WO2011083667A1 - Method and apparatus for processing compound semiconductor wafer - Google Patents

Method and apparatus for processing compound semiconductor wafer Download PDF

Info

Publication number
WO2011083667A1
WO2011083667A1 PCT/JP2010/072602 JP2010072602W WO2011083667A1 WO 2011083667 A1 WO2011083667 A1 WO 2011083667A1 JP 2010072602 W JP2010072602 W JP 2010072602W WO 2011083667 A1 WO2011083667 A1 WO 2011083667A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
surface plate
compound semiconductor
wafer
soft material
Prior art date
Application number
PCT/JP2010/072602
Other languages
French (fr)
Japanese (ja)
Inventor
義雄 目崎
哲弥 山崎
隆幸 西浦
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN2010800606149A priority Critical patent/CN102696096A/en
Priority to JP2011548939A priority patent/JPWO2011083667A1/en
Publication of WO2011083667A1 publication Critical patent/WO2011083667A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved

Definitions

  • the present invention relates to a processing method and a processing apparatus for lapping both sides of a compound semiconductor wafer.
  • this compound semiconductor wafer was sandwiched between upper and lower surface plates and simultaneously lapped on both sides.
  • set the compound semiconductor wafer on the lower surface plate using a jig lower the upper surface plate and press it against the compound semiconductor wafer, and wrap using an abrasive while applying an appropriate load.
  • the cleaved surface portion is chamfered, the cleaved surface portion is not accurate in optical alignment using a microscope at the time of pattern exposure.
  • the surface plate hits an edge in an acute angle state, there is a problem that the corner is chipped with a considerable probability, and in some cases, the wafer is broken from the chipped portion.
  • Patent Document 2 discloses a method in which the upper surface plate is lowered to some extent and then the lower surface plate is finely raised to place the wafer. By this method, the incidence of cracking defects was reduced to about half that of the prior art, but the cracking defects were not completely eliminated.
  • Patent Document 3 discloses a technique for preventing the cracking of the wafer by providing a large number of grooves having a V-shaped cross section on the surface plate, but it still does not completely eliminate the cracking defect.
  • JP 2002-367940 A JP 04-258119 A Japanese Patent Application Laid-Open No. 06-015561
  • the present invention is to provide a processing method capable of eliminating wafer chipping and cracking defects during lapping of a compound semiconductor wafer.
  • An embodiment of the present invention is a method for lapping both surfaces of a compound semiconductor wafer, including a step of lapping by placing the semiconductor wafer between an upper surface plate and a lower surface plate,
  • the present invention relates to a compound semiconductor wafer processing method, characterized in that a soft material is attached to a wafer side surface.
  • the soft material has a thickness of 0.5 mm to 5 mm and an Asker C hardness of 40 to 90.
  • a groove is formed on the wafer-side surface of the soft material.
  • the groove has a width of 1 mm or more and 5 mm or less.
  • Another embodiment of the present invention is a processing apparatus that includes an upper surface plate and a lower surface plate, a semiconductor wafer is disposed between the upper surface plate and the lower surface plate, and the both surfaces thereof are lapped.
  • the present invention relates to a processing apparatus in which a soft material is attached to a surface of the surface plate on the wafer side.
  • the soft material has a thickness of 0.5 mm to 5 mm and an Asker C hardness of 40 to 90.
  • a groove is formed on the wafer-side surface of the soft material.
  • the groove has a width of 1 mm or more and 5 mm or less.
  • the compound semiconductor wafer processing method of the present invention is a method of lapping both surfaces of a compound semiconductor wafer, including a step of lapping the semiconductor wafer by placing the semiconductor wafer between an upper surface plate and a lower surface plate, A soft material is attached to the surface of the surface plate on the wafer side.
  • the compound semiconductor wafer processing apparatus of the present invention is used in the processing method of the present invention.
  • FIG. 1 is a processing apparatus for lapping both surfaces of a compound semiconductor wafer.
  • the semiconductor wafer 4 is placed between the upper surface plate 1 and the lower surface plate 2 and lapping is performed.
  • a soft material 3 is attached to the surface of the upper surface plate 1 on the wafer side.
  • the soft material 3 examples include a nonwoven fabric impregnated with a urethane resin, ultrahigh molecular weight polyethylene, urethane foam, and silicon rubber. These are preferably processed to the same size as the upper surface plate 1 and attached to the entire surface of the upper surface plate.
  • the method of attaching is not particularly limited, but may be attached with a double-sided tape or directly with an adhesive.
  • the thickness of the soft material 3 is preferably 0.5 mm or more and 5 mm or less. If it is less than 0.5 mm, the effect of the soft material may not be obtained and the wafer may be broken. If it exceeds 5 mm, the amount of sinking of the wafer into the soft material increases, and the sagging (roll-off) of the wafer edge portion becomes too large.
  • the Asker C hardness of the soft material 3 is preferably 40 or more and 90 or less. If the Asker C hardness is less than 40, roll-off occurs, which may cause a defect during pattern exposure due to surface fringing. If the Asker C hardness exceeds 90, the effect of reducing chipping at the edge portion is reduced. Is also not preferred.
  • a groove in the soft material 3 it is preferable to form a groove in the soft material 3 on the side that comes into contact with the wafer during lapping. It is preferable to provide a large number of grooves in a lattice shape.
  • the groove improves the flow of the polishing liquid and enables smooth polishing. Further, when the groove is formed, it is possible to prevent the wafer from being lifted together with the upper surface plate when the upper surface plate 1 is raised after the polishing process is completed. When there is no groove, the polishing liquid flows poorly, so that the polishing time becomes long but polishing is possible. Further, when there is no groove, the semiconductor wafer may be lifted together with the upper surface plate, so that it is necessary to carefully raise the upper surface plate after the polishing.
  • the width of the groove is preferably 1 mm or more and 5 mm or less. If the thickness is less than 1 mm, the wafer may be lifted together with the upper surface plate when the upper surface plate is raised after the polishing process is completed. If the thickness exceeds 5 mm, unevenness is exerted on the pressure applied to the wafer, so that wafer accuracy such as thickness variation (TTV: Totol Thickness Variation) and local flatness (LTV: Local Thickness Variation) deteriorates.
  • TTV Totol Thickness Variation
  • LTV Local Thickness Variation
  • the spacing (pitch) between the ridge grooves is preferably 10 mm or more and 50 mm or less. If it is less than 10 mm or exceeds 50 mm, the wafer is lifted together with the upper surface plate when the upper surface plate is raised after the polishing process is completed, which is not preferable.
  • the depth of the groove is preferably 0.1 to 1.0 mm. If it is less than 0.1 mm, the wafer is lifted together with the upper surface plate, and if it exceeds 1.0 mm, the polishing liquid that has entered the groove tends to solidify.
  • the upper surface plate 1 is not particularly limited, but is preferably manufactured from cast iron, SUS (stainless steel), or the like. Of these, SUS (stainless steel) is particularly desirable.
  • the lower surface plate 2 does not attach a soft material.
  • the surface of the compound semiconductor wafer is polished by the lower surface plate 2 so as to have a desired surface roughness to obtain a finished surface.
  • the lower surface plate 2 is preferably manufactured from glass, tin or the like, but is not particularly limited.
  • the upper limit of the hardness of the lower surface plate 2 is the hardness of the compound semiconductor wafer to be polished, for example, Vickers hardness Hv750 for GaAs and Hv450 for InP.
  • the lower limit is preferably Hv220. If the hardness of the lower surface plate is too hard, fine scratches are likely to enter the surface of the compound semiconductor wafer. On the other hand, if it is too soft, the lower surface plate is worn quickly during polishing, leading to deterioration in wafer accuracy.
  • the compound semiconductor wafer 4 is not particularly limited, but is, for example, GaAs, InP, or GaN.
  • a jig 5 is arranged on the lower surface plate 2 so as to sandwich or surround the compound semiconductor wafer 4.
  • This jig has a gear on the outer peripheral portion so that the compound semiconductor wafer 4 moves with respect to the surface plate.
  • the soft material 3 is attached to the upper surface plate 1.
  • the soft material 3 include a nonwoven fabric impregnated with a urethane resin, ultrahigh molecular weight polyethylene, urethane foam, and silicon rubber. These are preferably processed to the same size as the upper surface plate 1 and attached to the entire surface of the upper surface plate 1.
  • the method of attaching is not particularly limited, but may be attached with a double-sided tape or directly with an adhesive.
  • the lower surface plate 2 and the upper surface plate 1 to which the soft material 3 is attached are attached to a processing device (polishing device).
  • the lower surface plate 2 and the upper surface plate 1 (soft material 3) may be shaved and flattened using a flat jig (not shown) (correction work).
  • the semiconductor wafer 4 and the jig 5 are arranged on the lower surface plate 2.
  • the compound semiconductor wafer 4 for double-sided processing should just be prepared by this stage at least.
  • the compound semiconductor wafer 4 is not specifically limited, For example, compound semiconductors, such as GaAs, InP, and GaN, are mentioned.
  • the jig 5 is arranged on the lower surface plate 2 so as to sandwich or surround the compound semiconductor wafer 4.
  • the jig 5 is provided with a gear at the outer peripheral portion so that the compound semiconductor wafer 4 moves with respect to the surface plate.
  • the polishing condition may be, for example, a platen rotation speed of 10 to 50 rpm with a load of about 50 g / cm 2 per wafer unit area.
  • a soft material was affixed to the upper surface plate with double-sided tape.
  • the soft material was a non-woven fabric with Asker C hardness of 72, and the thickness was 1.5 mm.
  • this nonwoven fabric grooves having a pitch of 10 mm, a width of 3 mm, and a depth of 0.5 mm were provided in a lattice shape.
  • the upper surface plate was attached to an existing polishing machine, and the compound semiconductor wafer was polished.
  • a compound semiconductor is manufactured by a VB method, and contains a GaAs crystal containing 5 ⁇ 10 17 to 3 ⁇ 10 18 atoms / cc of Si as a dopant and having an in-plane average value of crystal defects EPD of 500 / cm 2 or less.
  • a wafer obtained by slicing at (100) 15 ° off ⁇ 111> ⁇ 0.1 ° and cleaving the (0-1-1) plane of the wafer and chamfering the outer periphery of the wafer other than the cleaved surface was used.
  • the lower surface plate was made of borosilicate glass having a hardness of Hv450 and slits of 10 cm square. 300 wafers were polished, but no chipping or cracking occurred.
  • a compound semiconductor wafer was polished using an upper surface plate to which no soft material was attached. After 300 sheets were polished, 2% chipping and cracking occurred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

Disclosed is a polishing method whereby chipping and breaking failures of a compound semiconductor wafer can be reduced. The method for polishing the compound semiconductor wafer, i.e., a method for lapping both the surfaces of the compound semiconductor wafer, includes a step of lapping the semiconductor wafer by disposing the semiconductor wafer between the upper platen and the lower platen, and a soft material is adhered on the upper platen surface on the wafer side. The processing apparatus includes the upper platen and the lower platen, and laps both the surfaces of the semiconductor wafer by having the semiconductor wafer disposed between the upper platen and the lower platen, and the processing apparatus has the soft material adhered on the upper platen surface on the wafer side.

Description

化合物半導体ウェハの加工方法及び加工装置Compound semiconductor wafer processing method and processing apparatus
  本発明は、化合物半導体ウェハを両面ラッピングする加工方法及び加工装置に関するものである。 The present invention relates to a processing method and a processing apparatus for lapping both sides of a compound semiconductor wafer.
  レーザーダイオード等を製作する化合物半導体ウェハでは、従来よりウェハの円周部の一部を直線に劈開し、正確な結晶面を出しておき、その後のデバイスプロセスでのパターン露光時のアライメントをその劈開面を基準とされる。これにより、レーザー素子端面(劈開面)とレーザー光路(パターン露光で作成)との、角度のズレを最小限に抑えることで、レーザー光の出力バラツキの抑制並びに素子の歩留りの向上が図られてきた(特許文献1)。 In compound semiconductor wafers for manufacturing laser diodes, etc., conventionally, a part of the wafer's circumference is cleaved in a straight line to produce an accurate crystal plane, and the alignment during pattern exposure in subsequent device processes is cleaved. The plane is the reference. As a result, the laser output variation and the element yield can be improved by minimizing the angle deviation between the laser element end face (cleavage face) and the laser optical path (created by pattern exposure). (Patent Document 1).
  この化合物半導体ウェハは、研磨工程において、上下の定盤に挟み込んで両面同時にラッピングする加工方法が採られていた。すなわち、下定盤の上に必要に応じて治具を用いて化合物半導体ウェハをセットし、上定盤を下降させて化合物半導体ウェハに押し当てて、適当な荷重をかけながら研磨剤を用いてラッピング加工を行っていた。 加工 In this polishing process, this compound semiconductor wafer was sandwiched between upper and lower surface plates and simultaneously lapped on both sides. In other words, if necessary, set the compound semiconductor wafer on the lower surface plate using a jig, lower the upper surface plate and press it against the compound semiconductor wafer, and wrap using an abrasive while applying an appropriate load. We were processing.
  ところが、上定盤を化合物半導体ウェハに押し当てた(着盤)時、化合物半導体ウェハが欠けたり割れたりする問題があった。特に、劈開面の部分は、面取り加工を行うと、パターン露光時に、顕微鏡を用いた光学的なアライメントでの精度がでないため、なるべく鋭角な状態でのエッジ(角)が望まれる。しかし、鋭角な状態のエッジに定盤が当ると、かなりの確率で角が欠け、場合によってはその欠け部分からウェハが割れてしまうという問題があった。 However, when the upper surface plate is pressed against the compound semiconductor wafer (landing), there is a problem that the compound semiconductor wafer is chipped or broken. In particular, when the cleaved surface portion is chamfered, the cleaved surface portion is not accurate in optical alignment using a microscope at the time of pattern exposure. However, when the surface plate hits an edge in an acute angle state, there is a problem that the corner is chipped with a considerable probability, and in some cases, the wafer is broken from the chipped portion.
  そこで、特許文献2では、上定盤をある程度下降させた後、下定盤を微細に上昇させてウェハを着盤させる方法が開示されている。この方法により、割れ不良の発生率が従来の半分程度に減少したが、割れ不良が完全になくなってはいない。 Therefore, Patent Document 2 discloses a method in which the upper surface plate is lowered to some extent and then the lower surface plate is finely raised to place the wafer. By this method, the incidence of cracking defects was reduced to about half that of the prior art, but the cracking defects were not completely eliminated.
  また、特許文献3では、定盤に断面形状V字状である溝を多数設けることにより、ウェハの割れを防止する技術が開示されているが、やはり割れ不良を完全になくすには至っていない。 In addition, Patent Document 3 discloses a technique for preventing the cracking of the wafer by providing a large number of grooves having a V-shaped cross section on the surface plate, but it still does not completely eliminate the cracking defect.
特開2002-367940号公報JP 2002-367940 A 特開平04-258119号公報JP 04-258119 A 特開平06-015561号公報Japanese Patent Application Laid-Open No. 06-015561
  本発明は、化合物半導体ウェハのラッピング加工時のウェハの欠け、割れ不良をなくすことができる加工方法を提供することである。 The present invention is to provide a processing method capable of eliminating wafer chipping and cracking defects during lapping of a compound semiconductor wafer.
  本発明の実施形態は、化合物半導体ウェハの両面をラッピング加工する方法であって、上定盤と下定盤の間に前記半導体ウェハを配置してラッピング加工する工程を含み、前記上定盤の前記ウェハ側の面に軟質材が貼り付けられていることを特徴とする化合物半導体ウェハの加工方法に関する。 An embodiment of the present invention is a method for lapping both surfaces of a compound semiconductor wafer, including a step of lapping by placing the semiconductor wafer between an upper surface plate and a lower surface plate, The present invention relates to a compound semiconductor wafer processing method, characterized in that a soft material is attached to a wafer side surface.
  本発明の加工方法の他の実施形態では、前記軟質材が、厚さ0.5mm以上5mm以下であり、且つ、AskerC硬度40以上90以下である。 In another embodiment of the processing method of the present invention, the soft material has a thickness of 0.5 mm to 5 mm and an Asker C hardness of 40 to 90.
 本発明の加工方法の他の実施形態では、前記軟質材の前記ウェハ側の面に溝が形成されている。 In another embodiment of the processing method of the present invention, a groove is formed on the wafer-side surface of the soft material.
  本発明の加工方法の他の実施形態では、前記溝が幅1mm以上5mm以下である。 In another embodiment of the processing method of the present invention, the groove has a width of 1 mm or more and 5 mm or less.
 本発明の他の実施形態は、上定盤と下定盤を含み、前記上定盤と下定盤の間に半導体ウェハを配置してその両面をラッピング加工するための加工装置であって、前記上定盤の前記ウェハ側の面に軟質材が貼り付けられていることを特徴とする加工装置に関する。 Another embodiment of the present invention is a processing apparatus that includes an upper surface plate and a lower surface plate, a semiconductor wafer is disposed between the upper surface plate and the lower surface plate, and the both surfaces thereof are lapped. The present invention relates to a processing apparatus in which a soft material is attached to a surface of the surface plate on the wafer side.
  本発明の加工装置の他の実施形態では、前記軟質材が、厚さ0.5mm以上5mm以下であり、且つ、AskerC硬度40以上90以下である。 In another embodiment of the processing apparatus of the present invention, the soft material has a thickness of 0.5 mm to 5 mm and an Asker C hardness of 40 to 90.
  本発明の加工装置の他の実施形態では、前記軟質材の前記ウェハ側の面に溝が形成されている。 In another embodiment of the processing apparatus of the present invention, a groove is formed on the wafer-side surface of the soft material.
  本発明の加工装置の他の実施形態では、前記溝が幅1mm以上5mm以下である。 In another embodiment of the processing apparatus of the present invention, the groove has a width of 1 mm or more and 5 mm or less.
  本発明によれば、化合物半導体ウェハのラッピング加工時のウェハの割れ不良をなくすことができる。 れ ば According to the present invention, it is possible to eliminate wafer cracking failure during lapping of a compound semiconductor wafer.
本発明の化合物半導体ウェハの加工装置の断面模式図である。It is a cross-sectional schematic diagram of the processing apparatus of the compound semiconductor wafer of this invention.
  本発明の化合物半導体ウェハの加工方法は、化合物半導体ウェハの両面をラッピング加工する方法であって、上定盤と下定盤の間に前記半導体ウェハを配置してラッピング加工する工程を含み、前記上定盤の前記ウェハ側の面に軟質材が貼り付けられていることを特徴とする。本発明の化合物半導体ウェハの加工装置は、本発明の加工方法に用いられる。 The compound semiconductor wafer processing method of the present invention is a method of lapping both surfaces of a compound semiconductor wafer, including a step of lapping the semiconductor wafer by placing the semiconductor wafer between an upper surface plate and a lower surface plate, A soft material is attached to the surface of the surface plate on the wafer side. The compound semiconductor wafer processing apparatus of the present invention is used in the processing method of the present invention.
 まず、図1を参照して、本発明の化合物半導体ウェハの加工装置について説明する。
 図1は、化合物半導体ウェハの両面をラッピング加工する加工装置である。上定盤1と下定盤2の間に前記半導体ウェハ4を配置してラッピング加工される。前記上定盤1の前記ウェハ側の面に軟質材3が貼り付けられている。
First, the compound semiconductor wafer processing apparatus of the present invention will be described with reference to FIG.
FIG. 1 is a processing apparatus for lapping both surfaces of a compound semiconductor wafer. The semiconductor wafer 4 is placed between the upper surface plate 1 and the lower surface plate 2 and lapping is performed. A soft material 3 is attached to the surface of the upper surface plate 1 on the wafer side.
  軟質材3としては、ウレタン樹脂を含浸させた不織布、超高分子ポリエチレン、発泡ウレタン、シリコンゴム等を挙げることができる。これらを、好ましくは上定盤1と同じ大きさに加工して、上定盤の全面に貼り付けられる。貼り付ける方法は特に限定されないが、両面テープで貼り付けてもよいし、接着剤で直接貼り付けてもよい。
 軟質材3の厚さは、0.5mm以上、5mm以下とすることが好ましい。0.5mm未満であると、軟質材の効果がなくウェハが割れることがある。5mmを超えると、ウェハの軟質材への沈み込み量が大きくなり、ウェハエッジ部のダレ(ロールオフ)が大きくなりすぎる。
Examples of the soft material 3 include a nonwoven fabric impregnated with a urethane resin, ultrahigh molecular weight polyethylene, urethane foam, and silicon rubber. These are preferably processed to the same size as the upper surface plate 1 and attached to the entire surface of the upper surface plate. The method of attaching is not particularly limited, but may be attached with a double-sided tape or directly with an adhesive.
The thickness of the soft material 3 is preferably 0.5 mm or more and 5 mm or less. If it is less than 0.5 mm, the effect of the soft material may not be obtained and the wafer may be broken. If it exceeds 5 mm, the amount of sinking of the wafer into the soft material increases, and the sagging (roll-off) of the wafer edge portion becomes too large.
  軟質材3のAskerC硬度は、好ましくは40以上90以下である。AskerC硬度40未満の場合は、ロールオフが発生し、その面だれによりパターン露光時の不良の原因となり、AskerC硬度が90を超える場合は、エッジ部の欠け低減の効果がおちるため、いずれの場合も好ましくない。 The Asker C hardness of the soft material 3 is preferably 40 or more and 90 or less. If the Asker C hardness is less than 40, roll-off occurs, which may cause a defect during pattern exposure due to surface fringing. If the Asker C hardness exceeds 90, the effect of reducing chipping at the edge portion is reduced. Is also not preferred.
  軟質材3には、ラッピング加工時にウェハと当接する側に、溝を形成することが好ましい。溝は、格子状に多数設けることが好ましい。溝により、研磨液の流れを良くして、研磨加工を円滑に行えるようになる。また、溝を形成すると、研磨加工終了後に、上定盤1を上昇させたときに、ウェハが上定盤と一緒に持ち上がることを防止することができる。溝がない場合は、研磨液の流れが悪いので、研磨時間が長くなるが研磨は可能である。また、溝がない場合は、半導体ウェハが上定盤とともに持ち上がる可能性があるため研磨終了後に慎重に上定盤を上昇させる必要がある。 It is preferable to form a groove in the soft material 3 on the side that comes into contact with the wafer during lapping. It is preferable to provide a large number of grooves in a lattice shape. The groove improves the flow of the polishing liquid and enables smooth polishing. Further, when the groove is formed, it is possible to prevent the wafer from being lifted together with the upper surface plate when the upper surface plate 1 is raised after the polishing process is completed. When there is no groove, the polishing liquid flows poorly, so that the polishing time becomes long but polishing is possible. Further, when there is no groove, the semiconductor wafer may be lifted together with the upper surface plate, so that it is necessary to carefully raise the upper surface plate after the polishing.
  溝の幅は、1mm以上、5mm以下が好ましい。1mm未満であると、研磨加工終了後、上定盤を上昇させた時に、ウェハが上定盤と一緒に持ち上がる可能性がある。5mmを超えるとウェハへの加圧力にムラがでるため、厚さばらつき(TTV:Totol Thickness Variation)や局所の平坦度(LTV:Local Thickness Variation)等のウェハ精度が悪化する。 The width of the groove is preferably 1 mm or more and 5 mm or less. If the thickness is less than 1 mm, the wafer may be lifted together with the upper surface plate when the upper surface plate is raised after the polishing process is completed. If the thickness exceeds 5 mm, unevenness is exerted on the pressure applied to the wafer, so that wafer accuracy such as thickness variation (TTV: Totol Thickness Variation) and local flatness (LTV: Local Thickness Variation) deteriorates.
  溝と溝の間隔(ピッチ)は、10mm以上、50mm以下が好ましい。10mm未満、あるいは50mmを超えると、研磨加工終了後、上定盤を上昇させた時に、ウェハが上定盤と一緒に持ち上がるので好ましくない。 The spacing (pitch) between the ridge grooves is preferably 10 mm or more and 50 mm or less. If it is less than 10 mm or exceeds 50 mm, the wafer is lifted together with the upper surface plate when the upper surface plate is raised after the polishing process is completed, which is not preferable.
 溝の深さは、好ましくは0.1~1.0mmである。0.1mm未満の場合、ウェハが上定盤と一緒に持ち上がり、1.0mmを超える場合は溝内部に侵入した研磨液が固化しやすいため、いずれの場合も好ましくない。 The depth of the groove is preferably 0.1 to 1.0 mm. If it is less than 0.1 mm, the wafer is lifted together with the upper surface plate, and if it exceeds 1.0 mm, the polishing liquid that has entered the groove tends to solidify.
 上定盤1は、特に限定されないが、好ましくは鋳鉄、SUS(ステンレス鋼)等から製造される。このうち、特に、SUS(ステンレス鋼)が望ましい。 The upper surface plate 1 is not particularly limited, but is preferably manufactured from cast iron, SUS (stainless steel), or the like. Of these, SUS (stainless steel) is particularly desirable.
  下定盤2は、軟質材を貼り付けない。下定盤2により、化合物半導体ウェハの表面を、所望の表面粗さとなるように研磨して、仕上がり面とする。 The lower surface plate 2 does not attach a soft material. The surface of the compound semiconductor wafer is polished by the lower surface plate 2 so as to have a desired surface roughness to obtain a finished surface.
  下定盤2は、好ましくはガラス、スズ等から製造されるが、特に限定されない。下定盤2の硬度の上限は、研磨加工される化合物半導体ウェハの硬度、例えば、GaAsであればビッカース硬度Hv750であり、InPであればHv450である。下限はHv220が望ましい。下定盤の硬度が硬くなりすぎると化合物半導体ウェハの表面に細かな傷が入りやすい。また、軟らかすぎると研磨時の下定盤の摩耗が早くなり、ウェハの精度悪化につながる。 The lower surface plate 2 is preferably manufactured from glass, tin or the like, but is not particularly limited. The upper limit of the hardness of the lower surface plate 2 is the hardness of the compound semiconductor wafer to be polished, for example, Vickers hardness Hv750 for GaAs and Hv450 for InP. The lower limit is preferably Hv220. If the hardness of the lower surface plate is too hard, fine scratches are likely to enter the surface of the compound semiconductor wafer. On the other hand, if it is too soft, the lower surface plate is worn quickly during polishing, leading to deterioration in wafer accuracy.
 化合物半導体ウェハ4は、特に限定されないが、たとえば、GaAs、InP、GaNである。 The compound semiconductor wafer 4 is not particularly limited, but is, for example, GaAs, InP, or GaN.
 下定盤2上には、化合物半導体ウェハ4を挟むようにして、或いは囲むようにして治具5が配されている。この治具は、化合物半導体ウェハ4が定盤に対して一定の移動をするよう外周部分にギアが備わっている。 A jig 5 is arranged on the lower surface plate 2 so as to sandwich or surround the compound semiconductor wafer 4. This jig has a gear on the outer peripheral portion so that the compound semiconductor wafer 4 moves with respect to the surface plate.
 次に、本発明の化合物半導体ウェハの加工方法について説明する。
 まず、上定盤1に軟質材3を貼り付ける。軟質材3としては、ウレタン樹脂を含浸させた不織布、超高分子ポリエチレン、発泡ウレタン、シリコンゴム等を挙げることができる。これらを、好ましくは上定盤1と同じ大きさに加工して、上定盤1の全面に貼り付ける。貼り付ける方法は特に限定されないが、両面テープで貼り付けてもよいし、接着剤で直接貼り付けてもよい。尚、軟質材に溝を形成する場合は、たとえば、ダイヤモンド砥石で削る方法を用いてもよい。
 次に、下定盤2と、軟質材3を貼り付けた上定盤1を加工装置(研磨装置)に取り付ける。取り付けた後、平坦な治具(図示せず)を用いて下定盤2と上定盤1(軟質材3)を削り平面化してもよい(修正作業)。
 そして、下定盤2上に半導体ウェハ4と治具5を配置する。
 両面加工のための化合物半導体ウェハ4は、少なくともこの段階までに準備できていればよい。化合物半導体ウェハ4は、特に限定されないが、たとえば、GaAs、InP、GaN等の化合物半導体が挙げられる。
 前記治具5は、化合物半導体ウェハ4を挟むようにして、或いは囲むようにして下定盤2上に配されている。この治具5は、化合物半導体ウェハ4が定盤に対して一定の移動をするよう外周部分にギアが備わっている。
 次に、前記加工装置により、所定の研磨条件で半導体ウェハ4を研磨する。前記研磨条件は、たとえば、ウェハ単位面積あたり約50g/cmの荷重で定盤回転数10~50rpmであってもよい。
Next, the processing method of the compound semiconductor wafer of this invention is demonstrated.
First, the soft material 3 is attached to the upper surface plate 1. Examples of the soft material 3 include a nonwoven fabric impregnated with a urethane resin, ultrahigh molecular weight polyethylene, urethane foam, and silicon rubber. These are preferably processed to the same size as the upper surface plate 1 and attached to the entire surface of the upper surface plate 1. The method of attaching is not particularly limited, but may be attached with a double-sided tape or directly with an adhesive. In addition, when forming a groove | channel in a soft material, you may use the method of shaving with a diamond grindstone, for example.
Next, the lower surface plate 2 and the upper surface plate 1 to which the soft material 3 is attached are attached to a processing device (polishing device). After the mounting, the lower surface plate 2 and the upper surface plate 1 (soft material 3) may be shaved and flattened using a flat jig (not shown) (correction work).
Then, the semiconductor wafer 4 and the jig 5 are arranged on the lower surface plate 2.
The compound semiconductor wafer 4 for double-sided processing should just be prepared by this stage at least. Although the compound semiconductor wafer 4 is not specifically limited, For example, compound semiconductors, such as GaAs, InP, and GaN, are mentioned.
The jig 5 is arranged on the lower surface plate 2 so as to sandwich or surround the compound semiconductor wafer 4. The jig 5 is provided with a gear at the outer peripheral portion so that the compound semiconductor wafer 4 moves with respect to the surface plate.
Next, the semiconductor wafer 4 is polished under predetermined polishing conditions by the processing apparatus. The polishing condition may be, for example, a platen rotation speed of 10 to 50 rpm with a load of about 50 g / cm 2 per wafer unit area.
  上定盤に軟質材を両面テープで貼り付けた。軟質材は、AskerC硬度72の不織布で、厚みは、1.5mmであった。この不織布には、ピッチ10mm、幅3mm、深さ0.5mmの溝を格子状に設けた。 A soft material was affixed to the upper surface plate with double-sided tape. The soft material was a non-woven fabric with Asker C hardness of 72, and the thickness was 1.5 mm. In this nonwoven fabric, grooves having a pitch of 10 mm, a width of 3 mm, and a depth of 0.5 mm were provided in a lattice shape.
  既存の研磨機に上記上定盤を取り付け、化合物半導体ウェハを研磨した。化合物半導体は、VB法で製造され、ドーパントとしてSiを5×1017~3×1018atoms/cc含有し、結晶欠陥EPDの面内平均値が、500個/cm以下であるGaAs結晶を(100)15°off<111>±0.1°でスライスし、ウェハの(0-1-1)面を劈開した後、劈開面以外のウェハの外周を面取り加工したウェハを用いた。下定盤は、10cm角でスリットを入れた硬度Hv450のホウケイ酸ガラスを用いた。300枚のウェハを研磨したが、欠け、割れ不良は発生しなかった。 The upper surface plate was attached to an existing polishing machine, and the compound semiconductor wafer was polished. A compound semiconductor is manufactured by a VB method, and contains a GaAs crystal containing 5 × 10 17 to 3 × 10 18 atoms / cc of Si as a dopant and having an in-plane average value of crystal defects EPD of 500 / cm 2 or less. A wafer obtained by slicing at (100) 15 ° off <111> ± 0.1 ° and cleaving the (0-1-1) plane of the wafer and chamfering the outer periphery of the wafer other than the cleaved surface was used. The lower surface plate was made of borosilicate glass having a hardness of Hv450 and slits of 10 cm square. 300 wafers were polished, but no chipping or cracking occurred.
  比較のために、軟質材が貼り付けられていない上定盤を用いて、化合物半導体ウェハを研磨した。300枚研磨して、欠け、割れ不良が2%発生した。 For comparison, a compound semiconductor wafer was polished using an upper surface plate to which no soft material was attached. After 300 sheets were polished, 2% chipping and cracking occurred.
  軟質材を表1に示すものにして、実施例1と同様に化合物半導体ウェハを300枚ずつ研磨した。その結果を表1に示す。なお、不織布のAskerC硬度は、樹脂の含浸量、もしくはウレタン原料の配合比を変えることによって変更した。 300 Using the soft materials shown in Table 1, 300 compound semiconductor wafers were polished in a similar manner to Example 1. The results are shown in Table 1. The Asker C hardness of the nonwoven fabric was changed by changing the impregnation amount of the resin or the blending ratio of the urethane raw material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  表1から判るように、AskerC硬度20~90の軟質材を上定盤に貼り付けると、欠け、割れ不良をなくすことができる。但し、AskerC硬度20(軟らかい)場合、ロールオフが大きくなり、実質的に使用できない。AskerC硬度が40であれば、ロールオフは発生したが、使用することができる。 As can be seen from Table 1, chipping and cracking defects can be eliminated by attaching a soft material with Asker C hardness of 20 to 90 to the upper surface plate. However, when the Asker C hardness is 20 (soft), the roll-off becomes large and cannot be practically used. If Asker C hardness is 40, roll-off has occurred but can be used.
 比較のために、実施例1における軟質材の代わりに、ロックウェル硬度HRR126のPEEK(ポリエーテルエーテルケトン)、ロックウェル硬度HRR120のPC(ポリカーボネート)、ロックウェル硬度HRR100のPP(ポリプロピレン)を貼り付けて、実施例1と同様に研磨加工を行ったところ、欠け、割れ不良をなくすことはできなかった。 For comparison, PEEK (polyetheretherketone) with Rockwell hardness HRR126, PC (polycarbonate) with Rockwell hardness HRR120, and PP (polypropylene) with Rockwell hardness HRR100 are pasted instead of the soft material in Example 1. Then, when polishing was performed in the same manner as in Example 1, it was not possible to eliminate chipping and cracking defects.
  本発明によれば、化合物半導体ウェハのラッピング加工時のウェハの欠け、割れ不良をなくすことができる。 に よ According to the present invention, it is possible to eliminate wafer chipping and cracking defects during lapping of a compound semiconductor wafer.
  1    上定盤
  2    下定盤
  3    軟質材
  4    化合物半導体ウェハ
  5    治具
1 Upper surface plate 2 Lower surface plate 3 Soft material 4 Compound semiconductor wafer 5 Jig

Claims (8)

  1.   化合物半導体ウェハの両面をラッピング加工する方法であって、上定盤と下定盤の間に前記半導体ウェハを配置してラッピング加工する工程を含み、前記上定盤の前記ウェハ側の面に軟質材が貼り付けられていることを特徴とする化合物半導体ウェハの加工方法。 A method of lapping both sides of a compound semiconductor wafer, including a step of lapping by placing the semiconductor wafer between an upper surface plate and a lower surface plate, and a soft material on the wafer side surface of the upper surface plate A process for processing a compound semiconductor wafer, wherein:
  2.   前記軟質材が、厚さ0.5mm以上5mm以下であり、且つ、AskerC硬度40以上90以下であることを特徴とする請求項1に記載の化合物半導体の加工方法。 2. The method of processing a compound semiconductor according to claim 1, wherein the soft material has a thickness of 0.5 mm or more and 5 mm or less and an Asker C hardness of 40 or more and 90 or less.
  3.  前記軟質材の前記ウェハ側の面に溝が形成されていることを特徴とする請求項1又は2に記載の化合物半導体ウェハの加工方法。 3. A method of processing a compound semiconductor wafer according to claim 1, wherein a groove is formed on a surface of the soft material on the wafer side.
  4.   前記溝が幅1mm以上5mm以下であることを特徴とする請求項3に記載の化合物半導体ウェハの加工方法。 4. The method for processing a compound semiconductor wafer according to claim 3, wherein the groove has a width of 1 mm or more and 5 mm or less.
  5.  上定盤と下定盤を含み、前記上定盤と下定盤の間に半導体ウェハを配置してその両面をラッピング加工するための加工装置であって、
     前記上定盤の前記ウェハ側の面に軟質材が貼り付けられていることを特徴とする加工装置。
    A processing apparatus for arranging a semiconductor wafer between the upper surface plate and the lower surface plate and lapping both surfaces thereof, including an upper surface plate and a lower surface plate;
    A processing apparatus, wherein a soft material is attached to a surface of the upper surface plate on the wafer side.
  6.   前記軟質材が、厚さ0.5mm以上5mm以下であり、且つ、AskerC硬度40以上90以下であることを特徴とする請求項5に記載の加工装置。 The processing apparatus according to claim 5, wherein the soft material has a thickness of 0.5 mm to 5 mm and an Asker C hardness of 40 to 90.
  7.  前記軟質材の前記ウェハ側の面に溝が形成されていることを特徴とする請求項5又は6に記載の加工装置。 7. A processing apparatus according to claim 5, wherein a groove is formed on a surface of the soft material on the wafer side.
  8.   前記溝が幅1mm以上5mm以下であることを特徴とする請求項7に記載の加工装置。 The processing apparatus according to claim 7, wherein the groove has a width of 1 mm or more and 5 mm or less.
PCT/JP2010/072602 2010-01-05 2010-12-16 Method and apparatus for processing compound semiconductor wafer WO2011083667A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800606149A CN102696096A (en) 2010-01-05 2010-12-16 Method and apparatus for processing compound semiconductor wafer
JP2011548939A JPWO2011083667A1 (en) 2010-01-05 2010-12-16 Compound semiconductor wafer processing method and processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-000395 2010-01-05
JP2010000395 2010-01-05

Publications (1)

Publication Number Publication Date
WO2011083667A1 true WO2011083667A1 (en) 2011-07-14

Family

ID=44305404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072602 WO2011083667A1 (en) 2010-01-05 2010-12-16 Method and apparatus for processing compound semiconductor wafer

Country Status (4)

Country Link
JP (1) JPWO2011083667A1 (en)
CN (1) CN102696096A (en)
TW (1) TW201135822A (en)
WO (1) WO2011083667A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08216034A (en) * 1995-02-14 1996-08-27 Furukawa Electric Co Ltd:The Abrasive and polishing method using same
JP2001244221A (en) * 2000-02-03 2001-09-07 Wacker Siltronic G Fuer Halbleitermaterialien Ag Manufacturing method of semiconductor wafer and this kind of semiconductor wafer
WO2001082354A1 (en) * 2000-04-24 2001-11-01 Sumitomo Mitsubishi Silicon Corporation Method of manufacturing semiconductor wafer
JP2004343126A (en) * 2003-05-15 2004-12-02 Siltronic Ag Method for simultaneous polishing of front surface and back surface of semiconductor wafer
JP2005150216A (en) * 2003-11-12 2005-06-09 Hitachi Cable Ltd Polishing apparatus of semiconductor wafer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3516203B2 (en) * 1999-11-08 2004-04-05 株式会社日鉱マテリアルズ Compound semiconductor wafer
JP4093793B2 (en) * 2002-04-30 2008-06-04 信越半導体株式会社 Semiconductor wafer manufacturing method and wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08216034A (en) * 1995-02-14 1996-08-27 Furukawa Electric Co Ltd:The Abrasive and polishing method using same
JP2001244221A (en) * 2000-02-03 2001-09-07 Wacker Siltronic G Fuer Halbleitermaterialien Ag Manufacturing method of semiconductor wafer and this kind of semiconductor wafer
WO2001082354A1 (en) * 2000-04-24 2001-11-01 Sumitomo Mitsubishi Silicon Corporation Method of manufacturing semiconductor wafer
JP2004343126A (en) * 2003-05-15 2004-12-02 Siltronic Ag Method for simultaneous polishing of front surface and back surface of semiconductor wafer
JP2005150216A (en) * 2003-11-12 2005-06-09 Hitachi Cable Ltd Polishing apparatus of semiconductor wafer

Also Published As

Publication number Publication date
CN102696096A (en) 2012-09-26
JPWO2011083667A1 (en) 2013-05-13
TW201135822A (en) 2011-10-16

Similar Documents

Publication Publication Date Title
KR101928104B1 (en) Sheet glass having end edge portion polishing­finished by polishing tape, method and apparatus for polishing end edge portion of sheet glass
TWI515783B (en) Processing method of semiconductor wafers
KR100818683B1 (en) Mirror chamfered wafer, mirror chamfering polishing cloth, and mirror chamfering polishing machine and method
US8287331B2 (en) Method for manufacturing polishing pad, and method for polishing wafer
US11772231B2 (en) Double-sided wafer polishing method
US20090311863A1 (en) Method for producing semiconductor wafer
US20090311948A1 (en) Method for producing semiconductor wafer
TWI615893B (en) Processing method for semiconductor wafer
TW201936315A (en) Wafer production method
US20100006982A1 (en) Method of producing semiconductor wafer
JP2002231665A (en) Method for manfuacturing semiconductor wafer with epitaxial film
KR102454449B1 (en) Wafer manufacturing method
JP2014233797A (en) Glass plate manufacturing method and glass plate manufacturing apparatus
KR102657849B1 (en) Method for manufacturing carrier, and method for polishing dual surfaces of wafer
JP2021132102A (en) Manufacturing method for semiconductor wafer
WO2011083667A1 (en) Method and apparatus for processing compound semiconductor wafer
JP2001332949A (en) Method for manufacturing surface acoustic wave element
JP6457802B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
JP2012019126A (en) Wafer processing method
JP2010017779A (en) Wafer processing method
EP2192609A1 (en) Method of producing wafer for active layer
JP7302295B2 (en) Thin plate manufacturing method, multi-wire saw device, and work cutting method
KR101249857B1 (en) A method of silicon wafer
KR20110037662A (en) Template assembly and method for manufacturing the same
KR20210115308A (en) Hole cutting tool, apparatus for forming hole in optical film including the same and method of forming hole in optical film using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842180

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011548939

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842180

Country of ref document: EP

Kind code of ref document: A1