WO2011083605A1 - Blast machining method and blast machining device - Google Patents

Blast machining method and blast machining device Download PDF

Info

Publication number
WO2011083605A1
WO2011083605A1 PCT/JP2010/068042 JP2010068042W WO2011083605A1 WO 2011083605 A1 WO2011083605 A1 WO 2011083605A1 JP 2010068042 W JP2010068042 W JP 2010068042W WO 2011083605 A1 WO2011083605 A1 WO 2011083605A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
depth
temporary
target
concave portion
Prior art date
Application number
PCT/JP2010/068042
Other languages
French (fr)
Japanese (ja)
Inventor
武徳 吉澤
和樹 小林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011083605A1 publication Critical patent/WO2011083605A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates

Definitions

  • the present invention relates to a blasting method and a blasting apparatus for injecting an injection material to dig up a workpiece.
  • the liquid crystal display panel has a pair of glass substrates facing each other with a liquid crystal layer interposed therebetween.
  • This glass substrate is manufactured by appropriately laminating a thin film transistor, a color filter layer, an electrode and the like on a glass plate.
  • the glass plate used for the glass substrate is manufactured by a known manufacturing method such as a float method, a fusion method, or a drawdown method.
  • the glass plate obtained by such a manufacturing method may contain bubbles. These bubbles are trapped and trapped in the glass plate during the manufacturing process of the glass plate, and cause cavities in the glass plate or depressions on the surface of the glass plate.
  • display defects such as bright spots occur in the liquid crystal display panel.
  • foreign substances for example, refractory brick fragments
  • display defects such as black spots occur in the liquid crystal display panel.
  • a concave portion is formed in the glass plate after scraping off bubbles and the like by such work.
  • the concave portion is filled with a transparent material such as acrylic resin, and the surface of the glass plate is restored to its original shape.
  • blasting such as sand blasting has been used for the removal work.
  • Blasting is a process in which a powdery abrasive material (injection material) is sprayed with the assistance of compressed air to scrape a workpiece such as a glass plate.
  • This blasting process is preferably used because the processing heat can be kept relatively low.
  • it has advantages such as easy removal of bubbles and the like compared to conventional drilling and the like.
  • Patent Documents 1 to 3 are cited.
  • Blasting uses a fluid discontinuous powdery injection material, so that there is a problem that the amount of processing is very easy to vary and its control is difficult.
  • the spray material is easily affected by humidity (humidity), and the processing amount such as depth and size (shape) may change greatly even if the processing object is of the same type when the humidity changes. It has become.
  • Patent Documents 1 and 2 in conventional processing methods other than blasting for forming a recess in a workpiece, the processing conditions are corrected during processing or before performing the next processing. By doing so, the amount of processing is controlled.
  • Patent Document 1 discloses die-sinking electric discharge machining that first performs rough machining under predetermined conditions, and then performs machining by switching the machining conditions.
  • the machining conditions are switched, the roughness of the machined surface is predicted from the machining conditions used in the rough machining, and the machining conditions for the finishing machining are determined using the prediction result.
  • Patent Document 2 discloses a technique for performing fine processing such as holes on a processing target using a laser beam.
  • variation in laser output is grasped by monitoring laser parameters such as the number of pulses and pulse shape. By correcting these laser parameters, variations in laser output are suppressed and processing accuracy is improved.
  • blasting uses a powdered injection material that is discontinuous, fluid, and susceptible to humidity, it is very important to specify the processing result with the processing parameters. Because it is difficult. In blasting, it is virtually impossible to correct machining conditions without knowing the actual machining amount.
  • Patent Document 3 discloses a technique for grasping a processing amount (processing depth) using reflected light of a laser irradiated on a processing surface and interference light between a reference laser and the like. .
  • An object of the present invention is to form a temporary recess in a workpiece by spraying an injection material so that the bottom is smaller than the target recess and shallow, and the measurement result of the depth of the temporary recess and a predetermined target recess
  • a blasting method or the like is provided that injects an injection material in accordance with a target distance determined on the basis of the depth of the material and further digs the temporary recesses.
  • the blasting method according to the present invention is as follows. ⁇ 1> A blasting method of injecting an injection material toward the surface of a workpiece and forming a recess according to a target recess having a predetermined shape on the surface, A first injection step of injecting the injection material toward the surface of the workpiece and digging the surface in order to form a temporary recess that is smaller than the target recess and shallow at the bottom; A first foreign matter removing step of blowing gas toward the temporary concave portion to remove foreign matters in the temporary concave portion; A first measurement step of measuring the depth of the temporary recess so as to copy the shape of the inner surface of the temporary recess from which foreign matter has been removed; A determination step of determining a target distance for further digging the temporary recess, based on a predetermined depth of the target recess and a measurement result of the depth of the temporary recess; A blasting method comprising: a second injection step of injecting the injection material according to the determined target distance to further dig up the temporary rece
  • ⁇ 2> The blasting method according to ⁇ 1>, wherein, in the determining step, a target distance for further digging the temporary recess is determined based on a difference between a depth of the target recess and a depth of the deepest portion of the temporary recess.
  • a target distance for further digging the temporary recess is determined based on a difference between the depth of the target recess and the average depth of the temporary recess.
  • ⁇ 4> The blasting according to any one of ⁇ 1> to ⁇ 3>, wherein in the second injection step, the injection material is injected at an injection speed and an injection time corresponding to the target distance determined in the determination step. Law.
  • the depth of the temporary recess is measured so as to copy the shape of the inner surface of the temporary recess using a confocal scanning sensor. The blasting method described.
  • ⁇ 6> a second foreign matter removing step of blowing gas toward the concave portion formed after digging up the temporary concave portion and removing the foreign matter in the concave portion;
  • ⁇ 7> The blasting method according to ⁇ 6>, wherein in the second measurement step, the depth of the concave portion is measured so as to copy the shape of the inner surface of the concave portion using a confocal scanning sensor.
  • ⁇ 8> The blasting method according to any one of ⁇ 1> to ⁇ 7>, wherein the object to be processed is a glass substrate for a liquid crystal display panel.
  • a blasting apparatus for forming a recess according to a target recess having a predetermined shape on the surface of a workpiece, A stage on which the workpiece is placed; A blast nozzle that injects an injection material toward the surface of the workpiece on the stage, digs up the surface, and forms a temporary recess that is smaller than the target recess and has a shallow bottom on the surface; An air nozzle that blows gas toward the temporary recess and removes foreign matter in the temporary recess; Measuring means for measuring the depth of the temporary recess so as to copy the shape of the inner surface of the temporary recess from which foreign matter has been removed; Determining means for determining a target distance for further digging the temporary recess, based on a predetermined depth of the target recess and a measurement result of the depth of the temporary recess; The blast processing apparatus, wherein the blast nozzle sprays the spray material according to the target distance to further dig up the temporary recess.
  • determining unit determines a target distance for further digging the temporary recess based on a difference between a depth of the target recess and a depth of the deepest portion of the temporary recess.
  • ⁇ 11> The blasting apparatus according to ⁇ 9>, wherein the determining unit determines a target distance for further digging the temporary recess based on a difference between a depth of the target recess and an average depth of the temporary recess.
  • ⁇ 12> The blasting apparatus according to any one of ⁇ 9> to ⁇ 11>, wherein the blast nozzle injects the injection material at an injection speed and an injection time corresponding to the target distance determined by the determining unit.
  • the air nozzle blows gas toward the recess formed after the temporary recess is dug down, and removes foreign matter in the recess.
  • the measuring means measures the depth of the recess so as to copy the inner surface shape of the recess from which foreign matter has been removed,
  • the blasting apparatus according to any one of ⁇ 9> to ⁇ 13>, further comprising detection means for detecting a defective recess based on a depth of the target recess and a measurement result of the depth of the recess.
  • the injection material is injected so that the bottom is shallower than the target recess and the temporary recess is formed in the workpiece, and the measurement result of the depth of the temporary recess is determined in advance. Since the injection material is injected according to the target distance determined based on the depth of the target recess, and the temporary recess is further dug down, the processing accuracy of the recess can be increased.
  • FIG. 1 is an explanatory diagram schematically illustrating the configuration of a blasting apparatus 1 according to an embodiment.
  • the blasting apparatus 1 includes a blast nozzle 2, an air nozzle 3, a measuring device 4, a scanning device 5, a control device 6, and a stage 7.
  • This blast processing apparatus 1 uses a sand blast processing technique to scrape bubbles contained in a glass plate of a glass substrate 8 for a liquid crystal display panel and form a recess in the glass substrate 8.
  • the blast nozzle 2 is a device that injects a powdery injection material (abrasive) on a compressed air stream.
  • the blast nozzle 2 includes an injection material hopper (not shown) for supplying a predetermined amount of the injection material to the blast nozzle 2 and a compressed air supply device (not shown) for supplying compressed air to the blast nozzle 2 at a predetermined pressure. ) Etc. are connected.
  • the injection material supplied to the blast nozzle 2 is mixed with compressed air inside and injected from the blast nozzle 2.
  • the supply amount of the injection material to the blast nozzle 2 and the pressure of the compressed air supplied to the blast nozzle 2 are controlled by the control device 6.
  • the blast nozzle 2 has a valve (not shown) in its interior, and by controlling the opening and closing of the valve by the control device 6, injection and stop of the blast nozzle 2 are switched.
  • the injection speed of the injection material injected from the blast nozzle 2 depends on the supply amount per unit time of the injection material supplied to the blast nozzle 2 and the compressed air supplied to the blast nozzle 2. It is determined by the supply pressure per unit time.
  • the blast nozzle 2 is arranged so that the spray material can be sprayed toward the surface of the glass substrate 8 placed on the upper surface of the stage 7.
  • the glass substrate 8 is fixed and positioned on a stage 7 equipped with a suction holding device (not shown), and even if the spray material is sprayed from the blast nozzle 2, the glass substrate 8 does not move and does not shift its position.
  • the blast nozzle 2 is supported above the stage 7 by the arm-shaped scanning device 5 and is configured to be able to freely move in the horizontal direction with respect to the glass substrate 8 on the stage 7 and to be stopped.
  • a well-known thing can be employ
  • the air nozzle 3 is a device for blowing off foreign matter made of waste (glass waste), used spray material, etc. on the glass substrate 8 with air (compressed air). This air nozzle 3 is used in particular to remove foreign substances in a recess (concave portion) on the glass substrate 8 formed using the blast nozzle 2.
  • the air nozzle 3 is connected to a compressed air supply device (not shown) so that compressed air can be supplied to the air nozzle 3 at a predetermined pressure.
  • a valve (not shown) is provided inside the air nozzle 3, and the air injection and stop of the air nozzle 3 are switched by controlling the opening and closing of the valve by the control device 6.
  • the air nozzle 3 is supported above the stage 7 by the scanning device 5, and can move freely in the horizontal direction with respect to the glass substrate 8 on the stage 7 and can be stopped. .
  • the measuring device 4 is a device that measures the depth of the recess formed in the glass substrate 8.
  • the measuring device 4 is composed of, for example, a confocal scanning type sensor, and can scan three-dimensionally the depth in the recess by scanning the inner surface shape of the recess.
  • FIG. 2 is an explanatory diagram schematically showing the configuration of the measuring device 4.
  • This measuring device 4 is known as a so-called confocal scanning sensor.
  • the measuring device 4 includes a semiconductor laser 41 disposed above and used as a light source, and a half mirror 42 disposed at a predetermined angle below the semiconductor laser 41.
  • the measuring device 4 includes a collimator lens 43 disposed below the half mirror 42, an objective lens 44 disposed below the collimator lens 43 so as to face the collimator lens 43, and a tuning fork 45 that supports the objective lens 44, A position sensor 46 for detecting the position of the tuning fork 45 is provided.
  • the measuring device 4 includes a pinhole 47 disposed in the lateral direction of the half mirror 42 and a light receiving element 48.
  • a laser beam 401 is emitted from the semiconductor laser 41. Then, the laser light 401 is converted into parallel light by the collimating lens 43 and passes through the objective lens 44 that is moving at high speed in the vertical direction by the tuning fork 45.
  • the position of the focal point (measurement spot) 403 of the light 402 that has passed through the objective lens 44 coincides with the position of the surface of the concave portion 9 of the glass substrate 8 that is the measurement object, the light 402 is strongly reflected by the surface of the concave portion 9. .
  • the reflected light 404 at that time passes through the half mirror 42 and is further condensed at one point at the position of the pinhole 47 by the confocal principle, so that it passes through the pinhole 47 and is received by the light receiving element 48.
  • the position sensor 46 is configured to measure the position (height from the glass substrate 8) when the light receiving element 48 receives light. Based on the measurement result of the position sensor 46, the depth of the recess 9 can be accurately grasped.
  • the signals output from the light receiving element 48 and the position sensor 46 are transmitted to the control device 6 that is electrically connected to the measuring device 4.
  • the measuring device 4 is supported by the scanning device 5 as shown in FIG.
  • the position of the focal point (measurement spot) 403 of the light irradiated from the semiconductor laser 41 shown in FIG. It can be moved so as to trace the inner surface shape.
  • the measurement result of the measuring device 4 is transmitted to the control device 6.
  • the measuring operation of the measuring device 4 is controlled by the control device 6.
  • the depth in the recess can be measured without problems even if the machining surface in the recess is inclined. Further, the measuring device 4 can measure the depth in the recess without any problem even on a processed surface that is difficult to grasp with a conventional measuring device (particularly when a transparent material such as glass is mirror-finished).
  • the control device 6 includes a CPU (Central Processing Unit) 61, a ROM (Read Only Memory) 62, a RAM (Random Access Memory) 63, an input unit 64, an instruction unit 65, a display.
  • the configuration includes a unit 66, an acquisition unit 67, a storage unit 68, and the like. Each configuration is configured such that data can be exchanged with each other via the data bus 69.
  • the CPU 61 is a device that executes arithmetic processing for operation control of the blasting apparatus 1.
  • the ROM 62 stores various programs and various menus for controlling the operation of the blasting apparatus 1 in advance.
  • the RAM 63 is configured by SRAM, flash memory, or the like.
  • the CPU 61 executes the control program in the ROM 62 while using the RAM 63 as a work area. Therefore, data generated when the control program is executed is temporarily stored in the RAM 63.
  • the acquisition unit 67 is connected to the CPU 61 via the data bus 69 and is also connected to the measurement device 4.
  • the output data (measurement result) from the measurement device 4 is converted from analog to digital and stored in the storage unit 68. To do.
  • the measuring device 4 is set to measure the depth of the concave portion of the glass substrate 8 by receiving a concave portion measurement instruction signal from the CPU 61 of the control device 6 via the acquisition unit 67.
  • the storage unit 68 includes an HDD (hard disk drive) or the like, and stores and stores data (measurement results) acquired by the acquisition unit 67 from the measurement device 4 based on the control of the CPU 61. Note that the shape data (depth data) of a target recess, which will be described later, and the like are also stored in the storage unit 68.
  • the display unit 66 is composed of a CRT, LCD, or the like, and displays the operating state of the blasting apparatus 1 and various menus stored in the ROM 62.
  • the input unit 64 includes a keyboard and a mouse, and an operator operates the blasting apparatus 1 using the input unit 64 according to the display content of the display unit 66.
  • Various instruction information input from the input unit 64 by the operator is stored in the RAM 63 under the control of the CPU 61.
  • the instruction unit 65 is connected to the blast nozzle 2 together with the CPU 61 via the data bus 69, and outputs an instruction signal for injection of the blast nozzle 2 based on the control of the CPU 61.
  • the instruction unit 65 is set to output various instruction signals to the air nozzle 3, the scanning device 5, and the like in addition to the blast nozzle 2 based on the control of the CPU 61.
  • FIG. 3 is an explanatory view schematically showing the contents of each step of the blasting method.
  • FIG. 3A is an explanatory view schematically showing a state in which a glass substrate containing bubbles is arranged at a predetermined position
  • FIG. 3B is a step of forming a temporary recess in the glass substrate by injecting an injection material from a blast nozzle.
  • FIG. 3C is an explanatory diagram schematically showing a process of removing the foreign matter in the temporary recess by blowing it off with air
  • FIG. 3D is a diagram showing the temporary recess by scanning the measuring device.
  • FIG. 3E is explanatory drawing which represented typically the process of injecting an injection material from a blast nozzle and further digging a temporary recessed part.
  • FIG. 4 is an explanatory diagram showing a procedure of the blasting method shown in FIG.
  • the glass substrate 8 transported by a transport means is disposed at a predetermined position.
  • the glass substrate (glass plate) 8 includes bubbles 81 formed in the manufacturing process.
  • the thickness of this glass substrate 8 is assumed to be 0.7 mm.
  • the surface of the glass substrate 8 is dug down to a depth (depth of the deepest portion) of 0.5 mm by using the blast processing apparatus 1 shown in FIG.
  • a recess is formed in Note that the storage unit 68 included in the control device 6 of the blast processing apparatus 1 stores in advance shape data of a target recess that is a target when the recess is formed in the glass substrate 8.
  • This shape data includes information related to the depth of the target recess (depth of the deepest portion), and further includes other data such as the area of the opening of the target recess as necessary.
  • the spray material 21 is sprayed from the blast nozzle 2 toward the glass substrate 8 disposed at a predetermined position under the first spraying condition to form a temporary recess 91 in the glass substrate 8.
  • the first injection condition is a processing condition for forming the temporary recess 91 that is smaller than the target recess and has a shallow bottom. That is, it is necessary to set the first injection condition so that the depth of the temporary recess 91 is smaller than the depth of the target recess (depth D of the deepest portion).
  • the injection speed of the injection material from the blast nozzle 2 is v (constant), and the injection time (processing time) is T1.
  • Various conditions such as the type of spray material, the diameter of the blast nozzle 2 and the distance between the tip of the blast nozzle 2 and the surface of the glass substrate 8 are appropriately set according to the purpose.
  • a temporary recess 91 is formed as shown in FIG. 3B. Note that the blast nozzle 2 is retracted from above the temporary recess 91 after the first injection step. In blasting, the depth in the temporary recess cannot be measured during processing.
  • the injection from the injection blast nozzle 2 is temporarily stopped to stop the blasting process.
  • the bubbles 81 in the glass substrate 8 are sufficiently thin with respect to the thickness of the glass substrate 8. Therefore, it is considered that the processing amount of the glass substrate 8 in the first injection process is not affected by the presence of the bubbles 81.
  • the measuring device 4 is disposed above the temporary recess 91 from which foreign matter has been removed, and the measuring device 4 is scanned in the horizontal direction with respect to the glass substrate 8 to determine the depth of the temporary recess 91. Get the data.
  • the measuring device 4 measures the depth of the temporary recess 91 while repeatedly reciprocating above the temporary recess 91 so as to copy the shape of the inner surface of the temporary recess 91. Based on the depth data of the temporary recess 91 measured in this way, the inner surface shape of the temporary recess 91 can be grasped three-dimensionally (see S3 in FIG. 4).
  • the depth d of the deepest portion (the deepest portion) of the temporary recess 91 is determined based on the control of the CPU 61 in the control device 6 using the depth data of the temporary recess 91 (FIG. 4 S4).
  • FIG. 5 is an explanatory view schematically showing a measurement result of the depth of the temporary recesses continuously measured by scanning the measuring device.
  • a cross section of the temporary recess 91 formed in the glass substrate 8 is indicated by a solid line.
  • a virtual cross section of the target concave portion 90 is shown with a broken line together with a cross section of the temporary concave portion 91.
  • the measurement interval is appropriately set according to the purpose. For example, in the cross section of the temporary recess 91 shown in FIG. 5, it is determined that the depth d3 is the largest. Note that the measuring apparatus continuously measures the depth of the temporary recess 91 in a cross section different from the cross section of the temporary recess 91 shown in FIG. The depth d of the deepest part is determined from all the depth data of the temporary recesses 91 thus measured.
  • a target distance (additional processing amount) for further digging the temporary recess 91 is determined, and further, processing conditions ( (Second injection condition) is determined.
  • processing conditions (Second injection condition) is determined.
  • the difference (D ⁇ d) between the depth D of the deepest portion of the target recess 90 and the depth d of the determined deepest portion of the temporary recess 91 is taken, and this difference (D ⁇ d) The target distance is used. Then, the second injection condition is determined using this target distance.
  • the blasting method of the present embodiment is to adjust the processing conditions by grasping the remaining processing amount using the target distance (feedback) during the processing.
  • the first injection condition in the first injection step is set so that the depth d of the deepest portion of the temporary recess 91 is smaller than the depth D of the deepest portion of the target recess. Therefore, normally, the depth d of the deepest portion of the temporary recess 91 does not exceed the depth D of the deepest portion of the target recess 91. However, it is also conceivable that the depth d of the deepest portion of the temporary recess 91 is greater than or equal to the depth D of the deepest portion of the target recess 90 due to the influence of humidity or the like.
  • FIG. 6 is an explanatory view schematically showing a cross section of a recess deeper than the target recess. As shown in FIG.
  • a recess 91A depth d11> D
  • a recess 91A depth d11> D
  • a through hole is formed in the glass substrate 8, which causes damage to the glass substrate 8. Therefore, in this embodiment, before determining the second injection condition, the case where the depth d of the deepest portion of the temporary recess 91 is equal to or greater than the depth D of the deepest portion of the target recess is eliminated, and the temporary recess 91 is removed. Further, it is not dug down (see S5 in FIG. 4).
  • the concave portion 9 having a predetermined shape can be obtained with high accuracy.
  • variation in the shape (size) of each recessed part 9 can be suppressed.
  • the depth d of the deepest portion of the temporary recess 91 is determined based on the depth data of the temporary recess 91 acquired by the measuring device, and the depth of this deepest portion is determined.
  • the present invention is not limited to this.
  • the second injection condition may be determined using an average value of the depth of the temporary recesses.
  • FIG. 7 is an explanatory view schematically showing a cross section of the temporary recess 91.
  • FIG. 7 shows the depths d21 to d25 of the temporary recess 91 measured by the measuring device within the specific range x1 of the central portion.
  • a specific range x1 in the temporary recess 91 is appropriately determined, and the average value dx of the temporary recess depth based on the depths d21 to d25 and the like at all the measurement points in the range x1. You may ask for.
  • a difference (D ⁇ dx) from the depth D of the deepest part of the target recess may be obtained.
  • the second injection condition may be determined using this difference (D ⁇ dx).
  • FIG. 8 is an explanatory view schematically showing a cross section of another temporary recess.
  • the temporary recess 91 ⁇ / b> B shown in FIG. 8 is raised at the center, and the periphery thereof is recessed. If a hard foreign material or the like is present in the glass substrate 8, the foreign material acts to protect the glass substrate 8 from the spray material sprayed toward the glass substrate 8, and the air flow of the spray material is disturbed. it is conceivable that. In such a case, the lower part of the foreign material remains relatively uncut and a temporary recess 91B having a shape as shown in FIG. 8 is formed. In addition to such a case, a temporary recess 91B as shown in FIG. 8 may be formed.
  • a specific range x2 including the central portion is appropriately determined in the temporary concave portion 91B, and the depth d31 at all measurement points in the range x2 is determined. Based on ⁇ d39 and the like, the average depth dx of the temporary recess 91B may be obtained. Using this average value dx, a difference (D ⁇ dx) from the depth D of the deepest part of the target recess is obtained, and the second injection condition is determined using this difference (D ⁇ dx). good.
  • the second injection condition is determined using the difference (D ⁇ d) obtained based on the depth D of the deepest portion of the target recess and the depth d of the temporary recess, for example, the difference (D ⁇ You may utilize the injection condition table which shows relations, such as injection speed and injection time, corresponding to d).
  • this injection condition table in order to correspond to the difference, the relationship between the injection speed and the injection time is determined in advance based on experimental data and the like. 68 is stored in advance.
  • the injection condition table is referred to under the control of the CPU 61 when the second injection condition is determined using the difference.
  • the second injection condition is the injection condition vx and the injection time Tx. Will be selected.
  • FIG. 9 is an explanatory view schematically showing each step of the blasting method for further processing the recess 9 formed on the glass substrate 8, and FIG. 9F blows off the foreign matter in the recess with air.
  • FIG. 9G is an explanatory diagram schematically showing a step of measuring the depth of the concave portion by scanning the measuring device.
  • FIG. 10 is an explanatory view showing the procedure of the blasting method shown in FIG.
  • FIG. 9F the glass substrate 8 after the second injection step shown in FIG. 3E is arranged.
  • the air nozzle 3 is used again to blow the air 31 to the recess 9 to blow away the foreign matter in the recess 9 (see S8 in FIG. 10).
  • the depth of the concave portion 9 is measured by causing the measuring device 4 to scan the concave portion 9 after removing the foreign matter.
  • the measurement step here is the same as the first measurement step except that the measurement object is different.
  • the measuring device 4 scans the inner surface shape of the concave portion 9 to measure the depth of the concave portion 9 (see S9 in FIG. 10).
  • FIG. 11 is an explanatory diagram schematically showing a cross section of the recess 9 formed in the glass substrate 8.
  • FIG. 12 is an explanatory view schematically showing a cross section of the defect recess 9 ⁇ / b> A formed in the glass substrate 8.
  • FIG. 13 is an explanatory view schematically showing a cross section of another defective recess 9 ⁇ / b> B formed in the glass substrate 8.
  • virtual cross sections of the target recesses 90 each having the deepest portion having a depth D are overlapped so as to correspond to the cross sections of the respective recesses. If the blasting method and the blasting apparatus of the present invention are used, the concave portion 9 having a shape close to the shape of the target concave portion as shown in FIG. 11 is usually formed. However, when the humidity changes abruptly, it is conceivable that a defective recess as shown in FIG. 12 or 13 is formed.
  • the defect recess 9 ⁇ / b> A shown in FIG. 12 is deeper than the target recess 90.
  • the defect concave portion 9A is formed because the central portion is raised, and foreign matter or the like is present in the glass substrate 8 as in the temporary concave portion shown in FIG.
  • Such a defective recess 9A formed by being dug deeper than planned causes damage to the glass substrate 8 and needs to be detected.
  • the depth (depth of the deepest portion) of the defect concave portion 9B shown in FIG. 13 does not exceed the depth of the target concave portion (depth D of the deepest portion), but the size (volume) is the target. It is considerably smaller than the recess.
  • the size of the recesses formed in the glass substrate 8 varies, for example, the amount of resin filled for repairing the recesses becomes irregular and the workability deteriorates. Due to such circumstances, there is a case where it is desired to keep the shape (size) of the concave portion constant. In such a case, it is necessary to detect a defective recess 9B whose shape is smaller than planned as shown in FIG.
  • the depth data of the concave portion measured in the second measurement step is determined in advance.
  • the depth data of the target concave portion may be compared, and the defective concave portion may be detected based on the comparison result.
  • the difference (D ⁇ d41) between the depth d41 of the deepest portion in the specific cross section of the concave portion and the depth D of the deepest portion of the target concave portion is taken.
  • the defect of the recess may be detected by comparing (D-d41) with a predetermined allowable value.
  • the method for determining the depth d41 of the deepest part is the same as the method for determining the depth of the deepest part in the temporary recess.
  • the depth data of the target recess 90 not only the depth data (depth D) of the deepest portion but also other portion depth data may be used (for example, the target recess shown in FIG. 13).
  • 90 depth Dx For example, a difference is taken between a plurality of depth data in a specific cross section of the recess and a plurality of predetermined depth data in a cross section of the target recess corresponding to the specific cross section of the recess.
  • the concave portion may be determined as a defective concave portion. For example, in the case of the recess 9B shown in FIG.
  • one of the plurality of depth data in the specific cross section of the recess 9B is d51, and one of the predetermined plurality of depth data is Let Dx. In this case, when the difference (Dx ⁇ d51) exceeds a predetermined allowable value, it is determined that the recess 9B is a defective recess.

Abstract

Provided is a blast machining method or the like having high machining accuracy. The disclosed blast machining method is for forming a recess (9) in the surface of an object being machined (8) so as to conform with a target recess of a predetermined shape by blasting a blast material (21) onto the surface of the object, the method involving: a step of denting the surface of the object by blasting the blast material (21) onto the same in order to form a provisional recess (91) smaller and shallower than the target recess; a step of removing foreign substances in the provisional recess (91) by blowing a gas toward the provisional recess; a step of measuring the depth of the provisional recess (91) in a manner so as to trace the inner-surface shape of the provisional recess (91); a step of determining the target distance by which the provisional recess (91) is to be further dented, the determination being made based on the depth of the predetermined target recess and the result of measuring the depth of the provisional recess (91); and a step of further denting the provisional recess (91) by blasting the blast material (21) in accordance with the target distance.

Description

ブラスト加工法及びブラスト加工装置Blasting method and blasting apparatus
 本発明は、噴射材を噴射して加工対象物を掘り下げるブラスト加工法及びブラスト加工装置に関する。 The present invention relates to a blasting method and a blasting apparatus for injecting an injection material to dig up a workpiece.
 液晶表示パネルは、液晶層を挟んで互いに向かい合う一対のガラス基板を有する。このガラス基板は、ガラス板の上に、薄膜トランジスタ、カラーフィルタ層、電極等が適宜、積層されて製造される。ガラス基板に用いられるガラス板は、フロート法、フュージョン法、ドローダウン法等の公知の製造方法によって製造されている。 The liquid crystal display panel has a pair of glass substrates facing each other with a liquid crystal layer interposed therebetween. This glass substrate is manufactured by appropriately laminating a thin film transistor, a color filter layer, an electrode and the like on a glass plate. The glass plate used for the glass substrate is manufactured by a known manufacturing method such as a float method, a fusion method, or a drawdown method.
 このような製造方法で得られたガラス板には、気泡が含まれている場合がある。この気泡は、ガラス板の製造過程でガラス板中に混入し、閉じ込められたものであり、ガラス板中の空洞、又はガラス板表面の窪みの原因となる。このような気泡を含んだガラス板をそのまま液晶表示パネルに用いると、その液晶表示パネルに輝点等の表示不良を発生させてしまう。また気泡の他に、ガラス板の製造過程において、ガラス板中に異物(例えば、耐火煉瓦の破片)が混入する場合もある。このような異物を含んだガラス板をそのまま液晶表示パネルに用いた場合も、その液晶表示パネルに黒点等の表示不良が発生してしまう。 The glass plate obtained by such a manufacturing method may contain bubbles. These bubbles are trapped and trapped in the glass plate during the manufacturing process of the glass plate, and cause cavities in the glass plate or depressions on the surface of the glass plate. When such a glass plate containing bubbles is used as it is in a liquid crystal display panel, display defects such as bright spots occur in the liquid crystal display panel. In addition to bubbles, foreign substances (for example, refractory brick fragments) may be mixed in the glass plate during the glass plate manufacturing process. Even when such a glass plate containing foreign matter is used as it is in a liquid crystal display panel, display defects such as black spots occur in the liquid crystal display panel.
 その為、従来、液晶表示パネルの表示不良を防止する等の目的で、ガラス板から気泡又は異物を削り取る作業が行われている。このような作業によって気泡等を削り取った後のガラス板には凹部が生じる。この凹部にはアクリル樹脂等の透明材料が充填されて、ガラス板の表面が元の形状に修復される。 For this reason, conventionally, for the purpose of preventing display defects of the liquid crystal display panel, an operation of scraping bubbles or foreign matters from the glass plate has been performed. A concave portion is formed in the glass plate after scraping off bubbles and the like by such work. The concave portion is filled with a transparent material such as acrylic resin, and the surface of the glass plate is restored to its original shape.
 このようなガラス板中の気泡等の除去作業は、作業効率等の観点より、ガラス基板の組立作業前に行うことが望ましい。しかしながら、表示不良の問題となる気泡等は非常に小さく、ガラス板(マザーガラス)の検査時等において見落とされることがある。その為、ガラス基板を組み立てた後に、ガラス板中の気泡等の除去作業が行われることもある。 It is desirable to remove such bubbles in the glass plate before assembling the glass substrate from the viewpoint of work efficiency. However, bubbles and the like that cause display defects are very small and may be overlooked when inspecting a glass plate (mother glass). For this reason, after assembling the glass substrate, an operation of removing bubbles or the like in the glass plate may be performed.
 前記除去作業には、近年、サンドブラスト等のブラスト加工が用いられている。ブラスト加工は、粉末状の研磨材(噴射材)を圧縮空気でアシストして噴射し、ガラス板等の加工対象物を削るものである。このブラスト加工は、加工熱を比較的、低く抑えることができ、好ましく用いられている。また、従来のドリル加工等と比べて、気泡等を根こそぎ除去し易い等の利点も有する。 In recent years, blasting such as sand blasting has been used for the removal work. Blasting is a process in which a powdery abrasive material (injection material) is sprayed with the assistance of compressed air to scrape a workpiece such as a glass plate. This blasting process is preferably used because the processing heat can be kept relatively low. In addition, it has advantages such as easy removal of bubbles and the like compared to conventional drilling and the like.
 なお、本願に関連する技術文献としては、例えば、特許文献1~3が挙げられる。 Note that, as technical documents related to the present application, for example, Patent Documents 1 to 3 are cited.
特開平8-25148号公報JP-A-8-25148 特表2009-505843号公報Special table 2009-505843 特開平4-289649号公報JP-A-4-289649
 ブラスト加工は、流動性のある不連続な粉末状の噴射材を利用するため、加工量が非常にばらつき易く、かつその制御が難しいという問題がある。特に、噴射材は湿度(湿気)の影響を受けやすく、湿度が変わると同種の加工対象物であっても、深さ、大きさ(形状)等の加工量が大きく変化することがあり、問題となっている。 Blasting uses a fluid discontinuous powdery injection material, so that there is a problem that the amount of processing is very easy to vary and its control is difficult. In particular, the spray material is easily affected by humidity (humidity), and the processing amount such as depth and size (shape) may change greatly even if the processing object is of the same type when the humidity changes. It has become.
 特許文献1及び2に示されるように、加工対象物に凹部を形成するためのブラスト加工以外の従来の加工方法においては、その加工条件を、加工途中に、又は次の加工を行う前に補正することで、加工量の制御を行っている。 As shown in Patent Documents 1 and 2, in conventional processing methods other than blasting for forming a recess in a workpiece, the processing conditions are corrected during processing or before performing the next processing. By doing so, the amount of processing is controlled.
 例えば、特許文献1には、先ず所定条件下で荒加工を行い、その後、加工条件を切り替えて仕上げ加工を行う形彫り放電加工が示されている。この技術では、加工条件を切り替える際、荒加工で使用した加工条件から加工面の粗さを予測し、その予測結果を利用して仕上げ加工の加工条件を決定している。 For example, Patent Document 1 discloses die-sinking electric discharge machining that first performs rough machining under predetermined conditions, and then performs machining by switching the machining conditions. In this technique, when the machining conditions are switched, the roughness of the machined surface is predicted from the machining conditions used in the rough machining, and the machining conditions for the finishing machining are determined using the prediction result.
 また、特許文献2には、レーザービームを利用して加工対象物に穴等の微細加工を施す技術が示されている。この技術では、レーザー出力のばらつきを、パルス数、パルス形状等のレーザーパラメータを監視することによって把握している。これらのレーザーパラメータを補正することによって、レーザ出力のばらつきを抑制し、加工精度を向上させている。 Further, Patent Document 2 discloses a technique for performing fine processing such as holes on a processing target using a laser beam. In this technique, variation in laser output is grasped by monitoring laser parameters such as the number of pulses and pulse shape. By correcting these laser parameters, variations in laser output are suppressed and processing accuracy is improved.
 しかしながら、このような前記技術を転用しても、ブラスト加工の加工量を制御することは難しい。何故ならば、ブラスト加工は、上記のように、不連続で流動性のある、しかも湿度の影響を受けやすい粉末状の噴射材を利用するため、加工パラメータで加工結果を特定することが非常に難しいからである。ブラスト加工においては、実際の加工量を把握せずに、加工条件の補正を行うことは、実質的に不可能である。 However, it is difficult to control the amount of blasting even if such a technique is diverted. This is because, as described above, since blasting uses a powdered injection material that is discontinuous, fluid, and susceptible to humidity, it is very important to specify the processing result with the processing parameters. Because it is difficult. In blasting, it is virtually impossible to correct machining conditions without knowing the actual machining amount.
 なお、特許文献3には、加工面に対して照射されたレーザの反射光と、参照用レーザとの干渉光を利用して、加工量(加工深さ)を把握する技術が示されている。 Patent Document 3 discloses a technique for grasping a processing amount (processing depth) using reflected light of a laser irradiated on a processing surface and interference light between a reference laser and the like. .
 しかしながら、このような技術を利用しても、ブラスト加工による実際の加工量(加工深さ)を正確に把握することは難しい。何故ならば、ブラスト加工によって形成される凹部は、その内表面が複雑な勾配を有する凹凸形状からなるため、前記従来技術を利用して特定個所の加工深さのみを測定しても、その複雑な内面形状を把握できないからである。 However, even if such a technique is used, it is difficult to accurately grasp the actual processing amount (processing depth) by blast processing. This is because the concave portion formed by blasting has a concave and convex shape with an inner surface having a complicated gradient. Therefore, even if only the processing depth at a specific location is measured using the above-described conventional technology, the concave portion is complicated. This is because it is difficult to grasp the inner surface shape.
 本発明の目的は、目標凹部よりも小さく底が浅くなるように噴射材を噴射して加工対象物に仮凹部を形成し、この仮凹部の深さの測定結果と予め定められている目標凹部の深さとに基づいて決定された目標距離に応じて噴射材を噴射して、仮凹部を更に掘り下げるブラスト加工法等を提供することである。 An object of the present invention is to form a temporary recess in a workpiece by spraying an injection material so that the bottom is smaller than the target recess and shallow, and the measurement result of the depth of the temporary recess and a predetermined target recess A blasting method or the like is provided that injects an injection material in accordance with a target distance determined on the basis of the depth of the material and further digs the temporary recesses.
 本発明に係るブラスト加工法は、以下の通りである。
 <1> 噴射材を加工対象物の表面に向けて噴射して、その表面に予め定められた形状を有する目標凹部に従って凹部を形成するブラスト加工法であって、
 前記目標凹部よりも小さく底が浅い仮凹部を形成するために、前記加工対象物の表面に向けて前記噴射材を噴射して、前記表面を掘り下げる第1噴射工程と、
 前記仮凹部に向けてガスを吹き付け、前記仮凹部内の異物を除去する第1異物除去工程と、
 異物が除去された前記仮凹部内の内面形状を写し取るように前記仮凹部の深さを測定する第1測定工程と、
 予め定められている前記目標凹部の深さと、前記仮凹部の深さの測定結果とに基づいて、前記仮凹部を更に掘り下げる目標距離を決定する決定工程と、
 決定された前記目標距離に応じて前記噴射材を噴射して、前記仮凹部を更に掘り下げる第2噴射工程と、を備えることを特徴とするブラスト加工法。
The blasting method according to the present invention is as follows.
<1> A blasting method of injecting an injection material toward the surface of a workpiece and forming a recess according to a target recess having a predetermined shape on the surface,
A first injection step of injecting the injection material toward the surface of the workpiece and digging the surface in order to form a temporary recess that is smaller than the target recess and shallow at the bottom;
A first foreign matter removing step of blowing gas toward the temporary concave portion to remove foreign matters in the temporary concave portion;
A first measurement step of measuring the depth of the temporary recess so as to copy the shape of the inner surface of the temporary recess from which foreign matter has been removed;
A determination step of determining a target distance for further digging the temporary recess, based on a predetermined depth of the target recess and a measurement result of the depth of the temporary recess;
A blasting method comprising: a second injection step of injecting the injection material according to the determined target distance to further dig up the temporary recess.
 <2> 決定工程において、目標凹部の深さと、仮凹部の最深部における深さとの差分に基づいて、仮凹部を更に掘り下げる目標距離を決定する前記<1>に記載のブラスト加工法。 <2> The blasting method according to <1>, wherein, in the determining step, a target distance for further digging the temporary recess is determined based on a difference between a depth of the target recess and a depth of the deepest portion of the temporary recess.
 <3> 決定工程において、目標凹部の深さと、仮凹部の平均深さとの差分に基づいて、仮凹部を更に掘り下げる目標距離を決定する前記<1>に記載のブラスト加工法。 <3> The blasting method according to <1>, wherein in the determining step, a target distance for further digging the temporary recess is determined based on a difference between the depth of the target recess and the average depth of the temporary recess.
 <4> 第2噴射工程において、決定工程により決定された目標距離に応じた噴射速度及び噴射時間で、噴射材を噴射する前記<1>~<3>の何れか1つに記載のブラスト加工法。 <4> The blasting according to any one of <1> to <3>, wherein in the second injection step, the injection material is injected at an injection speed and an injection time corresponding to the target distance determined in the determination step. Law.
 <5> 第1測定工程において、共焦点走査型センサを利用して仮凹部の内面形状を写し取るように前記仮凹部の深さを測定する前記<1>~<4>の何れか1つに記載のブラスト加工法。 <5> In any one of the above items <1> to <4>, in the first measurement step, the depth of the temporary recess is measured so as to copy the shape of the inner surface of the temporary recess using a confocal scanning sensor. The blasting method described.
 <6> 仮凹部を掘り下げた後に形成された凹部に向けてガスを吹き付け、前記凹部内の異物を除去する第2異物除去工程と、
 第2異物除去工程により異物が除去された前記凹部の内面形状を写し取るように、前記凹部の深さを測定する第2測定工程と、
 目標凹部の深さと、第2測定工程により測定された前記凹部の深さの測定結果とに基づいて、欠陥凹部を検出する検出工程と、を備える前記<1>~<5>の何れか1つに記載のブラスト加工法。
<6> a second foreign matter removing step of blowing gas toward the concave portion formed after digging up the temporary concave portion and removing the foreign matter in the concave portion;
A second measuring step for measuring the depth of the concave portion so as to copy the shape of the inner surface of the concave portion from which the foreign matter has been removed by the second foreign matter removing step;
Any one of the above items <1> to <5>, further comprising a detection step of detecting a defective recess based on the depth of the target recess and the measurement result of the depth of the recess measured in the second measurement step. Blasting method described in one.
 <7> 第2測定工程において、共焦点走査型センサを利用して凹部の内面形状を写し取るように前記凹部の深さを測定する前記<6>に記載のブラスト加工法。 <7> The blasting method according to <6>, wherein in the second measurement step, the depth of the concave portion is measured so as to copy the shape of the inner surface of the concave portion using a confocal scanning sensor.
 <8> 加工対象物が、液晶表示パネル用のガラス基板である前記<1>~<7>の何れか1つに記載のブラスト加工法。 <8> The blasting method according to any one of <1> to <7>, wherein the object to be processed is a glass substrate for a liquid crystal display panel.
 <9> 加工対象物の表面に、予め定められた形状を有する目標凹部に従って、凹部を形成するブラスト加工装置であって、
 上面に前記加工対象物が載せられるステージと、
 前記ステージ上の加工対象物の表面に向けて噴射材を噴射して、前記表面を掘り下げ、前記表面に前記目標凹部よりも小さく底が浅い仮凹部を形成するブラストノズルと、
 前記仮凹部に向けてガスを吹き付け、前記仮凹部内の異物を除去するエアノズルと、
 異物が除去された前記仮凹部の内面形状を写し取るように前記仮凹部の深さを測定する測定手段と、
 予め定められている前記目標凹部の深さと、前記仮凹部の深さの測定結果とに基づいて、前記仮凹部を更に掘り下げる目標距離を決定する決定手段と、を備え、
 前記ブラストノズルが、前記目標距離に応じて前記噴射材を噴射して前記仮凹部を更に掘り下げる、ことを特徴とするブラスト加工装置。
<9> A blasting apparatus for forming a recess according to a target recess having a predetermined shape on the surface of a workpiece,
A stage on which the workpiece is placed;
A blast nozzle that injects an injection material toward the surface of the workpiece on the stage, digs up the surface, and forms a temporary recess that is smaller than the target recess and has a shallow bottom on the surface;
An air nozzle that blows gas toward the temporary recess and removes foreign matter in the temporary recess;
Measuring means for measuring the depth of the temporary recess so as to copy the shape of the inner surface of the temporary recess from which foreign matter has been removed;
Determining means for determining a target distance for further digging the temporary recess, based on a predetermined depth of the target recess and a measurement result of the depth of the temporary recess;
The blast processing apparatus, wherein the blast nozzle sprays the spray material according to the target distance to further dig up the temporary recess.
 <10> 決定手段が、目標凹部の深さと、仮凹部の最深部における深さとの差分に基づいて、仮凹部を更に掘り下げる目標距離を決定する前記<9>に記載のブラスト加工装置。 <10> The blasting apparatus according to <9>, wherein the determining unit determines a target distance for further digging the temporary recess based on a difference between a depth of the target recess and a depth of the deepest portion of the temporary recess.
 <11> 決定手段が、目標凹部の深さと、仮凹部の平均深さとの差分に基づいて、仮凹部を更に掘り下げる目標距離を決定する前記<9>に記載のブラスト加工装置。 <11> The blasting apparatus according to <9>, wherein the determining unit determines a target distance for further digging the temporary recess based on a difference between a depth of the target recess and an average depth of the temporary recess.
 <12> ブラストノズルが、決定手段により決定された目標距離に応じた噴射速度及び噴射時間で、噴射材を噴射する前記<9>~<11>の何れか1つに記載のブラスト加工装置。 <12> The blasting apparatus according to any one of <9> to <11>, wherein the blast nozzle injects the injection material at an injection speed and an injection time corresponding to the target distance determined by the determining unit.
 <13> 測定手段が、共焦点走査型センサからなる前記<9>~<12>の何れか1つに記載のブラスト加工装置。 <13> The blasting apparatus according to any one of <9> to <12>, wherein the measurement unit is a confocal scanning sensor.
 <14> エアノズルが、仮凹部を掘り下げた後に形成された凹部に向けてガスを吹き付け、前記凹部内の異物を除去し、
 測定手段が、異物が除去された前記凹部の内面形状を写し取るように前記凹部の深さを測定し、
 目標凹部の深さと、前記凹部の深さの測定結果とに基づいて、欠陥凹部を検出する検出手段を備える、前記<9>~<13>の何れか1つに記載のブラスト加工装置。
<14> The air nozzle blows gas toward the recess formed after the temporary recess is dug down, and removes foreign matter in the recess.
The measuring means measures the depth of the recess so as to copy the inner surface shape of the recess from which foreign matter has been removed,
The blasting apparatus according to any one of <9> to <13>, further comprising detection means for detecting a defective recess based on a depth of the target recess and a measurement result of the depth of the recess.
 <15> 加工対象物が、液晶表示パネル用のガラス基板である前記<9>~<14>の何れか1つに記載のブラスト加工装置。 <15> The blasting apparatus according to any one of <9> to <14>, wherein the object to be processed is a glass substrate for a liquid crystal display panel.
 本発明のブラスト加工法等によれば、目標凹部よりも小さく底が浅くなるように噴射材を噴射して加工対象物に仮凹部を形成し、この仮凹部の深さの測定結果と予め定められている目標凹部の深さとに基づいて決定された目標距離に応じて噴射材を噴射して、仮凹部を更に掘り下げるため、凹部の加工精度を高めることができる。 According to the blasting method or the like of the present invention, the injection material is injected so that the bottom is shallower than the target recess and the temporary recess is formed in the workpiece, and the measurement result of the depth of the temporary recess is determined in advance. Since the injection material is injected according to the target distance determined based on the depth of the target recess, and the temporary recess is further dug down, the processing accuracy of the recess can be increased.
一実施形態に係るブラスト加工装置の構成を模式的に表した説明図である。It is explanatory drawing which represented typically the structure of the blast processing apparatus which concerns on one Embodiment. 測定装置の構成を模式的に表した説明図である。It is explanatory drawing which represented the structure of the measuring apparatus typically. ブラスト加工法の各工程の内容を模式的に表した説明図である。It is explanatory drawing which represented the content of each process of the blast processing method typically. 図3に示されるブラスト加工法の手順を示す説明図である。It is explanatory drawing which shows the procedure of the blast processing method shown by FIG. 測定装置を走査させて連続的に測定された仮凹部の深さの測定結果を模式的に表した説明図である。It is explanatory drawing which represented typically the measurement result of the depth of the temporary recessed part measured by scanning a measuring apparatus continuously. 目標凹部よりも深い凹部の断面を模式的に表した説明図である。It is explanatory drawing which represented typically the cross section of the recessed part deeper than a target recessed part. 仮凹部の断面を模式的に表した説明図である。It is explanatory drawing which represented the cross section of the temporary recessed part typically. 他の仮凹部の断面を模式的に表した説明図である。It is explanatory drawing which represented the cross section of the other temporary recessed part typically. ガラス基板上に形成された凹部に更に処理を加えるためのブラスト加工法の各工程を模式的に表した説明図である。It is explanatory drawing which represented typically each process of the blasting method for adding a process further to the recessed part formed on the glass substrate. 図9に示されるブラスト加工法の手順を示す説明図である。It is explanatory drawing which shows the procedure of the blast processing method shown by FIG. ガラス基板に形成された凹部の断面を模式的に表した説明図である。It is explanatory drawing which represented typically the cross section of the recessed part formed in the glass substrate. ガラス基板に形成された欠陥凹部の断面を模式的に表した説明図である。It is explanatory drawing which represented typically the cross section of the defect recessed part formed in the glass substrate. ガラス基板に形成された他の欠陥凹部の断面を模式的に表した説明図である。It is explanatory drawing which represented typically the cross section of the other defect recessed part formed in the glass substrate.
 以下、本発明に係るブラスト加工法及びブラスト加工装置について、図面を参照しつつ説明する。但し、本発明は、本明細書に例示する実施形態に限定されるものではない。 Hereinafter, a blasting method and a blasting apparatus according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments exemplified in this specification.
〔第1実施形態〕
 図1は、一実施形態に係るブラスト加工装置1の構成を模式的に表した説明図である。図1に示されるように、ブラスト加工装置1は、ブラストノズル2、エアノズル3、測定装置4、走査装置5、制御装置6、及びステージ7を備える。このブラスト加工装置1は、サンドブラスト加工技術を利用して、液晶表示パネル用ガラス基板8のガラス板に含まれている気泡を削り取り、ガラス基板8に凹部を形成するものである。
[First Embodiment]
FIG. 1 is an explanatory diagram schematically illustrating the configuration of a blasting apparatus 1 according to an embodiment. As shown in FIG. 1, the blasting apparatus 1 includes a blast nozzle 2, an air nozzle 3, a measuring device 4, a scanning device 5, a control device 6, and a stage 7. This blast processing apparatus 1 uses a sand blast processing technique to scrape bubbles contained in a glass plate of a glass substrate 8 for a liquid crystal display panel and form a recess in the glass substrate 8.
 ブラストノズル2は、粉末状の噴射材(研磨材)を圧縮空気の気流に乗せて噴射する装置である。このブラストノズル2には、所定量の噴射材をブラストノズル2に定量供給するための噴射材ホッパー(不図示)、及びブラストノズル2に所定圧力で圧縮空気を供給する圧縮空気供給装置(不図示)等が接続されている。ブラストノズル2に供給された噴射材は、その内部で圧縮空気と混合され、ブラストノズル2から噴射される。なお、ブラストノズル2への噴射材の供給量、及びブラストノズル2へ供給される圧縮空気の圧力等は、制御装置6によって制御される。 The blast nozzle 2 is a device that injects a powdery injection material (abrasive) on a compressed air stream. The blast nozzle 2 includes an injection material hopper (not shown) for supplying a predetermined amount of the injection material to the blast nozzle 2 and a compressed air supply device (not shown) for supplying compressed air to the blast nozzle 2 at a predetermined pressure. ) Etc. are connected. The injection material supplied to the blast nozzle 2 is mixed with compressed air inside and injected from the blast nozzle 2. The supply amount of the injection material to the blast nozzle 2 and the pressure of the compressed air supplied to the blast nozzle 2 are controlled by the control device 6.
 ブラストノズル2はその内部に弁(不図示)を有し、この弁を制御装置6によって開閉制御することによって、ブラストノズル2の噴射及び停止が切り替えられる。なお、本実施形態においては、ブラストノズル2から噴射される噴射材の噴射速度は、ブラストノズル2に供給される噴射材の単位時間あたりの供給量と、ブラストノズル2に供給される圧縮空気の単位時間あたりの供給圧力とで決まるものとする。 The blast nozzle 2 has a valve (not shown) in its interior, and by controlling the opening and closing of the valve by the control device 6, injection and stop of the blast nozzle 2 are switched. In the present embodiment, the injection speed of the injection material injected from the blast nozzle 2 depends on the supply amount per unit time of the injection material supplied to the blast nozzle 2 and the compressed air supplied to the blast nozzle 2. It is determined by the supply pressure per unit time.
 ブラストノズル2は、ステージ7の上面に載せられたガラス基板8の表面に向けて噴射材を噴射できるように配置される。ガラス基板8は、吸着保持装置(不図示)を備えたステージ7上に固定され位置決めされており、ブラストノズル2から噴射材を噴射されても、ガラス基板8は移動せず位置ずれしない。また、ブラストノズル2は、アーム状の走査装置5によってステージ7の上方で支持され、ステージ7上のガラス基板8に対して水平方向に自在に移動できかつ停止できるように構成されている。なお、走査装置5の駆動機構としては公知のものを採用でき、その動作は、制御装置6によって制御される。 The blast nozzle 2 is arranged so that the spray material can be sprayed toward the surface of the glass substrate 8 placed on the upper surface of the stage 7. The glass substrate 8 is fixed and positioned on a stage 7 equipped with a suction holding device (not shown), and even if the spray material is sprayed from the blast nozzle 2, the glass substrate 8 does not move and does not shift its position. The blast nozzle 2 is supported above the stage 7 by the arm-shaped scanning device 5 and is configured to be able to freely move in the horizontal direction with respect to the glass substrate 8 on the stage 7 and to be stopped. In addition, a well-known thing can be employ | adopted as a drive mechanism of the scanning apparatus 5, The operation | movement is controlled by the control apparatus 6. FIG.
 エアノズル3は、ガラス基板8上に存在する屑(ガラス屑)、使用済みの噴射材等からなる異物を、エア(圧縮空気)で吹き飛ばすための装置である。このエアノズル3は、特に、ブラストノズル2を用いて形成されたガラス基板8上の窪み(凹部)内の異物を除去するために用いられる。このエアノズル3には、圧縮空気供給装置(不図示)が接続されており、エアノズル3に所定圧力で圧縮空気を供給できるように構成されている。このエアノズル3の内部には弁(不図示)が備えられており、この弁を制御装置6によって開閉制御することによって、エアノズル3のエアの噴射及び停止が切り替えられる。 The air nozzle 3 is a device for blowing off foreign matter made of waste (glass waste), used spray material, etc. on the glass substrate 8 with air (compressed air). This air nozzle 3 is used in particular to remove foreign substances in a recess (concave portion) on the glass substrate 8 formed using the blast nozzle 2. The air nozzle 3 is connected to a compressed air supply device (not shown) so that compressed air can be supplied to the air nozzle 3 at a predetermined pressure. A valve (not shown) is provided inside the air nozzle 3, and the air injection and stop of the air nozzle 3 are switched by controlling the opening and closing of the valve by the control device 6.
 エアノズル3は、ブラストノズル2と同じように、走査装置5によってステージ7の上方で支持され、ステージ7上のガラス基板8に対して水平方向に自在に移動できかつ停止できるように構成されている。 As with the blast nozzle 2, the air nozzle 3 is supported above the stage 7 by the scanning device 5, and can move freely in the horizontal direction with respect to the glass substrate 8 on the stage 7 and can be stopped. .
 測定装置4は、ガラス基板8に形成された凹部の深さを測定する装置である。この測定装置4は、例えば、共焦点走査型センサからなり、凹部の内面形状を写し取るように走査して凹部内の深さを三次元的に測定できる。 The measuring device 4 is a device that measures the depth of the recess formed in the glass substrate 8. The measuring device 4 is composed of, for example, a confocal scanning type sensor, and can scan three-dimensionally the depth in the recess by scanning the inner surface shape of the recess.
 ここで、図2を参照しつつ、測定装置4の構成及び動作の詳細な説明を行う。図2は、測定装置4の構成を模式的に表した説明図である。この測定装置4は、所謂、共焦点走査型センサとして知られているものである。図2に示されるように、測定装置4は、上方に配置され光源として利用される半導体レーザ41と、この半導体レーザ41の下方において所定の角度で配置されるハーフミラー42を備える。また、測定装置4は、ハーフミラー42の下方に配置されるコリメートレンズ43と、このコリメートレンズ43と向かい合うようにその下方に配置される対物レンズ44と、対物レンズ44を支持する音叉45と、音叉45の位置を検知する位置センサ46を備える。更に、測定装置4は、ハーフミラー42の横方向に配置されるピンホール47と、受光素子48を備える。 Here, the configuration and operation of the measuring apparatus 4 will be described in detail with reference to FIG. FIG. 2 is an explanatory diagram schematically showing the configuration of the measuring device 4. This measuring device 4 is known as a so-called confocal scanning sensor. As shown in FIG. 2, the measuring device 4 includes a semiconductor laser 41 disposed above and used as a light source, and a half mirror 42 disposed at a predetermined angle below the semiconductor laser 41. The measuring device 4 includes a collimator lens 43 disposed below the half mirror 42, an objective lens 44 disposed below the collimator lens 43 so as to face the collimator lens 43, and a tuning fork 45 that supports the objective lens 44, A position sensor 46 for detecting the position of the tuning fork 45 is provided. Further, the measuring device 4 includes a pinhole 47 disposed in the lateral direction of the half mirror 42 and a light receiving element 48.
 測定装置4が、凹部9の深さを測定する際、半導体レーザ41からレーザ光401が照射される。すると、そのレーザ光401は、コリメートレンズ43で平行光となり、そして音叉45によって上下方向に高速移動している対物レンズ44を通過する。対物レンズ44を通過した光402の焦点(測定スポット)403の位置が、測定対象物であるガラス基板8の凹部9表面の位置と一致する時、その光402は凹部9表面によって強く反射される。そして、その際の反射光404は、ハーフミラー42を通過し、更に共焦点原理によってピンホール47の位置で一点に集光されるため、ピンホール47を通過して、受光素子48に受光される。位置センサ46は、受光素子48が受光した時の位置(ガラス基板8からの高さ)を測定するように構成されている。この位置センサ46の測定結果に基づいて、凹部9の深さを精密に把握できる。なお、受光素子48及び位置センサ46から出力された信号は、測定装置4と電気的に接続される制御装置6に送信される。 When the measuring device 4 measures the depth of the recess 9, a laser beam 401 is emitted from the semiconductor laser 41. Then, the laser light 401 is converted into parallel light by the collimating lens 43 and passes through the objective lens 44 that is moving at high speed in the vertical direction by the tuning fork 45. When the position of the focal point (measurement spot) 403 of the light 402 that has passed through the objective lens 44 coincides with the position of the surface of the concave portion 9 of the glass substrate 8 that is the measurement object, the light 402 is strongly reflected by the surface of the concave portion 9. . The reflected light 404 at that time passes through the half mirror 42 and is further condensed at one point at the position of the pinhole 47 by the confocal principle, so that it passes through the pinhole 47 and is received by the light receiving element 48. The The position sensor 46 is configured to measure the position (height from the glass substrate 8) when the light receiving element 48 receives light. Based on the measurement result of the position sensor 46, the depth of the recess 9 can be accurately grasped. The signals output from the light receiving element 48 and the position sensor 46 are transmitted to the control device 6 that is electrically connected to the measuring device 4.
 測定装置4は、図1に示されるように走査装置5に支持されている。この走査装置5をガラス基板8に対して水平方向(平行)に適宜、移動させることによって、図2に示される半導体レーザ41から照射された光の焦点(測定スポット)403の位置を、凹部9の内面形状をなぞるように移動させることができる。このように測定装置4を走査し、かつ連続的に凹部9内の深さを測定することによって、凹部9の内面形状を写し取ったような、凹部9内の複数個所の深さデータからなる、三次元的な凹部の深さデータを取得できる。なお、測定装置4の測定結果は、制御装置6に送信される。測定装置4の測定動作は、制御装置6によって制御される。 The measuring device 4 is supported by the scanning device 5 as shown in FIG. By appropriately moving the scanning device 5 in the horizontal direction (parallel) with respect to the glass substrate 8, the position of the focal point (measurement spot) 403 of the light irradiated from the semiconductor laser 41 shown in FIG. It can be moved so as to trace the inner surface shape. Thus, by measuring the depth in the recess 9 by scanning the measuring device 4 and continuously measuring the depth in the recess 9, it consists of depth data at a plurality of locations in the recess 9. Three-dimensional recess depth data can be acquired. The measurement result of the measuring device 4 is transmitted to the control device 6. The measuring operation of the measuring device 4 is controlled by the control device 6.
 この測定装置4を用いれば、凹部内の加工面が傾斜していても問題なく凹部内の深さを測定できる。またこの測定装置4は、従来の測定装置では把握しづらい加工面(特に、ガラス等の透明材料を鏡面加工した場合)であっても、問題なく凹部内の深さを測定できる。 If this measuring device 4 is used, the depth in the recess can be measured without problems even if the machining surface in the recess is inclined. Further, the measuring device 4 can measure the depth in the recess without any problem even on a processed surface that is difficult to grasp with a conventional measuring device (particularly when a transparent material such as glass is mirror-finished).
 図1に示されるように、制御装置6は、CPU(中央演算ユニット)61、ROM(リード・オンリー・メモリ)62、RAM(ランダム・アクセス・メモリ)63、入力部64、指示部65、表示部66、取得部67、記憶部68等の構成を備える。各構成は、データバス69を介して互いにデータ交換できるように構成されている。 As shown in FIG. 1, the control device 6 includes a CPU (Central Processing Unit) 61, a ROM (Read Only Memory) 62, a RAM (Random Access Memory) 63, an input unit 64, an instruction unit 65, a display. The configuration includes a unit 66, an acquisition unit 67, a storage unit 68, and the like. Each configuration is configured such that data can be exchanged with each other via the data bus 69.
 CPU61は、ブラスト加工装置1の動作制御のための演算処理を実行する装置である。ROM62には、ブラスト加工装置1の動作制御のための各種プログラム及び各種メニュー等が予め格納されている。RAM63は、SRAM又はフラッシュメモリ等で構成される。CPU61は、このRAM63をワーク領域として利用しながら、ROM62内の制御プログラムを実行する。その為、RAM63には、制御プログラムの実行時に発生するデータが、一時的に記憶される。 The CPU 61 is a device that executes arithmetic processing for operation control of the blasting apparatus 1. The ROM 62 stores various programs and various menus for controlling the operation of the blasting apparatus 1 in advance. The RAM 63 is configured by SRAM, flash memory, or the like. The CPU 61 executes the control program in the ROM 62 while using the RAM 63 as a work area. Therefore, data generated when the control program is executed is temporarily stored in the RAM 63.
 取得部67は、データバス69を介してCPU61に接続されると共に、測定装置4にも接続され、測定装置4からの出力データ(測定結果)を、アナログ-デジタル変換して記憶部68へ格納する。なお、測定装置4は、制御装置6のCPU61から、取得部67を介して凹部測定の指示信号が入力されることにより、ガラス基板8の凹部の深さを測定するように設定されている。 The acquisition unit 67 is connected to the CPU 61 via the data bus 69 and is also connected to the measurement device 4. The output data (measurement result) from the measurement device 4 is converted from analog to digital and stored in the storage unit 68. To do. The measuring device 4 is set to measure the depth of the concave portion of the glass substrate 8 by receiving a concave portion measurement instruction signal from the CPU 61 of the control device 6 via the acquisition unit 67.
 記憶部68は、HDD(ハードディスク・ドライブ)等からなり、CPU61の制御に基づいて、取得部67が測定装置4から取得したデータ(測定結果)等を格納し、記憶する。なお、後述する目標凹部の形状データ(深さデータ)等も、この記憶部68に記憶されている。 The storage unit 68 includes an HDD (hard disk drive) or the like, and stores and stores data (measurement results) acquired by the acquisition unit 67 from the measurement device 4 based on the control of the CPU 61. Note that the shape data (depth data) of a target recess, which will be described later, and the like are also stored in the storage unit 68.
 表示部66は、CRT又はLCD等からなり、ブラスト加工装置1の動作状態、及びROM62に格納されている各種メニュー等の表示を行う。 The display unit 66 is composed of a CRT, LCD, or the like, and displays the operating state of the blasting apparatus 1 and various menus stored in the ROM 62.
 入力部64は、キーボード及びマウス等からなり、表示部66の表示内容に従って作業者が、この入力部64を利用してブラスト加工装置1を操作する。作業者によって入力部64より入力された種々の指示情報は、CPU61の制御に基づいて、RAM63に格納される。 The input unit 64 includes a keyboard and a mouse, and an operator operates the blasting apparatus 1 using the input unit 64 according to the display content of the display unit 66. Various instruction information input from the input unit 64 by the operator is stored in the RAM 63 under the control of the CPU 61.
 指示部65は、データバス69を介して、CPU61と共にブラストノズル2に接続されており、CPU61の制御に基づいて、ブラストノズル2の噴射の指示信号を出力する。なお、この指示部65は、ブラストノズル2以外に、エアノズル3、走査装置5等に対しても、CPU61の制御に基づいて各種指示信号を出力するように設定されている。 The instruction unit 65 is connected to the blast nozzle 2 together with the CPU 61 via the data bus 69, and outputs an instruction signal for injection of the blast nozzle 2 based on the control of the CPU 61. The instruction unit 65 is set to output various instruction signals to the air nozzle 3, the scanning device 5, and the like in addition to the blast nozzle 2 based on the control of the CPU 61.
 次いで、図1及び図2と共に、図3及び図4を参照しつつ、ブラスト加工装置1を用いたブラスト加工法を説明する。図3は、ブラスト加工法の各工程の内容を模式的に表した説明図である。図3Aは、気泡を含んだガラス基板を所定位置に配置した状態を模式的に表した説明図であり、図3Bは、ブラストノズルから噴射材を噴射してガラス基板に仮凹部を形成する工程を模式的に表した説明図であり、図3Cは、仮凹部内の異物をエアで吹き飛ばし除去する工程を模式的に表した説明図であり、図3Dは、測定装置を走査させて仮凹部の深さを測定する工程を模式的に表した説明図であり、図3Eは、ブラストノズルから噴射材を噴射して仮凹部を更に掘り下げる工程を模式的に表した説明図である。図4は、図3に示されるブラスト加工法の手順を示す説明図である。 Next, a blasting method using the blasting apparatus 1 will be described with reference to FIGS. 3 and 4 together with FIGS. FIG. 3 is an explanatory view schematically showing the contents of each step of the blasting method. FIG. 3A is an explanatory view schematically showing a state in which a glass substrate containing bubbles is arranged at a predetermined position, and FIG. 3B is a step of forming a temporary recess in the glass substrate by injecting an injection material from a blast nozzle. FIG. 3C is an explanatory diagram schematically showing a process of removing the foreign matter in the temporary recess by blowing it off with air, and FIG. 3D is a diagram showing the temporary recess by scanning the measuring device. It is explanatory drawing which represented typically the process of measuring the depth of FIG. 3, FIG. 3E is explanatory drawing which represented typically the process of injecting an injection material from a blast nozzle and further digging a temporary recessed part. FIG. 4 is an explanatory diagram showing a procedure of the blasting method shown in FIG.
 図3Aに示されるように、搬送手段(不図示)によって搬送されたガラス基板8が所定位置に配置されている。このガラス基板(ガラス板)8は、その製造過程で形成された気泡81を含んでいる。このガラス基板8の厚み(ガラス板部分の厚み)は、0.7mmであるとする。このガラス基板8から気泡81を削り取るために、図1に示されるブラスト加工装置1を利用してガラス基板8の表面を、深さ(最深部の深さ)0.5mmまで掘り下げてガラス基板8に凹部を形成するものとする。なお、ブラスト加工装置1の制御装置6が有する記憶部68には、ガラス基板8に凹部を形成する際に、目標とされる目標凹部の形状データが予め記憶されている。この形状データには、目標凹部の深さ(最深部の深さ)に関する情報を含み、更に必要に応じて、目標凹部の開口部の面積等の他のデータを含む。 As shown in FIG. 3A, the glass substrate 8 transported by a transport means (not shown) is disposed at a predetermined position. The glass substrate (glass plate) 8 includes bubbles 81 formed in the manufacturing process. The thickness of this glass substrate 8 (thickness of the glass plate portion) is assumed to be 0.7 mm. In order to scrape the bubbles 81 from the glass substrate 8, the surface of the glass substrate 8 is dug down to a depth (depth of the deepest portion) of 0.5 mm by using the blast processing apparatus 1 shown in FIG. A recess is formed in Note that the storage unit 68 included in the control device 6 of the blast processing apparatus 1 stores in advance shape data of a target recess that is a target when the recess is formed in the glass substrate 8. This shape data includes information related to the depth of the target recess (depth of the deepest portion), and further includes other data such as the area of the opening of the target recess as necessary.
<第1噴射工程>
 図3Bに示されるように、所定位置に配置されたガラス基板8に向けて、ブラストノズル2より噴射材21を、第1噴射条件の下、噴射してガラス基板8に仮凹部91を形成する(図4のS1参照)。この第1噴射条件は、ガラス基板8に形成する目標凹部の深さ(最深部の深さ:D=0.5mm)に応じて、経験に基づいて決定されたものである。第1噴射条件は、目標凹部よりも小さく底が浅い仮凹部91を形成するための加工条件である。つまり、仮凹部91の深さが、目標凹部の深さ(最深部の深さD)よりも小さくなるように、第1噴射条件を設定する必要がある。本実施形態の第1噴射条件は、ブラストノズル2からの噴射材の噴射速度をv(一定)とし、噴射時間(加工時間)をT1とする。なお、噴射材の種類、ブラストノズル2の口径、ブラストノズル2の先端とガラス基板8表面との距離等の諸条件は、適宜目的に応じて設定されるものとする。このような第1噴射条件の下で、ブラストノズル2からガラス基板8に向けて噴射材21を噴射させると、図3Bに示されるように、仮凹部91が形成される。なお、第1噴射工程後、ブラストノズル2は、仮凹部91の上方から退去される。ブラスト加工では、加工途中に仮凹部内の深さを測定することはできない。そのため、噴ブラストノズル2からの噴射を一旦止めて、ブラスト加工を停止している。なお、ガラス基板8中の気泡81は、ガラス基板8の厚みに対して充分薄い。その為、気泡81の存在によって、第1噴射工程におけるガラス基板8の加工量は、影響を受けないものと考える。
<First injection process>
As shown in FIG. 3B, the spray material 21 is sprayed from the blast nozzle 2 toward the glass substrate 8 disposed at a predetermined position under the first spraying condition to form a temporary recess 91 in the glass substrate 8. (See S1 in FIG. 4). This first injection condition is determined based on experience according to the depth of the target recess formed in the glass substrate 8 (depth of the deepest portion: D = 0.5 mm). The first injection condition is a processing condition for forming the temporary recess 91 that is smaller than the target recess and has a shallow bottom. That is, it is necessary to set the first injection condition so that the depth of the temporary recess 91 is smaller than the depth of the target recess (depth D of the deepest portion). In the first injection condition of the present embodiment, the injection speed of the injection material from the blast nozzle 2 is v (constant), and the injection time (processing time) is T1. Various conditions such as the type of spray material, the diameter of the blast nozzle 2 and the distance between the tip of the blast nozzle 2 and the surface of the glass substrate 8 are appropriately set according to the purpose. Under such first injection conditions, when the injection material 21 is injected from the blast nozzle 2 toward the glass substrate 8, a temporary recess 91 is formed as shown in FIG. 3B. Note that the blast nozzle 2 is retracted from above the temporary recess 91 after the first injection step. In blasting, the depth in the temporary recess cannot be measured during processing. For this reason, the injection from the injection blast nozzle 2 is temporarily stopped to stop the blasting process. The bubbles 81 in the glass substrate 8 are sufficiently thin with respect to the thickness of the glass substrate 8. Therefore, it is considered that the processing amount of the glass substrate 8 in the first injection process is not affected by the presence of the bubbles 81.
<第1異物除去工程>
 第1噴射工程後の仮凹部91内には、通常、ガラス基板8が削られた屑(ガラス屑)、使用済みの噴射材等の異物が存在している。仮凹部91に異物が存在したままの状態であると、測定装置4によって仮凹部91の深さを精度良く測定することが難しくなる。その為、図3Cに示されるように、エアノズル3を仮凹部91の上方に配置し、このエアノズル3からエア(圧縮空気)31をガラス基板8の仮凹部91に向けて吹き付けることによって、仮凹部内の異物を吹き飛ばし、除去する(図4のS2参照)。なお、第1異物除去工程後、エアノズル3は、仮凹部91の上方から退去する。
<First foreign matter removing step>
In the temporary recess 91 after the first injection step, there are usually foreign matters such as scraps (glass scraps) from which the glass substrate 8 has been cut and used sprays. If the foreign object remains in the temporary recess 91, it is difficult to accurately measure the depth of the temporary recess 91 by the measuring device 4. Therefore, as shown in FIG. 3C, the air nozzle 3 is disposed above the temporary recess 91, and air (compressed air) 31 is blown from the air nozzle 3 toward the temporary recess 91 of the glass substrate 8. The foreign matter inside is blown off and removed (see S2 in FIG. 4). Note that the air nozzle 3 moves away from above the temporary recess 91 after the first foreign matter removing step.
<第1測定工程>
 図3Dに示されるように、異物が除去された仮凹部91の上方に測定装置4を配置し、この測定装置4をガラス基板8に対して水平方向に走査させて、仮凹部91の深さデータを取得する。測定装置4は、仮凹部91の内面形状を写し取るように仮凹部91の上方を繰り返し往復移動しながら、仮凹部91の深さを測定する。このようにして測定された仮凹部91の深さデータに基づいて、仮凹部91の内面形状を、三次元的に把握できる(図4のS3参照)。
<First measurement process>
As shown in FIG. 3D, the measuring device 4 is disposed above the temporary recess 91 from which foreign matter has been removed, and the measuring device 4 is scanned in the horizontal direction with respect to the glass substrate 8 to determine the depth of the temporary recess 91. Get the data. The measuring device 4 measures the depth of the temporary recess 91 while repeatedly reciprocating above the temporary recess 91 so as to copy the shape of the inner surface of the temporary recess 91. Based on the depth data of the temporary recess 91 measured in this way, the inner surface shape of the temporary recess 91 can be grasped three-dimensionally (see S3 in FIG. 4).
 本実施形態では、前記仮凹部91の深さデータを利用して、仮凹部91の最も深い個所(最深部)の深さdを、制御装置6におけるCPU61の制御に基づいて、決定する(図4のS4参照)。 In the present embodiment, the depth d of the deepest portion (the deepest portion) of the temporary recess 91 is determined based on the control of the CPU 61 in the control device 6 using the depth data of the temporary recess 91 (FIG. 4 S4).
 図5は、測定装置を走査させて連続的に測定された仮凹部の深さの測定結果を模式的に表した説明図である。図5には、ガラス基板8に形成された仮凹部91の断面が、実線で示されている。また、図5には、仮凹部91の断面と共に、目標凹部90の仮想的な断面が、破線で示されている。測定装置が、仮凹部91の上方を横切ると、測定装置の測定スポット(焦点)が仮凹部91の表面をなぞるように移動する。この移動の間に、各測定地点における仮凹部91の深さd1~d5が測定される。図5には、説明の便宜上、5個所の深さd1~d5が示されている。測定間隔は、目的に応じて適宜設定される。例えば、図5に示される仮凹部91の断面においては、深さd3が最も大きいと判断される。なお、測定装置は、図5に示される仮凹部91の断面とは異なる断面においても、同様にして連続的に仮凹部91の深さを測定する。このようにして測定された仮凹部91のすべての深さデータから、最深部の深さdが決定される。 FIG. 5 is an explanatory view schematically showing a measurement result of the depth of the temporary recesses continuously measured by scanning the measuring device. In FIG. 5, a cross section of the temporary recess 91 formed in the glass substrate 8 is indicated by a solid line. Further, in FIG. 5, a virtual cross section of the target concave portion 90 is shown with a broken line together with a cross section of the temporary concave portion 91. When the measuring device crosses over the temporary recess 91, the measurement spot (focal point) of the measuring device moves so as to trace the surface of the temporary recess 91. During this movement, the depths d1 to d5 of the temporary recess 91 at each measurement point are measured. FIG. 5 shows five depths d1 to d5 for convenience of explanation. The measurement interval is appropriately set according to the purpose. For example, in the cross section of the temporary recess 91 shown in FIG. 5, it is determined that the depth d3 is the largest. Note that the measuring apparatus continuously measures the depth of the temporary recess 91 in a cross section different from the cross section of the temporary recess 91 shown in FIG. The depth d of the deepest part is determined from all the depth data of the temporary recesses 91 thus measured.
 上記のように、決定された仮凹部91の最深部の深さdに基づいて、仮凹部91を更に掘り下げる目標距離(追加加工量)が決定され、更に、この目標距離に応じた加工条件(第2噴射条件)が決定される。本実施形態においては、目標凹部90の最深部の深さDと、決定された仮凹部91の最深部の深さdとの差分(D-d)を取り、この差分(D-d)が前記目標距離とされる。そしてこの目標距離を利用して、第2噴射条件が決定される。 As described above, based on the determined depth d of the deepest portion of the temporary recess 91, a target distance (additional processing amount) for further digging the temporary recess 91 is determined, and further, processing conditions ( (Second injection condition) is determined. In the present embodiment, the difference (D−d) between the depth D of the deepest portion of the target recess 90 and the depth d of the determined deepest portion of the temporary recess 91 is taken, and this difference (D−d) The target distance is used. Then, the second injection condition is determined using this target distance.
 本実施形態のブラスト加工法は、要するに、加工途中に、前記目標距離を利用して(フィードバックして)残りの加工量を把握し、加工条件を調節するものである。 In short, the blasting method of the present embodiment is to adjust the processing conditions by grasping the remaining processing amount using the target distance (feedback) during the processing.
 例えば、第2噴射工程におけるブラストノズル2の噴射速度を、第1噴射工程と同様にv(一定速度)と設定した場合、第2噴射工程(追加工程)における残りの噴射時間T2は、T2=T1(D-d)/dとなる(図4のS6参照)。 For example, when the injection speed of the blast nozzle 2 in the second injection process is set to v (constant speed) as in the first injection process, the remaining injection time T2 in the second injection process (addition process) is T2 = T1 (Dd) / d (see S6 in FIG. 4).
 なお、前記第1噴射工程における第1噴射条件は、仮凹部91の最深部の深さdが、目標凹部の最深部の深さDよりも小さくなるように設定されている。その為、通常、仮凹部91の最深部の深さdが、目標凹部91の最深部の深さD以上になることはない。しかしながら、湿度等の影響を受けて、仮凹部91の最深部の深さdが、目標凹部90の最深部の深さD以上になることも考えられる。図6は、目標凹部よりも深い凹部の断面を模式的に表した説明図である。図6に示されるように、加工条件によっては、第1噴射工程で既にガラス基板8に、目標凹部の最深部の深さDよりも深い凹部91A(深さd11>D)が形成されてしまうことも考えられる。このような凹部91Aを、第2噴射工程で更に掘り下げると、ガラス基板8に貫通孔が形成され、それがガラス基板8の破損等の原因となる。その為、本実施形態では、第2噴射条件を決定する前に、仮凹部91の最深部の深さdが目標凹部の最深部の深さD以上となる場合は排除し、仮凹部91を更に掘り下げないようにしている(図4のS5参照)。 The first injection condition in the first injection step is set so that the depth d of the deepest portion of the temporary recess 91 is smaller than the depth D of the deepest portion of the target recess. Therefore, normally, the depth d of the deepest portion of the temporary recess 91 does not exceed the depth D of the deepest portion of the target recess 91. However, it is also conceivable that the depth d of the deepest portion of the temporary recess 91 is greater than or equal to the depth D of the deepest portion of the target recess 90 due to the influence of humidity or the like. FIG. 6 is an explanatory view schematically showing a cross section of a recess deeper than the target recess. As shown in FIG. 6, depending on the processing conditions, a recess 91A (depth d11> D) deeper than the deepest depth D of the target recess is already formed in the glass substrate 8 in the first injection step. It is also possible. If such a recess 91 </ b> A is further dug down in the second spraying step, a through hole is formed in the glass substrate 8, which causes damage to the glass substrate 8. Therefore, in this embodiment, before determining the second injection condition, the case where the depth d of the deepest portion of the temporary recess 91 is equal to or greater than the depth D of the deepest portion of the target recess is eliminated, and the temporary recess 91 is removed. Further, it is not dug down (see S5 in FIG. 4).
<第2噴射工程>
 図3Eに示されるように、ブラストノズル2から第2噴射条件の下、仮凹部に向けて噴射材21を噴射すると、仮凹部が掘り下げられて、目標凹部の形状に近似した形状の凹部9がガラス基板8上に形成される(図4のS7参照)。
<Second injection process>
As shown in FIG. 3E, when the injection material 21 is injected from the blast nozzle 2 toward the temporary recesses under the second injection condition, the temporary recesses are dug down, and the recesses 9 having a shape approximate to the shape of the target recesses are formed. It is formed on the glass substrate 8 (see S7 in FIG. 4).
 このように、図3及び図4に示される手順で、ガラス基板8をブラストノズル2を利用して加工すると、所定形状の凹部9が精度良く得られる。そして、複数個の凹部9を、1枚のガラス基板8に対して、又は複数枚のガラス基板8に対して形成した場合に、各凹部9の形状(大きさ)のばらつきを抑制できる。 As described above, when the glass substrate 8 is processed using the blast nozzle 2 by the procedure shown in FIGS. 3 and 4, the concave portion 9 having a predetermined shape can be obtained with high accuracy. And when the several recessed part 9 is formed with respect to the glass substrate 8 of 1 sheet, or the glass substrate 8 of several sheets, the dispersion | variation in the shape (size) of each recessed part 9 can be suppressed.
 以下、他の実施形態に係るブラスト加工装置及びブラスト加工法について説明する。
〔第2実施形態〕
 上記実施形態においては、図5等に示されるように、測定装置によって取得された仮凹部91の深さデータに基づいて仮凹部91の最深部の深さdを決定し、この最深部の深さdを第2噴射条件の決定に利用していたが、他の実施形態においては、これに限られない。例えば、仮凹部の深さの平均値を利用して、第2噴射条件を決定してもよい。図7は、仮凹部91の断面を模式的に表した説明図である。図7には、中央部分の特定の範囲x1内において、測定装置によって測定された仮凹部91の深さd21~d25が示されている。図7に示されるように仮凹部91内の特定の範囲x1を適宜定め、この範囲x1内にある全ての測定個所における深さd21~d25等に基づいて、仮凹部の深さの平均値dxを求めてもよい。この平均値dxを利用して、目標凹部の最深部の深さDとの差分(D-dx)を求めても良い。そして、この差分(D-dx)を利用して、第2噴射条件を決定しても良い。
Hereinafter, blasting apparatuses and blasting methods according to other embodiments will be described.
[Second Embodiment]
In the above embodiment, as shown in FIG. 5 and the like, the depth d of the deepest portion of the temporary recess 91 is determined based on the depth data of the temporary recess 91 acquired by the measuring device, and the depth of this deepest portion is determined. However, in other embodiments, the present invention is not limited to this. For example, the second injection condition may be determined using an average value of the depth of the temporary recesses. FIG. 7 is an explanatory view schematically showing a cross section of the temporary recess 91. FIG. 7 shows the depths d21 to d25 of the temporary recess 91 measured by the measuring device within the specific range x1 of the central portion. As shown in FIG. 7, a specific range x1 in the temporary recess 91 is appropriately determined, and the average value dx of the temporary recess depth based on the depths d21 to d25 and the like at all the measurement points in the range x1. You may ask for. By using this average value dx, a difference (D−dx) from the depth D of the deepest part of the target recess may be obtained. Then, the second injection condition may be determined using this difference (D−dx).
 図8は、他の仮凹部の断面を模式的に表した説明図である。図8に示される仮凹部91Bは、その中央部分が盛り上がっており、その周囲が窪んでいる。ガラス基板8中に硬い異物等が存在していると、この異物が、ガラス基板8に向けて噴射される噴射材から、ガラス基板8を保護するように作用し、かつ噴射材の気流が乱れると考えられる。このような場合に、その異物の下側部分は比較的、削られずに残り、図8に示されるような形状の仮凹部91Bが形成される。このような場合以外にも、図8に示されるような仮凹部91Bが形成されることがある。このような複雑な内面形状を有する仮凹部91Bに対しても、例えば、仮凹部91B内において中央部分を含む特定の範囲x2を適宜定め、この範囲x2内にある全ての測定個所における深さd31~d39等に基づいて、仮凹部91Bの深さの平均値dxを求めてもよい。この平均値dxを利用して、目標凹部の最深部の深さDとの差分(D-dx)を求め、この差分(D-dx)を利用して、第2噴射条件を決定しても良い。 FIG. 8 is an explanatory view schematically showing a cross section of another temporary recess. The temporary recess 91 </ b> B shown in FIG. 8 is raised at the center, and the periphery thereof is recessed. If a hard foreign material or the like is present in the glass substrate 8, the foreign material acts to protect the glass substrate 8 from the spray material sprayed toward the glass substrate 8, and the air flow of the spray material is disturbed. it is conceivable that. In such a case, the lower part of the foreign material remains relatively uncut and a temporary recess 91B having a shape as shown in FIG. 8 is formed. In addition to such a case, a temporary recess 91B as shown in FIG. 8 may be formed. For the temporary concave portion 91B having such a complicated inner surface shape, for example, a specific range x2 including the central portion is appropriately determined in the temporary concave portion 91B, and the depth d31 at all measurement points in the range x2 is determined. Based on ˜d39 and the like, the average depth dx of the temporary recess 91B may be obtained. Using this average value dx, a difference (D−dx) from the depth D of the deepest part of the target recess is obtained, and the second injection condition is determined using this difference (D−dx). good.
〔第3実施形態〕
 目標凹部の最深部の深さDと、仮凹部の深さdとに基づいて求められた差分(D-d)を利用して第2噴射条件を決定する場合、例えば、この差分(D-d)に対応させるための、噴射速度及び噴射時間等の関係を示す噴射条件テーブルを利用してもよい。この噴射条件テーブルとは、前記差分に対応させるために、噴射速度及び噴射時間等の関係が実験データ等に基づいて予め定められたものであり、この噴射条件テーブルは、制御装置6の記憶部68に予め記憶されている。そして、この噴射条件テーブルは、前記差分を利用して第2噴射条件を決定する際に、CPU61の制御の下、参照される。例えば、噴射条件テーブルにおいて、差分(D-d)に対応するように、噴射条件vx及び噴射時間Txが予め定められている場合、第2噴射条件としては、これらの噴射条件vx及び噴射時間Txが選択されることになる。
[Third Embodiment]
When the second injection condition is determined using the difference (D−d) obtained based on the depth D of the deepest portion of the target recess and the depth d of the temporary recess, for example, the difference (D− You may utilize the injection condition table which shows relations, such as injection speed and injection time, corresponding to d). In this injection condition table, in order to correspond to the difference, the relationship between the injection speed and the injection time is determined in advance based on experimental data and the like. 68 is stored in advance. The injection condition table is referred to under the control of the CPU 61 when the second injection condition is determined using the difference. For example, when the injection condition vx and the injection time Tx are determined in advance in the injection condition table so as to correspond to the difference (D−d), the second injection condition is the injection condition vx and the injection time Tx. Will be selected.
〔第4実施形態〕
 図1等に示されるブラスト加工装置1を利用して、図3Eに示されるように、ガラス基板8上に形成された凹部9に対して、更に後処理を行ってもよい。図9は、ガラス基板8上に形成された凹部9に更に処理を加えるためのブラスト加工法の各工程を模式的に表した説明図であり、図9Fは、凹部内の異物をエアで吹き飛ばし除去する工程を模式的に表した説明図であり、図9Gは、測定装置を走査させて凹部の深さを測定する工程を模式的に表した説明図である。図10は、図9に示されるブラスト加工法の手順を示す説明図である。
[Fourth Embodiment]
Using the blast processing apparatus 1 shown in FIG. 1 and the like, as shown in FIG. 3E, the post-processing may be further performed on the concave portion 9 formed on the glass substrate 8. FIG. 9 is an explanatory view schematically showing each step of the blasting method for further processing the recess 9 formed on the glass substrate 8, and FIG. 9F blows off the foreign matter in the recess with air. FIG. 9G is an explanatory diagram schematically showing a step of measuring the depth of the concave portion by scanning the measuring device. FIG. 10 is an explanatory view showing the procedure of the blasting method shown in FIG.
<第2異物除去工程>
 図9Fには、図3Eに示される第2噴射工程後のガラス基板8が配置されている。このガラス基板8に形成された凹部9内には、通常、ガラス屑、噴射材等の異物が存在している。その為、この工程では、エアノズル3を再び利用して、凹部9にエア31を吹き付けて、凹部9内の異物を吹き飛ばす(図10のS8参照)。
<Second foreign matter removing step>
In FIG. 9F, the glass substrate 8 after the second injection step shown in FIG. 3E is arranged. In the concave portion 9 formed on the glass substrate 8, there are usually foreign matters such as glass scraps and spray materials. Therefore, in this step, the air nozzle 3 is used again to blow the air 31 to the recess 9 to blow away the foreign matter in the recess 9 (see S8 in FIG. 10).
<第2測定工程>
 図9Gに示されるように、異物を除去した後の凹部9に対して、測定装置4を走査させて凹部9の深さを測定する。ここでの測定工程は、測定対象物が異なること以外は、前記第1測定工程と同様である。第2測定工程においても、測定装置4が、凹部9の内面形状を写し取るように走査して凹部9の深さを測定する(図10のS9参照)。
<Second measurement process>
As shown in FIG. 9G, the depth of the concave portion 9 is measured by causing the measuring device 4 to scan the concave portion 9 after removing the foreign matter. The measurement step here is the same as the first measurement step except that the measurement object is different. Also in the second measuring step, the measuring device 4 scans the inner surface shape of the concave portion 9 to measure the depth of the concave portion 9 (see S9 in FIG. 10).
 図11は、ガラス基板8に形成された凹部9の断面を模式的に表した説明図である。図12は、ガラス基板8に形成された欠陥凹部9Aの断面を模式的に表した説明図である。図13は、ガラス基板8に形成された他の欠陥凹部9Bの断面を模式的に表した説明図である。なお、図11~図13には、それぞれ最深部の深さがDである目標凹部90の仮想的な断面が、各凹部の断面と対応するように重ねられて示されている。本発明のブラスト加工方法及びブラスト加工装置を利用すれば、通常は、図11に示されるような、目標凹部の形状と近い形状の凹部9が形成される。しかしながら、湿度が急激に変化した場合等においては、図12又は図13に示されるような欠陥凹部が形成されることも考えられる。 FIG. 11 is an explanatory diagram schematically showing a cross section of the recess 9 formed in the glass substrate 8. FIG. 12 is an explanatory view schematically showing a cross section of the defect recess 9 </ b> A formed in the glass substrate 8. FIG. 13 is an explanatory view schematically showing a cross section of another defective recess 9 </ b> B formed in the glass substrate 8. In FIGS. 11 to 13, virtual cross sections of the target recesses 90 each having the deepest portion having a depth D are overlapped so as to correspond to the cross sections of the respective recesses. If the blasting method and the blasting apparatus of the present invention are used, the concave portion 9 having a shape close to the shape of the target concave portion as shown in FIG. 11 is usually formed. However, when the humidity changes abruptly, it is conceivable that a defective recess as shown in FIG. 12 or 13 is formed.
 図12に示される欠陥凹部9Aは、目標凹部90よりも深く掘り下げられたものである。この欠陥凹部9Aは、その中央部分が盛り上がっており、図8に示される仮凹部と同様、異物等がガラス基板8中に存在していた為に形成されたものである。このような、予定よりも深く掘り下げられて形成された欠陥凹部9Aは、ガラス基板8の破損等の原因となるため、検知する必要がある。 The defect recess 9 </ b> A shown in FIG. 12 is deeper than the target recess 90. The defect concave portion 9A is formed because the central portion is raised, and foreign matter or the like is present in the glass substrate 8 as in the temporary concave portion shown in FIG. Such a defective recess 9A formed by being dug deeper than planned causes damage to the glass substrate 8 and needs to be detected.
 図13に示される欠陥凹部9Bは、その深さ(最深部の深さ)は、目標凹部の深さ(最深部の深さD)を越えるものではないが、その大きさ(容積)が目標凹部よりも、かなり小さくなっている。ところで、ガラス基板8に形成された凹部の大きさがばらつくと、例えば、その凹部を補修するために充填される樹脂量も不規則となり、作業性が悪くなる。このような事情等によって、凹部の形状(大きさ)を一定に保ちたいことがある。このような場合に、図13に示されるような、予定よりも形状が小さくなった欠陥凹部9Bを、検知する必要がある。 The depth (depth of the deepest portion) of the defect concave portion 9B shown in FIG. 13 does not exceed the depth of the target concave portion (depth D of the deepest portion), but the size (volume) is the target. It is considerably smaller than the recess. By the way, if the size of the recesses formed in the glass substrate 8 varies, for example, the amount of resin filled for repairing the recesses becomes irregular and the workability deteriorates. Due to such circumstances, there is a case where it is desired to keep the shape (size) of the concave portion constant. In such a case, it is necessary to detect a defective recess 9B whose shape is smaller than planned as shown in FIG.
 目標凹部90の形状に近似した正常の凹部9(図11参照)と、欠陥凹部9A及び9Bとを判別するために、前記第2測定工程で測定された凹部の深さデータと、予め定められている目標凹部の深さデータとを比較し、この比較結果に基づいて、欠陥凹部を検出してもよい。 In order to discriminate between the normal concave portion 9 (see FIG. 11) approximate to the shape of the target concave portion 90 and the defective concave portions 9A and 9B, the depth data of the concave portion measured in the second measurement step is determined in advance. The depth data of the target concave portion may be compared, and the defective concave portion may be detected based on the comparison result.
 図12に示される凹部を検出する場合には、例えば、凹部の特定断面における最深部の深さd41と、目標凹部の最深部の深さDとの差分(D-d41)を取り、この差分(D-d41)と、予め定められている許容値とを比較することによって、凹部の欠陥を検出してもよい。なお、最深部の深さd41の決定方法は、前記仮凹部における最深部の深さの決定方法と同様である。 When detecting the concave portion shown in FIG. 12, for example, the difference (D−d41) between the depth d41 of the deepest portion in the specific cross section of the concave portion and the depth D of the deepest portion of the target concave portion is taken. The defect of the recess may be detected by comparing (D-d41) with a predetermined allowable value. The method for determining the depth d41 of the deepest part is the same as the method for determining the depth of the deepest part in the temporary recess.
 なお、目標凹部90の深さデータとしては、最深部の深さデータ(深さD)のみならず、その他の個所の深さデータを利用してもよい(例えば、図13に示される目標凹部90の深さDx参照)。例えば、凹部の特定断面における複数個の深さデータと、その凹部の特定断面に対応する目標凹部の断面における予め定められた複数個の深さデータとの間でそれぞれ差分を取り、各差分が許容値を超えた場合に、その凹部を欠陥凹部と判定しても良い。例えば、図13に示される凹部9Bの場合において、凹部9Bの特定断面における複数個の深さデータのうちの1つがd51であり、前記予め定められた複数個の深さデータのうちの1つがDxであるとする。この場合、これらの差分(Dx-d51)が、予め定められている許容値を超えることによって、この凹部9Bが欠陥凹部であると判断される。 As the depth data of the target recess 90, not only the depth data (depth D) of the deepest portion but also other portion depth data may be used (for example, the target recess shown in FIG. 13). 90 depth Dx). For example, a difference is taken between a plurality of depth data in a specific cross section of the recess and a plurality of predetermined depth data in a cross section of the target recess corresponding to the specific cross section of the recess. When the allowable value is exceeded, the concave portion may be determined as a defective concave portion. For example, in the case of the recess 9B shown in FIG. 13, one of the plurality of depth data in the specific cross section of the recess 9B is d51, and one of the predetermined plurality of depth data is Let Dx. In this case, when the difference (Dx−d51) exceeds a predetermined allowable value, it is determined that the recess 9B is a defective recess.

Claims (15)

  1.  噴射材を加工対象物の表面に向けて噴射して、その表面に予め定められた形状を有する目標凹部に従って凹部を形成するブラスト加工法であって、
     前記目標凹部よりも小さく底が浅い仮凹部を形成するために、前記加工対象物の表面に向けて前記噴射材を噴射して、前記表面を掘り下げる第1噴射工程と、
     前記仮凹部に向けてガスを吹き付け、前記仮凹部内の異物を除去する第1異物除去工程と、
     異物が除去された前記仮凹部内の内面形状を写し取るように前記仮凹部の深さを測定する第1測定工程と、
     予め定められている前記目標凹部の深さと、前記仮凹部の深さの測定結果とに基づいて、前記仮凹部を更に掘り下げる目標距離を決定する決定工程と、
     決定された前記目標距離に応じて前記噴射材を噴射して、前記仮凹部を更に掘り下げる第2噴射工程と、を備えることを特徴とするブラスト加工法。
    A blasting method in which a spray material is sprayed toward the surface of an object to be processed, and a recess is formed in accordance with a target recess having a predetermined shape on the surface,
    A first injection step of injecting the injection material toward the surface of the workpiece and digging the surface in order to form a temporary recess that is smaller than the target recess and shallow at the bottom;
    A first foreign matter removing step of blowing gas toward the temporary concave portion to remove foreign matters in the temporary concave portion;
    A first measurement step of measuring the depth of the temporary recess so as to copy the shape of the inner surface of the temporary recess from which foreign matter has been removed;
    A determination step of determining a target distance for further digging the temporary recess, based on a predetermined depth of the target recess and a measurement result of the depth of the temporary recess;
    A blasting method comprising: a second injection step of injecting the injection material according to the determined target distance to further dig up the temporary recess.
  2.  決定工程において、目標凹部の深さと、仮凹部の最深部における深さとの差分に基づいて、仮凹部を更に掘り下げる目標距離を決定する請求項1に記載のブラスト加工法。 The blasting method according to claim 1, wherein, in the determining step, a target distance for further digging the temporary recess is determined based on a difference between a depth of the target recess and a depth at the deepest portion of the temporary recess.
  3.  決定工程において、目標凹部の深さと、仮凹部の平均深さとの差分に基づいて、仮凹部を更に掘り下げる目標距離を決定する請求項1に記載のブラスト加工法。 The blasting method according to claim 1, wherein, in the determining step, a target distance for further digging the temporary recess is determined based on a difference between a depth of the target recess and an average depth of the temporary recess.
  4.  第2噴射工程において、決定工程により決定された目標距離に応じた噴射速度及び噴射時間で、噴射材を噴射する請求項1~3の何れか1項に記載のブラスト加工法。 The blasting method according to any one of claims 1 to 3, wherein in the second injection step, the injection material is injected at an injection speed and an injection time corresponding to the target distance determined in the determination step.
  5.  第1測定工程において、共焦点走査型センサを利用して仮凹部の内面形状を写し取るように前記仮凹部の深さを測定する請求項1~4の何れか1項に記載のブラスト加工法。 The blasting method according to any one of claims 1 to 4, wherein in the first measurement step, the depth of the temporary recess is measured using a confocal scanning sensor so as to copy the shape of the inner surface of the temporary recess.
  6.  仮凹部を掘り下げた後に形成された凹部に向けてガスを吹き付け、前記凹部内の異物を除去する第2異物除去工程と、
     第2異物除去工程により異物が除去された前記凹部の内面形状を写し取るように、前記凹部の深さを測定する第2測定工程と、
     目標凹部の深さと、第2測定工程により測定された前記凹部の深さの測定結果とに基づいて、欠陥凹部を検出する検出工程と、を備える請求項1~5の何れか1項に記載のブラスト加工法。
    A second foreign matter removing step of blowing gas toward the concave portion formed after digging down the temporary concave portion and removing the foreign matter in the concave portion;
    A second measuring step for measuring the depth of the concave portion so as to copy the shape of the inner surface of the concave portion from which the foreign matter has been removed by the second foreign matter removing step;
    The detection step of detecting a defective recess based on the depth of the target recess and the measurement result of the depth of the recess measured in the second measurement step, according to any one of claims 1 to 5. Blasting method.
  7.  第2測定工程において、共焦点走査型センサを利用して凹部の内面形状を写し取るように前記凹部の深さを測定する請求項6に記載のブラスト加工法。 The blasting method according to claim 6, wherein in the second measuring step, the depth of the concave portion is measured so as to copy the inner shape of the concave portion using a confocal scanning sensor.
  8.  加工対象物が、液晶表示パネル用のガラス基板である請求項1~7の何れか1項に記載のブラスト加工法。 The blasting method according to any one of claims 1 to 7, wherein the object to be processed is a glass substrate for a liquid crystal display panel.
  9.  加工対象物の表面に、予め定められた形状を有する目標凹部に従って、凹部を形成するブラスト加工装置であって、
     上面に前記加工対象物が載せられるステージと、
     前記ステージ上の加工対象物の表面に向けて噴射材を噴射して、前記表面を掘り下げ、前記表面に前記目標凹部よりも小さく底が浅い仮凹部を形成するブラストノズルと、
     前記仮凹部に向けてガスを吹き付け、前記仮凹部内の異物を除去するエアノズルと、
     異物が除去された前記仮凹部の内面形状を写し取るように前記仮凹部の深さを測定する測定手段と、
     予め定められている前記目標凹部の深さと、前記仮凹部の深さの測定結果とに基づいて、前記仮凹部を更に掘り下げる目標距離を決定する決定手段と、を備え、
     前記ブラストノズルが、前記目標距離に応じて前記噴射材を噴射して前記仮凹部を更に掘り下げる、ことを特徴とするブラスト加工装置。
    A blasting apparatus for forming a recess according to a target recess having a predetermined shape on the surface of a workpiece,
    A stage on which the workpiece is placed;
    A blast nozzle that injects an injection material toward the surface of the workpiece on the stage, digs up the surface, and forms a temporary recess that is smaller than the target recess and has a shallow bottom on the surface;
    An air nozzle that blows gas toward the temporary recess and removes foreign matter in the temporary recess;
    Measuring means for measuring the depth of the temporary recess so as to copy the shape of the inner surface of the temporary recess from which foreign matter has been removed;
    Determining means for determining a target distance for further digging the temporary recess, based on a predetermined depth of the target recess and a measurement result of the depth of the temporary recess;
    The blast processing apparatus, wherein the blast nozzle sprays the spray material according to the target distance to further dig up the temporary recess.
  10.  決定手段が、目標凹部の深さと、仮凹部の最深部における深さとの差分に基づいて、仮凹部を更に掘り下げる目標距離を決定する請求項9に記載のブラスト加工装置。 10. The blast processing apparatus according to claim 9, wherein the determining means determines a target distance for further digging the temporary concave portion based on a difference between a depth of the target concave portion and a depth at the deepest portion of the temporary concave portion.
  11.  決定手段が、目標凹部の深さと、仮凹部の平均深さとの差分に基づいて、仮凹部を更に掘り下げる目標距離を決定する請求項9に記載のブラスト加工装置。 10. The blast processing apparatus according to claim 9, wherein the determining means determines a target distance for further digging the temporary recess based on a difference between the depth of the target recess and the average depth of the temporary recess.
  12.  ブラストノズルが、決定手段により決定された目標距離に応じた噴射速度及び噴射時間で、噴射材を噴射する請求項9~11の何れか1項に記載のブラスト加工装置。 The blasting apparatus according to any one of claims 9 to 11, wherein the blast nozzle injects the injection material at an injection speed and an injection time corresponding to the target distance determined by the determining means.
  13.  測定手段が、共焦点走査型センサからなる請求項9~12の何れか1項に記載のブラスト加工装置。 The blasting apparatus according to any one of claims 9 to 12, wherein the measuring means comprises a confocal scanning sensor.
  14.  エアノズルが、仮凹部を掘り下げた後に形成された凹部に向けてガスを吹き付け、前記凹部内の異物を除去し、
     測定手段が、異物が除去された前記凹部の内面形状を写し取るように前記凹部の深さを測定し、
     目標凹部の深さと、前記凹部の深さの測定結果とに基づいて、欠陥凹部を検出する検出手段を備える、請求項9~13の何れか1項に記載のブラスト加工装置。
    The air nozzle blows gas toward the concave portion formed after digging the temporary concave portion, and removes foreign matter in the concave portion,
    The measuring means measures the depth of the recess so as to copy the inner surface shape of the recess from which foreign matter has been removed,
    The blasting apparatus according to any one of claims 9 to 13, further comprising detection means for detecting a defective recess based on a depth of the target recess and a measurement result of the depth of the recess.
  15.  加工対象物が、液晶表示パネル用のガラス基板である請求項9~14の何れか1項に記載のブラスト加工装置。 The blasting apparatus according to any one of claims 9 to 14, wherein the object to be processed is a glass substrate for a liquid crystal display panel.
PCT/JP2010/068042 2010-01-07 2010-10-14 Blast machining method and blast machining device WO2011083605A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010001729 2010-01-07
JP2010-001729 2010-01-07

Publications (1)

Publication Number Publication Date
WO2011083605A1 true WO2011083605A1 (en) 2011-07-14

Family

ID=44305345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068042 WO2011083605A1 (en) 2010-01-07 2010-10-14 Blast machining method and blast machining device

Country Status (1)

Country Link
WO (1) WO2011083605A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642925A (en) * 1992-07-24 1994-02-18 Koyo Mach Ind Co Ltd System for measuring outside diameter of work of small diameter
JPH0763508A (en) * 1993-08-31 1995-03-10 Ishikawajima Harima Heavy Ind Co Ltd Laser microscope
JPH08197407A (en) * 1995-01-20 1996-08-06 Fujikura Ltd V groove working method, v groove connector and mold
JPH1015805A (en) * 1996-07-02 1998-01-20 Tokyo Seimitsu Co Ltd Wire saw
JP2004050347A (en) * 2002-07-19 2004-02-19 Mitsutoyo Corp Grinding method and surface grinder using this method or grinding center
JP2008229765A (en) * 2007-03-19 2008-10-02 Toyohashi Univ Of Technology Air blasting method and device for hard and brittle material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642925A (en) * 1992-07-24 1994-02-18 Koyo Mach Ind Co Ltd System for measuring outside diameter of work of small diameter
JPH0763508A (en) * 1993-08-31 1995-03-10 Ishikawajima Harima Heavy Ind Co Ltd Laser microscope
JPH08197407A (en) * 1995-01-20 1996-08-06 Fujikura Ltd V groove working method, v groove connector and mold
JPH1015805A (en) * 1996-07-02 1998-01-20 Tokyo Seimitsu Co Ltd Wire saw
JP2004050347A (en) * 2002-07-19 2004-02-19 Mitsutoyo Corp Grinding method and surface grinder using this method or grinding center
JP2008229765A (en) * 2007-03-19 2008-10-02 Toyohashi Univ Of Technology Air blasting method and device for hard and brittle material

Similar Documents

Publication Publication Date Title
JP6450731B2 (en) Non-contact acoustic inspection method for additive manufacturing process
CN103869750B (en) A series of method of workpiece and processing unit (plant) are processed by least one processing jet
US11344952B2 (en) Three-dimensional additive manufacturing device, three-dimensional additive manufacturing method, and three-dimensional additive manufactured product
JP5757831B2 (en) Cutting blade tip shape detection method
JP2021165044A (en) Monitoring method for additive manufacturing processes
US20130291593A1 (en) Glass substrate laser cutting device with real-time breaking detecting function and glass substrate breakage detecting method thereof
CN101911277A (en) Arrangements and methods for determining positions and offsets
CN105500137A (en) Grinding apparatus
KR20220101170A (en) Apparatus and method for manufacturing a three-dimensional object
CN102565188B (en) Ultrasonic detecting equipment
WO2011083605A1 (en) Blast machining method and blast machining device
JP2007075772A (en) Paste applicator and paste application method
CN110907537A (en) A-scanning nondestructive testing method for R area of composite culvert casing and tool medium
KR102091433B1 (en) Laser processing apparatus and contorl method thereof
US20080073329A1 (en) Drilling Method and Laser Machining Apparatus
CN105336638A (en) Etching terminal detection system
CN211905205U (en) A-scanning nondestructive testing tool medium for R area of composite culvert casing
JP4776588B2 (en) Nozzle inspection apparatus and nozzle inspection method
JP2018044873A (en) Surface inspection apparatus, surface inspection method, and database
KR101326107B1 (en) Laser processing apparatus and control method thereof
CN114985945B (en) Pattern marking method
JP4832861B2 (en) Paste coating apparatus and paste coating method.
Zhao et al. Research on correlation between weld concavity and weld process parameters in tailored blank laser welding
JP5602216B2 (en) Laser processing apparatus and control method thereof
CN103170729B (en) Laser machining device and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP