WO2011082570A1 - 上行链路预编码矩阵的信令指示方法、基站和终端 - Google Patents

上行链路预编码矩阵的信令指示方法、基站和终端 Download PDF

Info

Publication number
WO2011082570A1
WO2011082570A1 PCT/CN2010/074579 CN2010074579W WO2011082570A1 WO 2011082570 A1 WO2011082570 A1 WO 2011082570A1 CN 2010074579 W CN2010074579 W CN 2010074579W WO 2011082570 A1 WO2011082570 A1 WO 2011082570A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
index
precoding
terminal
matrices
Prior art date
Application number
PCT/CN2010/074579
Other languages
English (en)
French (fr)
Inventor
王瑜新
郝鹏
喻斌
朱鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011082570A1 publication Critical patent/WO2011082570A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity

Definitions

  • the present invention relates to a communication backbone or, in particular, to an LTE-A (Long Term Evolution Advance) system Signaling indication method, base station and terminal of the uplink precoding matrix.
  • LTE-A Long Term Evolution Advance
  • Background Art In wireless communication, if there are multiple Kun antennas at the transmitting end and the receiving end, spatial multiplexing technology can be used to obtain a higher data rate, that is, the same time-frequency resource is used to transmit multiple data streams at the transmitting end.
  • the channel coefficient matrix can be obtained through channel estimation, and the data on each stream is demodulated.
  • Precoding technology is a technique that uses channel state information (CSI) to preprocess signals at the transmitting end to improve the performance of multi-antenna systems.
  • CSI channel state information
  • a pre-coded MIMO (Multiple Input Multiple Output) communication system is shown in Figure 1, where the transmitter needs to precode the signal based on the CSI information.
  • One way for the sender to obtain CSI is through feedback from the receiver.
  • the same codebook (codebook) that is, the precoding matrix set, is stored at the receiving end and the transmitting end.
  • the receiving end selects a suitable precoding matrix in the codebook according to the current channel condition, and feeds back the index value in the set back to the transmitting end, and the transmitting end finds the precoding matrix according to the feedback precoding matrix index, and performs the sending signal on the transmitted signal.
  • the LTE-A system is a next-generation evolution system of the LTE system.
  • the LTE-A system uses SU-MIMO (single user MIMO, or single-user spatial multiplexing) technology to support the configuration of two or four transmit antennas.
  • the terminal serves as the transmitting end and the base station serves as the receiving end.
  • the Physical Uplink Shared Channel (PUSCH) can be transmitted by using a single antenna port or by using multiple antenna ports.
  • 2 is a schematic diagram of processing of a baseband signal of a transmitting end of a physical uplink shared channel in which an existing LTE-A uses a multi-antenna port.
  • LTE-A support based on one or two codewords when transmitting multiple antenna ports Spatial multiplexing of (Codeword, CW), each codeword corresponds to a Transport Block (TB).
  • the codewords are further mapped to a layer, and each codeword is mapped to one or two layers of data.
  • the precoding module performs layer to antenna mapping.
  • the layer interleaving module may scatter and interleave all layers in each time unit in modulation symbols or time slots, and the effect before and after interleaving is as shown in FIG. 4 .
  • the layer interleaving module is optional on the sender side, ie it can be turned off in some cases.
  • the modulo of each line is equal, there will be equal transmission power on each antenna; when the modulo of each column is equal, the power of each layer will be equal.
  • the base station is scheduled in a centralized manner to control the transmission of the physical uplink shared channel of the user equipment (User Equipment, UE).
  • User Equipment User Equipment
  • the uplink scheduling information for the physical uplink shared channel PUSCH is sent by the base station to the target UE through a Physical Downlink Control Channel (PDCCH).
  • the uplink scheduling information includes resource allocation related to the channel, a modulation and coding scheme, and control information such as a Cyclic Shift of a Demodulation Reference Signal (DMRS).
  • DMRS Demodulation Reference Signal
  • the physical downlink control channel is used to carry uplink and downlink scheduling information, and uplink power control information.
  • Downlink Control Information (DCI) format format is divided into the following types: DCI format 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A, etc., where format 0 is used.
  • the DCI format 1, 1A, IB, 1C, ID is used for the Physical Downlink Shared Channel (PDSCH) of the single transport block.
  • Different transmission modes DCI format 2, 2A is used for different transmission modes of space division multiplexing
  • DCI format 3, 3 A is used for physical uplink control channel (PUCCH) and PUSCH power control commands transmission.
  • the LTE-Advanced system (referred to as LTE-A system) is a next-generation evolution system of the LTE system.
  • the uplink scheduling DCI format 0 does not support uplink multi-antenna transmission.
  • the uplink scheduling DCI needs to be newly added, temporarily recorded as DCI format X, or in the existing letter.
  • the function of the signaling indication is increased by extending the length of the signaling.
  • the specific information contained in DCI format 0 is as follows:
  • MCS Modulation and Coding Scheme
  • RV Redundancy Version
  • DAI Downlink Assignment Index
  • a primary object of the present invention is to provide a signaling indication method, a base station, and a terminal of an uplink precoding matrix of an LTE-A system to solve at least the above problems.
  • an uplink precoding matrix of an LTE-A system is provided The signaling indication method includes: the base station feeds back, by using the downlink control information, the precoding matrix index information used to indicate the precoding of the terminal to the terminal.
  • the method further includes: on the uplink, the terminal uses the precoding matrix index information in the downlink control information to search for a corresponding precoding matrix; and the terminal uses the found precoding matrix to perform the sending data.
  • Precoding when the number of transmit antennas of the terminal is 2, the precoding matrix index information is represented by 3 bits; when the number of transmit antennas of the terminal is 4, the precoding matrix index information uses 6 bit table
  • the eight index values that can be represented by the precoding matrix index information correspond to the precoding matrix of the precoding matrix set of the two transmitting antennas 1 layer.
  • the index value a corresponds to the matrix [1 1] ⁇ / ⁇ /2 in the precoding matrix set of the 2 transmit antenna 1 layer, and the index value b and the matrix of the precoding matrix set of the 2 transmit antenna 1 layers [1 - 1] ⁇
  • the index value c corresponds to the matrix of the precoding matrix set of the transmit antenna layer 1 [1 jf /V ⁇
  • the index value e is equal to the matrix of the precoding matrix set of the transmit antenna 1 layer [1 Of / ⁇ or [1 Of corresponding, the index value f and the matrix of the precoding matrix set of the transmit antenna 1 layer [0] Lf /V ⁇ or [0 if corresponds to, where a, b, c, d, e are mutually unequal index values among the eight index values.
  • the 8 index values that can be represented by the precoding matrix index information correspond to the precoding matrix of the precoding matrix set of the 2 transmit antenna 2 layers.
  • the index value m corresponds to a matrix ⁇ 1 ° of the precoding matrix set of the 2 transmit antenna 2 layers, where m is one of the 8 index values.
  • a23 of the 64 index values that can be represented by the precoding matrix index information are respectively transmitted with 4
  • the 24 matrices in the precoding matrix set of the line 1 layer correspond to each other, and the index values b0, bl, . bl5 respectively correspond to 16 matrices in the precoding matrix set of the 4 transmit antenna 2 layers, wherein the index values a0, al, ... a23 and b0, bl, ... bl5 are not equal to each other.
  • a precoding matrix in the precoding matrix set of the antenna 4 layer corresponds to, wherein the index values b0, bl, ... bl5 and c0, cl, ... cl9 and dO are not equal to each other.
  • the index values b0, bl, ... bl5 of the 64 index values that can be represented by the precoding matrix index information and the 4 transmit antennas respectively
  • the 16 matrices in the 2-layer precoding matrix set correspond to each other, and the index values c0, cl, ... c23 correspond to 24 matrices in the precoding matrix set of 4 transmit antenna 3 layers, respectively, index values dO and 4 transmit antennas
  • a precoding matrix in the 4-layer precoding matrix set corresponds to, wherein the index values b0, bl, ... bl5 and c0, cl, ...
  • c23 and dO are not equal to each other.
  • the index values b0, bl, ... bl5 of the 64 index values that can be represented by the precoding matrix index information and the 4 transmit antennas respectively
  • the 16 matrices in the 2-layer precoding matrix set correspond, and the index values c0, cl, ... cl l correspond to 12 matrices in the precoding matrix set of the 4 transmit antenna 3 layers, respectively, and the index values dO and 4 are transmitted.
  • a precoding matrix in the precoding matrix set of the antenna 4 layer corresponds to, wherein the index values b0, bl, ...
  • bl5 and c0, cl, ... c11 and dO are 0 to 63 which are not equal to each other.
  • the index values b0, bl, ... bl5 of the 64 index values that can be represented by the precoding matrix index information and the 4 transmit antennas respectively
  • the 16 matrices of the 2-layer precoding matrix set correspond to each other.
  • the index values c0, cl, ... cl9 correspond to 20 special precoding matrices respectively, and the index values dO and 4 transmit antennas are layer 4 precoding matrix sets.
  • a precoding matrix corresponds to which the index values b0, bl, ...
  • the 20 special precoding matrices belong to the first type of precoding matrix set, and the matrix of the first type of precoding matrix set is a matrix of 4 rows and 3 columns, wherein each of the 4 rows has 2 non-zero elements.
  • One of the three columns has four non-zero elements, the other two columns each have two non-zero elements, and the modulo of each row is equal and/or the modulo of each column is equal.
  • the matrix is a matrix of 4 rows and 3 columns, where each row of 4 rows has one non-zero element, one column of 3 columns has two non-zero elements, and the other two columns each have a non-zero element, and each row has The modules are equal.
  • a base station including: a sending module, configured to feed back, by using downlink control information, precoding matrix index information for indicating that a terminal performs precoding to a terminal.
  • a terminal including: a receiving module, configured to receive downlink control information from a base station, where the downlink control information carries precoding matrix index information for indicating that the terminal performs precoding; a searching module, configured to search for a corresponding precoding matrix by using precoding matrix index information on the uplink; and an encoding module, configured to precode the sending data by using the found precoding matrix.
  • the user terminal serves as the transmitting end, and the base station serves as the receiving end, and the base station feeds back the index of the precoding matrix through the downlink control information, thereby instructing the user terminal to perform
  • the precoding solves the problem that the related art does not implement the precoding matrix index ( ⁇ ) in the uplink of the LTE-A system, so that the problem of the precoding technology cannot be implemented in the user terminal, and thus the SU- In the MIMO LTE-A system, the base station uses the downlink control information to feed back the PMI used for uplink precoding, thereby enabling uplink precoding of the LTE-A system.
  • FIG. 1 is a block diagram of a precoding MIMO communication system according to the related art
  • 2 is a schematic diagram of a signal processing procedure of a transmitting end of SU-MIMO according to the related art
  • FIG. 3 is a schematic diagram of a codeword-to-layer mapping according to the related art
  • FIG. 4 is a comparison diagram of effects before and after layer interleaving according to the related art
  • 5 is a flowchart of a signaling indication method of an uplink precoding matrix of an LTE-A system according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a base station and a terminal according to an embodiment of the present invention.
  • Step S502 The downlink control information (Downlink Control Information, DCI) is used by the base station. Precoding matrix index information for instructing the terminal to perform precoding is fed back to the terminal.
  • DCI Downlink Control Information
  • the user terminal serves as the transmitting end
  • the base station serves as the receiving end.
  • the base station feeds back the index of the precoding matrix through the downlink control information, thereby instructing the user terminal to perform precoding.
  • the invention solves the problem that the base station has not implemented the PMI feedback in the uplink of the LTE-A system, and thus cannot implement the precoding technology in the user terminal, thereby being able to utilize the base station in the LTE-A system adopting SU-MIMO.
  • the PMI used for uplink precoding is fed back by the downlink control information, thereby enabling uplink precoding of the LTE-A system.
  • the base station may use the N bits (bits) in the downlink control information as the feedback PMI signaling to indicate that the user terminal selects a corresponding precoding matrix in the pre-stored codebook.
  • the method further includes: on the uplink, the terminal uses the precoding matrix index information in the downlink control information to search for a corresponding precoding matrix; and the terminal uses the found precoding matrix to perform the sending data.
  • Precoding when the number of transmit antennas of the terminal is 2, the precoding matrix index information is represented by 3 bits; when the number of transmit antennas of the terminal is 4, the precoding matrix index information is represented by 6 bits. That is to say, when the number of transmitting antennas of the terminal is 2, the precoding matrix index information can be expressed.
  • the index (Index) range can be 0 ⁇ 7; when the number of transmit antennas of the terminal is 4, the index value that can be expressed by the precoding matrix index information can range from 0 to 63. According to the number of transmitting antennas and the number of transmitted codewords of the terminal, the following situations can be classified: Preferably, when the number of transmitting antennas of the terminal is 2 and the number of transmitted codewords is 1, the precoding matrix index information can represent 8 The index values correspond to the precoding matrix in the precoding matrix set of the 2 transmit antenna 1 layers.
  • the index value a corresponds to the matrix [1 1] T / ⁇ in the precoding matrix set of the 2 transmit antenna 1 layer, and the index value b and the matrix of the precoding matrix set of the 2 transmit antenna 1 layer
  • the index value c corresponds to the matrix of the precoding matrix set of the 2 transmit antenna 1 layer [1 f / ⁇ , the index value d and the preamble of the 2 transmit antenna 1 layer
  • the matrix [1 - jf / ⁇ corresponding to the set of coding matrices, the index value e and the matrix of the precoding matrix set of the 2 transmit antenna 1 layers [1 Of / ⁇ or [1 Of corresponding, index value f and said 2
  • the preferred embodiment provides a specific implementation of the correspondence between the precoding matrix index value and the precoding matrix when the number of transmit antennas of the terminal is 2 and the number of transmitted codewords is 1.
  • the 8 index values that can be represented by the precoding matrix index information correspond to the precoding matrix of the precoding matrix set of the 2 transmit antenna 2 layers.
  • the matrix value of the precoding matrix set of the layer 2 of the transmit antenna 2 and the index value m Should, where m is a number within 0 ⁇ 7.
  • the preferred embodiment provides a specific implementation of the correspondence between the precoding matrix index value and the precoding matrix when the number of transmit antennas of the terminal is 2 and the number of transmitted codewords is 2.
  • the index values a0, a, ... a23 of the 64 index values that can be represented by the precoding matrix index information are respectively transmitted with 4
  • the precoding of the line 1 layer precoding matrix set (which may be a precoding matrix set as shown in Table 1) corresponds to the index values bO, bl, ... M5 and the 4 transmit antenna 2 houses respectively.
  • the matrix of the matrix (which may be a set of precoding matrices as shown in Table 2) corresponds to, wherein the index values aO, al, ... a23 and b0, bl, ... bl5 are not equal to each other.
  • the preferred embodiment provides a specific implementation of the correspondence between the precoding matrix index value and the precoding matrix when the number of transmit antennas of the terminal is 4 and the number of transmitted codewords is one.
  • the index values a0, a1, ... a23, b0, bl, ... bl5 may be unequal numbers from 0 to 63.
  • the index values b0, bl, ... bl5 of the 64 index values that can be represented by the precoding matrix index information and the 4 transmit antennas respectively
  • the 6-layer precoding matrix set (which may be the precoding matrix set as shown in Table 2) corresponds to 16 matrices, the index values c0, cl, ... cl9 and the 4 transmit antenna 3 layer precoding matrices, respectively.
  • the set (which may be a set of precoding matrices as shown in Table 3) corresponds to any of the 20 matrices, the index value
  • a precoding matrix in the 4-layer precoding matrix set (eg ⁇
  • index values b0, bl, ... bl5 and c0, cl, ... cl9 and dO are not equal to each other.
  • the preferred embodiment provides yet another specific embodiment of the correspondence between the precoding matrix index value and the precoding matrix when the number of transmit antennas of the terminal is 4 and the number of transmitted codewords is two.
  • the index values b0, bl, ... bl5, c0, cl, ... cl9, dO may be mutually unequal numbers from 0 to 63.
  • the index values b0, bl, ... bl5 of the 64 index values that can be represented by the precoding matrix index information and the 4 transmit antennas respectively
  • the two layers of the precoding matrix set (which may be the precoding matrix set as shown in Table 2) correspond to each other, and the index values c0, cl, ... c23 and the precoding matrix of the 4 transmit antenna 3 layers, respectively.
  • the set (which may be a set of precoding matrices as shown in Table 3) corresponds to 24 matrices, the index value d0 and
  • 0 0 0 1 corresponds to, wherein the index values b0, bl, ... bl5 and c0, cl, ... c23 and dO are not equal to each other.
  • the preferred embodiment provides a further embodiment of the correspondence between the precoding matrix index value and the precoding matrix when the number of transmit antennas of the terminal is 4 and the number of transmitted codewords is 2.
  • the index values b0, bl, ... bl5, c0, cl, ... c23, dO may be unequal numbers from 0 to 63.
  • the two layers of the precoding matrix set (which may be the precoding matrix set as shown in Table 2) correspond to each other, and the index values C 0, cl, ... cl l are respectively combined with the 4 transmit antenna 3 layers.
  • the encoding matrix set (which may be a set of precoding matrices as shown in Table 4) corresponds to the index value dO and
  • index values b0, bl, ... bl5 and c0, cl, ... cl l and dO are 0 to 63 are not equal to each other.
  • the preferred embodiment provides yet another specific embodiment of the correspondence between the precoding matrix index value and the precoding matrix when the number of transmit antennas of the terminal is 4 and the number of transmitted codewords is two.
  • the index values b0, bl, ... bl5, c0, cl, ... cll, dO may be mutually unequal numbers from 0 to 63.
  • the 6-layer precoding matrix set (which can be the precoding matrix set shown in Table 2) has 16 matrix values.
  • the index values c0, cl, ... cl9 are divided into another 'J and 20 specials.
  • the precoding head macro array corresponds to a precoding matrix of the precoding matrix set of the index layer dO and the 4 transmit antenna 4 layers (eg
  • the preferred embodiment provides a further embodiment of the correspondence between the precoding matrix index value and the precoding matrix when the number of transmit antennas of the terminal is 4 and the number of transmitted codewords is 2.
  • the index values b0, bl, ... bl5 and c0, cl, ... cl9 and dO may be 0 to 63. Numbers that are not equal to each other.
  • the above 20 special precoding matrices may all belong to the first type of precoding matrix set, and the matrix of the first type of precoding matrix set is a matrix of 4 rows and 3 columns, wherein each row of 4 rows has Two non-zero elements, one of the three columns has four non-zero elements, the other two columns each have two non-zero elements, and the modulo of each row is equal and/or the modulo of each column is equal.
  • the matrix in the matrix set is a matrix of 4 rows and 3 columns, where each row in 4 rows has one non-zero element, one column in 3 columns has two non-zero elements, and the other two columns each have a non-zero element, and each The modulo of one line is equal.
  • the matrix in the matrix set is a matrix of 4 rows and 3 columns, where each row in 4 rows has one non-zero element, one column in 3 columns has two non-zero elements, and the other two columns each have a non-zero element, and each The modulo of a column is equal.
  • the above three preferred embodiments provide the selection of 20 special precoding matrices and the characteristics of the matrices.
  • the signaling indication method of the uplink precoding matrix of the LTE-A system provided by the present invention carries the ⁇ by reasonably designing the feedback signaling to select the corresponding precoding matrix, which can reduce the signaling overhead of the feedback, and can ensure signaling.
  • the fork can effectively and reasonably instruct the sender to perform precoding.
  • the user terminal serves as the transmitting end
  • the base station serves as the receiving end.
  • the base station uses the N bits (bits) in the downlink control information (DCI) as the feedback PMI signaling (ie, precoding).
  • DCI downlink control information
  • the matrix index information is used to instruct the user terminal to select a precoding matrix. According to the number of transmitting antennas of the terminal and the number of transmitted codewords, it can be divided into the following four cases:
  • the index value (Index) that can be expressed ranges from 0 to 7; the index value a is used to indicate that the terminal uses one layer of precoding.
  • the index value (Index) that can be expressed ranges from 0 to 7.
  • the index value m is used to indicate that the terminal uses a 2-layer precoding matrix. Precoding is performed, where m is (1 number within 7).
  • the terminal uses the precoding matrix of Index 1 of Index 1 in Table 1, index 0, Index 1, ..., Index 22, and Index 23 for precoding, and uses the index values b0, bl, ..., bl4, and bl5 to indicate the terminal adoption table.
  • the two layers of precoding matrices Index 0, Index 1, ..., Index 14, and Index 15 in 2 are precoded, wherein index values a0, al, .... a22, a23, b0, bl, ... Bl4 and bl5 are numbers that are not in the range of 0 to 63.
  • N 6
  • index values b0, bl, ..., bl4, bl5 are used to indicate
  • the terminal uses the two-layer precoding matrix Index 0, Index 1, ..., Index 14, and Index 15 in Table 2 for precoding, and uses the index values c0, cl, .... cl8, cl9 to indicate the terminal adoption table.
  • Any 20 3-layer precoding matrices in 3 are precoded, and the index value d0 is used to indicate that the terminal adopts a precoding matrix.
  • Cl8, cl9, and dO are numbers that are not in the range of 0 to 63.
  • Table 1 Precoding matrix set of layer 1 of uplink 4 transmit antenna
  • the user terminal acts as the transmitting end, and the base station acts as the base station.
  • the base station uses the N bits (bits) in the downlink control information (DCI, Downlink Control Information) as the feedback PMI signaling, and is used to indicate that the user terminal selects the precoding matrix.
  • DCI Downlink Control Information
  • the number of transmitting antennas and the number of transmitted codewords in the terminal can be divided into the following four cases:
  • the index value (Index) that can be expressed ranges from 0 to 7; the index value a is used to indicate that the terminal uses a 1-layer precoding matrix.
  • [1 1] T / ⁇ is precoded, and the index value b is used to indicate that the terminal adopts a layer 1 precoding matrix.
  • the index value (Index) that can be expressed ranges from 0 to 7.
  • the index value m is used to indicate that the terminal uses a 2-layer precoding matrix. Precoding is performed, where m is 1 number within 0 ⁇ 7.
  • index values a0, al, ..., a22, a23, b0, bl, ..., Bl4 and bl5 are numbers in which 0 to 63 are not each other.
  • the terminal uses the two layers of precoding matrices Index 0, Index 1, ..., Index 14, and Index 15 in Table 2 for precoding, and uses the index values c0, cl, ..., c22, and c23 to indicate the terminal adoption table. All 24 three-layer precoding matrices Index 0, Index 1 Index 22, and Index 23 are precoded in 3
  • the index d0 indicates that the terminal uses the precoding matrix ⁇ for precoding.
  • B0, bl, ..., bl4, bl5, c0, cl, ⁇ ., c22, c23, dO are numbers in the range of 0 to 63.
  • the user terminal is used as the transmitting end, and the base station is used as the receiving end.
  • the base station uses N bits (bits) in the downlink control information (DCI) as the feedback PMI signaling, and is used to indicate The user terminal selects a precoding matrix. According to the number of transmitting antennas of the terminal and the number of transmitted codewords, it can be divided into the following four cases:
  • the index value (Index) that can be expressed ranges from 0-7; the index value a is used to indicate that the terminal adopts a 1-layer precoding matrix.
  • the index value b is used to indicate that the terminal uses a 1-layer precoding matrix
  • the index value (Index) that can be expressed ranges from 0 to 7.
  • the index value m is used to indicate that the terminal uses a 2-layer precoding matrix. Precoding is performed, where m is (1 number within 7).
  • the terminal uses the precoding matrix of Index 1 of Index 1 in Table 1, index 0, Index 1, ..., Index 22, and Index 23 for precoding, and uses the index values b0, bl, ..., bl4, and bl5 to indicate the terminal adoption table.
  • the two-layer precoding matrix Index 0, Index 1, ..., Index 14, and Index 15 in 2 are precoded, wherein the index values a0, al, ..., a22, a23, b0, bl, ... , bl4, and bl5 are numbers that are not equal to each other in the range of 0 to 63.
  • N 6
  • index values b0, bl, ..., bl4, bl5 are used to indicate
  • the terminal uses the two layers of precoding matrices Index 0, Index 1, ..., Index 14, and Index 15 in Table 2 for precoding, and uses the index values c0, cl, .... cl8, cl9 to indicate that the terminal uses 20, respectively.
  • a special precoding matrix is precoded, and the index value d0 is used to indicate that the terminal uses the precoding matrix for precoding.
  • index values b0, bl, ..., M4, bl5, c0, cl, ..., cl8, cl9, dO are
  • the 20 special precoding matrices described above are all taken from the first type of precoding matrix set.
  • the matrix in the first type of precoding matrix set is a matrix of 4 rows and 3 columns, and each row has two non-zero matrices. An element, one of which has four non-zero elements, the other two columns each have two non-zero elements, the modulo of each row of each matrix is equal and/or the modulo of each column is equal.
  • the 20 special precoding matrices described above have X matrices taken from the first type of precoding matrix set and Y matrices taken from the second type precoding matrix set.
  • Each matrix in the second type of precoding matrix set is a matrix of 4 rows and 3 columns, each row has only one non-zero element, one column has two non-zero elements, and the other two columns each have a non-zero element.
  • the modulo of each row of each matrix in the second type of precoding matrix is equal.
  • X+Y 20, X ranges from 0 to 20, and ⁇ ranges from 0 to 20.
  • one of the matrices is taken from the second precoding matrix set, and the other matrices are taken from the third precoding matrix set.
  • Each matrix in the third type of precoding matrix set is a matrix of 4 rows and 3 columns, each row has only one non-zero element, one column has two non-zero elements, and the other two columns each have a non-zero element.
  • Embodiment 4 In the uplink, the user terminal serves as a transmitting end, and the base station serves as a receiving end, and the base station uses N bits (bits) in downlink control information (DCI) as feedback PMI signaling (ie, precoding)
  • DCI downlink control information
  • the matrix index information is used to instruct the user terminal to select a precoding matrix. According to the number of transmitting antennas of the terminal and the number of transmitted codewords, it can be divided into the following four cases:
  • the index value (Index) that can be expressed ranges from 0 to 7; the index value a is used to indicate that the terminal adopts a 1-layer precoding matrix.
  • [1 1] T / ⁇ is precoded, and the index value b is used to indicate that the terminal uses the 1-layer precoding matrix [1 - 1] T / ⁇ for precoding, and the index value c indicates that the terminal uses the 1-layer precoding matrix.
  • the index value that can be expressed The range of Index is 0 ⁇ 7; the index value m indicates that the terminal uses the 2-layer precoding matrix for precoding, where m is 1 number in 0 ⁇ 7.
  • index values a0, al, ..., a22, a23, b0, bl, ..., Bl4 and bl5 are numbers that are not in each other from 0 to 63.
  • N 6
  • index values b0, bl, ..., bl4, bl5 are used to indicate
  • the terminal uses the two layers of precoding matrices Index 0, Index 1, ..., Index 14, and Index 15 in Table 2 for precoding, and uses the index values c0, cl cl0, and cll to indicate that the terminal uses 12 of Table 4, respectively.
  • the 3-resid precoding matrix is precoded, and the index value do is used to indicate that the terminal uses the precoding matrix.
  • Uplink 4 transmit antenna 3 layers of precoding matrix set 2
  • FIG. 6 is a schematic diagram of a base station and a terminal according to an embodiment of the present invention.
  • the base station 10 includes: a sending module 102, configured to feed back, by using downlink control information, precoding matrix index information for indicating that the terminal performs precoding to the terminal 20.
  • the terminal 20 includes: a receiving module 202, configured to receive downlink control information from the base station 10, where the downlink control information carries precoding matrix index information for indicating that the terminal 20 performs precoding; and the searching module 204 is configured to be used for uplink On the link, the precoding matrix index information in the downlink control information received by the receiving module 202 is used to search for a corresponding precoding matrix.
  • the encoding module 206 is configured to precode the sending data by using the found precoding matrix. From the above description, it can be seen that the present invention achieves the following technical effects: (1) It is possible to precode the transmission data by using the PMI fed back by the base station in the uplink of the LTE-A system using SU-MIMO. Implementing uplink precoding of the LTE-A system;

Abstract

本发明公开了一种LTE-A系统的上行链路预编码矩阵的信令指示方法、基站和终端,其中,方法包括:基站通过下行控制信息将用于指示终端进行预编码的预编码矩阵索引信息反馈给终端。本发明能够在采用了SU-MIMO的LTE-A系统中利用基站通过下行控制信息反馈用于上行链路预编码使用的PMI,进而能够实现LTE-A系统的上行链路的预编码。

Description

上^ f亍链 ^各预编码矩阵的信令指示方法、 基站和终端 技术领域 本发明涉及通信领 i或,具体而言, 涉及一种 LTE-A ( Long Term Evolution Advance , 高级长期演进) 系统的上行链路预编码矩阵的信令指示方法、 基 站和终端。 背景技术 在无线通信中, 如果在发送端和接收端有多坤 天线, 则可以采用空间复 用技术来获取更高的数据速率, 即在发送端使用相同的时频资源发送多个数 据流。 在接收端可以通过信道估计得到信道系数矩阵, 进而解调出各个流上 的数据。 预编码技术 ( Precoding )是一种利用信道状态信息( CSI, Channel Status Information ) 在发送端对信号进行预处理, 提高多天线系统性能的技术。 采 用预编码的 MIMO ( Multiple Input Multiple Output, 多输入多输出)通信系 统如图 1所示, 其中发送端需要基于 CSI信息对信号进行预编码。 发送端获 取 CSI的一种途径是通过接收端的反馈。 为了降氏反馈开销, 一般采用的方 式是在接收端和发送端保存相同的码本(codebook ), 即预编码矩阵集。 接收 端根据当前信道状况, 在码本中选择适合的预编码矩阵并将其在集合中的索 引值反馈回发送端, 发送端根据反馈的预编码矩阵索引找到预编码矩阵, 并 对发送信号进行预编码。 数据预编码的数学模型为 _y = H + « , 其中 _y为接 收信号矢量, H为信道系数矩阵, 为预编码矩阵, s为信号矢量, M为噪声 矢量。
LTE-A系统是 LTE系统的下一代演进系统。 为了获得更高的数据速率, LTE-A系统上行吏用了 SU-MIMO ( single user MIMO, 或称为单用户的空间 复用)技术, 支持上行 2根或者 4根发送天线的配置。 这时, 终端作为发送 端, 基站作为接收端。在 LTE-A系统中, 物理上行共享信道( Physical Uplink Shared Channel, PUSCH )可采用单天线端口传输, 也可采用多天线端口传 输。 图 2为现有的 LTE-A采用多天线端口传输的物理上行共享信道的发射端 基带信号处理示意图。 多天线端口传输时, LTE-A支持基于一个或两个码字 ( Codeword, CW )的空间复用,每个码字对应一个传输块( Transport Block, TB)。 码字要进一步映射到居(layer), 每个码字映射为一层或两层数据。 以 2个码字、 4根发射天线为例来筒单说明此模块的功能, 如图 3所示。 预编 码模块完成层到天线的映射。 层交织模块可以以调制符号或者时隙为时间单 位,将每一时间单位上的所有层进行打散交织, 交织前后的效果如图 4所示。 层交织模块在发送端是可选配置, 即在某些情况下可以关闭此功能模块。 a\ b\ cl
a2 b2 c2
对 于 矩 阵 当 /al2 + b +c = ja22 +b22 +c22 =
a3 b3 c3
a4 b4 c4 ja32+b32+c32 = Va42+M2 +c42 时 , 称 为 每一行的 模相 等 ; 当 jal2 +a22 + 32 +a42 =
Figure imgf000004_0001
= cl +c22 +c32 +c42,称为每一歹 的模相等。 每一行的模相等时, 会有每根天线上的发射功率相等; 每一列的 模相等时, 会有每一层的功率相等。 在 LTE 系统中, 釆用基站集中调度的方式来控制用户终端 (User Equipment, UE )的物理上行共享信道的传输。 对物理上行共享信道 PUSCH 的上行调度信息( uplink scheduling information ) 由基站通过物理下行控制信 道(Physical Downlink Control Channel, PDCCH )发送给目标 UE。 上行调 度信息包括该信道相关的资源分配, 调制与编码方案, 解调参考信号 ( Demodulation Reference Signal, 筒称为 DMRS )的循环移位 ( Cyclic shift ) 等控制信息。 物理下行控制信道用于承载上、下行调度信息, 以及上行功率控制信息。 下行控制信息 ( Downlink Control Information, 简称为 DCI )格式 ( format ) 分为以下几种: DCI format 0、 1、 1A、 1B、 1C、 1D、 2、 2A、 3, 3A等, 其中, format 0用于指示物理上行共享信道( Physical uplink shared channel, 简称为 PUSCH) 的调度; DCI format 1, 1A, IB, 1C, ID用于单传输块的 物理下行共享信道 ( Physical Downlink Shared Channel, 简称为 PDSCH ) 的 不同传输模式; DCI format 2, 2A用于空分复用的不同传输模式; DCI format 3, 3 A 用于物理上行控制信道 (Physical uplink control channel , 简称为 PUCCH ) 和 PUSCH的功率控制指令的传输。
LTE- Advanced系统(简称 LTE-A系统)是 LTE系统的下一代演进系统。 在 LTE相关技术中, 上行调度 DCI format 0并不支持上行多天线传输, 在 LTE-A上行多天线传输场景下, 上行调度 DCI需要新增格式, 暂记作 DCI format X, 或者在已有信令类型的基础上, 通过扩展信令的长度, 来增加信 令指示的功能。 LTE系统中, DCI format 0中包含的具体信息如下:
- 用于区分 DCI format 0和 DCI format 1A的标志位;
- 跳频标志位;
- 资源块分配和跳频资源分配;
- 调制编码方式 ( Modulation and Coding Scheme, MCS ) 和冗余版本 ( Redundancy Version, RV );
- 新数据才旨示 ( New data indicator );
- 用于所调度的 PUSCH 的发射功率控制命令 ( TPC command for scheduled PUSCH );
- 解调参考信号的循环移位 ( Cyclic shift for DM RS ); - 上行指示( UL index ),仅存在于时分双工( Time Division Duplex , TDD ) 系统, 用于上下行配置 ( Uplink-downlink configuration ) 为 0时;
- 下行分配指示 ( Downlink Assignment Index, DAI ), 仅存在于时分双 工系统, 用于上下行配置为 1〜6时;
- 信道 态指示请求 ( CQI request )。 但是, 在 LTE-A系统的上行链路中, 此时终端作为发送端、 基站作为接 收端, 尚未实现预编码矩阵索引的反馈, 从而无法实现预编码技术。 发明内容 本发明的主要目的在于提供一种 LTE-A 系统的上行链路预编码矩阵的 信令指示方法、 基站和终端, 以至少解决上述问题。 根椐本发明的一个方面,提供了一种 LTE-A系统的上行链路预编码矩阵 的信令指示方法, 包括: 基站通过下行控制信息将用于指示终端进行预编码 的预编码矩阵索引信息反馈给终端。 优选地, 在上述的方法中, 还包括: 在上行链路上, 终端使用下行控制 信息中的预编码矩阵索引信息查找到对应的预编码矩阵; 终端使用查找到的 预编码矩阵对发送数据进行预编码。 优选地, 当终端的发射天线数为 2时, 预编码矩阵索引信息用 3个比特 位表示; 当终端的发射天线数为 4时, 预编码矩阵索引信息用 6个比特位表
优选地, 当终端的发射天线数为 2且发射的码字数为 1时, 预编码矩阵 索引信息所能表示的 8个索引值与 2发射天线 1层的预编码矩阵集中的预编 码矩阵相对应。 优选地,索引值 a与 2发射天线 1层的预编码矩阵集中的矩阵 [1 1]Γ / Λ/2 相对应, 索引值 b与 2发射天线 1层的预编码矩阵集中的矩阵 [1 - 1] ^相 对应, 索引值 c与 2发射天线 1层的预编码矩阵集中的矩阵 [1 jf /V^相对 应,索引值 d与 2发射天线 1层的预编码矩阵集中的矩阵 [1 - ^相对应, 索引值 e与 2发射天线 1层的预编码矩阵集中的矩阵 [1 Of / ^或 [1 Of相对 应, 索引值 f与 2发射天线 1层的预编码矩阵集中的矩阵 [0 lf /V^或 [0 if 相对应, 其中, a, b , c, d, e为 8个索引值中的互不相等的索引值。 优选地, 当终端的发射天线数为 2且发射的码字数为 2时, 预编码矩阵 索引信息所能表示的 8个索引值与 2发射天线 2层的预编码矩阵集中的预编 码矩阵相对应。 优选地,索引值 m与 2发射天线 2层的预编码矩阵集中的矩阵 ^ 1 ° 对应, 其中, m为 8个索引值中的一个索引值。 优选地, 当终端的发射天线数为 4且发射的码字数为 1时, 预编码矩阵 索引信息所能表示的 64个索引值中的索引值 a0、 al、 ... a23分别与 4发射天 线 1层的预编码矩阵集中的 24个矩阵相对应, 索引值 b0、 bl、 . bl5分别 与 4发射天线 2层的预编码矩阵集中的 16个矩阵相对应, 其中, 索引值 a0、 al、 ... a23以及 b0、 bl、 ...bl5互不相等。 优选地, 当终端的发射天线数为 4且发射的码字数为 2时, 预编码矩阵 索引信息所能表示的 64个索引值中的索引值 b0、 bl、 ...bl5分别与 4发射 天线 2层的预编码矩阵集中的 16个矩阵相对应, 索引值 c0、 cl、 ... cl9分别 与 4发射天线 3层的预编码矩阵集中的任意 20个矩阵相对应 , 索引值 d0与 4发射天线 4层的预编码矩阵集中的一个预编码矩阵相对应, 其中, 索引值 b0、 bl、 ... bl5以及 c0、 cl、 ... cl9和 dO互不相等。 优选地, 当终端的发射天线数为 4且发射的码字数为 2时, 预编码矩阵 索引信息所能表示的 64个索引值中的索引值 b0、 bl、 ...bl5分别与 4发射 天线 2层的预编码矩阵集中的 16个矩阵相对应, 索引值 c0、 cl、 ... c23分别 与 4发射天线 3层的预编码矩阵集中的 24个矩阵相对应, 索引值 dO与 4发 射天线 4层的预编码矩阵集中的一个预编码矩阵相对应, 其中, 索引值 b0、 bl、 ... bl5以及 c0、 cl、 ... c23和 dO互不相等。 优选地, 当终端的发射天线数为 4且发射的码字数为 2时, 预编码矩阵 索引信息所能表示的 64个索引值中的索引值 b0、 bl、 ...bl5分别与 4发射 天线 2层的预编码矩阵集中的 16个矩阵相对应, 索引值 c0、 cl、 ... cl l分别 与 4发射天线 3层的预编码矩阵集中的 12个矩阵相对应, 索引值 dO与 4发 射天线 4层的预编码矩阵集中的一个预编码矩阵相对应, 其中, 索引值 b0、 bl、 ... bl5以及 c0、 cl、 ... cll和 dO为 0〜63互不相等。 优选地, 当终端的发射天线数为 4且发射的码字数为 2时, 预编码矩阵 索引信息所能表示的 64个索引值中的索引值 b0、 bl、 ...bl5分别与 4发射 天线 2层的预编码矩阵集中的 16个矩阵相对应, 索引值 c0、 cl、 ... cl9分别 与 20个特殊预编码矩阵相对应, 索引值 dO与 4发射天线 4层的预编码矩阵 集中的一个预编码矩阵相对应,其中,索引值 b0、bl、 ...bl5以及 c0、cl、 ... cl9 和 dO互不相等。 优选地, 20个特殊预编码矩阵属于第一类预编码矩阵集, 第一类预编码 矩阵集中的矩阵为 4行 3列的矩阵, 其中, 4行中的每一行有 2个非零元素, 3列中的一列有 4个非零元素, 其他两列各有 2个非零元素, 并且每一行的 模相等和 /或每一列的模相等。 优选地, 20个特殊预编码矩阵中的 X个矩阵属于第一类预编码矩阵集, Y 个矩阵属于第二类预编码矩阵集; 其中, X+Y=20 , 第二类预编码矩阵集 中的矩阵为 4行 3列的矩阵, 其中, 4行中的每一行有一个非零元素, 3列 中的一列有两个非零元素, 其他两列各有一个非零元素, 并且每一行的模相 等。
4尤选地, 20个特殊预编码矩阵中的 Μ个矩阵属于第二类预编码矩阵集, Ν 个矩阵属于第三类预编码矩阵集; 其中, Μ+Ν=20 , 第三类预编码矩阵集 中的矩阵为 4行 3列的矩阵, 其中, 4行中的每一行有一个非零元素, 3列 中的一列有两个非零元素, 其他两列各有一个非零元素, 并且每一列的模相 等。 根据本发明的另一个方面, 提供了一种基站, 包括: 发送模块, 用于通 过下行控制信息将用于指示终端进行预编码的预编码矩阵索引信息反馈给终 端。 根据本发明的又一个方面, 提供了一种终端, 包括: 接收模块, 用于接 收来自基站的下行控制信息, 其中, 下行控制信息中携带有用于指示终端进 行预编码的预编码矩阵索引信息; 查找模块, 用于在上行链路上, 使用预编 码矩阵索引信息查找到对应的预编码矩阵; 编码模块, 用于使用查找到的预 编码矩阵对发送数据进行预编码。 通过本发明, 在釆用了 SU-MIMO的 LTE-A系统的上行链路中, 用户终 端作为发送端, 基站作为接收端, 基站通过下行控制信息反馈预编码矩阵的 索引, 从而指示用户终端进行预编码, 解决了相关技术在 LTE-A系统的上行 链路中基站尚未实现 ΡΜΙ ( Precoding Matrix Index , ΡΜΙ )的反馈, 从而在用 户终端无法实现预编码技术的问题, 从而能够在采用了 SU-MIMO的 LTE-A 系统中利用基站通过下行控制信息反馈用于上行链路预编码使用的 PMI, 进 而能够实现 LTE-A系统的上行链路的预编码。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据相关技术的预编码 MIMO通信系统的框图; 图 2是根据相关技术的 SU-MIMO的发送端的信号处理过程的示意图; 图 3是根据相关技术的码字到层的映射的示意图; 图 4是根据相关技术的层交织前后的效果对比图; 图 5是根据本发明实施例的 LTE-A系统的上行链路预编码矩阵的信令指 示方法的流程图; 图 6是才 据本发明实施例的基站和终端的示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 5是根据本发明实施例的 LTE-A系统的上行链路预编码矩阵的信令指 示方法的流程图, 包括以下步 4聚: 步骤 S502,基站通过下行控制信息( Downlink Control Information, DCI ) 将用于指示终端进行预编码的预编码矩阵索引信息反馈给终端。 该实施例在采用了 SU-MIMO的 LTE-A系统的上行链路中,用户终端作 为发送端,基站作为接收端,基站通过下行控制信息反馈预编码矩阵的索引, 从而指示用户终端进行预编码,解决了相关技术在 LTE-A系统的上行链路中 基站尚未实现 PMI的反馈, 从而无法在用户终端实现预编码技术的问题, 从 而能够在采用了 SU-MIMO的 LTE-A系统中利用基站通过下行控制信息反馈 用于上行链路预编码使用的 PMI,进而能够实现 LTE-A系统的上行链路的预 编码。 基站可以通过下行控制信息中的 N 个比特位 ( bit )作为反馈的 PMI 信令, 用来指示用户终端选择预先存储的码本中的对应的预编码矩阵。 优选地, 在上述的方法中, 还包括: 在上行链路上, 终端使用下行控制 信息中的预编码矩阵索引信息查找到对应的预编码矩阵; 终端使用查找到的 预编码矩阵对发送数据进行预编码。 优选地, 当终端的发射天线数为 2时, 预编码矩阵索引信息用 3个比特 位表示; 当终端的发射天线数为 4时, 预编码矩阵索引信息用 6个比特位表 示。 也就是说, 终端的发射天线数为 2时, 预编码矩阵索引信息可表述的索 引值的 (Index) 范围可以为 0~7; 终端的发射天线数为 4 时, 预编码矩阵 索引信息可表述的索引值的范围可以为 0 ~ 63。 根据终端的发射天线数和发射的码字数, 可分为以下几种情况: 优选地, 当终端的发射天线数为 2且发射的码字数为 1时, 预编码矩阵 索引信息所能表示的 8个索引值与 2发射天线 1层的预编码矩阵集中的预编 码矩阵相对应。 其中, 索引值 a 与所述 2 发射天线 1 层的预编码矩阵集中的矩阵 [1 1]T/ ^相对应,索引值 b与所述 2发射天线 1层的预编码矩阵集中的矩阵
[1 -1]Γ / ^相对应, 索引值 c与所述 2发射天线 1层的预编码矩阵集中的矩 阵 [1 f / ^相对应, 索引值 d与所述 2发射天线 1层的预编码矩阵集中的 矩阵 [1 - jf/ ^相对应, 索引值 e与所述 2发射天线 1层的预编码矩阵集中 的矩阵 [1 Of/ ^或 [1 Of相对应, 索引值 f与所述 2发射天线 1层的预编码 矩阵集中的矩阵 [0 lf/V^或 [0 if相对应, 其中, a, b, c, d, e为 0-7内 互不相等的数。 该优选实施例提供了当终端的发射天线数为 2且发射的码字数为 1时预 编码矩阵索引值与预编码矩阵的对应关系的具体实施方案。 优选地, 当终端的发射天线数为 2且发射的码字数为 2时, 预编码矩阵 索引信息所能表示的 8个索引值与 2发射天线 2层的预编码矩阵集中的预编 码矩阵相对应。 其中,索引值 m与 2发射天线 2层的预编码矩阵集中的矩阵 对
Figure imgf000010_0001
应, 其中, m为 0~7内的一个数。 该优选实施例提供了当终端的发射天线数为 2且发射的码字数为 2时预 编码矩阵索引值与预编码矩阵的对应关系的具体实施方案。 优选地, 当终端的发射天线数为 4且发射的码字数为 1时, 预编码矩阵 索引信息所能表示的 64个索引值中的索引值 a0、 al、 ...a23分别与 4发射天 线 1层的预编码矩阵集 (可以是如表 1所示的预编码矩阵集) 中的 24个矩 阵相对应, 索引值 bO、 bl、 ... M5分别与 4发射天线 2屋的预编码矩阵集(可 以是如表 2所示的预编码矩阵集) 中的 16个矩阵相对应, 其中, 索引值 aO、 al、 ... a23以及 b0、 bl、 ...bl5互不相等。 该优选实施例提供了当终端的发射天线数为 4且发射的码字数为 1时预 编码矩阵索引值与预编码矩阵的对应关系的一种具体实施方案。 在该优选实 施例中, 索引值 a0、 al、 ... a23、 b0、 bl、 ...bl5可以为 0〜63内互不相等的 数。 优选地, 当终端的发射天线数为 4且发射的码字数为 2时, 预编码矩阵 索引信息所能表示的 64个索引值中的索引值 b0、 bl、 ...bl5分别与 4发射 天线 2层的预编码矩阵集 (可以是如表 2所示的预编码矩阵集) 中的 16个 矩阵相对应, 索引值 c0、 cl、 ... cl9分别与 4发射天线 3层的预编码矩阵集 (可以是如表 3所示的预编码矩阵集) 中的任意 20个矩阵相对应, 索引值
1 0 0 0
0 1 0 0 d0与 4发射天线 4层的预编码矩阵集中的一个预编码矩阵(如丄
2 0 0 1 0
0 0 0 1 相对应, 其中, 索引值 b0、 bl、 ...bl5以及 c0、 cl、 ... cl9和 dO互不相等。 该优选实施例提供了当终端的发射天线数为 4且发射的码字数为 2时预 编码矩阵索引值与预编码矩阵的对应关系的又一种具体实施方案。 在该优选 实施例中, 索引值 b0、 bl、 ... bl5、 c0、 cl、 ... cl9、 dO可以为 0~63内互不 相等的数。 优选地, 当终端的发射天线数为 4且发射的码字数为 2时, 预编码矩阵 索引信息所能表示的 64个索引值中的索引值 b0、 bl、 ...bl5分别与 4发射 天线 2层的预编码矩阵集 (可以是如表 2所示的预编码矩阵集) 中的 16个 矩阵相对应, 索引值 c0、 cl、 ... c23分别与 4发射天线 3层的预编码矩阵集 (可以是如表 3所示的预编码矩阵集) 中的 24个矩阵相对应, 索引值 d0与
1 0 0 0
0 1 0 0 4发射天线 4层的预编码矩阵集中的一个预编码矩阵 (如丄 )相
0 0 1 0
0 0 0 1 对应, 其中, 索引值 b0、 bl、 ... bl5以及 c0、 cl、 ... c23和 dO互不相等。 该优选实施例提供了当终端的发射天线数为 4且发射的码字数为 2时预 编码矩阵索引值与预编码矩阵的对应关系的又一种具体实施方案。 在该优选 实施例中, 索引值 b0、 bl、 ... bl5、 c0、 cl、 ... c23、 dO可以为 0〜63内互不 相等的数。 优选地, 当终端的发射天线数为 4且发射的码字数为 2时, 预编码矩阵 索引信息所能表示的 64个索引值中的索引值 b0、 bl、 ...bl5分别与 4发射 天线 2层的预编码矩阵集 (可以是如表 2所示的预编码矩阵集) 中的 16个 矩阵相对应, 索引值 C0、 cl、 ... cl l分别与 4发射天线 3层的预编码矩阵集 (可以是如表 4所示的预编码矩阵集) 中的 12个矩阵相对应, 索引值 dO与
1 0 0 0
0 1 0 0
4发射天线 4层的预编码矩阵集中的一个预编码矩阵 (如丄 )相
2 0 0 1 0
0 0 0 1 对应, 其中, 索引值 b0、 bl、 ... bl5以及 c0、 cl、 ... cl l和 dO为 0〜63互不 相等。 该优选实施例提供了当终端的发射天线数为 4且发射的码字数为 2时预 编码矩阵索引值与预编码矩阵的对应关系的又一种具体实施方案。 在该优选 实施例中, 索引值 b0、 bl、 ...bl5、 c0、 cl、 ... cll , dO可以为 0〜63内互不 相等的数。 优选地, 当终端的发射天线数为 4且发射的码字数为 2时, 预编码矩阵 索引信息所能表示的 64个索引值中的索引值 b0、 bl、 ...bl5分别与 4发射 天线 2层的预编码矩阵集 (可以是如表 2所示的预编码矩阵集) 中的 16个 矩阵 目 5?于应, 索引值 c0、 cl、 ... cl9分另' J与 20个特殊预编码头巨阵相对应, 索 引值 dO 与 4 发射天线 4 层的预编码矩阵集中的一个预编码矩阵 (如
1 0 0 0
0 1 0 0
)相对应, 其中, 索引值 b0、 bl、 ... bl5 以及 c0、 cl、 ... cl9 0 0 1 0
0 0 0 1
和 dO互不相等。 该优选实施例提供了当终端的发射天线数为 4且发射的码字数为 2时预 编码矩阵索引值与预编码矩阵的对应关系的又一种具体实施方案。 在该优选 实施例中, 索引值 b0、 bl、 ...bl5以及 c0、 cl、 ... cl9和 dO可以为 0〜63内 互不相等的数。
4尤选地, 上述的 20 个特殊预编码矩阵可以全部属于第一类预编码矩阵 集, 第一类预编码矩阵集中的矩阵为 4行 3列的矩阵, 其中, 4行中的每一 行有 2个非零元素, 3列中的一列有 4个非零元素, 其他两列各有 2个非零 元素, 并且每一行的模相等和 /或每一列的模相等。 优选地, 上述的 20个特殊预编码矩阵中的 X个矩阵属于第一类预编码 矩阵集, Y 个矩阵属于第二类预编码矩阵集; 其中, X+Y=20, 第二类预编 码矩阵集中的矩阵为 4行 3列的矩阵, 其中, 4行中的每一行有一个非零元 素, 3 列中的一列有两个非零元素, 其他两列各有一个非零元素, 并且每一 行的模相等。 优选地, 上述的 20个特殊预编码矩阵中的 Μ个矩阵属于第二类预编码 矩阵集, Ν 个矩阵属于第三类预编码矩阵集; 其中, Μ+Ν=20 , 第三类预编 码矩阵集中的矩阵为 4行 3列的矩阵, 其中, 4行中的每一行有一个非零元 素, 3 列中的一列有两个非零元素, 其他两列各有一个非零元素, 并且每一 列的模相等。 上述三个优选实施例提供了 20 个特殊预编码矩阵的选取情况以及矩阵 所具有的特性。 本发明提供的 LTE-A 系统的上行链路预编码矩阵的信令指示方法通过 合理设计反馈信令来携带 ΡΜΙ以选择对应的预编码矩阵,能降低反馈的信令 开销, 既能保证信令的可靠传输, 叉能有效合理地指示发送端进行预编码。 实施例一 在上行链路, 用户终端作为发射端, 基站作为接收端, 基站通过下行控 制信息( DCI, Downlink Control Information )中的 N个比特位( bit )作为反 馈的 PMI信令(即预编码矩阵索引信息, 下同), 用来指示用户终端选择预 编码矩阵。 根据终端的发射天线数和发射的码字数, 可分为以下 4种情况:
( 1 ) 当发射天线数为 2且发射的码字数为 1时, N=3 , 可表述的索引值 ( Index ) 的范围为 0 ~ 7; 用索引值 a 指示终端釆用 1 层的预编码矩阵 [l 进行预编码, 用索引值 b 指示终端采用 1 层的预编码矩阵
[1 - 1]T/ ^进行预编码, 用索引值 c 指示终端采用 1 层的预编码矩阵 [1 进行预编码, 用索引值 d 指示终端采用 1 层的预编码矩阵
[1 - _]T/ ^进行预编码, 用索引值 e 指示终端采用 1 层的预编码矩阵
[1 Of / 2或 [1 Of进行预编码, 用索引值 f指示终端采用 1层的预编码矩阵
[0 if /V2或 [0 if进行预编码。 其中, a,b,c,d,e,f为 0〜7内互不相等的数。
(2) 当发射天线数为 2且发射的码字数为 2时, N=3, 可表述的索引值 (Index) 的范围为 0-7; 用索引值 m 指示终端采用 2 层的预编码矩阵 进行预编码, 其中 m为( 7内的 1个数。
Figure imgf000014_0001
(3 ) 当发射天线数为 4且发射的码字数为 1时, N=6, 可表述的索引值 的范围为 0~63; 用索引值 a0、 al、 ...、 a22、 a23分别指示终端采用表 1中 的 1层的预编码矩阵 Index 0、 Index 1、 ...、 Index 22、 Index 23进行预编码, 用索引值 b0、 bl、 ...、 bl4、 bl5分别指示终端采用表 2中的 2层的预编码 矩阵 Index 0、 Index 1、 ...、 Index 14、 Index 15进行预编码, 其中索引值 a0、 al、 .... a22、 a23、 b0、 bl、 .... bl4、 bl5为 0~63内互不 4目等的数。
(4) 当发射天线数为 4且发射的码字数为 2时, N=6, 可表述的索引值 的范围为 0~ 63; 用索引值 b0、 bl、 ...、 bl4、 bl5分别指示终端采用表 2中 的 2层的预编码矩阵 Index 0、 Index 1、 ...、 Index 14、 Index 15进行预编码, 用索引值 c0、 cl、 .... cl8、 cl9分别指示终端采用表 3中的任意 20个 3层 的预编码矩阵进行预编码, 用索引值 d0 指示终端采用预编码矩阵
1 0 0 0
0 1 0 0
进行预编码。 其中, 索引值 b0、 bl bl4、 bl5、 c0、 cl、 0 0 1 0
0 0 0 1
cl8、 cl9、 dO为 0〜63内互不 ^目等的数。 表 1 上行 4发射天线 1层的预编码矩阵集
Index 0 1 1
to 7 1 1 1
-1 2 -j
1 -j
Index 8
to 15
Index 16
to 23
2 I
上行 4发射天线 2层的预编码矩阵集
Index 0 1 o 1 0 1 0 1 0 1 0 1 0 1 0
to 7 1 0 1 0 -j -J - 1 0 - 1 0 J
0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 -/ 0 / 0 1 0 -1 0 -/ 0 0 1
Index 8 1 0 1 0 1 0 1 0 1 0 1 0 1 0 to 15 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 - 1 0 - 1 0 0 1 0 - 1 0 1 0 1 0 -1 0 1 0 -1 1 0 1 0 — 1 0 实施例二 在上行链路, 用户终端作为发射端, 基站作为接收端, 基站通过下行控 制信息( DCI, Downlink Control Information )中的 N个比特位( bit )作为反 馈的 PMI信令, 用来指示用户终端选择预编码矩阵。 艮椐终端的发射天线数和发射的码字数, 可分为以下 4种情况:
( 1 ) 当发射天线数为 2且发射的码字数为 1时, N=3, 可表述的索引值 (Index) 的范围为 0〜7; 用索引值 a 指示终端采用 1 层的预编码矩阵
[1 1]T/ ^进行预编码, 用索引值 b 指示终端采用 1 层的预编码矩阵
[1 - lf/ ^进行预编码, 用索引值 c 指示终端采用 1 层的预编码矩阵 [1 f/V^"进行预编码, 用索引值 d 指示终端采用 1 层的预编码矩阵
[1 - _ f/V^进行预编码, 用索引值 e 指示终端采用 1 层的预编码矩阵
[1 Of l l或 [1 Of进行预编码, 用索引值 f指示终端采用 1层的预编码矩阵
[0 if /V2或 [0 if进行预编码。 其中, a,b,c,d,e,f为 0〜7内互不相等的数。
(2) 当发射天线数为 2且发射的码字数为 2时, N=3, 可表述的索引值 (Index) 的范围为 0-7; 用索引值 m 指示终端采用 2 层的预编码矩阵 进行预编码, 其中 m为 0^7内的 1个数。
Figure imgf000016_0001
(3 ) 当发射天线数为 4且发射的码字数为 1时, N=6, 可表述的索引值 的范围为 0~63; 用索引值 a0、 al、 ...、 a22、 a23分别指示终端采用表 1中 的 1层的预编码矩阵 Index 0、 Index 1、 ...、 Index 22、 Index 23进行预编码, 用索引值 b0、 bl、 ―.、 bl4、 bl5分别指示终端采用表 2中的 2层的预编码 矩阵 Index 0、 Index 1、 ...、 Index 14、 Index 15进行预编码, 其中索引值 a0、 al、 ...、 a22、 a23、 b0、 bl、 ...、 bl4、 bl5为 0~63内互不 4目等的数。
( 3 ) 当发射天线数为 4且发射的码字数为 2时, N=6, 可表述的索引值 的范围为 0~ 63; 用索引值 b0、 bl、 ...、 bl4、 bl5分别指示终端采用表 2中 的 2层的预编码矩阵 Index 0、 Index 1、 ...、 Index 14、 Index 15进行预编码, 用索引值 c0、 cl、 ...、 c22、 c23分别指示终端采用表 3中的全部 24个 3层 的预编码矩阵 Index 0、 Index 1 Index 22、 Index 23进行预编码, 用索
1 0 0 0
0 1 0 0
引值 d0指示终端釆用预编码矩阵丄 进行预编码。 其中, 索引值
0 0 1 0
0 0 0 1
b0、 bl、 ... , bl4、 bl5、 c0、 cl、 ―.、 c22、 c23、 dO为 0〜63 内互不 Θ等的 数。
Figure imgf000017_0001
实施例三 在上行链路, 用户终端作为发射端, 基站作为接收端, 基站通过下行控 制信息( DCI, Downlink Control Information )中的 N个比特位( bit )作为反 馈的 PMI信令, 用来指示用户终端选择预编码矩阵。 根据终端的发射天线数和发射的码字数, 可分为以下 4种情况:
( 1 ) 当发射天线数为 2且发射的码字数为 1时, N=3, 可表述的索引值 (Index) 的范围为 0-7; 用索引值 a 指示终端采用 1 层的预编码矩阵 [l 进行预编码, 用索引值 b 指示终端采用 1 层的预编码矩阵
[1 - 1]T/ ^进行预编码, 用索引值 c 指示终端采用 1 层的预编码矩阵 [1 进行预编码, 用索引值 d 指示终端采用 1 层的预编码矩阵
[1 - _]T/ ^进行预编码, 用索引值 e 指示终端采用 1 层的预编码矩阵
[1 Of / 2或 [1 Of进行预编码, 用索引值 f指示终端采用 1层的预编码矩阵
[0 if /V2或 [0 if进行预编码。 其中, a,b,c,d,e,f为 0〜7内互不相等的数。
(2) 当发射天线数为 2且发射的码字数为 2时, N=3, 可表述的索引值 (Index) 的范围为 0-7; 用索引值 m 指示终端采用 2 层的预编码矩阵 进行预编码, 其中 m为( 7内的 1个数。
Figure imgf000018_0001
(3 ) 当发射天线数为 4且发射的码字数为 1时, N=6, 可表述的索引值 的范围为 0~63; 用索引值 a0、 al、 ...、 a22、 a23分别指示终端采用表 1中 的 1层的预编码矩阵 Index 0、 Index 1、 ...、 Index 22、 Index 23进行预编码, 用索引值 b0、 bl、 ...、 bl4、 bl5分别指示终端采用表 2中的 2层的预编码 矩阵 Index 0、 Index 1、 ...、 Index 14、 Index 15进行预编码, 其中索引值 a0、 al、 ...、 a22、 a23、 b0、 bl、 ...、 bl4、 bl5为 0~63内互不 4目等的数。
(4) 当发射天线数为 4且发射的码字数为 2时, N=6, 可表述的索引值 的范围为 0~ 63; 用索引值 b0、 bl、 ...、 bl4、 bl5分别指示终端采用表 2中 的 2层的预编码矩阵 Index 0、 Index 1、 ...、 Index 14、 Index 15进行预编码, 用索引值 c0、 cl、 .... cl8、 cl9分别指示终端采用 20个特殊的预编码矩阵 进行预编码, 用索引值 d0指示终端釆用预编码矩阵 进行预编
Figure imgf000018_0002
码。 其中, 索引值 b0、 bl、 …、 M4、 bl5、 c0、 cl、 ...、 cl8、 cl9、 dO 为
0〜63内互不相等的数。 其中, 上面所述的 20 个特殊的预编码矩阵, 全部取自第一类预编码矩 阵集, 第一类预编码矩阵集中的矩阵为 4行 3列的矩阵, 每一行有两个非零 元素, 其中一列有四个非零元素, 其它两列各有两个非零元素, 各矩阵的每 一行的模相等和 /或每一列的模相等。 或者, 上面所述的 20个特殊的预编码矩阵, 有 X个矩阵取自第一类预 编码矩阵集, 有 Y个矩阵取自第二类预编码矩阵集。 第二类预编码矩阵集中 的每个矩阵为 4行 3列的矩阵, 每一行仅有一个非零元素, 其中一列有两个 非零元素, 其它两列各有一个非零元素。 第二类预编码矩阵集中各矩阵的每 一行的模相等。 X+Y=20, X的取值范围为 0 - 20, Υ的取值范围为 0 - 20。 或者, 上面所述的 20个特殊的预编码矩阵, 有 Μ个矩阵取自第二类预 编码矩阵集, 有 Ν个矩阵取自第三类预编码矩阵集。 第三类预编码矩阵集中 的每个矩阵为 4行 3列的矩阵, 每一行仅有一个非零元素, 其中一列有两个 非零元素, 其它两列各有一个非零元素。 第三类预编码矩阵集中各矩阵的每 一列的模相等。 Μ+Ν=20, Μ的耳又值范围为 0 ~ 20, Ν的取值范围为 0 ~ 20。 实施例四 在上行链路, 用户终端作为发射端, 基站作为接收端, 基站通过下行控 制信息( DCI, Downlink Control Information )中的 N个比特位( bit )作为反 馈的 PMI信令(即预编码矩阵索引信息, 下同), 用来指示用户终端选择预 编码矩阵。 根据终端的发射天线数和发射的码字数, 可分为以下 4种情况:
( 1 ) 当发射天线数为 2且发射的码字数为 1时, N=3 , 可表述的索引值 ( Index ) 的范围为 0 ~ 7; 用索引值 a 指示终端采用 1 层的预编码矩阵
[1 1]T / ^进行预编码, 用索引值 b 指示终端采用 1 层的预编码矩阵 [1 - 1]T / ^进行预编码, 用索引值 c 指示终端采用 1 层的预编码矩阵
[1 f / ^"进行预编码, 用索引值 d 指示终端采用 1 层的预编码矩阵
[1 - 进行预编码, 用索引值 e 指示终端采用 1 层的预编码矩阵 [1 Of / ^"或 [1 0『进行预编码, 用索引值 f指示终端采用 1层的预编码矩阵
[0 if /V2或 [0 if进行预编码。 其中, a,b,c,d,e,f为 0~7内互不相等的数。
( 2 ) 当发射天线数为 2且发射的码字数为 2时, N=3 , 可表述的索引值 Index) 的范围为 0~7; 用索引值 m 指示终端采用 2 层的预编码矩阵 进行预编码, 其中 m为 0~7内的 1个数。
Figure imgf000020_0001
(3 ) 当发射天线数为 4且发射的码字数为 1时, N=6, 可表述的索引值 的范围为 0~63; 用索引值 a0、 al、 ...、 a22、 a23分别指示终端采用表 1中 的 1 的预编码矩阵 Index 0、 Index 1、 ...、 Index 22、 Index 23进行预编码, 用索引值 b0、 bl、 ...、 bl4、 bl5分别指示终端采用表 2中的 2层的预编码 矩阵 Index 0、 Index 1、 ...、 Index 14、 Index 15进行预编码, 其中索引值 a0、 al、 ...、 a22、 a23、 b0、 bl、 ...、 bl4、 bl5为 0〜63内互不 目等的数。
(4) 当发射天线数为 4且发射的码字数为 2时, N=6, 可表述的索引值 的范围为 0~ 63; 用索引值 b0、 bl、 ...、 bl4、 bl5分别指示终端采用表 2中 的 2层的预编码矩阵 Index 0、 Index 1、 ...、 Index 14、 Index 15进行预编码, 用索引值 c0、 cl cl0、 cll分别指示终端采用表 4中的 12个 3居的预 编码矩阵进行预编码,用索引值 do指示终端釆用预编码矩阵 进
Figure imgf000020_0002
行预编码。 其中, 索引值 b0、 bl、 bl4、 bl5、 c0、 cl、 cl0、 cll、 dO为 0〜63内互不相等的数。 上行 4发射天线 3层的预编码矩阵集 2
1 0 0 1 0 0 1 0 0 1 0 0
Index 0 至 1 0 0 -1 0 0 0 1 0 0 1 0 Index 3 0 1 0 0 1 0 1 0 0 -1 0 0
0 0 1 0 0 1 0 0 1 0 0 1
1 0 0 1 0 0 0 1 0 0 1 0
Index 4至 0 1 0 0 1 0 1 0 0 1 0 0 Index 7 0 0 1 0 0 1 1 0 0 -1 0 0
1 0 0 -1 0 0 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0
Index 8至 1 0 0 1 0 0 0 0 1 0 0 1 Index 11 0 0 1 0 0 1 1 0 0 1 0 0
1 0 0 -1 0 0 1 0 0 -1 0 0 图 6是根据本发明实施例的基站和终端的示意图。 如图 6所示, 该基站 10包括: 发送模块 102 , 用于通过下行控制信息将 用于指示终端进行预编码的预编码矩阵索引信息反馈给终端 20。 该终端 20包括: 接收模块 202, 用于接收来自基站 10的下行控制信息, 其中, 下行控制信息中携带有用于指示终端 20 进行预编码的预编码矩阵索 引信息; 查找模块 204 , 用于在上行链路上, 使用接收模块 202接收到的下 行控制信息中的预编码矩阵索引信息查找到对应的预编码矩阵; 编码模块 206 , 用于使用查找到的预编码矩阵对发送数据进行预编码。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: ( 1 ) 能够在釆用了 SU-MIMO的 LTE-A系统的上行链路中利用基站反 馈的 PMI对发送数据进行预编码, 实现了 LTE-A系统的上行链路的预编码;
( 2 )通过合理设计反馈信令来携带 PMI以选择对应的预编码矩阵, 能 降低反馈的信令开销, 既能保证信令的可靠传输, 又能有效合理地指示发送 端进行预编码。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步驟, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种 LTE-A系统的上行链路预编码矩阵的信令指示方法, 其特征在于, 包括:
基站通过下行控制信息将用于指示终端进行预编码的预编码矩阵索 引信息反馈给所述终端。
2. 根据权利要求 1所述的方法, 其特征在于, 还包括:
在上行链路上, 所述终端使用所述下行控制信息中的预编码矩阵索 引信息查找到对应的预编码矩阵;
所述终端使用查找到的预编码矩阵对发送数据进行预编码。
3. 根据权利要求 1所述的方法, 其特征在于, 当所述终端的发射天线数为 2时, 所述预编码矩阵索引信息用 3个比特位表示; 当所述终端的发射 天线数为 4时, 所述预编码矩阵索引信息用 6个比特位表示。
4. 根据权利要求 3所述的方法, 其特征在于, 当所述终端的发射天线数为 2且发射的码字数为 1 时, 所述预编码矩阵索引信息所能表示的 8个索 引值与 2发射天线 1层的预编码矩阵集中的预编码矩阵相对应。
5. 根据权利要求 4所述的方法, 其特征在于, 索引值 a与所述 2发射天线 1层的预编码矩阵集中的矩阵 [1 ΙΓ /Λ/^"相对应, 索引值 b与所述 2发射 天线 1层的预编码矩阵集中的矩阵 [1 - 相对应, 索引值 c与所述 2发射天线 1层的预编码矩阵集中的矩阵 [1 相对应, 索引值 d与 所述 2发射天线 1层的预编码矩阵集中的矩阵 [1 - jf / ^相对应, 索引 值 e与所述 2发射天线 1层的预编码矩阵集中的矩阵 [1 Of /V^或 [1 Of 相对应, 索引值 f 与所述 2 发射天线 1 层的预编码矩阵集中的矩阵 [0 1] 或 [0 ΐΓ相对应, 其中, a, b, c, d, e为所述 8个索引值中 的互不相等的索引值。
6. 根据权利要求 3所述的方法, 其特征在于, 当所述终端的发射天线数为 2且发射的码字数为 2时, 所述预编码矩阵索引信息所能表示的 8个索 引值与 2发射天线 2层的预编码矩阵集中的预编码矩阵相对应。 根据权利要求 6所述的方法, 其特征在于, 索引值 m与所述 2发射天线
—1 0—
2层的预编码矩阵集中的矩阵 ^ 对应, 其中, m为所述 8个索引
V2 0 1
值中的一个索引值 根据权利要求 3所述的方法, 其特征在于, 当所述终端的发射天线数为 4且发射的码字数为 1时, 所述预编码矩阵索引信息所能表示的 64个索 引值中的索引值 a0、 al、 ... a23分别与 4发射天线 1层的预编码矩阵集 中的 24个矩阵相对应, 索引值 b0、 bl、 ... bl5分别与 4发射天线 2层的 预编码矩阵集中的 16个矩阵相对应, 其中, 所述索引值 a0、 al、 ... a23 以及 b0、 bl、 ... bl5互不相等。 根据权利要求 3所述的方法, 其特征在于, 当所述终端的发射天线数为 4且发射的码字数为 2时, 所述预编码矩阵索引信息所能表示的 64个索 引值中的索引值 b0、 bl、 ... bl5分别与 4发射天线 2层的预编码矩阵集 中的 16个矩阵相对应, 索引值 c0、 cl、 ... cl9分别与 4发射天线 3层的 预编码矩阵集中的任意 20个矩阵相对应, 索引值 d0与 4发射天线 4层 的预编码矩阵集中的一个预编码矩阵相对应, 其中, 所述索引值 b0、 bl、 ... bl5以及 c0、 cl、 ... cl9和 dO互不相等。
10. 根据权利要求 3所述的方法, 其特征在于, 当所述终端的发射天线数为 4且发射的码字数为 2时, 所述预编码矩阵索引信息所能表示的 64个索 引值中的索引值 b0、 bl、 ... bl5分别与 4发射天线 2层的预编码矩阵集 中的 16个矩阵相对应, 索引值 c0、 cl、 ... c23分别与 4发射天线 3层的 预编码矩阵集中的 24个矩阵相对应, 索引值 dO与 4发射天线 4层的预 编码矩阵集中的一个预编码矩阵相对应,其中,所述索引值 b0、bl、 ... bl5 以及 c0、 cl、 ... c23和 dO互不相等。
11. 根据权利要求 3所述的方法, 其特征在于, 当所述终端的发射天线数为 4且发射的码字数为 2时, 所述预编码矩阵索引信息所能表示的 64个索 引值中的索引值 b0、 bl、 ... bl5分别与 4发射天线 2层的预编码矩阵集 中的 16个矩阵相对应, 索引值 c0、 cl、 ... cl l分别与 4发射天线 3层的 预编码矩阵集中的 12个矩阵相对应, 索引值 dO与 4发射天线 4层的预 编码矩阵集中的一个预编码矩阵相对应,其中,所述索引值 b0、bl、 ... bl5 以及 c0、 cl、 ... cl l和 dO为 0〜63互不相等。
12. 根据权利要求 3所述的方法, 其特征在于, 当所述终端的发射天线数为 4且发射的码字数为 2时, 所述预编码矩阵索引信息所能表示的 64个索 引值中的索引值 b0、 bl、 ... bl5分别与 4发射天线 2层的预编码矩阵集 中的 16个矩阵相对应, 索引值 c0、 cl、 ... cl9分别与 20个特殊预编码 矩阵相对应,索引值 d0与 4发射天线 4层的预编码矩阵集中的一个预编 码矩阵相对应, 其中, 所述索引值 b0、 bl、 ...bl5 以及 c0、 cl、 ... cl9 和 dO互不相等。
13. 根据权利要求 12所述的方法, 其特征在于, 所述 20个特殊预编码矩阵 属于第一类预编码矩阵集, 所述第一类预编码矩阵集中的矩阵为 4行 3 列的矩阵, 其中, 所述 4行中的每一行有 2个非零元素, 所述 3列中的 一列有 4个非零元素, 其他两列各有 2个非零元素, 并且每一行的模相 等和 /或每一列的模相等。
14. 根据权利要求 13所述的方法, 其特征在于, 所述 20个特殊预编码矩阵 中的 X个矩阵属于所述第一类预编码矩阵集, Y个矩阵属于第二类预编 码矩阵集;
其中, X+Y=20 ,所述第二类预编码矩阵集中的矩阵为 4行 3列的矩 阵, 其中, 所述 4行中的每一行有一个非零元素, 所述 3列中的一列有 两个非零元素, 其他两列各有一个非零元素, 并且每一行的模相等。
15. 根据权利要求 14所述的方法, 其特征在于, 所述 20个特殊预编码矩阵 中的 Μ个矩阵属于所述第二类预编码矩阵集, Ν个矩阵属于第三类预编 码矩阵集;
其中, Μ+Ν=20, 所述第三类预编码矩阵集中的矩阵为 4行 3列的 矩阵, 其中, 所述 4行中的每一行有一个非零元素, 所述 3列中的一列 有两个非零元素, 其他两列各有一个非零元素, 并且每一列的模相等。
16. —种基站, 其特征在于, 包括:
发送模块, 用于通过下行控制信息将用于指示终端进行预编码的预 编码矩阵索引信息反馈给所述终端。
17. 一种终端, 其特征在于, 包括:
接收模块, 用于接收来自基站的下行控制信息, 其中, 所述下行控 制信息中携带有用于指示所述终端进行预编码的预编码矩阵索引信息; 查找模块, 用于在上行链路上, 使用所述预编码矩阵索引信息查找 到对应的预编码矩阵;
编码模块, 用于使用查找到的预编码矩阵对发送数据进行预编码。
PCT/CN2010/074579 2010-01-11 2010-06-28 上行链路预编码矩阵的信令指示方法、基站和终端 WO2011082570A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010000316.2A CN101789848B (zh) 2010-01-11 2010-01-11 Lte-a系统的上行链路预编码矩阵的信令指示方法
CN201010000316.2 2010-01-11

Publications (1)

Publication Number Publication Date
WO2011082570A1 true WO2011082570A1 (zh) 2011-07-14

Family

ID=42532917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074579 WO2011082570A1 (zh) 2010-01-11 2010-06-28 上行链路预编码矩阵的信令指示方法、基站和终端

Country Status (2)

Country Link
CN (1) CN101789848B (zh)
WO (1) WO2011082570A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190117750A (ko) * 2017-03-24 2019-10-16 후아웨이 테크놀러지 컴퍼니 리미티드 기준 신호를 전송하기 위한 방법과 장치, 및 기준 신호를 수신하기 위한 방법과 장치

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255705B (zh) * 2011-07-08 2013-09-04 电信科学技术研究院 一种上行预编码信息指示方法及装置
CN102299764B (zh) * 2011-07-08 2014-04-16 电信科学技术研究院 一种上行闭环预编码信息指示方法及装置
CN102932114B (zh) * 2011-08-12 2017-02-15 中兴通讯股份有限公司 一种上行预编码发射方法及装置
CN103369695B (zh) * 2012-03-30 2017-03-29 电信科学技术研究院 一种上行调度方法及装置
WO2014101242A1 (zh) * 2012-12-31 2014-07-03 华为技术有限公司 报告信道状态信息csi的方法、用户设备和基站
CN107294673B (zh) * 2016-03-31 2020-05-15 电信科学技术研究院 一种上行传输方法及装置
CN108075813B (zh) * 2016-11-15 2021-01-22 电信科学技术研究院 一种预编码信息指示方法、ue及接入网实体
CN109039406B (zh) 2017-06-16 2019-11-19 华为技术有限公司 一种信道状态信息发送、接收方法、存储介质及设备
CN109392119B (zh) * 2017-08-10 2020-02-18 维沃移动通信有限公司 空间特性参数集合指示方法、用户侧设备和网络侧设备
CN109600838B (zh) * 2017-09-30 2020-11-10 华为技术有限公司 一种上行子带预编码矩阵的指示方法、终端及基站
CN109787668B (zh) 2017-11-15 2023-10-20 华为技术有限公司 通信方法、通信装置和系统
CN110324070B (zh) * 2018-03-31 2022-08-26 华为技术有限公司 通信方法、通信装置和系统
CN115133966B (zh) * 2021-03-25 2024-04-26 大唐移动通信设备有限公司 通信方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136718A (zh) * 2006-11-07 2008-03-05 中兴通讯股份有限公司 无线通信系统中多输入多输出的空间复用的预编码方法
CN101547066A (zh) * 2008-03-25 2009-09-30 中兴通讯股份有限公司 基于mu-mimo方式的下行预编码信息指示方法
CN101615979A (zh) * 2008-06-24 2009-12-30 华为技术有限公司 多天线系统中的反馈指示方法、系统和设备
CN101783700A (zh) * 2009-01-21 2010-07-21 大唐移动通信设备有限公司 对上行数据传输的指示方法、上行数据传输方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8259651B2 (en) * 2008-03-25 2012-09-04 Samsung Electronics Co., Ltd. System and method for multiplexing on an LTE uplink control channel
US9755708B2 (en) * 2008-04-16 2017-09-05 Texas Instruments Incorporated High data rate uplink transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136718A (zh) * 2006-11-07 2008-03-05 中兴通讯股份有限公司 无线通信系统中多输入多输出的空间复用的预编码方法
CN101547066A (zh) * 2008-03-25 2009-09-30 中兴通讯股份有限公司 基于mu-mimo方式的下行预编码信息指示方法
CN101615979A (zh) * 2008-06-24 2009-12-30 华为技术有限公司 多天线系统中的反馈指示方法、系统和设备
CN101783700A (zh) * 2009-01-21 2010-07-21 大唐移动通信设备有限公司 对上行数据传输的指示方法、上行数据传输方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190117750A (ko) * 2017-03-24 2019-10-16 후아웨이 테크놀러지 컴퍼니 리미티드 기준 신호를 전송하기 위한 방법과 장치, 및 기준 신호를 수신하기 위한 방법과 장치
EP3588830A4 (en) * 2017-03-24 2020-03-04 Huawei Technologies Co., Ltd. METHOD FOR TRANSMITTING REFERENCE SIGNALS, RECEIVING METHOD AND DEVICE
KR102287733B1 (ko) 2017-03-24 2021-08-06 후아웨이 테크놀러지 컴퍼니 리미티드 기준 신호를 전송하기 위한 방법과 장치, 및 기준 신호를 수신하기 위한 방법과 장치
US11323161B2 (en) 2017-03-24 2022-05-03 Huawei Technologies Co., Ltd. Signal transmission based on downlink control information

Also Published As

Publication number Publication date
CN101789848A (zh) 2010-07-28
CN101789848B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2011082570A1 (zh) 上行链路预编码矩阵的信令指示方法、基站和终端
US8045508B2 (en) Rank feedback method for multiple-input multiple-output transmission
US9264117B2 (en) Rank and PMI in download control signaling for uplink single-user MIMO (UL SU-MIMO)
US9270439B2 (en) Method and system for transmitting channel state information in wireless communication systems
KR101481583B1 (ko) 하향링크 제어 정보 송수신 방법
US9755708B2 (en) High data rate uplink transmission
US9614602B2 (en) Methods and arrangements for signaling control information in a communication system
CA2790998C (en) Method and system for indicating an enabled transport block
US11582779B2 (en) Method, device, and storage medium for configuring starting symbol position of uplink data channel
US20170005766A1 (en) Method and base station for transmitting downstream link data, and method and user device for receiving downstream link data
EP3365984B1 (en) Dynamic precoding of shared reference signals
JP5400136B2 (ja) 前回の送信試行とは異なるレイヤ数でのトランスポートブロック再送信サポート
TWI673967B (zh) 傳輸預編碼方法及其使用者設備
WO2011082574A1 (zh) 物理上行共享信道的信令配置方法及系统
WO2011137620A1 (zh) 上行解调参考信号的指示方法及系统
KR20090075461A (ko) Harq 방식을 이용하는 다중 안테나 시스템에서 신호재전송 방법
JP2011521502A (ja) Mimoシステムにおいてプリコーディング情報を伝送するための方法及び装置
WO2012019451A1 (zh) 一种上行传输方式的指示、确定方法和系统
WO2011157044A1 (zh) 一种多天线系统上行传输块的重传系统及方法
WO2016169235A1 (zh) 信道质量指示cqi数量的确定方法及装置
KR20130100146A (ko) 주기적 피드백 리포트를 전송하는 방법 및 장치
WO2011123975A1 (zh) Pusch的上行传输方法、和系统
WO2011156992A1 (zh) 下行控制信息的发送方法和基站
WO2011082641A1 (zh) 一种传输信道质量信息的系统、终端及方法
WO2011085542A1 (zh) 用于降低控制信令开销的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10841913

Country of ref document: EP

Kind code of ref document: A1