the acoustic signal 9 to noise is also increased. Therefore, the optical microphone 201 with high reception sensitivity is realized.
  • the time variation of the refractive index of the nanoporous material through which the acoustic signal to be detected is propagated using a two-beam interferometer that is a kind of distance measuring interferometer, It is detected as a change in optical distance. Since the two-beam interferometer is relatively small and has a simple configuration, the configuration of the optical microphone can be reduced. Further, the scattered light removal optical system is used to remove the scattered light generated when the monochromatic light used for measurement passes through the propagation medium.
  • FIG. 4 schematically shows the configuration of the optical microphone 202 of the present embodiment.
  • the optical microphone 202 includes a two-frequency light source 1703, a scattered light removing optical system 2a, a scattered light removing optical system 2b, a two-beam interferometer 3, a propagation medium unit 4, a photodetector 7, and a non-polarizing beam splitter. 1712, a phase comparison unit 1705, a polarizing plate 1706, and a reference beat signal generation unit 1711.
  • the optical microphone 202 is different from the first embodiment in that the acoustic signal 6 is detected by heterodyne detection. Therefore, in the optical microphone 202, the monochromatic light source 1 of the optical microphone 201 of the first embodiment is changed to a dual-frequency light source 1703, and further includes a reference beat signal generation unit 1711.
  • the dual-frequency light source 1703 generates dual-frequency light 1704 composed of two linearly polarized light having mutually orthogonal polarization planes.
  • the angle of the dual frequency light source 1703 with respect to the optical axis is such that one polarization plane of linearly polarized light is parallel to the plane of FIG. 4 and the other plane of polarization is perpendicular to the plane of FIG. Has been adjusted.
  • the two linearly polarized lights are monochromatic lights having different frequencies, and here, the frequency difference between the two linearly polarized lights is expressed as ⁇ f.
  • the dual-frequency light source 1703 having such characteristics for example, a dual-frequency Zeeman laser can be used.
  • the linearly polarized monochromatic light is divided into two parts, and both or one of the linearly polarized monochromatic lights is changed in frequency so that the frequency difference between the two linearly polarized monochromatic lights is ⁇ f using an acoustooptic device.
  • a light source optical system that superimposes linearly polarized monochromatic light so that the polarization planes of the two linearly polarized monochromatic light are orthogonal to each other may be used.
  • the two-frequency light 1704 emitted from the two-frequency light source 1703 is divided by the non-polarizing beam splitter, a part thereof is guided to the reference beat signal generation unit 1711, and the rest is guided to the scattered light removing optical system 2b.
  • the reference beat signal generation unit 1711 includes a polarizing plate 1710 and a photodetector 1707.
  • the polarizing plate 1710 has a polarization axis that forms an angle of 45 ° with respect to the paper surface of FIG. 4, and the two-frequency light 1704 that has entered the reference beat signal generation unit 1711 passes through the polarizing plate 1710, so that 2
  • the two linearly polarized monochromatic lights in the frequency light 1704 have a common plane of polarization and interfere with each other.
  • the interference light generated in this way becomes beat light whose intensity changes sinusoidally at the frequency ⁇ f. This beat light is converted into an electric signal by the photodetector 1707, and a reference beat signal 1708 is generated.
  • the two-frequency light 1704 transmitted through the non-polarizing beam splitter 1712 is split by the polarizing beam splitter 1701 in accordance with the polarization plane direction after passing through the scattered light removing optical system 2b.
  • the linearly polarized monochromatic light (P-polarized light) having a polarization plane parallel to the paper surface of FIG. 4 is directed toward the propagation medium section 4 and has a polarization plane perpendicular to the paper surface of FIG.
  • Wave monochromatic light (S-polarized light) is reflected in the direction of the light reflecting element 18b.
  • the phase change corresponding to the refractive index change generated in the propagation medium unit 4 is generated. receive.
  • the scattered light is removed from the beat light by the scattered light removing optical system 2 a and detected by the photodetector 7. As a result, a probe beat signal 1709 is generated.
  • the phase comparator 1705 heterodyne-detects the probe beat signal 1709 using the reference beat signal 1708. Specifically, the phase change of the probe beat signal 1709 is extracted with the phase of the reference beat signal 1708 as a reference, and the reception signal 9 is output. This phase change is a phase change corresponding to the refractive index change caused by the acoustic signal 6. Therefore, the acoustic signal 6 is detected as the received signal 9.
  • the reference beat signal 1708 and the probe beat signal 1709 have a signal waveform constituted by the sum of a DC signal that does not change with time and a sine signal having a frequency ⁇ f.
  • Heterodyne detection has a function of extracting a phase difference between two signals regardless of the magnitude of the DC signal and the amplitude of the sine signal of the two signals (reference beat signal 1708 and probe beat signal 1709) to be phase-compared. . Therefore, the optical microphone 202 based on the heterodyne detection system of this embodiment has an advantage that it always gives a detection sensitivity to a constant acoustic signal 6 regardless of fluctuations in the magnitude of the DC signal and the amplitude of the sine signal.
  • the magnitude of the DC signal and the amplitude of the sine signal can fluctuate with time.
  • the reference beat signal 1708 and the probe beat signal 1709 include other than the sine wave having the frequency ⁇ f from the beat light.
  • a sine wave will be included.
  • the other sine wave causes a phase change of the sine wave of frequency ⁇ f. Since this phase change is a time variation that does not depend on the acoustic signal 6, it appears as noise in the received signal 9.
  • the DC signal component included in the reference beat signal 1708 and the probe beat signal 1709 may be reduced.
  • the DC signals included in the reference beat signal 1708 and the probe beat signal 1709 mainly depend on the scattered light intensity. For this reason, by removing scattered light with high efficiency by the scattered light removing optical systems 2a and 2b, noise included in the received signal 9 can be reduced, and an optical microphone having a high S / N ratio can be realized. it can.
  • the acoustic signal to be detected is a two-beam interference that is relatively small in size and has a simple configuration because the acoustic signal to be detected changes the refractive index of the nanoporous material over time. It can be detected as a change in optical distance using a meter. Further, by using the scattered light removing optical system, it is possible to suppress the influence of noise and detect an acoustic signal with high sensitivity. Therefore, a small and highly sensitive optical microphone is realized.
  • FIG. 5 shows the configuration of an optical microphone 211 that is a specific embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals.
  • the optical microphone 211 includes a Mach-Zehnder interferometer 36 constituted by two reflecting mirrors 35a and 35b and beam splitters 34a and 34b as a two-beam interferometer.
  • the scattered light removing optical system 2a includes an optical fiber 33a and focusing lenses 31a and 32a provided at both ends thereof.
  • the scattered light removal optical system 2b includes an optical fiber 33b and focusing lenses 31b and 32b provided at both ends thereof.
  • Each of the optical fibers 33a and 33b is a single mode optical fiber that propagates the monochromatic light 10 having a predetermined wavelength in a single mode, and the scattered light removing optical systems 2a and 2b are mirror-symmetrical optical systems with respect to the Mach-Zehnder interferometer 36. Is configured. Specifically, the optical fiber 33a and the optical fiber 33b have the same optical characteristics. Here, the optical characteristics of the optical fiber 33a and the optical fiber 33b are the same, for example, the cross section perpendicular to the optical axis has the same geometric shape and the same refractive index distribution, and the focusing lens. This means that the end faces facing 31a and the converging lens 31b have the same end face shape.
  • the focusing lens 31a and the focusing lens 31b have the same optical characteristics.
  • the optical characteristics of the focusing lens 31a and the focusing lens 31b being the same means, for example, that the intensity and phase distribution of the light formed on the image plane are the same for the same incident light.
  • the focusing lens 32a and the focusing lens 32b may not have the same optical characteristics. In this case, it is possible to realize an optical microphone that is excellent in terms of the effect of removing scattered light generated in the propagation medium unit 4 to improve reception sensitivity, and in terms of the ease of assembling and adjusting the optical system.
  • the focusing lens 32b is preferably one that efficiently couples the monochromatic light 10 to the optical fiber 33b.
  • a lens for example, a short focus lens having excellent imaging characteristics at the wavelength of the monochromatic light 10 such as a GRIN lens (refractive index distribution lens) or a microscope objective lens is preferably used.
  • the numerical aperture of the converging lens 32b can be used to irradiate the propagation medium section 4 with a light beam with the highest possible intensity while using the small output monochromatic light source 1.
  • NA is preferably equal to or less than the numerical aperture NA of the optical fiber 33b.
  • the scattered light included in the monochromatic light cannot be coupled to the optical fiber 33b and cannot propagate through the optical fiber 33b. For this reason, the scattered light in the monochromatic light 10 is removed by propagating through the optical fiber 33b.
  • the focusing lenses 31a and 31b are preferably those capable of satisfactorily coupling a parallel light beam (Gaussian light beam) having a good wavefront to the optical fibers 33a and 33b, respectively.
  • a focusing lens such as a dedicated GRIN lens or an aspherical lens optimized for the wavelength used is suitable.
  • an optical element that can accurately match the end face of the optical fiber and the focal position of the lens is commercially available, and such an optical element is preferably used. Can do.
  • the reason why the scattered light removing optical systems 2a and 2b configured as described above can extremely effectively suppress the scattered light generated in the propagation medium unit 4 will be described with reference to FIG.
  • the focal point of the focusing lens 31b coincides with the core of the optical fiber 33b.
  • the monochromatic light 601 in the optical fiber is converted into coherent light ⁇ 0 which is a parallel light beam by the converging lens 31b.
  • Monochromatic light propagating through a single mode optical fiber has a fixed intensity / phase distribution (more precisely, an electromagnetic field distribution).
  • the intensity / phase distribution is uniquely determined from the configuration of the single mode optical fiber (refractive index distribution) and the monochromatic light wavelength.
  • monochromatic light having no fixed intensity / phase distribution cannot propagate through the single mode optical fiber.
  • the intensity / phase distribution image of the monochromatic light 601 in the optical fiber formed on the end face of the optical fiber 33b is projected onto the end face of the optical fiber 33a by the focusing lenses 31a and 31b. In the configuration of FIG.
  • this image is equal to the intensity / phase distribution of the monochromatic light 601 in the optical fiber formed on the end face of the optical fiber 33b.
  • this image exactly matches the intensity / phase distribution formed on the end face of the optical fiber 33a by monochromatic light that can propagate through the optical fiber 33a. For this reason, the monochromatic light 601 propagating through the optical fiber 33b becomes coherent light ⁇ 0 and is introduced into the optical fiber 33a with an efficiency close to 100%.
  • the nanoporous body 4 generates scattered light ⁇ i (the sum is taken for i of i ⁇ 0).
  • Scattered light is light having an intensity / phase distribution different from incident light.
  • Converging lens 31a is an image of the transmitted light and nanoporous 4 scattered light Sigma] [phi i generated by from nanoporous 4 is formed on the end face of the optical fiber 33a.
  • the image of the scattered light ⁇ i is not introduced into the optical fiber 33a because the monochromatic light that can propagate through the optical fiber 33a does not match the intensity / phase distribution formed on the end face of the optical fiber 33a.
  • the transmitted light is equal to the coherent light ⁇ 0 , it is introduced into the optical fiber 33a with high efficiency. Therefore, the monochromatic light 602 in the optical fiber does not include the scattered light generated by the nanoporous body 4 and includes only the coherent light ⁇ 0 .
  • the above is the reason why the scattered light removing optical systems 2a and 2b can extremely effectively suppress the scattered light generated in the propagation medium section 4.
  • the monochromatic light 10 when introducing the monochromatic light 10 into the scattered light removing optical system 2b, the monochromatic light 10 is transmitted from the left end face toward the optical fiber 33b via an additional optical system such as a condensing optical system. It is preferable to make it enter.
  • the electromagnetic field distribution of the monochromatic light 10 generated on the left end face of the optical fiber 33b by the additional optical system light does not exactly match the electromagnetic field distribution of the light that can propagate through the optical fiber 33b. For this reason, only the component of the electromagnetic field distribution of light that can propagate through the optical fiber 33b is passively selected, and the other components are scattered and reflected by the left end face of the optical fiber 33b.
  • the scattered light removal optical system 2b functions as an optical system that “shapes” the electromagnetic field distribution of the monochromatic light 10 into a desired electromagnetic field distribution (wavefront and intensity distribution). With this function of the scattered light removing optical system 2b, the electromagnetic field distribution of light incident on the propagation medium section 4 is purified, and the filtering performance as a mode filter is enhanced.
  • the optical microphone 211 shown in FIG. 5 was produced, and the configuration shown in FIG. 6 was used as the scattered light removing optical systems 2a and 2b.
  • a He—Ne laser (wavelength: about 633 nm) was used as the monochromatic light source 1.
  • FIG. 7 shows the wavelength dependence of the transmittance of the propagation medium unit 4 used in the optical microphone 211.
  • the transmittance was measured with an integrating sphere.
  • the decrease in transmittance caused by Rayleigh scattering begins to become noticeable at 800 nm. Therefore, in the visible light region, the intensity of scattered light from the nanoporous material is large, which is a typical light scattering medium.
  • the thickness of the propagation medium part 4 used in the experiment is 5 mm.
  • FIG. 7 the result of having measured the transmittance
  • the measurement of the amplitude Vex can be performed, for example, by shaking the reflecting mirror 35a with a finger to read the maximum / minimum values of the output value from the light detector 7 and obtaining 1/2 of the difference.
  • FIG. 9 shows an example of the waveform of the received signal 9 measured by the above procedure.
  • Vex ⁇ (0.90 ⁇ 0.11) ⁇ Vth As a result of measurement according to the procedure shown in (1) to (4), Vex ⁇ (0.90 ⁇ 0.11) ⁇ Vth. From this, it was confirmed that the scattered light generated in the propagation medium part 4 could be removed almost completely within the range of the accuracy of the experiment.
  • an aperture stop is often arranged in the optical path for the purpose of removing scattered light and stray light.
  • the scattered light removing optical system 2a is replaced with an aperture stop 81, and an acoustic signal 6 is input.
  • An acoustic signal 6 having an intensity that can be detected with the configuration shown in FIG. 8 was input and detection was attempted by the photodetector 7, but the signal output could not be confirmed.
  • the conventional aperture stop 81 alone does not function as the scattered light removal optical system 2a. This is probably because the original interference light intensity also decreases with the reduction of the aperture diameter, and the S / N deteriorates, making it difficult to filter the desired signal.
  • the scattered light removal optical systems 2a and 2b function suitably in order to remove scattered light in the propagation medium section 4 having the optical characteristics shown in FIG.
  • the Mach-Zehnder interferometer 36 which is one type of the two-beam interferometer 3, is configured using bulk optical elements.
  • the Mach-Zehnder interferometer 36 is configured using an optical fiber, thereby reducing the number of bulk optical elements and eliminating the optical adjustment required for each of the bulk optical elements, thereby solving this problem. .
  • the optical microphone 212 is different from the optical microphone 211 of the first embodiment in that it includes an optical fiber type Mach-Zehnder interferometer 42 having a path constituted by optical fibers.
  • the optical fiber type Mach-Zehnder interferometer 42 includes a 1-input 2-output coupler 41b, a 2-input 1-output coupler 41a, an optical fiber for the reference path 11, and an optical fiber for the probe path 12.
  • one end of the optical fiber 33b which is the scattered light removing optical system 2b is connected to the input of the coupler 41b.
  • One end of the optical fiber for the reference path 11 and one end of the optical fiber for the probe path 12 are connected to the output of the coupler 41b.
  • the other end of the optical fiber for the reference path 11 and the other end of the optical fiber for the probe path 12 are connected to the input of the coupler 41a.
  • One end of the optical fiber 33a which is the scattered light removing optical system 2a is connected to the output of the coupler 41a.
  • the optical fiber constituting the probe path 12 is cut halfway, and the propagation medium portion 4 is inserted.
  • the sensitivity of the optical microphone 212 is determined by the contrast of the interference light output from the optical fiber type Mach-Zehnder interferometer 42 (ratio of the interference light amplitude to the total output light amplitude). This contrast depends on the adjustment of the optical element in addition to the degree of removal of scattered light from the propagation medium unit 4. Specifically, in order to realize good reception sensitivity with respect to the acoustic signal 6, not only complete superimposition of the light fluxes of the reference path 11 and the probe path 12, but also the coincidence of the wavefronts of both light fluxes is used. Optical adjustment of the Zender interferometer 42 is required. In the optical microphone 211 shown in FIG. 5, adjustment of four bulk optical elements is necessary for such optical adjustment. However, according to the present embodiment, all of these adjustments are unnecessary and are completely completed. Interference adjustment is always realized.
  • the optical system in the optical microphone is routed by an optical path as much as possible, thereby reducing the cost of adjusting the optical system and generating interference light with higher contrast. . Therefore, an optical microphone having high acoustic signal detection sensitivity can be realized.
  • any two-beam interferometer may be used in the optical microphone of the present invention.
  • a Michelson interferometer is used instead of the Mach-Zehnder interferometer.
  • the optical microphone 213 is different from the optical microphone 211 shown in FIG. 5 in that a Michelson interferometer 91 is provided instead of the Mach-Zehnder interferometer 36.
  • the Michelson interferometer 91 includes reflecting mirrors 35a and 35b and a beam splitter 34a.
  • the monochromatic light 10 emitted from the focusing lens 31b coupled to the optical fiber 33b is divided into monochromatic light propagating along the reference path 11 and monochromatic light propagating along the probe path 12 by the beam splitter 34a.
  • the monochromatic light propagating along the reference path 11 is reflected by the reflected light 35a and enters the beam splitter 34a again.
  • the monochromatic light propagating through the probe path 12 is transmitted through the propagation medium section 4, is reflected by the reflecting mirror 35b, is transmitted through the propagation medium section 4 again, and enters the beam splitter 34a.
  • the two monochromatic lights incident on the beam splitter 34a are superimposed and enter the optical fiber 33a via the focusing lens 31a.
  • the Michelson interferometer 91 includes the three bulk optical elements of the reflecting mirrors 35a and 35b and the beam splitter 34a. For this reason, it is necessary to adjust the optical position of these optical elements.
  • the use of the reflecting mirrors 35a and 35b has the advantage that the optical path can be turned back, and the Michelson interferometer 91 can be made compact.
  • the detection sensitivity of refractive index fluctuation is doubled.
  • the propagation medium unit 4 that is thick in the optical path direction may be used.
  • the broadband property is impaired due to the acoustic propagation characteristics of the propagation medium section 4, particularly the influence of the self-resonance mode.
  • the Michelson interferometer 91 is used, the detection sensitivity can be increased without changing the size of the propagation medium section 4. Therefore, it is possible to achieve both improvement of the broadband property and the sound detection sensitivity.
  • the Michelson interferometer 91 as the two-beam interferometer, it is possible to realize an optical microphone having a small size and high detection sensitivity while having a wide bandwidth.
  • An optical microphone 213 ′ shown in FIG. 13 includes a monochromatic light source 1, a beam splitter 34b, a scattered light removing optical system 2b including an optical fiber 33a, a Michelson interferometer 91, a photodetector 7, and a signal processing unit 8. Is provided.
  • the monochromatic light 10 emitted from the monochromatic light source 1 passes through the beam splitter and enters the scattered light removing optical system 2b.
  • the monochromatic light 10 from which the scattered light component has been removed in the scattered light removing optical system 2b is incident on the Michelson interferometer 91 as described above.
  • the light emitted from the Michelson interferometer 91 is again incident on the scattered light removing optical system 2b in the opposite direction, and the monochromatic light emitted from the scattered light removing optical system 2b is again incident on the beam splitter 34b.
  • the acoustic signal 6 can be detected by reflecting the monochromatic light 10 toward the photodetector 7 in the beam splitter 34b.
  • the optical microphone can be configured in a small size. Further, the scattered light removal optical systems 2a and 2b can be shared without impairing the scattered light removal effect, so that the optical microphone can be further reduced in size, and the manufacturing cost can be reduced.
  • FIG. 14 shows the configuration of the optical microphone 214 of this embodiment.
  • the optical microphone 214 differs from the optical microphone 213 ′ of the third embodiment in that it includes the Fizeau interferometer 101.
  • the probe path 12 and the reference path 11 are spatially different.
  • the spatially different portions in the two paths are long. For this reason, due to mechanical instability, the optical path difference between the two paths may fluctuate and may be observed as an unnecessary interference signal.
  • the mechanical parts and optical elements are robustly constructed, the air fluctuation, temperature distribution, and temperature change do not completely match in the vicinity of both paths, so the optical length between the paths changes with time, which is unnecessary. May be observed as a negative signal. By using a Fizeau interferometer, such unnecessary signals can be suppressed.
  • the Fizeau interferometer 101 includes a semi-transparent mirror 102 and a reflecting mirror 35a.
  • the semi-transparent mirror 102 is a first optical surface 102a of the semi-transparent mirror having an optical plane parallel to the reflecting surface of the reflecting mirror 35a, and is a good optical plane but non-parallel to the reflecting surface of the reflecting mirror 35a.
  • a second surface 102b that is not processed as a reflective surface.
  • An antireflection film or the like may be provided on the second surface.
  • the reference path 11 when the focusing lens 31a is used as a reference is defined by an optical path from the focusing lens 31a to the semi-reflecting surface 102a of the semi-transmitting mirror 102 and returning to the focusing lens 31a.
  • the probe path 12 is defined by the optical path from the focusing lens 31a to the reflection lens 35a until it returns to the focusing lens 31a.
  • the optical path length difference between these two paths is detected by the photodetector 7 as a change in light intensity. Therefore, the common optical path of the reference path 11 and the probe path 12 may be short. Further, since the optical path length difference is generated in the propagation medium portion 4 in the probe path 12, the length of the optical path in other portions may be short. Therefore, if the focusing lens 31a, the semi-transparent mirror 102, the propagation medium unit 4, and the reflecting mirror 35a are arranged in this order and adjacent optical elements are arranged in contact with each other, the reference path 11 and The probe path 12 can be made extremely short. As a result, the optical element that constitutes the Fizeau interferometer 101 is prevented from vibrating due to external influences, or unnecessary signals from being included in monochromatic light as noise due to external environments such as air fluctuations and temperature changes. be able to.
  • the Fizeau interferometer 101 is constituted by two bulk optical elements, but the adjustment thereof is only paralleling of the optical surfaces of the two elements. Therefore, the assembly and adjustment of the optical microphone 214 is easy, and the manufacturing cost can be reduced.
  • the number of optical components can be reduced without sacrificing the scattered light removal effect. Yes.
  • An optical microphone 214 ′ illustrated in FIG. 15 includes a fiber light source 111, a coupler 41 a, a scattered light removal optical system 2 b, a Fizeau interferometer 101, a photodetector 7, and a signal processing unit 8.
  • the coupler 41a has three ports, and decomposes light incident from one of the three ports into light emitted from the other two ports.
  • Monochromatic light emitted from the fiber light source 111 enters the coupler 41a and is emitted to the scattered light removing optical system 2b. Further, the monochromatic light emitted from the Fizeau interferometer 101 and propagated through the scattered light removing optical system 2 b enters the coupler 41 a in the reverse direction and enters the photodetector 7. According to such a configuration, all the optical elements except the optical system inside the Fizeau interferometer 101 can be seamlessly connected only by the optical fiber, so that the adjustment cost can be further reduced. .
  • the microphone of the present invention has been described using the first and second embodiments and the first to fourth examples.
  • a scattering optical material is used instead of the nanoporous material.
  • the present invention can be applied to a measuring instrument that measures optical characteristics such as a refractive index of a scattering optical material.
  • a pressure sensor or gas concentration meter for measuring the pressure or concentration of the scattering gas, a gas concentration meter, a refractive index meter for gas and liquid The present invention can also be applied to the above. Further, it can be applied to a physical quantity measuring device based on refractive index measurement, a precision length measurement / shape sensing meter in a scattering medium, and the like.
  • the optical microphone of the present invention is suitably used for an optical microphone used for various applications. Further, it is also suitably used for a scattering gas pressure sensor, a gas concentration meter, a gas and liquid refractometer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

Disclosed is an optical microphone, comprising a light source (1) that outputs a monochromatic light; a two-beam interferometer (3) that divides the monochromatic light that is outputted from the light source (1) into two light beams, conveys the two divided light beams upon two respectively different paths, and thereafter respectively superimposes the two divided light beams and outputs the light thus superimposed; a conveyance medium unit (4), formed from a nanopore body having an acoustic velocity less than the atmospheric acoustic velocity, further comprising an incident unit whereupon audio signals are incident, and that conveys the audio signal that is incident from the incident unit through the nanopore body, traversing one of two paths thereupon; an optical detection apparatus (7) that detects the light from the two-beam interferometer; a first diffuse light removal optical assembly (2a) that is disposed between the two-beam interferometer and the optical detection apparatus, and which removes diffuse light included within the light that is emitted from the two-beam interferometer; and a second diffuse light removal optical assembly that is disposed between the light source (1) and the two-beam interferometer (3), and which removes diffuse light included within the monochromatic light that is emitted from the light source.

Description

光マイクロホンOptical microphone
 本発明は、光を用いて音響信号を検出する光マイクロホンに関する。 The present invention relates to an optical microphone that detects an acoustic signal using light.
 現在広く利用されているマイクロホンは、振動板を用いて音響信号を検出し、電気的信号に変換する。このようなマイクロホンは、振動板という機械的振動部分を有しているため、多数回、繰り返して使用することにより、振動板の特性が変化する可能性がある。また、非常に強力な音波をマイクロホンで検出しようとすると、振動板が破壊する可能性がある。さらに、このようなマイクロホンでは、振動板の最低共振周波数以上の周波数では良好な音響信号の検出特性が期待できず、広帯域性の実現が困難である。また、振動板を小型化して広帯域性を実現しようとすると、音響信号の検出感度が低下する。 現在 Currently widely used microphones detect acoustic signals using a diaphragm and convert them into electrical signals. Since such a microphone has a mechanical vibration part called a diaphragm, there is a possibility that the characteristics of the diaphragm may be changed by repeatedly using the microphone many times. In addition, if a very strong sound wave is detected with a microphone, the diaphragm may be destroyed. Furthermore, in such a microphone, it is difficult to realize a good broadband characteristic because good acoustic signal detection characteristics cannot be expected at frequencies higher than the minimum resonance frequency of the diaphragm. In addition, if the diaphragm is downsized to achieve wide bandwidth, the detection sensitivity of the acoustic signal decreases.
 これに対し、光を用いて音響信号を検出し、電気信号に変換する光マイクロホンが提案されている。以下、特許文献1に開示された従来の光マイクロホンを説明する。図16に示すように、特許文献1に開示された従来の光マイクロホン141は、受信機構部1410とレーザードップラー振動計148とを備える。 On the other hand, an optical microphone that detects an acoustic signal using light and converts it into an electric signal has been proposed. The conventional optical microphone disclosed in Patent Document 1 will be described below. As shown in FIG. 16, the conventional optical microphone 141 disclosed in Patent Document 1 includes a receiving mechanism unit 1410 and a laser Doppler vibrometer 148.
 受信機構部1410は、凹部を有するベース部143と、レーザー光147に対して透明な透明支持板145とを含む。ベース部143の凹部と透明支持板145によって形成される空間には、伝搬媒質であるナノ多孔体142が充填されている。ナノ多孔体142としては、例えば、特許文献2に開示された乾燥ゲルなどの音速が遅く(音響インピーダンスが小さく)、音響的伝搬損失の少ない媒質が用いられる。ベース部143には、音響信号149をナノ多孔体142に導入するための開口部144が設けられている。また、ベース部143の凹部底面は反射面1411になっている。 The receiving mechanism portion 1410 includes a base portion 143 having a recess and a transparent support plate 145 that is transparent to the laser beam 147. A space formed by the concave portion of the base portion 143 and the transparent support plate 145 is filled with a nanoporous body 142 that is a propagation medium. As the nanoporous body 142, for example, a medium such as a dry gel disclosed in Patent Document 2 having a low sound velocity (acoustic impedance is small) and a small acoustic propagation loss is used. The base portion 143 is provided with an opening 144 for introducing the acoustic signal 149 into the nanoporous body 142. Further, the bottom surface of the concave portion of the base portion 143 is a reflective surface 1411.
 レーザードップラー振動計148は、受信機構部1410の外部からレーザー光147を照射し、レーザー光147が、透明支持板145およびナノ多孔体142を透過し、反射面1411で反射した後、再びナノ多孔体142および透明支持板145を透過し、レーザードップラー振動計148へ戻るように配置される。 The laser Doppler vibrometer 148 irradiates laser light 147 from the outside of the reception mechanism unit 1410, and the laser light 147 passes through the transparent support plate 145 and the nanoporous body 142, is reflected by the reflecting surface 1411, and then nanoporous again. It is arranged to pass through the body 142 and the transparent support plate 145 and return to the laser Doppler vibrometer 148.
 外界の音響信号149は、開口部144から受信機構部1410へ入射し、空気とナノ多孔体142との界面で屈折し、高効率でナノ多孔体142へ入射する。入射した音響信号149は、ナノ多孔体142を進行する疎密波1412に変換される。レーザードップラー振動計148から出力されるレーザー光147のナノ多孔体142上でのスポット位置において、生成された疎密波1412は密度の時間変動として観測される。この密度変化は屈折率変化を生じさせるため、スポット位置において、音響信号149に応じた屈折率の時間変動が生じる。 The external acoustic signal 149 enters the receiving mechanism 1410 through the opening 144, refracts at the interface between the air and the nanoporous body 142, and enters the nanoporous body 142 with high efficiency. The incident acoustic signal 149 is converted into a dense wave 1412 traveling through the nanoporous body 142. At the spot position on the nanoporous body 142 of the laser beam 147 output from the laser Doppler vibrometer 148, the generated dense wave 1412 is observed as a time variation of density. Since this density change causes a change in refractive index, the refractive index changes with time according to the acoustic signal 149 at the spot position.
 図16に示すように、レーザー光147をナノ多孔体142と透明支持板145との界面の法線方向から入射させると、透過後のレーザー光147が屈折率の時間変動から受ける位相変動量は、スポット位置における屈折率の時間変動に応じて反射面1411が法線方向に振動運動していると仮定した時に受ける位相変動量と光学的に等価である。したがって、反射面1411から反射されて戻ってくるレーザー光147は、反射面1411の振動運動に相当するドップラーシフトを受ける。レーザードップラー振動計148は、反射面1411で反射され、戻ってくるレーザー光147中に含まれるドップラーシフトを受けた光成分を、周波数シフト量に対するフーリエ係数を求めることによって、周波数シフト量毎の光強度を検出する。 As shown in FIG. 16, when the laser beam 147 is incident from the normal direction of the interface between the nanoporous body 142 and the transparent support plate 145, the amount of phase variation that the transmitted laser beam 147 receives from the time variation of the refractive index is It is optically equivalent to the amount of phase fluctuation received when it is assumed that the reflecting surface 1411 oscillates in the normal direction according to the time fluctuation of the refractive index at the spot position. Therefore, the laser beam 147 reflected and returned from the reflecting surface 1411 undergoes a Doppler shift corresponding to the vibration motion of the reflecting surface 1411. The laser Doppler vibrometer 148 obtains a light component for each frequency shift amount by obtaining a Fourier coefficient with respect to the frequency shift amount of the light component subjected to the Doppler shift included in the returning laser light 147 reflected by the reflecting surface 1411. Detect intensity.
 屈折率変動は音響信号149の音圧に概ね比例しており、ドップラーシフト量(周波数変化量)は振動運動の速度に比例する。レーザードップラー振動計148からの出力信号は音響信号149の時間微分に概ね比例する信号を出力する。出力信号に積分処理や適当なフィルタ処理を行うことによって、音響信号に対応した電気信号を得ることができる。これにより、所望の音響特性を持ったマイクロホンとして光マイクロホン141を動作させることができる。 The refractive index variation is generally proportional to the sound pressure of the acoustic signal 149, and the Doppler shift amount (frequency change amount) is proportional to the vibration motion speed. The output signal from the laser Doppler vibrometer 148 outputs a signal that is approximately proportional to the time derivative of the acoustic signal 149. An electrical signal corresponding to the acoustic signal can be obtained by performing integration processing or appropriate filter processing on the output signal. Thereby, the optical microphone 141 can be operated as a microphone having desired acoustic characteristics.
特開2009-85868号公報JP 2009-85868 A 特許第3633926号Japanese Patent No. 3633926 特開平7-260801JP-A-7-260801
 しかし、特許文献1の光マイクロホンでは、レーザードップラー振動計148を用いる必要がある。レーザードップラー振動計には良好な単色性を有した単色化光源および高精度な周波数弁別回路が必要である。このため、レーザードップラー振動計148自体の小型化および低価格化が困難であり、必然的に従来の光マイクロホンを小型化したり、低価格の光マイクロホンを実現したりすることが困難であった。 However, in the optical microphone of Patent Document 1, it is necessary to use the laser Doppler vibrometer 148. Laser Doppler vibrometers require a monochromatic light source with good monochromaticity and a highly accurate frequency discrimination circuit. For this reason, it is difficult to reduce the size and cost of the laser Doppler vibrometer 148 itself, and inevitably it is difficult to reduce the size of a conventional optical microphone or to realize a low-cost optical microphone.
 本発明は、このような従来技術の課題を解決し、高感度で小型かつ低コストの光マイクロホンを提供することを目的とする。 An object of the present invention is to solve such problems of the prior art and to provide an optical microphone with high sensitivity, small size and low cost.
 本発明の光マイクロホンは、単色光を出射する光源と、前記光源から出射した前記単色光を2つの光束に分割し、分割された2つの光束をそれぞれ互いに異なる2つの経路で伝搬させた後、前記分割された2つの光束を互いに重畳し、重畳した光を出射する2光束干渉計と、音響信号が入射する入射部を有しており、空気より小さい音速を有するナノ多孔体からなる伝搬媒質部であって、前記入射部から入射した音響信号が前記2つの経路の一方を横切って前記ナノ多孔体を伝搬する伝搬媒質部と、前記2光束干渉計から出射する光を検出する光検出器と、前記2光束干渉計と前記光検出器との間に設けられ、前記2光束干渉計から出射した光に含まれる散乱光を除去する第1の散乱光除去光学系と、前記光源と前記2光束干渉計との間に設けられ、前記光源から出射した前記単色光に含まれる散乱光を除去する第2の散乱光除去光学系を備える。 The optical microphone of the present invention divides the monochromatic light emitted from the light source and the monochromatic light emitted from the light source into two luminous fluxes, and propagates the divided luminous fluxes through two different paths, respectively. Propagation medium comprising a two-beam interferometer that superimposes the two divided light beams and emits the superimposed light, and a nanoporous body having an incident portion for receiving an acoustic signal and having a sound velocity smaller than that of air A propagation medium section in which an acoustic signal incident from the incident section propagates through the nanoporous body across one of the two paths, and a photodetector that detects light emitted from the two-beam interferometer A first scattered light removing optical system that is provided between the two-beam interferometer and the photodetector and removes scattered light contained in the light emitted from the two-beam interferometer, the light source, Between the two-beam interferometer Vignetting, and a second scattered light removing optical system for removing scattered light included in the monochromatic light emitted from the light source.
 ある好ましい実施形態において、前記第1の散乱光除去光学系および前記第2の散乱光除去光学系は、それぞれシングルモード光ファイバを含む。 In a preferred embodiment, each of the first scattered light removal optical system and the second scattered light removal optical system includes a single mode optical fiber.
 ある好ましい実施形態において、前記第1の散乱光除去光学系のシングルモード光ファイバと前記第2の散乱光除去光学系のシングルモード光ファイバとは、互いに同じ光学特性を有する。 In a preferred embodiment, the single mode optical fiber of the first scattered light removal optical system and the single mode optical fiber of the second scattered light removal optical system have the same optical characteristics.
 ある好ましい実施形態において、光マイクロホンは、前記伝搬媒質部の入射部に設けられ、前記音響信号を集束させる集音部をさらに備える。 In a preferred embodiment, the optical microphone further includes a sound collecting unit that is provided at an incident portion of the propagation medium unit and focuses the acoustic signal.
 ある好ましい実施形態において、前記ナノ多孔体はシリカ乾燥ゲルである。 In a preferred embodiment, the nanoporous material is a silica dry gel.
 ある好ましい実施形態において、前記第1の散乱光除去光学系は、少なくとも1つの集束レンズをさらに含み、前記集束レンズの焦点が、シングルモード光ファイバの端面のコア上に位置している。 In a preferred embodiment, the first scattered light removing optical system further includes at least one focusing lens, and the focal point of the focusing lens is located on the core of the end face of the single mode optical fiber.
 ある好ましい実施形態において、光マイクロホンは前記光検出器からの出力を受け取り、ホモダイン検波によって前記出力から前記音響信号に対応する受信信号を生成する信号処理部をさらに備える。 In a preferred embodiment, the optical microphone further includes a signal processing unit that receives an output from the photodetector and generates a reception signal corresponding to the acoustic signal from the output by homodyne detection.
 ある好ましい実施形態において、光マイクロホンは基準ビート信号生成部と位相比較部とをさらに備え、前記光源は、互いに異なる周波数の2つの直線偏波光を出射し、前記基準ビート信号生成部は前記2つの直線偏波光に基づき、基準ビート信号を生成し、前記位相比較部は、前記光検出器からの出力と前記基準ビート信号とを用いてヘテロダイン検波によって前記音響信号に対応する受信信号を生成する信号処理部をさらに備える。 In a preferred embodiment, the optical microphone further includes a reference beat signal generation unit and a phase comparison unit, the light source emits two linearly polarized lights having different frequencies, and the reference beat signal generation unit includes the two A reference beat signal is generated based on linearly polarized light, and the phase comparison unit generates a reception signal corresponding to the acoustic signal by heterodyne detection using an output from the photodetector and the reference beat signal. A processing unit is further provided.
 ある好ましい実施形態において、前記2光束干渉計は、マッハツェンダー干渉計である。 In a preferred embodiment, the two-beam interferometer is a Mach-Zehnder interferometer.
 ある好ましい実施形態において、前記2光束干渉計は、マイケルソン干渉計である。 In a preferred embodiment, the two-beam interferometer is a Michelson interferometer.
 ある好ましい実施形態において、前記2光束干渉計は、フィゾー干渉計である。 In a preferred embodiment, the two-beam interferometer is a Fizeau interferometer.
 本発明の光マイクロホンによれば、検出すべき音響信号が伝搬する伝搬媒質の屈折率の時間変動を、測距型干渉計の一種である2光束干渉計を用いて、光学距離の時間変動として検出する。2光束干渉計は、比較的小型かつ低コストでありかつ構成が簡単であるため、光マイクロホンの構成を小型することができる。また、散乱光除去光学系を用い、伝搬媒質を透過することにより生じた散乱光を除去する。このため、検出器によって検出される光から非干渉成分が除去または抑制され、音響信号が伝搬することによって生じた光学距離の変動を単色光中の干渉成分として高い感度で検出することが可能となる。したがって、小型で高感度かつ、低コストの光マイクロホンが実現する。 According to the optical microphone of the present invention, the time variation of the refractive index of the propagation medium through which the acoustic signal to be detected propagates is determined as the time variation of the optical distance by using a two-beam interferometer which is a kind of distance measuring type interferometer. To detect. Since the two-beam interferometer is relatively small and low cost and has a simple configuration, the configuration of the optical microphone can be reduced. In addition, the scattered light removal optical system is used to remove the scattered light generated by passing through the propagation medium. For this reason, non-interfering components are removed or suppressed from the light detected by the detector, and fluctuations in the optical distance caused by the propagation of acoustic signals can be detected with high sensitivity as interference components in monochromatic light. Become. Therefore, a compact, high-sensitivity and low-cost optical microphone is realized.
本発明による光マイクロホンの第1の実施形態を示す概略構成図である。1 is a schematic configuration diagram showing a first embodiment of an optical microphone according to the present invention. 第1の実施形態における集音部を示す概略構成図である。It is a schematic block diagram which shows the sound collection part in 1st Embodiment. 第1の実施形態において、散乱光除去光学系2a、2bがないと仮定した場合において、光検出器7から得られる出力信号の時間変動を示すグラフである。6 is a graph showing temporal variation of an output signal obtained from the photodetector 7 when it is assumed that there is no scattered light removal optical system 2a, 2b in the first embodiment. 本発明による光マイクロホンの第2の実施形態を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment of the optical microphone by this invention. 本発明による光マイクロホンの第1の実施例を示す概略構成図である。It is a schematic block diagram which shows the 1st Example of the optical microphone by this invention. 第1の実施例における散乱光除去光学系2a、2bの機能を説明するための模式図である。It is a schematic diagram for demonstrating the function of the scattered light removal optical systems 2a and 2b in a 1st Example. 第1の実施例で用いた伝搬媒質部4の透過率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the transmittance | permeability of the propagation medium part 4 used in the 1st Example. 第1の実施例において、散乱光の除去効果を検証するための実験に用いた構成を説明する図である。It is a figure explaining the structure used for the experiment for verifying the removal effect of a scattered light in a 1st Example. 第1の実施例において、検出器で検出した受信信号の波形を示すグラフである。5 is a graph showing a waveform of a received signal detected by a detector in the first embodiment. 第1の実施例において、散乱光除去光学系を従来の開口絞りにかえた場合における散乱光の除去効果を検証するための実験に用いた構成を説明する図である。It is a figure explaining the structure used for the experiment for verifying the removal effect of the scattered light in the case where the scattered light removal optical system is replaced with a conventional aperture stop in the first embodiment. 本発明による光マイクロホンの第2の実施例を示す概略構成図である。It is a schematic block diagram which shows the 2nd Example of the optical microphone by this invention. 本発明による光マイクロホンの第3の実施例を示す概略構成図である。It is a schematic block diagram which shows the 3rd Example of the optical microphone by this invention. 本発明による光マイクロホンの第3の実施例の他の形態を示す概略構成図である。It is a schematic block diagram which shows the other form of the 3rd Example of the optical microphone by this invention. 本発明による光マイクロホンの第4の実施例を示す概略構成図である。It is a schematic block diagram which shows the 4th Example of the optical microphone by this invention. 本発明による光マイクロホンの第4の実施例の他の形態を示す概略構成図である。It is a schematic block diagram which shows the other form of the 4th Example of the optical microphone by this invention. 従来の光マイクロホンを示す概略構成図である。It is a schematic block diagram which shows the conventional optical microphone. 従来の走査型プローブ顕微鏡を示す概略装置構成図である。It is a schematic apparatus block diagram which shows the conventional scanning probe microscope. 従来の光学的マッチドフィルタを示す概略構成図である。It is a schematic block diagram which shows the conventional optical matched filter.
 本願発明者は、従来の光マイクロホンにおいて、レーザードップラー振動計に替わる測定方法を検討した。その結果、伝搬媒質の屈折率の時間変動をドップラーシフトとして計測するのではなく、伝搬媒質の光学距離の時間変動として計測するのであれば、簡単な構造からなる通常の測距型干渉計を用いることができることがわかった。このような通常の測距型干渉計には、マッハツェンダー干渉計、マイケルソン干渉計、フィゾー干渉計などの2光束干渉計などがある。また、干渉計の検波方式をホモダイン検波にすれば、光源に対して高い単色性が要求されないため、光源の小型化が可能であり、光マイクロホン全体をさらに小型化することが可能となる。 The inventor of the present application examined a measurement method in place of a laser Doppler vibrometer in a conventional optical microphone. As a result, if the time variation of the refractive index of the propagation medium is not measured as a Doppler shift but is measured as the time variation of the optical distance of the propagation medium, an ordinary distance measuring interferometer having a simple structure is used. I found out that I could do it. Examples of such a normal ranging interferometer include a two-beam interferometer such as a Mach-Zehnder interferometer, a Michelson interferometer, and a Fizeau interferometer. If the detection method of the interferometer is homodyne detection, high monochromaticity is not required for the light source, so the light source can be reduced in size and the entire optical microphone can be further reduced in size.
 しかし、本願発明者が、通常の2光束干渉計を用いて光マイクロホンの研究を行ったところ、伝搬媒質であるナノ多孔体を透過した光は多くの散乱光を含むことがわかった。透過光に散乱光が多く含まれると、散乱光は2光束干渉計において非干渉光成分となり、干渉光コントラストが大幅に低下する。このため、干渉計の測定感度が劣化し、光マイクロホンの感度が低下するという新たな課題が生じることがわかった。 However, when the present inventor conducted research on an optical microphone using a normal two-beam interferometer, it was found that the light transmitted through the nanoporous material as a propagation medium contains a lot of scattered light. When a lot of scattered light is included in the transmitted light, the scattered light becomes a non-interfering light component in the two-beam interferometer, and the interference light contrast is greatly reduced. For this reason, it has been found that a new problem arises that the measurement sensitivity of the interferometer deteriorates and the sensitivity of the optical microphone decreases.
 この課題を解決するため、本願発明者は、特許文献1に開示された光マイクロホンにおいて、通常の測距型干渉計を検出手段として用い、ナノ多孔体142からの透過光中に含まれる散乱光を除去することを検討した。 In order to solve this problem, the inventor of the present application uses an ordinary distance-measuring interferometer as detection means in the optical microphone disclosed in Patent Document 1, and the scattered light contained in the transmitted light from the nanoporous body 142. It was considered to remove.
 散乱光を除去する従来の手段としては、例えば、特許文献3に開示された装置に用いられている散乱光除去手段が知られている。図17は、特許文献3に開示された走査型プローブ顕微鏡の概略装置構成図である。走査型プローブ顕微鏡は、試料153とカンチレバー152との相互作用(例えば、原子間力)により生じるカンチレバー152の撓み量を光学的に計測することにより、試料153の形状を観測する。カンチレバーの撓み量測定用光源151からレーザー光線をカンチレバー152に照射し、カンチレバー152からの反射光を受光手段156で捉えることにより計測は行われる。なお、計測は、光てこや、ホモダイン方式やヘテロダイン方式の測距型干渉計により行われる。 As conventional means for removing scattered light, for example, scattered light removal means used in the apparatus disclosed in Patent Document 3 is known. FIG. 17 is a schematic configuration diagram of a scanning probe microscope disclosed in Patent Document 3. The scanning probe microscope observes the shape of the sample 153 by optically measuring the amount of bending of the cantilever 152 caused by the interaction (for example, atomic force) between the sample 153 and the cantilever 152. Measurement is performed by irradiating the cantilever 152 with a laser beam from the light source 151 for measuring the amount of bending of the cantilever and capturing the reflected light from the cantilever 152 with the light receiving means 156. The measurement is performed using an optical lever, a homodyne type, or a heterodyne type ranging interferometer.
 受光手段156で捕らえられる光線には、カンチレバー152からの反射光以外に、試料153からの散乱光が含まれる。後者は、カンチレバー152の撓み量を含まず測定精度を悪化させるので、それを減じるために散乱光除去手段155が設けられている。図17での散乱光除去手段155は微小な開口を持った遮光板である。散乱光除去手段155には、カンチレバー152からの反射光のみ、開口を通過するように開口が設定されているため、散乱光は受光手段156に到達しない。このため、測定精度の悪化を防ぐことができる。 The light beam captured by the light receiving means 156 includes scattered light from the sample 153 in addition to the reflected light from the cantilever 152. Since the latter does not include the amount of bending of the cantilever 152 and deteriorates the measurement accuracy, the scattered light removing means 155 is provided to reduce it. The scattered light removing means 155 in FIG. 17 is a light shielding plate having a minute opening. Since the scattered light removing unit 155 is set so that only the reflected light from the cantilever 152 passes through the opening, the scattered light does not reach the light receiving unit 156. For this reason, deterioration of measurement accuracy can be prevented.
 また、散乱光を除去する他の従来手段として、非特許文献1に開示されている光学的マッチドフィルタを用いることが考えられる。図18は、非特許文献1に開示された光学的マッチドフィルタの概略光学系構成図である。レンズ162とレンズ164は同一焦点距離fを有し、光軸上の互いに距離2fだけ離れた位置に配置される。図18に示すように、レンズ162、及び、レンズ164から距離fだけ離れた3つの面を、以下、入力面161、フーリエ変換面163、出力面165と呼ぶ。 Also, as another conventional means for removing scattered light, it is conceivable to use an optical matched filter disclosed in Non-Patent Document 1. FIG. 18 is a schematic optical system configuration diagram of the optical matched filter disclosed in Non-Patent Document 1. The lens 162 and the lens 164 have the same focal length f, and are disposed at positions separated from each other by a distance 2f on the optical axis. As shown in FIG. 18, the three surfaces that are separated from the lens 162 and the lens 164 by a distance f are hereinafter referred to as an input surface 161, a Fourier transform surface 163, and an output surface 165.
 入力面161上の、単色光166による平面像をGで表す。平面像Gの具体例として、入力面161上にネガフィルムを置いて、裏面から単色光で照明する装置構成がある。平面像Gはレンズ162の作用により、フーリエ変換面163上で2次元フーリエ変換された像F[G]に変換される(F[α]は、αの2次元フーリエ変換像を表す)。そして、フーリエ変換面163上でのF[G]は、レンズ164の作用により、出力面165上で2次元フーリエ変換された像F[F[G]]に変換される。しなしながら、フーリエ変換の2回繰り返しはフーリエ変換をしないことと同等であるから(F[F[G]]=G)、出力面165上では元の像Gが再現される。 A plane image of the monochromatic light 166 on the input surface 161 is represented by G. As a specific example of the planar image G, there is an apparatus configuration in which a negative film is placed on the input surface 161 and illuminated with monochromatic light from the back surface. The planar image G is converted into an image F [G] that is two-dimensionally Fourier-transformed on the Fourier transform plane 163 by the action of the lens 162 (F [α] represents a two-dimensional Fourier transform image of α). Then, F [G] on the Fourier transform plane 163 is converted into an image F [F [G]] that has been two-dimensionally Fourier transformed on the output plane 165 by the action of the lens 164. However, since two iterations of Fourier transform are equivalent to not performing Fourier transform (F [F [G]] = G), the original image G is reproduced on the output surface 165.
 図18の光学系において、フーリエ変換面163上に、位相遅延量と透過率に面内分布を持ったフィルタ、すなわち空間フィルタを挿入する。なお、空間フィルタの位相遅延量と透過率の面内分布をF[H]とする。この時、出力面165で再現される像はGとHのコンボリューションとなる。 18 In the optical system of FIG. 18, a filter having an in-plane distribution in phase delay amount and transmittance, that is, a spatial filter, is inserted on the Fourier transform plane 163. It is assumed that the in-plane distribution of the phase delay amount and transmittance of the spatial filter is F [H]. At this time, the image reproduced on the output surface 165 is a convolution of G and H.
 ここで、上述のコンボリューションとは次のように定義される。2次元(x,y)で定義された関数G(x,y),H(x,y)のコンボリューションG*H(x,y)とは、
 (式1) G*H(x,y) = ∫dp dq G(p,q) H(x-p,y-q)
のことである。なお、コンボリューションG*H(x,y)が大きな値を持つ時、GとHは相関が高いと呼ばれる。
Here, the above convolution is defined as follows. The convolution G * H (x, y) of the function G (x, y), H (x, y) defined in two dimensions (x, y) is
(Equation 1) G * H (x, y) = ∫dp dq G (p, q) H (xp, yq)
That is. When the convolution G * H (x, y) has a large value, G and H are called highly correlated.
 以上のことより、入力面161上で平面像Gに散乱光Sが重畳されている場合、空間フィルタとしてF[G]を用いれば、散乱光Sが減じられた像が出力面165に再生される。なぜならば、像Gの自己相関に比べ散乱光Sに対して像Gの相関が低いからである。 As described above, when the scattered light S is superimposed on the planar image G on the input surface 161, if F [G] is used as the spatial filter, the image with the scattered light S reduced is reproduced on the output surface 165. The This is because the correlation of the image G with respect to the scattered light S is lower than the autocorrelation of the image G.
 ナノ多孔体から通過した光束は、透過光(入射光と同一波面・振幅分布を有する光束)と散乱光(入射光と異なる波面・振幅分布を有する光束)より構成される。従って、透過光を上述のGとし、F[G]の位相遅延量と透過率の面内分布を持つ空間フィルタをフーリエ変換面163に挿入すれば、出力面2005上では散乱光Sの減じられた光束となる。 The light beam that has passed through the nanoporous material is composed of transmitted light (light beam having the same wavefront and amplitude distribution as the incident light) and scattered light (light beam having a wavefront and amplitude distribution different from the incident light). Therefore, if the transmitted light is G and the spatial filter having the in-plane distribution of the phase delay amount and transmittance of F [G] is inserted into the Fourier transform surface 163, the scattered light S is reduced on the output surface 2005. Light flux.
 以上のように、光学的マッチドフィルタも光マイクロホンの散乱光除去手段として適用することができると考えられる。 As described above, it is considered that an optical matched filter can also be applied as a means for removing scattered light from an optical microphone.
 しかし、ナノ多孔体142を用いた光マイクロホンにおいて、ナノ多孔体142からの散乱光は、透過光近傍に高い強度で存在する。このため、特許文献3に開示された散乱光除去手段155をナノ多孔体142からの散乱光の除去に用いる場合、透過光光束径に比べ散乱光除去手段155の開口が大きければ、高強度の散乱光が透過光に混入する。また、開口径を小さくすると、透過光強度自体が弱くなり、音響信号の検出感度が低下する。 However, in the optical microphone using the nanoporous body 142, the scattered light from the nanoporous body 142 exists with high intensity in the vicinity of the transmitted light. For this reason, when the scattered light removing means 155 disclosed in Patent Document 3 is used for removing scattered light from the nanoporous body 142, if the opening of the scattered light removing means 155 is larger than the diameter of the transmitted light beam, high intensity is obtained. Scattered light is mixed into the transmitted light. Further, when the aperture diameter is reduced, the transmitted light intensity itself is weakened and the detection sensitivity of the acoustic signal is lowered.
 したがって、特許文献1に開示された光マイクロホンにおいて、レーザードップラー振動計148の替わりに、従来の測距型干渉計を用い、特許文献3に開示された散乱光除去手段155を用いても、ナノ多孔体142で生成される散乱光を効果的に除去することが困難である。したがって、光マイクロホンの小型化と高感度化を両立できない。 Therefore, in the optical microphone disclosed in Patent Document 1, instead of the laser Doppler vibrometer 148, a conventional distance-measuring interferometer is used, and the scattered light removing means 155 disclosed in Patent Document 3 is used. It is difficult to effectively remove the scattered light generated by the porous body 142. Therefore, it is impossible to achieve both miniaturization and high sensitivity of the optical microphone.
 非特許文献1の光学的マッチドフィルタは、特許文献1に開示された光マイクロホンにおいて、ナノ多孔体142の散乱光を効果的に除去できると考えられる。しかしながら、図18に示される構成を備えた光学的マッチドフィルタを光マイクロホンへの追加する必要がある。また、高精度に位相遅延量と透過率の面内分布が制御された空間フィルタを用意したり、光束に対して高精度に空間フィルタの位置を調整する必要がある。このため、光マイクロホンの小型化と低コスト化が困難である。 It is considered that the optical matched filter of Non-Patent Document 1 can effectively remove the scattered light of the nanoporous body 142 in the optical microphone disclosed in Patent Document 1. However, an optical matched filter having the configuration shown in FIG. 18 needs to be added to the optical microphone. In addition, it is necessary to prepare a spatial filter in which the in-plane distribution of the phase delay amount and the transmittance is controlled with high accuracy, and to adjust the position of the spatial filter with respect to the light beam with high accuracy. For this reason, it is difficult to reduce the size and cost of the optical microphone.
 本願発明者はこのような検討結果に基づき、ナノ多孔体を透過した光から、特許文献3および非特許文献1に開示された散乱光除去手段以外の構成を用いて散乱光を除去することによって、通常の測距型干渉計を用い、高感度で小型かつ低コストの光マイクロホンを実現することができることを見出した。以下、本発明による光マイクロホンの実施形態を説明する。 Based on such examination results, the inventor of the present application removes the scattered light from the light transmitted through the nanoporous body by using a configuration other than the scattered light removing means disclosed in Patent Document 3 and Non-Patent Document 1. The present inventors have found that a high-sensitivity, small-sized and low-cost optical microphone can be realized by using a normal ranging interferometer. Embodiments of an optical microphone according to the present invention will be described below.
(第1の実施形態)
 本発明による光マイクロホンの第1の実施形態を説明する。図1は、本実施形態の光マイクロホン201の構成を概略的に示している。図1に示すように、光マイクロホン201は、単色光光源1と、散乱光除去光学系(第1の散乱光除去光学系)2aと、散乱光除去光学系(第2の散乱光除去光学系)2bと、2光束干渉計3と、伝搬媒質部4と、集音部5と、光検出器7と、信号処理部8とを備えている。
(First embodiment)
A first embodiment of an optical microphone according to the present invention will be described. FIG. 1 schematically shows a configuration of an optical microphone 201 of the present embodiment. As shown in FIG. 1, the optical microphone 201 includes a monochromatic light source 1, a scattered light removal optical system (first scattered light removal optical system) 2a, and a scattered light removal optical system (second scattered light removal optical system). ) 2b, a two-beam interferometer 3, a propagation medium unit 4, a sound collecting unit 5, a photodetector 7, and a signal processing unit 8.
 単色光光源1は単色光10を出射する。単色光10はコヒーレントな光線、つまり、運動量と位相のそろった光線であることが好ましい。測定の原理上、単色光の波長に特に制限はなく、可視領域、赤外領域および紫外領域のいずれの波長領域の光であってもよい。ただし、光マイクロホン201における光学系の調整という観点では、光束の確認が容易な可視領域の光を出射する単色光光源1を用いることが好ましい。 The monochromatic light source 1 emits monochromatic light 10. The monochromatic light 10 is preferably a coherent light beam, that is, a light beam having a momentum and a phase. There is no particular limitation on the wavelength of monochromatic light on the principle of measurement, and light in any wavelength region of the visible region, infrared region, and ultraviolet region may be used. However, from the viewpoint of adjusting the optical system in the optical microphone 201, it is preferable to use the monochromatic light source 1 that emits light in the visible region where the light beam can be easily confirmed.
 単色光光源1は、半導体レーザーであってもよいし、固体レーザーやガスレーザーであってもよい。ただし、光マイクロホン201全体の外形を小さくするためには、半導体レーザーを用いることが好ましい。 The monochromatic light source 1 may be a semiconductor laser, a solid laser, or a gas laser. However, it is preferable to use a semiconductor laser in order to reduce the overall outer shape of the optical microphone 201.
 2光束干渉計3は、単色光光源1から出射した単色光10を2つの光束に分割し、分割された2つの光束をそれぞれ互いに異なる2つの経路で伝搬させた後、分割された2つの光束を互い重畳し、重畳した光を出射する。このために、2光束干渉計3は、例えば、光線分割素子17a、17bと光線反射素子18a、18bとを含む。なお、ここで「分割」とは、光束を2つの光束に分けることを広く意味し、光束がその光軸と平行な平面によって2分割される場合のみを意味するのではない。 The two-beam interferometer 3 divides the monochromatic light 10 emitted from the monochromatic light source 1 into two light beams, propagates the two divided light beams through two different paths, and then splits the two light beams. Are superimposed on each other, and the superimposed light is emitted. For this purpose, the two-beam interferometer 3 includes, for example, light beam splitting elements 17a and 17b and light beam reflecting elements 18a and 18b. Here, “dividing” means broadly dividing the light beam into two light beams, and does not mean only when the light beam is divided into two by a plane parallel to the optical axis.
 本実施形態では、2光束干渉計3としてマッハツェンダー干渉計を例にとり説明する。以下の実施例で述べるように、2光束干渉計3としてはマイケルソン干渉計(トワイマン・グリーン干渉計を含む)やフィゾー干渉計等の、他の光学系構成の2光束干渉計を用いてもよい。このような2光束干渉計も比較的小型で簡単な構成を備えているため、小型かつ高感度な光マイクロホンを低コストで実現できる。 In the present embodiment, a Mach-Zehnder interferometer will be described as an example of the two-beam interferometer 3. As described in the following embodiments, the two-beam interferometer 3 may be a two-beam interferometer having another optical system configuration such as a Michelson interferometer (including a Twyman Green interferometer) or a Fizeau interferometer. Good. Since such a two-beam interferometer is also relatively small and has a simple configuration, a small and highly sensitive optical microphone can be realized at low cost.
 光線分割素子17aは、例えば、半透鏡である。半透鏡の反射面の法線と単色光10の進行方向とのなす角が135°となるように、光線分割素子17aを配置することにより、単色光10は、光線分割素子17aによって透過光および反射光の2つの光束に分割される。分割された2つの光束の強度が厳密に一致している必要はない。なお、望ましくは、後述の「コントラスト」とよばれるパラメータが最大となるよう、2つの光束の強度を選択する。 The light beam splitting element 17a is, for example, a semi-transparent mirror. By arranging the light beam splitting element 17a so that the angle formed by the normal line of the reflecting surface of the semi-transparent mirror and the traveling direction of the monochromatic light beam 10 is 135 °, the monochromatic light beam 10 is transmitted by the light beam splitting element 17a. The reflected light is divided into two light fluxes. The intensities of the two divided light beams do not need to be exactly the same. Desirably, the intensities of the two light beams are selected so that a parameter called “contrast” described later is maximized.
 光線分割素子17aとして、半透鏡の替わりに偏光ビームスプリッタを用いてもよい。この場合、偏光ビームスプリッタへ入射する単色光10が、無偏光光、偏向ビームスプリッタの偏光軸(P偏光方向、あるいは、S偏光方向)に対して0度ではない所定の角度を有する偏波面を持った直線偏光、または、円偏光など偏波面方向が時間的に変化している光であれば、偏光ビームスプリッタにおいて反射光と透過光とが生成される。偏光ビームスプリッタを光線分割素子17aに用いる場合、分割された反射光と透過光とは互いに直交した偏波面を持つ。 As the beam splitting element 17a, a polarization beam splitter may be used instead of the semi-transparent mirror. In this case, the monochromatic light 10 incident on the polarization beam splitter has non-polarized light and a polarization plane having a predetermined angle which is not 0 degrees with respect to the polarization axis (P polarization direction or S polarization direction) of the deflection beam splitter. If the polarization plane direction is a temporally changing light such as linearly polarized light or circularly polarized light, reflected light and transmitted light are generated in the polarization beam splitter. When the polarization beam splitter is used for the light beam splitting element 17a, the divided reflected light and transmitted light have polarization planes orthogonal to each other.
 図1に示すように、分割された2つの光束は、互いに異なる2つの経路に沿って伝搬する。具体的には、2つの光束は、参照経路11およびプローブ経路12を伝搬する。その後、光線分割素子17bにおいて、2つの光束は重畳し、出力端16から重畳した光が出射する。2つの経路のうちの一方であるプローブ経路12には、伝搬媒質部4が配置される。以下において詳細に説明するように、伝搬媒質部4はナノ多孔体を含む。音響信号6がプローブ経路12と交差するように伝搬媒質部4を伝搬すると、音響信号6は、伝搬媒質部4のナノ多孔体を進行する疎密波に変換される。このため、ナノ多孔体の密度が変化し、音響信号6に応じたナノ多孔体の屈折率の時間変動が生じる。したがって、プローブ経路12の光路長が変化する。その結果、プローブ経路12を経由した光の位相は、音響信号6に応じた時間変動をしている。 As shown in FIG. 1, the two divided light beams propagate along two different paths. Specifically, the two light beams propagate through the reference path 11 and the probe path 12. Thereafter, in the light beam splitting element 17b, the two light beams are superposed, and the superposed light is emitted from the output end 16. The propagation medium unit 4 is disposed in the probe path 12 which is one of the two paths. As will be described in detail below, the propagation medium portion 4 includes a nanoporous material. When the acoustic signal 6 propagates through the propagation medium part 4 so as to intersect the probe path 12, the acoustic signal 6 is converted into a dense wave that travels through the nanoporous body of the propagation medium part 4. For this reason, the density of the nanoporous material changes, and the time variation of the refractive index of the nanoporous material according to the acoustic signal 6 occurs. Therefore, the optical path length of the probe path 12 changes. As a result, the phase of the light passing through the probe path 12 varies with time according to the acoustic signal 6.
 光線分割素子17bは、参照経路11を経由した光束とプローブ経路12を経由した光束が良好に干渉するように、2つの経路が調整されている。ここで、「良好に干渉」とは、2光束の断面が完全に重なり合うとともに、2光束の波面が一致することを言う。図1の場合、このような調整は光線分割素子17a、17bと光線反射素子18a、18bの角度調整により実現することができる。 The light splitting element 17b has two paths adjusted so that the light beam passing through the reference path 11 and the light beam passing through the probe path 12 interfere well. Here, “good interference” means that the cross sections of the two light beams are completely overlapped and the wave fronts of the two light beams are coincident. In the case of FIG. 1, such adjustment can be realized by adjusting the angles of the light beam splitting elements 17a and 17b and the light beam reflecting elements 18a and 18b.
 伝搬媒質部4は、音響信号6が入射する入射部を有し、上述したようにナノ多孔体を含む。ナノ多孔体は、好ましくは、単色光10を透過させる固体の伝搬媒質であり、空気よりも小さい音速を有する。具体的には、ナノ多孔体の音速は、空気の音速である340m/secより小さい。一般に、音速の小さい材料は密度も比較的小さいため、空気などの環境流体とナノ多孔体との境界における反射が小さくなり、比較的高い効率で音響波を伝搬媒質部4に取り込むことができる。 The propagation medium part 4 has an incident part on which the acoustic signal 6 is incident, and includes a nanoporous material as described above. The nanoporous material is preferably a solid propagation medium that transmits the monochromatic light 10 and has a sound velocity smaller than that of air. Specifically, the sound velocity of the nanoporous material is smaller than 340 m / sec, which is the sound velocity of air. In general, since a material with a low sound velocity has a relatively low density, reflection at the boundary between an environmental fluid such as air and the nanoporous material is small, and an acoustic wave can be taken into the propagation medium unit 4 with relatively high efficiency.
 ナノ多孔体は、具体的には、無機酸化合物または有機高分子の乾燥ゲルである。好ましくは、ナノ多孔体はシリカを主成分とする乾燥ゲルである。ナノ多孔体は、直径数nmから数10nmのシリカ粒子が無秩序に3次元的に結合した構造を備えている。また、シリカ乾燥ゲル中の音速は、概ね50m/sec以上150m/sec以下であり、上で述べたように空気中の音速も小さい。シリカ乾燥ゲルの密度は、概ね50kg/m3以上200kg/m3以下である。 Specifically, the nanoporous material is a dry gel of an inorganic acid compound or an organic polymer. Preferably, the nanoporous material is a dry gel mainly composed of silica. The nanoporous body has a structure in which silica particles having a diameter of several nm to several tens of nm are randomly and three-dimensionally bonded. Moreover, the sound velocity in the silica dry gel is approximately 50 m / sec or more and 150 m / sec or less, and the sound velocity in the air is small as described above. The density of the silica dry gel is approximately 50 kg / m 3 or more and 200 kg / m 3 or less.
 可視光(波長400nm~800nm)の波長に対して、シリカ粒子および結合構造の大きさが無視できないため、ナノ多孔体を透過する可視光は、ナノ多孔体によるレイリー散乱を受ける。従って、ナノ多孔体を通過した光束には、透過光(入射光と同一波面・振幅分布を有する光束)以外に、強い散乱光(入射光と異なる波面・振幅分布を有する光束)が含まれる。レイリー散乱の強度は散乱体の大きさに対する依存性が高く、散乱体の大きさの6乗に比例し、光波長の4乗に反比例する。 Since the size of the silica particles and the bonding structure cannot be ignored with respect to the wavelength of visible light (wavelength 400 nm to 800 nm), visible light that passes through the nanoporous body is subjected to Rayleigh scattering by the nanoporous body. Therefore, the light flux that has passed through the nanoporous material includes strong scattered light (light flux having a wavefront / amplitude distribution different from that of incident light) in addition to transmitted light (light flux having the same wavefront / amplitude distribution as incident light). The intensity of Rayleigh scattering is highly dependent on the size of the scatterer, and is proportional to the sixth power of the size of the scatterer and inversely proportional to the fourth power of the light wavelength.
 したがって、ナノ多孔体で生じる散乱光の強度を低減するためには、レイリー散乱を抑制することが考えられる。そのためには、単色光10として長波長の光を用いるか、ナノ多孔体中のシリカ粒子、および、シリカ粒子の結合構造の大きさを小さくすればよい。しかし、散乱光の強度を十分に低減するためには、赤外光のような可視領域より波長の短い光を用いる必要がある。この場合、光マイクロホンにおける光学系を調整する際に単色光10が視認できず、光路の調整が困難となる。また、ナノ多孔体中のシリカ粒子、および、シリカ粒子の結合構造の大きさを小さくする場合、良好な音響特性、特に、音速が空気よりも遅いという特性を有し、かつ、シリカ粒子や結合構造が小さいナノ多孔体を新たに開発する必要がある。 Therefore, it is conceivable to suppress Rayleigh scattering in order to reduce the intensity of scattered light generated in the nanoporous material. For that purpose, long wavelength light may be used as the monochromatic light 10, or the size of the silica particles in the nanoporous material and the bonding structure of the silica particles may be reduced. However, in order to sufficiently reduce the intensity of scattered light, it is necessary to use light having a shorter wavelength than the visible region, such as infrared light. In this case, when adjusting the optical system in the optical microphone, the monochromatic light 10 cannot be visually recognized, and it becomes difficult to adjust the optical path. In addition, when the size of the silica particles in the nanoporous material and the bonded structure of the silica particles is reduced, it has good acoustic characteristics, particularly that the sound velocity is slower than that of air, and the silica particles and bonding It is necessary to develop a new nanoporous material with a small structure.
 これに対して、本実施形態の光マイクロホン201によれば、以下において、詳細に説明するように、散乱光除去光学系2aおよび散乱光除去光学系2bを備えているため、散乱光を多く含む単色光10を用いても、また、高強度の散乱光を生成するナノ多孔体を用いても、散乱光による感度の低下を招くことがない。 On the other hand, according to the optical microphone 201 of the present embodiment, as will be described in detail below, since it includes the scattered light removal optical system 2a and the scattered light removal optical system 2b, it contains a lot of scattered light. Even if the monochromatic light 10 is used or a nanoporous material that generates high-intensity scattered light is used, the sensitivity is not lowered by the scattered light.
 本実施形態の光マイクロホン201において、音響信号6は、伝搬媒質部4の入射部へどのような導入方法および装置構成を用いて入射させてもよい。しかし、伝搬媒質部4のナノ多孔体中の音圧をナノ多孔体の屈折率変化として捕らえるため、音響信号6は、粗密波(縦波)として伝搬するように、ナノ多孔体に入射させる必要がある。また、伝搬媒質部4と伝搬媒質部4の周囲の環境流体、つまり、空気との界面における反射を小さくし、できるだけ高い効率で音響信号6を伝搬媒質部4に入射させる必要がある。このため、光マイクロホン201は集音部5を備えていることが好ましい。 In the optical microphone 201 of the present embodiment, the acoustic signal 6 may be incident on the incident portion of the propagation medium unit 4 using any introduction method and device configuration. However, in order to capture the sound pressure in the nanoporous body of the propagation medium portion 4 as a change in the refractive index of the nanoporous body, the acoustic signal 6 needs to be incident on the nanoporous body so as to propagate as a dense wave (longitudinal wave). There is. Further, it is necessary to reduce the reflection at the interface between the propagation medium section 4 and the environmental fluid around the propagation medium section 4, that is, the air, and to make the acoustic signal 6 enter the propagation medium section 4 with the highest possible efficiency. For this reason, the optical microphone 201 preferably includes the sound collection unit 5.
 一般に、ポアソン比が正確にゼロでない物質中(ナノ多孔体も含まれる)では、縦波と横波が混成する。このため、音響信号の入力により主に横波が生成されたとしても、若干の縦波(粗密波)が生じ、本発明の光マイクロホンで測定可能である。しかし、直接縦波を観測する場合に比べて、この場合の検出感度は低くなる。したがって、音響信号6を高感度で検出するために、プローブ経路12において伝搬媒質部4中で通過する領域において、音響信号6により生成される伝搬媒質部4中の密度変動積分値が最大となるよう集音部5と伝搬媒質部4を構成することが望ましい。 In general, in a substance whose Poisson's ratio is not exactly zero (including nanoporous materials), longitudinal waves and transverse waves are mixed. For this reason, even if a transverse wave is mainly generated by the input of an acoustic signal, a slight longitudinal wave (coherent wave) is generated and can be measured by the optical microphone of the present invention. However, the detection sensitivity in this case is lower than when directly observing longitudinal waves. Therefore, in order to detect the acoustic signal 6 with high sensitivity, the density fluctuation integrated value in the propagation medium section 4 generated by the acoustic signal 6 is maximized in the region passing through the propagation medium section 4 in the probe path 12. It is desirable to configure the sound collecting unit 5 and the propagation medium unit 4 as described above.
 図2は、本実施形態の光マイクロホン201に用いることのできる集音部5の一例の構成を示している。図2に示すように、集音部5は、ホーン1801と、音響導波路1802と、伝搬媒質部4とを含む。空気中を伝搬してきた音響信号6(空気中の粗密波)は、ホーン1801により音響導波路1802を進行する平面波(空気中の粗密波)に変換され、音響レンズ1803に向かって伝搬する。音響レンズ1803は、屈折面1804を有し、上述したナノ多孔体から構成されている。好ましくは、残響を抑制するための無反射終端1806が伝搬媒質部4の端部に設けられている。屈折面1804は、伝搬媒質部4に入射した音響信号6が焦点1805へ向かって屈折するように構成されている。つまり、伝搬媒質部4に設けられた屈折面1804が音響レンズとして機能する。 FIG. 2 shows an example of the configuration of the sound collection unit 5 that can be used in the optical microphone 201 of the present embodiment. As shown in FIG. 2, the sound collection unit 5 includes a horn 1801, an acoustic waveguide 1802, and a propagation medium unit 4. The acoustic signal 6 that has propagated in the air (the dense wave in the air) is converted into a plane wave (the dense wave in the air) that travels through the acoustic waveguide 1802 by the horn 1801 and propagates toward the acoustic lens 1803. The acoustic lens 1803 has a refractive surface 1804 and is composed of the above-described nanoporous material. Preferably, a non-reflective terminal 1806 for suppressing reverberation is provided at the end of the propagation medium section 4. The refracting surface 1804 is configured such that the acoustic signal 6 incident on the propagation medium unit 4 is refracted toward the focal point 1805. That is, the refractive surface 1804 provided in the propagation medium unit 4 functions as an acoustic lens.
 音響導波路1802を伝搬した音響信号6は、屈折面1804において屈折し、伝搬媒質部4中を伝搬する球面波に変換される。このとき、屈折面1804における横波の生成が抑制され、高い効率で縦波に変換される。このため、音響信号6の検出感度が好適に高められる。 The acoustic signal 6 propagated through the acoustic waveguide 1802 is refracted at the refracting surface 1804 and converted into a spherical wave propagating through the propagation medium section 4. At this time, generation of a transverse wave on the refracting surface 1804 is suppressed, and the wave is converted into a longitudinal wave with high efficiency. For this reason, the detection sensitivity of the acoustic signal 6 is preferably increased.
 伝搬媒質部4に入射した音響信号6は、屈折面1804における屈折によって、焦点1805に集束するように伝搬媒質部4を伝搬する。焦点1805において、音響信号6が全て同相で集中し、高い音圧集中状態が得られる。したがって、焦点1805での伝搬媒質部4の密度変動振幅は大きくなり、屈折率変動の振幅も非常に大きくなる。そこで、プローブ経路12に沿って伝搬する単色光10aが焦点1805近傍の領域を包含するように光路を配置すれば、伝搬媒質部4を通過した単色光10は、伝搬媒質部4を伝搬する音響信号6と交差し、屈折率変動に応じた大きな位相変動を受ける。このため、高感度な音響信号受信が可能となる。 The acoustic signal 6 incident on the propagation medium unit 4 propagates through the propagation medium unit 4 so as to be focused on the focal point 1805 by refraction at the refracting surface 1804. At the focal point 1805, the acoustic signals 6 are all concentrated in the same phase, and a high sound pressure concentration state is obtained. Therefore, the density fluctuation amplitude of the propagation medium unit 4 at the focal point 1805 becomes large, and the amplitude of the refractive index fluctuation becomes very large. Therefore, if the optical path is arranged so that the monochromatic light 10a propagating along the probe path 12 includes a region in the vicinity of the focal point 1805, the monochromatic light 10 that has passed through the propagation medium section 4 is transmitted through the propagation medium section 4. Crosses signal 6 and undergoes large phase variations in response to refractive index variations. For this reason, highly sensitive acoustic signal reception becomes possible.
 ただし、単色光10の光路は、焦点1805を包含するようにいくらでも大きくとればよいわけではない。焦点1805近傍の結像の様子を波動光学の観点から詳細に見れば、音圧の分布は、音圧が同相収束しているエアリーディスクと、それを取り囲むように存在する複数の回折環(この領域においても音圧集中が存在する)とから構成されている。回折環においても音圧は集中した状態にあるが、エアリーディスクと異なる位相で音響信号が集中している。このため、レーザー光147の光路がエアリーディスクの領域と回折環の領域を含むと、位相のずれによって音響信号が弱められる。したがって、レーザー光147の光路は、エアリーディスクのみを包含するように配置することが好ましい。 However, the optical path of the monochromatic light 10 does not have to be as large as possible so as to include the focal point 1805. If the state of image formation near the focal point 1805 is viewed in detail from the viewpoint of wave optics, the distribution of sound pressure is the Airy disk in which the sound pressure converges in phase, and a plurality of diffraction rings that surround it (this Sound pressure concentration also exists in the area). The sound pressure is also concentrated in the diffraction ring, but the acoustic signals are concentrated at a phase different from that of the Airy disk. For this reason, if the optical path of the laser beam 147 includes the Airy disc region and the diffraction ring region, the acoustic signal is weakened due to a phase shift. Therefore, the optical path of the laser beam 147 is preferably arranged so as to include only the Airy disk.
 次に、散乱光除去光学系2a、2bの機能について説明する。単色光光源1から出射した単色光10は、散乱光除去光学系2bにより、散乱光が除去され、平面波のみが濾波される。コントラストと呼ばれるパラメータを大きくするほど2光束干渉計3の測定感度は向上する。一般に、2光束干渉計では、1つの光束を等しい光強度を有する2光束に分解し、各々の光束が異なる経路を経た後、再び1光束となるよう2光束が重ね合わせられる。2つの経路の光路長差に応じて、重畳された1光束の光強度は変動する。ここで光路長差とは、経路の物理的長さに媒質の屈折率を乗じた値である。この光強度変動において、無変動光強度(=(光強度最大値-光強度最小値)/2)に対する光強度変動振幅(=(光強度最大値+光強度最小値)/2)の大きさをコントラストと呼ぶ。2光束が完全に干渉した場合、光強度最小値=0となりコントラスト=1となるが、2光束が全く干渉していない場合は、光強度最小値=光強度最大値となりコントラスト=0となる。このように、コントラスト=1の時に2光束干渉計の測定感度は極大となる。 Next, functions of the scattered light removing optical systems 2a and 2b will be described. From the monochromatic light 10 emitted from the monochromatic light source 1, the scattered light is removed by the scattered light removing optical system 2b, and only the plane wave is filtered. As the parameter called contrast is increased, the measurement sensitivity of the two-beam interferometer 3 is improved. In general, in a two-beam interferometer, one light beam is decomposed into two light beams having the same light intensity, and the two light beams are superposed so that each light beam passes through different paths and becomes one light beam again. Depending on the optical path length difference between the two paths, the light intensity of one superimposed light beam varies. Here, the optical path length difference is a value obtained by multiplying the physical length of the path by the refractive index of the medium. In this light intensity fluctuation, the magnitude of the light intensity fluctuation amplitude (= (light intensity maximum value + light intensity minimum value) / 2) with respect to the unchanged light intensity (= (light intensity maximum value−light intensity minimum value) / 2). Is called contrast. When the two light beams interfere completely, the light intensity minimum value = 0 and the contrast = 1, but when the two light beams do not interfere at all, the light intensity minimum value = the light intensity maximum value and the contrast = 0. As described above, when the contrast = 1, the measurement sensitivity of the two-beam interferometer is maximized.
 したがって、光マイクロホン201の2光束干渉計3において、コントラスト=1を実現するためには、等しい強度に分割された2つの光束が“完全に”干渉することが必要である。干渉は、周波数(エネルギー)と伝搬方向(運動量)が完全に一致する光子間にのみ生じる現象である。したがって、コントラスト=1の実現のためには、2光束は全く同一周波数と伝搬方向を持った光子でなければならない。このような光子群の状態を波動光学的に見れば、コントラスト=1の実現のためには、2光束が1光束に重畳された状況において、位相のそろった平面波であることが必要である。図1の装置構成を参照して具体的に説明すると、単色光10が光線分割素子17aに入射する直前において平面波であり、かつ、参照経路11とプローブ経路12の各々を経た光束が出力端16においても平面波であるとき、2光束干渉計3の測定感度は最大となる。 Therefore, in order to achieve contrast = 1 in the two-beam interferometer 3 of the optical microphone 201, it is necessary that the two light beams divided into equal intensities interfere completely. Interference is a phenomenon that occurs only between photons whose frequency (energy) and propagation direction (momentum) are completely identical. Therefore, in order to realize the contrast = 1, the two light beams must be photons having exactly the same frequency and propagation direction. If the state of such a photon group is viewed in terms of wave optics, in order to achieve contrast = 1, it is necessary that the two light beams are plane waves having the same phase in a situation where two light beams are superimposed on one light beam. More specifically, referring to the apparatus configuration of FIG. 1, the monochromatic light 10 is a plane wave immediately before entering the light beam splitting element 17a, and the light flux that has passed through each of the reference path 11 and the probe path 12 is the output end 16. In the case of a plane wave, the measurement sensitivity of the two-beam interferometer 3 is maximized.
 しかしながら、一般に単色光光源1から出射された単色光10は平面波ではない。また、たとえ単色光光源1から出射された単色光10が平面波であっても、光散乱性媒質である伝搬媒質部4を単色光10が通過した時点で平面波ではなくなる。このため、コントラストは低下し、2光束干渉計3の測定感度は理想的な値よりも劣化する。光マイクロホン201は、この劣化を最小限に抑えるために、散乱光除去光学系2aおよび2bを備えている。 However, in general, the monochromatic light 10 emitted from the monochromatic light source 1 is not a plane wave. Even if the monochromatic light 10 emitted from the monochromatic light source 1 is a plane wave, the monochromatic light 10 is no longer a plane wave when the monochromatic light 10 passes through the propagation medium portion 4 which is a light scattering medium. For this reason, the contrast is lowered, and the measurement sensitivity of the two-beam interferometer 3 is deteriorated from an ideal value. The optical microphone 201 includes scattered light removal optical systems 2a and 2b in order to minimize this deterioration.
 図1に示すように、散乱光除去光学系2bが単色光に含まれる散乱光を除去し、光線分割素子17aに入射直前の波面の平坦性高める。また、散乱光除去光学系2aが、伝搬媒質部4のナノ多孔体により生じた散乱光を除去し、出力端16での光束の波面の平坦性を高める。例えば、単色光光源1として半導体レーザーを用いる場合、半導体レーザーからの出射光は平面波でないため、2光束干渉計3による測定感度を向上させるために散乱光除去光学系2bが必要である。 As shown in FIG. 1, the scattered light removal optical system 2b removes the scattered light contained in the monochromatic light, and improves the flatness of the wavefront just before entering the light beam splitting element 17a. Further, the scattered light removal optical system 2 a removes the scattered light generated by the nanoporous body of the propagation medium portion 4 and improves the flatness of the wavefront of the light flux at the output end 16. For example, when a semiconductor laser is used as the monochromatic light source 1, since the emitted light from the semiconductor laser is not a plane wave, the scattered light removing optical system 2 b is necessary to improve the measurement sensitivity of the two-beam interferometer 3.
 散乱光除去光学系2b、2bは、単色光10に含まれている伝搬方向が光軸方向と平行ではない散乱光成分を除去する。このような機能を有する種々の光学素子や光学系を散乱光除去光学系2a、2bとして用いることができる。例えば、シングルモード光ファイバは、単一のモードの光しか伝搬できないため、散乱光を除去する散乱光除去光学系2b、2bを好適に用いることができる。このほか、偏波面保持光ファイバなども用いることができる。 The scattered light removing optical systems 2b and 2b remove scattered light components whose propagation direction is not parallel to the optical axis direction, which is included in the monochromatic light 10. Various optical elements and optical systems having such functions can be used as the scattered light removing optical systems 2a and 2b. For example, since a single mode optical fiber can only propagate light of a single mode, the scattered light removing optical systems 2b and 2b that remove scattered light can be suitably used. In addition, a polarization-maintaining optical fiber can also be used.
 2光束干渉計3の測定感度の観点から、散乱光除去光学系2bから出射される光束断面における完全な平面からの波面ずれは、単色光10の波長換算で1波長未満であることが好ましい。 From the viewpoint of measurement sensitivity of the two-beam interferometer 3, the wavefront deviation from a complete plane in the cross section of the light beam emitted from the scattered light removal optical system 2 b is preferably less than one wavelength in terms of the wavelength of the monochromatic light 10.
 散乱光除去光学系2aも散乱光学系2bと同じ光学系構造を備えており、シングルモード光ファイバであることが最も好ましい。また、2光束干渉計3の測定感度の観点から、散乱光除去光学系2aから出射される光束断面における完全な平面からの波面ずれは、単色光10の波長換算で1波長未満であることが好ましい。 The scattered light removal optical system 2a is also provided with the same optical system structure as the scattering optical system 2b, and is most preferably a single mode optical fiber. From the viewpoint of measurement sensitivity of the two-beam interferometer 3, the wavefront deviation from a complete plane in the section of the light beam emitted from the scattered light removal optical system 2 a may be less than one wavelength in terms of the wavelength of the monochromatic light 10. preferable.
 上述した構成により、2光束干渉計3から高いコントラストを有した干渉光が出射される。このため、高い感度で音響信号6を検出することが可能となる。2光束干渉計3から出射する光を光検出器7によって電気信号に変換し、信号処理部8を用いてホモダイン検波を行うことにより、音響信号6を受信信号9として検出することができる。 With the above-described configuration, interference light having high contrast is emitted from the two-beam interferometer 3. For this reason, it becomes possible to detect the acoustic signal 6 with high sensitivity. The light emitted from the two-beam interferometer 3 is converted into an electrical signal by the photodetector 7, and homodyne detection is performed using the signal processing unit 8, whereby the acoustic signal 6 can be detected as the reception signal 9.
 図3は、散乱光除去光学系2aおよび散乱光除去光学系2bがないと仮定した時の光検出器7からの出力信号の時間変動を表したグラフである。ホモダイン検波は、伝搬媒質部4中の屈折率変動によって生じる参照経路11とプローブ経路12との光路長差の時間変動を、干渉光強度の時間変動として捉える検出方式である。したがって、散乱光除去光学系2aおよび散乱光除去光学系2bがない場合、光検出器7からの出力信号には音響信号を含む干渉成分以外に、音響信号を含まない非干渉信号が含まれる。 FIG. 3 is a graph showing the time variation of the output signal from the photodetector 7 when it is assumed that there is no scattered light removal optical system 2a and no scattered light removal optical system 2b. The homodyne detection is a detection method that captures the time variation of the optical path length difference between the reference path 11 and the probe path 12 caused by the refractive index variation in the propagation medium unit 4 as the time variation of the interference light intensity. Therefore, when the scattered light removal optical system 2a and the scattered light removal optical system 2b are not provided, the output signal from the photodetector 7 includes a non-interference signal that does not include an acoustic signal in addition to an interference component that includes the acoustic signal.
 信号処理部8は、DCカットフィルタ13および増幅器14を含み、光検出器7からの出力信号からDCカットフィルタ13により直流成分が除去された後、増幅器14で増幅され、音響信号6が受信信号9として生成する。 The signal processing unit 8 includes a DC cut filter 13 and an amplifier 14, and after the DC component is removed by the DC cut filter 13 from the output signal from the photodetector 7, the signal is amplified by the amplifier 14 and the acoustic signal 6 is received. 9 is generated.
 ノイズ低減を目的として、単色光光源1は、出力が安定化された光源が用いられる。よって、単色光光源1の出力光強度は時間的に一定であり、図3の信号最大値はほぼ一定となる。このため、増幅器14の利得が時間的に一定であれば、受信信号9の振幅は、図3の信号最大値に対する干渉成分の比に比例する。したがって、散乱光除去光学系2aおよび散乱光除去光学系2bがなければ、非干渉成分が増大し、得られる受信信号9の振幅が小さくなる。つまり、音響信号6の受信感度が悪くなる。 For the purpose of noise reduction, the monochromatic light source 1 is a light source whose output is stabilized. Therefore, the output light intensity of the monochromatic light source 1 is constant over time, and the maximum signal value in FIG. 3 is substantially constant. Therefore, if the gain of the amplifier 14 is constant over time, the amplitude of the received signal 9 is proportional to the ratio of the interference component to the maximum signal value in FIG. Therefore, without the scattered light removal optical system 2a and the scattered light removal optical system 2b, the non-interference component increases, and the amplitude of the received signal 9 obtained decreases. That is, the reception sensitivity of the acoustic signal 6 is deteriorated.
 これに対し、散乱光除去光学系2aおよび散乱光除去光学系2bを用いて、散乱光成分、つまり、非干渉成分を、光検出器7に入射する光束から除外しておくことによって、大きな振幅の受信信号9が得られ、ノイズに対する音響信号9の振幅比(S/N比)も大きくなる。したがって、受信感度の高い光マイクロホン201が実現する。 On the other hand, by using the scattered light removing optical system 2a and the scattered light removing optical system 2b, the scattered light component, that is, the non-interference component is excluded from the light beam incident on the photodetector 7, thereby increasing the amplitude. The received signal 9 is obtained, and the amplitude ratio (S / N ratio) of the acoustic signal 9 to noise is also increased. Therefore, the optical microphone 201 with high reception sensitivity is realized.
 このように、本実施形態の光マイクロホンによれば、検出すべき音響信号が伝搬するナノ多孔体の屈折率の時間変動を、測距型干渉計の一種である2光束干渉計を用いて、光学距離の変動として検出する。2光束干渉計は、比較的小型でありかつ構成が簡単であるため、光マイクロホンの構成を小型することができる。また、散乱光除去光学系を用い、計測に用いる単色光が伝搬媒質を透過することにより生じた散乱光を除去する。このため、検出器によって検出される光から非干渉成分が除去または抑制され、音響信号が伝搬することによって生じた光学距離の変動を単色光中の干渉成分として高い感度で検出することが可能となる。したがって、小型で、高感度の光マイクロホンが実現する。 As described above, according to the optical microphone of the present embodiment, the time variation of the refractive index of the nanoporous material through which the acoustic signal to be detected is propagated using a two-beam interferometer that is a kind of distance measuring interferometer, It is detected as a change in optical distance. Since the two-beam interferometer is relatively small and has a simple configuration, the configuration of the optical microphone can be reduced. Further, the scattered light removal optical system is used to remove the scattered light generated when the monochromatic light used for measurement passes through the propagation medium. For this reason, non-interfering components are removed or suppressed from the light detected by the detector, and fluctuations in the optical distance caused by the propagation of acoustic signals can be detected with high sensitivity as interference components in monochromatic light. Become. Therefore, a small and highly sensitive optical microphone is realized.
(第2の実施形態)
 本発明による光マイクロホンの第2の実施形態を説明する。図4は、本実施形態の光マイクロホン202の構成を概略的に示している。図4において、第1の実施形態と同じ構成要素または対応する構成要素には同じ参照符号を付している。光マイクロホン202は、2周波光源1703と、散乱光除去光学系2aと、散乱光除去光学系2bと、2光束干渉計3と、伝搬媒質部4と、光検出器7と、無偏光ビームスプリッタ1712と、位相比較部1705と、偏光板1706と、基準ビート信号生成部1711とを備えている。
(Second Embodiment)
A second embodiment of the optical microphone according to the present invention will be described. FIG. 4 schematically shows the configuration of the optical microphone 202 of the present embodiment. In FIG. 4, the same reference numerals are assigned to the same or corresponding components as those in the first embodiment. The optical microphone 202 includes a two-frequency light source 1703, a scattered light removing optical system 2a, a scattered light removing optical system 2b, a two-beam interferometer 3, a propagation medium unit 4, a photodetector 7, and a non-polarizing beam splitter. 1712, a phase comparison unit 1705, a polarizing plate 1706, and a reference beat signal generation unit 1711.
 光マイクロホン202はヘテロダイン検波によって音響信号6を検出する点で第1の実施形態と異なっている。このために、光マイクロホン202では、第1の実施形態の光マイクロホン201の単色光光源1が2周波光源1703に変更されており、基準ビート信号生成部1711をさらに備えている。 The optical microphone 202 is different from the first embodiment in that the acoustic signal 6 is detected by heterodyne detection. Therefore, in the optical microphone 202, the monochromatic light source 1 of the optical microphone 201 of the first embodiment is changed to a dual-frequency light source 1703, and further includes a reference beat signal generation unit 1711.
 2周波光源1703は、互いに直交した偏波面を有する2つの直線偏波光からなる2周波光1704を生成する。図4においては、直線偏波光の1つの偏波面が図4の紙面に対して平行であり、他の偏波面は図4の紙面に対し垂直となるように光軸に対する2周波光源1703の角度が調整されている。 The dual-frequency light source 1703 generates dual-frequency light 1704 composed of two linearly polarized light having mutually orthogonal polarization planes. In FIG. 4, the angle of the dual frequency light source 1703 with respect to the optical axis is such that one polarization plane of linearly polarized light is parallel to the plane of FIG. 4 and the other plane of polarization is perpendicular to the plane of FIG. Has been adjusted.
 2つの直線偏波光は互いに異なる周波数を持つ単色光であり、ここでは2つの直線偏波光間の周波数差をΔfと表記する。このような特徴を有する2周波光源1703として、例えば、2周波ゼーマンレーザーを用いることができる。また、直線偏波単色光を2分割し、その両方ないしは片方の直線偏波単色光に対して、音響光学素子を用いて2つの直線偏波単色光間の周波数差がΔfとなるよう周波数変化を与え、その後、2つの直線偏波単色光の偏波面が直交するように直線偏波単色光を重畳する光源光学系を用いてもよい。 The two linearly polarized lights are monochromatic lights having different frequencies, and here, the frequency difference between the two linearly polarized lights is expressed as Δf. As the dual-frequency light source 1703 having such characteristics, for example, a dual-frequency Zeeman laser can be used. In addition, the linearly polarized monochromatic light is divided into two parts, and both or one of the linearly polarized monochromatic lights is changed in frequency so that the frequency difference between the two linearly polarized monochromatic lights is Δf using an acoustooptic device. Then, a light source optical system that superimposes linearly polarized monochromatic light so that the polarization planes of the two linearly polarized monochromatic light are orthogonal to each other may be used.
 2周波光源1703から出射した2周波光1704は無偏光ビームスプリッタによって分割され、一部は、基準ビート信号生成部1711へ導かれ、残りは散乱光除去光学系2bへ導かれる。基準ビート信号生成部1711は、偏光板1710および光検出器1707を含む。偏光板1710は図4の紙面に対して45°の角度をなす偏光軸を有しており、基準ビート信号生成部1711に入射した2周波光1704は、偏光板1710を透過することにより、2周波光1704中の2つの直線偏波単色光が共通の偏波面を持つようになり、互いに干渉する。このようにして生成された干渉光は、周波数Δfで正弦的に強度が変化するビート光となる。このビート光は光検出器1707により電気信号に変換され、基準ビート信号1708が生成する。 The two-frequency light 1704 emitted from the two-frequency light source 1703 is divided by the non-polarizing beam splitter, a part thereof is guided to the reference beat signal generation unit 1711, and the rest is guided to the scattered light removing optical system 2b. The reference beat signal generation unit 1711 includes a polarizing plate 1710 and a photodetector 1707. The polarizing plate 1710 has a polarization axis that forms an angle of 45 ° with respect to the paper surface of FIG. 4, and the two-frequency light 1704 that has entered the reference beat signal generation unit 1711 passes through the polarizing plate 1710, so that 2 The two linearly polarized monochromatic lights in the frequency light 1704 have a common plane of polarization and interfere with each other. The interference light generated in this way becomes beat light whose intensity changes sinusoidally at the frequency Δf. This beat light is converted into an electric signal by the photodetector 1707, and a reference beat signal 1708 is generated.
 無偏光ビームスプリッタ1712を透過した2周波光1704は、散乱光除去光学系2bを通過後に偏光ビームスプリッタ1701により偏波面方向に応じて分割される。図4の紙面に対して平行な偏波面を持った直線偏波単色光(P偏光光)は、伝搬媒質部4方向に向かい、図4の紙面に対して垂直な偏波面を持った直線偏波単色光(S偏光光)は光線反射素子18b方向に反射される。第1の実施形態で説明したように、音響信号6が伝搬している伝搬媒質部4をP偏光光が透過する際、伝搬媒質部4中に生成される屈折率変化に応じた位相変化を受ける。 The two-frequency light 1704 transmitted through the non-polarizing beam splitter 1712 is split by the polarizing beam splitter 1701 in accordance with the polarization plane direction after passing through the scattered light removing optical system 2b. The linearly polarized monochromatic light (P-polarized light) having a polarization plane parallel to the paper surface of FIG. 4 is directed toward the propagation medium section 4 and has a polarization plane perpendicular to the paper surface of FIG. Wave monochromatic light (S-polarized light) is reflected in the direction of the light reflecting element 18b. As described in the first embodiment, when the P-polarized light is transmitted through the propagation medium unit 4 in which the acoustic signal 6 is propagating, the phase change corresponding to the refractive index change generated in the propagation medium unit 4 is generated. receive.
 S偏光光とP偏光光は無偏光ビームスプリッタ1702で重畳される。しかし、互いの偏波面は直交しているため、この時点では干渉光を生成しない。このため、基準ビート信号生成部1711と同様に、図4の紙面に対して45°の角度をなす偏光軸を有した偏光板1706を通過させ、両偏光光の偏波面を一致させることにより干渉光を生成する。この干渉光も周波数Δfで正弦的に強度が変化するビート光となるが、伝搬媒質部4中に生成される屈折率変化に応じた位相変化を持っている点が基準ビート信号1708と異なる。 S-polarized light and P-polarized light are superimposed by a non-polarizing beam splitter 1702. However, since the planes of polarization are orthogonal to each other, no interference light is generated at this point. For this reason, similarly to the reference beat signal generation unit 1711, interference is caused by passing through a polarizing plate 1706 having a polarization axis that forms an angle of 45 ° with respect to the paper surface of FIG. Produce light. This interference light also becomes beat light whose intensity changes sinusoidally at the frequency Δf, but is different from the reference beat signal 1708 in that it has a phase change corresponding to the refractive index change generated in the propagation medium section 4.
 第1の実施形態と同様、散乱光除去光学系2aによって、このビート光から散乱光が除去され、光検出器7で検出される。これにより、プローブビート信号1709が生成する。 As in the first embodiment, the scattered light is removed from the beat light by the scattered light removing optical system 2 a and detected by the photodetector 7. As a result, a probe beat signal 1709 is generated.
 位相比較部1705は、基準ビート信号1708を用いてプローブビート信号1709をヘテロダイン検波する。具体的には、基準ビート信号1708の位相を基準とし、プローブビート信号1709の位相変化を抽出し、受信信号9を出力する。この位相変化は、音響信号6による屈折率変化に応じた位相変化である。従って、音響信号6が受信信号9として検出される。 The phase comparator 1705 heterodyne-detects the probe beat signal 1709 using the reference beat signal 1708. Specifically, the phase change of the probe beat signal 1709 is extracted with the phase of the reference beat signal 1708 as a reference, and the reception signal 9 is output. This phase change is a phase change corresponding to the refractive index change caused by the acoustic signal 6. Therefore, the acoustic signal 6 is detected as the received signal 9.
 理想的には基準ビート信号1708およびプローブビート信号1709は、時間的に変化のない直流信号と周波数Δfの正弦信号の和で構成される信号波形を有している。また、ヘテロダイン検波は位相比較される2つの信号(基準ビート信号1708とプローブビート信号1709)の直流信号の大きさと正弦信号の振幅によらず、2つの信号間の位相差を抽出する機能を有する。したがって、本実施形態のヘテロダイン検波方式による光マイクロホン202は、直流信号の大きさおよび正弦信号の振幅の変動によらず、常に一定の音響信号6に対する検出感度を与えるという利点がある。 Ideally, the reference beat signal 1708 and the probe beat signal 1709 have a signal waveform constituted by the sum of a DC signal that does not change with time and a sine signal having a frequency Δf. Heterodyne detection has a function of extracting a phase difference between two signals regardless of the magnitude of the DC signal and the amplitude of the sine signal of the two signals (reference beat signal 1708 and probe beat signal 1709) to be phase-compared. . Therefore, the optical microphone 202 based on the heterodyne detection system of this embodiment has an advantage that it always gives a detection sensitivity to a constant acoustic signal 6 regardless of fluctuations in the magnitude of the DC signal and the amplitude of the sine signal.
 しかし、実際には、2周波光源1703の出力変動や、外部振動による2光束干渉計3の干渉アライメント変動が生じるため、上述の直流信号の大きさおよび正弦信号の振幅は時間的に変動し得る。この時間的変動が周波数Δfを持つ正弦波の時間的変動に含まれている場合、基準ビート信号1708およびプローブビート信号1709には、ビート光からの周波数Δfの正弦波以外に同一周波数の他の正弦波が含まれることになる。その結果、他の正弦波は、周波数Δfの正弦波の位相変化を引き起こす。この位相変化は音響信号6によらない時間変動であるため、受信信号9においてノイズとなって出現する。 However, since the output fluctuation of the two-frequency light source 1703 and the interference alignment fluctuation of the two-beam interferometer 3 due to external vibration actually occur, the magnitude of the DC signal and the amplitude of the sine signal can fluctuate with time. . When this temporal variation is included in the temporal variation of the sine wave having the frequency Δf, the reference beat signal 1708 and the probe beat signal 1709 include other than the sine wave having the frequency Δf from the beat light. A sine wave will be included. As a result, the other sine wave causes a phase change of the sine wave of frequency Δf. Since this phase change is a time variation that does not depend on the acoustic signal 6, it appears as noise in the received signal 9.
 したがって、このようなノイズを低減するためには、基準ビート信号1708およびプローブビート信号1709に含まれる直流信号成分を小さくすればよい。第1の実施形態で説明したように、基準ビート信号1708およびプローブビート信号1709に含まれる直流信号は主に散乱光強度に依存している。このため、散乱光除去光学系2a、2bにより散乱光を高い効率で除去することにより、受信信号9に含まれるノイズを低減することができ、S/N比の高い光マイクロホンを実現することができる。 Therefore, in order to reduce such noise, the DC signal component included in the reference beat signal 1708 and the probe beat signal 1709 may be reduced. As described in the first embodiment, the DC signals included in the reference beat signal 1708 and the probe beat signal 1709 mainly depend on the scattered light intensity. For this reason, by removing scattered light with high efficiency by the scattered light removing optical systems 2a and 2b, noise included in the received signal 9 can be reduced, and an optical microphone having a high S / N ratio can be realized. it can.
 このように、本実施形態の光マイクロホンも第1の実施系形態と同様、検出すべき音響信号がナノ多孔体の屈折率の時間変動を、比較的小型でありかつ構成が簡単な2光束干渉計を用いて、光学距離の変動として検出することができる。また、散乱光除去光学系を用いることにより、ノイズの影響を抑制し、音響信号を高い感度で検出することが可能となる。したがって、小型で高感度の光マイクロホンが実現する。 As described above, in the optical microphone of this embodiment, as in the first embodiment, the acoustic signal to be detected is a two-beam interference that is relatively small in size and has a simple configuration because the acoustic signal to be detected changes the refractive index of the nanoporous material over time. It can be detected as a change in optical distance using a meter. Further, by using the scattered light removing optical system, it is possible to suppress the influence of noise and detect an acoustic signal with high sensitivity. Therefore, a small and highly sensitive optical microphone is realized.
 以下、本発明による光マイクロホンの第1の実施例を説明する。 Hereinafter, a first embodiment of the optical microphone according to the present invention will be described.
 図5は、本発明の具体的な実施例である光マイクロホン211の構成を示している。図5において、第1の実施形態と同じ構成要素には同じ参照符号を付している。 FIG. 5 shows the configuration of an optical microphone 211 that is a specific embodiment of the present invention. In FIG. 5, the same components as those in the first embodiment are denoted by the same reference numerals.
 図5に示すように光マイクロホン211は2光束干渉計として2つの反射鏡35a、35b、および、ビームスプリッタ34a、34bで構成されたマッハツェンダー干渉計36を備えている。また、散乱光除去光学系2aは光ファイバ33aとその両端に設けられた集束レンズ31a、32aを含む。同様に、散乱光除去光学系2bは光ファイバ33bとその両端に設けられた集束レンズ31b、32bを含む。 As shown in FIG. 5, the optical microphone 211 includes a Mach-Zehnder interferometer 36 constituted by two reflecting mirrors 35a and 35b and beam splitters 34a and 34b as a two-beam interferometer. The scattered light removing optical system 2a includes an optical fiber 33a and focusing lenses 31a and 32a provided at both ends thereof. Similarly, the scattered light removal optical system 2b includes an optical fiber 33b and focusing lenses 31b and 32b provided at both ends thereof.
 光ファイバ33a、33bはそれぞれ、所定の波長の単色光10をシングルモードで伝搬させるシングルモード光ファイバであり、散乱光除去光学系2a、2bがマッハツェンダー干渉計36に対して鏡像対称な光学系を構成している。具体的には、光ファイバ33aと光ファイバ33bとは同一の光学特性を有している。ここで、光ファイバ33aおよび光ファイバ33bの光学特性が同一であるとは、例えば、光軸に垂直な断面において、幾何学的に同一形状、かつ同一屈折率分布を有し、更に、集束レンズ31aと集束レンズ31bに対向する端面が同一端面形状をなしていることをいう。同様に、集束レンズ31aと集束レンズ31bとは同一の光学特性を有している。ここで、集束レンズ31aおよび集束レンズ31bの光学特性が同一であるとは、例えば、同一入射光に対し、像面上に形成される光の強度・位相分布が等しいことをいう。ただし、集束レンズ32aと集束レンズ32bとは同一の光学特性を持たなくても良い。この場合、受信感度の向上という伝搬媒質部4で発生する散乱光除去の効果の観点、ならびに、光学系の組立の容易さおよび調整に要するコストの観点に優れる光マイクロホンが実現できる。 Each of the optical fibers 33a and 33b is a single mode optical fiber that propagates the monochromatic light 10 having a predetermined wavelength in a single mode, and the scattered light removing optical systems 2a and 2b are mirror-symmetrical optical systems with respect to the Mach-Zehnder interferometer 36. Is configured. Specifically, the optical fiber 33a and the optical fiber 33b have the same optical characteristics. Here, the optical characteristics of the optical fiber 33a and the optical fiber 33b are the same, for example, the cross section perpendicular to the optical axis has the same geometric shape and the same refractive index distribution, and the focusing lens. This means that the end faces facing 31a and the converging lens 31b have the same end face shape. Similarly, the focusing lens 31a and the focusing lens 31b have the same optical characteristics. Here, the optical characteristics of the focusing lens 31a and the focusing lens 31b being the same means, for example, that the intensity and phase distribution of the light formed on the image plane are the same for the same incident light. However, the focusing lens 32a and the focusing lens 32b may not have the same optical characteristics. In this case, it is possible to realize an optical microphone that is excellent in terms of the effect of removing scattered light generated in the propagation medium unit 4 to improve reception sensitivity, and in terms of the ease of assembling and adjusting the optical system.
 集束レンズ32bとしては単色光10を光ファイバ33bに効率よく結合するものが好ましい。このようなレンズとしては、例えば、GRINレンズ(屈折率分布レンズ)や顕微鏡対物レンズなどの、単色光10の波長において結像特性の優れた短焦点レンズが好適に用いられる。小型で高感度の光マイクロホンを実現するために、小出力の単色光光源1を用いながら、可能な限り高強度の光束を伝搬媒質部4に照射することができるよう、集束レンズ32bの開口数NAは光ファイバ33bの開口数NA以下であることが好ましい。単色光10が光ファイバ33bに入射し、光ファイバ22を伝搬する際、単色光に含まれる散乱光は、光ファイバ33bに結合できず、また、光ファイバ33b内を伝搬できない。このため、光ファイバ33bを伝搬することによって、単色光10中の散乱光が除去される。 The focusing lens 32b is preferably one that efficiently couples the monochromatic light 10 to the optical fiber 33b. As such a lens, for example, a short focus lens having excellent imaging characteristics at the wavelength of the monochromatic light 10 such as a GRIN lens (refractive index distribution lens) or a microscope objective lens is preferably used. In order to realize a small and highly sensitive optical microphone, the numerical aperture of the converging lens 32b can be used to irradiate the propagation medium section 4 with a light beam with the highest possible intensity while using the small output monochromatic light source 1. NA is preferably equal to or less than the numerical aperture NA of the optical fiber 33b. When the monochromatic light 10 enters the optical fiber 33b and propagates through the optical fiber 22, the scattered light included in the monochromatic light cannot be coupled to the optical fiber 33b and cannot propagate through the optical fiber 33b. For this reason, the scattered light in the monochromatic light 10 is removed by propagating through the optical fiber 33b.
 集束レンズ31a、31bは、良好な波面を持った平行光束(ガウス光束)を光ファイバ33a、33bにそれぞれ良好に結合させることができるものが好ましい。このようなレンズとしては、使用波長で最適化された専用のGRINレンズや非球面レンズなどの集束レンズが適している。光ファイバコネクタを介して集束レンズに接続しさえすれば光ファイバ端面とレンズの焦点位置とを正確に一致させることが可能な光学素子が市販されており、そのような光学素子を好適に用いることができる。 The focusing lenses 31a and 31b are preferably those capable of satisfactorily coupling a parallel light beam (Gaussian light beam) having a good wavefront to the optical fibers 33a and 33b, respectively. As such a lens, a focusing lens such as a dedicated GRIN lens or an aspherical lens optimized for the wavelength used is suitable. As long as it is connected to the focusing lens via an optical fiber connector, an optical element that can accurately match the end face of the optical fiber and the focal position of the lens is commercially available, and such an optical element is preferably used. Can do.
 このように構成された散乱光除去光学系2a、2bが、伝搬媒質部4で発生する散乱光を極めて効果的に抑制できる理由を、図6を参照しながら説明する。集束レンズ31bの焦点は、光ファイバ33bのコアに一致している。そのため、収束レンズ31bにより、光ファイバ中の単色光601は平行な光束である可干渉光φ0に変換される。光ファイバ33aと集束レンズ31aの構成は、光ファイバ33bと集束レンズ31bの構成と同一であるので、集束レンズ31aにより可干渉光φ0は光ファイバ33a端面のコアに集光される。 The reason why the scattered light removing optical systems 2a and 2b configured as described above can extremely effectively suppress the scattered light generated in the propagation medium unit 4 will be described with reference to FIG. The focal point of the focusing lens 31b coincides with the core of the optical fiber 33b. For this reason, the monochromatic light 601 in the optical fiber is converted into coherent light φ 0 which is a parallel light beam by the converging lens 31b. The structure of the optical fiber 33a and the focusing lens 31a, since the optical fiber 33b is the same as that of the focusing lens 31b, coherent light phi 0 through focusing lens 31a is collected on the core of the optical fiber 33a end face.
 シングルモード光ファイバ中を伝搬する単色光は、定まった強度・位相分布(正確には電磁界分布)を持っている。その強度・位相分布は、シングルモード光ファイバの構成(屈折率分布)と単色光波長から一意に決定される。このことより、逆に、定まった強度・位相分布を持たない単色光は、シングルモード光ファイバ中を伝搬することはできない。ナノ多孔体4が無い場合、集束レンズ31a、31bにより、光ファイバ33bの端面に形成される光ファイバ中の単色光601の強度・位相分布の像が、光ファイバ33aの端面に投影される。図6の構成において、この像は、光ファイバ33bの端面に形成される光ファイバ中の単色光601の強度・位相分布に等しい。また、この像は、光ファイバ33aを伝搬可能な単色光が光ファイバ33aの端面に形成する強度・位相分布に正確に一致する。このため、光ファイバ33bを伝搬する単色光601は、可干渉光φ0となり、100%に近い効率で光ファイバ33aに導入される。 Monochromatic light propagating through a single mode optical fiber has a fixed intensity / phase distribution (more precisely, an electromagnetic field distribution). The intensity / phase distribution is uniquely determined from the configuration of the single mode optical fiber (refractive index distribution) and the monochromatic light wavelength. On the contrary, monochromatic light having no fixed intensity / phase distribution cannot propagate through the single mode optical fiber. When the nanoporous body 4 is not present, the intensity / phase distribution image of the monochromatic light 601 in the optical fiber formed on the end face of the optical fiber 33b is projected onto the end face of the optical fiber 33a by the focusing lenses 31a and 31b. In the configuration of FIG. 6, this image is equal to the intensity / phase distribution of the monochromatic light 601 in the optical fiber formed on the end face of the optical fiber 33b. In addition, this image exactly matches the intensity / phase distribution formed on the end face of the optical fiber 33a by monochromatic light that can propagate through the optical fiber 33a. For this reason, the monochromatic light 601 propagating through the optical fiber 33b becomes coherent light φ 0 and is introduced into the optical fiber 33a with an efficiency close to 100%.
 図6において、次に、ナノ多孔体4が挿入された場合について述べる。上述したように、ナノ多孔体4は散乱光Σφi(和はi≠0のiについてとる)を生成する。散乱光とは、入射光と異なる強度・位相分布を持つ光のことである。収束レンズ31aは、ナノ多孔体4からの透過光とナノ多孔体4で生成された散乱光Σφiの像を、光ファイバ33aの端面上に形成する。散乱光Σφiの像は光ファイバ33aを伝搬可能な単色光が光ファイバ33aの端面に形成する強度・位相分布に一致しないため、光ファイバ33aに導入されない。しかしながら、透過光は可干渉光φ0に等しいため、高効率で光ファイバ33aに導入される。したがって、光ファイバ中の単色光602中には、ナノ多孔体4で生成された散乱光は含まれず、可干渉光φ0のみが含まれる。以上が、散乱光除去光学系2a、2bが、伝搬媒質部4で発生する散乱光を極めて効果的に抑制できる理由である。 Next, a case where the nanoporous body 4 is inserted will be described with reference to FIG. As described above, the nanoporous body 4 generates scattered light Σφ i (the sum is taken for i of i ≠ 0). Scattered light is light having an intensity / phase distribution different from incident light. Converging lens 31a is an image of the transmitted light and nanoporous 4 scattered light Sigma] [phi i generated by from nanoporous 4 is formed on the end face of the optical fiber 33a. The image of the scattered light Σφ i is not introduced into the optical fiber 33a because the monochromatic light that can propagate through the optical fiber 33a does not match the intensity / phase distribution formed on the end face of the optical fiber 33a. However, since the transmitted light is equal to the coherent light φ 0 , it is introduced into the optical fiber 33a with high efficiency. Therefore, the monochromatic light 602 in the optical fiber does not include the scattered light generated by the nanoporous body 4 and includes only the coherent light φ 0 . The above is the reason why the scattered light removing optical systems 2a and 2b can extremely effectively suppress the scattered light generated in the propagation medium section 4.
 図6には示していないが、単色光10を散乱光除去光学系2bに導入する場合、集光光学系などの付加光学系を介して単色光10を、光ファイバ33bの向かって左側端面から入射させることが好ましい。このとき、付加光学系光によって、光ファイバ33bの左側端面上に生成される単色光10の電磁界分布は、光ファイバ33bを伝搬可能な光の電磁界分布とは正確には一致しない。このため、光ファイバ33bを伝搬可能な光の電磁界分布の成分のみが受動的に選別され、他の成分は光ファイバ33bの左側端面で散乱、および反射される。このように、散乱光除去光学系2bは単色光10の電磁界分布を所望の電磁界分布(波面と強度分布)に「整形」する光学系として機能する。散乱光除去光学系2bのこの機能により、伝搬媒質部4へ入射する光の電磁界分布を純粋にし、モードフィルタとしての濾波性能が高められる。 Although not shown in FIG. 6, when introducing the monochromatic light 10 into the scattered light removing optical system 2b, the monochromatic light 10 is transmitted from the left end face toward the optical fiber 33b via an additional optical system such as a condensing optical system. It is preferable to make it enter. At this time, the electromagnetic field distribution of the monochromatic light 10 generated on the left end face of the optical fiber 33b by the additional optical system light does not exactly match the electromagnetic field distribution of the light that can propagate through the optical fiber 33b. For this reason, only the component of the electromagnetic field distribution of light that can propagate through the optical fiber 33b is passively selected, and the other components are scattered and reflected by the left end face of the optical fiber 33b. Thus, the scattered light removal optical system 2b functions as an optical system that “shapes” the electromagnetic field distribution of the monochromatic light 10 into a desired electromagnetic field distribution (wavefront and intensity distribution). With this function of the scattered light removing optical system 2b, the electromagnetic field distribution of light incident on the propagation medium section 4 is purified, and the filtering performance as a mode filter is enhanced.
 次に、図6に示す構成を有する散乱光除去光学系2a、2bによる具体的な散乱光除去効ついて実験を行った結果を説明する。図5に示す光マイクロホン211を作製し、散乱光除去光学系2a、2bとして図6に示す構成を用いた。単色光光源1としてHe-Neレーザー(波長約633nm)を用いた。 Next, the results of experiments on the specific scattered light removal effect by the scattered light removal optical systems 2a and 2b having the configuration shown in FIG. 6 will be described. The optical microphone 211 shown in FIG. 5 was produced, and the configuration shown in FIG. 6 was used as the scattered light removing optical systems 2a and 2b. A He—Ne laser (wavelength: about 633 nm) was used as the monochromatic light source 1.
 図7は、光マイクロホン211に使用した伝搬媒質部4の透過率の波長依存性を示している。透過率は積分球によって測定した。図7からわかるように、レイリー散乱により引き起こされる透過率の低下は800nmで急に顕著になりはじめる。したがって、可視光域においてはナノ多孔体からの散乱光強度が大きく、典型的な光散乱性媒質である。 FIG. 7 shows the wavelength dependence of the transmittance of the propagation medium unit 4 used in the optical microphone 211. The transmittance was measured with an integrating sphere. As can be seen from FIG. 7, the decrease in transmittance caused by Rayleigh scattering begins to become noticeable at 800 nm. Therefore, in the visible light region, the intensity of scattered light from the nanoporous material is large, which is a typical light scattering medium.
 実験に用いた伝搬媒質部4の厚さは5mmである。図7においては、3種類の異なる条件の下で作製された試料に対して透過率を測定した結果を示している。図7より、本実験で使用する伝搬媒質部4は単色光光源1が出射する約633nmの波長の単色光に対して、80%から90%の透光性を有することがわかる。 The thickness of the propagation medium part 4 used in the experiment is 5 mm. In FIG. 7, the result of having measured the transmittance | permeability with respect to the sample produced on three types of different conditions is shown. From FIG. 7, it can be seen that the propagation medium unit 4 used in this experiment has a translucency of 80% to 90% with respect to monochromatic light having a wavelength of about 633 nm emitted from the monochromatic light source 1.
 この結果からは、約633nmの波長の単色光は伝搬媒質部4をよく透過し、散乱光はあまり生成しないように思われる。しかし、実際には以下で述べる実験から副次的に得られる結果から、伝搬媒質部4を通過した光束中に含まれる可干渉性光は強度比で約8%程度であることがわかった。このため伝搬媒質部4を透過した単色光10には、可干渉性光の光束の出射方向に対して小角度領域に高強度の散乱光が含まれていると予想される。 From this result, it seems that monochromatic light having a wavelength of about 633 nm is well transmitted through the propagation medium part 4 and does not generate much scattered light. However, actually, from the results obtained as a secondary result from the experiments described below, it has been found that the coherent light contained in the light flux that has passed through the propagation medium section 4 is about 8% in intensity ratio. For this reason, it is expected that the monochromatic light 10 transmitted through the propagation medium portion 4 includes high-intensity scattered light in a small angle region with respect to the emission direction of the coherent light beam.
 また、図7より、長波長の単色光を用いれば、ナノ多孔体における散乱光の生成は少ないことがわかる。このため、赤外域の単色光を用いて光マイクロホンを実現すれば、散乱光除去光学系を用いなくても散乱光の影響を低減することができると考えられる。 Moreover, it can be seen from FIG. 7 that if long wavelength monochromatic light is used, the generation of scattered light in the nanoporous material is small. For this reason, if an optical microphone is realized using monochromatic light in the infrared region, it is considered that the influence of scattered light can be reduced without using a scattered light removal optical system.
 しかし、このような検討に基づき、1.3μm帯の半導体レーザーを用いて実験を行ったところ、単色光が赤外光であるためにレーザー光を視認できず、干渉アライメントは不可能であった。また、赤外光を可視光に変換するカードタイプのレーザー光検出ターゲット(ソーラボ製,型番VRC2)を使用してみたが、レーザースポット内の詳細な干渉縞が観測困難であったため、良好な干渉アライメントを実現することはできなかった。 However, when an experiment was conducted using a 1.3 μm semiconductor laser based on such examination, the monochromatic light was infrared light, so the laser light could not be seen and interference alignment was impossible. . In addition, I tried using a card type laser light detection target (made by Thorlabs, model number VRC2) that converts infrared light into visible light, but it was difficult to observe detailed interference fringes in the laser spot, so good interference Alignment could not be realized.
 次に、図9に示す構成を用いて散乱光除去光学系2a、2bにより、散乱光がどれだけ減光されるかを観測するために、以下に示す手順で実験を行った。
 (1)マッハツェンダー干渉計36中に遮光Aのみを配置して片側の光路を遮断し、光検出器7で光強度Vaを測定する。
 (2)遮光Bのみを配置して(1)と逆側の光路を遮断し、光検出器7で光強度Vbを測定する。
 (3)遮光A、Bを外して光検出器7で干渉成分の振幅Vexを計測する。振幅Vexの計測は、例えば、反射鏡35aを指でゆすって光検出器7からの出力値の最大・最小値を読み取り、その差の1/2を求めることよって行うことができる。
 (4)光VaとVbが完全に干渉しているとすれば、理想的には干渉光の振幅はVth=(Va×Vb)1/2である。そこで、干渉光振幅の理論値Vthと実測値Vexを比較することによって、図8に示した光学系による散乱光除去効果を評価することができる。
Next, in order to observe how much scattered light is attenuated by the scattered light removing optical systems 2a and 2b using the configuration shown in FIG. 9, an experiment was performed according to the following procedure.
(1) Only the light shielding A is arranged in the Mach-Zehnder interferometer 36 to block the optical path on one side, and the light intensity Va is measured by the photodetector 7.
(2) Only the light shield B is arranged, the optical path on the opposite side to (1) is blocked, and the light intensity Vb is measured by the photodetector 7.
(3) The light shielding A and B are removed, and the amplitude Vex of the interference component is measured by the photodetector 7. The measurement of the amplitude Vex can be performed, for example, by shaking the reflecting mirror 35a with a finger to read the maximum / minimum values of the output value from the light detector 7 and obtaining 1/2 of the difference.
(4) If the light Va and Vb completely interfere, the amplitude of the interference light is ideally Vth = (Va × Vb) 1/2 . Therefore, the scattered light removal effect by the optical system shown in FIG. 8 can be evaluated by comparing the theoretical value Vth of the interference light amplitude and the actual measurement value Vex.
 図9は、上記手順によって測定された受信信号9の波形の一例を示している。(1)から(4)に示す手順で測定を行った結果、Vex≒(0.90±0.11)×Vthであった。これより、実験の確度の範囲内において、伝搬媒質部4で発生する散乱光をほぼ完全に除去できていることが確認できた。 FIG. 9 shows an example of the waveform of the received signal 9 measured by the above procedure. As a result of measurement according to the procedure shown in (1) to (4), Vex≈ (0.90 ± 0.11) × Vth. From this, it was confirmed that the scattered light generated in the propagation medium part 4 could be removed almost completely within the range of the accuracy of the experiment.
 一般にレーザー光学系を構築する際、散乱光や迷光の除去を目的として、光路中に開口絞りを配置することが多い。図8に示した実験系においても、そのような従来手法が適用可能かどうかを見極めるため、図10に示すように、散乱光除去光学系2aを開口絞り81に置き換え、音響信号6を入力した際にそれに応じた信号が光検出器7より出力されるかどうかを調べた。図8に示す構成で検出が可能な強度の音響信号6を入力し、光検出器7で検出を試みたが、信号出力が確認できなかった。したがって、従来の開口絞り81のみでは、散乱光除去光学系2aとして機能しないことがわかった。これは、開口径の縮小にともなって本来の干渉光強度も低下し、S/Nが劣化することによって、所望の信号の濾波が困難になったためだと思われる。 Generally, when constructing a laser optical system, an aperture stop is often arranged in the optical path for the purpose of removing scattered light and stray light. In the experimental system shown in FIG. 8, in order to determine whether such a conventional method can be applied, as shown in FIG. 10, the scattered light removing optical system 2a is replaced with an aperture stop 81, and an acoustic signal 6 is input. At this time, it was examined whether or not a signal corresponding to the signal was output from the photodetector 7. An acoustic signal 6 having an intensity that can be detected with the configuration shown in FIG. 8 was input and detection was attempted by the photodetector 7, but the signal output could not be confirmed. Therefore, it was found that the conventional aperture stop 81 alone does not function as the scattered light removal optical system 2a. This is probably because the original interference light intensity also decreases with the reduction of the aperture diameter, and the S / N deteriorates, making it difficult to filter the desired signal.
 これらの結果から、図7に示す光学特性を持つ伝搬媒質部4における散乱光を除去するために、散乱光除去光学系2a、2bが好適に機能することがわかった。 From these results, it was found that the scattered light removal optical systems 2a and 2b function suitably in order to remove scattered light in the propagation medium section 4 having the optical characteristics shown in FIG.
 以下、本発明による光マイクロホンの第2の実施例を説明する。第1の実施例ではバルク光学素子を用いて2光束干渉計3の1種類であるマッハツェンダー干渉計36を構成したが、2光束干渉計の特性を向上させるためには多数のバルク光学素子を精密に光学調整しなければならないという課題がある。本実施例では、光ファイバを用いてマッハツェンダー干渉計36を構成することによって、バルク光学素子の数を減らし、バルク光学素子の各々で必要となる光学調整を不要にし、この課題の解決を図る。 Hereinafter, a second embodiment of the optical microphone according to the present invention will be described. In the first embodiment, the Mach-Zehnder interferometer 36, which is one type of the two-beam interferometer 3, is configured using bulk optical elements. However, in order to improve the characteristics of the two-beam interferometer, a large number of bulk optical elements are used. There is a problem that optical adjustment must be made precisely. In the present embodiment, the Mach-Zehnder interferometer 36 is configured using an optical fiber, thereby reducing the number of bulk optical elements and eliminating the optical adjustment required for each of the bulk optical elements, thereby solving this problem. .
 図1に示すように、光マイクロホン212は、光ファイバによって構成された経路を有する光ファイバ型マッハツェンダー干渉計42を備えている点で、第1の実施例の光マイクロホン211と異なる。光ファイバ型マッハツェンダー干渉計42は、1入力2出力のカプラー41bと、2入力1出力のカプラー41aと、参照経路11用の光ファイバと、プローブ経路12の光ファイバとを含む。 As shown in FIG. 1, the optical microphone 212 is different from the optical microphone 211 of the first embodiment in that it includes an optical fiber type Mach-Zehnder interferometer 42 having a path constituted by optical fibers. The optical fiber type Mach-Zehnder interferometer 42 includes a 1-input 2-output coupler 41b, a 2-input 1-output coupler 41a, an optical fiber for the reference path 11, and an optical fiber for the probe path 12.
 光マイクロホン212において、散乱光除去光学系2bである光ファイバ33bの一端は、カプラー41bの入力に接続される。参照経路11用の光ファイバの一端と、プローブ経路12の光ファイバの一端はカプラー41bの出力に接続される。また、参照経路11用の光ファイバの他端と、プローブ経路12の光ファイバの他端はカプラー41aの入力に接続される。散乱光除去光学系2aである光ファイバ33aの一端は、カプラー41aの出力に接続されている。プローブ経路12を構成する光ファイバは途中で切断されており、伝搬媒質部4が挿入されている。以上の構成により、2光束干渉計としてバルク光学素子を一切用いない光ファイバ型マッハツェンダー干渉計42を構築することが可能となる。 In the optical microphone 212, one end of the optical fiber 33b which is the scattered light removing optical system 2b is connected to the input of the coupler 41b. One end of the optical fiber for the reference path 11 and one end of the optical fiber for the probe path 12 are connected to the output of the coupler 41b. The other end of the optical fiber for the reference path 11 and the other end of the optical fiber for the probe path 12 are connected to the input of the coupler 41a. One end of the optical fiber 33a which is the scattered light removing optical system 2a is connected to the output of the coupler 41a. The optical fiber constituting the probe path 12 is cut halfway, and the propagation medium portion 4 is inserted. With the above configuration, it is possible to construct an optical fiber type Mach-Zehnder interferometer 42 that does not use any bulk optical element as a two-beam interferometer.
 上記実施形態で説明したように、光マイクロホン212の感度は、光ファイバ型マッハツェンダー干渉計42から出力される干渉光のコントラスト(出力光全振幅に対する干渉光の振幅の比)により決定される。このコントラストは、伝搬媒質部4からの散乱光の除去の程度以外にも光学素子の調整に依存する。具体的には、音響信号6に対する良好な受信感度を実現するために、参照経路11とプローブ経路12の光束の完全な重畳のみならず、両光束の波面の一致を実現するよう光ファイバ型マッハツェンダー干渉計42の光学調整が必要となる。図5に示した光マイクロホン211では、このような光学調整に4つのバルク光学素子の調整が必要であったが、本実施例によれば、それらの調整の一切が不必要となるばかりか完全な干渉調整が常に実現されている。 As described in the above embodiment, the sensitivity of the optical microphone 212 is determined by the contrast of the interference light output from the optical fiber type Mach-Zehnder interferometer 42 (ratio of the interference light amplitude to the total output light amplitude). This contrast depends on the adjustment of the optical element in addition to the degree of removal of scattered light from the propagation medium unit 4. Specifically, in order to realize good reception sensitivity with respect to the acoustic signal 6, not only complete superimposition of the light fluxes of the reference path 11 and the probe path 12, but also the coincidence of the wavefronts of both light fluxes is used. Optical adjustment of the Zender interferometer 42 is required. In the optical microphone 211 shown in FIG. 5, adjustment of four bulk optical elements is necessary for such optical adjustment. However, according to the present embodiment, all of these adjustments are unnecessary and are completely completed. Interference adjustment is always realized.
 光マイクロホン212によれば、可能な限り光マイクロホン中の光学系を光ファイバによる光路引き回しにすることによって、光学系を調整するコストを低減するともに、より高コントラストな干渉光を生成することができる。したがって高い音響信号検出感度を持った光マイクロホンを実現することができる。 According to the optical microphone 212, the optical system in the optical microphone is routed by an optical path as much as possible, thereby reducing the cost of adjusting the optical system and generating interference light with higher contrast. . Therefore, an optical microphone having high acoustic signal detection sensitivity can be realized.
 以下、本発明による光マイクロホンの第3の実施例を説明する。本発明の光マイクロホンにおいては、原理上、どのような2光束干渉計を用いてもよい。本実施例では、マッハツェンダー干渉計の替わりにマイケルソン干渉計を用いる。 Hereinafter, a third embodiment of the optical microphone according to the present invention will be described. In principle, any two-beam interferometer may be used in the optical microphone of the present invention. In this embodiment, a Michelson interferometer is used instead of the Mach-Zehnder interferometer.
 図12に示すように、光マイクロホン213は、マッハツェンダー干渉計36の替わりにマイケルソン干渉計91を備えている点で図5に示す光マイクロホン211と異なる。 12, the optical microphone 213 is different from the optical microphone 211 shown in FIG. 5 in that a Michelson interferometer 91 is provided instead of the Mach-Zehnder interferometer 36.
 図12に示すように、マイケルソン干渉計91は、反射鏡35a、35bとビームスプリッタ34aを含む。光ファイバ33bに結合された集束レンズ31bから出射した単色光10は、ビームスプリッタ34aによって参照経路11に沿って伝搬する単色光とプローブ経路12を伝搬する単色光に分割される。参照経路11に沿って伝搬する単色光は反射光35aにおいて反射し、再びビームスプリッタ34aに入射する。また、プローブ経路12を伝搬する単色光は伝搬媒質部4を透過した後、反射鏡35bで反射し、再び伝搬媒質部4を透過し、ビームスプリッタ34aへ入射する。ビームスプリッタ34aへ入射した2つの単色光は重畳され、集束レンズ31aを介して光ファイバ33aに入射する。 As shown in FIG. 12, the Michelson interferometer 91 includes reflecting mirrors 35a and 35b and a beam splitter 34a. The monochromatic light 10 emitted from the focusing lens 31b coupled to the optical fiber 33b is divided into monochromatic light propagating along the reference path 11 and monochromatic light propagating along the probe path 12 by the beam splitter 34a. The monochromatic light propagating along the reference path 11 is reflected by the reflected light 35a and enters the beam splitter 34a again. Further, the monochromatic light propagating through the probe path 12 is transmitted through the propagation medium section 4, is reflected by the reflecting mirror 35b, is transmitted through the propagation medium section 4 again, and enters the beam splitter 34a. The two monochromatic lights incident on the beam splitter 34a are superimposed and enter the optical fiber 33a via the focusing lens 31a.
 マイケルソン干渉計91は、上述したように、反射鏡35a、35bおよびビームスプリッタ34aの3点のバルク光学素子を含む。このため、これらの光学素子の光学的位置を調整する必要がある。しかし、反射鏡35a、35bを用いることによって、光路を折り返すことが可能となり、マイケルソン干渉計91を小型に構成できるという利点がある。また、単色光10が伝搬媒質部4を往復するため、屈折率変動の検出感度が2倍になる。集音部5の構成を変えることなく音響検出感度を向上させるためには、光路方向に厚い伝搬媒質部4を用いればよい。しかし、伝搬媒質部4の大型化によって伝搬媒質部4の音響伝搬特性、特に自己共振モードの影響により、広帯域性が損なわれる場合がある。これに対し、マイケルソン干渉計91を用いれば、伝搬媒質部4のサイズを変えることなく検出感度を高められる。したがって、広帯域性と音響検出感度の向上を両立させることができる。 As described above, the Michelson interferometer 91 includes the three bulk optical elements of the reflecting mirrors 35a and 35b and the beam splitter 34a. For this reason, it is necessary to adjust the optical position of these optical elements. However, the use of the reflecting mirrors 35a and 35b has the advantage that the optical path can be turned back, and the Michelson interferometer 91 can be made compact. Further, since the monochromatic light 10 travels back and forth through the propagation medium section 4, the detection sensitivity of refractive index fluctuation is doubled. In order to improve the acoustic detection sensitivity without changing the configuration of the sound collection unit 5, the propagation medium unit 4 that is thick in the optical path direction may be used. However, due to the increase in size of the propagation medium section 4, there is a case where the broadband property is impaired due to the acoustic propagation characteristics of the propagation medium section 4, particularly the influence of the self-resonance mode. On the other hand, if the Michelson interferometer 91 is used, the detection sensitivity can be increased without changing the size of the propagation medium section 4. Therefore, it is possible to achieve both improvement of the broadband property and the sound detection sensitivity.
 このように、2光束干渉計としてマイケルソン干渉計91を用いることにより、広帯域性を持ちながら小型かつ高い検出感度を有する光マイクを実現することができる。 As described above, by using the Michelson interferometer 91 as the two-beam interferometer, it is possible to realize an optical microphone having a small size and high detection sensitivity while having a wide bandwidth.
 また、図13に示すように、マイケルソン干渉計91から得られる干渉光を光ファイバ33aへ戻してもよい。図13に示す光マイクロホン213’は、単色光光源1とビームスプリッタ34bと、光ファイバ33aを含む散乱光除去光学系2bとマイケルソン干渉計91と、光検出器7と、信号処理部8とを備える。 Further, as shown in FIG. 13, the interference light obtained from the Michelson interferometer 91 may be returned to the optical fiber 33a. An optical microphone 213 ′ shown in FIG. 13 includes a monochromatic light source 1, a beam splitter 34b, a scattered light removing optical system 2b including an optical fiber 33a, a Michelson interferometer 91, a photodetector 7, and a signal processing unit 8. Is provided.
 単色光光源1から出射した単色光10は、ビームスプリッタを透過し、散乱光除去光学系2bに入射する。散乱光除去光学系2bにおいて散乱光成分が除去された単色光10は、上述したようにマイケルソン干渉計91に入射する。マイケルソン干渉計91から出射する光を再び散乱光除去光学系2bに逆向きに入射させ、散乱光除去光学系2bから出射した単色光を再びビームスプリッタ34bへ入射させる。ビームスプリッタ34bにおいて、光検出器7側へ単色光10を反射させることによって、音響信号6を検出することができる。 The monochromatic light 10 emitted from the monochromatic light source 1 passes through the beam splitter and enters the scattered light removing optical system 2b. The monochromatic light 10 from which the scattered light component has been removed in the scattered light removing optical system 2b is incident on the Michelson interferometer 91 as described above. The light emitted from the Michelson interferometer 91 is again incident on the scattered light removing optical system 2b in the opposite direction, and the monochromatic light emitted from the scattered light removing optical system 2b is again incident on the beam splitter 34b. The acoustic signal 6 can be detected by reflecting the monochromatic light 10 toward the photodetector 7 in the beam splitter 34b.
 このような構成によれば、マイケルソン干渉計91への光の入出力端が1点であるため、光マイクロホンを小型に構成できる。また、散乱光除去効果を損なうことなく散乱光除去光学系2a、2bを共用化し、光マイクロホンをさらに小型に構成することができ、かつ製造コストを低減できる。 According to such a configuration, since the input / output end of light to the Michelson interferometer 91 is one point, the optical microphone can be configured in a small size. Further, the scattered light removal optical systems 2a and 2b can be shared without impairing the scattered light removal effect, so that the optical microphone can be further reduced in size, and the manufacturing cost can be reduced.
 以下、本発明による光マイクロホンの第3の実施例を説明する。図14は本実施例の光マイクロホン214の構成を示している。光マイクロホン214はフィゾー干渉計101を備えている点で第3の実施例の光マイクロホン213’と異なる。 Hereinafter, a third embodiment of the optical microphone according to the present invention will be described. FIG. 14 shows the configuration of the optical microphone 214 of this embodiment. The optical microphone 214 differs from the optical microphone 213 ′ of the third embodiment in that it includes the Fizeau interferometer 101.
 マッハツェンダー干渉計およびマイケルソン干渉計はそれぞれの構成に特有の利点を持っているが、プローブ経路12と参照経路11とが空間的に異なっている。特に、マッハツェンダー干渉計では2つの経路における空間的に異なる部分が長い。このため、機構的不安定性に起因して、両経路間の光路差が変動し、不要な干渉信号として観測されることがある。また、たとえ機構部品や光学素子を堅牢に構成したとしても、両経路近傍において、空気揺らぎや温度分布、温度変化が完全には一致しないため、両経路間の光学長の時間変化が生じ、不要な信号として観測される場合がある。フィゾー干渉計を用いることによって、このような不要信号を抑制することができる。 Although the Mach-Zehnder interferometer and the Michelson interferometer have advantages unique to their respective configurations, the probe path 12 and the reference path 11 are spatially different. In particular, in the Mach-Zehnder interferometer, the spatially different portions in the two paths are long. For this reason, due to mechanical instability, the optical path difference between the two paths may fluctuate and may be observed as an unnecessary interference signal. Even if the mechanical parts and optical elements are robustly constructed, the air fluctuation, temperature distribution, and temperature change do not completely match in the vicinity of both paths, so the optical length between the paths changes with time, which is unnecessary. May be observed as a negative signal. By using a Fizeau interferometer, such unnecessary signals can be suppressed.
 光マイクロホン214において、フィゾー干渉計101は、半透鏡102と、反射鏡35aとを含む。半透鏡102は、反射鏡35aの反射面に対して平行な光学平面を持った半透鏡の第1の面102aと、良好な光学平面であるが反射鏡35aの反射面と非平行であり、反射面として処理がなされていない第2の面102bとを有する。第2の面には、反射防止膜などが設けられていてもよい。 In the optical microphone 214, the Fizeau interferometer 101 includes a semi-transparent mirror 102 and a reflecting mirror 35a. The semi-transparent mirror 102 is a first optical surface 102a of the semi-transparent mirror having an optical plane parallel to the reflecting surface of the reflecting mirror 35a, and is a good optical plane but non-parallel to the reflecting surface of the reflecting mirror 35a. And a second surface 102b that is not processed as a reflective surface. An antireflection film or the like may be provided on the second surface.
 フィゾー干渉計101において、集束レンズ31aを基準とした場合の参照経路11は、集束レンズ31aから半透鏡102の半透鏡面102aで反射し、集束レンズ31aに戻るまでの光路で規定される。また、プローブ経路12は、集束レンズ31aから反射鏡35aで反射し集束レンズ31aに戻るまでの光路で規定される。 In the Fizeau interferometer 101, the reference path 11 when the focusing lens 31a is used as a reference is defined by an optical path from the focusing lens 31a to the semi-reflecting surface 102a of the semi-transmitting mirror 102 and returning to the focusing lens 31a. The probe path 12 is defined by the optical path from the focusing lens 31a to the reflection lens 35a until it returns to the focusing lens 31a.
 ホモダイン検波の場合、この2つの経路の光路長差が光強度の変化として光検出器7で検出される。したがって、参照経路11およびプローブ経路12のうち、共通する部分の光路は短くてもよい。また、光路長差が生じるのはプローブ経路12中の伝搬媒質部4においてであるから、他の部分の光路の長さは短くてもよい。したがって、集束レンズ31a、半透鏡102、伝搬媒質部4、および、反射鏡35aをこの順番で配置し、隣接する光学素子を互いに接触させて配置すれば、他の実施例に比べ参照経路11およびプローブ経路12を極めて短くすることができる。これにより、フィゾー干渉計101を構成する光学素子が、外部からの影響によって振動したり、空気の揺らぎや温度変化などの外部環境によって、不要な信号がノイズとして単色光に含まれるのを抑制することができる。 In the case of homodyne detection, the optical path length difference between these two paths is detected by the photodetector 7 as a change in light intensity. Therefore, the common optical path of the reference path 11 and the probe path 12 may be short. Further, since the optical path length difference is generated in the propagation medium portion 4 in the probe path 12, the length of the optical path in other portions may be short. Therefore, if the focusing lens 31a, the semi-transparent mirror 102, the propagation medium unit 4, and the reflecting mirror 35a are arranged in this order and adjacent optical elements are arranged in contact with each other, the reference path 11 and The probe path 12 can be made extremely short. As a result, the optical element that constitutes the Fizeau interferometer 101 is prevented from vibrating due to external influences, or unnecessary signals from being included in monochromatic light as noise due to external environments such as air fluctuations and temperature changes. be able to.
 また、フィゾー干渉計101は、2つのバルク光学素子により構成されるが、それらの調整は2つの素子の光学面の平行出しのみである。したがって、光マイクロホン214の組立や調整が簡単であり、製造コストも低減することができる。 Further, the Fizeau interferometer 101 is constituted by two bulk optical elements, but the adjustment thereof is only paralleling of the optical surfaces of the two elements. Therefore, the assembly and adjustment of the optical microphone 214 is easy, and the manufacturing cost can be reduced.
 また、集束レンズ31a、32a、および、光ファイバ33aからなる散乱光除去光学系を往路および復路で共用することによって、散乱光除去効果を犠牲にすることなく光学部品点数の削減が可能になっている。 Further, by sharing the scattered light removal optical system including the focusing lenses 31a and 32a and the optical fiber 33a in the forward path and the return path, the number of optical components can be reduced without sacrificing the scattered light removal effect. Yes.
 第2の実施例と同様に、光マイクロホン214において、2光束干渉計以外の領域を光ファイバ素子で置き換えてもよい。図15に示す光マイクロホン214’は、ファイバ光源111とカプラー41aと、散乱光除去光学系2bとフィゾー干渉計101と、光検出器7と信号処理部8とを備える。 Similarly to the second embodiment, an area other than the two-beam interferometer in the optical microphone 214 may be replaced with an optical fiber element. An optical microphone 214 ′ illustrated in FIG. 15 includes a fiber light source 111, a coupler 41 a, a scattered light removal optical system 2 b, a Fizeau interferometer 101, a photodetector 7, and a signal processing unit 8.
 カプラー41aは3つのポートを持ち、3つのポートのうち1つから入射した光を他の2つのポートから出射する光に分解する。 The coupler 41a has three ports, and decomposes light incident from one of the three ports into light emitted from the other two ports.
 ファイバ光源111から出射した単色光はカプラー41aに入射し、散乱光除去光学系2bへ出射される。またフィゾー干渉計101から出射し散乱光除去光学系2bを伝搬した単色光はカプラー41aに逆向きに入射し、光検出器7へ入射する。このような構成によれば、フィゾー干渉計101内部の光学系を除く全ての光学素子が、シームレスに光ファイバのみで接続することが可能となるため、調整コストをさらに削減することが可能である。 Monochromatic light emitted from the fiber light source 111 enters the coupler 41a and is emitted to the scattered light removing optical system 2b. Further, the monochromatic light emitted from the Fizeau interferometer 101 and propagated through the scattered light removing optical system 2 b enters the coupler 41 a in the reverse direction and enters the photodetector 7. According to such a configuration, all the optical elements except the optical system inside the Fizeau interferometer 101 can be seamlessly connected only by the optical fiber, so that the adjustment cost can be further reduced. .
 以上、第1および第2の実施形態ならびに第1から第4の実施例を用いて本発明のマイクロホンを説明したが、本発明の構成を用い、ナノ多孔体の替わりに散乱性光学物質を用いることによって、散乱性光学物質の屈折率などの光学学特性を測定する測定器に応用することが可能である。 As described above, the microphone of the present invention has been described using the first and second embodiments and the first to fourth examples. However, using the configuration of the present invention, a scattering optical material is used instead of the nanoporous material. Thus, the present invention can be applied to a measuring instrument that measures optical characteristics such as a refractive index of a scattering optical material.
 また、このような散乱性物質の光学距離を測定することが可能であるため、散乱性ガスの圧力や濃度を計測する散乱性ガス用圧力センサやガス濃度計、ガスおよび液体用の屈折率計などに本発明を応用することもできる。また、屈折率測定を基にした物理量測定器、散乱性媒質中での精密測長・形状センシング計などにも応用することができる。 In addition, since it is possible to measure the optical distance of such a scattering material, a pressure sensor or gas concentration meter for measuring the pressure or concentration of the scattering gas, a gas concentration meter, a refractive index meter for gas and liquid The present invention can also be applied to the above. Further, it can be applied to a physical quantity measuring device based on refractive index measurement, a precision length measurement / shape sensing meter in a scattering medium, and the like.
 本発明の光マイクロホンは、種々の用途に用いられる光マイクロホンに好適に用いられる。また、散乱性ガス用圧力センサやガス濃度計、ガスおよび液体用の屈折率計などにも好適に用いられる。 The optical microphone of the present invention is suitably used for an optical microphone used for various applications. Further, it is also suitably used for a scattering gas pressure sensor, a gas concentration meter, a gas and liquid refractometer.
  1 単色光光源
  2a、2b 散乱光除去光学系
  3 2光束干渉計
  4 伝搬媒質部
  5 集音部
  6 音響信号
  7、1707 光検出器
  8 信号処理部
  9 受信信号
  10 単色光
  11 参照経路
  12 プローブ経路
  13 DCカットフィルタ
  14 増幅器

  16 出力端
  17a、17b 光線分割素子
  18a、18b 光線反射素子
  31a、31b、32a、32b 集束レンズ
  33a、33b 光ファイバ
  34a、34b ビームスプリッタ
  35a、35b 反射鏡
  36 マッハツェンダー干渉計
  41a、41b カプラー
  42 光ファイバ型マッハツェンダー干渉計
  61、62 レンズ
  63 ピンホール
  63b 遮蔽板
  81 開口絞り
  91 マイケルソン干渉計
  101 フィゾー干渉計
  102 半透鏡
  111 ファイバ光源
  141 従来の光マイクロホン
  142 ナノ多孔体
  143 ベース部
  144 開口部
  145 透明支持板
  147 レーザー光
  148 レーザードップラー振動計
  149 音響信号
  151 カンチレバーの撓み量測定用光源
  152 カンチレバー
  153 試料
  154 集光レンズ
  155 散乱光除去手段
  156 受光手段
  161 入力面
  162、164 レンズ
  163 フーリエ変換面
  165 出力面
 201、202、211、212、213、214 光マイクロホン
  1410 受信機構部
  1411 反射面
  1412 疎密波
  1701 偏光ビームスプリッタ
  1702、1712 無偏光ビームスプリッタ
  1703 2周波光源
  1704 2周波光
  1705 位相比較部
  1706、1710 偏光板
  1708 基準ビート信号
  1709 プローブビート信号
  1711 基準ビート信号生成部
  1801 ホーン
  1802 音響導波路
  1803 音響レンズ
  1804 屈折面
  1805 焦点
  1806 無反射終端
DESCRIPTION OF SYMBOLS 1 Monochromatic light source 2a, 2b Scattering light removal optical system 3 Two-beam interferometer 4 Propagation medium part 5 Sound collection part 6 Acoustic signal 7, 1707 Photodetector 8 Signal processing part 9 Received signal 10 Monochromatic light 11 Reference path 12 Probe path 13 DC cut filter 14 Amplifier

16 Output end 17a, 17b Ray splitting element 18a, 18b Ray reflecting element 31a, 31b, 32a, 32b Focusing lens 33a, 33b Optical fiber 34a, 34b Beam splitter 35a, 35b Reflector 36 Mach- Zehnder interferometer 41a, 41b Coupler 42 Light Fiber type Mach-Zehnder interferometer 61, 62 Lens 63 Pinhole 63b Shield plate 81 Aperture stop 91 Michelson interferometer 101 Fizeau interferometer 102 Semi-transparent mirror 111 Fiber light source 141 Conventional optical microphone 142 Nanoporous body 143 Base portion 144 Opening portion 145 Transparent support plate 147 Laser beam 148 Laser Doppler vibrometer 149 Acoustic signal 151 Light source for measuring cantilever deflection 152 Cantilever 153 Sample 154 155 Scattered light removing means 156 Light receiving means 161 Input surface 162, 164 Lens 163 Fourier transform surface 165 Output surface 201, 202, 211, 212, 213, 214 Optical microphone 1410 Reception mechanism 1411 Reflecting surface 1412 Density wave 1701 Polarizing beam splitter 1702, 1712 Non-polarization beam splitter 1703 Dual frequency light source 1704 Dual frequency light 1705 Phase comparison unit 1706, 1710 Polarizing plate 1708 Reference beat signal 1709 Probe beat signal 1711 Reference beat signal generation unit 1801 Horn 1802 Acoustic waveguide 1803 Acoustic lens 1804 Refractive surface 1805 Focus 1806 Non-reflective termination

Claims (11)

  1.  単色光を出射する光源と、
     前記光源から出射した前記単色光を2つの光束に分割し、分割された2つの光束をそれぞれ互いに異なる2つの経路で伝搬させた後、前記分割された2つの光束を互いに重畳し、重畳した光を出射する2光束干渉計と、
     音響信号が入射する入射部を有しており、空気より小さい音速を有するナノ多孔体からなる伝搬媒質部であって、前記入射部から入射した音響信号が前記2つの経路の一方を横切って前記ナノ多孔体を伝搬する伝搬媒質部と、
     前記2光束干渉計から出射する光を検出する光検出器と、
     前記2光束干渉計と前記光検出器との間に設けられ、前記2光束干渉計から出射した光に含まれる散乱光を除去する第1の散乱光除去光学系と、
     前記光源と前記2光束干渉計との間に設けられ、前記光源から出射した前記単色光に含まれる散乱光を除去する第2の散乱光除去光学系と、
    を備える光マイクロホン。
    A light source that emits monochromatic light;
    The monochromatic light emitted from the light source is divided into two light beams, and the two divided light beams are propagated through two different paths, respectively, and then the two divided light beams are superimposed on each other and superimposed light A two-beam interferometer that emits light,
    A propagation medium portion made of a nanoporous material having a sound velocity smaller than that of air, wherein the acoustic signal incident from the incident portion crosses one of the two paths; A propagation medium that propagates through the nanoporous body;
    A photodetector for detecting light emitted from the two-beam interferometer;
    A first scattered light removal optical system that is provided between the two-beam interferometer and the photodetector and removes scattered light contained in the light emitted from the two-beam interferometer;
    A second scattered light removal optical system that is provided between the light source and the two-beam interferometer and removes scattered light contained in the monochromatic light emitted from the light source;
    An optical microphone comprising:
  2.  前記第1の散乱光除去光学系および前記第2の散乱光除去光学系は、それぞれシングルモード光ファイバを含む請求項1に記載の光マイクロホン。 The optical microphone according to claim 1, wherein each of the first scattered light removal optical system and the second scattered light removal optical system includes a single mode optical fiber.
  3.  前記第1の散乱光除去光学系のシングルモード光ファイバと前記第2の散乱光除去光学系のシングルモード光ファイバとは、互いに同じ光学特性を有する請求項2に記載の光マイクロホン。 3. The optical microphone according to claim 2, wherein the single mode optical fiber of the first scattered light removal optical system and the single mode optical fiber of the second scattered light removal optical system have the same optical characteristics.
  4.  前記伝搬媒質部の入射部に設けられ、前記音響信号を集束させる集音部をさらに備える請求項3に記載の光マイクロホン。 The optical microphone according to claim 3, further comprising a sound collecting unit that is provided at an incident part of the propagation medium part and focuses the acoustic signal.
  5.  前記ナノ多孔体はシリカ乾燥ゲルである請求項4に記載の光マイクロホン。 The optical microphone according to claim 4, wherein the nanoporous body is a silica dry gel.
  6.  前記第1の散乱光除去光学系は、少なくとも1つの集束レンズをさらに含み、
     前記集束レンズの焦点が、シングルモード光ファイバの端面のコア上に位置している請求項5に記載の光マイクロホン。
    The first scattered light removal optical system further includes at least one focusing lens;
    The optical microphone according to claim 5, wherein a focal point of the focusing lens is located on a core of an end face of the single mode optical fiber.
  7.  前記光検出器からの出力を受け取り、ホモダイン検波によって前記出力から前記音響信号に対応する受信信号を生成する信号処理部をさらに備える請求項1から4のいずれかに記載の光マイクロホン。 The optical microphone according to any one of claims 1 to 4, further comprising a signal processing unit that receives an output from the photodetector and generates a reception signal corresponding to the acoustic signal from the output by homodyne detection.
  8.  基準ビート信号生成部と位相比較部とをさらに備え、
     前記光源は、互いに異なる周波数の2つの直線偏波光を出射し、
     前記基準ビート信号生成部は前記2つの直線偏波光に基づき、基準ビート信号を生成し、
     前記位相比較部は、前記光検出器からの出力と前記基準ビート信号とを用いてヘテロダイン検波によって前記音響信号に対応する受信信号を生成する信号処理部をさらに備える請求項1から4のいずれかに記載の光マイクロホン。
    A reference beat signal generation unit and a phase comparison unit;
    The light source emits two linearly polarized lights having different frequencies,
    The reference beat signal generation unit generates a reference beat signal based on the two linearly polarized lights,
    5. The signal processing unit according to claim 1, further comprising: a signal processing unit configured to generate a reception signal corresponding to the acoustic signal by heterodyne detection using an output from the photodetector and the reference beat signal. An optical microphone as described in 1.
  9.  前記2光束干渉計は、マッハツェンダー干渉計である請求項1から4のいずれかに記載の光マイクロホン。 The optical microphone according to any one of claims 1 to 4, wherein the two-beam interferometer is a Mach-Zehnder interferometer.
  10.  前記2光束干渉計は、マイケルソン干渉計である請求項1から4のいずれかに記載の光マイクロホン。 The optical microphone according to any one of claims 1 to 4, wherein the two-beam interferometer is a Michelson interferometer.
  11.  前記2光束干渉計は、フィゾー干渉計である請求項1から4のいずれかに記載の光マイクロホン。 The optical microphone according to any one of claims 1 to 4, wherein the two-beam interferometer is a Fizeau interferometer.
PCT/JP2011/000016 2010-01-07 2011-01-06 Optical microphone WO2011083760A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010002158 2010-01-07
JP2010-002158 2010-01-07

Publications (1)

Publication Number Publication Date
WO2011083760A1 true WO2011083760A1 (en) 2011-07-14

Family

ID=44305496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000016 WO2011083760A1 (en) 2010-01-07 2011-01-06 Optical microphone

Country Status (1)

Country Link
WO (1) WO2011083760A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027373A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Optical microphone
EP3351838A1 (en) * 2017-01-18 2018-07-25 Samson Aktiengesellschaft Optical microphone for diagnosis of positioning devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018100A (en) * 1983-07-11 1985-01-30 Yasushi Miki Microphone
JPH02122206A (en) * 1988-11-01 1990-05-09 Nippon Steel Corp Optical fiber interferometer and its signal processing method
JPH05227597A (en) * 1992-02-12 1993-09-03 Agency Of Ind Science & Technol Microphone
JP2001343221A (en) * 2000-06-02 2001-12-14 Fujitsu Ltd Apparatus and method for measuring surface
JP4161004B2 (en) * 2006-05-11 2008-10-08 松下電器産業株式会社 Ultrasonic receiver
JP2008275515A (en) * 2007-05-01 2008-11-13 Sony Corp Vibration detector
JP2009542128A (en) * 2006-06-27 2009-11-26 エヌエックスピー ビー ヴィ Electroacoustic transducer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018100A (en) * 1983-07-11 1985-01-30 Yasushi Miki Microphone
JPH02122206A (en) * 1988-11-01 1990-05-09 Nippon Steel Corp Optical fiber interferometer and its signal processing method
JPH05227597A (en) * 1992-02-12 1993-09-03 Agency Of Ind Science & Technol Microphone
JP2001343221A (en) * 2000-06-02 2001-12-14 Fujitsu Ltd Apparatus and method for measuring surface
JP4161004B2 (en) * 2006-05-11 2008-10-08 松下電器産業株式会社 Ultrasonic receiver
JP2009542128A (en) * 2006-06-27 2009-11-26 エヌエックスピー ビー ヴィ Electroacoustic transducer
JP2008275515A (en) * 2007-05-01 2008-11-13 Sony Corp Vibration detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027373A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Optical microphone
JP5232334B1 (en) * 2011-08-25 2013-07-10 パナソニック株式会社 Optical microphone
US9173039B2 (en) 2011-08-25 2015-10-27 Panasonic Intellectual Property Management Co., Ltd. Optical microphone
EP3351838A1 (en) * 2017-01-18 2018-07-25 Samson Aktiengesellschaft Optical microphone for diagnosis of positioning devices
US10502341B2 (en) 2017-01-18 2019-12-10 Samson Aktiengesellschaft Optical microphone to diagnose actuators

Similar Documents

Publication Publication Date Title
RU2622447C2 (en) Determination of characteristics of object flow moved in element
US8948603B2 (en) Optical microphone
WO2012026054A1 (en) Internal fault inspection method and device
JP2011039026A (en) Optical displacement meter
CN103884704A (en) Spectral pupil laser confocal Brillouin-Raman spectrum measuring method and device
KR20100134609A (en) Apparatus and method for measuring surface topography of an object
JP6631978B2 (en) Optical interference measuring apparatus and optical interference measuring method for object
US9212896B2 (en) Optical interferometer and vibrometer comprising such an optical interferometer
CN102768184A (en) System for Young modulus measurement of film
JP6285808B2 (en) Interferometer
WO2012081347A1 (en) Internal defect inpsection method and apparatus
WO2011083760A1 (en) Optical microphone
CN113916891A (en) Dark field confocal Brillouin microscopic measurement device and method based on optical fiber annular light beam
JP6670284B2 (en) Optical interferometer
EP2336714B1 (en) Interferometer
KR101078197B1 (en) Polarized point-diffraction interferometer for aligning optical system
JP2016024106A (en) Sound wave detecting apparatus, sound field visualizing apparatus using the same, and sensor
KR101235274B1 (en) Long-term stabilized heterodyne interferometer and readout sensor for biochemical fluidic channel using the interferometer
JP2013213802A (en) Measuring apparatus
CN115166062B (en) All-optical ultrasonic detector based on differential interference and detection method
Wartelle et al. NON‐DESTRUCTIVE TESTING USING TWO‐COMPONENT/TWO‐WAVE MIXING INTERFEROMETER
CN114689515B (en) High-stability non-contact photoacoustic sensing device and using method thereof
JP2000088513A (en) Aspherical wave generating lens system assembling adjusting equipment
CN115166062A (en) All-optical ultrasonic detector based on differential interference and detection method
JP3410800B2 (en) Vibration resistant interferometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731758

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11731758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP