WO2011083723A1 - Air blowing fan, circulator, micro-particle diffusion device, and air circulation method - Google Patents

Air blowing fan, circulator, micro-particle diffusion device, and air circulation method Download PDF

Info

Publication number
WO2011083723A1
WO2011083723A1 PCT/JP2010/073674 JP2010073674W WO2011083723A1 WO 2011083723 A1 WO2011083723 A1 WO 2011083723A1 JP 2010073674 W JP2010073674 W JP 2010073674W WO 2011083723 A1 WO2011083723 A1 WO 2011083723A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
outlet
airflow
casing
wall
Prior art date
Application number
PCT/JP2010/073674
Other languages
French (fr)
Japanese (ja)
Inventor
雅也 高橋
雅生 大塚
康堅 竹田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010000876A external-priority patent/JP5015272B2/en
Priority claimed from JP2010000878A external-priority patent/JP4995285B2/en
Priority claimed from JP2010000877A external-priority patent/JP4932916B2/en
Priority claimed from JP2010020180A external-priority patent/JP4866468B2/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/520,725 priority Critical patent/US20120282117A1/en
Priority to CN201080063397.9A priority patent/CN102753897B/en
Publication of WO2011083723A1 publication Critical patent/WO2011083723A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/065Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit fan combined with single duct; mounting arrangements of a fan in a duct

Definitions

  • the present invention relates to a blower fan that sends out airflow.
  • the present invention also relates to a circulator for circulating indoor air and an air circulation method.
  • the present invention also relates to a microparticle diffusing apparatus that sends microparticles such as ions and diffuses them into a room.
  • Patent Document 1 A conventional circulator is disclosed in Patent Document 1.
  • This circulator is installed on the floor of the room, and has a suction opening at the bottom and an outlet at the top.
  • a blower fan arranged inside the circulator By driving a blower fan arranged inside the circulator, indoor air is sucked in along the floor surface from the suction port, and the air is sent out forward and upward from the blower outlet. Thereby, indoor air can be circulated.
  • Patent Document 2 discloses a conventional fine particle diffusion device.
  • This fine particle diffusing device is arranged on the top surface of a refrigerator or the like, and a blower fan is provided in a housing having a blower opening at the front.
  • the blower fan is composed of a sirocco fan that sucks in the axial direction and exhausts it in the circumferential direction, and the rotation shaft is arranged vertically.
  • the blower fan and the blower outlet are connected by a blower path.
  • the air blowing path is gradually widened in the left-right direction on the downstream side of the blower fan and is gradually narrowed in the up-down direction.
  • a fine particle generator for generating ions that are fine particles is disposed in the air blowing path.
  • the airflow generated by the blower fan flows through the airflow path, and the airflow containing the microparticles generated by the microparticle generator is sent forward from the outlet.
  • the air flow path is formed so as to expand in the left-right direction on the downstream side of the blower fan, and the airflow sent from the air outlet spreads in the left-right direction so that the fine particles are diffused into the room.
  • positive ions and negative ions can be supplied indoors to sterilize indoor floating bacteria.
  • Patent Document 3 discloses a circulator that includes a blower fan having a cross-flow impeller and circulates indoor air.
  • This circulator is composed of an air conditioner, and a suction port is opened on the upper surface of the housing, and a blower port is opened on the lower front surface.
  • a heat exchanger is disposed between the blower fan and the suction port disposed in the housing.
  • the blower fan consists of a cross flow fan that covers the impeller with a casing.
  • the casing has an intake side opening from which the impeller protrudes at one end, extends to the exhaust side of the impeller, and is connected to the outlet. Thereby, the air flow path on the exhaust side of the impeller is formed by the casing.
  • a movable louver that varies the wind direction in the horizontal direction and the vertical direction is provided in the vicinity of the air outlet in the air flow path.
  • air is sent in a predetermined direction from the outlet through a movable louver.
  • air can be sent out in a plurality of directions in the room and circulated to every corner of the room.
  • JP-A-8-270992 (pages 2-5, FIG. 4) Japanese Patent No. 3797993 (pages 4 to 18, FIGS. 1 and 2) Japanese Unexamined Patent Publication No. 2009-270530 (pages 5-8, FIG. 1)
  • the airflow flowing through the blower path is spread in the left-right direction and sent forward from the outlet. For this reason, it is possible to send air and fine particles over a wide range in the left-right direction of the room with a simple configuration.
  • blower fan exhausts in the circumferential tangent direction with the rotating shaft arranged vertically, there is a problem that the flow rate of the airflow flowing through the blower path becomes uneven in the left-right direction due to the centrifugal force of the blower fan.
  • fine particles such as fragrances, deodorants, insecticides, and fungicides other than ions are generated by the fine particle generator.
  • a movable louver is provided to send air in a plurality of directions in the room, but there is a problem that the structure becomes complicated and the cost is increased. Further, the airflow is bent suddenly near the air outlet by the louver near the air outlet. For this reason, there existed a problem that a pressure loss became large, the ventilation efficiency worsened, and the noise increased.
  • the louver can be omitted and the air flow path on the exhaust side of the blower fan can be branched to send air in a plurality of directions.
  • the air flow is bent sharply on the exhaust side of the blower fan, the air blowing efficiency is deteriorated and the noise is increased.
  • a microparticle diffusion device that provides a microparticle generator for generating microparticles such as ions, fragrances, deodorants, insecticides, and bactericides in the air flow path of the circulator, and sends and diffuses microparticles in the room.
  • microparticle generator for generating microparticles such as ions, fragrances, deodorants, insecticides, and bactericides in the air flow path of the circulator, and sends and diffuses microparticles in the room.
  • Another object of the present invention is to provide a blower fan capable of improving air blowing efficiency at low cost and reducing noise and sending airflow in a plurality of directions, a circulator using the same, and a fine particle diffusion device.
  • a blower fan of the present invention includes a cross-flow type impeller, a first casing that covers the impeller, forms an air flow path, and is juxtaposed in the axial direction of the impeller. It is characterized by the fact that there are two casings, and the blowing direction of the airflow passing through the first casing is different from the blowing direction of the airflow passing through the second casing.
  • the crossflow type impeller is covered by the first casing and the second casing arranged side by side in the axial direction, and a blower fan including a crossflow fan is formed.
  • a blower fan including a crossflow fan is formed.
  • the first casing opens at one end of the first intake side opening from which the impeller projects and extends to the exhaust side of the impeller
  • the second casing includes the blade A second intake side opening from which the car protrudes opens at one end and extends to the exhaust side of the impeller, and an opening surface of the first intake side opening and an opening surface of the second intake side opening are formed on the impeller. It is preferable that they are arranged at different angles in the circumferential direction.
  • the air on the intake side of the blower fan passes through the impeller by the rotation of the impeller, flows into the first casing from the first intake side opening, and flows into the second casing from the second intake side opening.
  • the opening surface of the first intake-side opening and the opening surface of the second intake-side opening are arranged at different angles in the circumferential direction of the impeller, and the first and second casings respectively have the first and second intake-side openings. And extending in a predetermined direction.
  • the first casing in a predetermined range from the first intake side opening is the second casing in the predetermined range from the second intake side opening, as viewed from the axial direction of the impeller. It is preferable to match the shape rotated around the rotation center of the impeller.
  • the wall surface of the first casing is formed with a predetermined curvature from the first intake side opening
  • the wall surface of the second casing is formed with the same curvature as the first casing within a predetermined range from the second intake side opening.
  • the blowing direction of the airflow passing through the first casing and the blowing direction of the airflow passing through the second casing may be different by 90 ° or more.
  • the blower fan of the present invention is A first impeller and a second impeller arranged coaxially; One motor for rotationally driving the first impeller and the second impeller; A first tubular portion covering the first impeller and opening the first intake port in the axial direction; and a first opening extending from the circumferential surface of the first tubular portion in the circumferential tangential direction and opening the first outlet at the tip.
  • the first impeller and the second impeller are connected to the rotation shaft of one motor, and the first impeller and the second impeller are covered with the first casing and the second casing, respectively.
  • the ventilation fan which consists of a multiple centrifugal fan is formed.
  • the first impeller and the second impeller are rotated by driving the motor, and the air is sucked into the first casing and the second casing in the axial direction via the first air inlet and the second air inlet.
  • the air that has flowed into the first casing is exhausted in the circumferential tangential direction from the first tubular portion, flows through the first blow-out passage, and is blown out in a predetermined direction from the first blow-out port.
  • the air flowing into the second casing is exhausted from the second tubular part in a direction different from the first blowout passage in the circumferential tangential direction, flows through the second blowout passage, and in a direction different from the second blowout outlet. Blown out.
  • an opening area of the first air outlet is smaller than an opening area of the second air outlet. According to this configuration, the airflow is sent out at a high speed from the first outlet having a small opening area, and the airflow is sent out at a low speed from the second outlet having a larger opening area than the first outlet.
  • the width in the direction perpendicular to the axis of the first outlet is smaller than the width in the direction perpendicular to the axis of the second outlet.
  • the first blowing passage is gradually enlarged in the direction perpendicular to the flow path in the direction perpendicular to the axis, and the first blowing outlet is perpendicular to the axis on the downstream side of the upstream portion.
  • a downstream portion in which the flow path is kept constant or gradually reduced in the direction, and the second blowing passage gradually moves the flow path in the direction perpendicular to the axis between the second tubular portion and the second blow-out opening. It is preferable to be enlarged.
  • the airflow flowing through the first blow-out passage collects kinetic energy at the upstream portion that is gradually expanded in the direction perpendicular to the flow path and is converted into static pressure.
  • the air flow is suppressed in the downstream portion where the flow path is kept constant or gradually reduced, and the flow velocity is reduced.
  • airflow is sent out from the 1st blower outlet with a small opening area at high speed.
  • the airflow flowing through the second blowing passage is gradually enlarged in the direction perpendicular to the axis of the flow path, and kinetic energy is recovered and converted to static pressure until reaching the second blowing outlet.
  • an air current is sent out from a 2nd blower outlet with a larger opening area than a 1st blower outlet at low speed.
  • the present invention in the blower fan configured as described above, includes a disk in which the first impeller and the second impeller are connected to the motor, and blades that are erected radially on both surfaces of the disk, More preferably, the first intake port and the second intake port are provided on both axial surfaces of the first cylindrical portion and the second cylindrical portion, respectively.
  • the present invention provides a circulator that is installed on one side wall of a room or a ceiling wall adjacent to one side wall of the room and circulates the air in the room, from the side closer to the first wall surface horizontally adjacent to the one side wall.
  • a first air outlet, a second air outlet, and a third air outlet that are arranged side by side in order in the horizontal direction are provided, and the first air stream that flows along the ceiling wall and descends along the first wall surface is provided from the first air outlet.
  • the second air stream that is sent out circulates along the ceiling wall and descends along the second wall surface facing the one side wall is sent out from the second air outlet, circulates along the ceiling wall, and faces the first wall surface
  • the third airflow descending along the third wall surface is sent out from the third outlet.
  • the circulator is attached to, for example, one side wall of the room, and the first air outlet, the second air outlet, and the third air outlet are provided in this order from the right toward the room.
  • the first air stream sent to the right from the first air outlet flows along the ceiling wall and descends along the right side wall (first wall surface).
  • the second air stream sent forward from the second outlet flows along the ceiling wall and descends along the side wall (second wall surface) facing the mounting surface.
  • the third air stream sent out from the third outlet toward the left flows along the ceiling wall and descends along the left side wall (third wall surface).
  • the airflow descending the first wall surface, the second wall surface, and the third wall surface flows through the indoor floor surface, rises up the attachment surface, and returns to the circulator.
  • the present invention further includes a blower fan including a centrifugal fan or a once-through fan, and a blower path in which the blower fan is disposed with a rotation axis horizontal, and the blower path is a part of the blower fan.
  • the first air outlet, the second air outlet, and the third air outlet which are divided at the downstream side, have a first divided passage, a second divided passage, and a third divided passage that open to the front end, respectively. It is preferable that the inner wall surface of the three-divided passage is inclined with respect to the vertical plane.
  • the air sent in the circumferential direction from the blower fan that has a rotating shaft arranged horizontally is branched and circulated into the first divided passage, the second divided passage, and the third divided passage.
  • the air flowing through the first division passage is guided, for example, in the right direction along the wall surface inclined with respect to the vertical plane, and the first airflow is sent out from the first outlet.
  • the air flowing through the second divided passage is guided forward, and the second air stream is sent out from the second outlet.
  • the air flowing through the third divided passage is guided, for example, in the left direction along the wall surface inclined with respect to the vertical plane, and the third air stream is sent out from the third outlet.
  • the present invention preferably includes a fourth air outlet that sends out a fourth airflow flowing along one side wall downward.
  • the 4th air current sent out downward from the 4th blower outlet falls along an attachment surface.
  • the circulator includes a fourth air outlet that sends out a fourth airflow directed forward and downward, and the flow rate of the fourth airflow is smaller than that of the second airflow.
  • the 4th airflow sent toward the front lower direction from the 4th blower outlet is directly supplied to indoor living space. At this time, since the flow rate of the fourth air stream is smaller than the flow rate of the second air stream, discomfort caused by the fourth air stream directly hitting the user is suppressed.
  • the present invention provides a housing that opens the suction port and the air outlet, an air passage that is provided in the housing by connecting the air inlet and the air outlet, and is disposed in the air passage in the circumferential direction.
  • a vertical direction expansion part that gradually expands the flow path in the vertical direction of the rotation axis of the blower fan on the side, and a flow path that is gradually expanded in the axial direction of the rotation axis on the downstream side of the vertical expansion part and And an axially enlarged portion that is maintained constant in the vertical direction of the rotation axis or that is gradually reduced.
  • the blower fan is composed of a centrifugal fan or a cross-flow fan, and for example, the rotation shaft is arranged horizontally.
  • the vertical expansion portion on the downstream side of the blower fan is gradually expanded in the vertical direction, recovering the kinetic energy of the airflow and converting it into a static pressure.
  • the axially enlarged portion on the downstream side of the vertically enlarged portion gradually expands in the left-right direction and is constant or reduced in the up-down direction.
  • an air current is sent to the wide range of the left-right direction from a blower outlet, and indoor air circulates.
  • the rotation axis of the blower fan may be arranged inclined with respect to the horizontal, or may be arranged vertically.
  • the present invention is preferably enlarged as the flow path area of the axially enlarged portion becomes downstream. According to this configuration, the kinetic energy of the airflow flowing through the axially enlarged portion is recovered and converted to static pressure.
  • the present invention preferably includes a plurality of divided passages that are divided in the axial direction of the rotating shaft continuously from the vertical enlarged portion and the axial enlarged portion. According to this configuration, the airflow flows along the wall surface of the divided passage and is smoothly spread in the axial direction of the rotating shaft.
  • the casing in the circulator having the above-described configuration, is disposed in the vicinity of an indoor ceiling wall with the rotating shaft disposed horizontally, and the outlet is formed at an upper end of the casing. It is more preferable to send the airflow along the ceiling wall. According to this structure, the airflow sent along the indoor ceiling wall from the blower outlet circulates along the ceiling wall by the Coanda effect, and the reach distance of the airflow can be further increased.
  • the present invention provides the circulator having the above-described configuration, wherein the casing is disposed in the vicinity of an indoor ceiling wall with the rotation shaft disposed horizontally, and the outlet is formed at a lower portion of the casing. It is more preferable to send the airflow upward from the top. According to this configuration, the airflow sent upward from the air outlet reaches the indoor ceiling wall and circulates along the ceiling wall due to the Coanda effect, so that the reach distance of the airflow can be further increased.
  • the circulator of the present invention includes the above-described crossflow type blower fan, and is characterized by sending airflow in a plurality of directions toward the room to circulate the air in the room.
  • circulates a 1st casing is sent out indoors
  • circulates a 2nd casing is sent out in the direction different from the airflow which distribute
  • the air sent into the room circulates in the room and returns to the intake side of the blower fan.
  • the air flow is sent into the room horizontally or forward and upward by the first casing, and the air flow is sent to the room downward by the second casing.
  • the airflow flowing through the first casing is sent into the room horizontally or upwardly and circulates in the room.
  • the airflow flowing through the second casing is sent downward into the room and flows along the wall surface on which the circulator is provided.
  • the circulator of the present invention is characterized in that a blower fan comprising the above-described multiple centrifugal fans is provided in the housing, and air is circulated in a plurality of directions toward the room to circulate the room air.
  • a blower fan comprising the above-described multiple centrifugal fans is provided in the housing, and air is circulated in a plurality of directions toward the room to circulate the room air.
  • circulates a 1st casing is sent out indoors
  • circulates a 2nd casing is sent out in the direction different from the airflow which distribute
  • the air sent into the room circulates in the room and returns to the intake side of the blower fan.
  • the first casing sends an air flow vertically upward or rearward upward from the first air outlet
  • the second casing sends an air current upward from the second air outlet toward the upper front. May be.
  • the airflow flowing through the first casing is blown out along the side wall from the first outlet.
  • the airflow returns to the circulator through the ceiling wall, the side wall facing the circulator, and the floor surface.
  • the airflow flowing through the second casing is sent from the second air outlet toward the indoor living space, and returns to the circulator through the floor surface.
  • the first casing sends an air flow from the first air outlet toward the front or the front upper side
  • the second casing causes the air current to flow from the second air outlet toward the front lower side in the room. It may be sent out.
  • the airflow flowing through the first casing is blown out from the first outlet along the ceiling wall.
  • the airflow returns to the circulator through the side wall facing the circulator, the floor, and the side wall on which the circulator is arranged.
  • the airflow flowing through the second casing is sent from the second air outlet toward the indoor living space, and returns to the circulator through the floor surface and the side wall on which the circulator is arranged.
  • a first air outlet and a second air outlet are provided on one surface of the casing, and the installation surface facing the one surface is in contact with the indoor floor surface and is installed on the floor surface.
  • the installation surface can be installed on the side wall in contact with the side wall of the room.
  • the present invention may include a HEPA filter that collects dust of air flowing into the first casing and the second casing. According to this configuration, air from which dust has been removed by the HEPA filter is sent out indoors. Although the pressure loss is increased by the HEPA filter, the blowing efficiency is prevented from being lowered by the blowing fan formed by the centrifugal fan having a high static pressure.
  • the present invention also relates to a microparticle diffusion device that has a microparticle generator that generates microparticles and that is installed on one side wall of a room or a ceiling wall close to one side wall of a room to send microparticles into the room.
  • the first air outlet, the second air outlet, and the third air outlet are arranged in the horizontal direction in order from the side closest to the first wall surface horizontally adjacent to the one side wall, and circulate along the ceiling wall.
  • a first airflow descending along the first wall surface is sent out from the first air outlet, and a second airflow flowing along the ceiling wall and descending along the second wall surface facing the one side wall is sent to the second air outlet.
  • the third airflow is sent from the third blowout port and is sent along the ceiling wall and descends along the third wall surface facing the first wall surface.
  • the microparticle diffusion device is attached to, for example, one side wall of the room, and air containing microparticles is sent into the room.
  • the first air stream sent to the right from the first air outlet flows along the ceiling wall and descends along the right side wall (first wall surface).
  • the second air stream sent forward from the second outlet flows along the ceiling wall and descends along the side wall (second wall surface) facing the mounting surface.
  • the third air stream sent out from the third outlet toward the left flows along the ceiling wall and descends along the left side wall (third wall surface).
  • the airflow descending the first wall surface, the second wall surface, and the third wall surface flows through the floor surface in the room, rises on the attachment surface, and returns to the fine particle diffusion device.
  • the airflow containing microparticles circulates along the wall surface of the room, and the microparticles diffuse gently into the living space in the center of the room. Since the first, second, and third airflows travel along the wall surface by the Coanda effect, the kinetic energy taken away by the indoor air is suppressed, and the reach of the airflow can be increased.
  • the present invention provides a housing that opens the suction port and the air outlet, an air passage that is provided in the housing by connecting the air inlet and the air outlet, and is disposed in the air passage in the circumferential direction.
  • the blower path has a vertical enlargement part that gradually enlarges the flow path in the direction perpendicular to the rotation axis of the blower fan on the downstream side of the blower fan, and the vertical enlargement And an axially enlarged portion that gradually expands in the axial direction of the rotating shaft and maintains or gradually reduces the flow path in the vertical direction of the rotating shaft.
  • the blower fan is composed of a centrifugal fan or a cross-flow fan, and for example, the rotation shaft is arranged horizontally.
  • the vertical expansion portion on the downstream side of the blower fan is gradually expanded in the vertical direction, recovering the kinetic energy of the airflow and converting it into a static pressure.
  • the axially enlarged portion on the downstream side of the vertically enlarged portion gradually expands in the left-right direction and is constant or reduced in the up-down direction.
  • the rotation axis of the blower fan may be arranged inclined with respect to the horizontal, or may be arranged vertically.
  • a fine particle diffusion device of the present invention includes the cross-flow type blower fan and a fine particle generation device that generates fine particles, and sends an air flow containing the fine particles in a plurality of directions toward the room. It is characterized by diffusing fine particles.
  • the fine particles generated by the fine particle generator are included in the airflow flowing through the first casing and the second casing. The airflow flowing through the first casing is sent out indoors, and the airflow flowing through the second casing is sent out in a different direction from the airflow flowing through the first casing. Thereby, microparticles are diffused in the room.
  • the air flow is sent into the room horizontally or forward and upward by the first casing, and the air flow is sent to the room downward by the second casing.
  • the airflow that circulates through the first casing is sent into the room horizontally or forward and upward, and microparticles are diffused into the room.
  • the airflow flowing through the second casing is sent downward into the room, flows along the wall surface on which the microparticle diffusion device is provided, and microparticles are supplied downward.
  • the fine particle diffusing device of the present invention includes a fine particle generating device that generates fine particles in the circulator having the multiple centrifugal fans, and sends an air flow including the fine particles in a plurality of directions toward the room. It is characterized by diffusing fine particles.
  • the fine particles generated by the fine particle generator are included in the airflow flowing through the first casing and the second casing. The airflow flowing through the first casing is sent out indoors, and the airflow flowing through the second casing is sent out in a different direction from the airflow flowing through the first casing. Thereby, microparticles are diffused in the room.
  • the fine particles generated by the fine particle generator may include any of ions, fragrances, deodorants, insecticides, and bactericides.
  • the present invention is also directed to an air circulation method in which indoor air is circulated by a circulator installed in the vicinity of a corner between one side wall and a ceiling wall of the room, wherein the circulator is disposed on the first wall surface horizontally adjacent to the one side wall.
  • a first air outlet, a second air outlet, and a third air outlet that are juxtaposed in the horizontal direction in order from the nearest one are provided, and the first airflow that flows along the ceiling wall and descends along the first wall surface is first.
  • a second air stream that is sent out from the air outlet flows along the ceiling wall, and descends along the second wall surface facing the one side wall is sent out from the second air outlet, and flows along the ceiling wall to be the first.
  • the third airflow descending along the third wall surface facing the wall surface is sent out from the third air outlet.
  • a first air outlet, a second air outlet, and a third air outlet that are juxtaposed in the horizontal direction are provided, and the first airflow that flows along the ceiling wall and descends along the first wall surface is provided.
  • a second air stream that is sent out from the first outlet, circulates along the ceiling wall, and descends along the second wall surface facing the one side wall is sent out from the second outlet and circulated along the ceiling wall.
  • a third airflow descending along the third wall surface facing the one wall surface is sent out from the third air outlet.
  • the first, second, and third airflows travel along the wall surface by the Coanda effect, the kinetic energy taken away by the indoor air is suppressed, and the reach of the airflow can be increased. Therefore, it is possible to save power, and since airflow is not directly supplied to the living space, user discomfort can be reduced and indoor air can be circulated sufficiently.
  • the vertical expansion section gradually expands the flow path in the vertical direction of the rotation axis of the blower fan, and the axial expansion section moves the flow path on the downstream side of the vertical expansion section of the rotation axis of the blower fan. Since it gradually expands in the axial direction and is maintained constant or gradually contracts in the vertical direction, non-uniform flow rate due to the centrifugal force of the blower fan can be prevented.
  • the airflow is spread in the axial direction by suppressing the speed reduction of the airflow at the axial expansion portion. Thereby, power saving can be achieved and the reach of the airflow can be increased. Therefore, indoor air can be circulated sufficiently.
  • the fine particle diffusing apparatus of the present invention power saving can be achieved and the fine particles can be sufficiently diffused in the room.
  • airflow is not directly supplied to the living space, user discomfort can be reduced.
  • the first and second casings covering the impeller of the crossflow type blower fan are arranged side by side in the axial direction of the impeller, and the blowing direction of the airflow passing through each of them is different.
  • the airflow can be sent out in the direction of. Further, since the air flow is not bent suddenly, the pressure loss can be prevented from being lowered, and the blowing efficiency can be improved and the noise can be reduced.
  • the first and second impellers arranged coaxially are driven by one motor.
  • a direction in which the first blowing passage extends from the circumferential surface of the first cylindrical portion covering the first impeller and a direction in which the second blowing passage extends from the circumferential surface of the second cylindrical portion covering the second impeller are circumferential.
  • the direction of the airflow blown out from the first air outlet differs from the direction of the airflow blown out from the second air outlet.
  • the perspective view which looked at the microparticle diffusion apparatus of a 1st embodiment of the present invention from the upper part The perspective view which looked at the microparticle diffusion apparatus of a 1st embodiment of the present invention from the lower part
  • the front view of the microparticle diffusion apparatus of 1st Embodiment of this invention Side sectional view of the AA section of FIG. 3 is a cross-sectional top view taken along line BB in FIG.
  • Side surface sectional drawing of the microparticle diffusion apparatus of 2nd Embodiment of this invention Side surface sectional drawing of the microparticle diffusion apparatus of 3rd Embodiment of this invention.
  • the front view of the microparticle diffusion apparatus of 5th Embodiment of this invention 12 is a side sectional view taken along the line DD in FIG.
  • Side sectional view of the EE cross section of FIG. 12 is a cross-sectional top view taken along the line CC of FIG.
  • FIG. 1 are a perspective view of the microparticle diffusion device of the first embodiment as viewed from above, a perspective view and a front view as viewed from below.
  • the fine particle diffusion device 1 is covered with a housing 2 and is arranged in the vicinity of a corner between one side wall S and a ceiling wall T (see FIG. 4).
  • the housing 2 may be attached to the side wall S, or may be attached to the ceiling wall T in the vicinity of the side wall S.
  • a suction port 5 opens on the lower surface of the housing 2.
  • a filter 6 is disposed at the suction port 5.
  • a first air outlet 4a, a second air outlet 4b, and a third air outlet 4c are juxtaposed in the horizontal direction on the front upper portion of the housing 2 in order from the right toward the room.
  • the 1st blower outlet 4a, the 2nd blower outlet 4b, and the 3rd blower outlet 4c are provided in the upper end of the housing
  • the first air outlet 4a sends air from the housing 2 to the right
  • the second air outlet 4b sends air from the housing 2 to the front
  • the third air outlet 4c is the housing. Air is sent from 2 to the left.
  • blower path 10 that connects the first air outlet 4 a, the second air outlet 4 b, the third air outlet 4 c, and the suction port 5 is provided inside the housing 2, a blower path 10 that connects the first air outlet 4 a, the second air outlet 4 b, the third air outlet 4 c, and the suction port 5 is provided inside the housing 2, a blower path 10 that connects the first air outlet 4 a, the second air outlet 4 b, the third air outlet 4 c, and the suction port 5 is provided inside the housing 2, a blower path 10 that connects the first air outlet 4 a, the second air outlet 4 b, the third air outlet 4 c, and the suction port 5 is provided inside the housing 2, a blower path 10 that connects the first air outlet 4 a, the second air outlet 4 b, the third air outlet 4 c, and the suction port 5 is provided inside the housing 2, a blower path 10 that connects the first air outlet 4 a, the second air outlet 4 b, the third air outlet 4
  • a plurality of first divided passages 10a, second divided passages 10b, and third divided passages 10c divided in the horizontal direction on the downstream side of the blower fan 8 are provided in the blower passage 10 in order.
  • the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c have a first outlet 4a, a second outlet 4b, and a third outlet 4c opened at the front ends, respectively.
  • the inner side wall 10e and the outer side wall 10f of the first divided passage 10a and the third divided passage 10c are formed by curved surfaces inclined with respect to the vertical plane.
  • a vertical expansion portion 11 and an axial expansion portion 12 are formed on the downstream side of the blower fan 8, respectively.
  • the vertical expansion unit 11 gradually expands the flow path in the vertical direction of the rotation axis of the blower fan 8.
  • the axially expanding portion 12 gradually expands the flow path in the axial direction of the rotation axis of the blower fan 8 and gradually decreases in the vertical direction on the downstream side of the vertical expanding portion 11.
  • the flow path area of the axial direction expansion part 12 is expanded so that it becomes downstream.
  • the first divided passage 10 a, the second divided passage 10 b, and the third divided passage 10 c are formed continuously with the vertical direction enlarged portion 11 and the axial direction enlarged portion 12.
  • the electrodes 7a and 7b of the fine particle generator 7 are arranged so as to be exposed in the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c.
  • the electrode 7a and the electrode 7b are respectively partitioned by a partition wall 10d in the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c.
  • a voltage having an AC waveform or an impulse waveform is applied to the electrodes 7a and 7b.
  • a positive voltage is applied to the electrode 7a, and ions generated by ionization combine with moisture in the air to form positive cluster ions mainly composed of H + (H 2 O) m.
  • a negative voltage is applied to the electrode 7b, and ions generated by ionization combine with moisture in the air to form negatively clustered ions mainly composed of O 2 ⁇ (H 2 O) n.
  • m and n are arbitrary natural numbers.
  • H + (H 2 O) m and O 2 ⁇ (H 2 O) n aggregate on the surface of airborne bacteria and odorous components and surround them. Then, as shown in the formulas (1) to (3), the active species [.OH] (hydroxyl radical) or H 2 O 2 (hydrogen peroxide) is allowed to collide with the surface of floating bacteria, odorous components, etc. Aggregate to break them.
  • m ′ and n ′ are arbitrary natural numbers. Therefore, indoor sterilization and odor removal can be performed by generating positive ions and negative ions and discharging them from the first air outlet 4a, the second air outlet 4b, and the third air outlet 4c.
  • the fine particle diffusion device 1 configured as described above, when the blower fan 8 and the fine particle generator 7 are driven, indoor air is taken into the housing 2 from the suction port 5. The air taken into the housing 2 is collected by the filter 6 and flows through the air blowing path 10 and is guided to the air blowing fan 8.
  • Exhaust air from the blower fan 8 is branched into a first divided passage 10a, a second divided passage 10b, and a third divided passage 10c, and is led to the first outlet 4a, the second outlet 4b, and the third outlet 4c, respectively.
  • the rotation axis of the blower fan 8 is arranged vertically, the air flow becomes uneven in the left-right direction due to centrifugal force.
  • the rotational axis of the blower fan 8 can be horizontally arranged to make the airflow in the left-right direction uniform.
  • the inner side wall 10e of the first divided passage 10a and the third divided passage 10c is inclined with respect to the vertical plane, the airflow straightly traveling in the circumferential tangential direction from the blower fan 8 can be easily curved.
  • the flow path is expanded in the vertical direction by the vertical expansion section 11 and the flow path is expanded in the left-right direction by the axial expansion section 12.
  • the influence of the centrifugal force of the blower fan 8 exhausted in the circumferential direction is large.
  • the kinetic energy of the airflow is recovered and converted into a static pressure by expanding the flow path in the vertical direction by the vertical expansion unit 11, and the static pressure is increased.
  • the ventilation capability of the microparticle diffusion apparatus 1 can be improved.
  • the width in the left-right direction of the flow path may be made constant by the vertical enlargement unit 11 or may be slightly reduced. At this time, the flow path area is gradually expanded toward the downstream.
  • the axial expansion section 12 expands the flow path in the left-right direction with the centrifugal force of the blower fan 8 weakened, the airflow can be smoothly curved and expanded in the left-right direction without increasing the pressure loss. Moreover, since the flow path is restricted in the vertical direction, the airflow can be more smoothly spread in the left-right direction, and the speed reduction of the airflow can be suppressed. At this time, since the flow path area of the axially expanded portion 12 increases as it becomes downstream, the kinetic energy can also be recovered and converted into static pressure in the axially expanded portion 12 to increase the static pressure. In addition, the vertical width of the flow path may be maintained constant by the axially enlarged portion 12, or the flow path area may be maintained constant.
  • the air flow flowing through the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c includes positive ions and negative ions by the microparticle generator 7. Thereby, the airflow containing a positive ion and a negative ion is sent out from the 1st blower outlet 4a, the 2nd blower outlet 4b, and the 3rd blower outlet 4c.
  • FIG. 6 shows the state of the airflow in the room D sent out from the microparticle diffusion device 1.
  • the first airflow A1 sent to the right from the first outlet 4a flows along the ceiling wall T and descends along the right side wall (first wall surface P1).
  • the second airflow A2 sent forward from the second outlet 4b flows along the ceiling wall T and along the side wall (second wall surface P2) facing the side wall S on which the microparticle diffusion device 1 is arranged. Descent.
  • the third airflow A3 sent to the left from the third outlet 4c flows along the ceiling wall T and descends along the left side wall (third wall surface P3).
  • the airflow descending the first wall surface P1, the second wall surface P2, and the third wall surface P3 flows through the indoor floor surface F, rises along the side wall S, and returns to the suction port 5 of the microparticle diffusion device 1.
  • airflow circulates along each wall surface in a room, and it can spread ions to every corner of a room.
  • ions gradually diffuse into the living space in the center of the room due to the airflow flowing along the wall surface. Since the first, second, and third airflows A1, A2, and A3 travel along the wall surface due to the Coanda effect, kinetic energy taken away by indoor air is suppressed. Thereby, power consumption can be suppressed and the reach
  • the polarity of ions generated by the electrodes 7a and 7b may be switched every predetermined period. That is, positive ions are generated from the electrode 7a and negative ions are generated from the electrode 7b. When a predetermined period elapses, negative ions are generated from the electrode 7a and positive ions are generated from the electrode 7b. When a predetermined time further elapses, positive ions are generated from the electrode 7a and negative ions are generated from the electrode 7b, and this operation is repeated.
  • positive ions and negative ions are alternately sent to the left end and the right end of the air flow that is sent to the left and right of the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c. Therefore, positive ions and negative ions can be distributed at a high concentration over a wide range in the left-right direction in the room.
  • the first air outlet 4a, the second air outlet 4b, and the third air outlet 4c arranged side by side in the horizontal direction are provided, circulate along the ceiling wall T, and descend along the first wall surface P1.
  • the first air flow A1 is sent out from the first air outlet 4a
  • the second air flow A2 flowing along the ceiling wall T and descending along the second wall surface P2 facing the side wall S is sent out from the second air outlet.
  • the third air flow A3 that flows along the ceiling wall T and descends along the third wall surface P3 facing the first wall surface P1 is sent out from the third air outlet 4c.
  • the kinetic energy taken away by the indoor air is suppressed. That is, when the airflow does not follow the ceiling wall T, the upper side of the airflow attracts ambient air (air between the ceiling wall T and the airflow), and the surrounding air loses kinetic energy and is damaged. When the airflow is along the ceiling wall T, the kinetic energy is lost due to the frictional resistance of the wall surface, but is generally much smaller than the kinetic energy lost when the airflow does not follow the ceiling wall T. In the conventional air conditioner described in the above-mentioned Patent Document 2, the kinetic energy is deprived by the surrounding air because the air flow is not along the ceiling wall T, and the reach distance of the air flow is shortened accordingly.
  • this embodiment can increase the reach of the air current and spread ions to every corner of the room. Therefore, it is possible to save power, and since airflow is not directly supplied to the living space, user discomfort can be reduced and ions can be sufficiently diffused into the room.
  • the rotation axis of the blower fan 8 composed of a centrifugal fan or a cross-flow fan is horizontally arranged, and the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c in which the blower passage 10 is divided on the downstream side of the blower fan. Since the inner side wall 10e of the first divided passage 10a and the third divided passage 10c is inclined with respect to the vertical plane, the air flow is made uniform in the left-right direction and the air flow straight in the circumferential tangential direction is easily obtained. Can be curved.
  • the vertical expansion unit 11 gradually expands the flow path in the direction perpendicular to the rotation axis of the blower fan 8, and the axial expansion unit 12 moves the flow path downstream of the vertical expansion unit 11 to the rotation axis of the blower fan 8. It gradually expands in the axial direction and gradually decreases in the vertical direction. Thereby, the non-uniformity of the flow rate due to the centrifugal force of the blower fan 8 can be prevented, and the airflow can be spread in the axial direction of the rotation shaft of the blower fan 8.
  • the flow passage area is not restricted by the vertically enlarged portion 11 immediately after the blower fan 8
  • the kinetic energy of the airflow is sufficiently recovered to increase the static pressure.
  • the axial direction expansion part 12 suppresses the speed reduction of the air current, and the air current is expanded in the axial direction.
  • the reach distance of the airflow can be increased without increasing the rotational speed of the blower fan 8. Therefore, power saving and noise reduction of the fine particle diffusion device 1 can be achieved, and ions can be sufficiently diffused into the room.
  • the influence of the centrifugal force of the blower fan 8 is large, and even if the width in the left-right direction of the flow path is gradually widened, not only the effect of spreading the airflow to the left and right is lowered, but rather May be reduced. For this reason, the width in the left-right direction of the flow path may be kept constant by the vertical enlargement unit 11 or may be slightly reduced. Moreover, you may maintain the width
  • the kinetic energy can also be collected and converted into static pressure in the axially expanded portion 12 to further increase the static pressure.
  • the flow path area may be kept constant by the axially enlarged portion 12. At this time, the recovery of the kinetic energy in the axial expansion portion 12 is reduced, but the static pressure can be increased more than in the conventional case by the recovery of the kinetic energy in the vertical expansion portion 11.
  • first divided passages 10a, second divided passages 10b, and third divided passages 10c that are divided in the axial direction of the blower fan 8 continuously from the vertical direction enlarged portion 11 and the axial direction enlarged portion 12,
  • the airflow can flow along the wall surfaces of the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c, and the airflow can be smoothly spread in the axial direction of the blower fan 8.
  • the rotation axis of the blower fan 8 is horizontally arranged, the casing 2 is arranged in the vicinity of the ceiling wall T in the room, and the first outlet 4a, the second outlet 4b, and the third outlet 4c are connected to the casing 2.
  • the airflow is sent out along the ceiling wall T.
  • the airflow sent out along the ceiling wall T distribute
  • FIG. 7 shows a side sectional view of the microparticle diffusion device of the second embodiment.
  • the same parts as those in the first embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals.
  • the first air outlet 4 a, the second air outlet 4 b, and the third air outlet 4 c that are horizontally arranged in the same manner as in the first embodiment open in the lower front surface of the housing 2.
  • the suction port 5 opens on the upper surface of the housing 2.
  • Other parts are the same as those in the first embodiment.
  • the case 2 of the fine particle diffusion device 1 is attached to the one side wall S of the room with a predetermined gap H between the case 2 and the ceiling wall T.
  • the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c are inclined upward by a predetermined angle with respect to the horizontal. Thereby, after the first airflow A1, the second airflow A2, and the third airflow A3 reach the ceiling wall T, they circulate along the ceiling wall T.
  • 1st airflow A1 sent toward the right from the 1st blower outlet 4a distribute
  • the second airflow A2 sent forward from the second outlet 4b flows along the ceiling wall T and faces the side wall S on which the microparticle diffusion device 1 is disposed (second wall surface P2 (FIG. 6).
  • D) Follow d).
  • the third airflow A3 sent to the left from the third outlet 4c flows along the ceiling wall T and descends along the left side wall (third wall surface P3 (see FIG. 6)).
  • the airflow descending the first wall surface P1, the second wall surface P2, and the third wall surface P3 flows through the floor F in the room, rises along the side wall S, and the suction port 5 from the side of the microparticle diffusion device 1.
  • the first, second, and third airflows A1, A2, and A3 travel along the wall surface by the Coanda effect, so that the kinetic energy taken away by the indoor air is suppressed. Is done. For this reason, the reach
  • the fine particle diffusion device 1 of the first embodiment may be attached to the side wall S with a predetermined gap H from the ceiling wall T. Then, similarly to the present embodiment, the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c are inclined upward by a predetermined angle with respect to the horizontal. Accordingly, the first airflow A1, the second airflow A2, and the third airflow A3 can be distributed along the ceiling wall T after reaching the ceiling wall T.
  • FIG. 8 shows a side sectional view of the microparticle diffusion device of the third embodiment.
  • the same parts as those in the first embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals.
  • a lower passage 13 that is exhausted downward from the blower fan 8 is provided.
  • Other parts are the same as those in the first embodiment.
  • a part of the housing of the blower fan 8 extends downward at both ends in the axial direction, and opens the fourth outlet 4 d on the lower surface of the housing 2.
  • the 4th airflow A4 sent out from the 4th blower outlet 4d falls along the side wall S where the microparticle diffusion apparatus 1 is arranged.
  • the flow rate of the fourth air stream A4 is smaller than the flow rate of the second air stream A2, and is, for example, about 10% of the flow rate of the second air stream A2.
  • the fourth airflow A4 sent out from the fourth outlet 4d descends along the side wall S.
  • the flow rate of the fourth air stream A4 is smaller than the flow rate of the second air stream A2, and is, for example, about 10% or less of the flow rate of the second air stream A2. Since the first, second, and third airflows A1, A2, and A3 return to the suction port 5 through the entire room, ions near the side wall S may be insufficient. Therefore, the fourth air flow A4 descends the side wall S to replenish ions in the vicinity of the side wall, and returns to the suction port 5 together with the first, second, and third air currents A1, A2, and A3 that ascend the side wall S.
  • the fourth air outlet 4d that sends out the fourth airflow A4 along the side wall S on which the microparticle diffusion device 1 is disposed is provided, ions in the vicinity of the side wall S can be replenished.
  • the fourth airflow A4 becomes resistance to the first, second, and third airflows A1, A2, and A3 returning to the suction port 5.
  • the flow rate of the fourth airflow A4 is smaller than the flow rate of the second airflow A2, resistance due to the fourth airflow A4 can be suppressed.
  • FIG. 9 shows a side sectional view of the microparticle diffusion device of the fourth embodiment.
  • the same parts as those in the first embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals.
  • the second divided passage 10b is further branched at the front end. Other parts are the same as those in the first embodiment.
  • a wedge-shaped partition plate 13 spreading forward is provided at the front end of the second divided passage 10b. Thereby, the 2nd blower outlet 4b is formed above the partition plate 13, and the 4th blower outlet 4d is formed below.
  • the second airflow A2 sent from the second outlet 4b flows in the same manner as in the first embodiment.
  • 4th airflow A4 sent out from the 4th blower outlet 4d is sent out to the front lower direction toward the living space of the central part of a room.
  • the flow rate of the fourth air stream A4 is smaller than the flow rate of the second air stream A2, and is, for example, about 10% or less of the flow rate of the second air stream A2.
  • the fourth airflow A4 supplements ions in the indoor living space, joins the second airflow A2 on the floor F, and returns to the suction port 5.
  • the fourth air outlet 4d that sends out the fourth airflow A4 heading forward and downward is provided, ions in the living space in the center of the room can be replenished. At this time, there is a possibility that the fourth air flow A4 directly hits the user, but since the flow rate of the fourth air flow A4 is smaller than the flow rate of the second air flow A2, the user's discomfort can be suppressed.
  • FIG. 10, FIG. 11 and FIG. 12 are a perspective view of the microparticle diffusion device of the fifth embodiment as seen from above, a perspective view and a front view as seen from below.
  • the same parts as those in the first embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals.
  • the fine particle diffusing apparatus 1 is covered with a housing 2 and installed on a side wall S in the vicinity of a corner between one side wall S and a ceiling wall T (see FIG. 4).
  • a predetermined gap H is provided between the housing 2 and the ceiling wall T (see FIG. 13).
  • a first suction port 5a is opened on the lower surface of the housing 2, and a second suction port 5b is opened on both sides of the upper surface.
  • Filters 6 are disposed in the first suction port 5a and the second suction port 5b, respectively.
  • a first air outlet 4a, a second air outlet 4b, and a third air outlet 4c are juxtaposed in the horizontal direction on the front upper portion of the housing 2 in order from the right toward the room.
  • the 4th blower outlet 4d opens in the both sides of the lower surface of the housing
  • the 1st blower outlet 4a, the 2nd blower outlet 4b, and the 3rd blower outlet 4c are provided in the upper end of case 2, and send out the air which flows along ceiling wall T (refer to Drawing 13).
  • the first air outlet 4a sends air from the housing 2 to the right
  • the second air outlet 4b sends air forward from the housing 2
  • the third air outlet 4c is the housing. Air is sent from 2 to the left.
  • the 4th blower outlet 4d sends out air toward the downward direction.
  • a blower fan 30 including a cross flow fan (cross-flow fan) is disposed in the housing 2.
  • the blower fan 30 is formed by covering a crossflow impeller 33 with a first casing 31 and a second casing 32.
  • the impeller 33 is rotationally driven by a fan motor 33a (see FIG. 10), and the rotation shaft is arranged horizontally.
  • the blower fan 30 draws air from the circumferential direction of the impeller 33 and exhausts it in the circumferential direction by driving the fan motor 33a.
  • the first casing 31 and the second casing 32 are juxtaposed in the axial direction of the impeller 33, and the second casing 32 is disposed on both sides of the first casing 31.
  • a first air passage 10 through which air flowing from the first suction port 5a flows and a second air passage 20 through which air flowing from the second suction port 5b circulates are provided.
  • An air flow path on the downstream side of the impeller 33 in the first blower path 10 is formed by the first casing 31, and an air flow path on the downstream side of the impeller 33 in the second blower path 20 is formed by the second casing 32. .
  • the first casing 31 has a first intake-side opening 31a opened at one end, and an approximately half circumference of the impeller 33 is disposed so as to protrude from the first intake-side opening 31a.
  • a gap between the impeller 33 and the first casing 31 is formed in the minimum in the vicinity of the first intake side opening 31a.
  • the flow passage area on the upstream side of the impeller 33 in the first air blowing path 10 is larger than the first intake side opening 31a.
  • the wall surface of the first casing 31 is curved with a predetermined curvature, and the first air outlet 4a, the second air outlet 4b, and the third air outlet 4c are opened at the tip. Thereby, the 1st ventilation path 10 which connected the 1st blower outlet 4a, the 2nd blower outlet 4b, the 3rd blower outlet 4c, and the 1st suction inlet 5a is formed.
  • the second casing 32 is provided with a second intake side opening 32a at one end, and approximately half of the circumference of the impeller 33 projects from the second intake side opening 32a. A gap between the impeller 33 and the second casing 32 is formed in the vicinity of the second intake side opening 32a.
  • the flow passage area on the upstream side of the impeller 33 of the second air blowing path 20 is larger than the second intake side opening 32a.
  • the wall surface of the second casing 32 is curved with a predetermined curvature, and the fourth outlet 4d opens at the tip. Thereby, the 2nd ventilation path 20 which connected the 4th blower outlet 4d and the 2nd suction inlet 5b is formed.
  • the vicinity of the first intake side opening 31a of the first casing 31 is rotationally moved by a predetermined angle ⁇ around the rotation center from the second intake side opening 32a of the second casing 32 when viewed in the axial direction. Matches the shape. Thereby, the opening surface of the first intake side opening 31a and the opening surface of the second intake side opening 32a are arranged at different angles in the circumferential direction.
  • the 1st casing 31 and the 2nd casing 32 are formed in the optimal shape for the ventilation fan 30 which consists of a cross flow fan, and the flow path of the exhaust side of the 1st ventilation path 10 and the 2nd ventilation path 20 is formed. Can do. Thereby, the airflow which distribute
  • FIG. 15 is a top sectional view taken along the line CC of FIG.
  • a plurality of first divided passages 10a, second divided passages 10b, and third divided passages 10c divided in the horizontal direction on the downstream side of the blower fan 30 are provided in the first blower passage 10 in order.
  • the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c have a first outlet 4a, a second outlet 4b, and a third outlet 4c opened at the front ends, respectively.
  • the inner side wall 10e and the outer side wall 10f of the first divided passage 10a and the third divided passage 10c are formed by curved surfaces inclined with respect to the vertical plane.
  • a vertical expansion portion 11 and an axial expansion portion 12 are formed on the downstream side of the blower fan 30, respectively.
  • the vertical expansion unit 11 gradually expands the flow path in the vertical direction of the rotation axis of the blower fan 30.
  • the axial enlargement unit 12 gradually expands the flow path in the axial direction of the rotating shaft of the blower fan 30 and gradually reduces in the vertical direction on the downstream side of the vertical expansion unit 11. Further, the axially enlarged portion 12 is inclined upward by a predetermined angle with respect to the horizontal.
  • the flow path area of the axial direction expansion part 12 is expanded so that it becomes downstream.
  • the first divided passage 10 a, the second divided passage 10 b, and the third divided passage 10 c are formed continuously with the vertical direction enlarged portion 11 and the axial direction enlarged portion 12.
  • the electrodes 7a and 7b of the microparticle generator 7 similar to the above are exposed and arranged in the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c.
  • the electrode 7a and the electrode 7b are respectively partitioned by a partition wall 10d in the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c. Further, as shown in FIG. 13 described above, the same fine particle generator 7 is also disposed in the second air passage 20 with the electrodes 7a and 7b exposed.
  • the airflow flowing through the second casing 20 of the second air passage 20 is blown out downward and rearward from the fourth outlet 4d. And it flows down along the side wall S to which the microparticle diffusion apparatus 1 is attached.
  • the airflow flowing through the first casing 31 of the first air passage 10 branches into the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c. And each airflow is guide
  • the rotational axis of the blower fan 30 can be horizontally arranged to make the airflow in the left-right direction uniform.
  • the inner side walls 10e of the first divided passage 10a and the third divided passage 10c are inclined with respect to the vertical plane, the airflow straightly traveling in the circumferential tangential direction from the blower fan 30 can be easily curved.
  • the flow path is expanded in the vertical direction by the vertical expansion section 11 and the flow path is expanded in the left-right direction by the axial expansion section 12.
  • the influence of the centrifugal force of the blower fan 30 exhausted in the circumferential direction is large. For this reason, since the airflow proceeds in a direction perpendicular to the rotation axis of the blower fan 30, it is not desirable to spread it to the left and right.
  • the vertical enlargement unit 11 By enlarging the flow path in the vertical direction by the vertical enlargement unit 11, the kinetic energy of the airflow is recovered and converted into static pressure, and the static pressure is increased. Thereby, the ventilation capability of the microparticle diffusion apparatus 1 can be improved.
  • the width in the left-right direction of the flow path may be made constant by the vertical enlargement unit 11 or may be slightly reduced. At this time, the flow path area is gradually expanded toward the downstream.
  • the axial direction expansion section 12 expands the flow path in the left-right direction with the centrifugal force by the blower fan 30 weakened, the airflow can be smoothly curved and expanded in the left-right direction without increasing the pressure loss. Moreover, since the flow path is restricted in the vertical direction, the airflow can be more smoothly spread in the left-right direction, and the speed reduction of the airflow can be suppressed. At this time, since the flow path area of the axially expanded portion 12 increases as it becomes downstream, the kinetic energy can also be recovered and converted into static pressure in the axially expanded portion 12 to increase the static pressure. In addition, the vertical width of the flow path may be maintained constant by the axially enlarged portion 12, or the flow path area may be maintained constant.
  • the airflow flowing through the first air passage 10 and the second air passage 20 includes positive ions and negative ions by the microparticle generator 7. Thereby, the airflow containing a positive ion and a negative ion is sent out from the 1st blower outlet 4a, the 2nd blower outlet 4b, the 3rd blower outlet 4c, and the 4th blower outlet 4d.
  • FIG. 16 shows the state of the airflow in the room D sent out from the fine particle diffusion device 1.
  • the first airflow A1 sent to the right from the first outlet 4a flows along the ceiling wall T and descends along the right side wall (first wall surface P1).
  • the second airflow A2 sent forward from the second outlet 4b flows along the ceiling wall T and along the side wall (second wall surface P2) facing the side wall S on which the microparticle diffusion device 1 is arranged. Descent.
  • the third airflow A3 sent to the left from the third outlet 4c flows along the ceiling wall T and descends along the left side wall (third wall surface P3).
  • the flow rate of the fourth air stream A4 sent out from the 4th blower outlet 4d falls along the side wall S where the microparticle diffusion apparatus 1 is arranged.
  • the flow rate of the fourth air stream A4 is smaller than the flow rate of the second air stream A2, and is, for example, about 10% of the flow rate of the second air stream A2.
  • the airflow descending the first wall surface P1, the second wall surface P2, and the third wall surface P3 flows through the indoor floor surface F, rises along the side wall S, and returns to the first suction port 5a of the microparticle diffusion device 1.
  • a part of the air in the room returns from above the fine particle diffusion device 1 to the second suction port 5b.
  • airflow circulates along each wall surface in a room, and it can spread ions to every corner of a room.
  • ions gradually diffuse into the living space in the center of the room due to the airflow flowing along the wall surface. Since the first, second, and third airflows A1, A2, and A3 travel along the wall surface due to the Coanda effect, kinetic energy taken away by indoor air is suppressed.
  • first, second, and third airflows A1, A2, and A3 return to the first suction port 5a through the entire room, ions near the side wall S may be insufficient. For this reason, 4th airflow A4 can descend
  • the polarity of ions generated by the electrodes 7a and 7b may be switched every predetermined period. That is, positive ions are generated from the electrode 7a and negative ions are generated from the electrode 7b. When a predetermined period elapses, negative ions are generated from the electrode 7a and positive ions are generated from the electrode 7b. When a predetermined time further elapses, positive ions are generated from the electrode 7a and negative ions are generated from the electrode 7b, and this operation is repeated.
  • positive ions and negative ions are alternately sent to the left end and the right end of the air flow that is sent to the left and right of the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c. Therefore, positive ions and negative ions can be distributed at a high concentration over a wide range in the left-right direction in the room.
  • the first and second casings 31 and 32 that cover the impeller 33 of the blower fan 30 are juxtaposed in the axial direction of the impeller 33, and the blowing direction of the airflow that passes through each of them is different.
  • the airflow can be sent out in a plurality of directions. Therefore, ions can be easily distributed to every corner of the room. Further, since the air flow is not bent suddenly, the pressure loss can be prevented from being lowered, and the blowing efficiency can be improved and the noise can be reduced.
  • the first casing 31 extends at the exhaust side of the impeller 33 by opening the first intake side opening 31a from which the impeller 33 projects at one end, and the second casing 32 is the second intake side from which the impeller 33 projects.
  • the opening 32 a is opened at one end and extends to the exhaust side of the impeller 33.
  • the opening surface of the first intake side opening 31 a and the opening surface of the second intake side opening 32 a are arranged at different angles in the circumferential direction of the impeller 33.
  • the 1st, 2nd casings 31 and 32 can be easily formed in the optimal shape with a low pressure loss with respect to the ventilation fan 30.
  • FIG. Moreover, it can form easily so that the blowing direction (front upper direction) of the airflow which passes the 1st casing 31 and the blowing direction (lower direction back) of the airflow which passes the 2nd casing 32 differ by 90 degrees or more.
  • the first casing 31 within a predetermined range from the first intake side opening 31 a is located at the center of rotation of the impeller 33 when the second casing 32 within the predetermined range from the second intake side opening 32 a is viewed from the axial direction of the impeller 33. Since it coincides with the shape rotated and moved around, the first and second casings 31 and 32 having optimum shapes can be formed more easily.
  • the first casing 31 sends an air flow into the room forward and upward and the second casing 32 sends the air flow into the room downward, the ions can be easily distributed to every corner of the room. .
  • the first casing 31 may blow out the airflow in the horizontal direction.
  • the first casing 31 sends an air flow into the room forward and upward, and the second casing 32 sends the air flow into the room downward, the indoor air can be easily circulated to every corner. .
  • the first casing 31 may blow out the airflow in the horizontal direction.
  • the fine particle generator 7 may be omitted, and a circulator that circulates the airflow in the room using the first, second, third, and fourth airflows A1, A2, A3, and A4.
  • a circulator that circulates the airflow in the room using the first, second, third, and fourth airflows A1, A2, A3, and A4.
  • FIGS. 17 and 18 are a perspective view and a side sectional view showing a microparticle diffusion device of a sixth embodiment.
  • the fine particle diffusion device 1 is covered with a housing 2 formed of a resin molded product.
  • the fine particle diffusion device 1 is an installation surface in which the bottom surface of the housing 2 comes into contact with the indoor floor surface F, and is placed on the floor surface F.
  • the fine particle diffusing device 1 is disposed in the vicinity of a corner between the one side wall S and the floor surface F.
  • a suction port 5 for taking indoor air into the housing 2 is opened in the lower part of the front surface and the back surface of the housing 2.
  • a first air outlet 43 and a second air outlet 53 that blow out an air flow are opened on an upper surface facing the installation surface of the housing 2.
  • the opening area of the first outlet 43 disposed at the rear is formed smaller than the opening area of the second outlet 53 disposed at the front.
  • FIG. 19 is a front sectional view of the blower fan 40.
  • the blower fan 40 includes a motor 9 having a rotation shaft 9a extending in the left-right direction, and a plurality of first and second impellers 41 and 51 are attached to the rotation shaft 9a. Accordingly, the first and second impellers 41 and 51 are arranged coaxially and are driven to rotate by the motor 9.
  • the first impeller 41 has a disc 41a connected to the rotary shaft 9a and a plurality of blades 41b erected radially on both sides of the disc 41a.
  • the 2nd impeller 51 has the disc 51a connected with the rotating shaft 9a, and the some blade 51b erected on both surfaces of the disc 51a radially.
  • the first impeller 41 and the second impeller 51 are respectively disposed in a first casing 42 and a first casing 52 that form an air flow path. Where air flowing into the housing 2 from the suction port 5 (see FIG. 17) flows between the first and second casings 42 and 52 and the housing 2 and between the first and second casings 42 and 52. A fixed gap is formed.
  • the first casing 42 has a first tubular portion 42a and a first outlet passage 42c.
  • the first cylindrical portion 42a is formed in a substantially cylindrical shape covering the first impeller 41, and opens the first intake port 42b on both end surfaces in the axial direction.
  • the first outlet passage 42c extends upward in the circumferential tangential direction from the peripheral surface of the first tubular portion 42a, and opens a first outlet 43 (see FIG. 18) at the tip.
  • the 1st casing 52 has the 2nd cylindrical part 52a and the 2nd blowing passage 52c.
  • the 2nd cylindrical part 52a is formed in the substantially cylindrical shape which covers the 2nd impeller 11, and opens the 2nd inlet port 52b in the both end surfaces of an axial direction.
  • the second outlet passage 52c extends upward in the circumferential tangential direction from the peripheral surface of the second cylindrical portion 52a, and opens the second outlet 53 (see FIG. 18) at the tip.
  • the blower fan 40 forms a multiple centrifugal fan (sirocco fan or turbo fan), and the first and second impellers 41 and 51 rotate in the axial direction from the first and second intake ports 42b and 52b. Intake and exhaust in the circumferential direction.
  • the first cylindrical portion 42a and the second cylindrical portion 52a are arranged so as to be substantially coincident with each other in a side view.
  • the direction in which the first blowing passage 42c extends from the first tubular portion 42a and the direction in which the second blowing passage 52c extends from the second tubular portion 52a are different in the circumferential direction.
  • the direction of the airflow which blows off from the 1st, 2nd blower outlets 43 and 53 differs. That is, the airflow is sent from the first air outlet 43 toward the vertically upper side or slightly rearward rearwardly upward as indicated by the arrow B1, and from the second air outlet 53 toward the upper front side as indicated by the arrow B2.
  • the airflow is sent out.
  • first blow-out passage 42c is gradually expanded in a direction perpendicular to the axis of the flow path at the upstream portion 42d immediately after the first cylindrical portion 42a. Further, the downstream portion 42e on the downstream side of the upstream portion 42d gradually reduces the flow path in the direction perpendicular to the axis until reaching the first outlet 43.
  • the second blowing passage 52c is gradually enlarged in the flow path in the direction perpendicular to the axis between the second tubular portion 52a and the second blowing outlet 53.
  • the width in the direction perpendicular to the axis of the first outlet 43 is smaller than the width in the direction perpendicular to the axis of the second outlet 53, and the opening area of the first outlet 43 is equal to that of the second outlet 53. It is smaller than the opening area.
  • a plurality of electrodes (not shown) of the microparticle generator 7 similar to the above are exposed and arranged in the first and second blowing passages 42c and 52c.
  • the fine particle diffusion device 1 configured as described above, when the motor 9 of the blower fan 40 and the fine particle generation device 7 are driven, indoor air is taken into the housing 2 from the suction port 5.
  • the air taken into the housing 2 flows into the first and second casings 42 and 52 through the first and second intake ports 42b and 52b.
  • the air that has flowed into the first and second casings 42 and 52 is exhausted in the circumferential direction from the first and second cylindrical portions 12a and 22a, and flows through the first and second outlet passages 42c and 52c.
  • the air flowing through the first and second outlet passages 42c and 52c contains ions, and is blown out from the first and second outlets 43 and 53 in the directions of arrows B1 and B2, respectively.
  • the air blown vertically upward or rearward upward from the first outlet 43 rises along the side wall S in the vicinity of the microparticle diffusion device 1. And it returns to the microparticle diffusion apparatus 1 through the ceiling wall, the side wall facing the microparticle diffusion apparatus 1 and the floor surface F.
  • ions gradually diffuse into the living space in the center of the room due to the airflow flowing along the wall surface. Thereby, airflow circulates along each wall surface in a room, and it can spread ions to every corner of a room.
  • the kinetic energy taken away by the indoor air is suppressed. That is, when the airflow does not follow the wall surface, the wall surface side of the airflow attracts ambient air (air between the wall surface and the airflow), and the surrounding air loses kinetic energy and is damaged. When the airflow is along the wall surface, the kinetic energy is lost due to the frictional resistance of the wall surface, but is generally much smaller than the kinetic energy lost when the airflow does not follow the wall surface. Thereby, power consumption can be suppressed and the reach
  • the flow path of the second blowing passage 52c is expanded from the second cylindrical portion 52a to the second blowing outlet 53 in a direction perpendicular to the rotation shaft 9a. For this reason, the kinetic energy of airflow is collect
  • the ions are replenished into the living space in the central part of the room by the air blown forward and upward from the second air outlet 53. Moreover, since the airflow blown out from the second air outlet 53 is low speed, it is possible to prevent discomfort caused by the wind hitting the user of the living space.
  • the polarity of ions generated by each electrode of the microparticle generator 7 may be switched every predetermined period. That is, positive ions are generated from one electrode and negative ions are generated from the other electrode. When a predetermined period elapses, negative ions are generated from one electrode and positive ions are generated from another electrode. Further, when a predetermined period elapses, positive ions are generated from one electrode and negative ions are generated from the other electrode, and this operation is repeated.
  • positive ions and negative ions can be distributed at a high concentration over a wide range in the left-right direction in the room.
  • the first and second impellers 41 and 51 arranged coaxially are driven by one motor 9.
  • the direction from which the 1st blowing path 42c extends from the surrounding surface of the 1st cylindrical part 42a which covers the 1st impeller 41, and the 2nd blowing path 52c from the surrounding surface of the 2nd cylindrical part 21a which covers the 2nd impeller 51 The direction in which the air flow extends differs from the circumferential direction, and the blow direction (B1) of the airflow blown from the first blower outlet 43 is different from the blow direction (B2) of the airflow blown from the second blower outlet 53.
  • the opening area of the first outlet 43 is smaller than the opening area of the second outlet 53, the wind speed of the first outlet 43 can be made larger than the wind speed of the second outlet 53. Thereby, the reach
  • the wind speed of the first air outlet 43 can be easily set to the second air outlet 53. It can be larger than the wind speed.
  • the upstream portion 42d of the first outlet passage 42c gradually expands in the direction perpendicular to the axis of the flow path, and the downstream portion 42e maintains the flow path constant in the direction perpendicular to the axis or is gradually reduced.
  • the flow path area is not throttled in the upstream part 42c immediately after the 1st impeller 41, the kinetic energy of airflow is fully collect
  • the speed reduction of the airflow is suppressed at the downstream portion 42e, and the airflow is blown out from the first air outlet 43 having an opening area smaller than that of the second air outlet 53.
  • attainment distance of the airflow which blows off from the 1st blower outlet 43 can be enlarged more, without making the rotation speed of the ventilation fan 40 large.
  • the second blowing passage 52c is gradually enlarged in the direction perpendicular to the axis of the flow path, and the airflow is blown out from the second blowing outlet 53 having a large opening area.
  • the kinetic energy of the airflow can be sufficiently recovered to increase the static pressure and the air blowing efficiency can be improved, and the airflow slower than the first air outlet 43 can be easily blown out from the second air outlet 53. .
  • the first casing 42 sends out an air flow from the first air outlet 43 vertically upward or rearward upward, and the first casing 52 sends out the air current from the second air outlet 53 toward the upper front.
  • the fine particle diffusion device 1 when installed in the vicinity of a corner between the one side wall S and the floor surface F in the room, the high-speed air flow blown out from the first air outlet 43 causes the side wall S, the ceiling wall, the opposing side wall, Pass through floor F. Accordingly, ions can be sufficiently diffused in the room.
  • a low-speed air flow is blown out from the second outlet 53 toward the indoor living space, so that ions in the living space can be replenished and user discomfort can be prevented.
  • the first and second impellers 41 and 51 have blades 41b and 21b on both sides of the discs 41a and 21a, and the first and second intake ports 42b and 52b are the first and second cylindrical portions 42a, respectively.
  • 52a is provided on both surfaces in the axial direction, and thus the blower fan 40 having a small size and a large air volume can be easily realized.
  • FIG. 20 shows a side sectional view of the fine particle diffusion device 1 of the seventh embodiment.
  • the HEPA filter 60 is provided in the housing 2 so as to face the suction port 5.
  • Other parts are the same as in the sixth embodiment.
  • the HEPA filter 60 collects air dust flowing into the housing 2 from the suction port 5. Thereby, clean air from which dust has been removed is sent into the room.
  • the same effect as that of the sixth embodiment can be obtained.
  • the blower fan 40 is constituted by a centrifugal fan having a high static pressure, it is possible to prevent a reduction in the blowing efficiency.
  • FIGS. 21 and 22 are a perspective view and a side sectional view showing the microparticle diffusion device of the eighth embodiment.
  • the fine particle diffusion device 1 is covered with a housing 2 formed of a resin molded product.
  • the fine particle diffusion device 1 is an installation surface in which the rear surface of the housing 2 is in contact with one side wall S of the room, and is hung on the side wall S.
  • the fine particle diffusing device 1 is disposed near the corner between the side wall S and the ceiling wall T.
  • a predetermined gap H is provided between the housing 2 and the ceiling wall T.
  • a suction port 5 for taking indoor air into the housing 2 is opened on the upper surface of the housing 2.
  • a first air outlet 43 and a second air outlet 53 that blow out airflow are opened on the front surface facing the installation surface of the housing 2.
  • arranged to upper part is formed smaller than the opening area of the 2nd blower outlet 53 distribute
  • the 1st blowing path 42c of the 1st casing 42 which covers the 1st impeller 41 extends in the circumferential tangential direction from the surrounding surface of the 1st cylindrical part 42a, and opens the 1st blower outlet 43 at the front-end
  • the second blowing passage 52c of the second casing 52 covering the second impeller 51 extends in the circumferential tangential direction from the peripheral surface of the second cylindrical portion 52a, and opens the second outlet 53 at the tip.
  • the first cylindrical portion 42a and the second cylindrical portion 52a are arranged so as to be substantially coincident with each other in a side view.
  • the direction in which the first blowing passage 42c extends from the first tubular portion 42a and the direction in which the second blowing passage 52c extends from the second tubular portion 52a are different in the circumferential direction. Thereby, the direction of the airflow which blows off from the 1st, 2nd blower outlets 43 and 53 differs. That is, the airflow is sent from the first air outlet 43 toward the front or slightly above the horizontal as shown by the arrow B3, and from the second air outlet 53 toward the front and lower as shown by the arrow B4. Airflow is sent out.
  • the same fine particle generator 7 as described above is disposed in the first and second blowing passages 42c and 52c.
  • the fine particle diffusion device 1 configured as described above, when the motor 9 of the blower fan 40 and the fine particle generation device 7 are driven, indoor air is taken into the housing 2 from the suction port 5.
  • the air taken into the housing 2 flows into the first and second casings 42 and 52 through the first and second intake ports 42b and 52b.
  • the air that has flowed into the first and second casings 42 and 52 is exhausted in the circumferential direction from the first and second cylindrical portions 12a and 22a, and flows through the first and second outlet passages 42c and 52c.
  • the air flowing through the first blowing passage 42c contains ions, and the kinetic energy of the airflow is recovered and converted into static pressure at the upstream portion 42d, thereby increasing the static pressure. And the speed reduction of an airflow is suppressed by the downstream part 42e, and a high-speed airflow is blown in the direction of arrow B3 from the 1st blower outlet 43 with a small opening area.
  • the air contains ions, and the kinetic energy of the airflow is recovered and converted into a static pressure, thereby increasing the static pressure. Thereby, the ventilation capability of the microparticle diffusion apparatus 1 can be improved more. Then, a low-speed air current is blown out in the direction of arrow B4 from the second outlet 53 having a large opening area.
  • the ions are replenished to the living space in the central part of the room by the air blown forward and downward from the second outlet 53. Moreover, since the airflow blown out from the second air outlet 53 is low speed, it is possible to prevent discomfort caused by the wind hitting the user of the living space.
  • the first casing 42 sends an air flow from the first air outlet 43 horizontally or upward to the front
  • the first casing 52 sends an air current from the second air outlet 53 to the front and downward.
  • the fine particle diffusion device 1 when installed in the vicinity of the corner between the one side wall S and the ceiling wall T in the room, the high-speed airflow blown from the first air outlet 43 causes the ceiling wall T, the opposite side wall, and the floor surface F Pass through. Accordingly, ions can be sufficiently diffused in the room.
  • a low-speed air flow is blown out from the second outlet 53 toward the indoor living space, so that ions in the living space can be replenished and user discomfort can be prevented.
  • FIG. 23 shows a side cross-sectional view of the fine particle diffusion device 1 of the ninth embodiment.
  • the HEPA filter 60 is provided in the housing 2 so as to face the suction port 5.
  • Other parts are the same as in the eighth embodiment.
  • the HEPA filter 60 collects air dust flowing into the housing 2 from the suction port 5. Thereby, clean air from which dust has been removed is sent into the room.
  • the same effect as that of the eighth embodiment can be obtained.
  • the blower fan 40 is constituted by a centrifugal fan having a high static pressure, it is possible to prevent a reduction in the blowing efficiency.
  • the fine particle generator 7 may be omitted, and a circulator that circulates the airflow in the room by blowing air from the first and second outlets 43 and 53 may be used. Thereby, airflow can be blown out in a plurality of directions to sufficiently circulate indoor air. At this time, an increase in pressure loss can be prevented, air blowing efficiency can be improved, and noise can be reduced.
  • the high-speed air flow blown out from the first air outlet 43 proceeds along the wall surface by the Coanda effect, the kinetic energy taken away by the indoor air is suppressed, and the reach distance of the air flow can be increased. Moreover, the airflow blown out from the second outlet 53 is sent to the living space at a low speed, and the user's discomfort can be prevented.
  • blower fan 40 is constituted by two centrifugal fans, it may be constituted by three or more centrifugal fans. Further, the motor 9 of the blower fan 40 is formed on both shafts having the rotating shaft 9a extending in two directions, but may be formed on one shaft extending in one direction.
  • the installation surface of the microparticle diffusion device 1 according to the sixth and seventh embodiments may be brought into contact with the side wall S in the room to hang the microparticle diffusion device 1 on the wall.
  • the microparticle diffusion device 1 similar to the eighth and ninth embodiments is obtained. Accordingly, it is possible to realize the fine particle diffusing apparatus 1 that circulates indoor air well and diffuses fine particles to every corner of the room in both cases, corresponding to both floor placement and wall hanging.
  • the fine particle diffusion device 1 may be placed on the floor by bringing the installation surface of the fine particle diffusion device 1 according to the eighth and ninth embodiments into contact with the floor surface. Thereby, the microparticle diffusion apparatus 1 similar to the sixth and seventh embodiments is obtained. Accordingly, it is possible to realize the fine particle diffusing apparatus 1 that circulates indoor air well and diffuses fine particles to every corner of the room in both cases, corresponding to both floor placement and wall hanging.
  • the microparticle diffusion device 1 sends out positive ions and negative ions generated by the microparticle generator 7 to sterilize the room.
  • the fine particle diffusion device 1 that generates only negative ions by the fine particle generator 7 and obtains an indoor relaxation effect may be used.
  • the fine particle diffusing device 1 that generates a fragrance, a deodorant, an insecticide, a bactericidal agent, or the like by the fine particle generator 7 and performs indoor deodorization, insecticide, sterilization, or the like may be used.
  • the present invention can be used for a circulator that circulates indoor air. Moreover, according to this invention, it can utilize for the microparticle spreading
  • diffusion apparatus which sends out microparticles, such as an ion, a fragrance

Abstract

A circulator (1) which is mounted on a side wall (S) in a room or on a ceiling wall (T) located close to the side wall (S) in a room and which circulates air present in the room. The circulator (1) comprises, in order from a first wall surface (P1) adjacent to the side wall (S) in the horizontal direction, a first outlet (4a), a second outlet (4b), and a third outlet (4c) which are disposed next to each other in the horizontal direction. A first air flow (A1) which flows along the ceiling wall (T) and descends along the first wall surface (P1) is delivered from the first outlet (4a), a second air flow (A2) which flows along the ceiling wall (T) and descends along a second wall surface (P2) facing the side wall (S) is delivered from the second outlet (4b), and a third air flow (A3) which flows along the ceiling wall (T) and descends along a third wall surface (P3) facing the first wall surface (P1) is delivered from the third outlet (4c).

Description

送風ファン、サーキュレータ、微小粒子拡散装置及び空気循環方法Blower fan, circulator, fine particle diffusion device, and air circulation method
 本発明は、気流を送出する送風ファンに関する。また本発明は、室内の空気を循環させるサーキュレータ及び空気循環方法に関する。また本発明は、イオン等の微小粒子を送出して室内に拡散させる微小粒子拡散装置に関する。 The present invention relates to a blower fan that sends out airflow. The present invention also relates to a circulator for circulating indoor air and an air circulation method. The present invention also relates to a microparticle diffusing apparatus that sends microparticles such as ions and diffuses them into a room.
 従来のサーキュレータは特許文献1に開示されている。このサーキュレータは室内の床面に設置され、下部に吸込口を開口して上面に吹出口を開口する。サーキュレータの内部に配される送風ファンの駆動によって吸込口から室内の空気を床面に沿って吸い込み、吹出口から前方上方に向けて空気を送出する。これにより、室内の空気を循環させることができる。 A conventional circulator is disclosed in Patent Document 1. This circulator is installed on the floor of the room, and has a suction opening at the bottom and an outlet at the top. By driving a blower fan arranged inside the circulator, indoor air is sucked in along the floor surface from the suction port, and the air is sent out forward and upward from the blower outlet. Thereby, indoor air can be circulated.
 また、特許文献2には従来の微小粒子拡散装置が開示されている。この微小粒子拡散装置は冷蔵庫の天面等に配され、前面に吹出口が開口する筐体内に送風ファンが設けられる。送風ファンは軸方向に吸気して周方向に排気するシロッコファンから成り、回転軸を鉛直に配される。送風ファンと吹出口との間は送風経路により連結される。送風経路は送風ファンの下流側で左右方向に徐々に広げられるとともに、上下方向に徐々に狭められる。送風経路内には微小粒子であるイオンを発生する微小粒子発生装置が配される。 Further, Patent Document 2 discloses a conventional fine particle diffusion device. This fine particle diffusing device is arranged on the top surface of a refrigerator or the like, and a blower fan is provided in a housing having a blower opening at the front. The blower fan is composed of a sirocco fan that sucks in the axial direction and exhausts it in the circumferential direction, and the rotation shaft is arranged vertically. The blower fan and the blower outlet are connected by a blower path. The air blowing path is gradually widened in the left-right direction on the downstream side of the blower fan and is gradually narrowed in the up-down direction. A fine particle generator for generating ions that are fine particles is disposed in the air blowing path.
 送風ファンにより発生する気流は送風経路を流通し、微小粒子発生装置で発生した微小粒子を含んだ気流が吹出口から前方に送出される。送風経路は送風ファンの下流側で左右方向に広がって形成され、吹出口から送出される気流が左右方向に広がって微小粒子が室内に拡散される。これにより、プラスイオンとマイナスイオンとを室内に供給して室内の浮遊菌の殺菌を行うことができる。 The airflow generated by the blower fan flows through the airflow path, and the airflow containing the microparticles generated by the microparticle generator is sent forward from the outlet. The air flow path is formed so as to expand in the left-right direction on the downstream side of the blower fan, and the airflow sent from the air outlet spreads in the left-right direction so that the fine particles are diffused into the room. Thereby, positive ions and negative ions can be supplied indoors to sterilize indoor floating bacteria.
 また特許文献3にはクロスフロー型の羽根車を有する送風ファンを備え、室内の空気を循環させるサーキュレータが開示されている。このサーキュレータは空気調和機から成り、筐体の上面には吸込口が開口して前面下部には吹出口が開口する。筐体内に配される送風ファンと吸込口との間には熱交換器が配される。 Patent Document 3 discloses a circulator that includes a blower fan having a cross-flow impeller and circulates indoor air. This circulator is composed of an air conditioner, and a suction port is opened on the upper surface of the housing, and a blower port is opened on the lower front surface. A heat exchanger is disposed between the blower fan and the suction port disposed in the housing.
 送風ファンは羽根車をケーシングで覆うクロスフローファンから成っている。ケーシングは羽根車が突出する吸気側開口部を一端に開口し、羽根車の排気側に延びて吹出口に連結される。これにより、羽根車の排気側の気流路がケーシングによって形成される。また、気流路内の吹出口近傍には水平方向及び鉛直方向に風向を可変する可動のルーバーが設けられる。 The blower fan consists of a cross flow fan that covers the impeller with a casing. The casing has an intake side opening from which the impeller protrudes at one end, extends to the exhaust side of the impeller, and is connected to the outlet. Thereby, the air flow path on the exhaust side of the impeller is formed by the casing. A movable louver that varies the wind direction in the horizontal direction and the vertical direction is provided in the vicinity of the air outlet in the air flow path.
 送風ファンが駆動されると室内の空気が吸込口から筐体内に取り込まれ、熱交換器と熱交換する。熱交換器と熱交換した空気はケーシングの吸気側開口部を介して送風ファンの排気側に導かれる。そして、吹出口から室内に空気が送出され、室内の空気調和を行うとともに室内の空気が循環される。 When the blower fan is driven, indoor air is taken into the housing from the suction port and exchanges heat with the heat exchanger. The air exchanged with the heat exchanger is guided to the exhaust side of the blower fan through the intake side opening of the casing. And air is sent out indoors from a blower outlet, indoor air is conditioned and indoor air is circulated.
 また、可動のルーバーによって吹出口から所定の方向に向けて空気が送出される。これにより、室内の複数の方向に空気を送出して室内の隅々まで空気を循環させることができる。 Also, air is sent in a predetermined direction from the outlet through a movable louver. As a result, air can be sent out in a plurality of directions in the room and circulated to every corner of the room.
特開平8-270992号公報(第2頁-第5頁、第4図)JP-A-8-270992 (pages 2-5, FIG. 4) 特許第3797993号公報(第4頁-第18頁、第1図、第2図)Japanese Patent No. 3797993 (pages 4 to 18, FIGS. 1 and 2) 特開2009-270530号公報(第5頁-第8頁、第1図)Japanese Unexamined Patent Publication No. 2009-270530 (pages 5-8, FIG. 1)
 しかしながら、上記特許文献1に開示された従来のサーキュレータによると、吹出口から送出される空気が室内の左右方向に十分拡散しない。このため、室内の隅々まで空気を循環させることが困難になる問題があった。送風ファンを左右方向に揺動させる首振り機構を設けると室内の隅々まで空気を循環させることできるが、構造が複雑になるためサーキュレータのコストが大きくなる問題がある。また、サーキュレータから前方上方に吹き出された空気が室内の中央部の居住空間に居る使用者に直接当たり、使用者の不快感が大きくなる問題もあった。 However, according to the conventional circulator disclosed in Patent Document 1, the air sent out from the outlet does not sufficiently diffuse in the left-right direction in the room. For this reason, there is a problem that it is difficult to circulate air to every corner of the room. If a swing mechanism for swinging the blower fan in the left-right direction is provided, air can be circulated to every corner of the room, but there is a problem that the cost of the circulator increases because the structure becomes complicated. In addition, there is a problem that the air blown forward and upward from the circulator directly hits the user in the living space in the central part of the room, which increases the user's discomfort.
 また、上記特許文献2に開示された従来の微小粒子拡散装置によると、送風経路を流通する気流は左右方向に広げられて吹出口から前方に送出される。このため、簡単な構成で空気や微小粒子を室内の左右方向に広い範囲に送出することができる。 Further, according to the conventional fine particle diffusing device disclosed in Patent Document 2, the airflow flowing through the blower path is spread in the left-right direction and sent forward from the outlet. For this reason, it is possible to send air and fine particles over a wide range in the left-right direction of the room with a simple configuration.
 しかしながら、吹出口から送出された気流の運動エネルギーが室内の空気に奪われるため、気流の到達距離が短くなる。また、送風ファンの直後から上下方向に流路が絞られるため気流の運動エネルギーを十分回収することができず、送風経路内の静圧が低くなる。これらにより、微小粒子拡散装置に対して遠い室内の壁面まで気流が到達せず、空気の循環や微小粒子の拡散を十分行うことができない問題があった。一方、気流の到達距離を大きくするために送風ファンの回転数を大きくすると、騒音や消費電力が大きくなる問題がある。 However, since the kinetic energy of the airflow sent from the outlet is taken away by the indoor air, the reach of the airflow is shortened. Further, since the flow path is narrowed in the vertical direction immediately after the blower fan, the kinetic energy of the airflow cannot be sufficiently collected, and the static pressure in the blower path is lowered. Accordingly, there is a problem that the air current does not reach the wall surface in the room far from the fine particle diffusing apparatus, and the air circulation and the fine particle diffusion cannot be performed sufficiently. On the other hand, if the rotational speed of the blower fan is increased to increase the reach of the airflow, there is a problem that noise and power consumption increase.
 また、微小粒子拡散装置から前方に吹き出された空気が室内の中央部の居住空間に居る使用者に直接当たり、使用者の不快感が大きくなる問題もあった。 Also, there is a problem that the air blown forward from the fine particle diffusion device directly hits the user in the living space in the central part of the room and the user's discomfort increases.
 また、送風ファンは回転軸を鉛直に配して周接線方向に排気するため、送風経路を流通する気流の流量が送風ファンの遠心力によって左右方向で不均一になる問題もあった。 In addition, since the blower fan exhausts in the circumferential tangent direction with the rotating shaft arranged vertically, there is a problem that the flow rate of the airflow flowing through the blower path becomes uneven in the left-right direction due to the centrifugal force of the blower fan.
 加えて、微小粒子発生装置によってイオン以外の芳香剤、消臭剤、殺虫剤、殺菌剤等の微小粒子を発生する場合も同様の問題がある。 In addition, there are similar problems when fine particles such as fragrances, deodorants, insecticides, and fungicides other than ions are generated by the fine particle generator.
 また、特許文献3に開示されるサーキュレータによると、室内の複数の方向に空気を送出するために可動のルーバーが設けられるが、構造が複雑になるためコストが大きくなる問題があった。また、吹出口近傍のルーバーによって気流が吹出口近傍で急激に曲げられる。このため、圧力損失が大きくなり、送風効率が悪くなるとともに騒音が大きくなる問題があった。 Further, according to the circulator disclosed in Patent Document 3, a movable louver is provided to send air in a plurality of directions in the room, but there is a problem that the structure becomes complicated and the cost is increased. Further, the airflow is bent suddenly near the air outlet by the louver near the air outlet. For this reason, there existed a problem that a pressure loss became large, the ventilation efficiency worsened, and the noise increased.
 また、ルーバーを省いて送風ファンの排気側の気流路を分岐し、複数の方向に空気を送出することもできる。しかしながらこの場合も同様に、送風ファンの排気側で気流が急激に曲げられるため、送風効率が悪くなるとともに騒音が大きくなる。 Also, the louver can be omitted and the air flow path on the exhaust side of the blower fan can be branched to send air in a plurality of directions. However, in this case as well, since the air flow is bent sharply on the exhaust side of the blower fan, the air blowing efficiency is deteriorated and the noise is increased.
 また、サーキュレータの気流路にイオン、芳香剤、消臭剤、殺虫剤、殺菌剤等の微小粒子を発生する微小粒子発生装置を設け、室内に微小粒子を送出して拡散させる微小粒子拡散装置についても同様の問題がある。 In addition, a microparticle diffusion device that provides a microparticle generator for generating microparticles such as ions, fragrances, deodorants, insecticides, and bactericides in the air flow path of the circulator, and sends and diffuses microparticles in the room. Has a similar problem.
 本発明は、省電力化を図るとともに室内の空気を十分循環させることのできるサーキュレータ及び空気循環方法を提供することを目的とする。また本発明は、省電力化を図るとともに微小粒子を室内に十分拡散させることのできる微小粒子拡散装置を提供することを目的とする。 An object of the present invention is to provide a circulator and an air circulation method capable of reducing power consumption and sufficiently circulating indoor air. Another object of the present invention is to provide a microparticle diffusing device that can save power and sufficiently diffuse microparticles in a room.
 また本発明は、低コストで送風効率を向上するとともに騒音を低減して複数の方向に気流を送出できる送風ファン及びそれを用いたサーキュレータ、微小粒子拡散装置を提供することを目的とする。 Another object of the present invention is to provide a blower fan capable of improving air blowing efficiency at low cost and reducing noise and sending airflow in a plurality of directions, a circulator using the same, and a fine particle diffusion device.
 上記目的を達成するために本発明の送風ファンは、クロスフロー型の羽根車と、前記羽根車を覆って気流路を形成するとともに前記羽根車の軸方向に並設される第1ケーシング及び第2ケーシングとを備え、第1ケーシングを通る気流の吹出し方向と、第2ケーシングを通る気流の吹出し方向とが異なることを特徴としている。 In order to achieve the above object, a blower fan of the present invention includes a cross-flow type impeller, a first casing that covers the impeller, forms an air flow path, and is juxtaposed in the axial direction of the impeller. It is characterized by the fact that there are two casings, and the blowing direction of the airflow passing through the first casing is different from the blowing direction of the airflow passing through the second casing.
 この構成によると、軸方向に並設される第1ケーシング及び第2ケーシングによりクロスフロー型の羽根車を覆い、クロスフローファンから成る送風ファンが形成される。羽根車の回転によって送風ファンの吸気側の空気が羽根車を貫通し、第1ケーシング及び第2ケーシングを流通する。第1ケーシングを流通する気流は所定方向に吹き出され、第2ケーシングを流通する気流は第1ケーシングを流通する気流と異なる方向に吹き出される。 According to this configuration, the crossflow type impeller is covered by the first casing and the second casing arranged side by side in the axial direction, and a blower fan including a crossflow fan is formed. By the rotation of the impeller, the air on the intake side of the blower fan passes through the impeller and flows through the first casing and the second casing. The airflow flowing through the first casing is blown out in a predetermined direction, and the airflow flowing through the second casing is blown out in a direction different from the airflow flowing through the first casing.
 また本発明は、上記構成の送風ファンにおいて、第1ケーシングは前記羽根車が突出する第1吸気側開口部を一端に開口して前記羽根車の排気側に延びるとともに、第2ケーシングは前記羽根車が突出する第2吸気側開口部を一端に開口して前記羽根車の排気側に延び、第1吸気側開口部の開口面と第2吸気側開口部の開口面とが前記羽根車の周方向に異なる角度に配されることが好ましい。 According to the present invention, in the blower fan configured as described above, the first casing opens at one end of the first intake side opening from which the impeller projects and extends to the exhaust side of the impeller, and the second casing includes the blade A second intake side opening from which the car protrudes opens at one end and extends to the exhaust side of the impeller, and an opening surface of the first intake side opening and an opening surface of the second intake side opening are formed on the impeller. It is preferable that they are arranged at different angles in the circumferential direction.
 この構成によると、羽根車の回転によって送風ファンの吸気側の空気が羽根車を貫通し、第1吸気側開口部から第1ケーシングに流入するとともに第2吸気側開口部から第2ケーシングに流入する。第1吸気側開口部の開口面と第2吸気側開口部の開口面とは羽根車の周方向に異なる角度に配され、第1、第2ケーシングはそれぞれ第1、第2吸気側開口部から所定の方向に延びて形成される。 According to this configuration, the air on the intake side of the blower fan passes through the impeller by the rotation of the impeller, flows into the first casing from the first intake side opening, and flows into the second casing from the second intake side opening. To do. The opening surface of the first intake-side opening and the opening surface of the second intake-side opening are arranged at different angles in the circumferential direction of the impeller, and the first and second casings respectively have the first and second intake-side openings. And extending in a predetermined direction.
 また本発明は、上記構成の送風ファンにおいて、第1吸気側開口部から所定範囲の第1ケーシングが第2吸気側開口部から所定範囲の第2ケーシングを前記羽根車の軸方向から見て前記羽根車の回転中心の回りに回転移動させた形状に一致することが好ましい。この構成によると、第1ケーシングの壁面が第1吸気側開口部から所定の曲率で形成され、第2ケーシングの壁面が第2吸気側開口部から所定範囲で第1ケーシングと同じ曲率で形成される。 According to the present invention, in the blower fan configured as described above, the first casing in a predetermined range from the first intake side opening is the second casing in the predetermined range from the second intake side opening, as viewed from the axial direction of the impeller. It is preferable to match the shape rotated around the rotation center of the impeller. According to this configuration, the wall surface of the first casing is formed with a predetermined curvature from the first intake side opening, and the wall surface of the second casing is formed with the same curvature as the first casing within a predetermined range from the second intake side opening. The
 また本発明は、上記構成の送風ファンにおいて、第1ケーシングを通る気流の吹出し方向と第2ケーシングを通る気流の吹出し方向とが90゜以上異なるようにしてもよい。 Further, according to the present invention, in the blower fan configured as described above, the blowing direction of the airflow passing through the first casing and the blowing direction of the airflow passing through the second casing may be different by 90 ° or more.
 また本発明の送風ファンは、
 同軸に配される第1羽根車及び第2羽根車と、
 第1羽根車及び第2羽根車を回転駆動する一のモータと、
 第1羽根車を覆って軸方向に第1吸気口を開口する第1筒状部と、第1筒状部の周面から周接線方向に延びて先端に第1吹出口を開口した第1吹出通路とを有する第1ケーシングと、
 第2羽根車を覆って軸方向に第2吸気口を開口する第2筒状部と、第2筒状部の周面から周接線方向に延びて先端に第2吹出口を開口した第2吹出通路とを有する第2ケーシングと、
 を備え、第1筒状部から第1吹出通路が延びる方向と第2筒状部から第2吹出通路が延びる方向とが周方向に異なるとともに、第1吹出口から吹き出される気流の吹出し方向と、第2吹出口から吹き出される気流の吹出し方向とが異なることを特徴としている。
The blower fan of the present invention is
A first impeller and a second impeller arranged coaxially;
One motor for rotationally driving the first impeller and the second impeller;
A first tubular portion covering the first impeller and opening the first intake port in the axial direction; and a first opening extending from the circumferential surface of the first tubular portion in the circumferential tangential direction and opening the first outlet at the tip. A first casing having an outlet passage;
A second cylindrical part covering the second impeller and opening the second intake port in the axial direction; a second cylindrical part extending in a circumferential tangential direction from the peripheral surface of the second cylindrical part; A second casing having an outlet passage;
The direction in which the first blowing passage extends from the first tubular portion and the direction in which the second blowing passage extends from the second tubular portion are different in the circumferential direction, and the blowing direction of the air flow blown from the first blowing outlet And the blowing direction of the airflow blown out from the second outlet is different.
 この構成によると、一のモータの回転軸に第1羽根車及び第2羽根車が連結され、第1羽根車及び第2羽根車がそれぞれ第1ケーシング及び第2ケーシングにより覆われる。これにより、多連の遠心ファンから成る送風ファンが形成される。モータの駆動によって第1羽根車及び第2羽根車が回転し、第1ケーシング及び第2ケーシング内に第1吸気口及び第2吸気口を介して軸方向に吸気される。第1ケーシングに流入した空気は第1筒状部から周接線方向に排気され、第1吹出通路を流通して第1吹出口から所定方向に吹き出される。第2ケーシングに流入した空気は第2筒状部から周接線方向の第1吹出通路と異なる方向に排気され、第2吹出通路を流通して第2吹出口から第1吹出口と異なる方向に吹き出される。 According to this configuration, the first impeller and the second impeller are connected to the rotation shaft of one motor, and the first impeller and the second impeller are covered with the first casing and the second casing, respectively. Thereby, the ventilation fan which consists of a multiple centrifugal fan is formed. The first impeller and the second impeller are rotated by driving the motor, and the air is sucked into the first casing and the second casing in the axial direction via the first air inlet and the second air inlet. The air that has flowed into the first casing is exhausted in the circumferential tangential direction from the first tubular portion, flows through the first blow-out passage, and is blown out in a predetermined direction from the first blow-out port. The air flowing into the second casing is exhausted from the second tubular part in a direction different from the first blowout passage in the circumferential tangential direction, flows through the second blowout passage, and in a direction different from the second blowout outlet. Blown out.
 また本発明は、上記構成の送風ファンにおいて、第1吹出口の開口面積が第2吹出口の開口面積よりも小さいことが好ましい。この構成によると、開口面積の小さい第1吹出口から高速で気流が送出され、第1吹出口よりも開口面積の大きい第2吹出口から低速で気流が送出される。 Further, according to the present invention, in the blower fan configured as described above, it is preferable that an opening area of the first air outlet is smaller than an opening area of the second air outlet. According to this configuration, the airflow is sent out at a high speed from the first outlet having a small opening area, and the airflow is sent out at a low speed from the second outlet having a larger opening area than the first outlet.
 また本発明は、上記構成の送風ファンにおいて、第1吹出口の軸に垂直な方向の幅が第2吹出口の軸に垂直な方向の幅よりも小さいことが好ましい。 In the blower fan configured as described above, it is preferable that the width in the direction perpendicular to the axis of the first outlet is smaller than the width in the direction perpendicular to the axis of the second outlet.
 また本発明は、上記構成の送風ファンにおいて、第1吹出通路が流路を軸に垂直な方向に徐々に拡大される上流部と前記上流部の下流側で第1吹出口まで軸に垂直な方向に流路を一定に維持または徐々に縮小される下流部とを有するとともに、第2吹出通路が第2筒状部と第2吹出口との間で軸に垂直な方向に流路を徐々に拡大されることが好ましい。 Further, according to the present invention, in the blower fan configured as described above, the first blowing passage is gradually enlarged in the direction perpendicular to the flow path in the direction perpendicular to the axis, and the first blowing outlet is perpendicular to the axis on the downstream side of the upstream portion. And a downstream portion in which the flow path is kept constant or gradually reduced in the direction, and the second blowing passage gradually moves the flow path in the direction perpendicular to the axis between the second tubular portion and the second blow-out opening. It is preferable to be enlarged.
 この構成によると、第1吹出通路を流通する気流は流路を軸に垂直な方向に徐々に拡大される上流部で運動エネルギーを回収して静圧に変換される。該気流は流路を一定に維持または徐々に縮小される下流部で流速の低下が抑制される。そして、開口面積の小さい第1吹出口から高速で気流が送出される。第2吹出通路を流通する気流は流路を軸に垂直な方向に徐々に拡大され、第2吹出口に到達するまで運動エネルギーを回収して静圧に変換される。そして、第1吹出口よりも開口面積の大きい第2吹出口から低速で気流が送出される。 According to this configuration, the airflow flowing through the first blow-out passage collects kinetic energy at the upstream portion that is gradually expanded in the direction perpendicular to the flow path and is converted into static pressure. The air flow is suppressed in the downstream portion where the flow path is kept constant or gradually reduced, and the flow velocity is reduced. And airflow is sent out from the 1st blower outlet with a small opening area at high speed. The airflow flowing through the second blowing passage is gradually enlarged in the direction perpendicular to the axis of the flow path, and kinetic energy is recovered and converted to static pressure until reaching the second blowing outlet. And an air current is sent out from a 2nd blower outlet with a larger opening area than a 1st blower outlet at low speed.
 また本発明は、上記構成の送風ファンにおいて、第1羽根車及び第2羽根車が前記モータに連結される円板と、前記円板の両面に放射状に立設されるブレードとを有し、第1吸気口及び第2吸気口をそれぞれ第1筒状部及び第2筒状部の軸方向の両面に設けるとより好ましい。 Further, the present invention, in the blower fan configured as described above, includes a disk in which the first impeller and the second impeller are connected to the motor, and blades that are erected radially on both surfaces of the disk, More preferably, the first intake port and the second intake port are provided on both axial surfaces of the first cylindrical portion and the second cylindrical portion, respectively.
 また本発明は、室内の一の側壁または室内の一の側壁に近接した天井壁に設置して室内の空気を循環させるサーキュレータにおいて、一の側壁に水平方向に隣接する第1壁面に近い方から順に水平方向に並設される第1吹出口、第2吹出口及び第3吹出口を備え、天井壁に沿って流通して第1壁面に沿って降下する第1気流を第1吹出口から送出し、天井壁に沿って流通して一の側壁に対向する第2壁面に沿って降下する第2気流を第2吹出口から送出し、天井壁に沿って流通して第1壁面に対向する第3壁面に沿って降下する第3気流を第3吹出口から送出することを特徴としている。 Further, the present invention provides a circulator that is installed on one side wall of a room or a ceiling wall adjacent to one side wall of the room and circulates the air in the room, from the side closer to the first wall surface horizontally adjacent to the one side wall. A first air outlet, a second air outlet, and a third air outlet that are arranged side by side in order in the horizontal direction are provided, and the first air stream that flows along the ceiling wall and descends along the first wall surface is provided from the first air outlet. The second air stream that is sent out, circulates along the ceiling wall and descends along the second wall surface facing the one side wall is sent out from the second air outlet, circulates along the ceiling wall, and faces the first wall surface The third airflow descending along the third wall surface is sent out from the third outlet.
 この構成によると、サーキュレータは例えば室内の一側壁に取付けられ、室内に向かって例えば右から順に第1吹出口、第2吹出口及び第3吹出口が設けられる。第1吹出口から右方に向かって送出された第1気流は天井壁に沿って流通し、右方の側壁(第1壁面)に沿って降下する。第2吹出口から前方に向かって送出された第2気流は天井壁に沿って流通し、取付け面に対向する側壁(第2壁面)に沿って降下する。第3吹出口から左方に向かって送出された第3気流は天井壁に沿って流通し、左方の側壁(第3壁面)に沿って降下する。第1壁面、第2壁面及び第3壁面を降下する気流は室内の床面を流通し、取付け面を上昇してサーキュレータに戻る。これにより、室内の壁面に沿って気流が循環し、室内の中央部の居住空間の空気は緩やかに循環する。第1、第2、第3気流は壁面に沿ってコアンダ効果によって進行するため、室内の空気に奪われる運動エネルギーが抑制され、気流の到達距離を大きくすることができる。 According to this configuration, the circulator is attached to, for example, one side wall of the room, and the first air outlet, the second air outlet, and the third air outlet are provided in this order from the right toward the room. The first air stream sent to the right from the first air outlet flows along the ceiling wall and descends along the right side wall (first wall surface). The second air stream sent forward from the second outlet flows along the ceiling wall and descends along the side wall (second wall surface) facing the mounting surface. The third air stream sent out from the third outlet toward the left flows along the ceiling wall and descends along the left side wall (third wall surface). The airflow descending the first wall surface, the second wall surface, and the third wall surface flows through the indoor floor surface, rises up the attachment surface, and returns to the circulator. Thereby, an air current circulates along the wall surface of the room, and the air in the living space in the center of the room circulates gently. Since the first, second, and third airflows travel along the wall surface by the Coanda effect, the kinetic energy taken away by the indoor air is suppressed, and the reach of the airflow can be increased.
 また本発明は、上記構成のサーキュレータにおいて、遠心ファンまたは貫流ファンから成る送風ファンと、前記送風ファンが回転軸を水平にして配される送風経路とを備えるとともに、前記送風経路が前記送風ファンの下流側で分割して第1吹出口、第2吹出口及び第3吹出口がそれぞれ前端に開口する第1分割通路、第2分割通路及び第3分割通路を有し、第1分割通路及び第3分割通路の内側の壁面が鉛直面に対して傾斜することが好ましい。 In the circulator having the above-described configuration, the present invention further includes a blower fan including a centrifugal fan or a once-through fan, and a blower path in which the blower fan is disposed with a rotation axis horizontal, and the blower path is a part of the blower fan. The first air outlet, the second air outlet, and the third air outlet, which are divided at the downstream side, have a first divided passage, a second divided passage, and a third divided passage that open to the front end, respectively. It is preferable that the inner wall surface of the three-divided passage is inclined with respect to the vertical plane.
 この構成によると、回転軸を水平に配された送風ファンから周方向に送出される空気は第1分割通路、第2分割通路及び第3分割通路に分岐して流通する。第1分割通路を流通する空気は鉛直面に対して傾斜した壁面に沿って例えば右方向に導かれて前進し、第1吹出口から第1気流が送出される。第2分割通路を流通する空気は前方に導かれ、第2吹出口から第2気流が送出される。第3分割通路を流通する空気は鉛直面に対して傾斜した壁面に沿って例えば左方向に導かれて前進し、第3吹出口から第3気流が送出される。 According to this configuration, the air sent in the circumferential direction from the blower fan that has a rotating shaft arranged horizontally is branched and circulated into the first divided passage, the second divided passage, and the third divided passage. The air flowing through the first division passage is guided, for example, in the right direction along the wall surface inclined with respect to the vertical plane, and the first airflow is sent out from the first outlet. The air flowing through the second divided passage is guided forward, and the second air stream is sent out from the second outlet. The air flowing through the third divided passage is guided, for example, in the left direction along the wall surface inclined with respect to the vertical plane, and the third air stream is sent out from the third outlet.
 また本発明は、上記構成のサーキュレータにおいて、一の側壁に沿って流通する第4気流を下方に向けて送出する第4吹出口を備えると好ましい。この構成によると、第4吹出口から下方に向かって送出された第4気流が取付け面に沿って降下する。 Further, in the circulator having the above-described configuration, the present invention preferably includes a fourth air outlet that sends out a fourth airflow flowing along one side wall downward. According to this structure, the 4th air current sent out downward from the 4th blower outlet falls along an attachment surface.
 また本発明は、上記構成のサーキュレータにおいて、前方下方に向かう第4気流を送出する第4吹出口を備え、第4気流の流量が第2気流の流量よりも少ないことが好ましい。この構成によると、第4吹出口から前方下方に向かって送出された第4気流が室内の居住空間に直接供給される。この時、第4気流の流量が第2気流の流量よりも少ないため、使用者に直接当たる第4気流による不快感が抑制される。 In the circulator configured as described above, it is preferable that the circulator includes a fourth air outlet that sends out a fourth airflow directed forward and downward, and the flow rate of the fourth airflow is smaller than that of the second airflow. According to this structure, the 4th airflow sent toward the front lower direction from the 4th blower outlet is directly supplied to indoor living space. At this time, since the flow rate of the fourth air stream is smaller than the flow rate of the second air stream, discomfort caused by the fourth air stream directly hitting the user is suppressed.
 また本発明は、吸込口と吹出口とを開口する筐体と、前記吸込口と前記吹出口とを連結して前記筐体内に設けられる送風経路と、前記送風経路に配されて周方向に気流を送出する送風ファンとを備え、前記吸込口から前記送風経路に流入する室内の空気を前記吹出口から送出して室内の空気を循環させるサーキュレータにおいて、前記送風経路が、前記送風ファンの下流側で流路を前記送風ファンの回転軸の垂直方向に徐々に拡大する垂直方向拡大部と、前記垂直方向拡大部の下流側で流路を前記回転軸の軸方向に徐々に拡大するとともに前記回転軸の垂直方向に一定に維持または徐々に縮小される軸方向拡大部とを有することを特徴としている。 Further, the present invention provides a housing that opens the suction port and the air outlet, an air passage that is provided in the housing by connecting the air inlet and the air outlet, and is disposed in the air passage in the circumferential direction. A circulator for sending indoor air flowing into the air flow path from the suction port and circulating the air in the room, wherein the air flow path is downstream of the air blowing fan. A vertical direction expansion part that gradually expands the flow path in the vertical direction of the rotation axis of the blower fan on the side, and a flow path that is gradually expanded in the axial direction of the rotation axis on the downstream side of the vertical expansion part and And an axially enlarged portion that is maintained constant in the vertical direction of the rotation axis or that is gradually reduced.
 この構成によると、送風ファンは遠心ファンや貫流ファンから成り、例えば回転軸が水平に配される。送風ファンの駆動によって吸込口から室内の空気が送風経路に流入して送風ファンの周方向に排気される。送風ファンの下流側の垂直方向拡大部は上下方向に徐々に拡大され、気流の運動エネルギーを回収して静圧に変換する。垂直方向拡大部の下流側の軸方向拡大部は左右方向に徐々に広がるとともに上下方向に一定または縮小される。これにより、軸方向拡大部を流通する気流は左右方向に広げられるとともに流速の低下が抑制される。そして、吹出口から気流が左右方向の広い範囲に送出され、室内の空気が循環する。送風ファンの回転軸を水平に対して傾斜して配してもよく、鉛直に配してもよい。 According to this configuration, the blower fan is composed of a centrifugal fan or a cross-flow fan, and for example, the rotation shaft is arranged horizontally. By driving the blower fan, indoor air flows into the blower path from the suction port and is exhausted in the circumferential direction of the blower fan. The vertical expansion portion on the downstream side of the blower fan is gradually expanded in the vertical direction, recovering the kinetic energy of the airflow and converting it into a static pressure. The axially enlarged portion on the downstream side of the vertically enlarged portion gradually expands in the left-right direction and is constant or reduced in the up-down direction. As a result, the airflow flowing through the axially enlarged portion is expanded in the left-right direction and a decrease in the flow velocity is suppressed. And an air current is sent to the wide range of the left-right direction from a blower outlet, and indoor air circulates. The rotation axis of the blower fan may be arranged inclined with respect to the horizontal, or may be arranged vertically.
 また本発明は、上記構成のサーキュレータにおいて、前記軸方向拡大部の流路面積が下流になる程拡大されることが好ましい。この構成によると、軸方向拡大部を流通する気流の運動エネルギーを回収して静圧に変換される。 In the circulator having the above-described configuration, the present invention is preferably enlarged as the flow path area of the axially enlarged portion becomes downstream. According to this configuration, the kinetic energy of the airflow flowing through the axially enlarged portion is recovered and converted to static pressure.
 また本発明は、上記構成のサーキュレータにおいて、前記垂直方向拡大部及び前記軸方向拡大部に連続して前記回転軸の軸方向に分割される複数の分割通路を有することが好ましい。この構成によると、分割通路の壁面に沿って気流が流通して回転軸の軸方向に円滑に広げられる。 In the circulator having the above-described configuration, the present invention preferably includes a plurality of divided passages that are divided in the axial direction of the rotating shaft continuously from the vertical enlarged portion and the axial enlarged portion. According to this configuration, the airflow flows along the wall surface of the divided passage and is smoothly spread in the axial direction of the rotating shaft.
 また本発明は、上記構成のサーキュレータにおいて、前記筐体が前記回転軸を水平に配して室内の天井壁の近傍に配され、前記吹出口を前記筐体の上端に形成するとともに前記吹出口から天井壁に沿って気流を送出するとより好ましい。この構成によると、吹出口から室内の天井壁に沿って送出される気流がコアンダ効果によって天井壁に沿って流通し、気流の到達距離をより長くすることができる。 According to the present invention, in the circulator having the above-described configuration, the casing is disposed in the vicinity of an indoor ceiling wall with the rotating shaft disposed horizontally, and the outlet is formed at an upper end of the casing. It is more preferable to send the airflow along the ceiling wall. According to this structure, the airflow sent along the indoor ceiling wall from the blower outlet circulates along the ceiling wall by the Coanda effect, and the reach distance of the airflow can be further increased.
 また本発明は、上記構成のサーキュレータにおいて、前記筐体が前記回転軸を水平に配して室内の天井壁の近傍に配され、前記吹出口を前記筐体の下部に形成するとともに前記吹出口から上方に気流を送出するとより好ましい。この構成によると、吹出口から上方に送出される気流が室内の天井壁に到達してコアンダ効果により天井壁に沿って流通し、気流の到達距離をより長くすることができる。 Further, the present invention provides the circulator having the above-described configuration, wherein the casing is disposed in the vicinity of an indoor ceiling wall with the rotation shaft disposed horizontally, and the outlet is formed at a lower portion of the casing. It is more preferable to send the airflow upward from the top. According to this configuration, the airflow sent upward from the air outlet reaches the indoor ceiling wall and circulates along the ceiling wall due to the Coanda effect, so that the reach distance of the airflow can be further increased.
 また本発明のサーキュレータは、上記のクロスフロー型の送風ファンを備え、室内に向かって複数方向に気流を送出して室内の空気を循環させることを特徴としている。この構成によると、第1ケーシングを流通する気流が室内に送出され、第2ケーシングを流通する気流が第1ケーシングを流通する気流と異なる方向に送出される。室内に送出された空気は室内を循環して送風ファンの吸気側に戻る。 Further, the circulator of the present invention includes the above-described crossflow type blower fan, and is characterized by sending airflow in a plurality of directions toward the room to circulate the air in the room. According to this structure, the airflow which distribute | circulates a 1st casing is sent out indoors, and the airflow which distribute | circulates a 2nd casing is sent out in the direction different from the airflow which distribute | circulates a 1st casing. The air sent into the room circulates in the room and returns to the intake side of the blower fan.
 また本発明は、上記構成のサーキュレータにおいて、第1ケーシングによって水平または前方上方に向けて室内に気流を送出し、第2ケーシングによって下方に向けて室内に気流を送出することが好ましい。この構成によると、第1ケーシングを流通する気流は水平または前方上方に向けて室内に送出され、室内を循環する。第2ケーシングを流通する気流は下方に向けて室内に送出され、サーキュレータが設けられる壁面に沿って流通する。 In the circulator having the above-described configuration, it is preferable that the air flow is sent into the room horizontally or forward and upward by the first casing, and the air flow is sent to the room downward by the second casing. According to this configuration, the airflow flowing through the first casing is sent into the room horizontally or upwardly and circulates in the room. The airflow flowing through the second casing is sent downward into the room and flows along the wall surface on which the circulator is provided.
 また本発明のサーキュレータは、上記の多連の遠心ファンから成る送風ファンを筐体内に備え、室内に向かって複数方向に気流を送出して室内の空気を循環させることを特徴としている。この構成によると、第1ケーシングを流通する気流が室内に送出され、第2ケーシングを流通する気流が第1ケーシングを流通する気流と異なる方向に送出される。室内に送出された空気は室内を循環して送風ファンの吸気側に戻る。 Further, the circulator of the present invention is characterized in that a blower fan comprising the above-described multiple centrifugal fans is provided in the housing, and air is circulated in a plurality of directions toward the room to circulate the room air. According to this structure, the airflow which distribute | circulates a 1st casing is sent out indoors, and the airflow which distribute | circulates a 2nd casing is sent out in the direction different from the airflow which distribute | circulates a 1st casing. The air sent into the room circulates in the room and returns to the intake side of the blower fan.
 また本発明は、上記構成のサーキュレータにおいて、第1ケーシングによって第1吹出口から鉛直上方または後方上方に向けて気流を送出し、第2ケーシングによって第2吹出口から前方上方に向けて気流を送出してもよい。この構成によると、サーキュレータを室内の一側壁と床面とのコーナー近傍に設置すると、第1ケーシングを流通する気流は第1吹出口から該側壁に沿って吹き出される。該気流は天井壁、サーキュレータに対向する側壁及び床面を通ってサーキュレータに戻る。第2ケーシングを流通する気流は第2吹出口から室内の居住空間に向かって送出され、床面を通ってサーキュレータに戻る。 In the circulator having the above-described configuration, the first casing sends an air flow vertically upward or rearward upward from the first air outlet, and the second casing sends an air current upward from the second air outlet toward the upper front. May be. According to this configuration, when the circulator is installed in the vicinity of the corner between the one side wall and the floor surface of the room, the airflow flowing through the first casing is blown out along the side wall from the first outlet. The airflow returns to the circulator through the ceiling wall, the side wall facing the circulator, and the floor surface. The airflow flowing through the second casing is sent from the second air outlet toward the indoor living space, and returns to the circulator through the floor surface.
 また本発明は、上記構成のサーキュレータにおいて、第1ケーシングによって第1吹出口から水平または前方上方に向けて気流を送出し、第2ケーシングによって第2吹出口から前方下方に向けて室内に気流を送出してもよい。この構成によると、サーキュレータを室内の一側壁と天井壁とのコーナー近傍に設置すると、第1ケーシングを流通する気流は第1吹出口から天井壁に沿って吹き出される。該気流はサーキュレータに対向する側壁、床面及びサーキュレータが配される側壁を通ってサーキュレータに戻る。第2ケーシングを流通する気流は第2吹出口から室内の居住空間に向かって送出され、床面及びサーキュレータが配される側壁を通ってサーキュレータに戻る。 Further, according to the present invention, in the circulator having the above-described configuration, the first casing sends an air flow from the first air outlet toward the front or the front upper side, and the second casing causes the air current to flow from the second air outlet toward the front lower side in the room. It may be sent out. According to this configuration, when the circulator is installed in the vicinity of the corner between the indoor side wall and the ceiling wall, the airflow flowing through the first casing is blown out from the first outlet along the ceiling wall. The airflow returns to the circulator through the side wall facing the circulator, the floor, and the side wall on which the circulator is arranged. The airflow flowing through the second casing is sent from the second air outlet toward the indoor living space, and returns to the circulator through the floor surface and the side wall on which the circulator is arranged.
 また本発明は、上記構成のサーキュレータにおいて、前記筐体の一面に第1吹出口及び第2吹出口を設け、該一面に対向する設置面を室内の床面に当接して床面上に設置できるとともに前記設置面を室内の側壁に当接して側壁上に設置できることが好ましい。この構成によると、サーキュレータは床置き及び壁掛けの両方に対応することができるとともに、どちらの場合においても良好に室内の空気を循環させることができる。 Further, according to the present invention, in the circulator having the above-described configuration, a first air outlet and a second air outlet are provided on one surface of the casing, and the installation surface facing the one surface is in contact with the indoor floor surface and is installed on the floor surface. In addition, it is preferable that the installation surface can be installed on the side wall in contact with the side wall of the room. According to this configuration, the circulator can cope with both floor placement and wall hanging, and in both cases, indoor air can be circulated well.
 また本発明は、上記構成のサーキュレータにおいて、第1ケーシング及び第2ケーシングに流入する空気の塵埃を捕集するHEPAフィルターを備えてもよい。この構成によると、HEPAフィルターによって塵埃を除去された空気が室内に送出される。HEPAフィルターによって圧力損失が大きくなるが、静圧の高い遠心ファンにより形成された送風ファンによって送風効率の低下が防止される。 In the circulator configured as described above, the present invention may include a HEPA filter that collects dust of air flowing into the first casing and the second casing. According to this configuration, air from which dust has been removed by the HEPA filter is sent out indoors. Although the pressure loss is increased by the HEPA filter, the blowing efficiency is prevented from being lowered by the blowing fan formed by the centrifugal fan having a high static pressure.
 また本発明は、微小粒子を発生する微小粒子発生装置を有し、室内の一の側壁または室内の一の側壁に近接した天井壁に設置して室内に微小粒子を送出する微小粒子拡散装置において、一の側壁に水平方向に隣接する第1壁面に近い方から順に水平方向に並設される第1吹出口、第2吹出口及び第3吹出口を備え、天井壁に沿って流通して第1壁面に沿って降下する第1気流を第1吹出口から送出し、天井壁に沿って流通して一の側壁に対向する第2壁面に沿って降下する第2気流を第2吹出口から送出し、天井壁に沿って流通して第1壁面に対向する第3壁面に沿って降下する第3気流を第3吹出口から送出することを特徴としている。 The present invention also relates to a microparticle diffusion device that has a microparticle generator that generates microparticles and that is installed on one side wall of a room or a ceiling wall close to one side wall of a room to send microparticles into the room. The first air outlet, the second air outlet, and the third air outlet are arranged in the horizontal direction in order from the side closest to the first wall surface horizontally adjacent to the one side wall, and circulate along the ceiling wall. A first airflow descending along the first wall surface is sent out from the first air outlet, and a second airflow flowing along the ceiling wall and descending along the second wall surface facing the one side wall is sent to the second air outlet. The third airflow is sent from the third blowout port and is sent along the ceiling wall and descends along the third wall surface facing the first wall surface.
 この構成によると、微小粒子拡散装置は例えば室内の一側壁に取付けられ、微小粒子を含む空気が室内に送出される。第1吹出口から右方に向かって送出された第1気流は天井壁に沿って流通し、右方の側壁(第1壁面)に沿って降下する。第2吹出口から前方に向かって送出された第2気流は天井壁に沿って流通し、取付け面に対向する側壁(第2壁面)に沿って降下する。第3吹出口から左方に向かって送出された第3気流は天井壁に沿って流通し、左方の側壁(第3壁面)に沿って降下する。第1壁面、第2壁面及び第3壁面を降下する気流は室内の床面を流通し、取付け面を上昇して微小粒子拡散装置に戻る。これにより、室内の壁面に沿って微小粒子を含む気流が循環し、室内の中央部の居住空間には微小粒子が緩やかに拡散する。第1、第2、第3気流は壁面に沿ってコアンダ効果によって進行するため、室内の空気に奪われる運動エネルギーが抑制され、気流の到達距離を大きくすることができる。 According to this configuration, the microparticle diffusion device is attached to, for example, one side wall of the room, and air containing microparticles is sent into the room. The first air stream sent to the right from the first air outlet flows along the ceiling wall and descends along the right side wall (first wall surface). The second air stream sent forward from the second outlet flows along the ceiling wall and descends along the side wall (second wall surface) facing the mounting surface. The third air stream sent out from the third outlet toward the left flows along the ceiling wall and descends along the left side wall (third wall surface). The airflow descending the first wall surface, the second wall surface, and the third wall surface flows through the floor surface in the room, rises on the attachment surface, and returns to the fine particle diffusion device. Thereby, the airflow containing microparticles circulates along the wall surface of the room, and the microparticles diffuse gently into the living space in the center of the room. Since the first, second, and third airflows travel along the wall surface by the Coanda effect, the kinetic energy taken away by the indoor air is suppressed, and the reach of the airflow can be increased.
 また本発明は、吸込口と吹出口とを開口する筐体と、前記吸込口と前記吹出口とを連結して前記筐体内に設けられる送風経路と、前記送風経路に配されて周方向に気流を送出する送風ファンと、前記送風ファンの下流側に配されて微小粒子を発生する微小粒子発生装置を備え、前記吸込口から前記送風経路に流入する室内の空気に微小粒子を含有して前記吹出口から送出する微粒子拡散装置において、前記送風経路が、前記送風ファンの下流側で流路を前記送風ファンの回転軸の垂直方向に徐々に拡大する垂直方向拡大部と、前記垂直方向拡大部の下流側で流路を前記回転軸の軸方向に徐々に拡大するとともに前記回転軸の垂直方向に一定に維持または徐々に縮小する軸方向拡大部とを有することを特徴としている。 Further, the present invention provides a housing that opens the suction port and the air outlet, an air passage that is provided in the housing by connecting the air inlet and the air outlet, and is disposed in the air passage in the circumferential direction. A blower fan for sending airflow and a fine particle generator arranged on the downstream side of the blower fan to generate fine particles, and the indoor air flowing into the blower path from the suction port contains fine particles. In the fine particle diffusing device that is sent out from the blower outlet, the blower path has a vertical enlargement part that gradually enlarges the flow path in the direction perpendicular to the rotation axis of the blower fan on the downstream side of the blower fan, and the vertical enlargement And an axially enlarged portion that gradually expands in the axial direction of the rotating shaft and maintains or gradually reduces the flow path in the vertical direction of the rotating shaft.
 この構成によると、送風ファンは遠心ファンや貫流ファンから成り、例えば回転軸が水平に配される。送風ファンの駆動によって吸込口から室内の空気が送風経路に流入して送風ファンの周方向に排気される。送風ファンの下流側の垂直方向拡大部は上下方向に徐々に拡大され、気流の運動エネルギーを回収して静圧に変換する。垂直方向拡大部の下流側の軸方向拡大部は左右方向に徐々に広がるとともに上下方向に一定または縮小される。これにより、軸方向拡大部を流通する気流は左右方向に広げられるとともに流速の低下を抑制される。そして、微小粒子発生装置により発生した微小粒子を含む気流が吹出口から左右方向の広い範囲に送出され、室内に微小粒子が拡散する。送風ファンの回転軸を水平に対して傾斜して配してもよく、鉛直に配してもよい。 According to this configuration, the blower fan is composed of a centrifugal fan or a cross-flow fan, and for example, the rotation shaft is arranged horizontally. By driving the blower fan, indoor air flows into the blower path from the suction port and is exhausted in the circumferential direction of the blower fan. The vertical expansion portion on the downstream side of the blower fan is gradually expanded in the vertical direction, recovering the kinetic energy of the airflow and converting it into a static pressure. The axially enlarged portion on the downstream side of the vertically enlarged portion gradually expands in the left-right direction and is constant or reduced in the up-down direction. Thereby, the airflow which distribute | circulates an axial direction expansion part is expanded in the left-right direction, and the fall of the flow velocity is suppressed. And the airflow containing the microparticles generated by the microparticle generator is sent from the outlet to a wide range in the left-right direction, and the microparticles diffuse in the room. The rotation axis of the blower fan may be arranged inclined with respect to the horizontal, or may be arranged vertically.
 また本発明の微小粒子拡散装置は、上記クロスフロー型の送風ファンと、微小粒子を発生する微小粒子発生装置とを備え、室内に向かって複数方向に微小粒子を含む気流を送出して室内に微小粒子を拡散させることを特徴としている。この構成によると、微小粒子発生装置で発生する微小粒子が第1ケーシング及び第2ケーシングを流通する気流に含まれる。第1ケーシングを流通する気流は室内に送出され、第2ケーシングを流通する気流が第1ケーシングを流通する気流と異なる方向に送出される。これにより、微小粒子が室内に拡散される。 A fine particle diffusion device of the present invention includes the cross-flow type blower fan and a fine particle generation device that generates fine particles, and sends an air flow containing the fine particles in a plurality of directions toward the room. It is characterized by diffusing fine particles. According to this configuration, the fine particles generated by the fine particle generator are included in the airflow flowing through the first casing and the second casing. The airflow flowing through the first casing is sent out indoors, and the airflow flowing through the second casing is sent out in a different direction from the airflow flowing through the first casing. Thereby, microparticles are diffused in the room.
 また本発明は、上記構成の微小粒子拡散装置において、第1ケーシングによって水平または前方上方に向けて室内に気流を送出し、第2ケーシングによって下方に向けて室内に気流を送出することが好ましい。この構成によると、第1ケーシングを流通する気流は水平または前方上方に向けて室内に送出され、室内に微小粒子が拡散される。第2ケーシングを流通する気流は下方に向けて室内に送出され、微小粒子拡散装置が設けられる壁面に沿って流通して下方に微小粒子が供給される。 In the fine particle diffusing apparatus having the above-described configuration, it is preferable that the air flow is sent into the room horizontally or forward and upward by the first casing, and the air flow is sent to the room downward by the second casing. According to this configuration, the airflow that circulates through the first casing is sent into the room horizontally or forward and upward, and microparticles are diffused into the room. The airflow flowing through the second casing is sent downward into the room, flows along the wall surface on which the microparticle diffusion device is provided, and microparticles are supplied downward.
 また本発明の微小粒子拡散装置は、上記多連の遠心ファンを有するサーキュレータ内に微小粒子を発生する微小粒子発生装置を備え、室内に向かって複数方向に微小粒子を含む気流を送出して室内に微小粒子を拡散させることを特徴としている。この構成によると、微小粒子発生装置で発生する微小粒子が第1ケーシング及び第2ケーシングを流通する気流に含まれる。第1ケーシングを流通する気流は室内に送出され、第2ケーシングを流通する気流が第1ケーシングを流通する気流と異なる方向に送出される。これにより、微小粒子が室内に拡散される。 The fine particle diffusing device of the present invention includes a fine particle generating device that generates fine particles in the circulator having the multiple centrifugal fans, and sends an air flow including the fine particles in a plurality of directions toward the room. It is characterized by diffusing fine particles. According to this configuration, the fine particles generated by the fine particle generator are included in the airflow flowing through the first casing and the second casing. The airflow flowing through the first casing is sent out indoors, and the airflow flowing through the second casing is sent out in a different direction from the airflow flowing through the first casing. Thereby, microparticles are diffused in the room.
 また本発明は、上記構成の微小粒子拡散装置において、前記微小粒子発生装置で発生する微小粒子が、イオン、芳香剤、消臭剤、殺虫剤、殺菌剤のいずれかを含むようにしてもよい。 Further, according to the present invention, in the fine particle diffusing apparatus having the above-described configuration, the fine particles generated by the fine particle generator may include any of ions, fragrances, deodorants, insecticides, and bactericides.
 また本発明は、室内の一の側壁と天井壁とのコーナー近傍に設置されるサーキュレータによって室内の空気を循環させる空気循環方法において、前記サーキュレータが一の側壁に水平方向に隣接する第1壁面に近い方から順に水平方向に並設される第1吹出口、第2吹出口及び第3吹出口を備え、天井壁に沿って流通して第1壁面に沿って降下する第1気流を第1吹出口から送出し、天井壁に沿って流通して一の側壁に対向する第2壁面に沿って降下する第2気流を第2吹出口から送出し、天井壁に沿って流通して第1壁面に対向する第3壁面に沿って降下する第3気流を第3吹出口から送出することを特徴としている。 The present invention is also directed to an air circulation method in which indoor air is circulated by a circulator installed in the vicinity of a corner between one side wall and a ceiling wall of the room, wherein the circulator is disposed on the first wall surface horizontally adjacent to the one side wall. A first air outlet, a second air outlet, and a third air outlet that are juxtaposed in the horizontal direction in order from the nearest one are provided, and the first airflow that flows along the ceiling wall and descends along the first wall surface is first. A second air stream that is sent out from the air outlet, flows along the ceiling wall, and descends along the second wall surface facing the one side wall is sent out from the second air outlet, and flows along the ceiling wall to be the first. The third airflow descending along the third wall surface facing the wall surface is sent out from the third air outlet.
 本発明によると、水平方向に並設される第1吹出口、第2吹出口及び第3吹出口を備え、天井壁に沿って流通して第1壁面に沿って降下する第1気流を第1吹出口から送出し、天井壁に沿って流通して一の側壁に対向する第2壁面に沿って降下する第2気流を第2吹出口から送出し、天井壁に沿って流通して第1壁面に対向する第3壁面に沿って降下する第3気流を第3吹出口から送出する。 According to the present invention, a first air outlet, a second air outlet, and a third air outlet that are juxtaposed in the horizontal direction are provided, and the first airflow that flows along the ceiling wall and descends along the first wall surface is provided. A second air stream that is sent out from the first outlet, circulates along the ceiling wall, and descends along the second wall surface facing the one side wall is sent out from the second outlet and circulated along the ceiling wall. A third airflow descending along the third wall surface facing the one wall surface is sent out from the third air outlet.
 これにより、第1、第2、第3気流は壁面に沿ってコアンダ効果によって進行するため、室内の空気に奪われる運動エネルギーが抑制され、気流の到達距離を大きくすることができる。従って、省電力化を図ることができるとともに居住空間に直接気流が供給されないため使用者の不快感を低減し、室内の空気を十分循環させることができる。 Thus, since the first, second, and third airflows travel along the wall surface by the Coanda effect, the kinetic energy taken away by the indoor air is suppressed, and the reach of the airflow can be increased. Therefore, it is possible to save power, and since airflow is not directly supplied to the living space, user discomfort can be reduced and indoor air can be circulated sufficiently.
 また本発明によると、垂直方向拡大部が流路を送風ファンの回転軸の垂直方向に徐々に拡大し、軸方向拡大部が垂直方向拡大部の下流側で流路を送風ファンの回転軸の軸方向に徐々に拡大するとともに垂直方向に一定に維持または徐々に縮小するので、送風ファンの遠心力による流量の不均一を防止できる。加えて、垂直方向拡大部で気流の運動エネルギーを十分静圧に変換して静圧が高められた後に軸方向拡大部で気流の速度低下を抑制して軸方向に気流が広げられる。これにより、省電力化を図ることができるとともに、気流の到達距離を大きくすることができる。従って、室内の空気を十分循環させることができる。 Further, according to the present invention, the vertical expansion section gradually expands the flow path in the vertical direction of the rotation axis of the blower fan, and the axial expansion section moves the flow path on the downstream side of the vertical expansion section of the rotation axis of the blower fan. Since it gradually expands in the axial direction and is maintained constant or gradually contracts in the vertical direction, non-uniform flow rate due to the centrifugal force of the blower fan can be prevented. In addition, after the kinetic energy of the airflow is sufficiently converted into static pressure by the vertical expansion portion and the static pressure is increased, the airflow is spread in the axial direction by suppressing the speed reduction of the airflow at the axial expansion portion. Thereby, power saving can be achieved and the reach of the airflow can be increased. Therefore, indoor air can be circulated sufficiently.
 また本発明の微小粒子拡散装置によると、省電力化を図ることができるとともに微小粒子を室内に十分拡散させることができる。加えて、居住空間に直接気流が供給されないため使用者の不快感を低減することができる。 Further, according to the fine particle diffusing apparatus of the present invention, power saving can be achieved and the fine particles can be sufficiently diffused in the room. In addition, since airflow is not directly supplied to the living space, user discomfort can be reduced.
 また本発明によると、クロスフロー型の送風ファンの羽根車を覆う第1、第2ケーシングが羽根車の軸方向に並設され、それぞれを通る気流の吹出し方向が異なるので、簡単な構成で複数の方向に気流を送出することができる。また、気流が急激に曲げられないため圧力損失の低下を防止し、送風効率を向上するとともに騒音を低減することができる。 Further, according to the present invention, the first and second casings covering the impeller of the crossflow type blower fan are arranged side by side in the axial direction of the impeller, and the blowing direction of the airflow passing through each of them is different. The airflow can be sent out in the direction of. Further, since the air flow is not bent suddenly, the pressure loss can be prevented from being lowered, and the blowing efficiency can be improved and the noise can be reduced.
 また本発明によると、同軸に配される第1、第2羽根車が一のモータにより駆動される。そして、第1羽根車を覆う第1筒状部の周面から第1吹出通路が延びる方向と第2羽根車を覆う第2筒状部の周面から第2吹出通路が延びる方向とが周方向に異なり、第1吹出口から吹き出される気流の吹出し方向と第2吹出口から吹き出される気流の吹出し方向とが異なる。これにより、簡単な構成で複数の方向に気流を送出することができる。また、気流が急激に曲げられないため圧力損失の増加を防止し、送風効率を向上するとともに騒音を低減することができる。 According to the present invention, the first and second impellers arranged coaxially are driven by one motor. A direction in which the first blowing passage extends from the circumferential surface of the first cylindrical portion covering the first impeller and a direction in which the second blowing passage extends from the circumferential surface of the second cylindrical portion covering the second impeller are circumferential. The direction of the airflow blown out from the first air outlet differs from the direction of the airflow blown out from the second air outlet. Thereby, airflow can be sent out in a plurality of directions with a simple configuration. Further, since the air flow is not bent suddenly, an increase in pressure loss can be prevented, and the air blowing efficiency can be improved and noise can be reduced.
本発明の第1実施形態の微小粒子拡散装置を上方から見た斜視図The perspective view which looked at the microparticle diffusion apparatus of a 1st embodiment of the present invention from the upper part 本発明の第1実施形態の微小粒子拡散装置を下方から見た斜視図The perspective view which looked at the microparticle diffusion apparatus of a 1st embodiment of the present invention from the lower part 本発明の第1実施形態の微小粒子拡散装置の正面図The front view of the microparticle diffusion apparatus of 1st Embodiment of this invention 図3のA-A断面の側面断面図Side sectional view of the AA section of FIG. 図3のB-B断面の上面断面図3 is a cross-sectional top view taken along line BB in FIG. 本発明の第1実施形態の微小粒子拡散装置の室内の気流状態を示す図The figure which shows the indoor airflow state of the microparticle diffusion apparatus of 1st Embodiment of this invention. 本発明の第2実施形態の微小粒子拡散装置の側面断面図Side surface sectional drawing of the microparticle diffusion apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態の微小粒子拡散装置の側面断面図Side surface sectional drawing of the microparticle diffusion apparatus of 3rd Embodiment of this invention. 本発明の第4実施形態の微小粒子拡散装置の側面断面図Side surface sectional drawing of the microparticle diffusion apparatus of 4th Embodiment of this invention. 本発明の第5実施形態の微小粒子拡散装置を上方から見た斜視図The perspective view which looked at the microparticle diffusion apparatus of 5th Embodiment of this invention from upper direction 本発明の第5実施形態の微小粒子拡散装置を下方から見た斜視図The perspective view which looked at the microparticle diffusion apparatus of 5th Embodiment of this invention from the downward direction 本発明の第5実施形態の微小粒子拡散装置の正面図The front view of the microparticle diffusion apparatus of 5th Embodiment of this invention 図12のD-D断面の側面断面図12 is a side sectional view taken along the line DD in FIG. 図12のE-E断面の側面断面図Side sectional view of the EE cross section of FIG. 図12のC-C断面の上面断面図12 is a cross-sectional top view taken along the line CC of FIG. 本発明の第5実施形態の微小粒子拡散装置の室内の気流状態を示す図The figure which shows the air flow state of the room | chamber interior of the microparticle diffusion apparatus of 5th Embodiment of this invention. 本発明の第6実施形態の微小粒子拡散装置の斜視図The perspective view of the microparticle diffusion apparatus of 6th Embodiment of this invention. 本発明の第6実施形態の微小粒子拡散装置の側面断面図Side surface sectional drawing of the microparticle diffusion apparatus of 6th Embodiment of this invention. 本発明の第6実施形態の微小粒子拡散装置の送風ファンを示す正面断面図Front sectional drawing which shows the ventilation fan of the microparticle diffusion apparatus of 6th Embodiment of this invention. 本発明の第7実施形態の微小粒子拡散装置の側面断面図Side surface sectional drawing of the microparticle diffusion apparatus of 7th Embodiment of this invention. 本発明の第8実施形態の微小粒子拡散装置の斜視図The perspective view of the microparticle diffusion apparatus of 8th Embodiment of this invention. 本発明の第8実施形態の微小粒子拡散装置の側面断面図Side surface sectional drawing of the microparticle diffusion apparatus of 8th Embodiment of this invention. 本発明の第9実施形態の微小粒子拡散装置の側面断面図Side surface sectional drawing of the microparticle diffusion apparatus of 9th Embodiment of this invention
 以下に本発明の実施形態を図面を参照して説明する。図1、図2及び図3は第1実施形態の微小粒子拡散装置を上方から見た斜視図、下方から見た斜視図及び正面図である。微小粒子拡散装置1は筐体2で覆われ、室内の一の側壁Sと天井壁T(図4参照)とのコーナー近傍に配される。筐体2を側壁Sに取り付けてもよく、側壁Sの近傍の天井壁Tに取り付けてもよい。 Embodiments of the present invention will be described below with reference to the drawings. 1, 2, and 3 are a perspective view of the microparticle diffusion device of the first embodiment as viewed from above, a perspective view and a front view as viewed from below. The fine particle diffusion device 1 is covered with a housing 2 and is arranged in the vicinity of a corner between one side wall S and a ceiling wall T (see FIG. 4). The housing 2 may be attached to the side wall S, or may be attached to the ceiling wall T in the vicinity of the side wall S.
 筐体2の下面には吸込口5が開口する。吸込口5にはフィルター6が配される。筐体2の前面上部には室内に向かって右から順に第1吹出口4a、第2吹出口4b及び第3吹出口4cが水平方向に並設される。第1吹出口4a、第2吹出口4b及び第3吹出口4cは筐体2の上端に設けられ、天井壁T(図4参照)に沿って空気を送出する。詳細を後述するように、第1吹出口4aは筐体2から右方に空気を送出し、第2吹出口4bは筐体2から正面に空気を送出し、第3吹出口4cは筐体2から左方に空気を送出する。 A suction port 5 opens on the lower surface of the housing 2. A filter 6 is disposed at the suction port 5. A first air outlet 4a, a second air outlet 4b, and a third air outlet 4c are juxtaposed in the horizontal direction on the front upper portion of the housing 2 in order from the right toward the room. The 1st blower outlet 4a, the 2nd blower outlet 4b, and the 3rd blower outlet 4c are provided in the upper end of the housing | casing 2, and send out air along the ceiling wall T (refer FIG. 4). As will be described in detail later, the first air outlet 4a sends air from the housing 2 to the right, the second air outlet 4b sends air from the housing 2 to the front, and the third air outlet 4c is the housing. Air is sent from 2 to the left.
 図4、図5は図3のA-A断面の側面断面図及びB-B断面の上面断面図を示している。筐体2内には第1吹出口4a、第2吹出口4b及び第3吹出口4cと吸込口5とを連結する送風経路10が設けられる。送風経路10内には送風ファン8が配される。送風ファン8はファンモータ8aにより回転翼(不図示)が回転駆動されるクロスフローファン(貫流ファン)から成り、回転軸が水平方向に配される。ファンモータ8aの駆動によって送風ファン8は回転翼(不図示)の周方向から吸気して周方向に排気する。回転軸を水平方向に配した遠心ファンにより送風ファン8を形成してもよい。 4 and 5 show a side sectional view taken along the line AA and a top sectional view taken along the line BB in FIG. Inside the housing 2, a blower path 10 that connects the first air outlet 4 a, the second air outlet 4 b, the third air outlet 4 c, and the suction port 5 is provided. A blower fan 8 is disposed in the blower path 10. The blower fan 8 is composed of a cross flow fan (cross-flow fan) in which rotating blades (not shown) are rotationally driven by a fan motor 8a, and a rotating shaft is arranged in the horizontal direction. By driving the fan motor 8a, the blower fan 8 takes in air from the circumferential direction of the rotor blade (not shown) and exhausts it in the circumferential direction. You may form the ventilation fan 8 with the centrifugal fan which has arrange | positioned the rotating shaft to the horizontal direction.
 送風経路10内には送風ファン8の下流側で水平方向に分割された複数の第1分割通路10a、第2分割通路10b及び第3分割通路10cが順に設けられる。第1分割通路10a、第2分割通路10b及び第3分割通路10cはそれぞれ前端に第1吹出口4a、第2吹出口4b及び第3吹出口4cが開口する。また、第1分割通路10a及び第3分割通路10cの内側の側壁10e及び外側の側壁10fは鉛直面に対して傾斜した曲面により形成される。 A plurality of first divided passages 10a, second divided passages 10b, and third divided passages 10c divided in the horizontal direction on the downstream side of the blower fan 8 are provided in the blower passage 10 in order. The first divided passage 10a, the second divided passage 10b, and the third divided passage 10c have a first outlet 4a, a second outlet 4b, and a third outlet 4c opened at the front ends, respectively. Further, the inner side wall 10e and the outer side wall 10f of the first divided passage 10a and the third divided passage 10c are formed by curved surfaces inclined with respect to the vertical plane.
 第1分割通路10a、第2分割通路10b及び第3分割通路10cにはそれぞれ送風ファン8の下流側に垂直方向拡大部11及び軸方向拡大部12が形成される。垂直方向拡大部11は流路を送風ファン8の回転軸の垂直方向に徐々に拡大する。軸方向拡大部12は垂直方向拡大部11の下流側で流路を送風ファン8の回転軸の軸方向に徐々に拡大するとともに垂直方向に徐々に縮小する。 In the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c, a vertical expansion portion 11 and an axial expansion portion 12 are formed on the downstream side of the blower fan 8, respectively. The vertical expansion unit 11 gradually expands the flow path in the vertical direction of the rotation axis of the blower fan 8. The axially expanding portion 12 gradually expands the flow path in the axial direction of the rotation axis of the blower fan 8 and gradually decreases in the vertical direction on the downstream side of the vertical expanding portion 11.
 尚、軸方向拡大部12の流路面積は下流になる程拡大されている。また、第1分割通路10a、第2分割通路10b及び第3分割通路10cは垂直方向拡大部11及び軸方向拡大部12に連続して形成される。 In addition, the flow path area of the axial direction expansion part 12 is expanded so that it becomes downstream. The first divided passage 10 a, the second divided passage 10 b, and the third divided passage 10 c are formed continuously with the vertical direction enlarged portion 11 and the axial direction enlarged portion 12.
 第1分割通路10a、第2分割通路10b及び第3分割通路10cには微小粒子発生装置7の電極7a、7bが露出して配される。電極7aと電極7bとは第1分割通路10a、第2分割通路10b及び第3分割通路10c内でそれぞれ仕切壁10dにより仕切られて配置される。 The electrodes 7a and 7b of the fine particle generator 7 are arranged so as to be exposed in the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c. The electrode 7a and the electrode 7b are respectively partitioned by a partition wall 10d in the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c.
 電極7a、7bには交流波形またはインパルス波形から成る電圧が印加される。電極7aには正電圧が印加され、電離により発生するイオンが空気中の水分と結合して主としてH+(H2O)mから成る電荷が正のクラスタイオンが形成される。電極7bには負電圧が印加され、電離により発生するイオンが空気中の水分と結合して主としてO2 -(H2O)nから成る電荷が負のクラスタイオンが形成される。ここで、m、nは任意の自然数である。 A voltage having an AC waveform or an impulse waveform is applied to the electrodes 7a and 7b. A positive voltage is applied to the electrode 7a, and ions generated by ionization combine with moisture in the air to form positive cluster ions mainly composed of H + (H 2 O) m. A negative voltage is applied to the electrode 7b, and ions generated by ionization combine with moisture in the air to form negatively clustered ions mainly composed of O 2 (H 2 O) n. Here, m and n are arbitrary natural numbers.
 H+(H2O)m及びO2 -(H2O)nは空気中の浮遊菌や臭い成分の表面で凝集してこれらを取り囲む。そして、式(1)~(3)に示すように、衝突により活性種である[・OH](水酸基ラジカル)やH22(過酸化水素)を浮遊菌や臭い成分等の表面上で凝集生成してこれらを破壊する。ここで、m’、n’は任意の自然数である。従って、プラスイオン及びマイナスイオンを発生して第1吹出口4a、第2吹出口4b、第3吹出口4cから吐出することにより、室内の殺菌及び臭い除去を行うことができる。 H + (H 2 O) m and O 2 (H 2 O) n aggregate on the surface of airborne bacteria and odorous components and surround them. Then, as shown in the formulas (1) to (3), the active species [.OH] (hydroxyl radical) or H 2 O 2 (hydrogen peroxide) is allowed to collide with the surface of floating bacteria, odorous components, etc. Aggregate to break them. Here, m ′ and n ′ are arbitrary natural numbers. Therefore, indoor sterilization and odor removal can be performed by generating positive ions and negative ions and discharging them from the first air outlet 4a, the second air outlet 4b, and the third air outlet 4c.
 H+(H2O)m+O2 -(H2O)n→・OH+1/2O2+(m+n)H2
                            ・・・(1)
 H+(H2O)m+H+(H2O)m’+O2 -(H2O)n+O2 -(H2O)n’
       → 2・OH+O2+(m+m'+n+n')H2O ・・・(2)
 H+(H2O)m+H+(H2O)m’+O2 -(H2O)n+O2 -(H2O)n’
        → H22+O2+(m+m'+n+n')H2O ・・・(3)
H + (H 2 O) m + O 2 - (H 2 O) n → · OH + 1 / 2O 2 + (m + n) H 2 O
... (1)
H + (H 2 O) m + H + (H 2 O) m '+ O 2 - (H 2 O) n + O 2 - (H 2 O) n'
→ 2 OH + O 2 + (m + m ′ + n + n ′) H 2 O (2)
H + (H 2 O) m + H + (H 2 O) m '+ O 2 - (H 2 O) n + O 2 - (H 2 O) n'
→ H 2 O 2 + O 2 + (m + m ′ + n + n ′) H 2 O (3)
 上記構成の微小粒子拡散装置1において、送風ファン8及び微小粒子発生装置7が駆動されると、室内の空気が吸込口5から筐体2内に取り込まれる。筐体2内に取り込まれる空気はフィルタ6により塵埃が捕集され、送風経路10を流通して送風ファン8に導かれる。 In the fine particle diffusion device 1 configured as described above, when the blower fan 8 and the fine particle generator 7 are driven, indoor air is taken into the housing 2 from the suction port 5. The air taken into the housing 2 is collected by the filter 6 and flows through the air blowing path 10 and is guided to the air blowing fan 8.
 送風ファン8の排気は第1分割通路10a、第2分割通路10b及び第3分割通路10cに分岐してそれぞれ第1吹出口4a、第2吹出口4b及び第3吹出口4cに導かれる。この時、送風ファン8の回転軸を鉛直に配置すると、遠心力によって左右方向で気流が不均一になる。このため、送風ファン8の回転軸を水平に配して左右方向の気流を均一にすることができる。加えて、第1分割通路10a及び第3分割通路10cの内側の側壁10eが鉛直面に対して傾斜するため、送風ファン8から周接線方向に直進する気流を容易に湾曲させることができる。 Exhaust air from the blower fan 8 is branched into a first divided passage 10a, a second divided passage 10b, and a third divided passage 10c, and is led to the first outlet 4a, the second outlet 4b, and the third outlet 4c, respectively. At this time, if the rotation axis of the blower fan 8 is arranged vertically, the air flow becomes uneven in the left-right direction due to centrifugal force. For this reason, the rotational axis of the blower fan 8 can be horizontally arranged to make the airflow in the left-right direction uniform. In addition, since the inner side wall 10e of the first divided passage 10a and the third divided passage 10c is inclined with respect to the vertical plane, the airflow straightly traveling in the circumferential tangential direction from the blower fan 8 can be easily curved.
 また、垂直方向拡大部11で上下方向に流路が広げられるとともに軸方向拡大部12で左右方向に流路が広げられる。軸方向拡大部12よりも上流の垂直方向拡大部11では周方向に排気される送風ファン8の遠心力の影響が大きい。このため、気流は送風ファン8の回転軸に垂直な方向に進行するため左右に広げるのは望ましくない。そして、垂直方向拡大部11で上下方向に流路を拡大することによって気流の運動エネルギーを回収して静圧に変換し、静圧が高められる。これにより、微小粒子拡散装置1の送風能力を向上させることができる。尚、垂直方向拡大部11で流路の左右方向の幅を一定にしてもよく、やや縮小してもよい。この時、流路面積は下流になる程徐々に拡大させる。 Further, the flow path is expanded in the vertical direction by the vertical expansion section 11 and the flow path is expanded in the left-right direction by the axial expansion section 12. In the vertical expansion section 11 upstream of the axial expansion section 12, the influence of the centrifugal force of the blower fan 8 exhausted in the circumferential direction is large. For this reason, since the airflow proceeds in a direction perpendicular to the rotation axis of the blower fan 8, it is not desirable to spread it to the left and right. Then, the kinetic energy of the airflow is recovered and converted into a static pressure by expanding the flow path in the vertical direction by the vertical expansion unit 11, and the static pressure is increased. Thereby, the ventilation capability of the microparticle diffusion apparatus 1 can be improved. In addition, the width in the left-right direction of the flow path may be made constant by the vertical enlargement unit 11 or may be slightly reduced. At this time, the flow path area is gradually expanded toward the downstream.
 軸方向拡大部12では送風ファン8による遠心力が弱まった状態で流路を左右方向に拡大するので、圧力損失を大きくすることなく気流を円滑に湾曲させて左右方向に広げることができる。また、上下方向に流路が絞られるため、気流をより円滑に左右方向に広げることができるとともに気流の速度低下を抑制することができる。この時、軸方向拡大部12の流路面積が下流になる程拡大するので、軸方向拡大部12においても運動エネルギーを回収して静圧に変換し、静圧を高めることができる。尚、軸方向拡大部12で流路の上下方向の幅を一定に維持してもよく、流路面積を一定に維持してもよい。 Since the axial expansion section 12 expands the flow path in the left-right direction with the centrifugal force of the blower fan 8 weakened, the airflow can be smoothly curved and expanded in the left-right direction without increasing the pressure loss. Moreover, since the flow path is restricted in the vertical direction, the airflow can be more smoothly spread in the left-right direction, and the speed reduction of the airflow can be suppressed. At this time, since the flow path area of the axially expanded portion 12 increases as it becomes downstream, the kinetic energy can also be recovered and converted into static pressure in the axially expanded portion 12 to increase the static pressure. In addition, the vertical width of the flow path may be maintained constant by the axially enlarged portion 12, or the flow path area may be maintained constant.
 第1分割通路10a、第2分割通路10b及び第3分割通路10cを流通する気流には微小粒子発生装置7によってプラスイオンとマイナスイオンとが含まれる。これにより、第1吹出口4a、第2吹出口4b及び第3吹出口4cからプラスイオンとマイナスイオンとを含む気流が送出される。 The air flow flowing through the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c includes positive ions and negative ions by the microparticle generator 7. Thereby, the airflow containing a positive ion and a negative ion is sent out from the 1st blower outlet 4a, the 2nd blower outlet 4b, and the 3rd blower outlet 4c.
 図6は微小粒子拡散装置1から送出される室内Dの気流の状態を示している。第1吹出口4aから右方に向かって送出された第1気流A1は天井壁Tに沿って流通し、右方の側壁(第1壁面P1)に沿って降下する。第2吹出口4bから前方に向かって送出された第2気流A2は天井壁Tに沿って流通し、微小粒子拡散装置1が配される側壁Sに対向する側壁(第2壁面P2)に沿って降下する。第3吹出口4cから左方に向かって送出された第3気流A3は天井壁Tに沿って流通し、左方の側壁(第3壁面P3)に沿って降下する。 FIG. 6 shows the state of the airflow in the room D sent out from the microparticle diffusion device 1. The first airflow A1 sent to the right from the first outlet 4a flows along the ceiling wall T and descends along the right side wall (first wall surface P1). The second airflow A2 sent forward from the second outlet 4b flows along the ceiling wall T and along the side wall (second wall surface P2) facing the side wall S on which the microparticle diffusion device 1 is arranged. Descent. The third airflow A3 sent to the left from the third outlet 4c flows along the ceiling wall T and descends along the left side wall (third wall surface P3).
 第1壁面P1、第2壁面P2及び第3壁面P3を降下する気流は室内の床面Fを流通し、側壁Sに沿って上昇して微小粒子拡散装置1の吸込口5に戻る。これにより、室内の各壁面に沿って気流が循環して室内の隅々にイオンを行き渡らせることができる。また、室内の中央部の居住空間には壁面に沿って流通する気流によってイオンが緩やかに拡散する。第1、第2、第3気流A1、A2、A3は壁面に沿ってコアンダ効果によって進行するため、室内の空気に奪われる運動エネルギーが抑制される。これにより、消費電力を抑制して気流の到達距離を大きくすることができる。 The airflow descending the first wall surface P1, the second wall surface P2, and the third wall surface P3 flows through the indoor floor surface F, rises along the side wall S, and returns to the suction port 5 of the microparticle diffusion device 1. Thereby, airflow circulates along each wall surface in a room, and it can spread ions to every corner of a room. In addition, ions gradually diffuse into the living space in the center of the room due to the airflow flowing along the wall surface. Since the first, second, and third airflows A1, A2, and A3 travel along the wall surface due to the Coanda effect, kinetic energy taken away by indoor air is suppressed. Thereby, power consumption can be suppressed and the reach | attainment distance of an airflow can be enlarged.
 尚、電極7a、7bにより発生するイオンの極性を所定期間毎に切り替えてもよい。即ち、電極7aからプラスイオンを発生して電極7bからマイナスイオンを発生する。所定期間が経過すると電極7aからマイナスイオンを発生して電極7bからプラスイオンを発生する。更に所定期間が経過すると、電極7aからプラスイオンを発生して電極7bからマイナスイオンを発生し、この動作を繰り返す。 Note that the polarity of ions generated by the electrodes 7a and 7b may be switched every predetermined period. That is, positive ions are generated from the electrode 7a and negative ions are generated from the electrode 7b. When a predetermined period elapses, negative ions are generated from the electrode 7a and positive ions are generated from the electrode 7b. When a predetermined time further elapses, positive ions are generated from the electrode 7a and negative ions are generated from the electrode 7b, and this operation is repeated.
 これにより、第1分割通路10a、第2分割通路10b及び第3分割通路10cを左右に広がって送出される気流の左端及び右端にプラスイオンとマイナスイオンとが交互に送出される。従って、居室内の左右方向の広い範囲までプラスイオン及びマイナスイオンを高い濃度で分布させることができる。 Thus, positive ions and negative ions are alternately sent to the left end and the right end of the air flow that is sent to the left and right of the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c. Therefore, positive ions and negative ions can be distributed at a high concentration over a wide range in the left-right direction in the room.
 本実施形態によると、水平方向に並設される第1吹出口4a、第2吹出口4b及び第3吹出口4cを備え、天井壁Tに沿って流通して第1壁面P1に沿って降下する第1気流A1を第1吹出口4aから送出し、天井壁Tに沿って流通して側壁Sに対向する第2壁面P2に沿って降下する第2気流A2を第2吹出口から送出し、天井壁Tに沿って流通して第1壁面P1に対向する第3壁面P3に沿って降下する第3気流A3を第3吹出口4cから送出する。 According to the present embodiment, the first air outlet 4a, the second air outlet 4b, and the third air outlet 4c arranged side by side in the horizontal direction are provided, circulate along the ceiling wall T, and descend along the first wall surface P1. The first air flow A1 is sent out from the first air outlet 4a, and the second air flow A2 flowing along the ceiling wall T and descending along the second wall surface P2 facing the side wall S is sent out from the second air outlet. Then, the third air flow A3 that flows along the ceiling wall T and descends along the third wall surface P3 facing the first wall surface P1 is sent out from the third air outlet 4c.
 これにより、第1、第2、第3気流A1、A2、A3は壁面に沿ってコアンダ効果によって進行するため、室内の空気に奪われる運動エネルギーが抑制される。即ち、気流が天井壁Tに沿わない場合には、気流の上側が周囲空気(天井壁Tと気流との間の空気)を誘引して周囲空気に運動エネルギーを奪われて損なわれる。気流が天井壁Tに沿う場合には、壁面の摩擦抵抗により運動エネルギーが損なわれるが、天井壁Tに沿わない場合に損なわれる運動エネルギーよりも一般的に非常に小さい。上記特許文献2に記載される従来の空気調和機では気流を天井壁Tに沿わせないため周囲空気に運動エネルギーを奪われてしまい、その分だけ気流の到達距離が短くなる。 Thereby, since the first, second, and third airflows A1, A2, and A3 proceed along the wall surface by the Coanda effect, the kinetic energy taken away by the indoor air is suppressed. That is, when the airflow does not follow the ceiling wall T, the upper side of the airflow attracts ambient air (air between the ceiling wall T and the airflow), and the surrounding air loses kinetic energy and is damaged. When the airflow is along the ceiling wall T, the kinetic energy is lost due to the frictional resistance of the wall surface, but is generally much smaller than the kinetic energy lost when the airflow does not follow the ceiling wall T. In the conventional air conditioner described in the above-mentioned Patent Document 2, the kinetic energy is deprived by the surrounding air because the air flow is not along the ceiling wall T, and the reach distance of the air flow is shortened accordingly.
 このため、本実施形態は気流の到達距離を大きくして室内の隅々までイオンを行き渡らせることができる。従って、省電力化を図ることができるとともに居住空間に直接気流が供給されないため使用者の不快感を低減し、イオンを室内に十分拡散させることができる。 For this reason, this embodiment can increase the reach of the air current and spread ions to every corner of the room. Therefore, it is possible to save power, and since airflow is not directly supplied to the living space, user discomfort can be reduced and ions can be sufficiently diffused into the room.
 また、遠心ファンまたは貫流ファンから成る送風ファン8の回転軸を水平に配し、送風経路10が送風ファンの下流側で分割する第1分割通路10a、第2分割通路10b及び第3分割通路10cを有して第1分割通路10a及び第3分割通路10cの内側の側壁10eが鉛直面に対して傾斜するので、左右方向で気流を均一にするとともに、周接線方向に直進する気流を容易に湾曲させることができる。 Further, the rotation axis of the blower fan 8 composed of a centrifugal fan or a cross-flow fan is horizontally arranged, and the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c in which the blower passage 10 is divided on the downstream side of the blower fan. Since the inner side wall 10e of the first divided passage 10a and the third divided passage 10c is inclined with respect to the vertical plane, the air flow is made uniform in the left-right direction and the air flow straight in the circumferential tangential direction is easily obtained. Can be curved.
 また、垂直方向拡大部11が流路を送風ファン8の回転軸の垂直方向に徐々に拡大し、軸方向拡大部12が垂直方向拡大部11の下流側で流路を送風ファン8の回転軸の軸方向に徐々に拡大するとともに垂直方向に徐々に縮小する。これにより、送風ファン8の遠心力による流量の不均一を防止して送風ファン8の回転軸の軸方向に気流を広げることができる。 In addition, the vertical expansion unit 11 gradually expands the flow path in the direction perpendicular to the rotation axis of the blower fan 8, and the axial expansion unit 12 moves the flow path downstream of the vertical expansion unit 11 to the rotation axis of the blower fan 8. It gradually expands in the axial direction and gradually decreases in the vertical direction. Thereby, the non-uniformity of the flow rate due to the centrifugal force of the blower fan 8 can be prevented, and the airflow can be spread in the axial direction of the rotation shaft of the blower fan 8.
 加えて、送風ファン8の直後の垂直方向拡大部11で流路面積が絞られないため、気流の運動エネルギーを十分回収して静圧が高められる。その後、軸方向拡大部12で気流の速度低下を抑制して軸方向に気流が広げられる。これにより、送風ファン8の回転数を大きくすることなく気流の到達距離を大きくすることができる。従って、微小粒子拡散装置1の省電力化及び低騒音化を図ることができるとともに、室内にイオンを十分拡散させることができる。 In addition, since the flow passage area is not restricted by the vertically enlarged portion 11 immediately after the blower fan 8, the kinetic energy of the airflow is sufficiently recovered to increase the static pressure. Then, the axial direction expansion part 12 suppresses the speed reduction of the air current, and the air current is expanded in the axial direction. Thereby, the reach distance of the airflow can be increased without increasing the rotational speed of the blower fan 8. Therefore, power saving and noise reduction of the fine particle diffusion device 1 can be achieved, and ions can be sufficiently diffused into the room.
 尚、垂直方向拡大部11では送風ファン8の遠心力の影響が大きく、流路の左右方向の幅を徐々に広げても気流を左右に広げる効果が低くなるだけでなくむしろ送風ファン8の性能を低下させる可能性がある。このため、垂直方向拡大部11で流路の左右方向の幅を一定に維持してもよく、やや縮小してもよい。また、軸方向拡大部12で流路の上下方向の幅を一定に維持してもよい。 In addition, in the vertical expansion part 11, the influence of the centrifugal force of the blower fan 8 is large, and even if the width in the left-right direction of the flow path is gradually widened, not only the effect of spreading the airflow to the left and right is lowered, but rather May be reduced. For this reason, the width in the left-right direction of the flow path may be kept constant by the vertical enlargement unit 11 or may be slightly reduced. Moreover, you may maintain the width | variety of the up-down direction of a flow path with the axial direction expansion part 12 constant.
 また、軸方向拡大部12の流路面積が下流になる程拡大するので、軸方向拡大部12においても運動エネルギーを回収して静圧に変換し、静圧をより高めることができる。尚、軸方向拡大部12で流路面積を一定に維持してもよい。この時、軸方向拡大部12における運動エネルギーの回収が低減されるが、垂直方向拡大部11における運動エネルギーのの回収によって従来よりも静圧を高めることができる。 In addition, since the flow path area of the axially expanded portion 12 increases as it becomes downstream, the kinetic energy can also be collected and converted into static pressure in the axially expanded portion 12 to further increase the static pressure. The flow path area may be kept constant by the axially enlarged portion 12. At this time, the recovery of the kinetic energy in the axial expansion portion 12 is reduced, but the static pressure can be increased more than in the conventional case by the recovery of the kinetic energy in the vertical expansion portion 11.
 また、垂直方向拡大部11及び軸方向拡大部12に連続して送風ファン8の軸方向に分割される複数の第1分割通路10a、第2分割通路10b及び第3分割通路10cを有するので、第1分割通路10a、第2分割通路10b及び第3分割通路10cの壁面に沿って気流が流通して送風ファン8の軸方向に円滑に気流を広げることができる。 Moreover, since it has a plurality of first divided passages 10a, second divided passages 10b, and third divided passages 10c that are divided in the axial direction of the blower fan 8 continuously from the vertical direction enlarged portion 11 and the axial direction enlarged portion 12, The airflow can flow along the wall surfaces of the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c, and the airflow can be smoothly spread in the axial direction of the blower fan 8.
 また、送風ファン8の回転軸を水平に配して筐体2が室内の天井壁Tの近傍に配され、第1吹出口4a、第2吹出口4b及び第3吹出口4cを筐体2の上端に形成するとともに天井壁Tに沿って気流を送出する。これにより、天井壁Tに沿って送出される気流がコアンダ効果によって天井壁Tに沿って流通する。従って、気流の到達距離をより長くすることができる。 Further, the rotation axis of the blower fan 8 is horizontally arranged, the casing 2 is arranged in the vicinity of the ceiling wall T in the room, and the first outlet 4a, the second outlet 4b, and the third outlet 4c are connected to the casing 2. The airflow is sent out along the ceiling wall T. Thereby, the airflow sent out along the ceiling wall T distribute | circulates along the ceiling wall T by the Coanda effect. Therefore, the reach distance of the air current can be made longer.
 次に、図7は第2実施形態の微小粒子拡散装置の側面断面図を示している。説明の便宜上、前述の図1~図6に示す第1実施形態と同様の部分には同一の符号を付している。本実施形態は、第1実施形態と同様に水平に並設される第1吹出口4a、第2吹出口4b及び第3吹出口4cが筐体2の下部前面に開口する。また、吸込口5が筐体2の上面に開口する。その他の部分は第1実施形態と同様である。 Next, FIG. 7 shows a side sectional view of the microparticle diffusion device of the second embodiment. For convenience of explanation, the same parts as those in the first embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals. In the present embodiment, the first air outlet 4 a, the second air outlet 4 b, and the third air outlet 4 c that are horizontally arranged in the same manner as in the first embodiment open in the lower front surface of the housing 2. Further, the suction port 5 opens on the upper surface of the housing 2. Other parts are the same as those in the first embodiment.
 微小粒子拡散装置1の筐体2は天井壁Tとの間に所定の隙間Hを有して室内の一側壁Sに取り付けられる。第1分割通路10a、第2分割通路10b及び第3分割通路10c(図4参照)は水平に対して所定角度だけ上方に向かって傾斜する。これにより、第1気流A1、第2気流A2及び第3気流A3が天井壁Tに到達した後に、天井壁Tに沿って流通する。 The case 2 of the fine particle diffusion device 1 is attached to the one side wall S of the room with a predetermined gap H between the case 2 and the ceiling wall T. The first divided passage 10a, the second divided passage 10b, and the third divided passage 10c (see FIG. 4) are inclined upward by a predetermined angle with respect to the horizontal. Thereby, after the first airflow A1, the second airflow A2, and the third airflow A3 reach the ceiling wall T, they circulate along the ceiling wall T.
 第1吹出口4aから右方に向かって送出された第1気流A1は天井壁Tに沿って流通し、右方の側壁(第1壁面P1(図6参照))に沿って降下する。第2吹出口4bから前方に向かって送出された第2気流A2は天井壁Tに沿って流通し、微小粒子拡散装置1が配される側壁Sに対向する側壁(第2壁面P2(図6参照))に沿って降下する。第3吹出口4cから左方に向かって送出された第3気流A3は天井壁Tに沿って流通し、左方の側壁(第3壁面P3(図6参照))に沿って降下する。そして、第1壁面P1、第2壁面P2及び第3壁面P3を降下する気流は室内の床面Fを流通し、側壁Sに沿って上昇して微小粒子拡散装置1の側方から吸込口5に戻る。 1st airflow A1 sent toward the right from the 1st blower outlet 4a distribute | circulates along the ceiling wall T, and falls along the right side wall (1st wall surface P1 (refer FIG. 6)). The second airflow A2 sent forward from the second outlet 4b flows along the ceiling wall T and faces the side wall S on which the microparticle diffusion device 1 is disposed (second wall surface P2 (FIG. 6). D) Follow d). The third airflow A3 sent to the left from the third outlet 4c flows along the ceiling wall T and descends along the left side wall (third wall surface P3 (see FIG. 6)). The airflow descending the first wall surface P1, the second wall surface P2, and the third wall surface P3 flows through the floor F in the room, rises along the side wall S, and the suction port 5 from the side of the microparticle diffusion device 1. Return to.
 本実施形態によると、第1実施形態と同様に、第1、第2、第3気流A1、A2、A3は壁面に沿ってコアンダ効果によって進行するため、室内の空気に奪われる運動エネルギーが抑制される。このため、気流の到達距離を大きくして室内の隅々までイオンを行き渡らせることができる。従って、省電力化を図ることができるとともに居住空間に直接気流が供給されないため使用者の不快感を低減し、イオンを室内に十分拡散させることができる。 According to the present embodiment, as in the first embodiment, the first, second, and third airflows A1, A2, and A3 travel along the wall surface by the Coanda effect, so that the kinetic energy taken away by the indoor air is suppressed. Is done. For this reason, the reach | attainment distance of an airflow can be enlarged and ion can be spread to every corner of a room. Therefore, it is possible to save power, and since airflow is not directly supplied to the living space, user discomfort can be reduced and ions can be sufficiently diffused into the room.
 尚、第1実施形態の微小粒子拡散装置1を天井壁Tから所定の隙間Hを有して側壁Sに取り付けてもよい。そして、本実施形態と同様に、第1分割通路10a、第2分割通路10b及び第3分割通路10cを水平に対して所定角度だけ上方に向かって傾斜させる。これにより、第1気流A1、第2気流A2及び第3気流A3を天井壁Tに到達した後に天井壁Tに沿って流通させることができる。 Note that the fine particle diffusion device 1 of the first embodiment may be attached to the side wall S with a predetermined gap H from the ceiling wall T. Then, similarly to the present embodiment, the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c are inclined upward by a predetermined angle with respect to the horizontal. Accordingly, the first airflow A1, the second airflow A2, and the third airflow A3 can be distributed along the ceiling wall T after reaching the ceiling wall T.
 しかしながら、第1気流A1、第2気流A2及び第3気流A3が天井壁Tに到達するまでに運動エネルギーが奪われる。このため、天井壁Tまでの距離を短くするために隙間Hを30cm以下に設定するのが望ましく、天井壁Tに円滑に気流が沿うように上記所定角度を20°以下にするのが望ましい。また、第1実施形態のように天井壁Tに沿って第1吹出口4a、第2吹出口4b及び第3吹出口4cを形成すると、より望ましい。 However, kinetic energy is lost before the first airflow A1, the second airflow A2, and the third airflow A3 reach the ceiling wall T. For this reason, in order to shorten the distance to the ceiling wall T, it is desirable to set the gap H to 30 cm or less, and it is desirable to set the predetermined angle to 20 ° or less so that the airflow smoothly follows the ceiling wall T. Moreover, it is more desirable to form the 1st blower outlet 4a, the 2nd blower outlet 4b, and the 3rd blower outlet 4c along the ceiling wall T like 1st Embodiment.
 次に、図8は第3実施形態の微小粒子拡散装置の側面断面図を示している。説明の便宜上、前述の図1~図6に示す第1実施形態と同様の部分には同一の符号を付している。本実施形態は、送風ファン8から下方に向かって排気される下方通路13が設けられる。その他の部分は第1実施形態と同様である。 Next, FIG. 8 shows a side sectional view of the microparticle diffusion device of the third embodiment. For convenience of explanation, the same parts as those in the first embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals. In the present embodiment, a lower passage 13 that is exhausted downward from the blower fan 8 is provided. Other parts are the same as those in the first embodiment.
 下方通路13は送風ファン8のハウジングの一部が軸方向の両端部で下方に延び、筐体2の下面に第4吹出口4dを開口する。第4吹出口4dから送出される第4気流A4は微小粒子拡散装置1が配される側壁Sに沿って降下する。この時、第4気流A4の流量は第2気流A2の流量よりも少なく、例えば、第2気流A2の流量の10%程度になっている。 In the lower passage 13, a part of the housing of the blower fan 8 extends downward at both ends in the axial direction, and opens the fourth outlet 4 d on the lower surface of the housing 2. The 4th airflow A4 sent out from the 4th blower outlet 4d falls along the side wall S where the microparticle diffusion apparatus 1 is arranged. At this time, the flow rate of the fourth air stream A4 is smaller than the flow rate of the second air stream A2, and is, for example, about 10% of the flow rate of the second air stream A2.
 第4吹出口4dから送出される第4気流A4は側壁Sに沿って降下する。この時、第4気流A4の流量は第2気流A2の流量よりも少なく、例えば、第2気流A2の流量の10%程度もしくはそれ以下になっている。第1、第2、第3気流A1、A2、A3は室内全体を流通して吸込口5に戻るため、側壁S近傍のイオンが不足する場合がある。このため、第4気流A4は側壁Sを降下して側壁近傍のイオンを補充し、側壁Sを上昇する第1、第2、第3気流A1、A2、A3とともに吸込口5に戻る。 The fourth airflow A4 sent out from the fourth outlet 4d descends along the side wall S. At this time, the flow rate of the fourth air stream A4 is smaller than the flow rate of the second air stream A2, and is, for example, about 10% or less of the flow rate of the second air stream A2. Since the first, second, and third airflows A1, A2, and A3 return to the suction port 5 through the entire room, ions near the side wall S may be insufficient. Therefore, the fourth air flow A4 descends the side wall S to replenish ions in the vicinity of the side wall, and returns to the suction port 5 together with the first, second, and third air currents A1, A2, and A3 that ascend the side wall S.
 本実施形態によると、微小粒子拡散装置1が配される側壁Sに沿う第4気流A4を送出する第4吹出口4dを備えたので、側壁S近傍のイオンを補充することができる。この時、吸込口5に戻る第1、第2、第3気流A1、A2、A3に対して第4気流A4が抵抗となる。しかし、第4気流A4の流量が第2気流A2の流量よりも少ないため、第4気流A4による抵抗を抑制することができる。尚、前述の図7に示す第2実施形態に第4吹出口4dを設けてもよい。 According to the present embodiment, since the fourth air outlet 4d that sends out the fourth airflow A4 along the side wall S on which the microparticle diffusion device 1 is disposed is provided, ions in the vicinity of the side wall S can be replenished. At this time, the fourth airflow A4 becomes resistance to the first, second, and third airflows A1, A2, and A3 returning to the suction port 5. However, since the flow rate of the fourth airflow A4 is smaller than the flow rate of the second airflow A2, resistance due to the fourth airflow A4 can be suppressed. In addition, you may provide the 4th blower outlet 4d in 2nd Embodiment shown in above-mentioned FIG.
 次に、図9は第4実施形態の微小粒子拡散装置の側面断面図を示している。説明の便宜上、前述の図1~図6に示す第1実施形態と同様の部分には同一の符号を付している。本実施形態は、第2分割通路10bを前端で更に分岐させている。その他の部分は第1実施形態と同様である。 Next, FIG. 9 shows a side sectional view of the microparticle diffusion device of the fourth embodiment. For convenience of explanation, the same parts as those in the first embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals. In the present embodiment, the second divided passage 10b is further branched at the front end. Other parts are the same as those in the first embodiment.
 第2分割通路10bの前端には前方が広がるくさび状の仕切板13が設けられる。これにより、仕切板13の上方に第2吹出口4bが形成され、下方に第4吹出口4dが形成される。第2吹出口4bから送出される第2気流A2は前述の第1実施形態と同様に流通する。 A wedge-shaped partition plate 13 spreading forward is provided at the front end of the second divided passage 10b. Thereby, the 2nd blower outlet 4b is formed above the partition plate 13, and the 4th blower outlet 4d is formed below. The second airflow A2 sent from the second outlet 4b flows in the same manner as in the first embodiment.
 第4吹出口4dから送出される第4気流A4は室内の中央部の居住空間に向けて前方下方に送出される。この時、第4気流A4の流量は第2気流A2の流量よりも少なく、例えば、第2気流A2の流量の10%程度もしくはそれ以下になっている。第4気流A4は室内の居住空間のイオンを補充し、床面Fで第2気流A2と合流して吸込口5に戻る。 4th airflow A4 sent out from the 4th blower outlet 4d is sent out to the front lower direction toward the living space of the central part of a room. At this time, the flow rate of the fourth air stream A4 is smaller than the flow rate of the second air stream A2, and is, for example, about 10% or less of the flow rate of the second air stream A2. The fourth airflow A4 supplements ions in the indoor living space, joins the second airflow A2 on the floor F, and returns to the suction port 5.
 本実施形態によると、前方下方に向かう第4気流A4を送出する第4吹出口4dを備えたので、室内の中央部の居住空間のイオンを補充することができる。この時、第4気流A4が使用者に直接当たる可能性があるが、第4気流A4の流量が第2気流A2の流量よりも少ないため使用者の不快感を抑制することができる。尚、前述の図7に示す第2実施形態に第4吹出口4dを設けてもよい。 According to the present embodiment, since the fourth air outlet 4d that sends out the fourth airflow A4 heading forward and downward is provided, ions in the living space in the center of the room can be replenished. At this time, there is a possibility that the fourth air flow A4 directly hits the user, but since the flow rate of the fourth air flow A4 is smaller than the flow rate of the second air flow A2, the user's discomfort can be suppressed. In addition, you may provide the 4th blower outlet 4d in 2nd Embodiment shown in above-mentioned FIG.
 図10、図11及び図12は第5実施形態の微小粒子拡散装置を上方から見た斜視図、下方から見た斜視図及び正面図である。説明の便宜上、前述の図1~図6に示す第1実施形態と同様の部分には同一の符号を付している。 FIG. 10, FIG. 11 and FIG. 12 are a perspective view of the microparticle diffusion device of the fifth embodiment as seen from above, a perspective view and a front view as seen from below. For convenience of explanation, the same parts as those in the first embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals.
 微小粒子拡散装置1は筐体2で覆われ、室内の一の側壁Sと天井壁T(図4参照)とのコーナー近傍の側壁Sに設置される。また、筐体2と天井壁T(図13参照)との間には所定の隙間H(図13参照)が設けられる。 The fine particle diffusing apparatus 1 is covered with a housing 2 and installed on a side wall S in the vicinity of a corner between one side wall S and a ceiling wall T (see FIG. 4). A predetermined gap H (see FIG. 13) is provided between the housing 2 and the ceiling wall T (see FIG. 13).
 筐体2の下面には第1吸込口5aが開口し、上面の両側部には第2吸込口5bが開口する。第1吸込口5a及び第2吸込口5bにはそれぞれフィルター6が配される。筐体2の前面上部には室内に向かって右から順に第1吹出口4a、第2吹出口4b及び第3吹出口4cが水平方向に並設される。筐体2の下面の両側部には第4吹出口4dが開口する。 A first suction port 5a is opened on the lower surface of the housing 2, and a second suction port 5b is opened on both sides of the upper surface. Filters 6 are disposed in the first suction port 5a and the second suction port 5b, respectively. A first air outlet 4a, a second air outlet 4b, and a third air outlet 4c are juxtaposed in the horizontal direction on the front upper portion of the housing 2 in order from the right toward the room. The 4th blower outlet 4d opens in the both sides of the lower surface of the housing | casing 2. FIG.
 第1吹出口4a、第2吹出口4b及び第3吹出口4cは筐体2の上端に設けられ、天井壁T(図13参照)に沿って流れる空気を送出する。詳細を後述するように、第1吹出口4aは筐体2から右方に空気を送出し、第2吹出口4bは筐体2から前方に空気を送出し、第3吹出口4cは筐体2から左方に空気を送出する。また、第4吹出口4dは下方に向かって空気を送出する。 The 1st blower outlet 4a, the 2nd blower outlet 4b, and the 3rd blower outlet 4c are provided in the upper end of case 2, and send out the air which flows along ceiling wall T (refer to Drawing 13). As will be described in detail later, the first air outlet 4a sends air from the housing 2 to the right, the second air outlet 4b sends air forward from the housing 2, and the third air outlet 4c is the housing. Air is sent from 2 to the left. Moreover, the 4th blower outlet 4d sends out air toward the downward direction.
 図13、図14は図12のD-D断面の側面断面図及びE-E断面の側面断面図を示している。筐体2内にはクロスフローファン(貫流ファン)から成る送風ファン30が配される。送風ファン30はクロスフロー型の羽根車33を第1ケーシング31及び第2ケーシング32により覆って形成される。 13 and 14 show a side sectional view taken along the line DD and a side sectional view taken along the line EE in FIG. A blower fan 30 including a cross flow fan (cross-flow fan) is disposed in the housing 2. The blower fan 30 is formed by covering a crossflow impeller 33 with a first casing 31 and a second casing 32.
 羽根車33はファンモータ33a(図10参照)により回転駆動され、回転軸が水平に配される。ファンモータ33aの駆動によって送風ファン30は羽根車33の周方向から吸気して周方向に排気する。第1ケーシング31及び第2ケーシング32は羽根車33の軸方向に並設され、第1ケーシング31の両側方に第2ケーシング32が配される。 The impeller 33 is rotationally driven by a fan motor 33a (see FIG. 10), and the rotation shaft is arranged horizontally. The blower fan 30 draws air from the circumferential direction of the impeller 33 and exhausts it in the circumferential direction by driving the fan motor 33a. The first casing 31 and the second casing 32 are juxtaposed in the axial direction of the impeller 33, and the second casing 32 is disposed on both sides of the first casing 31.
 筐体2内には第1吸込口5aから流入する空気が流通する第1送風経路10及び第2吸込口5bから流入する空気が流通する第2送風経路20が設けられる。第1送風経路10の羽根車33よりも下流側の気流路が第1ケーシング31により形成され、第2送風経路20の羽根車33よりも下流側の気流路が第2ケーシング32により形成される。 In the housing 2, a first air passage 10 through which air flowing from the first suction port 5a flows and a second air passage 20 through which air flowing from the second suction port 5b circulates are provided. An air flow path on the downstream side of the impeller 33 in the first blower path 10 is formed by the first casing 31, and an air flow path on the downstream side of the impeller 33 in the second blower path 20 is formed by the second casing 32. .
 第1ケーシング31は一端に第1吸気側開口部31aが開口し、羽根車33の約半周が第1吸気側開口部31aから突出して配される。第1吸気側開口部31aの近傍で羽根車33と第1ケーシング31との隙間が最小に形成される。第1送風経路10の羽根車33よりも上流側の流路面積は第1吸気側開口部31aよりも大きくなっている。第1ケーシング31の壁面は所定の曲率で湾曲し、先端に第1吹出口4a、第2吹出口4b及び第3吹出口4cが開口する。これにより、第1吹出口4a、第2吹出口4b及び第3吹出口4cと第1吸込口5aとを連結した第1送風経路10が形成される。 The first casing 31 has a first intake-side opening 31a opened at one end, and an approximately half circumference of the impeller 33 is disposed so as to protrude from the first intake-side opening 31a. A gap between the impeller 33 and the first casing 31 is formed in the minimum in the vicinity of the first intake side opening 31a. The flow passage area on the upstream side of the impeller 33 in the first air blowing path 10 is larger than the first intake side opening 31a. The wall surface of the first casing 31 is curved with a predetermined curvature, and the first air outlet 4a, the second air outlet 4b, and the third air outlet 4c are opened at the tip. Thereby, the 1st ventilation path 10 which connected the 1st blower outlet 4a, the 2nd blower outlet 4b, the 3rd blower outlet 4c, and the 1st suction inlet 5a is formed.
 第2ケーシング32は一端に第2吸気側開口部32aが開口し、羽根車33の約半周が第2吸気側開口部32aから突出して配される。第2吸気側開口部32aの近傍で羽根車33と第2ケーシング32との隙間が最小に形成される。第2送風経路20の羽根車33よりも上流側の流路面積は第2吸気側開口部32aよりも大きくなっている。第2ケーシング32の壁面は所定の曲率で湾曲し、先端に第4吹出口4dが開口する。これにより、第4吹出口4dと第2吸込口5bとを連結した第2送風経路20が形成される。 The second casing 32 is provided with a second intake side opening 32a at one end, and approximately half of the circumference of the impeller 33 projects from the second intake side opening 32a. A gap between the impeller 33 and the second casing 32 is formed in the vicinity of the second intake side opening 32a. The flow passage area on the upstream side of the impeller 33 of the second air blowing path 20 is larger than the second intake side opening 32a. The wall surface of the second casing 32 is curved with a predetermined curvature, and the fourth outlet 4d opens at the tip. Thereby, the 2nd ventilation path 20 which connected the 4th blower outlet 4d and the 2nd suction inlet 5b is formed.
 また、第1ケーシング31の第1吸気側開口部31a近傍は、軸方向から見て第2ケーシング32の第2吸気側開口部32aから所定範囲を回転中心の回りに所定の角度θだけ回転移動した形状に一致する。これにより、第1吸気側開口部31aの開口面と第2吸気側開口部32aの開口面とが周方向に異なる角度に配される。 Further, the vicinity of the first intake side opening 31a of the first casing 31 is rotationally moved by a predetermined angle θ around the rotation center from the second intake side opening 32a of the second casing 32 when viewed in the axial direction. Matches the shape. Thereby, the opening surface of the first intake side opening 31a and the opening surface of the second intake side opening 32a are arranged at different angles in the circumferential direction.
 このため、第1ケーシング31及び第2ケーシング32をクロスフローファンから成る送風ファン30に最適な形状に形成して第1送風経路10及び第2送風経路20の排気側の流路を形成することができる。これにより、第1送風経路10及び第2送風経路20を流通する気流が急激に曲げられず、圧力損失を低減して送風効率を向上できるとともに騒音を低減することができる。 For this reason, the 1st casing 31 and the 2nd casing 32 are formed in the optimal shape for the ventilation fan 30 which consists of a cross flow fan, and the flow path of the exhaust side of the 1st ventilation path 10 and the 2nd ventilation path 20 is formed. Can do. Thereby, the airflow which distribute | circulates the 1st ventilation path 10 and the 2nd ventilation path 20 is not abruptly bent, but pressure loss can be reduced and ventilation efficiency can be improved, and noise can be reduced.
 図15は図12のC-C断面の上面断面図を示している。第1送風経路10内には送風ファン30の下流側で水平方向に分割された複数の第1分割通路10a、第2分割通路10b及び第3分割通路10cが順に設けられる。第1分割通路10a、第2分割通路10b及び第3分割通路10cはそれぞれ前端に第1吹出口4a、第2吹出口4b及び第3吹出口4cが開口する。また、第1分割通路10a及び第3分割通路10cの内側の側壁10e及び外側の側壁10fは鉛直面に対して傾斜した曲面により形成される。 FIG. 15 is a top sectional view taken along the line CC of FIG. A plurality of first divided passages 10a, second divided passages 10b, and third divided passages 10c divided in the horizontal direction on the downstream side of the blower fan 30 are provided in the first blower passage 10 in order. The first divided passage 10a, the second divided passage 10b, and the third divided passage 10c have a first outlet 4a, a second outlet 4b, and a third outlet 4c opened at the front ends, respectively. Further, the inner side wall 10e and the outer side wall 10f of the first divided passage 10a and the third divided passage 10c are formed by curved surfaces inclined with respect to the vertical plane.
 第1分割通路10a、第2分割通路10b及び第3分割通路10cにはそれぞれ送風ファン30の下流側に垂直方向拡大部11及び軸方向拡大部12(図14参照)が形成される。垂直方向拡大部11は流路を送風ファン30の回転軸の垂直方向に徐々に拡大する。軸方向拡大部12は垂直方向拡大部11の下流側で流路を送風ファン30の回転軸の軸方向に徐々に拡大するとともに垂直方向に徐々に縮小する。また、軸方向拡大部12は水平に対して所定角度だけ上方に向かって傾斜する。 In the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c, a vertical expansion portion 11 and an axial expansion portion 12 (see FIG. 14) are formed on the downstream side of the blower fan 30, respectively. The vertical expansion unit 11 gradually expands the flow path in the vertical direction of the rotation axis of the blower fan 30. The axial enlargement unit 12 gradually expands the flow path in the axial direction of the rotating shaft of the blower fan 30 and gradually reduces in the vertical direction on the downstream side of the vertical expansion unit 11. Further, the axially enlarged portion 12 is inclined upward by a predetermined angle with respect to the horizontal.
 尚、軸方向拡大部12の流路面積は下流になる程拡大されている。また、第1分割通路10a、第2分割通路10b及び第3分割通路10cは垂直方向拡大部11及び軸方向拡大部12に連続して形成される。 In addition, the flow path area of the axial direction expansion part 12 is expanded so that it becomes downstream. The first divided passage 10 a, the second divided passage 10 b, and the third divided passage 10 c are formed continuously with the vertical direction enlarged portion 11 and the axial direction enlarged portion 12.
 第1分割通路10a、第2分割通路10b及び第3分割通路10cには上記と同様の微小粒子発生装置7の電極7a、7bが露出して配される。電極7aと電極7bとは第1分割通路10a、第2分割通路10b及び第3分割通路10c内でそれぞれ仕切壁10dにより仕切られて配置される。また、前述の図13に示すように、第2送風経路20にも同様の微小粒子発生装置7が電極7a、7bを露出して配される。 The electrodes 7a and 7b of the microparticle generator 7 similar to the above are exposed and arranged in the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c. The electrode 7a and the electrode 7b are respectively partitioned by a partition wall 10d in the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c. Further, as shown in FIG. 13 described above, the same fine particle generator 7 is also disposed in the second air passage 20 with the electrodes 7a and 7b exposed.
 上記構成の微小粒子拡散装置1において、送風ファン30及び微小粒子発生装置7が駆動されると、室内の空気が第1吸込口5a及び第2吸込口5bから筐体2内に取り込まれる。筐体2内に取り込まれる空気はフィルタ6により塵埃が捕集され、第1送風経路10及び第2送風経路20を流通して送風ファン30に導かれる。 In the fine particle diffusion device 1 having the above configuration, when the blower fan 30 and the fine particle generation device 7 are driven, indoor air is taken into the housing 2 from the first suction port 5a and the second suction port 5b. The air taken into the housing 2 is collected by the filter 6, flows through the first air passage 10 and the second air passage 20, and is guided to the air fan 30.
 第2送風経路20の第2ケーシング20を流通する気流は第4吹出口4dから下方後方に向かって吹き出される。そして、微小粒子拡散装置1が取り付けられる側壁Sに沿って流下する。 The airflow flowing through the second casing 20 of the second air passage 20 is blown out downward and rearward from the fourth outlet 4d. And it flows down along the side wall S to which the microparticle diffusion apparatus 1 is attached.
 第1送風経路10の第1ケーシング31を流通する気流は第1分割通路10a、第2分割通路10b及び第3分割通路10cに分岐する。そして、それぞれの気流は第1吹出口4a、第2吹出口4b及び第3吹出口4cに導かれる。この時、送風ファン30の回転軸を鉛直に配置すると、遠心力によって左右方向で気流が不均一になる。このため、送風ファン30の回転軸を水平に配して左右方向の気流を均一にすることができる。加えて、第1分割通路10a及び第3分割通路10cの内側の側壁10eが鉛直面に対して傾斜するため、送風ファン30から周接線方向に直進する気流を容易に湾曲させることができる。 The airflow flowing through the first casing 31 of the first air passage 10 branches into the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c. And each airflow is guide | induced to the 1st blower outlet 4a, the 2nd blower outlet 4b, and the 3rd blower outlet 4c. At this time, if the rotation axis of the blower fan 30 is arranged vertically, the air flow becomes uneven in the left-right direction due to centrifugal force. For this reason, the rotational axis of the blower fan 30 can be horizontally arranged to make the airflow in the left-right direction uniform. In addition, since the inner side walls 10e of the first divided passage 10a and the third divided passage 10c are inclined with respect to the vertical plane, the airflow straightly traveling in the circumferential tangential direction from the blower fan 30 can be easily curved.
 また、垂直方向拡大部11で上下方向に流路が広げられるとともに軸方向拡大部12で左右方向に流路が広げられる。軸方向拡大部12よりも上流の垂直方向拡大部11では周方向に排気される送風ファン30の遠心力の影響が大きい。このため、気流は送風ファン30の回転軸に垂直な方向に進行するため左右に広げるのは望ましくない。垂直方向拡大部11で上下方向に流路を拡大することによって気流の運動エネルギーを回収して静圧に変換し、静圧が高められる。これにより、微小粒子拡散装置1の送風能力を向上させることができる。尚、垂直方向拡大部11で流路の左右方向の幅を一定にしてもよく、やや縮小してもよい。この時、流路面積は下流になる程徐々に拡大させる。 Further, the flow path is expanded in the vertical direction by the vertical expansion section 11 and the flow path is expanded in the left-right direction by the axial expansion section 12. In the vertical expansion section 11 upstream of the axial expansion section 12, the influence of the centrifugal force of the blower fan 30 exhausted in the circumferential direction is large. For this reason, since the airflow proceeds in a direction perpendicular to the rotation axis of the blower fan 30, it is not desirable to spread it to the left and right. By enlarging the flow path in the vertical direction by the vertical enlargement unit 11, the kinetic energy of the airflow is recovered and converted into static pressure, and the static pressure is increased. Thereby, the ventilation capability of the microparticle diffusion apparatus 1 can be improved. In addition, the width in the left-right direction of the flow path may be made constant by the vertical enlargement unit 11 or may be slightly reduced. At this time, the flow path area is gradually expanded toward the downstream.
 軸方向拡大部12では送風ファン30による遠心力が弱まった状態で流路を左右方向に拡大するので、圧力損失を大きくすることなく気流を円滑に湾曲させて左右方向に広げることができる。また、上下方向に流路が絞られるため、気流をより円滑に左右方向に広げることができるとともに気流の速度低下を抑制することができる。この時、軸方向拡大部12の流路面積が下流になる程拡大するので、軸方向拡大部12においても運動エネルギーを回収して静圧に変換し、静圧を高めることができる。尚、軸方向拡大部12で流路の上下方向の幅を一定に維持してもよく、流路面積を一定に維持してもよい。 Since the axial direction expansion section 12 expands the flow path in the left-right direction with the centrifugal force by the blower fan 30 weakened, the airflow can be smoothly curved and expanded in the left-right direction without increasing the pressure loss. Moreover, since the flow path is restricted in the vertical direction, the airflow can be more smoothly spread in the left-right direction, and the speed reduction of the airflow can be suppressed. At this time, since the flow path area of the axially expanded portion 12 increases as it becomes downstream, the kinetic energy can also be recovered and converted into static pressure in the axially expanded portion 12 to increase the static pressure. In addition, the vertical width of the flow path may be maintained constant by the axially enlarged portion 12, or the flow path area may be maintained constant.
 第1送風経路10及び第2送風経路20を流通する気流には微小粒子発生装置7によってプラスイオンとマイナスイオンとが含まれる。これにより、第1吹出口4a、第2吹出口4b、第3吹出口4c及び第4吹出口4dからプラスイオンとマイナスイオンとを含む気流が送出される。 The airflow flowing through the first air passage 10 and the second air passage 20 includes positive ions and negative ions by the microparticle generator 7. Thereby, the airflow containing a positive ion and a negative ion is sent out from the 1st blower outlet 4a, the 2nd blower outlet 4b, the 3rd blower outlet 4c, and the 4th blower outlet 4d.
 図16は微小粒子拡散装置1から送出される室内Dの気流の状態を示している。第1吹出口4aから右方に向かって送出された第1気流A1は天井壁Tに沿って流通し、右方の側壁(第1壁面P1)に沿って降下する。第2吹出口4bから前方に向かって送出された第2気流A2は天井壁Tに沿って流通し、微小粒子拡散装置1が配される側壁Sに対向する側壁(第2壁面P2)に沿って降下する。第3吹出口4cから左方に向かって送出された第3気流A3は天井壁Tに沿って流通し、左方の側壁(第3壁面P3)に沿って降下する。 FIG. 16 shows the state of the airflow in the room D sent out from the fine particle diffusion device 1. The first airflow A1 sent to the right from the first outlet 4a flows along the ceiling wall T and descends along the right side wall (first wall surface P1). The second airflow A2 sent forward from the second outlet 4b flows along the ceiling wall T and along the side wall (second wall surface P2) facing the side wall S on which the microparticle diffusion device 1 is arranged. Descent. The third airflow A3 sent to the left from the third outlet 4c flows along the ceiling wall T and descends along the left side wall (third wall surface P3).
 第4吹出口4dから送出される第4気流A4は微小粒子拡散装置1が配される側壁Sに沿って降下する。この時、第4気流A4の流量は第2気流A2の流量よりも少なく、例えば、第2気流A2の流量の10%程度になっている。 4th airflow A4 sent out from the 4th blower outlet 4d falls along the side wall S where the microparticle diffusion apparatus 1 is arranged. At this time, the flow rate of the fourth air stream A4 is smaller than the flow rate of the second air stream A2, and is, for example, about 10% of the flow rate of the second air stream A2.
 第1壁面P1、第2壁面P2及び第3壁面P3を降下する気流は室内の床面Fを流通し、側壁Sに沿って上昇して微小粒子拡散装置1の第1吸込口5aに戻る。また、室内の一部の空気は微小粒子拡散装置1の上方から第2吸込口5bに戻る。これにより、室内の各壁面に沿って気流が循環して室内の隅々にイオンを行き渡らせることができる。また、室内の中央部の居住空間には壁面に沿って流通する気流によってイオンが緩やかに拡散する。第1、第2、第3気流A1、A2、A3は壁面に沿ってコアンダ効果によって進行するため、室内の空気に奪われる運動エネルギーが抑制される。 The airflow descending the first wall surface P1, the second wall surface P2, and the third wall surface P3 flows through the indoor floor surface F, rises along the side wall S, and returns to the first suction port 5a of the microparticle diffusion device 1. In addition, a part of the air in the room returns from above the fine particle diffusion device 1 to the second suction port 5b. Thereby, airflow circulates along each wall surface in a room, and it can spread ions to every corner of a room. In addition, ions gradually diffuse into the living space in the center of the room due to the airflow flowing along the wall surface. Since the first, second, and third airflows A1, A2, and A3 travel along the wall surface due to the Coanda effect, kinetic energy taken away by indoor air is suppressed.
 即ち、気流が天井壁Tに沿わない場合には、気流の上側が周囲空気(天井壁Tと気流との間の空気)を誘引して周囲空気に運動エネルギーを奪われて損なわれる。気流が天井壁Tに沿う場合には、壁面の摩擦抵抗により運動エネルギーが損なわれるが、天井壁Tに沿わない場合に損なわれる運動エネルギーよりも一般的に非常に小さい。これにより、消費電力を抑制して気流の到達距離を大きくすることができる。 That is, when the airflow does not follow the ceiling wall T, the upper side of the airflow attracts ambient air (air between the ceiling wall T and the airflow), and the surrounding air loses kinetic energy and is damaged. When the airflow is along the ceiling wall T, the kinetic energy is lost due to the frictional resistance of the wall surface, but is generally much smaller than the kinetic energy lost when the airflow does not follow the ceiling wall T. Thereby, power consumption can be suppressed and the reach | attainment distance of an airflow can be enlarged.
 また、第1、第2、第3気流A1、A2、A3は室内全体を流通して第1吸込口5aに戻るため、側壁S近傍のイオンが不足する場合がある。このため、第4気流A4が側壁Sを降下して側壁近傍のイオンを補充することができる。この時、第4気流A4の流量が第2気流A2の流量よりも少ないため、第4気流A4による抵抗を抑制することができる。 Also, since the first, second, and third airflows A1, A2, and A3 return to the first suction port 5a through the entire room, ions near the side wall S may be insufficient. For this reason, 4th airflow A4 can descend | fall the side wall S, and can supplement the ion of the side wall vicinity. At this time, since the flow rate of the fourth airflow A4 is smaller than the flow rate of the second airflow A2, resistance due to the fourth airflow A4 can be suppressed.
 また、第1送風経路10の軸方向拡大部12が水平に対して所定角度だけ上方に向かって傾斜するので、第1気流A1、第2気流A2及び第3気流A3を天井壁Tに到達した後に天井壁Tに沿って流通させることができる。しかしながら、第1気流A1、第2気流A2及び第3気流A3が天井壁Tに到達するまでに運動エネルギーが奪われる。このため、天井壁Tまでの距離を短くするために隙間Hを30cm以下に設定するのが望ましく、天井壁Tに円滑に気流が沿うように軸方向拡大部12を流通する気流の傾斜角度を20°以下にするのが望ましい。 Moreover, since the axial direction expansion part 12 of the 1st ventilation path | route 10 inclines upwards only predetermined angle with respect to the horizontal, 1st airflow A1, 2nd airflow A2, and 3rd airflow A3 reached | attained the ceiling wall T. Later, it can be distributed along the ceiling wall T. However, kinetic energy is deprived before the first airflow A1, the second airflow A2, and the third airflow A3 reach the ceiling wall T. For this reason, it is desirable to set the gap H to 30 cm or less in order to shorten the distance to the ceiling wall T, and the inclination angle of the airflow flowing through the axial expansion portion 12 so that the airflow smoothly follows the ceiling wall T. It is desirable to make it 20 degrees or less.
 尚、電極7a、7bにより発生するイオンの極性を所定期間毎に切り替えてもよい。即ち、電極7aからプラスイオンを発生して電極7bからマイナスイオンを発生する。所定期間が経過すると電極7aからマイナスイオンを発生して電極7bからプラスイオンを発生する。更に所定期間が経過すると、電極7aからプラスイオンを発生して電極7bからマイナスイオンを発生し、この動作を繰り返す。 Note that the polarity of ions generated by the electrodes 7a and 7b may be switched every predetermined period. That is, positive ions are generated from the electrode 7a and negative ions are generated from the electrode 7b. When a predetermined period elapses, negative ions are generated from the electrode 7a and positive ions are generated from the electrode 7b. When a predetermined time further elapses, positive ions are generated from the electrode 7a and negative ions are generated from the electrode 7b, and this operation is repeated.
 これにより、第1分割通路10a、第2分割通路10b及び第3分割通路10cを左右に広がって送出される気流の左端及び右端にプラスイオンとマイナスイオンとが交互に送出される。従って、居室内の左右方向の広い範囲までプラスイオン及びマイナスイオンを高い濃度で分布させることができる。 Thus, positive ions and negative ions are alternately sent to the left end and the right end of the air flow that is sent to the left and right of the first divided passage 10a, the second divided passage 10b, and the third divided passage 10c. Therefore, positive ions and negative ions can be distributed at a high concentration over a wide range in the left-right direction in the room.
 本実施形態によると、送風ファン30の羽根車33を覆う第1、第2ケーシング31、32が羽根車33の軸方向に並設され、それぞれを通る気流の吹出し方向が異なるので、簡単な構成で複数の方向に気流を送出することができる。従って、イオンを室内の隅々まで容易に行き渡らせることができる。また、気流が急激に曲げられないため圧力損失の低下を防止し、送風効率を向上するとともに騒音を低減することができる。 According to the present embodiment, the first and second casings 31 and 32 that cover the impeller 33 of the blower fan 30 are juxtaposed in the axial direction of the impeller 33, and the blowing direction of the airflow that passes through each of them is different. The airflow can be sent out in a plurality of directions. Therefore, ions can be easily distributed to every corner of the room. Further, since the air flow is not bent suddenly, the pressure loss can be prevented from being lowered, and the blowing efficiency can be improved and the noise can be reduced.
 また、第1ケーシング31は羽根車33が突出する第1吸気側開口部31aを一端に開口して羽根車33の排気側に延び、第2ケーシング32は羽根車33が突出する第2吸気側開口部32aを一端に開口して羽根車33の排気側に延びる。そして、第1吸気側開口部31aの開口面と第2吸気側開口部32aの開口面とが羽根車33の周方向に異なる角度に配される。これにより、第1、第2ケーシング31、32を送風ファン30に対して圧力損失の低い最適な形状に簡単に形成することができる。また、第1ケーシング31を通る気流の吹出し方向(前方上方)と第2ケーシング32を通る気流の吹出し方向(下方後方)とが90゜以上異なるように容易に形成することができる。 The first casing 31 extends at the exhaust side of the impeller 33 by opening the first intake side opening 31a from which the impeller 33 projects at one end, and the second casing 32 is the second intake side from which the impeller 33 projects. The opening 32 a is opened at one end and extends to the exhaust side of the impeller 33. The opening surface of the first intake side opening 31 a and the opening surface of the second intake side opening 32 a are arranged at different angles in the circumferential direction of the impeller 33. Thereby, the 1st, 2nd casings 31 and 32 can be easily formed in the optimal shape with a low pressure loss with respect to the ventilation fan 30. FIG. Moreover, it can form easily so that the blowing direction (front upper direction) of the airflow which passes the 1st casing 31 and the blowing direction (lower direction back) of the airflow which passes the 2nd casing 32 differ by 90 degrees or more.
 また、第1吸気側開口部31aから所定範囲の第1ケーシング31が第2吸気側開口部32aから所定範囲の第2ケーシング32を羽根車33の軸方向から見て羽根車33の回転中心の回りに回転移動させた形状に一致するので、最適な形状の第1、第2ケーシング31、32をより簡単に形成することができる。 Further, the first casing 31 within a predetermined range from the first intake side opening 31 a is located at the center of rotation of the impeller 33 when the second casing 32 within the predetermined range from the second intake side opening 32 a is viewed from the axial direction of the impeller 33. Since it coincides with the shape rotated and moved around, the first and second casings 31 and 32 having optimum shapes can be formed more easily.
 また、第1ケーシング31によって前方上方に向けて室内に気流を送出し、第2ケーシング32によって下方に向けて室内に気流を送出するので、室内の隅々まで容易にイオンを行き渡らせることができる。尚、隙間Hが小さい場合には第1ケーシング31によって水平方向に気流を吹き出してもよい。 In addition, since the first casing 31 sends an air flow into the room forward and upward and the second casing 32 sends the air flow into the room downward, the ions can be easily distributed to every corner of the room. . When the gap H is small, the first casing 31 may blow out the airflow in the horizontal direction.
 また、第1ケーシング31によって前方上方に向けて室内に気流を送出し、第2ケーシング32によって下方に向けて室内に気流を送出するので、室内の空気を隅々まで容易に循環させることができる。尚、隙間Hが小さい場合には第1ケーシング31によって水平方向に気流を吹き出してもよい。 In addition, since the first casing 31 sends an air flow into the room forward and upward, and the second casing 32 sends the air flow into the room downward, the indoor air can be easily circulated to every corner. . When the gap H is small, the first casing 31 may blow out the airflow in the horizontal direction.
 第1~第5実施形態において、微小粒子発生装置7を省いて第1、第2、第3、第4気流A1、A2、A3、A4によって室内の気流を循環させるサーキュレータにしてもよい。この時、第1、第2、第3気流A1、A2、A3は壁面に沿ってコアンダ効果によって進行するため、室内の空気に奪われる運動エネルギーが抑制され、気流の到達距離を大きくすることができる。従って、省電力化を図ることができるとともに居住空間に直接気流が供給されないため使用者の不快感を低減し、室内の空気を十分循環させることができる。 In the first to fifth embodiments, the fine particle generator 7 may be omitted, and a circulator that circulates the airflow in the room using the first, second, third, and fourth airflows A1, A2, A3, and A4. At this time, since the first, second, and third airflows A1, A2, and A3 travel along the wall surface by the Coanda effect, the kinetic energy taken away by the indoor air is suppressed, and the reach of the airflow can be increased. it can. Therefore, it is possible to save power, and since airflow is not directly supplied to the living space, user discomfort can be reduced and indoor air can be circulated sufficiently.
 次に、図17、図18は第6実施形態の微小粒子拡散装置を示す斜視図及び側面断面図である。説明の便宜上、前述の図1~図6に示す第1実施形態と同様の部分には同一の符号を付している。微小粒子拡散装置1は樹脂成形品により形成される筐体2で覆われる。微小粒子拡散装置1は筐体2の底面が室内の床面Fに当接する設置面となり、床面F上に床置きされる。また、微小粒子拡散装置1は一の側壁Sと床面Fとのコーナー近傍に配される。 Next, FIGS. 17 and 18 are a perspective view and a side sectional view showing a microparticle diffusion device of a sixth embodiment. For convenience of explanation, the same parts as those in the first embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals. The fine particle diffusion device 1 is covered with a housing 2 formed of a resin molded product. The fine particle diffusion device 1 is an installation surface in which the bottom surface of the housing 2 comes into contact with the indoor floor surface F, and is placed on the floor surface F. The fine particle diffusing device 1 is disposed in the vicinity of a corner between the one side wall S and the floor surface F.
 筐体2の前面及び背面の下部には室内の空気を筐体2内に取り込む吸込口5が開口する。筐体2の設置面に対向する上面には気流を吹き出す第1吹出口43及び第2吹出口53が開口する。詳細を後述するように、後部に配される第1吹出口43の開口面積は前部に配される第2吹出口53の開口面積よりも小さく形成される。 A suction port 5 for taking indoor air into the housing 2 is opened in the lower part of the front surface and the back surface of the housing 2. A first air outlet 43 and a second air outlet 53 that blow out an air flow are opened on an upper surface facing the installation surface of the housing 2. As will be described in detail later, the opening area of the first outlet 43 disposed at the rear is formed smaller than the opening area of the second outlet 53 disposed at the front.
 筐体2内には送風ファン40が配される。図19は送風ファン40の正面断面図を示している。送風ファン40は左右方向に延びる回転軸9aを有したモータ9を備え、回転軸9aに複数の第1、第2羽根車41、51が取り付けられる。これにより、第1、第2羽根車41、51が同軸に配置され、モータ9により回転駆動される。 A blower fan 40 is arranged in the housing 2. FIG. 19 is a front sectional view of the blower fan 40. The blower fan 40 includes a motor 9 having a rotation shaft 9a extending in the left-right direction, and a plurality of first and second impellers 41 and 51 are attached to the rotation shaft 9a. Accordingly, the first and second impellers 41 and 51 are arranged coaxially and are driven to rotate by the motor 9.
 第1羽根車41は回転軸9aに連結される円板41aと、円板41aの両面に放射状に立設される複数のブレード41bとを有している。同様に、第2羽根車51は回転軸9aに連結される円板51aと、円板51aの両面に放射状に立設される複数のブレード51bとを有している。 The first impeller 41 has a disc 41a connected to the rotary shaft 9a and a plurality of blades 41b erected radially on both sides of the disc 41a. Similarly, the 2nd impeller 51 has the disc 51a connected with the rotating shaft 9a, and the some blade 51b erected on both surfaces of the disc 51a radially.
 第1羽根車41及び第2羽根車51はそれぞれ気流路を形成する第1ケーシング42及び第1ケーシング52内に配される。第1、第2ケーシング42、52と筐体2との間及び第1、第2ケーシング42、52間には吸込口5(図17参照)から筐体2内に流入した空気が流通する所定量の隙間が形成される。 The first impeller 41 and the second impeller 51 are respectively disposed in a first casing 42 and a first casing 52 that form an air flow path. Where air flowing into the housing 2 from the suction port 5 (see FIG. 17) flows between the first and second casings 42 and 52 and the housing 2 and between the first and second casings 42 and 52. A fixed gap is formed.
 第1ケーシング42は第1筒状部42a及び第1吹出通路42cを有している。第1筒状部42aは第1羽根車41を覆う略円筒状に形成され、軸方向の両端面に第1吸気口42bを開口する。第1吹出通路42cは第1筒状部42aの周面から上方へ周接線方向に延び、先端に第1吹出口43(図18参照)を開口する。 The first casing 42 has a first tubular portion 42a and a first outlet passage 42c. The first cylindrical portion 42a is formed in a substantially cylindrical shape covering the first impeller 41, and opens the first intake port 42b on both end surfaces in the axial direction. The first outlet passage 42c extends upward in the circumferential tangential direction from the peripheral surface of the first tubular portion 42a, and opens a first outlet 43 (see FIG. 18) at the tip.
 同様に、第1ケーシング52は第2筒状部52a及び第2吹出通路52cを有している。第2筒状部52aは第2羽根車11を覆う略円筒状に形成され、軸方向の両端面に第2吸気口52bを開口する。第2吹出通路52cは第2筒状部52aの周面から上方へ周接線方向に延び、先端に第2吹出口53(図18参照)を開口する。 Similarly, the 1st casing 52 has the 2nd cylindrical part 52a and the 2nd blowing passage 52c. The 2nd cylindrical part 52a is formed in the substantially cylindrical shape which covers the 2nd impeller 11, and opens the 2nd inlet port 52b in the both end surfaces of an axial direction. The second outlet passage 52c extends upward in the circumferential tangential direction from the peripheral surface of the second cylindrical portion 52a, and opens the second outlet 53 (see FIG. 18) at the tip.
 これにより、送風ファン40は多連の遠心ファン(シロッコファンまたはターボファン)を構成し、第1、第2羽根車41、51の回転により第1、第2吸気口42b、52bから軸方向に吸気して周方向に排気する。 As a result, the blower fan 40 forms a multiple centrifugal fan (sirocco fan or turbo fan), and the first and second impellers 41 and 51 rotate in the axial direction from the first and second intake ports 42b and 52b. Intake and exhaust in the circumferential direction.
 図18に示すように、第1筒状部42aと第2筒状部52aとは側面視略一致するように配される。そして、第1筒状部42aから第1吹出通路42cが延びる方向と第2筒状部52aから第2吹出通路52cが延びる方向とが周方向に異なる。これにより、第1、第2吹出口43、53から吹き出される気流の方向が異なる。即ち、第1吹出口43から矢印B1に示すように鉛直上方もしくは鉛直上方に対して若干後方の後方上方に向けて気流が送出され、第2吹出口53から矢印B2に示すように前方上方に向けて気流が送出される。 As shown in FIG. 18, the first cylindrical portion 42a and the second cylindrical portion 52a are arranged so as to be substantially coincident with each other in a side view. The direction in which the first blowing passage 42c extends from the first tubular portion 42a and the direction in which the second blowing passage 52c extends from the second tubular portion 52a are different in the circumferential direction. Thereby, the direction of the airflow which blows off from the 1st, 2nd blower outlets 43 and 53 differs. That is, the airflow is sent from the first air outlet 43 toward the vertically upper side or slightly rearward rearwardly upward as indicated by the arrow B1, and from the second air outlet 53 toward the upper front side as indicated by the arrow B2. The airflow is sent out.
 また、第1吹出通路42cは第1筒状部42aの直後の上流部42dで流路を軸に垂直な方向に徐々に拡大される。また、上流部42dの下流側の下流部42eは第1吹出口43に至るまで軸に垂直な方向に流路が徐々に縮小される。第2吹出通路52cは第2筒状部52aと第2吹出口53との間で軸に垂直な方向に流路を徐々に拡大される。これにより、第1吹出口43の軸に垂直な方向の幅が第2吹出口53の軸に垂直な方向の幅よりも小さくなり、第1吹出口43の開口面積が第2吹出口53の開口面積よりも小さくなっている。 Also, the first blow-out passage 42c is gradually expanded in a direction perpendicular to the axis of the flow path at the upstream portion 42d immediately after the first cylindrical portion 42a. Further, the downstream portion 42e on the downstream side of the upstream portion 42d gradually reduces the flow path in the direction perpendicular to the axis until reaching the first outlet 43. The second blowing passage 52c is gradually enlarged in the flow path in the direction perpendicular to the axis between the second tubular portion 52a and the second blowing outlet 53. As a result, the width in the direction perpendicular to the axis of the first outlet 43 is smaller than the width in the direction perpendicular to the axis of the second outlet 53, and the opening area of the first outlet 43 is equal to that of the second outlet 53. It is smaller than the opening area.
 第1、第2吹出通路42c、52c内には上記と同様の微小粒子発生装置7の複数の電極(不図示)が露出して配される。 A plurality of electrodes (not shown) of the microparticle generator 7 similar to the above are exposed and arranged in the first and second blowing passages 42c and 52c.
 上記構成の微小粒子拡散装置1において、送風ファン40のモータ9及び微小粒子発生装置7が駆動されると、室内の空気が吸込口5から筐体2内に取り込まれる。筐体2内に取り込まれる空気は第1、第2吸気口42b、52bを介して第1、第2ケーシング42、52内に流入する。第1、第2ケーシング42、52に流入した空気は第1、第2筒状部12a、22aから周方向に排気され、第1、第2吹出通路42c、52cを流通する。第1、第2吹出通路42c、52cを流通する空気はイオンが含まれ、第1、第2吹出口43、53から矢印B1、B2の方向にそれぞれ吹き出される。 In the fine particle diffusion device 1 configured as described above, when the motor 9 of the blower fan 40 and the fine particle generation device 7 are driven, indoor air is taken into the housing 2 from the suction port 5. The air taken into the housing 2 flows into the first and second casings 42 and 52 through the first and second intake ports 42b and 52b. The air that has flowed into the first and second casings 42 and 52 is exhausted in the circumferential direction from the first and second cylindrical portions 12a and 22a, and flows through the first and second outlet passages 42c and 52c. The air flowing through the first and second outlet passages 42c and 52c contains ions, and is blown out from the first and second outlets 43 and 53 in the directions of arrows B1 and B2, respectively.
 この時、第1吹出通路42cの上流部42dで回転軸9aに垂直な方向に流路が広げられるため、気流の運動エネルギーを回収して静圧に変換し、静圧が高められる。これにより、送風ファン40の送風能力を向上させることができる。また、下流部42eで回転軸9aに垂直な方向に流路が絞られるため、気流の速度低下を抑制することができる。これにより、開口面積の小さい第1吹出口43から高速な気流を吹き出すことができる。 At this time, since the flow path is expanded in the direction perpendicular to the rotation shaft 9a at the upstream portion 42d of the first outlet passage 42c, the kinetic energy of the airflow is recovered and converted into static pressure, and the static pressure is increased. Thereby, the ventilation capability of the ventilation fan 40 can be improved. Further, since the flow path is narrowed in the direction perpendicular to the rotation shaft 9a at the downstream portion 42e, it is possible to suppress a decrease in the speed of the airflow. Thereby, a high-speed airflow can be blown out from the 1st blower outlet 43 with a small opening area.
 従って、第1吹出口43から鉛直上方または後方上方に向かって吹き出された空気は微小粒子拡散装置1の近傍の側壁Sに沿って上昇する。そして、天井壁、微小粒子拡散装置1に対向する側壁及び床面Fを通って微小粒子拡散装置1に戻る。また、室内の中央部の居住空間には壁面に沿って流通する気流によってイオンが緩やかに拡散する。これにより、室内の各壁面に沿って気流が循環して室内の隅々にイオンを行き渡らせることができる。 Therefore, the air blown vertically upward or rearward upward from the first outlet 43 rises along the side wall S in the vicinity of the microparticle diffusion device 1. And it returns to the microparticle diffusion apparatus 1 through the ceiling wall, the side wall facing the microparticle diffusion apparatus 1 and the floor surface F. In addition, ions gradually diffuse into the living space in the center of the room due to the airflow flowing along the wall surface. Thereby, airflow circulates along each wall surface in a room, and it can spread ions to every corner of a room.
 第1吹出口43から吹き出された気流は壁面に沿ってコアンダ効果によって進行するため、室内の空気に奪われる運動エネルギーが抑制される。即ち、気流が壁面に沿わない場合には、気流の壁面側が周囲空気(壁面と気流との間の空気)を誘引して周囲空気に運動エネルギーを奪われて損なわれる。気流が壁面に沿う場合には、壁面の摩擦抵抗により運動エネルギーが損なわれるが、壁面に沿わない場合に損なわれる運動エネルギーよりも一般的に非常に小さい。これにより、消費電力を抑制して気流の到達距離を大きくすることができる。尚、第1吹出通路42cの下流部42eで流路の回転軸9aに垂直な方向の幅を一定に維持してもよい。 Since the air flow blown out from the first air outlet 43 advances along the wall surface by the Coanda effect, the kinetic energy taken away by the indoor air is suppressed. That is, when the airflow does not follow the wall surface, the wall surface side of the airflow attracts ambient air (air between the wall surface and the airflow), and the surrounding air loses kinetic energy and is damaged. When the airflow is along the wall surface, the kinetic energy is lost due to the frictional resistance of the wall surface, but is generally much smaller than the kinetic energy lost when the airflow does not follow the wall surface. Thereby, power consumption can be suppressed and the reach | attainment distance of an airflow can be enlarged. Note that the width in the direction perpendicular to the rotation axis 9a of the flow path may be kept constant at the downstream portion 42e of the first outlet passage 42c.
 また、第2吹出通路52cは第2筒状部52aから第2吹出口53まで回転軸9aに垂直な方向に流路が広げられる。このため、気流の運動エネルギーを回収して静圧に変換し、静圧が高められる。これにより、微小粒子拡散装置1の送風能力をより向上させることができる。そして、開口面積の大きい第2吹出口53から低速な気流が吹き出される。 Further, the flow path of the second blowing passage 52c is expanded from the second cylindrical portion 52a to the second blowing outlet 53 in a direction perpendicular to the rotation shaft 9a. For this reason, the kinetic energy of airflow is collect | recovered and converted into a static pressure, and a static pressure is raised. Thereby, the ventilation capability of the microparticle diffusion apparatus 1 can be improved more. And a low-speed air current is blown out from the 2nd blower outlet 53 with a large opening area.
 第2吹出口53から前方上方に向かって吹き出された空気によって室内の中央部の居住空間にイオンが補充される。また、第2吹出口53から吹き出される気流は低速であるため、居住空間の使用者に対して風が当たることによる不快感を防止することができる。 The ions are replenished into the living space in the central part of the room by the air blown forward and upward from the second air outlet 53. Moreover, since the airflow blown out from the second air outlet 53 is low speed, it is possible to prevent discomfort caused by the wind hitting the user of the living space.
 尚、微小粒子発生装置7の各電極により発生するイオンの極性を所定期間毎に切り替えてもよい。即ち、一の電極からプラスイオンを発生して他の電極からマイナスイオンを発生する。所定期間が経過すると一の電極からマイナスイオンを発生して他の電極からプラスイオンを発生する。更に所定期間が経過すると、一の電極からプラスイオンを発生して他の電極からマイナスイオンを発生し、この動作を繰り返す。 Note that the polarity of ions generated by each electrode of the microparticle generator 7 may be switched every predetermined period. That is, positive ions are generated from one electrode and negative ions are generated from the other electrode. When a predetermined period elapses, negative ions are generated from one electrode and positive ions are generated from another electrode. Further, when a predetermined period elapses, positive ions are generated from one electrode and negative ions are generated from the other electrode, and this operation is repeated.
 これにより、気流の左端及び右端にプラスイオンとマイナスイオンとが交互に送出される。従って、居室内の左右方向の広い範囲までプラスイオン及びマイナスイオンを高い濃度で分布させることができる。 This will send positive ions and negative ions alternately to the left and right ends of the airflow. Therefore, positive ions and negative ions can be distributed at a high concentration over a wide range in the left-right direction in the room.
 本実施形態によると、同軸に配される第1、第2羽根車41、51が一のモータ9により駆動される。そして、第1羽根車41を覆う第1筒状部42aの周面から第1吹出通路42cが延びる方向と第2羽根車51を覆う第2筒状部21aの周面から第2吹出通路52cが延びる方向とが周方向に異なり、第1吹出口43から吹き出される気流の吹出し方向(B1)と第2吹出口53から吹き出される気流の吹出し方向(B2)とが異なる。これにより、簡単な構成で複数の方向に気流を送出することができる。また、気流が急激に曲げられないため圧力損失の増加を防止し、送風効率を向上するとともに騒音を低減することができる。 According to the present embodiment, the first and second impellers 41 and 51 arranged coaxially are driven by one motor 9. And the direction from which the 1st blowing path 42c extends from the surrounding surface of the 1st cylindrical part 42a which covers the 1st impeller 41, and the 2nd blowing path 52c from the surrounding surface of the 2nd cylindrical part 21a which covers the 2nd impeller 51 The direction in which the air flow extends differs from the circumferential direction, and the blow direction (B1) of the airflow blown from the first blower outlet 43 is different from the blow direction (B2) of the airflow blown from the second blower outlet 53. Thereby, airflow can be sent out in a plurality of directions with a simple configuration. Further, since the air flow is not bent suddenly, an increase in pressure loss can be prevented, and the air blowing efficiency can be improved and noise can be reduced.
 また、第1吹出口43の開口面積が第2吹出口53の開口面積よりも小さいので、第1吹出口43の風速を第2吹出口53の風速よりも大きくすることができる。これにより、第1吹出口43から吹き出される気流の到達距離を大きくすることができる。また、第2吹出口53から吹き出される気流を室内の居住空間に送出した際に使用者の不快感を防止することができる。 Also, since the opening area of the first outlet 43 is smaller than the opening area of the second outlet 53, the wind speed of the first outlet 43 can be made larger than the wind speed of the second outlet 53. Thereby, the reach | attainment distance of the airflow which blows off from the 1st blower outlet 43 can be enlarged. In addition, it is possible to prevent the user from feeling uncomfortable when the airflow blown from the second outlet 53 is sent to the indoor living space.
 また、第1吹出口43の軸に垂直な方向の幅が第2吹出口53の軸に垂直な方向の幅よりも小さいので、簡単に第1吹出口43の風速を第2吹出口53の風速よりも大きくすることができる。 Further, since the width in the direction perpendicular to the axis of the first air outlet 43 is smaller than the width in the direction perpendicular to the axis of the second air outlet 53, the wind speed of the first air outlet 43 can be easily set to the second air outlet 53. It can be larger than the wind speed.
 また、第1吹出通路42cの上流部42dが流路を軸に垂直な方向に徐々に拡大し、下流部42eが軸に垂直な方向に流路を一定に維持または徐々に縮小される。これにより、第1羽根車41の直後の上流部42cで流路面積が絞られないため、気流の運動エネルギーを十分回収して静圧が高められて送風効率を向上することができる。その後、下流部42eで気流の速度低下が抑制され、第2吹出口53よりも開口面積の小さい第1吹出口43から気流が吹き出される。これにより、送風ファン40の回転数を大きくすることなく第1吹出口43から吹き出される気流の到達距離をより大きくすることができる。 Also, the upstream portion 42d of the first outlet passage 42c gradually expands in the direction perpendicular to the axis of the flow path, and the downstream portion 42e maintains the flow path constant in the direction perpendicular to the axis or is gradually reduced. Thereby, since the flow path area is not throttled in the upstream part 42c immediately after the 1st impeller 41, the kinetic energy of airflow is fully collect | recovered, static pressure can be raised, and ventilation efficiency can be improved. Thereafter, the speed reduction of the airflow is suppressed at the downstream portion 42e, and the airflow is blown out from the first air outlet 43 having an opening area smaller than that of the second air outlet 53. Thereby, the reach | attainment distance of the airflow which blows off from the 1st blower outlet 43 can be enlarged more, without making the rotation speed of the ventilation fan 40 large.
 加えて、第2吹出通路52cが流路を軸に垂直な方向に徐々に拡大され、開口面積の大きい第2吹出口53から気流が吹き出される。これにより、気流の運動エネルギーを十分回収して静圧が高められて送風効率を向上することができるとともに第1吹出口43よりも低速の気流を第2吹出口53から容易に吹き出すことができる。 In addition, the second blowing passage 52c is gradually enlarged in the direction perpendicular to the axis of the flow path, and the airflow is blown out from the second blowing outlet 53 having a large opening area. Thereby, the kinetic energy of the airflow can be sufficiently recovered to increase the static pressure and the air blowing efficiency can be improved, and the airflow slower than the first air outlet 43 can be easily blown out from the second air outlet 53. .
 また、第1ケーシング42によって第1吹出口43から鉛直上方または後方上方に向けて気流を送出し、第1ケーシング52によって第2吹出口53から前方上方に向けて気流を送出する。このため、微小粒子拡散装置1を室内の一側壁Sと床面Fとのコーナー近傍に設置すると、第1吹出口43から吹き出される高速の気流は該側壁S、天井壁、対向する側壁及び床面Fを通る。従って、室内にイオンを十分拡散させることができる。加えて、第2吹出口53から室内の居住空間に向かって低速の気流が吹き出され、居住空間のイオンを補充できるとともに使用者の不快感を防止することができる。 Further, the first casing 42 sends out an air flow from the first air outlet 43 vertically upward or rearward upward, and the first casing 52 sends out the air current from the second air outlet 53 toward the upper front. For this reason, when the fine particle diffusion device 1 is installed in the vicinity of a corner between the one side wall S and the floor surface F in the room, the high-speed air flow blown out from the first air outlet 43 causes the side wall S, the ceiling wall, the opposing side wall, Pass through floor F. Accordingly, ions can be sufficiently diffused in the room. In addition, a low-speed air flow is blown out from the second outlet 53 toward the indoor living space, so that ions in the living space can be replenished and user discomfort can be prevented.
 また、第1、第2羽根車41、51が円板41a、21aの両面にブレード41b、21bを有し、第1、第2吸気口42b、52bがそれぞれ第1、第2筒状部42a、52aの軸方向の両面に設けられるので、小型で風量の大きい送風ファン40を容易に実現することができる。 The first and second impellers 41 and 51 have blades 41b and 21b on both sides of the discs 41a and 21a, and the first and second intake ports 42b and 52b are the first and second cylindrical portions 42a, respectively. , 52a is provided on both surfaces in the axial direction, and thus the blower fan 40 having a small size and a large air volume can be easily realized.
 次に、図20は第7実施形態の微小粒子拡散装置1の側面断面図を示している。説明の便宜上、前述の図17~図20に示す第6実施形態と同様の部分には同一の符号を付している。本実施形態は、吸込口5に面して筐体2内にHEPAフィルター60が設けられる。その他の部分は第6実施形態と同様である。 Next, FIG. 20 shows a side sectional view of the fine particle diffusion device 1 of the seventh embodiment. For convenience of explanation, the same reference numerals are given to the same parts as those in the sixth embodiment shown in FIGS. In the present embodiment, the HEPA filter 60 is provided in the housing 2 so as to face the suction port 5. Other parts are the same as in the sixth embodiment.
 HEPAフィルター60は吸込口5から筐体内2に流入する空気の塵埃を捕集する。これにより、塵埃を除去された清浄な空気が室内に送出される。 The HEPA filter 60 collects air dust flowing into the housing 2 from the suction port 5. Thereby, clean air from which dust has been removed is sent into the room.
 本実施形態によると、第6実施形態と同様の効果を得ることができる。加えて、流路に圧力損失の大きいHEPAフィルター60が設けられても、送風ファン40が静圧の高い遠心ファンにより構成されるため送風効率の低下を防止することができる。 According to this embodiment, the same effect as that of the sixth embodiment can be obtained. In addition, even if the HEPA filter 60 having a large pressure loss is provided in the flow path, since the blower fan 40 is constituted by a centrifugal fan having a high static pressure, it is possible to prevent a reduction in the blowing efficiency.
 次に、図21、図22は第8実施形態の微小粒子拡散装置を示す斜視図及び側面断面図である。説明の便宜上、前述の図17~図19に示す第6実施形態と同様の部分には同一の符号を付している。微小粒子拡散装置1は樹脂成形品により形成される筐体2で覆われる。微小粒子拡散装置1は筐体2の背面が室内の一の側壁Sに当接する設置面となり、側壁Sに壁掛けされる。また、微小粒子拡散装置1は側壁Sと天井壁Tとのコーナー近傍に配される。筐体2と天井壁Tとの間には所定の隙間Hが設けられる。 Next, FIGS. 21 and 22 are a perspective view and a side sectional view showing the microparticle diffusion device of the eighth embodiment. For convenience of explanation, the same reference numerals are given to the same parts as those in the sixth embodiment shown in FIGS. The fine particle diffusion device 1 is covered with a housing 2 formed of a resin molded product. The fine particle diffusion device 1 is an installation surface in which the rear surface of the housing 2 is in contact with one side wall S of the room, and is hung on the side wall S. The fine particle diffusing device 1 is disposed near the corner between the side wall S and the ceiling wall T. A predetermined gap H is provided between the housing 2 and the ceiling wall T.
 筐体2の上面には室内の空気を筐体2内に取り込む吸込口5が開口する。筐体2の設置面に対向する前面には気流を吹き出す第1吹出口43及び第2吹出口53が開口する。上部に配される第1吹出口43の開口面積は下部に配される第2吹出口53の開口面積よりも小さく形成される。 A suction port 5 for taking indoor air into the housing 2 is opened on the upper surface of the housing 2. A first air outlet 43 and a second air outlet 53 that blow out airflow are opened on the front surface facing the installation surface of the housing 2. The opening area of the 1st blower outlet 43 distribute | arranged to upper part is formed smaller than the opening area of the 2nd blower outlet 53 distribute | arranged to lower part.
 筐体2内には前述の図19と同様の送風ファン40が配される。そして、第1羽根車41を覆う第1ケーシング42の第1吹出通路42cは第1筒状部42aの周面から前方へ周接線方向に延び、先端に第1吹出口43を開口する。第2羽根車51を覆う第2ケーシング52の第2吹出通路52cは第2筒状部52aの周面から前方へ周接線方向に延び、先端に第2吹出口53を開口する。 A blower fan 40 similar to that shown in FIG. And the 1st blowing path 42c of the 1st casing 42 which covers the 1st impeller 41 extends in the circumferential tangential direction from the surrounding surface of the 1st cylindrical part 42a, and opens the 1st blower outlet 43 at the front-end | tip. The second blowing passage 52c of the second casing 52 covering the second impeller 51 extends in the circumferential tangential direction from the peripheral surface of the second cylindrical portion 52a, and opens the second outlet 53 at the tip.
 第1筒状部42aと第2筒状部52aとは側面視略一致するように配される。そして、第1筒状部42aから第1吹出通路42cが延びる方向と第2筒状部52aから第2吹出通路52cが延びる方向とが周方向に異なる。これにより、第1、第2吹出口43、53から吹き出される気流の方向が異なる。即ち、第1吹出口43から矢印B3に示すように水平もしくは水平に対して若干上方の前方上方に向けて気流が送出され、第2吹出口53から矢印B4に示すように前方下方に向けて気流が送出される。 The first cylindrical portion 42a and the second cylindrical portion 52a are arranged so as to be substantially coincident with each other in a side view. The direction in which the first blowing passage 42c extends from the first tubular portion 42a and the direction in which the second blowing passage 52c extends from the second tubular portion 52a are different in the circumferential direction. Thereby, the direction of the airflow which blows off from the 1st, 2nd blower outlets 43 and 53 differs. That is, the airflow is sent from the first air outlet 43 toward the front or slightly above the horizontal as shown by the arrow B3, and from the second air outlet 53 toward the front and lower as shown by the arrow B4. Airflow is sent out.
 また、第1、第2吹出通路42c、52cには上記と同様の微小粒子発生装置7が配される。 Further, the same fine particle generator 7 as described above is disposed in the first and second blowing passages 42c and 52c.
 上記構成の微小粒子拡散装置1において、送風ファン40のモータ9及び微小粒子発生装置7が駆動されると、室内の空気が吸込口5から筐体2内に取り込まれる。筐体2内に取り込まれる空気は第1、第2吸気口42b、52bを介して第1、第2ケーシング42、52内に流入する。第1、第2ケーシング42、52に流入した空気は第1、第2筒状部12a、22aから周方向に排気され、第1、第2吹出通路42c、52cを流通する。 In the fine particle diffusion device 1 configured as described above, when the motor 9 of the blower fan 40 and the fine particle generation device 7 are driven, indoor air is taken into the housing 2 from the suction port 5. The air taken into the housing 2 flows into the first and second casings 42 and 52 through the first and second intake ports 42b and 52b. The air that has flowed into the first and second casings 42 and 52 is exhausted in the circumferential direction from the first and second cylindrical portions 12a and 22a, and flows through the first and second outlet passages 42c and 52c.
 第1吹出通路42cを流通する空気はイオンが含まれ、上流部42dで気流の運動エネルギーを回収して静圧に変換し、静圧が高められる。そして、下流部42eで気流の速度低下が抑制され、開口面積の小さい第1吹出口43から矢印B3の方向に高速な気流が吹き出される。 The air flowing through the first blowing passage 42c contains ions, and the kinetic energy of the airflow is recovered and converted into static pressure at the upstream portion 42d, thereby increasing the static pressure. And the speed reduction of an airflow is suppressed by the downstream part 42e, and a high-speed airflow is blown in the direction of arrow B3 from the 1st blower outlet 43 with a small opening area.
 第1吹出口43から水平または前方上方に向かって吹き出された空気は天井壁Tに沿って流通する。そして、微小粒子拡散装置1に対向する側壁及び床面Fを通って微小粒子拡散装置1に戻る。また、室内の中央部の居住空間には壁面に沿って流通する気流によってイオンが緩やかに拡散する。これにより、室内の各壁面に沿って気流が循環して室内の隅々にイオンを行き渡らせることができる。 The air blown out from the first air outlet 43 horizontally or forward and upward flows along the ceiling wall T. Then, it returns to the fine particle diffusion device 1 through the side wall and the floor surface F facing the fine particle diffusion device 1. In addition, ions gradually diffuse into the living space in the center of the room due to the airflow flowing along the wall surface. Thereby, airflow circulates along each wall surface in a room, and it can spread ions to every corner of a room.
 また、第2吹出通路52cは空気はイオンが含まれ、気流の運動エネルギーを回収して静圧に変換し、静圧が高められる。これにより、微小粒子拡散装置1の送風能力をより向上させることができる。そして、開口面積の大きい第2吹出口53から矢印B4の方向に低速な気流が吹き出される。 Also, in the second blow-out passage 52c, the air contains ions, and the kinetic energy of the airflow is recovered and converted into a static pressure, thereby increasing the static pressure. Thereby, the ventilation capability of the microparticle diffusion apparatus 1 can be improved more. Then, a low-speed air current is blown out in the direction of arrow B4 from the second outlet 53 having a large opening area.
 第2吹出口53から前方下方に向かって吹き出された空気によって室内の中央部の居住空間にイオンが補充される。また、第2吹出口53から吹き出される気流は低速であるため、居住空間の使用者に対して風が当たることによる不快感を防止することができる。 The ions are replenished to the living space in the central part of the room by the air blown forward and downward from the second outlet 53. Moreover, since the airflow blown out from the second air outlet 53 is low speed, it is possible to prevent discomfort caused by the wind hitting the user of the living space.
 本実施形態によると、第6実施形態と同様の効果を得ることができる。また、第1ケーシング42によって第1吹出口43から水平または前方上方に向けて気流を送出し、第1ケーシング52によって第2吹出口53から前方下方に向けて気流を送出する。このため、微小粒子拡散装置1を室内の一側壁Sと天井壁Tとのコーナー近傍に設置すると、第1吹出口43から吹き出される高速の気流は天井壁T、対向する側壁及び床面Fを通る。従って、室内にイオンを十分拡散させることができる。加えて、第2吹出口53から室内の居住空間に向かって低速の気流が吹き出され、居住空間のイオンを補充できるとともに使用者の不快感を防止することができる。 According to this embodiment, the same effect as that of the sixth embodiment can be obtained. In addition, the first casing 42 sends an air flow from the first air outlet 43 horizontally or upward to the front, and the first casing 52 sends an air current from the second air outlet 53 to the front and downward. For this reason, when the fine particle diffusion device 1 is installed in the vicinity of the corner between the one side wall S and the ceiling wall T in the room, the high-speed airflow blown from the first air outlet 43 causes the ceiling wall T, the opposite side wall, and the floor surface F Pass through. Accordingly, ions can be sufficiently diffused in the room. In addition, a low-speed air flow is blown out from the second outlet 53 toward the indoor living space, so that ions in the living space can be replenished and user discomfort can be prevented.
 次に、図23は第9実施形態の微小粒子拡散装置1の側面断面図を示している。説明の便宜上、前述の図21、図22に示す第8実施形態と同様の部分には同一の符号を付している。本実施形態は、吸込口5に面して筐体2内にHEPAフィルター60が設けられる。その他の部分は第8実施形態と同様である。 Next, FIG. 23 shows a side cross-sectional view of the fine particle diffusion device 1 of the ninth embodiment. For convenience of explanation, the same reference numerals are given to the same parts as those in the eighth embodiment shown in FIGS. In the present embodiment, the HEPA filter 60 is provided in the housing 2 so as to face the suction port 5. Other parts are the same as in the eighth embodiment.
 HEPAフィルター60は吸込口5から筐体内2に流入する空気の塵埃を捕集する。これにより、塵埃を除去された清浄な空気が室内に送出される。 The HEPA filter 60 collects air dust flowing into the housing 2 from the suction port 5. Thereby, clean air from which dust has been removed is sent into the room.
 本実施形態によると、第8実施形態と同様の効果を得ることができる。加えて、流路に圧力損失の大きいHEPAフィルター60が設けられても、送風ファン40が静圧の高い遠心ファンにより構成されるため送風効率の低下を防止することができる。 According to this embodiment, the same effect as that of the eighth embodiment can be obtained. In addition, even if the HEPA filter 60 having a large pressure loss is provided in the flow path, since the blower fan 40 is constituted by a centrifugal fan having a high static pressure, it is possible to prevent a reduction in the blowing efficiency.
 第6~第9実施形態において、微小粒子発生装置7を省いて第1、第2吹出口43、53から空気を吹き出して室内の気流を循環させるサーキュレータにしてもよい。これにより、複数の方向に気流を吹き出して室内の空気を十分循環させることができる。この時、圧力損失の増加を防止し、送風効率を向上するとともに騒音を低減することができる。 In the sixth to ninth embodiments, the fine particle generator 7 may be omitted, and a circulator that circulates the airflow in the room by blowing air from the first and second outlets 43 and 53 may be used. Thereby, airflow can be blown out in a plurality of directions to sufficiently circulate indoor air. At this time, an increase in pressure loss can be prevented, air blowing efficiency can be improved, and noise can be reduced.
 また、第1吹出口43から吹き出される高速の気流は壁面に沿ってコアンダ効果によって進行するため、室内の空気に奪われる運動エネルギーが抑制され、気流の到達距離を大きくすることができる。また、第2吹出口53から吹き出される気流は低速で居住空間に送出され、使用者の不快感を防止することができる。 Moreover, since the high-speed air flow blown out from the first air outlet 43 proceeds along the wall surface by the Coanda effect, the kinetic energy taken away by the indoor air is suppressed, and the reach distance of the air flow can be increased. Moreover, the airflow blown out from the second outlet 53 is sent to the living space at a low speed, and the user's discomfort can be prevented.
 また、送風ファン40が2連の遠心ファンにより構成されるが、3連以上の遠心ファンにより構成にしてもよい。また、送風ファン40のモータ9は回転軸9aが二方向に延びる両軸に形成されるが、一方向に延びる片軸に形成してもよい。 Further, although the blower fan 40 is constituted by two centrifugal fans, it may be constituted by three or more centrifugal fans. Further, the motor 9 of the blower fan 40 is formed on both shafts having the rotating shaft 9a extending in two directions, but may be formed on one shaft extending in one direction.
 また、第6、第7実施形態の微小粒子拡散装置1の設置面を室内の側壁Sに当接して微小粒子拡散装置1を壁掛けにしてもよい。これにより、第8、第9実施形態と同様の微小粒子拡散装置1が得られる。従って、床置き及び壁掛けの両方に対応してどちらの場合においても良好に室内の空気を循環して室内の隅々に微小粒子を拡散させる微小粒子拡散装置1を実現することができる。 Alternatively, the installation surface of the microparticle diffusion device 1 according to the sixth and seventh embodiments may be brought into contact with the side wall S in the room to hang the microparticle diffusion device 1 on the wall. Thereby, the microparticle diffusion device 1 similar to the eighth and ninth embodiments is obtained. Accordingly, it is possible to realize the fine particle diffusing apparatus 1 that circulates indoor air well and diffuses fine particles to every corner of the room in both cases, corresponding to both floor placement and wall hanging.
 また、第8、第9実施形態の微小粒子拡散装置1の設置面を床面に当接して微小粒子拡散装置1を床置きにしてもよい。これにより、第6、第7実施形態と同様の微小粒子拡散装置1が得られる。従って、床置き及び壁掛けの両方に対応してどちらの場合においても良好に室内の空気を循環して室内の隅々に微小粒子を拡散させる微小粒子拡散装置1を実現することができる。 Further, the fine particle diffusion device 1 may be placed on the floor by bringing the installation surface of the fine particle diffusion device 1 according to the eighth and ninth embodiments into contact with the floor surface. Thereby, the microparticle diffusion apparatus 1 similar to the sixth and seventh embodiments is obtained. Accordingly, it is possible to realize the fine particle diffusing apparatus 1 that circulates indoor air well and diffuses fine particles to every corner of the room in both cases, corresponding to both floor placement and wall hanging.
 また、第1~第9実施形態において、微小粒子拡散装置1は微小粒子発生装置7により発生したプラスイオンとマイナスイオンとを送出して室内の殺菌を行っている。微小粒子発生装置7によりマイナスイオンのみを発生して室内のリラクゼーション効果を得る微小粒子拡散装置1であってもよい。また、微小粒子発生装置7により芳香剤、消臭剤、殺虫剤、殺菌剤等を発生して室内の消臭、殺虫、殺菌等を行う微小粒子拡散装置1であってもよい。 Further, in the first to ninth embodiments, the microparticle diffusion device 1 sends out positive ions and negative ions generated by the microparticle generator 7 to sterilize the room. The fine particle diffusion device 1 that generates only negative ions by the fine particle generator 7 and obtains an indoor relaxation effect may be used. Alternatively, the fine particle diffusing device 1 that generates a fragrance, a deodorant, an insecticide, a bactericidal agent, or the like by the fine particle generator 7 and performs indoor deodorization, insecticide, sterilization, or the like may be used.
 本発明によると、室内の空気を循環させるサーキュレータに利用することができる。また本発明によると、イオン、芳香剤、消臭剤、殺虫剤、殺菌剤等の微小粒子を送出して室内に拡散させる微小粒子拡散装置に利用することができる。 The present invention can be used for a circulator that circulates indoor air. Moreover, according to this invention, it can utilize for the microparticle spreading | diffusion apparatus which sends out microparticles, such as an ion, a fragrance | flavor, a deodorant, an insecticide, and a disinfectant, and diffuses it indoors.
   1  微小粒子拡散装置
   2  筐体
   4a、43 第1吹出口
   4b、53 第2吹出口
   4c 第3吹出口
   4d 第4吹出口
   5  吸込口
   5a 第1吸込口
   5b 第2吸込口
   6  フィルター
   7  微小粒子発生装置
   8、30、40 送風ファン
  10  送風経路
  10a 第1分割通路
  10b 第2分割通路
  10c 第3分割通路
  11  垂直方向拡大部
  12  軸方向拡大部
  13  下方通路
  14  仕切板
  20  第2送風経路
  31  第1ケーシング
  32  第2ケーシング
  33  羽根車
  41  第1羽根車
  41a、51a 円板
  41b、51b ブレード
  42  第1ケーシング
  42a 第1筒状部
  42b 第1吸気口
  42c 第1吹出通路
  42d 上流部
  42e 下流部
  51  第2羽根車
  52  第2ケーシング
  52a 第2筒状部
  52b 第2吸気口
  52c 第2吹出通路
  60  HEPAフィルター
   A1 第1気流
   A2 第2気流
   A3 第3気流
   A4 第4気流
   F  床面
   P1 第1壁面
   P2 第2壁面
   P3 第3壁面
   S  側壁
   T  天井壁
DESCRIPTION OF SYMBOLS 1 Fine particle diffusion apparatus 2 Housing | casing 4a, 43 1st blower outlet 4b, 53 2nd blower outlet 4c 3rd blower outlet 4d 4th blower outlet 5 Suction port 5a 1st suction port 5b 2nd suction port 6 Filter 7 Fine particle Generator 8, 30, 40 Blower fan 10 Blower passage 10a First divided passage 10b Second divided passage 10c Third divided passage 11 Vertically enlarged portion 12 Axial enlarged portion 13 Lower passage 14 Partition plate 20 Second blower route 31 First 1 casing 32 2nd casing 33 impeller 41 first impeller 41a, 51a disc 41b, 51b blade 42 first casing 42a first cylindrical portion 42b first air inlet 42c first outlet passage 42d upstream portion 42e downstream portion 51 2nd impeller 52 2nd casing 52a 2nd cylindrical part 52b 2nd intake 52c the second air passage 60 HEPA filter A1 first airflow A2 second airflow A3 third airflow A4 fourth airflow F floor P1 first wall surface P2 second wall P3 third wall S sidewall T ceiling wall

Claims (32)

  1.  クロスフロー型の羽根車と、前記羽根車を覆って気流路を形成するとともに前記羽根車の軸方向に並設される第1ケーシング及び第2ケーシングとを備え、第1ケーシングを通る気流の吹出し方向と、第2ケーシングを通る気流の吹出し方向とが異なることを特徴とする送風ファン。 A cross-flow type impeller, a first casing and a second casing that cover the impeller to form an air flow path and are juxtaposed in the axial direction of the impeller, and blow out airflow through the first casing An air blowing fan characterized in that the direction and the direction of air flow passing through the second casing are different.
  2.  第1ケーシングは前記羽根車が突出する第1吸気側開口部を一端に開口して前記羽根車の排気側に延びるとともに、第2ケーシングは前記羽根車が突出する第2吸気側開口部を一端に開口して前記羽根車の排気側に延び、第1吸気側開口部の開口面と第2吸気側開口部の開口面とが前記羽根車の周方向に異なる角度に配されることを特徴とする請求項1に記載の送風ファン。 The first casing opens at one end a first intake side opening from which the impeller projects and extends to the exhaust side of the impeller, and the second casing has one end at the second intake side opening from which the impeller projects. And the opening surface of the first intake side opening and the opening surface of the second intake side opening are arranged at different angles in the circumferential direction of the impeller. The blower fan according to claim 1.
  3.  第1吸気側開口部から所定範囲の第1ケーシングが第2吸気側開口部から所定範囲の第2ケーシングを前記羽根車の軸方向から見て前記羽根車の回転中心の回りに回転移動させた形状に一致することを特徴とする請求項2に記載の送風ファン。 The first casing in a predetermined range from the first intake side opening is rotated around the rotation center of the impeller as viewed from the axial direction of the impeller from the second intake side opening. The blower fan according to claim 2, wherein the blower fan matches the shape.
  4.  第1ケーシングを通る気流の吹出し方向と第2ケーシングを通る気流の吹出し方向とが90゜以上異なることを特徴とする請求項2に記載の送風ファン。 The blower fan according to claim 2, wherein the blowing direction of the airflow passing through the first casing differs from the blowing direction of the airflow passing through the second casing by 90 ° or more.
  5.  同軸に配される第1羽根車及び第2羽根車と、
     第1羽根車及び第2羽根車を回転駆動する一のモータと、
     第1羽根車を覆って軸方向に第1吸気口を開口する第1筒状部と、第1筒状部の周面から周接線方向に延びて先端に第1吹出口を開口した第1吹出通路とを有する第1ケーシングと、
     第2羽根車を覆って軸方向に第2吸気口を開口する第2筒状部と、第2筒状部の周面から周接線方向に延びて先端に第2吹出口を開口した第2吹出通路とを有する第2ケーシングと、
     を備え、第1筒状部から第1吹出通路が延びる方向と第2筒状部から第2吹出通路が延びる方向とが周方向に異なるとともに、第1吹出口から吹き出される気流の吹出し方向と、第2吹出口から吹き出される気流の吹出し方向とが異なることを特徴とする送風ファン。
    A first impeller and a second impeller arranged coaxially;
    One motor for rotationally driving the first impeller and the second impeller;
    A first tubular portion covering the first impeller and opening the first intake port in the axial direction; and a first opening extending from the circumferential surface of the first tubular portion in the circumferential tangential direction and opening the first outlet at the tip. A first casing having an outlet passage;
    A second cylindrical part covering the second impeller and opening the second intake port in the axial direction; a second cylindrical part extending in a circumferential tangential direction from the peripheral surface of the second cylindrical part; A second casing having an outlet passage;
    The direction in which the first blowing passage extends from the first tubular portion and the direction in which the second blowing passage extends from the second tubular portion are different in the circumferential direction, and the blowing direction of the air flow blown from the first blowing outlet And the blowing direction of the airflow which blows off from a 2nd blower outlet differ.
  6.  第1吹出口の開口面積が第2吹出口の開口面積よりも小さいことを特徴とする請求項5に記載の送風ファン。 6. The blower fan according to claim 5, wherein an opening area of the first air outlet is smaller than an opening area of the second air outlet.
  7.  第1吹出口の軸に垂直な方向の幅が第2吹出口の軸に垂直な方向の幅よりも小さいことを特徴とする請求項6に記載の送風ファン。 The blower fan according to claim 6, wherein the width in the direction perpendicular to the axis of the first outlet is smaller than the width in the direction perpendicular to the axis of the second outlet.
  8.  第1吹出通路が流路を軸に垂直な方向に徐々に拡大される上流部と前記上流部の下流側で第1吹出口まで軸に垂直な方向に流路を一定に維持または徐々に縮小される下流部とを有するとともに、第2吹出通路が第2筒状部と第2吹出口との間で軸に垂直な方向に流路を徐々に拡大されることを特徴とする請求項6に記載の送風ファン。 The first blowout passage is gradually expanded in the direction perpendicular to the flow path in the direction perpendicular to the axis, and the flow path is maintained constant or gradually reduced in the direction perpendicular to the axis to the first blowout port downstream of the upstream portion. And a second blowout passage is gradually enlarged in the direction perpendicular to the axis between the second tubular portion and the second blowout opening. The blower fan as described in.
  9.  第1羽根車及び第2羽根車が前記モータに連結される円板と、前記円板の両面に放射状に立設されるブレードとを有し、第1吸気口及び第2吸気口をそれぞれ第1筒状部及び第2筒状部の軸方向の両面に設けたことを特徴とする請求項5に記載の送風ファン。 The first impeller and the second impeller have a disk connected to the motor, and blades standing radially on both sides of the disk, and the first intake port and the second intake port are respectively The blower fan according to claim 5, wherein the blower fan is provided on both axial surfaces of the first cylindrical portion and the second cylindrical portion.
  10.  室内の一の側壁または室内の一の側壁に近接した天井壁に設置して室内の空気を循環させるサーキュレータにおいて、一の側壁に水平方向に隣接する第1壁面に近い方から順に水平方向に並設される第1吹出口、第2吹出口及び第3吹出口を備え、天井壁に沿って流通して第1壁面に沿って降下する第1気流を第1吹出口から送出し、天井壁に沿って流通して一の側壁に対向する第2壁面に沿って降下する第2気流を第2吹出口から送出し、天井壁に沿って流通して第1壁面に対向する第3壁面に沿って降下する第3気流を第3吹出口から送出することを特徴とするサーキュレータ。 In a circulator that is installed on one side wall of a room or a ceiling wall close to one side wall of the room and circulates the air in the room, the circulators are arranged in the horizontal direction in order from the side closest to the first wall surface adjacent to the one side wall in the horizontal direction. A first air outlet, a second air outlet, and a third air outlet that are provided, and a first air stream that flows along the ceiling wall and descends along the first wall surface is sent out from the first air outlet; The second airflow that flows along the second wall surface that flows along the second wall and faces the one side wall is sent out from the second outlet, and flows along the ceiling wall to the third wall surface that faces the first wall surface. The circulator characterized by sending out the 3rd air current which descends along from the 3rd blower outlet.
  11.  遠心ファンまたは貫流ファンから成る送風ファンと、前記送風ファンが回転軸を水平にして配される送風経路とを備えるとともに、前記送風経路が前記送風ファンの下流側で分割して第1吹出口、第2吹出口及び第3吹出口がそれぞれ前端に開口する第1分割通路、第2分割通路及び第3分割通路を有し、第1分割通路及び第3分割通路の内側の壁面が鉛直面に対して傾斜することを特徴とする請求項10に記載のサーキュレータ。 A blower fan comprising a centrifugal fan or a cross-flow fan, and a blower path in which the blower fan is disposed with the rotation axis horizontal, and the blower path is divided on the downstream side of the blower fan to form a first outlet, The second blower outlet and the third blower outlet each have a first divided passage, a second divided passage, and a third divided passage that open to the front end, and the inner wall surfaces of the first divided passage and the third divided passage are vertical surfaces. The circulator according to claim 10, wherein the circulator is inclined with respect to the circulator.
  12.  一の側壁に沿って流通する第4気流を下方に向けて送出する第4吹出口を備えたことを特徴とする請求項10に記載のサーキュレータ。 The circulator according to claim 10, further comprising a fourth outlet for sending downward the fourth airflow flowing along the one side wall.
  13.  前方下方に向かう第4気流を送出する第4吹出口を備え、第4気流の流量が第2気流の流量よりも少ないことを特徴とする請求項10に記載のサーキュレータ。 The circulator according to claim 10, further comprising a fourth blow-out port that sends out a fourth air flow directed forward and downward, wherein a flow rate of the fourth air flow is smaller than a flow rate of the second air flow.
  14.  吸込口と吹出口とを開口する筐体と、前記吸込口と前記吹出口とを連結して前記筐体内に設けられる送風経路と、前記送風経路に配されて周方向に気流を送出する送風ファンとを備え、前記吸込口から前記送風経路に流入する室内の空気を前記吹出口から送出して室内の空気を循環させるサーキュレータにおいて、前記送風経路が、前記送風ファンの下流側で流路を前記送風ファンの回転軸の垂直方向に徐々に拡大する垂直方向拡大部と、前記垂直方向拡大部の下流側で流路を前記回転軸の軸方向に徐々に拡大するとともに前記回転軸の垂直方向に一定に維持または徐々に縮小される軸方向拡大部とを有することを特徴とするサーキュレータ。 A housing that opens the suction port and the air outlet, an air passage that is connected to the air inlet and the air outlet, and is provided in the housing, and an air that is arranged in the air passage and sends out an airflow in the circumferential direction And a circulator that circulates indoor air from the air outlet and circulates the indoor air flowing into the air flow path from the suction port, wherein the air flow path is a flow path downstream of the air blower fan. A vertical expansion portion that gradually expands in the vertical direction of the rotation axis of the blower fan, and a flow path that gradually expands in the axial direction of the rotation shaft on the downstream side of the vertical expansion portion and that in the vertical direction of the rotation shaft A circulator having an axially enlarged portion that is maintained constant or gradually reduced.
  15.  前記軸方向拡大部の流路面積が下流になる程拡大されることを特徴とする請求項14に記載のサーキュレータ。 The circulator according to claim 14, wherein the flow path area of the axially enlarged portion is enlarged as it goes downstream.
  16.  前記垂直方向拡大部及び前記軸方向拡大部に連続して前記回転軸の軸方向に分割される複数の分割通路を有することを特徴とする請求項14に記載のサーキュレータ。 The circulator according to claim 14, further comprising a plurality of divided passages that are divided in the axial direction of the rotary shaft in succession to the vertical enlarged portion and the axial enlarged portion.
  17.  前記筐体が前記回転軸を水平に配して室内の天井壁の近傍に配され、前記吹出口を前記筐体の上端に形成するとともに前記吹出口から天井壁に沿って気流を送出したことを特徴とする請求項14に記載のサーキュレータ。 The casing is disposed in the vicinity of an indoor ceiling wall with the rotating shaft horizontally, and the air outlet is formed at the upper end of the casing and airflow is sent from the outlet along the ceiling wall. The circulator according to claim 14.
  18.  前記筐体が前記回転軸を水平に配して室内の天井壁の近傍に配され、前記吹出口を前記筐体の下部に形成するとともに前記吹出口から上方に気流を送出したことを特徴とする請求項14に記載のサーキュレータ。 The casing is disposed in the vicinity of an indoor ceiling wall with the rotating shaft horizontally, and the air outlet is formed in the lower part of the casing and airflow is sent upward from the air outlet. The circulator according to claim 14.
  19.  請求項1に記載の送風ファンを備え、室内に向かって複数方向に気流を送出して室内の空気を循環させることを特徴とするサーキュレータ。 A circulator comprising the blower fan according to claim 1, wherein air is circulated in a plurality of directions toward the room to circulate the room air.
  20.  第1ケーシングによって水平または前方上方に向けて室内に気流を送出し、第2ケーシングによって下方に向けて室内に気流を送出することを特徴とする請求項19に記載のサーキュレータ。 21. The circulator according to claim 19, wherein the first casing sends the airflow into the room horizontally or forward and upward, and the second casing sends the airflow downward into the room.
  21.  請求項5に記載の送風ファンを筐体内に備え、室内に向かって複数方向に気流を送出して室内の空気を循環させることを特徴とするサーキュレータ。 A circulator characterized in that the blower fan according to claim 5 is provided in a housing, and air is circulated in a plurality of directions toward the room to circulate the air in the room.
  22.  第1ケーシングによって第1吹出口から鉛直上方または後方上方に向けて気流を送出し、第2ケーシングによって第2吹出口から前方上方に向けて気流を送出することを特徴とする請求項21に記載のサーキュレータ。 The air current is sent from the first air outlet vertically upward or rearward upward by the first casing, and the air current is sent from the second air outlet toward the front upper direction by the second casing. Circulators.
  23.  第1ケーシングによって第1吹出口から水平または前方上方に向けて気流を送出し、第2ケーシングによって第2吹出口から前方下方に向けて室内に気流を送出することを特徴とする請求項21に記載のサーキュレータ。 The air flow is sent out from the first air outlet horizontally or forward and upward by the first casing, and the air current is sent out indoors from the second air outlet toward the front and lower by the second casing. The circulator described.
  24.  前記筐体の一面に第1吹出口及び第2吹出口を設け、該一面に対向する設置面を室内の床面に当接して床面上に設置できるとともに前記設置面を室内の側壁に当接して側壁上に設置できることを特徴とする請求項22または請求項23に記載のサーキュレータ。 A first air outlet and a second air outlet are provided on one surface of the housing, and the installation surface facing the one surface can be in contact with the indoor floor surface and installed on the floor surface. The circulator according to claim 22 or 23, wherein the circulator can be installed on a side wall in contact with the circulator.
  25.  第1ケーシング及び第2ケーシングに流入する空気の塵埃を捕集するHEPAフィルターを備えたことを特徴とする請求項21に記載のサーキュレータ。 The circulator according to claim 21, further comprising a HEPA filter that collects dust of air flowing into the first casing and the second casing.
  26.  微小粒子を発生する微小粒子発生装置を有し、室内の一の側壁または室内の一の側壁に近接した天井壁に設置して室内に微小粒子を送出する微小粒子拡散装置において、一の側壁に水平方向に隣接する第1壁面に近い方から順に水平方向に並設される第1吹出口、第2吹出口及び第3吹出口を備え、天井壁に沿って流通して第1壁面に沿って降下する第1気流を第1吹出口から送出し、天井壁に沿って流通して一の側壁に対向する第2壁面に沿って降下する第2気流を第2吹出口から送出し、天井壁に沿って流通して第1壁面に対向する第3壁面に沿って降下する第3気流を第3吹出口から送出することを特徴とする微粒子拡散装置。 In a microparticle diffusion device that has a microparticle generator for generating microparticles and is installed on one side wall of a room or a ceiling wall close to one side wall of a room and sends out microparticles into the room, A first blower outlet, a second blower outlet, and a third blower outlet arranged in the horizontal direction in order from the side closest to the first wall surface adjacent in the horizontal direction are provided and circulate along the ceiling wall along the first wall surface. The first airflow descending from the first air outlet is sent out from the first air outlet, and the second air current flowing along the ceiling wall and descending along the second wall facing the one side wall is sent out from the second air outlet, A fine particle diffusing apparatus, characterized in that a third air stream flowing along a wall and descending along a third wall surface facing the first wall surface is sent out from a third air outlet.
  27.  吸込口と吹出口とを開口する筐体と、前記吸込口と前記吹出口とを連結して前記筐体内に設けられる送風経路と、前記送風経路に配されて周方向に気流を送出する送風ファンと、前記送風ファンの下流側に配されて微小粒子を発生する微小粒子発生装置を備え、前記吸込口から前記送風経路に流入する室内の空気に微小粒子を含有して前記吹出口から送出する微粒子拡散装置において、前記送風経路が、前記送風ファンの下流側で流路を前記送風ファンの回転軸の垂直方向に徐々に拡大する垂直方向拡大部と、前記垂直方向拡大部の下流側で流路を前記回転軸の軸方向に徐々に拡大するとともに前記回転軸の垂直方向に一定に維持または徐々に縮小する軸方向拡大部とを有することを特徴とする微粒子拡散装置。 A housing that opens the suction port and the air outlet, an air passage that is connected to the air inlet and the air outlet, and is provided in the housing, and an air that is arranged in the air passage and sends out an airflow in the circumferential direction A fan and a fine particle generator arranged on the downstream side of the blower fan to generate fine particles, and the fine air contained in the indoor air flowing into the blower passage from the suction port is sent out from the outlet In the fine particle diffusing apparatus, the air flow path is formed on the downstream side of the blower fan, and the flow passage is gradually enlarged in the vertical direction of the rotation axis of the blower fan, and on the downstream side of the vertical enlargement unit. A fine particle diffusing apparatus, comprising: an axially expanding portion that gradually expands the flow path in the axial direction of the rotating shaft and maintains constant in the vertical direction of the rotating shaft or gradually decreases.
  28.  請求項1に記載の送風ファンと、微小粒子を発生する微小粒子発生装置とを備え、室内に向かって複数方向に微小粒子を含む気流を送出して室内に微小粒子を拡散させることを特徴とする微小粒子拡散装置。 A blower fan according to claim 1 and a microparticle generator for generating microparticles, wherein the microparticles are diffused into the room by sending an air flow containing microparticles in a plurality of directions toward the room. A fine particle diffusion device.
  29.  第1ケーシングによって水平または上方に向けて室内に気流を送出し、第2ケーシングによって下方に向けて室内に気流を送出することを特徴とする請求項28に記載の微小粒子拡散装置。 29. The microparticle diffusion device according to claim 28, wherein an air flow is sent into the room horizontally or upward by the first casing, and an air stream is sent out indoors by the second casing downward.
  30.  請求項21に記載のサーキュレータ内に微小粒子を発生する微小粒子発生装置を備え、室内に向かって複数方向に微小粒子を含む気流を送出して室内に微小粒子を拡散させることを特徴とする微小粒子拡散装置。 A microparticle generator for generating microparticles is provided in the circulator according to claim 21, and the microparticles are diffused into the room by sending an air flow including microparticles in a plurality of directions toward the room. Particle diffusion device.
  31.  前記微小粒子発生装置で発生する微小粒子が、イオン、芳香剤、消臭剤、殺虫剤、殺菌剤のいずれかを含むことを特徴とする請求項27~請求項30のいずれかに記載の微粒子拡散装置。 The fine particles according to any one of claims 27 to 30, wherein the fine particles generated by the fine particle generator include any one of ions, fragrances, deodorants, insecticides, and bactericides. Diffuser.
  32.  室内の一の側壁と天井壁とのコーナー近傍に設置されるサーキュレータによって室内の空気を循環させる空気循環方法において、前記サーキュレータが一の側壁に水平方向に隣接する第1壁面に近い方から順に水平方向に並設される第1吹出口、第2吹出口及び第3吹出口を備え、天井壁に沿って流通して第1壁面に沿って降下する第1気流を第1吹出口から送出し、天井壁に沿って流通して一の側壁に対向する第2壁面に沿って降下する第2気流を第2吹出口から送出し、天井壁に沿って流通して第1壁面に対向する第3壁面に沿って降下する第3気流を第3吹出口から送出することを特徴とする空気循環方法。 In an air circulation method in which indoor air is circulated by a circulator installed in the vicinity of a corner between one side wall and a ceiling wall of the room, the circulator is horizontally arranged in order from the side closer to the first wall surface adjacent to the one side wall in the horizontal direction. A first air outlet, a second air outlet, and a third air outlet that are arranged side by side in the direction are provided, and a first air stream that flows along the ceiling wall and descends along the first wall surface is sent out from the first air outlet. The second air stream that flows along the ceiling wall and descends along the second wall surface facing the one side wall is sent out from the second outlet, and flows along the ceiling wall and faces the first wall surface. 3. A method of circulating air, wherein a third airflow descending along the three wall surfaces is sent out from a third outlet.
PCT/JP2010/073674 2010-01-06 2010-12-28 Air blowing fan, circulator, micro-particle diffusion device, and air circulation method WO2011083723A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/520,725 US20120282117A1 (en) 2010-01-06 2010-12-28 Air blowing fan, circulator, micro-particle diffusion device, and air circulation method
CN201080063397.9A CN102753897B (en) 2010-01-06 2010-12-28 Fan, circulator, micro-particle diffusing device and circulating air technique

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010-000876 2010-01-06
JP2010-000877 2010-01-06
JP2010000876A JP5015272B2 (en) 2010-01-06 2010-01-06 Circulator and fine particle diffusion device
JP2010000878A JP4995285B2 (en) 2010-01-06 2010-01-06 Circulator, fine particle diffusion device, and air circulation method
JP2010-000878 2010-01-06
JP2010000877A JP4932916B2 (en) 2010-01-06 2010-01-06 Circulator and fine particle diffusion device
JP2010020180A JP4866468B2 (en) 2010-02-01 2010-02-01 Blower fan, circulator using the same, and fine particle diffusion device
JP2010-020180 2010-02-01

Publications (1)

Publication Number Publication Date
WO2011083723A1 true WO2011083723A1 (en) 2011-07-14

Family

ID=44305458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073674 WO2011083723A1 (en) 2010-01-06 2010-12-28 Air blowing fan, circulator, micro-particle diffusion device, and air circulation method

Country Status (3)

Country Link
US (1) US20120282117A1 (en)
CN (1) CN102753897B (en)
WO (1) WO2011083723A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013366975B2 (en) * 2012-12-28 2016-08-18 Fujitsu General Limited Air conditioner
AU2013366976B2 (en) * 2012-12-28 2016-08-18 Fujitsu General Limited Air conditioner and control circuit
CN110307597A (en) * 2019-07-11 2019-10-08 珠海格力电器股份有限公司 A kind of air conditioner indoor unit of zonal control, control method and air-conditioner set

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101936632B1 (en) * 2012-07-05 2019-01-09 엘지전자 주식회사 Air Conditioner
JP6200679B2 (en) * 2012-10-01 2017-09-20 シャープ株式会社 Microparticle diffusion device and illumination device
CN110621940B (en) * 2017-05-08 2021-05-14 三菱电机株式会社 Circulator
JP2020118435A (en) * 2019-01-18 2020-08-06 パナソニックIpマネジメント株式会社 Air flow environment system
US11719483B2 (en) * 2020-04-09 2023-08-08 Electrolux Home Products, Inc. Ice maker for a refrigerator and method for synchronizing an implementation of an ice making cycle and an implementation of a defrost cycle of an evaporator in a refrigerator
CN114001412B (en) * 2021-11-26 2023-07-28 安徽南国冷热综合能源有限公司 Deodorizing device installed at fresh air conditioner air outlet and installing method thereof
CN117222207B (en) * 2023-11-07 2024-01-23 四川弈震能源技术有限公司 Heat abstractor for Variable Frequency Speed Governing (VFSG) all-in-one

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101131U (en) * 1982-12-24 1984-07-07 株式会社東芝 circulator
JP3048869U (en) * 1997-11-14 1998-05-29 株式会社ビック.ツール Ionized air generator
JP2002061941A (en) * 2000-08-17 2002-02-28 Matsushita Electric Ind Co Ltd Indoor airflow generator
JP2003056895A (en) * 2001-08-17 2003-02-26 Fujimori Sangyo Kk Chamber for air conditioner
JP3797993B2 (en) * 2003-09-08 2006-07-19 シャープ株式会社 Fine particle diffusion device
JP2007505283A (en) * 2003-09-10 2007-03-08 エアーインスペース リミテッド Method and apparatus for ventilation and air decontamination by using a mixture of a blow-off flow and a suction flow drawn by the Coanda effect
JP4404948B1 (en) * 2008-08-28 2010-01-27 シャープ株式会社 Ion generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3921813C2 (en) * 1989-07-03 1995-03-30 Krantz Tkt Gmbh Trapezoidal air outlet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101131U (en) * 1982-12-24 1984-07-07 株式会社東芝 circulator
JP3048869U (en) * 1997-11-14 1998-05-29 株式会社ビック.ツール Ionized air generator
JP2002061941A (en) * 2000-08-17 2002-02-28 Matsushita Electric Ind Co Ltd Indoor airflow generator
JP2003056895A (en) * 2001-08-17 2003-02-26 Fujimori Sangyo Kk Chamber for air conditioner
JP3797993B2 (en) * 2003-09-08 2006-07-19 シャープ株式会社 Fine particle diffusion device
JP2007505283A (en) * 2003-09-10 2007-03-08 エアーインスペース リミテッド Method and apparatus for ventilation and air decontamination by using a mixture of a blow-off flow and a suction flow drawn by the Coanda effect
JP4404948B1 (en) * 2008-08-28 2010-01-27 シャープ株式会社 Ion generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013366975B2 (en) * 2012-12-28 2016-08-18 Fujitsu General Limited Air conditioner
AU2013366976B2 (en) * 2012-12-28 2016-08-18 Fujitsu General Limited Air conditioner and control circuit
CN110307597A (en) * 2019-07-11 2019-10-08 珠海格力电器股份有限公司 A kind of air conditioner indoor unit of zonal control, control method and air-conditioner set

Also Published As

Publication number Publication date
US20120282117A1 (en) 2012-11-08
CN102753897B (en) 2015-09-30
CN102753897A (en) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2011083723A1 (en) Air blowing fan, circulator, micro-particle diffusion device, and air circulation method
WO2010023989A1 (en) Micro-particle diffusing device
US7585344B2 (en) Air cleaner airflow shaper
JP4866468B2 (en) Blower fan, circulator using the same, and fine particle diffusion device
JP4995285B2 (en) Circulator, fine particle diffusion device, and air circulation method
JP4920776B2 (en) Air conditioner
US20070180996A1 (en) Tower air cleaner with improved airflow
WO2010131398A1 (en) Ceiling fan
JP2009024595A (en) Centrifugal fan and air conditioner using it
JP4368408B1 (en) Fine particle diffusion device
JP6133546B2 (en) Blower
CN102971587B (en) Air adjuster
CN104374066A (en) Air-conditioner and air supply method for air-conditioner
JP2008241141A (en) Air conditioner
JP2004293893A (en) Air conditioner
JP4368409B1 (en) Ion diffusion device
US20150359920A1 (en) Fine particle diffusion device
JP5015272B2 (en) Circulator and fine particle diffusion device
JP2009174790A (en) Air cleaner with humidifying function
JP5206365B2 (en) Blower
JP4932916B2 (en) Circulator and fine particle diffusion device
WO2013038765A1 (en) Fine particle diffusion device
JP2012017896A (en) Air conditioner
JP2013093175A (en) Ion generator
JP5809021B2 (en) Blower and ion generator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063397.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842234

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13520725

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842234

Country of ref document: EP

Kind code of ref document: A1