WO2011081222A1 - 膵ホルモン産生細胞の製造法 - Google Patents

膵ホルモン産生細胞の製造法 Download PDF

Info

Publication number
WO2011081222A1
WO2011081222A1 PCT/JP2010/073906 JP2010073906W WO2011081222A1 WO 2011081222 A1 WO2011081222 A1 WO 2011081222A1 JP 2010073906 W JP2010073906 W JP 2010073906W WO 2011081222 A1 WO2011081222 A1 WO 2011081222A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
kinase
medium
producing
inhibitor
Prior art date
Application number
PCT/JP2010/073906
Other languages
English (en)
French (fr)
Inventor
細谷 昌樹
祐哉 國貞
昌伸 庄司
則子 山添
Original Assignee
武田薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武田薬品工業株式会社 filed Critical 武田薬品工業株式会社
Priority to CA2785966A priority Critical patent/CA2785966C/en
Priority to US13/520,090 priority patent/US8932853B2/en
Priority to JP2011547740A priority patent/JP5762979B2/ja
Priority to EP10841072.1A priority patent/EP2505639B1/en
Publication of WO2011081222A1 publication Critical patent/WO2011081222A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/39Pancreas; Islets of Langerhans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • C12N5/0678Stem cells; Progenitor cells; Precursor cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/507Pancreatic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • the present invention relates to a method for producing pancreatic hormone-producing cells. Furthermore, the present invention relates to a pancreatic hormone-producing cell obtained by the method, a method for screening a drug using the same, a drug and the like.
  • the pancreas is an organ that has an endocrine gland (endocrine cell) and an exocrine line (exocrine cell) and plays an important role in both secretory cells.
  • Exocrine cells mainly play a role in secreting digestive enzymes such as pancreatic lipase, trypsin, elastase, and pancreatic amylase. It is known that endocrine cells secrete pancreatic hormones and secrete glucagon from pancreatic ⁇ cells, insulin from pancreatic ⁇ cells, somatostatin from pancreatic ⁇ cells, and PP from pancreatic polypeptide (PP) cells. In recent years, it has been reported that ghrelin, a gastric secretion hormone, is also secreted from endocrine cells of the pancreas.
  • Insulin plays an important role in promoting glucose utilization, protein synthesis, neutral fat formation and storage, lowering blood sugar levels, and keeping blood sugar at the correct concentration.
  • Glucagon plays an important role in the regulation mechanism of glucose metabolism along with insulin as a blood glucose-elevating hormone through liver glycolysis and gluconeogenesis.
  • Somatostatin exerts its action through binding to the somatostatin receptor and suppresses the secretion of various hormones such as glucagon and insulin in the pancreas.
  • PP is a hormone secreted from cells of the islets of Langerhans in response to meals, and is known as a satiety factor and has a function of reducing food intake and weight gain.
  • Ghrelin is known to increase body weight by stimulating food intake and reducing fat oxidation.
  • Diabetes mellitus is a disease that develops when insulin is deficient or its function is lost, and once it develops, it is difficult to cure. Diabetes can be broadly classified into two types: type I diabetes (insulin-dependent diabetes) and type II diabetes (non-insulin-dependent diabetes).
  • Type II diabetes is a chronic disease that develops because of resistance to insulin, and is a diabetes that is a problem in relation to lifestyle habits such as obesity and stress caused by overeating and lack of exercise. Type II diabetes often develops in middle and old age, and many diabetics suffer from type II diabetes.
  • Type I diabetes is a chronic disease caused by destruction of pancreatic ⁇ cells (sometimes referred to herein as insulin-producing cells) due to autoimmune disease, viral infection, or the like, and insulin is not secreted into the body.
  • pancreatic transplantation or islet transplantation for type I diabetic patients are performed.
  • transplantation techniques are not well established, and the current situation is the lack of transplantable pancreas or islets .
  • the patient needs to continue to take the immunosuppressant throughout the life, and problems such as the risk of infection and side effects due to the immunosuppressant remain.
  • One of the treatments that have been tried for type I diabetes is a method of inducing insulin-producing cells themselves from patient-derived cells outside the body and transplanting the induced insulin-producing cells into the patient's body. This method can produce insulin in the patient's own body.
  • insulin-producing cells are induced from patient-derived cells, the cells are patient-derived, which is advantageous in terms of safety, such as eliminating the problem of immune rejection.
  • a method for differentiating embryonic stem cells sometimes referred to herein as ES cells
  • an induced pluripotent stem cell sometimes referred to herein as iPS cells
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cell
  • Patent Document 1 a method of inducing differentiation of pancreatic ⁇ cells from human ES cells using activin or retinoic acid (RA) (Patent Document 1, Non-Patent Documents 1 to 4) or pancreatic ⁇ cells from human iPS cells PDX1, which is an important transcription factor involved in pancreas development in ES cells and known to play a role in the generation and maintenance of functions of insulin-producing cells.
  • Method of efficiently inducing differentiation of insulin-producing cells by introducing and culturing Pancreatic cells that do not produce hormones are dedifferentiated to become stem cells, and the stem cells are induced to differentiate using activin or RA A method (Patent Document 4) is known.
  • pancreatic hormone-producing cells including insulin-producing cells
  • An object of the present invention is to provide a method for more efficiently producing pancreatic hormone-producing cells, and more preferably, pancreatic hormone-producing cells are obtained by inducing differentiation of stem cells into pancreatic hormone-producing cells more efficiently. It is to manufacture stably in large quantities.
  • a further object of the present invention is to provide a pharmaceutical screening method and a pharmaceutical using the pancreatic hormone-producing cells obtained by the method of the present invention.
  • the present inventors can induce differentiation from stem cells to pancreatic hormone-producing cells more efficiently by gradually changing the types of differentiation-inducing factors and combinations thereof. As a result, the function of the obtained pancreatic hormone-producing cells was confirmed, and the present invention was completed.
  • a method for producing pancreatic hormone-producing cells characterized in that the stem cells are subjected to the following steps (1) to (4): (1) A step of culturing stem cells in a medium containing an activin receptor-like kinase-4,7 activator and a GSK3 inhibitor (2) The cells obtained in the above step (1) are activin receptor-like (3) culturing in a medium containing a kinase-4,7 activator (3) The cells obtained in the above step (2) are subjected to (a) retinoic acid receptor agonist, (b) AMP-activated protein kinase and / or Or an inhibitor of activin receptor-like kinase-2,3,6, or at least one selected from the group consisting of antagonists of BMP, and (c) an inhibitor of activin receptor-like kinase-4,5,7 A step of culturing in a medium containing at least one selected from the group (4) a step of culturing the cells obtained
  • Retinoic acid receptor agonists (b ′) inhibitors of AMP-activated protein kinase and / or activin receptor-like kinase-2,3,6, and (c) inhibition of activin receptor-like kinase-4,5,7
  • the production method of the above-mentioned [1] which is a step of culturing in a medium containing any one or more selected from the group consisting of agents.
  • [4] A method for producing an endoderm cell comprising culturing a stem cell in a medium containing at least an activin receptor-like kinase-4,7 activator and a GSK3 inhibitor; [5] The production method of the above-mentioned [4], wherein the activin receptor-like kinase-4,7 activator is activin;
  • a method for producing pancreatic hormone-producing progenitor cells comprising culturing endoderm cells in a medium containing any one or more selected from the group
  • a screening method for a therapeutic agent for diabetes comprising using cells obtained by any one or more steps selected from the group consisting of the following steps (1) to (4): (1) A step of culturing stem cells in a medium containing an activin receptor-like kinase 4 or 7 activator and a GSK3 inhibitor (2) The cells obtained in the above step (1) are treated with activin receptor-like kinase (3) culturing in a medium containing activators of 4 and 7 (3) The cells obtained in the above step (2) are subjected to (a) retinoic acid receptor agonist, (b) AMP-activated protein kinase and / or At least
  • pancreatic hormone-producing cells can be more efficiently produced from stem cells.
  • the pancreatic hormone-producing cells produced by the present invention can be used for screening for compounds useful for the prevention and / or treatment of diseases caused by pancreatic hormone production and / or secretion abnormalities such as diabetes.
  • the pancreatic hormone-producing cells obtained by the production method of the present invention can be used for cell therapy for treating such diseases.
  • the expression of Brachyury showed the highest value in the combination of activin A and CHIR99021 on the differentiation induction day 1
  • SOX17 showed the highest value in the combination of activin A and Wnt3a or CHIR99021 on the differentiation induction days 2-3.
  • the nuclei of SOX17 positive cells are green by Alexa488 and the nuclei of negative cells are blue by Hoechst 33342.
  • retinoic acid As differentiation-inducing factors, retinoic acid (RA), SB431542 (SB) and dosomorphin (DM) are used alone or in combination shown in the figure (Examples 2 to 8), and some cells As a control (Ctrl), the cells were cultured without adding a differentiation-inducing factor.
  • PDX1 shows a remarkably high value when retinoic acid and dosomorphin are added in combination (Example 2 and Example 7), and NGN3 shows a combination of retinoic acid, SB431542, and dosomorphin (implementation).
  • Example 2 showed the highest value. Similar to the case of FIG.
  • differentiation-inducing factor alone or PDX1 in cells (Examples 9 to 15) that were induced to differentiate for 6 days from day 3 to day 9 by the combination and cultured for 6 days from day 9 to day 15 in a medium without addition of a differentiation-inducing factor.
  • results of measuring the expression level of insulin by quantitative RT-PCR It displays as a relative value with respect to the expression level of GAPDH which is a housekeeping gene.
  • Both PDX1 and insulin showed the highest value when the three types of retinoic acid, SB431542, and dosomorphin were combined (Example 9).
  • staining using the anti-insulin antibody and the anti-human C peptide antibody with respect to the cell of Example 9 15 days after differentiation induction is shown.
  • Insulin producing cells are red with Alexa568, C peptide positive cells are green with Alexa488, and the nucleus of the cells is blue with Hoechst 33342.
  • the stained images were superposed, the insulin producing cells and the C peptide positive cells coincided with each other, and yellow color was exhibited.
  • the outline of the differentiation induction method to a pancreatic cell is shown.
  • This differentiation induction method consists of four stages. By adding a combination of basal medium and growth differentiation factors to undifferentiated human iPS cells in the order shown in the figure, differentiation into cells of the pancreatic lineage can be induced.
  • the mode of expression of various differentiation markers when differentiation is induced according to the technique shown in FIG. 7 is shown. After 3 days, 9 days, 11 days, and 15 days after differentiation induction, the expression levels of various genes are measured and displayed as relative values to the expression level of GAPDH, which is a housekeeping gene.
  • SOX17 an endoderm marker
  • PDX1 a pancreatic progenitor cell marker
  • NGN3 which is a pancreatic hormone-producing progenitor cell marker
  • the expression of insulin when differentiation is induced by simultaneously adding forskolin and nicotinamide or adding only DMSO is shown.
  • the expression level of insulin on differentiation induction days 10, 12, 14, 16, 18, and 20 is displayed as a relative value to the expression level of ⁇ -actin, which is a housekeeping gene.
  • ⁇ -actin which is a housekeeping gene.
  • Anti-insulin antibody against cells in which differentiation was induced by adding forskolin and nicotinamide simultaneously in step (4) (from differentiation induction day 10 to day 22) of this differentiation induction method or by adding only DMSO The result of having performed immunofluorescence dyeing using is shown.
  • Insulin producing cells are colored red by Alexa568 and the cell nucleus is colored blue by Hoechst 33342.
  • step (4) when forskolin, dexamethasone, and ALK5 inhibitor II were added alone or in combination with forskolin, nicotinamide, dexamethasone, and ALK5 inhibitor II, the expression of insulin showed a high value.
  • step (4) of this differentiation induction method from differentiation induction day 10 to day 20
  • forskolin, nicotinamide, dexamethasone, ALK5 inhibitor II is added in the combination shown in the figure, or an inducer is added as a control
  • staining using the anti-insulin antibody with respect to the cell differentiated without adding is shown.
  • N nicotinamide
  • F represents forskolin
  • D represents dexamethasone
  • A represents ALK5 inhibitor II.
  • Insulin producing cells insulin positive cells
  • Alexa568 the cell nucleus is colored blue by Hoechst 33342.
  • GSK3 inhibitors were added simultaneously with activin A and cultured for 1 day, and further cultured for 2 days according to step (2).
  • staining using the anti- human SOX17 antibody with respect to the cell is shown.
  • the nuclei of SOX17 positive cells are green by Alexa488 and the nuclei of negative cells are blue by Hoechst 33342.
  • CHIR99021 Example 32
  • SB415286 Example 33
  • SB216673 Example 34
  • step (3) of this differentiation induction method (from differentiation induction day 3 to day 10), various retinoic acid receptor agonists are added simultaneously with dosomorphin and SB431542, or only dosomorphin and SB431542 are added as controls.
  • the results of immunofluorescent staining using anti-PDX1 antibody on the differentiated cells are shown.
  • DM indicates dosomorphin
  • SB indicates SB431542.
  • PDX1-positive cells are green with Alexa488 and the cell nuclei are blue with Hoechst 33342.
  • Most cells are induced to PDX1-positive cells by adding various retinoic acid receptor agonists simultaneously with dosomorphin and SB431542.
  • step (3) of this differentiation induction method (from differentiation induction 3rd day to 10th day), Noggin, retinoic acid, dosomorphin alone, or Noggin and retinoic acid or a combination of dosomorphin and retinoic acid Addition to induce differentiation.
  • Some cells were cultured without adding an inducer as a control.
  • cultivation is shown.
  • Ctrl represents a control to which no inducer was added
  • Nog represents Noggin
  • RA represents retinoic acid
  • and DM represents dosomorphin.
  • PDX1-positive cells are green with Alexa488 and the cell nuclei are blue with Hoechst 33342. Many cells are induced to PDX1-positive cells when added as a combination of Noggin and retinoic acid or dosomorphin and retinoic acid.
  • inhibitors of various activin receptor-like kinases 4, 5, and 7 are added simultaneously with dosomorphin and retinoic acid, or The result of having measured the expression level of NGN3 in the cell cultured by adding only dosomorphin and retinoic acid as a control by quantitative RT-PCR is shown.
  • Insulin positive cells are red with Alexa568 and the nucleus of the cells is blue with Hoechst 33342. By adding and culturing these compounds, differentiation into insulin-positive cells is induced with high efficiency. Cells induced by adding dexamethasone, hydrocortisone, betamethasone, and beclomethasone in step (4) of this differentiation induction method (from differentiation induction day 10 to day 21), or no inducer added as a control (Ctrl) Fig. 5 shows the results of immunofluorescence staining of cultured cells using an anti-insulin antibody. Insulin positive cells are red with Alexa568 and the nucleus of the cells is blue with Hoechst 33342.
  • endoderm was induced from different human iPS cell lines.
  • the results of immunofluorescence staining of cells on day 3 of culture using anti-SOX17 antibody and anti-FOXA2 antibody are shown.
  • SOX17 positive cells are green with Alexa488, FOXA2 positive cells are red with Alexa568, and the cell nucleus is blue with Hoechst 33342.
  • SOX17-positive FOXA2-positive endoderm is efficiently induced from all human iPS cell lines.
  • pancreatic progenitor cells were induced from different human iPS cell lines.
  • PDX1-positive cells are green with Alexa488 and the cell nuclei are blue with Hoechst 33342.
  • PDX1-positive pancreatic progenitor cells are efficiently induced from all human iPS cell lines. Insulin producing cells were induced from different human iPS cell lines according to this differentiation induction method.
  • Insulin positive cells are red with Alexa568 and the nucleus of the cells is blue with Hoechst 33342.
  • pancreatic hormone examples include insulin, glucagon, somatostatin, pancreatic polypeptide, and ghrelin.
  • pancreatic hormone-producing cell means a cell having the ability to produce pancreatic hormones. The pancreatic hormone-producing cells do not always have to produce pancreatic hormones, as long as they have pancreatic hormone-producing ability. Further, the amount of pancreatic hormone produced is not particularly limited. Examples of “pancreatic hormones” in “pancreatic hormone-producing cells” include those exemplified above as “pancreatic hormones” in the present specification.
  • pancreatic hormone-producing cells include insulin-producing cells, glucagon-producing cells (sometimes referred to herein as pancreatic ⁇ cells), somatostatin-producing cells (herein referred to as pancreatic ⁇ cells). And PP-producing cells and ghrelin-producing cells.
  • stem cell refers to a cell that can be cultured in vitro and can differentiate into a plurality of cells constituting a living body.
  • ES cells embryonic primordial germ cell-derived pluripotent stem cells (EG cells: Proc Natl Acad Sci US A. 1998, 95: 13726-31), testis-derived pluripotent stem cells (GS cells: Nature.2008, 456: 344-9), somatic cell-derived induced pluripotent stem cells (iPS cells), human somatic stem cells (tissue stem cells), preferably iPS cells, ES cells Or it is a human somatic stem cell, More preferably, it is an iPS cell.
  • ES cells ES cells derived from any warm-blooded animal, preferably a mammal, can be used.
  • mammals include mice, rats, guinea pigs, hamsters, rabbits, cats, dogs, sheep, pigs, cows, horses, goats, monkeys, and humans.
  • Preferable examples of ES cells include human-derived ES cells.
  • ES cells such as mammals established by culturing early embryos before implantation, ES established by culturing early embryos produced by nuclear transfer of somatic cell nuclei, etc.
  • ES cells obtained by modifying cells and genes on the chromosomes of these ES cells using genetic engineering techniques.
  • Each ES cell can be prepared according to a method commonly practiced in the art or a known literature.
  • Mouse ES cells were obtained in 1981 from Evans et al. (1981, Nature 292: 154-6) and Martin et al. (Martin GR. Et al., 1981, Proc Natl Acad Sci 78: 7634-8). And can be purchased from, for example, Dainippon Sumitomo Pharma Co., Ltd. (Osaka, Japan).
  • Human ES cells were established in 1998 by Thomson et al. (Science, 1998, 282: 1145-7) and are available at the WiCell Research Institute (WiCell Research Institute, website: http: // www. available from Wisell.org/, Madison, Wisconsin, USA, National Institute of Health, Kyoto University, etc., for example, Cellaritis (website: http://www.cellaritis.com). /, Sweden).
  • iPS cells iPS cells derived from any warm-blooded animal, preferably a mammal, can be used.
  • the mammal include mouse, rat, guinea pig, hamster, rabbit, cat, dog, sheep, pig, cow, horse, goat, monkey and human.
  • Preferred examples of iPS cells include iPS cells derived from humans.
  • Specific examples of iPS cells include cells obtained by introducing a plurality of genes into somatic cells such as skin cells and having acquired pluripotency similar to ES cells.
  • Oct3 / 4 gene, Klf4 gene, C- Examples include iPS cells obtained by introducing Myc gene and Sox2 gene, iPS cells obtained by introducing Oct3 / 4 gene, Klf4 gene and Sox2 gene (Nat Biotechnol 2008; 26: 101-106).
  • a method in which a transgene is further reduced (Nature. 2008 Jul 31; 454 (7204): 646-50), a method using a low molecular weight compound (Cell Stem Cell. 2009 Jan 9; 4 (1): 16 -9, Cell Stem Cell. 2009 Nov 6; 5 (5): 491-503), a method using a transcription factor protein instead of a gene (Cell Stem Cell.
  • iPS cell lines include the 253G1 strain (iPS cell line prepared by expressing OCT4 / SOX2 / KLF4 in skin fibroblasts of a 36-year-old woman), 201B7 strain (skin fiber of a 36-year-old woman).
  • IPS cell line prepared by expressing OCT4 / SOX2 / KLF4 / c-MYC in blast cells
  • 1503-iPS (297A1) (OCT4 / SOX2 / KLF4 / c-MYC in 73-year-old female skin fibroblasts) IPS cell line prepared by expression
  • 1392-iPS iPS cell line prepared by expressing OCT4 / SOX2 / KLF4 / c-MYC in 56-year-old male skin fibroblasts
  • NHDF- iPS (297L1) i created by expressing OCT4 / SOX2 / KLF4 / c-MYC in newborn male skin fibroblasts S cell line
  • somatic stem cells those derived from humans can be used.
  • the somatic stem cells are cells that can differentiate into pancreatic hormone-producing cells, and examples include bone marrow and adipose-derived mesenchymal stem cells and stem cells present in the pancreas.
  • the production method of the present invention comprises a method for producing pancreatic hormone-producing cells from stem cells, endoderm cells or pancreatic hormone-producing precursor cells, a method for producing endoderm cells from stem cells, and a pancreatic hormone-producing precursor from endoderm cells. Although it is a method for producing cells, it is also a method for inducing differentiation of cells in a more undifferentiated state into a more differentiated state.
  • the present invention provides a method for producing pancreatic hormone-producing cells, characterized in that the stem cells are subjected to the following steps (1) to (4): (1) A step of culturing stem cells in a medium containing an activin receptor-like kinase-4,7 activator and a GSK3 inhibitor (2) The cells obtained in the above step (1) are activin receptor-like (3) culturing in a medium containing a kinase-4,7 activator (3) The cells obtained in the above step (2) are transformed into (a) a retinoic acid receptor agonist, (b) an AMP-activated protein kinase and / or Or an inhibitor of activin receptor-like kinase-2, 3, 6 or at least one selected from the group consisting of antagonists of BMP, and (c) an inhibitor of activin receptor-like kinase-4, 5, 7 A step of culturing in a medium containing one or more selected from the group (4) a step of culturing the cells obtained in the step (3);
  • stem cells are usually cultured on an incubator.
  • the incubator used here, for example, flask, tissue culture flask, dish, petri dish, tissue culture dish, multi-dish, microplate, microwell plate, multiplate, multiwell plate, chamber slide, petri dish, A tube, a tray, a culture bag, and a roller bottle are mentioned.
  • Preferred are a dish, a petri dish, a tissue culture dish, a multi-dish, a microplate, a microwell plate, a multiplate, a multiwell plate, and the like.
  • the incubator is preferably provided with a coating suitable for maintaining and culturing stem cells.
  • an incubator coated with feeder cells or extracellular matrix components is preferable to use.
  • a feeder cell for example, a fibroblast (a mouse
  • the feeder cells are preferably inactivated by a method known per se, for example, irradiation with radiation (eg gamma rays) or treatment with an anticancer agent (eg mitomycin C).
  • Extracellular matrix components include fibrous proteins such as gelatin, collagen and elastin, glucosaminoglycans such as hyaluronic acid and chondroitin sulfate, proteoglycans, cell adhesion proteins such as fibronectin, vitronectin and laminin, or basement membranes such as matrigel Components and the like.
  • Step (1) A step of culturing a stem cell in a medium containing an activin receptor-like kinase-4,7 activator and a GSK3 inhibitor. This corresponds to the step of inducing differentiation into endoderm cells. Therefore, in this invention, the manufacturing method of the endoderm cell which made the stem cell the starting material can also be provided by this process (1).
  • the activin receptor-like kinase (ALK) -4,7 activator used in this step is selected from substances having an activating action on ALK-4 and / or ALK-7.
  • Examples of activin receptor-like kinase-4,7 activators used in this step include activin, Nodal, and Myostatin. Of these, activin is preferable as the activator of activin receptor-like kinase-4, 7 used in this step.
  • the activin is a 24 kD peptide cell growth / differentiation factor belonging to the TGF ⁇ (transforming growth factor ⁇ ) family, and two ⁇ subunits form a dimer via SS bonds (Ling).
  • Activins A, B, C, D and AB are known as activins, but any of the activins A, B, C, D and AB can be used in this step.
  • Activin A is particularly preferably used as the activin used in this step.
  • activin activin derived from any mammal such as human and mouse can be used.
  • activin used in this step activin derived from the same animal species as the stem cell used for differentiation is preferably used. For example, when human-derived stem cells are used as starting materials, it is preferable to use human-derived activin.
  • the concentration of the activin receptor-like kinase-4,7 activator in the medium in this step is appropriately set depending on the type of activin receptor-like kinase-4,7 activator used.
  • human activin A is used as the activator for kinase-4,7
  • the concentration is usually 0.1 to 200 ng / ml, preferably 5 to 150 ng / ml, particularly preferably 10 to 100 ng / ml.
  • a medium containing a GSK3 inhibitor together with an activator of activin receptor-like kinase-4, 7 (preferably activin A) is used.
  • stem cells are cultured in the presence of an activin receptor-like kinase-4,7 activator and a GSK3 inhibitor, they can be differentiated more suitably into endoderm cells.
  • substances include low molecular compounds, peptides, proteins, and the like.
  • the GSK3 inhibitor used in this step is selected from the group consisting of a substance having GSK3 ⁇ inhibitory activity, a substance having GSK3 ⁇ inhibitory activity, and a substance having both GSK3 ⁇ inhibitory activity and GSK3 ⁇ inhibitory activity.
  • the GSK3 inhibitor used in this step is preferably a substance having GSK3 ⁇ inhibitory activity or a substance having both GSK3 ⁇ inhibitory activity and GSK3 ⁇ inhibitory activity.
  • Specific examples of the GSK3 inhibitor include CHIR98014, CHIR99021, Kenpaulone, AR-AO144-18, TDZD-8, SB216673, BIO, TWS-119, and SB415286. These are available from Axon Medchem BV, Wako Pure Chemical Industries, Enzo Life Sciences, Inc.
  • the GSK3 inhibitor is preferably CHIR99021 (6-[[2-[[4- (2,4-dichlorophenyl) -5- (4-methyl-1H-imidazol-2-yl) -2-pyrimidinyl] amino]). Ethyl] amino] nicotinonitrile), SB216673 (3- (2,3-dichlorophenyl) -4- (1-methyl-1H-indol-3-yl) -1H-pyrrole-2,5-dione), SB415286 ( 3-[(3-chloro-4-hydroxyphenyl) amino] -4- (2-nitrophenyl) -1H-pyrrole-2,5-dione).
  • GIR3 inhibitor CHIR99021 (6-[[2-[[4- (2,4-dichlorophenyl) -5- (4-methyl-1H-imidazol-2-yl) -2- Pyrimidinyl] amino] ethyl] amino] nicotinonitrile).
  • concentration of the GSK3 inhibitor in the medium is appropriately set depending on the type of the GSK3 inhibitor used.
  • the concentration when CHIR99021 is used as the GSK3 inhibitor is usually 0.1 to 20 ⁇ M, preferably 1 to 5 ⁇ M. .
  • SB415286 is used as a GSK3 inhibitor
  • the concentration is usually 0.1 to 20 ⁇ M, preferably 1 to 10 ⁇ M.
  • SB216763 is used as the GSK3 inhibitor, the concentration is usually 0.1 to 30 ⁇ M, preferably 0.5 to 20 ⁇ M.
  • activin receptor-like kinase-4,7 activator and GSK3 inhibitor may be added simultaneously to the medium, and as long as differentiation of stem cells into endoderm cells can be induced, It may be added to the medium with a time difference separately. It is convenient and preferable that the activin receptor-like kinase-4,7 activator and the GSK3 inhibitor are simultaneously added to the medium.
  • the medium used in this step is not particularly limited as long as it contains the activin receptor-like kinase-4,7 activator and GSK3 inhibitor as described above, and is usually a medium used for culturing stem cells.
  • activator receptor-like kinase-4,7 activator and GSK3 inhibitor are added to basal medium.
  • the basal medium is BME medium, BGJb medium, CMRL 1066 medium, Glasgow MEM medium, Improved MEM ZincOption medium, IMDM medium, Medium 199 medium, Eagle MEM medium, ⁇ MEM medium, DMEM medium, Ham medium, RPMI 1640 medium, Fischer 'medium.
  • the medium is not particularly limited as long as it is a medium that can be used for culturing animal cells, such as s medium and mixed medium thereof.
  • These basal media can be purchased from Invitrogen, SIGMA, Wako Pure Chemical Industries, Dainippon Sumitomo Pharma Co., Ltd. It is.
  • the basal medium used in this step is preferably RPMI 1640 medium or Improved MEM Zinc Option medium.
  • the medium used in this step may be a serum-containing medium or a serum-free medium.
  • the serum-free medium means a basal medium that does not contain unconditioned or unpurified serum, and there is no medium in which purified blood-derived components or animal tissue-derived components (for example, growth factors) are mixed. It shall correspond to serum medium.
  • the medium used in this step is a serum-containing medium, mammalian serum such as fetal bovine serum can be used as the serum.
  • the concentration of the serum in the medium is usually 0.01 to 20% by weight, preferably 0.1 to
  • the medium used in this step may also contain a serum replacement.
  • Serum substitutes include, for example, albumin (eg, lipid-rich albumin), transferrin, fatty acid, collagen precursor, trace elements (eg, zinc, selenium), B-27 supplement, N2 supplement, knockout sealum replacement, 2-mercapto Ethanol, 3 ′ thiol glycerol, or the equivalent thereof.
  • concentrations in these media are the same as those in the serum.
  • Knockout sealum replacements can be purchased from Invitrogen.
  • Other serum substitutes can be purchased from Invitrogen, SIGMA, Wako Pure Chemical Industries, Dainippon Sumitomo Pharma Co., Ltd., etc. Regardless.
  • the medium used in this step is also lipids, amino acids (eg, non-essential amino acids), vitamins, growth factors, cytokines, antioxidants, 2-mercaptoethanol, pyruvate, buffers, inorganic salts, antibiotics (eg, penicillin). Or streptomycin) or an antibacterial agent (for example, amphotericin B).
  • concentrations in these media are the same as those in the serum.
  • This step is performed at a culture temperature suitable for culturing the stem cells to be used (usually about 30 to 40 ° C., preferably about 37 ° C.) for 6 to 60 hours (preferably 12 to 36 hours), 1 to 10% (preferably 5 %) Carbon dioxide in a CO 2 incubator aerated.
  • Step (2) A step of culturing the cells obtained in the above step (1) in a medium containing an activator receptor-like kinase-4,7 activator. This step is carried out following the above step (1). Corresponding to the step of completing differentiation induction from stem cells into endoderm cells.
  • step (1) it is a step of culturing the cells obtained in the step (1) in a medium containing an activin receptor-like kinase-4,7 activator.
  • stem cells were cultured in a medium containing an activin receptor-like kinase-4,7 activator and a GSK3 inhibitor (step (1)), and then activin receptor-like kinase-4,7. It is carried out by changing the medium to a medium containing an activator.
  • the medium used in this step is activin receptor-like in the basal medium exemplified in the step (1) (which may optionally contain various additives, serum or serum substitutes exemplified in the step (1)). It is prepared by adding an activator for kinase-4,7. Moreover, the GSK3 inhibitor illustrated by the said process (1) may contain in the culture medium depending on necessity.
  • the medium used in this step may be prepared using the same type of basal medium as used in step (1), or may be prepared using a different type of basal medium. Although it is good, it is preferable that it was produced using the same kind of basal medium.
  • the activin receptor-like kinase-4,7 activator used in this step examples include the activin receptor-like kinase-4,7 activator exemplified in the above step (1).
  • the activin may be any of activin A, B, C, D, AB, and activin A is particularly preferable.
  • the activin may be activin derived from any animal species such as human and mouse.
  • activin used in this step activin derived from the same animal species as the stem cell used as the starting material is preferably used.
  • human-derived stem cells are used as the starting material, human activin is preferably used. These activins are commercially available.
  • the concentration of the activin receptor-like kinase-4,7 activator in the medium in this step is appropriately set depending on the type of activin receptor-like kinase-4,7 activator used.
  • the concentration is usually 0.1 to 200 ng / ml, preferably 5 to 150 ng / ml, particularly preferably 10 to 100 ng / ml.
  • This step is performed at a culture temperature suitable for culturing the stem cells to be used (usually 30 to 40 ° C., preferably about 37 ° C.) for 6 to 144 hours (preferably 12 to 72 hours), 1 to 10% (preferably 5 %) Carbon dioxide in a CO 2 incubator aerated.
  • a culture temperature suitable for culturing the stem cells to be used usually 30 to 40 ° C., preferably about 37 ° C.
  • 6 to 144 hours preferably 12 to 72 hours
  • 1 to 10% preferably 5 %
  • Carbon dioxide in a CO 2 incubator aerated.
  • confirmation that stem cells have differentiated into endoderm cells is the expression of proteins and genes that are specifically expressed in endoderm cells (in the present specification, the proteins and genes may be referred to as endoderm markers).
  • the evaluation of the expression variation of the endoderm marker can be performed by, for example, a protein expression evaluation method using an antigen-antibody reaction, a gene expression evaluation method using quantitative RT-PCR, or the like.
  • endoderm markers include SOX17 (sex determining region Y, Sex determining region Y), Googleid (goosideid homebox), CXCR4 (chemokine (C-X-Cmotif) receptor 4), and FOXA2 (fork2). It is done.
  • Step (3) Inhibiting the cells obtained in the step (2) by (a) retinoic acid receptor agonist, (b) AMP-activated protein kinase and / or activin receptor-like kinase-2,3,6 A medium containing at least one selected from the group consisting of an agent or an antagonist of BMP, and (c) any one or more selected from the group consisting of inhibitors of activin receptor-like kinase-4,5,7 Step of culturing
  • This step corresponds to a step of inducing differentiation from endoderm cells obtained through the above steps (1) and (2) into pancreatic hormone-producing progenitor cells.
  • the retinoic acid receptor (RAR) agonist used in this step may be a naturally occurring retinoid, a chemically synthesized retinoid, a retinoic acid receptor agonist compound having no retinoid skeleton, or a retinoic acid receptor agonist activity.
  • Natural products having Examples of natural retinoids having activity as RAR agonists are retinoic acid (stereoisomeric all-trans-retinoic acid (all-trans RA) and 9-cis-retinoic acid (9-cis RA) are known) Is mentioned.
  • Chemically synthesized retinoids are known in the art (US Pat. No. 5,234,926, US Pat. No. 4,326,055, etc.).
  • retinoic acid receptor agonist compounds having no retinoid skeleton include Am80, AM580, TTNPB, and AC55649.
  • natural products having retinoic acid receptor agonist activity include honokiol and magnolol (Bulletin of Biofunction Development Laboratory 9: 55-61, 2009).
  • the RAR agonist used in this step is preferably retinoic acid, AM580 (4-[[5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl] carboxyamide] benzoic acid) TTNPB (4-[[E] -2- [5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl] -1-propenyl] benzoic acid), AC55649 ( 4'-octyl- [1,1'-biphenyl] -4-carboxylic acid), and more preferably retinoic acid.
  • concentration of the RAR agonist in the medium is appropriately set depending on the type of RAR agonist used.
  • the concentration when retinoic acid is used as the RAR agonist is usually 0.1 to 100 ⁇ M, preferably 0.5 to 10 ⁇ M.
  • the concentration when TTNPB is used as the RAR agonist is usually 0.02 to 20 ⁇ M, preferably 0.05 to 10 ⁇ M.
  • the concentration when AM580 is used as the RAR agonist is usually 0.02 to 20 ⁇ M, preferably 0.05 to 10 ⁇ M.
  • the concentration when AC55649 is used as the RAR agonist is usually 0.02 to 20 ⁇ M, preferably 0.1 to 10 ⁇ M.
  • the inhibitor of AMP-activated protein kinase and / or activin receptor-like kinase-2, 3, 6 used in this step is the inhibitory activity of AMP-activated protein kinase and / or activin receptor-like kinase-2, 3, 6
  • various physiologically active substances such as cytokines can be suitably used as long as they have the action.
  • Preferred examples of the substance having an inhibitory activity of AMP-activated protein kinase and / or activin receptor-like kinase-2, 3, 6 include AMP-activated protein kinase and / or activin receptor-like kinase-2, 3, 6 Examples thereof include compounds having inhibitory activity.
  • the compounds include compounds having AMP-activated protein kinase (AMPK) inhibitory activity, compounds having activin receptor-like kinase (ALK) -2, 3, 6 inhibitory activity, and AMP-activated protein kinase inhibitory activity and activin receptor. Selected from the group consisting of compounds having both kinase-like kinase-2,3,6 inhibitory activity.
  • the activin receptor-like kinase (ALK) -2, 3, 6 inhibitor or the substance having ALK-2, 3, 6 inhibitory activity is from ALK-2, ALK-3, and ALK-6. It means a compound or substance having inhibitory activity against at least one ALK selected from the group consisting of
  • dosomorphin As compounds having AMPK inhibitory activity, dosomorphin (Dorsomorphin: 6- [4- (2-piperidin-1-ylethoxy) phenyl] -3-pyridin-4-ylpyrazolo [1,5-a] pyrimidine), araA (Adenine-9- ⁇ -d-arabinofuranoside), C75 and the like.
  • activin receptor-like kinase ALK
  • BMP Bone Morphogenetic Protein type 1 receptor ALK-2, 3, 6 and ALK which is TGF- ⁇
  • Activin Nodal type 1 receptor described later. -4, 5, 7 etc.
  • Examples of the compound having ALK-2,3,6 inhibitory activity include dosomorphin and LDN-193189.
  • Dosomorphin has both AMPK inhibitory activity and ALK-2,3,6 inhibitory activity.
  • the antagonist of BMP used in this step is a substance that inhibits the function of BMP (that is, activation of a signal through activin receptor-like kinase-2, 3, 6) (for example, the function of BMP by binding to BMP) Is not particularly limited as long as it is a protein that inhibits (Trends Cell Biol. 20 (2001) 244-256), or an antisense oligonucleotide or siRNA of mRNA against the protein).
  • An example of a BMP antagonist used in this step is Noggin.
  • antisense oligonucleotides and siRNA for AMP-activated protein kinase, ALK-2,3,6 mRNA can also be used as inhibitors of AMP-activated protein kinase and / or ALK-2,3,6.
  • an antibody that neutralizes the activity of the differentiation factor, or BMP Noggin, Chordin, Cerberus, Gremlin, etc., which are known to bind to and inhibit its action can also be used as inhibitors of AMP-activated protein kinase and / or ALK-2,3,6.
  • Antibodies that neutralize activity, or follistatin that is known to bind to activin and inhibit its action can also be used as an inhibitor of AMP-activated protein kinase and / or ALK-2, 3, 6 .
  • the concentration in the medium is appropriately set depending on the type of inhibitor used. In the case of morphine, it is usually 0.1 to 20 ⁇ M, preferably 0.2 to 5 ⁇ M. In the present step, the concentration in the medium when a BMP antagonist is used is appropriately set depending on the type of BMP antagonist used. / Ml.
  • the inhibitor of activin receptor-like kinase (ALK) -4, 5, 7 is selected from compounds having inhibitory activity against at least one ALK selected from the group consisting of ALK-4, ALK-5 and ALK-7 Is done.
  • ALK-4, 5, 7 used in this step SB-431542, SB-505124, SB-525334, A-83-01, GW6604, LY580276, ALK5 inhibitor II, TGF ⁇ RI kinase inhibitor VIII and SD-208 etc. are mentioned.
  • antisense oligonucleotides, siRNA and the like against ALK-4,5,7 mRNA can also be used as inhibitors of ALK-4,5,7.
  • SB-431542 As an inhibitor of ALK-4,5,7 used in this step, SB-431542 (4- [4- (1,3-benzodioxol-5-yl) -5- (2-pyridinyl) -1H -Imidazol-2-yl] -benzamide or a hydrate thereof), A-83-01 (3- [6-methyl-2-pyridinyl] -N-phenyl-4- [4-quinolinyl] -1H-pyrazole- 1-carbothioamide), ALK5 inhibitor II (2- [3- [6-methylpyridin-2-yl] -1H-pyrazol-4-yl] -1,5-naphthyridine), TGF ⁇ RI kinase inhibitor VIII (6 -[2-tert-butyl-5- [6-methyl-pyridin-2-yl] -1H-imidazol-4-yl] -quinoxaline) is preferred, and SB-431542 (4- [4- (1
  • the concentration of the activin receptor-like kinase-4,5,7 inhibitor in the medium is appropriately set depending on the type of inhibitor used, but as an inhibitor of activin receptor-like kinase-4,5,7, SB-
  • the concentration in the case of using 431542 is usually 0.1 to 50 ⁇ M, preferably 1 to 20 ⁇ M.
  • the concentration in the case of using ALK5 inhibitor II as an inhibitor of activin receptor-like kinase-4, 5, 7 is usually 0.05 to 50 ⁇ M, preferably 0.2 to 10 ⁇ M.
  • the concentration when A-83-01 is used as an inhibitor of activin receptor-like kinase-4,5,7 is usually 0.05 to 50 ⁇ M, preferably 0.1 to 10 ⁇ M.
  • TGF ⁇ RI kinase inhibitor VIII is used as an inhibitor of activin receptor-like kinase-4, 5, or 7, the concentration is usually 0.05 to 50 ⁇ M, preferably 0.1 to 10 ⁇ M.
  • Step (3) is selected from the group consisting of (a) a retinoic acid receptor agonist, (b) an inhibitor of AMP-activated protein kinase and / or activin receptor-like kinase-2, 3, 6 or an antagonist of BMP. It is preferably carried out in a medium containing all three components of (c) inhibitors of activin receptor-like kinase-4,5,7, and retinoic acid receptor agonist, AMP-activated protein It is preferably carried out in a medium containing all three components of an inhibitor of kinase and / or activin receptor-like kinase-2,3,6 and an inhibitor of activin receptor-like kinase-4,5,7.
  • an retinoic acid receptor agonist selected from the group consisting of (a) an retinoic acid receptor agonist, (b) an inhibitor of AMP-activated protein kinase and / or activin receptor-like kinase-2, 3, 6 or an antagonist of BMP.
  • two or more inhibitors of at least one and (c) activin receptor-like kinase-4, 5, and 7 are used in combination, they may be added simultaneously to the medium, and the pancreatic hormone production precursor As long as differentiation into cells can be induced, they may be added to the medium separately with a time difference. Depending on the type of each factor to be used, it can be set as appropriate.
  • A Retinoic acid receptor agonist
  • BMP AMP-activated protein kinase and / or activin receptor-like kinase-2, 3, 6 inhibitor, or BMP It is convenient and preferable that at least one selected from the group consisting of the above antagonists and (c) inhibitors of activin receptor-like kinase-4, 5, 7 are added simultaneously to the medium.
  • the medium used in this step is the basal medium exemplified in the step (1) (which may contain various additives, serum or serum substitutes exemplified in the step (1) if desired), (a) A retinoic acid receptor agonist, (b) at least one selected from the group consisting of an inhibitor of AMP-activated protein kinase and / or activin receptor-like kinase-2, 3, 6 or an antagonist of BMP, and (c) It is produced by adding any one or more selected from the group consisting of inhibitors of activin receptor-like kinase-4,5,7.
  • the medium used in this step may be prepared using the same type of basal medium as in step (1) or step (2), or may be prepared using a different type of basal medium. .
  • Improved MEM Zinc Option medium is preferably used as a basal medium in this step in that differentiation induction into pancreatic hormone-producing progenitor cells can be performed more efficiently.
  • Et al. National Cancer (1972) 49, 1705).
  • B-27 supplement (Brewer GJ et al., J. Neurosci. Res. (1993) 35, 567) as a serum replacement can also be suitably added to the medium.
  • the concentration of B-27 supplement in the medium is 0.01 to 10% by weight, preferably 0.1 to 2% by weight.
  • This step is performed at a culture temperature (usually about 30 to 40 ° C., preferably about 37 ° C.) suitable for culturing the stem cells or endoderm cells to be used, for 72 to 288 hours (preferably 120 to 216 hours), 1 to 10% It is carried out by culturing in a CO 2 incubator aerated with (preferably 5%) carbon dioxide.
  • a culture temperature usually about 30 to 40 ° C., preferably about 37 ° C.
  • pancreatic hormone-producing progenitor cell-specific proteins and genes in the present specification, the above-mentioned proteins and genes are This can be done by evaluating the expression variation of the progenitor cell marker).
  • the evaluation of the expression fluctuation of the pancreatic hormone-producing progenitor cell marker can be evaluated by, for example, a protein expression evaluation method using an antigen-antibody reaction, a gene expression evaluation method using quantitative RT-PCR, or the like.
  • pancreatic hormone-producing progenitor cell marker examples include NGN3, HNF6 (hepatocyte nuclear factor 6, also known as: One cut homebox 1), PDX1 (pancreatic and dual homebox 1), and the like. If this step (3) is used, pancreatic hormone-producing progenitor cells can also be efficiently produced using endoderm cells or stem cells other than the endoderm cells obtained through the above steps (1) and (2) as starting materials. .
  • a method for producing pancreatic hormone-producing progenitor cells using endoderm cells or stem cells as a starting material that is, endoderm cells or stem cells are converted into the following (a) to (c):
  • a method for producing pancreatic hormone-producing progenitor cells characterized by culturing in a medium containing any one or more selected from the group consisting of, more preferably, a medium containing all of the following (a) to (c): provide: (A) the above-mentioned retinoic acid receptor agonist (b) at least selected from the group consisting of the above-mentioned inhibitors of AMP-activated protein kinase and / or activin receptor-like kinase-2, 3, 6 or BMP antagonists 1 type (c) Inhibitors of activin receptor-like kinase-4, 5, 7 as described above.
  • the above (a) to (c) The concentration in the medium, the basal medium used for the culture, and the cell culture conditions (temperature, time, etc.) were determined using endoderm cells or stem cells obtained through the above steps (1) and (2) as starting materials. It can carry out similarly to the process (3) in the method of manufacturing the pancreatic hormone production precursor cell.
  • Step (4) Step of culturing the cells obtained in the step (3) This step corresponds to a step of inducing differentiation from pancreatic hormone-producing precursor cells into pancreatic hormone-producing cells.
  • the basal medium used in this step examples include the basal medium exemplified in the step (1).
  • the medium used in this step may be prepared using the same basal medium as in the above steps (1) to (3), or may be prepared using a different basal medium.
  • Improved MEM Zinc Option medium (Invitrogen) is preferably used as a basal medium in this step in that differentiation induction into pancreatic hormone-producing cells can be performed more efficiently, and the medium is known literature (Richter A. et. al., National Cancer (1972) 49, 1705).
  • Improved MEM Zinc Option medium (Invitrogen) supplemented with B-27 supplement is preferably used.
  • the concentration of B-27 supplement in the medium is 0.01 to 10% by weight, preferably 0.1 to 2% by weight.
  • examples of such additives include fetal bovine serum (Fetal Bovine Serum), serum substitutes such as knockout serum replacement, N2 supplement, and the like.
  • the concentration of the additive in the medium is 0.01 to 10% by weight, preferably 0.1 to 2% by weight.
  • step (i) at least one selected from the group consisting of an adenylate cyclase activator, a cAMP phosphodiesterase inhibitor and a cAMP analog, (ii) a steroid, and (iii) A medium supplemented with at least one selected from the group consisting of inhibitors of activin receptor-like kinase-4,5,7 (ALK-4,5,7) is used. If desired, a medium supplemented with nicotinamide can also be used.
  • Examples of (i) adenylate cyclase activator, cAMP phosphodiesterase inhibitor and cAMP analog used in this step include compounds having adenylate cyclase activity, compounds having cAMP phosphodiesterase inhibitory activity, and adenylate cyclase activity and cAMP And compounds having both phosphodiesterase inhibitory activity. More specifically, forskolin, dibutyl cAMP, PACAP27 (pituitary adenylate cyclizing activated peptide 27), IBMX (3-isobutyl-1-methylxanthine) and the like can be mentioned. Of these, forskolin is preferably used.
  • the concentration in at least one medium selected from the group consisting of (i) an adenylate cyclase activator, a cAMP phosphodiesterase inhibitor and a cAMP analog used in this step is the adenylate cyclase activator and cAMP phosphodiesterase inhibition used.
  • the concentration when using forskolin is usually 0.1 to 50 ⁇ M, preferably 2 to 50 ⁇ M, and the concentration when using IBMX is usually 5
  • the concentration when dibutyl cAMP is used is generally 10 to 4000 ⁇ M, preferably 100 to 1000 ⁇ M.
  • the (ii) steroid used in this step is not particularly limited as long as it can contribute to cell differentiation induction.
  • Examples of (ii) steroids used in this step include dexamethasone, hydrocortisone, betamethasone, and beclomethasone. Of these, dexamethasone is preferably used.
  • the concentration of the steroid in the medium is appropriately set depending on the type of steroid used, and the concentration when dexamethasone is used as the steroid is usually 0.1 to 50 ⁇ M, preferably 2 to 50 ⁇ M.
  • hydrocortisone is used as a steroid, the concentration is usually 0.1 to 100 ⁇ M, preferably 1 to 50 ⁇ M.
  • betamethasone is used as the steroid, the concentration is usually 0.1 to 50 ⁇ M, preferably 0.5 to 20 ⁇ M.
  • the concentration in the case of using beclomethasone as a steroid is usually 0.1 to 50 ⁇ M, preferably 0.2 to 20 ⁇ M.
  • the activin receptor-like kinase (ALK) -4,5,7 inhibitor used in this step is against at least one ALK selected from the group consisting of ALK-4, ALK-5 and ALK-7. Selected from compounds having inhibitory activity.
  • inhibitors of activin receptor-like kinase (ALK) -4, 5, 7 used in this step include compounds that inhibit the activity of ALK-4, 5, 7, and specifically, 2- (3- (6-methylpyridin-2-yl) -1H-pyrazol-4-yl) -1,5-naphthyridine (ALK5 inhibitor II), ALK5 inhibitor I, ALK5 inhibitor VII, SB- 431542, SB-505124, SB-525334, A-83-01, GW6604, LY580276, TGF ⁇ RI kinase inhibitor VIII, SD-208 and the like.
  • ALK5 inhibitor II SB-431542, A-83-01, TGF ⁇ RI kinase inhibitor VIII (6- [2-tert-butyl-5- [6-methyl-pyridin-2-yl] -1H-imidazole- 4-yl] -quinoxaline) is preferred, with ALK5 inhibitor II being particularly preferred.
  • the concentration of the ALK-4,5,7 inhibitor in the medium is appropriately set depending on the type of the ALK-4,5,7 inhibitor used.
  • ALK5 inhibitor II is used as the ALK-4,5,7 inhibitor. When used, the concentration is usually 0.1 to 50 ⁇ M, preferably 1 to 20 ⁇ M.
  • the concentration when A-83-01 is used as the ALK-4,5,7 inhibitor is usually 0.1 to 50 ⁇ M, preferably 0.1 to 10 ⁇ M.
  • the concentration when SB-431542 is used as the ALK-4,5,7 inhibitor is usually 0.1 to 50 ⁇ M, preferably 1 to 20 ⁇ M.
  • TGF ⁇ RI kinase inhibitor VIII is used as the ALK-4,5,7 inhibitor, the concentration is usually 0.1 to 50 ⁇ M, preferably 0.5 to 10 ⁇ M.
  • nicotinamide also called niacin or nicotinamide
  • Nicotinamide has been reported to suppress cell death of pancreatic ⁇ cells due to its function as a poly ADP ribose synthesis inhibitor.
  • concentration of nicotinamide in the medium is usually 0.1 to 20 mM, preferably 5 to 20 mM.
  • at least one selected from the group consisting of an adenylate cyclase activator, a cAMP phosphodiesterase inhibitor and a cAMP analog, (ii) a steroid, and (iii) an activin receptor-like kinase-4,5,7 Inhibitors of (ALK-4, 5, 7) are available from SIGMA, Enzo Life Sciences, Inc.
  • the medium used in this step is a basal medium containing at least one selected from the group consisting of (i) an adenylate cyclase activator, a cAMP phosphodiesterase inhibitor and a cAMP analog, (ii) a steroid, and (iii) ALK- It is produced by adding any one or more components selected from the group consisting of 4, 5, and 7 inhibitors. In addition to the above-mentioned one or more components, nicotinamide may be added to the medium as desired.
  • one or more of the above-described components and nicotinamide may be added to the medium at the same time, and as long as differentiation into pancreatic hormone-producing cells can be induced, a medium is provided with a time difference separately. It may be added inside. It is convenient and preferable that the one or more components and / or nicotinamide is added to the medium at the same time.
  • This step is performed at a culture temperature suitable for culturing pancreatic hormone-producing progenitor cells to be used (usually 30 to 40 ° C., preferably about 37 ° C.) for 24 to 240 hours (preferably 72 to 192 hours), 1 to 10% It is carried out by culturing in a CO 2 incubator aerated with (preferably 5%) carbon dioxide.
  • a culture temperature suitable for culturing pancreatic hormone-producing progenitor cells to be used usually 30 to 40 ° C., preferably about 37 ° C.
  • 24 to 240 hours preferably 72 to 192 hours
  • 1 to 10% It is carried out by culturing in a CO 2 incubator aerated with (preferably 5%) carbon dioxide.
  • pancreatic hormone-producing progenitor cells have been induced to differentiate into pancreatic hormone-producing cells by confirming that the protein or gene expressed specifically in the pancreatic hormone-producing cell It may be carried out by evaluating the expression fluctuation of the marker (sometimes referred to as a marker)
  • the evaluation of the expression fluctuation of the pancreatic hormone-producing cell marker can be evaluated by, for example, a protein expression evaluation method using an antigen-antibody reaction, a gene expression evaluation method using quantitative RT-PCR, or the like. Measurement of the amount of pancreatic hormone secreted into the medium can be performed by a method such as Western blotting analysis, ELISA method or the like.
  • the pancreatic hormone-producing cell marker include insulin, glucagon, pancreatic polypeptide, somatostatin, PCSK1 (protein convertase subtilisin / kexin type 1), SUR1 (sulfonylurea receptor 1, et. C (CFTR / MRP), member 8), NKX6.1 (NK6 homebox 1), PAX6 (paired box 6), NEUROD (neurogenous differential 1), ARX (aristos related, etc.).
  • the present invention provides a method for producing pancreatic hormone-producing cells from stem cells, but the same method, that is, a method for inducing differentiation of cells in a more undifferentiated state into a more differentiated state, Differentiation can be induced from stem cells to cells in various differentiated states (endoderm cells, pancreatic duct cells, pancreatic endocrine cells, pancreatic exocrine cells, progenitor cells common to them, etc.). The degree of differentiation induced can be determined by confirming the presence or absence of expression of a protein or gene specifically expressed in each cell.
  • pancreatic hormone-producing cells having high pancreatic hormone secretion ability can be supplied by efficiently inducing differentiation of stem cells into pancreatic hormone-producing cells.
  • This pancreatic hormone-producing cell can be used as a drug (particularly a drug for cell therapy) or a tool for developing a therapeutic drug for diabetes.
  • the present invention relates to a medicament containing pancreatic hormone-producing cells or pancreatic hormone-producing progenitor cells produced by the production method of the present invention described above (sometimes abbreviated as the medicament of the present invention).
  • the pancreatic hormone-producing cells or pancreatic hormone-producing precursor cells are not particularly limited as long as they are cells obtained by the above-described method for producing pancreatic hormone-producing cells or the method for producing pancreatic hormone-producing precursor cells of the present invention.
  • pancreatic hormone-producing cells or pancreatic hormone-producing precursor cells are used as they are or as a cell mass such as a pellet concentrated by filter filtration or the like.
  • the medicament can be stored frozen by adding a protective agent such as DMSO (dimethyl sulfoxide).
  • DMSO dimethyl sulfoxide
  • the protein of the pathogen is denatured while leaving the function as a pancreatic hormone-producing cell or the function as a pancreatic hormone-producing progenitor cell, such as heat treatment and radiation treatment. You may attach
  • pancreatic hormone-producing cells or pancreatic hormone-producing progenitor cells in order to prevent pancreatic hormone-producing cells or pancreatic hormone-producing progenitor cells from growing beyond the necessary amount, in combination with the above treatment, suppression of proliferation by mitomycin C pretreatment, etc., and mammals naturally have Introduce a gene for a non-metabolizing enzyme into the cell, then administer an inactive drug as needed, and the drug only in the cell into which the gene for the metabolic enzyme that the mammal does not naturally have is introduced. It may be subjected to a treatment such as a method of killing cells by changing to a poison (suicide gene therapy).
  • the medicament of the present invention is safe and has low toxicity, and can be administered to mammals (eg, humans, mice, rats, guinea pigs, pigs, monkeys).
  • mammals eg, humans, mice, rats, guinea pigs, pigs, monkeys.
  • administration form (transplantation method) of the medicament of the present invention to a human for example, a small incision is made in the lower right abdomen of a human patient, a thin blood vessel of the mesentery is exposed, a catheter is inserted under direct viewing, and a cell is inserted.
  • a method in which the portal vein of the liver is identified by echo and the catheter is punctured to transplant the cells; Ito M, Shirota C, Edge A, McCowan TC, Fox IJ: Route of hepatocyte delivery effects hepatocyte engraftment in the spleen.
  • the method of performing cell transplantation using an echo is preferable because it is less invasive, and a specific example of such a method is a method of transplanting directly into the spleen or liver by puncturing under an abdominal echo guide. It is done.
  • the dose (transplant amount) of the medicament of the present invention is, for example, 1 ⁇ 10 8 to 1 ⁇ 10 10 cells / individual, preferably 5 ⁇ 10 8 to 1 ⁇ 10 10 cells / individual, and more preferably 1 ⁇ 10 9 to 1 ⁇ 10 10 cells / individual.
  • the medicament of the present invention can be implanted in a state where a rejection reaction is avoided by embedding it in a capsule such as polyethylene glycol or silicone, or in a porous container. In such a case, implantation into the abdominal cavity or subcutaneous is also possible. Further, the dose (transplant amount) of the medicament of the present invention can be appropriately changed depending on the age, weight, symptoms, etc. of the patient to be administered.
  • a medicament containing pancreatic hormone-producing cells can be produced (secreted) in the patient's body by administration (transplantation) itself, and the production (secretion) of pancreatic hormones can be reduced.
  • a medicament containing insulin-producing cells is useful for the treatment of diabetes.
  • a drug containing pancreatic hormone-producing progenitor cells is administered (transplanted) to a patient and then induced to differentiate into pancreatic hormone-producing cells under appropriate conditions, thereby producing pancreatic hormones (Secreted).
  • Appropriate conditions include, for example, a method of placing a small incision in the right lower abdomen of a human patient, exposing a thin blood vessel in the mesentery, inserting a catheter under direct viewing, and transplanting cells, echoing the liver
  • a method of transplanting cells by puncturing a catheter and transplanting cells by puncturing the spleen directly under an abdominal echo guide (Nagata H, Ito M, Shirota C, Edge A, McCowan TC, Fox IJ: Route of hepatocyte derivatives effects hepatocyte engulfment in the spleen.Transplantation, 76 (4): 732-4, 2003.).
  • the method of transplanting cells using an echo is preferable because it is less invasive, and a specific example of such a method is a method of transplanting directly to the spleen or liver by puncturing under an abdominal echo guide.
  • the dose (transplant amount) of the medicament of the present invention is, for example, 1 ⁇ 10 8 to 1 ⁇ 10 10 cells / individual, preferably 5 ⁇ 10 8 to 1 ⁇ 10 10 cells / individual, and more preferably 1 ⁇ 10 9 to 1 ⁇ 10 10 cells / individual.
  • differentiation from pancreatic hormone-producing progenitor cells into pancreatic hormone-producing cells can utilize the patient's own internal environment, in order to increase the efficiency and specificity of differentiation, the differentiation-inducing factor used in the present invention is externally applied.
  • pancreatic hormone-producing cells prepared using the patient's own cells or histocompatibility-acceptable donor cells, but sufficient cells are obtained for reasons such as age and constitution. If it is not possible, it can be implanted in a state where a rejection reaction is avoided by embedding it in a capsule such as polyethylene glycol or silicone, or in a porous container. In such a case, implantation into the abdominal cavity or subcutaneous is also possible. Further, the dose (transplant amount) of the medicament of the present invention can be appropriately changed depending on the age, weight, symptoms, etc. of the patient to be administered.
  • Screening method uses a cell obtained by any one or more steps selected from the group consisting of the following steps (1) to (4), preferably a medicament (preferably a therapeutic agent for diabetes) ) Screening methods (which may be referred to herein as "screening methods of the invention"): (1) A step of culturing stem cells in a medium containing an activin receptor-like kinase-4,7 activator and a GSK3 inhibitor (2) The cells obtained in the above step (1) are activin receptor-like (3) culturing in a medium containing a kinase-4,7 activator (3) The cells obtained in the above step (2) are transformed into (a) a retinoic acid receptor agonist, (b) an AMP-activated protein kinase and / or Or an inhibitor of activin receptor-like kinase-2,3,6, or at least one selected from the group consisting of antagonists of BMP, and (c) an inhibitor of activin receptor-like kinase-4,5,7 A step of cult
  • step (4) comprises (i) at least one selected from the group consisting of an adenylate cyclase activator, a cAMP phosphodiesterase inhibitor, and a cAMP analog, (ii) a steroid, And (iii) in a medium containing at least one selected from the group consisting of ALK-4,5,7 inhibitors (optionally further containing nicotinamide).
  • a medium containing at least one selected from the group consisting of ALK-4,5,7 inhibitors optionally further containing nicotinamide.
  • the steps (1) to (4) can be carried out in the same manner as the steps (1) to (4) in the above-described method for producing pancreatic hormone-producing cells of the present invention.
  • the cells used in this screening include pancreatic hormone-producing cells obtained through the steps (1) to (4), pancreatic hormone-producing progenitor cells obtained through the steps (1) to (3), and the step (1). ) To (2), and endoderm cells obtained through the above step (1).
  • the screening method of the present invention is carried out as follows (Aspect 1). (A) when pancreatic hormone-producing cells are cultured in the presence of a test compound, and (b) when pancreatic hormone-producing cells are cultured in the absence of a test compound, A method of measuring and comparing pancreatic hormone secretion amounts of each of them.
  • the expression level of pancreatic hormone include the expression level of pancreatic hormone protein, the expression level of a polynucleotide (eg, mRNA) encoding pancreatic hormone protein, and the like.
  • the expression level and secretion level of pancreatic hormone protein can be determined by a known method, for example, by using an antibody that recognizes pancreatic hormone protein, the pancreatic hormone protein present in a cell extract or in a medium, Western blotting analysis, ELISA, etc. It can be measured by a method such as a method or a method according thereto.
  • the amount of mRNA is measured according to a known method, for example, Northern hybridization, S1 mapping method, PCR method, quantitative RT-PCR method, DNA chip or array method, or a similar method.
  • the culture of the cells is not particularly limited as long as pancreatic hormone is expressed and / or secreted, and may be performed according to a known method.
  • Examples of the medium include MEM medium containing about 1 to 20% fetal bovine serum [Science, 122, 501 (1952), etc.], DMEM medium [Virology, 8, 396 (1959)], RPMI 1640 medium [ The Journal of the American Medical Association 199, 519 (1967)], 199 medium [Proceeding of the Society for the Biological Medicine, 73, 1 (1950)] is used.
  • the pH of the medium is preferably about 6-8.
  • the culture is usually carried out at about 30 ° C. to 40 ° C. for about 15 hours to 5 days with aeration or agitation as necessary.
  • test compound examples include peptides, proteins, antibodies, non-peptide compounds, synthetic compounds, fermentation products, cell extracts, plant extracts, animal tissue extracts, and plasma.
  • the test compound may form a salt.
  • a salt with a physiologically acceptable acid eg, inorganic acid, organic acid
  • base eg, alkali metal salt, alkaline earth metal salt, aluminum salt
  • the salt include a salt with an inorganic acid (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid), or an organic acid (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid).
  • pancreatic hormone in the case (a) is suppressed (inhibited) by about 20% or more, preferably 30% or more, more preferably about 50% or more, compared to the case (b).
  • the pancreatic hormone-producing cell is an insulin-producing cell
  • a compound that promotes insulin expression is useful as a therapeutic agent for diabetes.
  • the pancreatic hormone-producing cell is a glucagon-producing cell
  • a compound that suppresses (inhibits) glucagon expression is useful as a therapeutic agent for diabetes.
  • pancreatic hormone-producing cell when the pancreatic hormone-producing cell is an insulin-producing cell, a compound that significantly promotes the growth of the insulin-producing cell is useful as a therapeutic agent for diabetes.
  • the pancreatic hormone-producing cell is a glucagon-producing cell, a compound that significantly suppresses (inhibits) the growth of the glucagon-producing cell is useful as a therapeutic agent for diabetes.
  • Another embodiment of the screening method of the present invention is as follows: (a) when pancreatic hormone-producing progenitor cells are cultured in the presence of the test compound; and (b) when pancreatic hormone-producing progenitor cells are cultured in the absence of the test compound. And a method of examining and comparing the degree of differentiation of the cells (Aspect 3).
  • the test compound to be used include the same compounds as those used in the first aspect.
  • the cell culture in this embodiment can be performed in the same manner as in Embodiment 1 above.
  • the degree of differentiation of pancreatic hormone-producing progenitor cells is examined by, for example, the presence or absence of expression of a specific marker of pancreatic hormone-producing progenitor cells and / or pancreatic hormone-producing cells.
  • pancreatic hormone-producing progenitor cells Specific markers for pancreatic hormone-producing progenitor cells are NGN3 (neurogenin 3) and PAX4 (paired box 4), and specific markers for pancreatic hormone-producing cells are insulin, glucagon, pancreatic polypeptide, somatostatin, ghrelin, PCSK1 ( proprotein convertase subtilisin / kexin type 1), SUR1 (sulfonylurea receptor 1, also known as ATP-binding cassette, sub-family C (CFTR / MRP), member 8), glucokinase, MAFA (v-maf musculoaponeurotic fibrosarcoma oncogene homolog A), IAPP (islet am yloid polypeptide) and the like.
  • NGN3 neurogenin 3
  • PAX4 paired box 4
  • specific markers for pancreatic hormone-producing cells are insulin, glucagon, pancreatic polypeptide, somatostatin, ghreli
  • the degree of differentiation of pancreatic hormone-producing progenitor cells can also be examined by the amount of hormone secretion when a substance that promotes hormone secretion is added.
  • pancreatic hormone-producing cells are insulin-producing cells
  • the amount of insulin secreted when a high concentration of glucose is added is examined by Western blotting or ELISA (enzyme-linked immunosorbent assay).
  • Western blotting or ELISA enzyme-linked immunosorbent assay
  • pancreatic hormone-producing progenitor cell is a glucagon-producing progenitor cell
  • a compound that significantly suppresses (inhibits) the differentiation of the glucagon-producing progenitor cell is useful as a therapeutic agent for diabetes.
  • Another embodiment of the screening method of the present invention is such that (a) the endoderm cells are cultured in the presence of the test compound, and (b) the endoderm cells are cultured in the absence of the test compound.
  • a method of measuring and comparing proliferation or differentiation ability is mentioned (Aspect 4). Examples of the test compound to be used include the same compounds as those used in the first aspect.
  • the cell culture in this embodiment can be performed in the same manner as in Embodiment 1 above.
  • a method for measuring the proliferation ability of endoderm cells a method practiced in the art is usually used.
  • a method for measuring the number of cells or 3 H 5-bromo-2′-deoxy-uridine (BrdU ) And the like, the amount of ATP, and the method for evaluating the amount of conversion from a tetrazolium compound to a formazan product.
  • the differentiation ability of endoderm cells is examined by, for example, the presence or absence of expression of a specific marker of endoderm cells.
  • Specific markers for endoderm cells include alpha fetoprotein, albumin, pepsin, pulmonary surfactant protein, and the like.
  • differentiation induction and culture of endoderm cells are technically difficult compared to mesoderm or ectoderm cells, and the cells themselves and / or endoderm produced using the compounds obtained by the screening system
  • the differentiation induction system can be used for a new drug screening system.
  • the endoderm cells are alveolar cells
  • compounds that promote the differentiation and proliferation of alveolar cells are useful as therapeutic agents for emphysema and the like.
  • a medicine or the like that protects (maintains) the function of pancreatic hormone-producing cells can also be obtained by a method according to the screening method of the present invention.
  • the screening method of the present invention (a) when pancreatic hormone-producing cells are cultured in the presence of a test compound, and (b) when pancreatic hormone-producing cells are cultured in the absence of the test compound, A method of measuring and comparing the number of viable cells or their functions, respectively (Aspect 5).
  • the test compound to be used include the same compounds as those used in the first aspect.
  • the cell culture in this embodiment can be performed in the same manner as in Embodiment 1 above.
  • a method for measuring the number of viable cells a method practiced in the art is usually used.
  • a method for measuring the number of cells 3 H, 5-bromo-2′-deoxy-uridine (BrdU), etc. And the like, and a method for evaluating the amount of ATP and the amount of conversion from a tetrazolium compound to a formazan product.
  • the number of cells in which apoptosis is induced is determined by the number of cells exhibiting morphological characteristics (condensation of chromatin, nuclear fragmentation, cell contraction, etc.), as well as TUNNEL (TdT-mediated dUTP nick labeling).
  • Detection of fragmented DNA by detection, detection of the presence or absence of active caspases, nuclear staining with 7-AAD (7-amino-actinomycin D) live cell impermeable dyes, exposure of phosphatidylserine to the cell surface and removal of mitochondrial membranes It can be quantified by measurements such as polarization, cleavage or degradation of specific intracellular proteins.
  • Examples of the method for measuring cell function include a method for measuring changes in insulin or C peptide secretion and cell membrane potential according to the glucose concentration.
  • pancreatic hormone-producing cells factors known to damage pancreatic hormone-producing cells, such as inflammatory cytokines and active oxygen and their production inducers, high concentrations of fatty acids and glucose are added during cell culture, The number of viable cells or their functions are measured and compared.
  • the pancreatic hormone-producing cell is an insulin-producing cell
  • the compound that significantly promotes the survival or maintenance of the function of the insulin-producing cell against a factor known to damage the pancreatic hormone-producing cell is a therapeutic agent for diabetes Useful as.
  • undifferentiated cells or progenitor cells in the differentiation induction process can be obtained.
  • an antigen similar to a tumor antigen called a “differentiation-related antigen”, such as a carcinoembryonic antigen, is expressed in an undifferentiated state or a progenitor cell in a differentiation induction process.
  • Search for new antigen expression by combining proteome and glycome techniques with bioinformatics techniques, and using the suppression of the expression itself, suppression of growth of cancer cells expressing the antigen, cell death, etc. as indicators Screening for anticancer drugs can also be performed.
  • these cells can be used as immunogens as they are or modified with formalin, or cell membrane components are fractionated and purified and administered to animals such as mice, rats, rabbits, guinea pigs, goats and chickens, and cross-react with tumor cells. And screening for anticancer agents using the reactivity with the antibody (increase or decrease in the amount of antigen) as an index.
  • the obtained antibody itself can be used as a medicine or a diagnostic agent, or a purified antigen or a part thereof can be used as an antitumor vaccine. Therefore, the present invention can provide a tool that enables detection of a novel “differentiation-related antigen” and screening of an antibody against the antigen, a drug containing the antibody, or a diagnostic agent.
  • a compound that promotes transdifferentiation from a specific hormone-producing cell to another hormone-producing cell can be screened. For example, after inducing differentiation into glucagon-producing cells, screening for compounds that promote transdifferentiation from glucagon-producing cells to insulin-producing cells can be performed.
  • the degree of transdifferentiation into a specific pancreatic hormone-producing cell can be determined by measuring the expression level of a specific marker of the pancreatic hormone-producing cell by quantitative RT-PCR, or by determining the amount of pancreatic hormone secreted from the pancreatic hormone-producing cell. It can be examined by measuring by Western blotting or ELISA.
  • compositions obtained using the above screening methods are formulated according to known methods using physiologically acceptable additives (eg, carriers, flavoring agents, excipients, preservatives, stabilizers, binders). can do.
  • physiologically acceptable additives eg, carriers, flavoring agents, excipients, preservatives, stabilizers, binders.
  • examples of the dosage form of the preparation thus obtained include oral preparations such as tablets, capsules, elixirs, and microcapsules with sugar coating as required; and parenteral preparations such as injections.
  • the content of the active ingredient (the compound selected by the screening method of the present invention) in these preparations is, for example, 0.1 to 90% by weight.
  • the additive examples include binders such as gelatin, corn starch, tragacanth and gum arabic; excipients such as crystalline cellulose; swelling agents such as corn starch, gelatin and alginic acid; lubricants such as magnesium stearate; sucrose Sweeteners such as lactose and saccharin; flavoring agents such as peppermint, red oil and cherry; oils and fats, water for injection, vegetable oil (eg, sesame oil, coconut oil, soybean oil), buffer (eg, phosphate buffer, acetic acid) Liquid carriers such as sodium buffer; solubilizers (eg, ethanol, propylene glycol, polyethylene glycol); nonionic surfactants (eg, polysorbate 80 TM , HCO-50); solubilizers (eg, benzoic acid) Benzyl, benzyl alcohol); soothing agent (eg, benzal chloride) Chloride, procaine hydrochloride); stabilizers (e.g., human serum albumin,
  • water for injection examples include isotonic solutions including physiological saline; glucose, D-sorbitol, D-mannitol, sodium chloride and the like.
  • the medicament preferably antidiabetic agent obtained by the screening method of the present invention is safe and has low toxicity, for example, mammals (eg, humans, mice, rats, rabbits, sheep, pigs, cows, horses, cats, Canine, monkey, chimpanzee) orally or parenterally.
  • the dosage of the drug is appropriately determined depending on its action, target disease, administration subject, administration route and the like.
  • Example 1 Induction of differentiation from human iPS cells to endoderm cells using activin A and CHIR99021 [step (1) to step (2)] In order to induce differentiation of human iPS cells (iPS cells obtained by introducing Oct3 / 4 gene, Klf4 gene and Sox2 gene: Nat Biotechnol 2008; 26: 101-106) into pancreatic cells (particularly pancreatic hormone-producing cells).
  • human iPS cells were induced to differentiate into endoderm cells using a 96-well plate.
  • the human iPS cells used were the 253G1 strain (an iPS cell strain prepared by expressing OCT4 / SOX2 / KLF4 by retrovirus; Nature Biotechnology 26, 101-106).
  • mitomycin-treated mouse fibroblasts (MEFs) seeded on gelatin-coated plates were used as feeder cells, and 4 ng / ml bFGF (PeproTech EC) as a medium. This was performed at 37 ° C. under 5% CO 2 using a primate ES cell medium (Reprocell) supplemented with 0.5 ⁇ Penicillin-streptomycin (SIGMA). The medium was changed every day, and the cells were detached in a cell mass state using a cell primate for primate ES cells (Reprocell) every 4 to 5 days, and seeded on new feeder cells for passage.
  • Reprocell a primate ES cell medium
  • SIGMA Penicillin-streptomycin
  • iPS cells As a preculture for inducing differentiation into endoderm cells, undifferentiated iPS cells were seeded in a 96-well plate. First, iPS cells maintained in a cell mass state were treated with a 0.25% trypsin-1 mM EDTA solution (GIBCO) and dissociated until they became single cells. Subsequently, iPS cells dispersed in the medium were seeded in a 96-well plate at a density of 2 ⁇ 10 4 cells per well and cultured at 37 ° C. under 5% CO 2 for 1 day. A 96-well plate was used after seeding with 5 ⁇ 10 3 MEFs after gelatin coating and culturing at 37 ° C. under 5% CO 2 for 5 hours.
  • GEBCO trypsin-1 mM EDTA solution
  • a medium for primate ES cells supplemented with 10 ⁇ M Y-27632 (Wako Pure Chemical Industries) was used as a culture solution at the time of seeding. One day after sowing, the medium was replaced with a medium for primate ES cells to which Y-27632 was not added, and further cultured for 2 days. Differentiation induction from iPS cells to endoderm cells was performed by the following method. First, after confluent cells were washed with RPMI medium (GIBCO), RPMI medium containing various differentiation-inducing factors and 2% fetal bovine serum (FBS) was added and cultured for 1 day.
  • RPMI medium RPMI medium
  • FBS fetal bovine serum
  • a differentiation inducing factor As a differentiation inducing factor, a combination of activin A (100 ng / ml) and GIR3 ⁇ inhibitor CHIR99021 (3 ⁇ M) was used. After culturing for 1 day, the cells were washed with RPMI medium, and further cultured for 2 days using RPMI medium supplemented with 2% FBS and 100 ng / ml activin A. As a control, some cells were cultured in RPMI medium supplemented with only 2% FBS for 3 days.
  • Example 2 As a comparative example, except that activin A (100 ng / ml) alone (Comparative Example 1) or a combination of activin A (100 ng / ml) and Wnt3a (25 ng / ml) (Comparative Example 2) was used as a differentiation inducing factor.
  • the iPS cells were treated in the same manner as in Example 1.
  • the differentiation-induced cells were collected over time, and the total RNA fraction was purified using RNeasy 96 (Qiagen). After synthesizing cDNA using PrimeScript RT reagent kit (Takara Bio Inc.), quantitative RT-PCR was performed to measure the gene expression level of BRACHYRY, a primitive streak marker, and SOX17, an endoderm marker. The results of expression analysis are shown in FIG. By adding activin A and CHIR99021 for 1 day (Example 1), the expression level of BRACYURY increased temporarily 1 day after differentiation induction.
  • the expression level of SOX17 was remarkably increased by culturing the cells for 2 days in a medium containing only activin A.
  • Wnt3a which is generally used for endoderm induction
  • activin A for 1 day
  • the expression level of BRACYURY was lower than that treated with CHIR99021. It was.
  • the expression level of SOX17 two days later was also lower than when treated with CHIR99021.
  • immunofluorescence staining using an anti-SOX17 antibody was performed. After culturing up to the third day in the same manner as in FIG.
  • Example 2 Differentiation induction from endoderm cells to pancreatic hormone-producing progenitor cells using retinoic acid, dosomorphin and SB431542 [step (3)] Differentiation was induced from cells differentiated into endoderm cells into pancreatic hormone-producing precursor cells.
  • the cells induced to differentiate into endoderm cells according to the method shown in Example 1 were washed with Improved MEM Zinc Option medium (Invitrogen) and then Implanted MEM Zinc Option medium (Invitrogen) containing 1% B-27 (GIBCO).
  • the medium was replaced with a medium added with a combination (Example 2) of dosomorphin (1 ⁇ M), retinoic acid (2 ⁇ M) and SB431542 (10 ⁇ M).
  • Dosomorphin is an inhibitor of AMP-activated protein kinase (AMPK) and an inhibitor of ALK2, ALK3 and ALK6 among activin receptor-like kinases (ALK).
  • SB431542 is an inhibitor of ALK4, ALK5 and ALK7 in ALK.
  • pancreatic progenitor cell marker PDX1 and pancreatic hormone-producing progenitor cell marker NGN3 were the same as in Example 1. It measured using. Retinoic acid alone (Example 3), SB431542 alone (Example 4), a combination of retinoic acid and SB431542 (Example 5), dosomorphin alone (Example 6), a combination of dosomorphin and retinoic acid ( The endoderm cells were treated in the same manner as in Example 2 except that the combination of Example 7) and dosomorphin and SB431542 (Example 8) was used. The results of expression analysis are shown in FIG.
  • Example 9 shows the case where the combination of dosomorphin, retinoic acid and SB431542 is added
  • Example 10 shows the case where only retinoic acid is added
  • Example 11 shows the case where only SB431542 is added
  • Example 11 shows the combination of retinoic acid and SB431542
  • Example 12 when only dosomorphin was added, Example 13, when combination of dosomorphin and retinoic acid was added, Example 14, when the combination of dosomorphin and SB431542 was added
  • Example 15 was adopted.
  • the expression level of PDX1 which is a pancreatic progenitor cell marker
  • insulin which is a pancreatic ⁇ cell (insulin producing cell) marker
  • FIG. 9 Only in the cells (Example 9) in which NGN3 was highly expressed by simultaneously adding dosomorphin, retinoic acid and SB431542 until the ninth day of culture, the expression of insulin was remarkably induced on the 15th day of culture. At this time, the expression level of PDX1 was also at a higher level than other conditions.
  • immunofluorescence staining using anti-insulin antibody and anti-C peptide antibody was performed.
  • the cells differentiated into endoderm were added with dosomorphin, retinoic acid and SB431542 and cultured for 6 days, and then replaced with Improved MEM Zinc Option medium (Invitrogen) containing 1% B-27. For 6 days (Example 9). After incubation, fixation was performed overnight at 4 ° C. using 2% PFA.
  • the antibody is reacted with an anti-insulin antibody (A0564, DAKO) or an anti-human C peptide antibody (C-PEP-01, MONSAN) as the primary antibody, and Alexa488-labeled secondary antibody (Invitrogen) as the secondary antibody or After sequentially reacting with Alexa568-labeled secondary antibody (Invitrogen), it was observed with a fluorescence microscope. The result of immunofluorescence staining is shown in FIG. Many cells expressing insulin and C peptide were observed. Further, when the fluorescent images were superimposed, it was confirmed that most of the stained cells were yellow and the same cells were stained with the anti-insulin antibody and the anti-C peptide antibody.
  • Step 1 Expression variation of each differentiation marker in differentiation induction process Based on the results of Examples 1 to 15, a pancreatic differentiation induction system consisting of four stages shown in FIG. The expression variation of various differentiation markers during the differentiation induction process from the pancreas to the pancreas was examined.
  • activin A 100 ng / ml
  • CHIR99021 3 ⁇ M
  • stage 2 activin A (100 ng / ml) was added to RPMI medium containing 2% FBS and cultured for 2 days.
  • stage 3 3 types of dosomorphin (1 ⁇ M), retinoic acid (2 ⁇ M), and SB431542 (2 ⁇ M) were simultaneously added to Improved MEM Zinc Option medium (Invitrogen) containing 1% B-27 and cultured for 6 days. did.
  • Step 4 the cells were further cultured for 6 days using Improved MEM Zinc Option medium (Invitrogen) containing 1% B-27.
  • Change in expression of various differentiation markers over time were measured using the same method as in Example 1. The results of expression analysis are shown in FIG. Expression of SOX17, an endoderm marker, was significantly induced on the third day of culture, and then gradually decreased.
  • PDX1 expression increased on the 9th day of culture, and the expression level was maintained until the 15th day of culture.
  • NGN3 expression increased transiently on the 9th day of culture, and then the expression level after the 11th day of culture rapidly decreased. Insulin expression increased rapidly from day 15 of culture.
  • step (4) Differentiation induction from pancreatic hormone-producing progenitor cells to pancreatic cells [Step (4); treatment with forskolin and nicotinamide]
  • step (4) a factor that increases the efficiency of differentiation into insulin-expressing cells was searched. As a result, it was found that the efficiency of differentiation into insulin-expressing cells increases when forskolin and nicotinamide are added simultaneously in step (4).
  • Imsorbed MEM Zinc Option medium (Invitrogen) containing 1% B-27 was added to dosomorphin (1 ⁇ M), retinoic acid (2 ⁇ M), SB431542 (10 ⁇ M).
  • insulin expression was higher than the cells added with DMSO from the 14th day of induction, and the expression was maintained until the 20th day of culture. It had been.
  • immunofluorescence staining using an anti-insulin antibody was performed.
  • the cells on day 22 after induction of differentiation were induced in the same manner as described above, and fixed overnight at 4 ° C. using 2% PFA.
  • an anti-insulin antibody A0564, DAKO
  • an Alexa568-labeled secondary antibody Invitrogen
  • step (4) Differentiation induction from pancreatic hormone-producing progenitor cells to pancreatic cells [Step (4); treatment with forskolin, nicotinamide, dexamethasone, ALK5 inhibitor II]
  • factors other than forskolin and nicotinamide were searched for in the differentiation efficiency into insulin-expressing cells.
  • dexamethasone or ALK5 inhibitor II (2- (3- (6-methylpyridin-2-yl) -1H-pyrazol-4-yl) -1,5-naphthyridine) is added in step (4) It was found that the efficiency of differentiation into insulin-expressing cells was increased.
  • Imsorbed MEM Zinc Option medium (Invitrogen) containing 1% B-27 was added to dosomorphin (1 ⁇ M), retinoic acid (2 ⁇ M), SB431542 (10 ⁇ M). These three types were added simultaneously and cultured for 7 days. The medium was changed once on the seventh day of induction. Cells on day 10 of induction were washed with Improved MEM Zinc Option medium, then forskolin (10 ⁇ M), nicotinamide (10 mM), dexamethasone (10 ⁇ M) in Improved MEM Zinc Option medium containing 1% B-27 (GIBCO).
  • the medium was replaced with a medium to which one or more inducers of ALK5 inhibitor II (5 ⁇ M) were added, or a medium to which the inducer was not added as a control, and further cultured for 10 days.
  • the medium was changed every 5 days.
  • Example 17 when only nicotinamide is added, Example 18 when only forskolin is added, Example 19 when only dexamethasone is added, Example 20 when only ALK5 inhibitor II is added, Example 20
  • Example 25 when dexamethasone and ALK5 inhibitor II were added
  • Example 26 when nicotinamide, forskolin and dexamethasone were added 27, nicotinamide, fors
  • Example 31 The case where nicotinamide, forskolin, dexamethasone and ALK5 inhibitor II were added was taken as Example 31. After culturing under each condition, the expression level of insulin in cells on differentiation induction day 12, differentiation induction day 16 and differentiation induction day 20 was measured in the same manner as in the method shown in Example 1. The results of expression analysis are shown in FIG. By adding forskolin (Example 18), dexamethasone (Example 19), and ALK5 inhibitor II (Example 20) alone, the expression of insulin was remarkably increased.
  • the antibody was reacted with an anti-insulin antibody (A0564, DAKO) as the primary antibody, and further reacted with Alexa568-labeled secondary antibody (Invitrogen) as the secondary antibody, and then observed with a fluorescence microscope.
  • the results of immunofluorescence staining are shown in FIG.
  • step (1) Differentiation induction from human iPS cells to endoderm cells using a compound other than CHIR99021 as a GSK3 inhibitor [step (1)]
  • step (1) it was investigated whether differentiation induction into endoderm cells was possible even when a GSK3 inhibitor other than CHIR99021 was used.
  • Differentiation induction from human iPS cells to endoderm cells was performed by the following method. First, confluent human iPS cells were prepared in the same manner as in Example 1. Thereafter, after washing with RPMI medium (GIBCO), the cells were cultured for 1 day using RPMI medium containing various GSK3 inhibitors, activin A (100 ng / ml), 2% fetal bovine serum (FBS).
  • GSK3 inhibitors activin A (100 ng / ml)
  • FBS fetal bovine serum
  • the cells were washed with RPMI medium, and further cultured for 2 days using RPMI medium supplemented with 2% FBS and 100 ng / ml activin A.
  • RPMI medium supplemented with 2% FBS and 100 ng / ml activin A.
  • CHIR99021 was used was Example 32
  • SB415286 was used was Example 33
  • SB216673 was used was Example 34.
  • immunofluorescence staining using an anti-SOX17 antibody was performed. Under the conditions, 4% PFA was added to the cells on the third day after culturing and incubated at room temperature for 30 minutes to fix the cells.
  • step (3) Differentiation induction from endoderm cells to pancreatic hormone-producing progenitor cells using a retinoic acid receptor agonist other than retinoic acid was used.
  • Example 1 Cells differentiated into endoderm cells according to the method shown in Example 1 were washed with Improved MEM Zinc Option medium (Invitrogen), followed by dosomorphin (1 ⁇ M), SB431542 (10 ⁇ M) and 1% B-27 (GIBCO ) Containing Improved MEM Zinc Option medium (Invitrogen) and various retinoic acid receptor agonists.
  • retinoic acid receptor agonists retinoic acid (2 ⁇ M, Example 35), TTNPB (0.2 ⁇ M, Example 36), AM580 (0.2 ⁇ M, Example 37) and AC55649 (0.5 ⁇ M, Example 38) were used. Using.
  • control cells In the control cells, the medium was replaced with a medium not containing a retinoic acid receptor agonist (control). After changing the medium, the cells were cultured for 7 days under conditions of 37 ° C. and 5% CO 2 . After incubation, cells were fixed at room temperature for 10 minutes with 2% PFA and for 20 minutes with 4% PFA. Then, after reacting with an anti-human PDX1 antibody (AF2419, R & D) as a primary antibody and further reacting with an Alexa488-labeled secondary antibody (Invitrogen) as a secondary antibody, the cells were observed under a fluorescence microscope. . The results of immunofluorescent staining are shown in FIG.
  • Step (3) Differentiation induction from endoderm cells to pancreatic hormone-producing progenitor cells using Noggin instead of dosomorphin.
  • dosomorphin As one of the activities of dosomorphin, it is known to block BMP signal by inhibiting ALK-2,3,6.
  • step (3) it was examined whether differentiation into pancreatic hormone-producing progenitor cells can be induced even when Noggin, which is also known to block the BMP signal, is used instead of dosomorphin.
  • Example 4 The cells induced to differentiate into endoderm cells according to the method shown in Example 1 were washed with Improved MEM Zinc Option medium (Invitrogen) and then Implanted MEM Zinc Option medium (Invitrogen) containing 1% B-27 (GIBCO).
  • MEM Zinc Option medium Invitrogen
  • Ivitrogen Implanted MEM Zinc Option medium
  • 1% B-27 GEBCO
  • Medium containing retinoic acid (2 ⁇ M) Example 39
  • Example 40 medium supplemented with Noggin (100 ng / ml)
  • Example 41 medium supplemented with dosomorphin (1 ⁇ M)
  • Noggin The medium was replaced with a medium supplemented with retinoic acid (Example 42) and a medium supplemented with dosomorphin and retinoic acid (Example 43).
  • the medium was replaced with a medium not containing the inducer (Ctrl).
  • the cells were cultured for 7 days under conditions of 37 ° C. and 5% CO 2 . After incubation, cells were fixed at room temperature for 10 minutes with 2% PFA and for 20 minutes with 4% PFA. Then, after reacting with an anti-human PDX1 antibody (AF2419, R & D) as a primary antibody and further reacting with an Alexa488-labeled secondary antibody (Invitrogen) as a secondary antibody, the cells were observed under a fluorescence microscope. . The results of immunofluorescent staining are shown in FIG.
  • Step (3) Differentiation induction from endoderm cells to pancreatic hormone-producing progenitor cells using inhibitors of activin receptor-like kinase-4, 5, 7 other than SB431542 [step (3)]
  • Step 3 it was examined whether differentiation into pancreatic hormone-producing progenitor cells could be induced even when inhibitors of activin receptor-like kinase-4, 5, 7 other than SB431542 were used.
  • the cells induced to differentiate into endoderm cells according to the method shown in Example 1 were washed with Improved MEM Zinc Option medium (Invitrogen), followed by dosomorphin (1 ⁇ M), retinoic acid (2 ⁇ M) and 1% B-27 ( The medium was replaced with an Improved MEM Zinc Option medium (Invitrogen) containing GIBCO) and inhibitors of various activin receptor-like kinase-4,5,7.
  • Improved MEM Zinc Option medium Invitrogen
  • dosomorphin (1 ⁇ M
  • retinoic acid 2 ⁇ M
  • B-27 1% B-27
  • the medium was replaced with an Improved MEM Zinc Option medium (Invitrogen) containing GIBCO) and inhibitors of various activin receptor-like kinase-4,5,7.
  • Example 44 In addition to SB431542 (5 ⁇ M, Example 44), ALK5 inhibitor II (2 ⁇ M, Example 45), A-83-01 (0.2 ⁇ M, performed) as inhibitors of activin receptor-like kinase-4,5,7 Example 46), TGF ⁇ RI kinase inhibitor VIII (0.2 ⁇ M, Example 47) was used.
  • the medium was replaced with a medium supplemented only with dosomorphin and retinoic acid (Ctrl). After changing the medium, the cells were cultured for 7 days under conditions of 37 ° C. and 5% CO 2 . After the culture, the expression level of NGN3, which is a pancreatic hormone-producing progenitor cell marker, was measured by the same method as in Example 1.
  • ALK5 inhibitor II that has induced differentiation into insulin-producing cells is known to be an inhibitor of activin receptor-like kinase-4,5,7. It was similarly examined whether differentiation into insulin-producing cells was induced even when other activin receptor-like kinase-4, 5, and 7 inhibitors were added.
  • Imsorbed MEM Zinc Option medium (Invitrogen) containing 1% B-27 was added to dosomorphin (1 ⁇ M), retinoic acid (2 ⁇ M), SB431542 (10 ⁇ M). These three types were added simultaneously and cultured for 7 days. The medium was changed once on the seventh day of induction.
  • the cells on the 10th day after induction were washed with Improved MEM Zinc Option medium, and then a medium in which Forskolin (10 ⁇ M) was added to Improved MEM Zinc Option medium containing 1% B-27 (GIBCO) (Example 48), dibutyl Medium added with cAMP (500 ⁇ M) (Example 49), medium added with IBMX (200 ⁇ M) (Example 50), medium added with ALK5 inhibitor II (5 ⁇ M) (Example 51), A-83-01 (0.5 ⁇ M) added medium (Example 52), SB431542 (10 ⁇ M) added medium (Example 53), TGF ⁇ RI kinase inhibitor VIII (2 ⁇ M) added medium (Example 54), or as a control The medium was replaced with a medium not added with the inducer (Ctrl), and 1 Cultured for 1 day.
  • Forskolin (10 ⁇ M) was added to Improved MEM Zinc Option medium containing 1% B-27 (GIBCO) (
  • the medium was changed every 3 to 4 days. After incubation, cells were fixed at room temperature for 10 minutes with 2% PFA and for 20 minutes with 4% PFA. Thereafter, the antibody was reacted with an anti-insulin antibody (A0564, DAKO) as the primary antibody, and further reacted with Alexa568-labeled secondary antibody (Invitrogen) as the secondary antibody, and then observed with a fluorescence microscope.
  • the result of the experiment is shown in FIG.
  • dibutyl cAMP, IBMX, A-83-01, SB431542, and TGF ⁇ RI kinase inhibitor VIII are added, the positive rate of insulin-expressing cells is significantly increased in the same manner as when forskolin or ALK5 inhibitor II is added. Was observed. From these results, it became clear that differentiation from pancreatic hormone-producing progenitor cells into insulin-producing cells can be induced by enhancing intracellular cAMP signal or inhibiting activin receptor-like kinase-4,5,7. It was.
  • Example 59 Insulin secretion in response to various stimuli in differentiated insulin-producing cells It is known that pancreatic ⁇ cells in vivo secrete insulin extracellularly in response to various stimuli. We examined whether insulin-producing cells differentiated using this differentiation-inducing method secrete insulin in response to various stimuli in the same manner as in vivo pancreatic ⁇ cells. After inducing endoderm cells according to the method shown in Example 1, Imsorbed MEM Zinc Option medium (Invitrogen) containing 1% B-27 was added to dosomorphin (1 ⁇ M), retinoic acid (2 ⁇ M), SB431542 (10 ⁇ M). These three types were added simultaneously and cultured for 7 days. The medium was changed once on the seventh day of induction.
  • Imsorbed MEM Zinc Option medium Invitrogen
  • a buffer containing 2.5 mM glucose NaCl (116 mM), KCl (4.7 mM), KH 2 PO 4 (1.18 mM), MgSO 4 (1.18 mM), NaHCO 3 (25 mM), CaCl 2 (2.52 mM), HEPES (24 mM), 0.1% BSA
  • a buffer solution containing 2.5 mM glucose was further added, followed by incubation at 37 ° C. for 2 hours.
  • a buffer containing tolbutamide, a buffer containing 2.5 mM glucose and 250 ⁇ M carbachol, a buffer containing 2.5 mM glucose and 0.5 mM IBMX, and a buffer containing 2.5 mM glucose and 30 mM KCl were added. After culturing at 37 ° C.
  • Example 60 Differentiation into pancreatic hormone-producing cells other than insulin-producing cells It was examined whether pancreatic hormone-producing cells other than insulin-producing cells were simultaneously induced by using this differentiation induction method. After inducing endoderm cells according to the method shown in Example 1, Imsorbed MEM Zinc Option medium (Invitrogen) containing 1% B-27 was added to dosomorphin (1 ⁇ M), retinoic acid (2 ⁇ M), SB431542 (10 ⁇ M). These three types were added simultaneously and cultured for 7 days. The medium was changed once on the seventh day of induction.
  • Imsorbed MEM Zinc Option medium Invitrogen
  • an anti-human C peptide antibody C-PEP-01, MONSANSAN
  • an anti-glucagon antibody SC-7780, Santa Cruz
  • an anti-ghrelin antibody SC-10368, Santa Cruz
  • anti-somatostatin After reacting with an antibody (A0566, DAKO), and further reacting with Alexa488-labeled secondary antibody (Invitrogen) or Alexa568-labeled secondary antibody (Invitrogen) as a secondary antibody, they were observed with a fluorescence microscope.
  • Alexa488-labeled secondary antibody Invitrogen
  • Alexa568-labeled secondary antibody Invitrogen
  • Example 61 Differentiation induction from a plurality of human iPS cell lines into insulin-producing cells
  • the 253G1 strain was used as a human iPS cell line. Whether human iPS cell lines other than the 253G1 line were induced to differentiate into pancreatic cells was examined.
  • the 253G1 line an iPS cell line prepared by expressing OCT4 / SOX2 / KLF4 in the skin fibroblasts of a 36-year-old female
  • the 201B7 line OCT4 in a skin fibroblast of a 36-year-old female
  • PSX2 / KLF4 / c-MYC-expressed iPS cell line 1503-iPS (297A1) (created by expressing OCT4 / SOX2 / KLF4 / c-MYC in 73-year-old female skin fibroblasts IPS cell line)
  • 1392-iPS (297F1) iPS cell line prepared by expressing OCT4 / SOX2 / KLF4 / c-MYC in a 56-year-old male skin fibroblast
  • NHDF-iPS (297L1) IPS cells prepared by expressing OCT4 / SOX2 / KLF4 / c-M
  • Example 1 differentiation into endoderm was induced. After 3 days of culture, immunofluorescence staining using anti-SOX17 antibody and anti-FOXA2 antibody was performed to examine the expression of SOX17 and FOXA2 proteins. After culturing up to the third day in the same manner as in Example 1, cells were fixed at room temperature for 10 minutes using 2% PFA and further for 20 minutes using 4% PFA.
  • the medium was replaced with a medium supplemented with ALK5 inhibitor II (5 ⁇ M) and cultured for another 11 days. The medium was changed every 3 to 4 days. After incubation, cells were fixed at room temperature for 10 minutes with 2% PFA and for 20 minutes with 4% PFA. Thereafter, the antibody was reacted with an anti-insulin antibody (A0564, DAKO) as the primary antibody, and further reacted with Alexa568-labeled secondary antibody (Invitrogen) as the secondary antibody, and then observed with a fluorescence microscope. The results of immunofluorescence staining are shown in FIG.
  • Example 62 to 64 A method of substituting feeder cells with fibronectin or Matrigel Matrigel and inducing pancreatic hormone-producing cells from human iPS cells Even when fibronectin or Matrigel is used as a substitute for feeder cells in this differentiation induction system, pancreas It was examined whether differentiation into hormone-producing cells was induced.
  • 50 ⁇ l of human plasma fibronectin (Invitrogen) diluted 40-fold with DMEM / F12 medium was added to a 96-well plate and allowed to stand at room temperature for 3 hours or more and then removed.
  • Matrigel-growth factor reduced mouse (Collaborative RESEARCH, INC.) Diluted 60-fold with DMEM / F12 medium was added to a 96-well plate and allowed to stand at room temperature for 3 hours or more. What was removed later was used. IPS cells maintained in a cell mass state were treated with 0.25% trypsin-1 mM EDTA solution (GIBCO) and dissociated until they became single cells. Subsequently, iPS cells dispersed in the medium were seeded at a density of 4 ⁇ 10 4 per well in a 96-well plate coated with fibronectin or Matrigel, and cultured at 37 ° C.
  • a medium for primate ES cells supplemented with 10 ⁇ M Y-27632 (Wako Pure Chemical Industries) was used. One day after sowing, the medium was replaced with a medium for primate ES cells to which Y-27632 was not added, and further cultured for 2 days. After culturing, the cells were washed with RPMI medium (GIBCO) and then cultured for 1 day using RPMI medium supplemented with CHIR99021, 2% FBS and activin A (100 ng / ml).
  • the cells were washed with RPMI medium, and further cultured for 2 days using RPMI medium supplemented with 2% FBS and 100 ng / ml activin A. Thereafter, three types of dosomorphin (1 ⁇ M), retinoic acid (2 ⁇ M), and SB431542 (10 ⁇ M) were simultaneously added to Improved MEM Zinc Option medium (Invitrogen) containing 1% B-27 and cultured for 7 days. The medium was changed once on the seventh day of induction.
  • RPMI medium supplemented with 2% FBS and 100 ng / ml activin A.
  • RNA was recovered from the cells on day 0 and day 21 after induction, and the expression level of insulin mRNA was measured in the same manner as in Example 1. The results are shown in Table 1. In any condition, insulin mRNA expression increased with the number of culture days. From these results, it became clear that by using this differentiation induction method, induction into pancreatic hormone-producing cells is possible even in a culture system using fibronectin or matrigel as a coating agent instead of feeder cells. .
  • pancreatic cells particularly pancreatic hormone-producing cells can be more efficiently produced from stem cells.
  • the pancreatic hormone-producing cells obtained by the production method can be used for screening for compounds useful for the prevention and / or treatment of diseases (eg, diabetes) caused by abnormal pancreatic hormone production and / or secretion.
  • diseases eg, diabetes
  • the medicament containing pancreatic hormone-producing cells obtained by the production method of the present invention can be used for treating such diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Diabetes (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Endocrinology (AREA)

Abstract

 本発明は、膵臓細胞、特に膵ホルモン産生細胞をより効率的に製造する方法の提供、幹細胞をより効率的に膵臓細胞へと分化誘導することによって膵臓細胞を多量に安定して製造する方法の提供、及び膵臓細胞を含む医薬や該細胞を用いたスクリーニング方法を提供する。幹細胞を、以下の工程(1)~(4)に付すことを特徴とする、膵ホルモン産生細胞の製造方法:(1)幹細胞を、アクチビン受容体様キナーゼ-4,7の活性化剤、及びGSK3阻害剤を含む培地で培養する工程 (2)前記工程(1)で得られた細胞を、アクチビン受容体様キナーゼ-4,7の活性化剤を含む培地で培養する工程 (3)前記工程(2)で得られた細胞を、(a)レチノイン酸受容体アゴニスト、(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ-2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び(c)アクチビン受容体様キナーゼ-4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地で培養する工程 (4)前記工程(3)で得られた細胞を培養する工程。

Description

膵ホルモン産生細胞の製造法
 本発明は、膵ホルモン産生細胞の製造方法に関する。さらに本発明は、該方法により得られた膵ホルモン産生細胞、並びにそれを用いた医薬のスクリーニング方法及び医薬等に関する。
 膵臓は、内分泌腺(内分泌細胞)と外分泌線(外分泌細胞)を有し、両分泌細胞で重要な役割を担っている器官である。外分泌細胞は主に膵リパーゼ、トリプシン、エラスターゼ、膵アミラーゼなどの消化酵素を分泌する役割を果たしている。
 内分泌細胞は膵ホルモンを分泌する役割を果たし、膵α細胞からグルカゴン、膵β細胞からインスリン、膵δ細胞からソマトスタチン、膵ポリペプチド(PP)細胞からPPが分泌されることが知られている。また、近年、胃分泌ホルモンであるグレリンが膵臓の内分泌細胞からも分泌されることが報告されている。
 インスリンは、ブドウ糖の利用、蛋白の合成、中性脂肪の形成及び貯蔵を促進し、血糖値を低下させ、血糖を正しい濃度に保つ重要な役割を果たす。グルカゴンは、肝糖原分解、糖新生作用などを介する血糖上昇ホルモンとしてインスリンと並び糖代謝調節機構において重要な役割を担っている。ソマトスタチンは、ソマトスタチンレセプターへの結合を介して作用を発現し、膵臓でのグルカゴン、インスリン等の種々のホルモン分泌を抑制する。PPは、食事に対応してランゲルハンス島の細胞から分泌されるホルモンであり、飽食因子として知られ、食物摂取や体重増加を低減させる働きがある。グレリンは食物摂取を刺激し、脂肪酸化を低下させることによって体重を増加させることが知られている。
 糖尿病は、インスリンが不足したりその働きが失われたりすることによって発症する疾患であり、一度発症すると根治させることが難しい疾患である。糖尿病は、I型糖尿病(インスリン依存性糖尿病)とII型糖尿病(インスリン非依存性糖尿病)の大きく2つのタイプに分類することができる。
 II型糖尿病は、インスリンに対し抵抗性をもつために発症する慢性疾患であり、食べ過ぎや運動不足によっておこる肥満やストレス等、生活習慣との関わりで問題となっている糖尿病である。II型糖尿病は中高年で発病することが多く、糖尿病患者の多くはII型糖尿病を罹患している。
 I型糖尿病は、自己免疫疾患やウイルス感染等によって膵β細胞(本明細書中、インスリン産生細胞と称することがある)が破壊され、インスリンが体内に分泌されないことによっておこる慢性疾患である。体内で常に変化する血糖値を自動的にコントロールでき、かつ、患者の負担を軽くできる治療法として、I型糖尿病患者に対する膵臓移植又は膵島移植が行われている。これらの治療法によって正常な血糖値を達成することは可能であるが、移植技術は十分に確立しているとは言えず、また移植可能な膵臓又は膵島が不足しているのが現状である。また、移植片に対する免疫拒絶反応を回避するために、患者は免疫抑制剤を一生服用し続ける必要があり、感染症の危険性や免疫抑制剤による副作用等の問題が残る。
 I型糖尿病について試みられている治療法の一つに、体外で患者由来の細胞からインスリン産生細胞自体を誘導し、誘導した該インスリン産生細胞を患者の生体内に移植する方法がある。この方法によれば患者自身の体内でインスリンを作り出すことができる。また、患者由来の細胞からインスリン産生細胞を誘導した場合には、患者由来の細胞であることから免疫拒絶反応の問題が解消される等、安全性の面でも有利である。
 インスリン産生細胞を得る方法としては、胚性幹細胞(本明細書中、ES細胞と称することがある)を分化させる方法、人工多能性幹細胞(本明細書中、iPS細胞と称することがある)を分化させる方法、患者の膵臓の組織幹細胞を分化させる方法、患者の膵管上皮由来細胞を体外に取り出して分化させる方法等が知られている。具体的には、アクチビン(Activin)やレチノイン酸(RA)を用いてヒトES細胞から膵β細胞を分化誘導する方法(特許文献1、非特許文献1~4)やヒトiPS細胞から膵β細胞を分化誘導する方法(非特許文献5)、ES細胞に、膵臓の発生に関わる重要な転写因子であり、インスリン産生細胞の発生、機能維持の役割も担っていることが知られているPDX1を導入して培養することによって効率よくインスリン産生細胞を分化誘導する方法(特許文献2~3)、ホルモンを産生しない膵細胞を脱分化させて幹細胞にし、その幹細胞をアクチビンやRAを用いて分化誘導する方法(特許文献4)が知られている。
 しかし、これらの方法によって得られるインスリン産生細胞は、正常な膵β細胞と比較してインスリン産生効率がかなり低く、機能的なインスリン産生細胞を効率的に得る方法の開発が依然として求められている。また、糖尿病治療等を行なうために十分な数の膵ホルモン産生細胞(インスリン産生細胞を含む)を得る方法の開発が求められている。
特開2009−225661号公報 米国特許7534608号公報 特開2006−075022号公報 WO03/100026号公報
E.Kroon et al.,"Pancreatic endoderm derived from human embryonic stem cells generates glucose−responsive insulin−secreting cells in vivo",Nature Biotechnology(2008)Vol.26,No.4:443−452 K.A.D’Amour et al.,"Production of pancreatic hormone−expressing endocrine cells from human embryonic stem cells",Nature Biotechnology(2006)Vol.24,No.11:1392−1401 W.Jiang,"In vitro derivation of functional insulin−producing cells from human embryonic stem cells",Cell Research(2007)17:333−344 J.H.Shim et al.,"Directed differentiation of human embryonic stem cells towards a pancreatic cell fate",Diabetologia(2007)50:1228−1238 R.Maehra et al.,"Generation of pluripotent stem cells from patients with type 1 diabetes",PNAS(2009),vol.106,No.37:15768−15773
 本発明の目的は、膵ホルモン産生細胞をより効率的に製造する方法を提供することであり、より好ましくは幹細胞をより効率的に膵ホルモン産生細胞へと分化誘導することによって膵ホルモン産生細胞を多量に安定して製造することである。さらに本発明は、本発明の方法により得られた膵ホルモン産生細胞を用いた医薬のスクリーニング方法や医薬の提供を目的とする。
 本発明者らは、上記課題に鑑み、鋭意検討した結果、段階的に分化誘導因子の種類及びその組合せを変えることによって、より効率的に幹細胞から膵ホルモン産生細胞へと分化誘導させることが可能なことを見出し、さらに得られた膵ホルモン産生細胞の機能を確認して本発明を完成するに至った。
 即ち、本発明は、以下を提供する。
[1]幹細胞を、以下の工程(1)~(4)に付すことを特徴とする、膵ホルモン産生細胞の製造方法:
(1)幹細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤、及びGSK3阻害剤を含む培地で培養する工程
(2)前記工程(1)で得られた細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤を含む培地で培養する工程
(3)前記工程(2)で得られた細胞を、(a)レチノイン酸受容体アゴニスト、(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地で培養する工程
(4)前記工程(3)で得られた細胞を培養する工程;
[2]工程(1)および(2)におけるアクチビン受容体様キナーゼ−4,7の活性化剤がアクチビンであり、工程(3)が、工程(2)で得られた細胞を、(a)レチノイン酸受容体アゴニスト、(b’)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、及び(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地で培養する工程である、上記[1]記載の製造方法;
[3]工程(4)が、(i)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤、及びcAMP類縁体からなる群より選択される少なくとも一種、(ii)ステロイド、及び(iii)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地中で実施される、上記[1]又は[2]記載の製造方法;
[4]幹細胞を、少なくともアクチビン受容体様キナーゼ−4,7の活性化剤、及びGSK3阻害剤を含む培地で培養することを特徴とする、内胚葉細胞の製造方法;
[5]アクチビン受容体様キナーゼ−4,7の活性化剤がアクチビンである、上記[4]記載の製造方法;
[6]内胚葉細胞を、以下の(a)~(c)からなる群より選択される何れか1種以上を含む培地で培養することを特徴とする、膵ホルモン産生前駆細胞の製造方法:
(a)レチノイン酸受容体アゴニスト
(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び
(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤;
[7]内胚葉細胞を、以下の(a)~(c)を含む培地で培養することを特徴とする、膵ホルモン産生前駆細胞の製造方法:
(a)レチノイン酸受容体アゴニスト
(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び
(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤;
[8]工程(3)における培地が、以下の(a)~(c)を含む上記[1]~[3]のいずれかに記載の製造方法:
(a)レチノイン酸受容体アゴニスト
(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び
(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤;
[9]工程(1)におけるGSK3阻害剤が、
6−[[2−[[4−(2,4−ジクロロフェニル)−5−(4−メチル−1H−イミダゾール−2−イル)−2−ピリミジニル]アミノ]エチル]アミノ]ニコチノニトリルである上記[1]~[3]、[8]のいずれかに記載の製造方法;
[10]工程(3)におけるアクチビン受容体様キナーゼ−4,5,7の阻害剤が、
4−[4−(1,3−ベンゾジオキソール−5−イル)−5−(2−ピリジニル)−1H−イミダゾール−2−イル]−ベンズアミド又はその水和物である上記[1]~[3]、[8]、[9]のいずれかに記載の製造方法;
[11]工程(3)におけるAMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種が、ドーソモルフィン、またはNogginである上記[1]~[3]、[8]~[10]のいずれかに記載の製造方法;
[12]工程(3)における培地が、
レチノイン酸、4−[4−(1,3−ベンゾジオキソール−5−イル)−5−(2−ピリジニル)−1H−イミダゾール−2−イル]−ベンズアミド又はその水和物、及びドーソモルフィンを含む、上記[1]~[3]、[8]~[11]のいずれかに記載の製造方法;
[13]アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤、及びcAMP類縁体からなる群より選択される少なくとも一種が、フォルスコリン、3−イソブチル−1−メチルキサンチンまたはジブチルcAMPである、上記[3]、[8]~[12]のいずれかに記載の製造方法;
[14]ステロイドが、デキサメタゾンである、上記[3]、[8]~[13]のいずれかに記載の製造方法;
[15]アクチビン受容体様キナーゼ−4,5,7の阻害剤が、2−(3−(6−メチルピリジン−2−イル)−1H−ピラゾール−4−イル)−1,5−ナフチリジン、または4−[4−(1,3−ベンゾジオキソール−5−イル)−5−(2−ピリジニル)−1H−イミダゾール−2−イル]−ベンズアミド又はその水和物である、上記[3]、[8]~[14]のいずれかに記載の製造方法;
[16]培地がニコチンアミドを含む、上記[3]、[8]~[15]のいずれかに記載の製造方法;
[17]幹細胞が、人工多能性幹細胞(iPS細胞)、胚性幹細胞(ES細胞)又はヒトの体性幹細胞である上記[1]~[5]、[8]~[16]のいずれかに記載の製造方法;
[18]膵ホルモン産生細胞がインスリン産生細胞、グルカゴン産生細胞、ソマトスタチン産生細胞、膵ポリペプチド(PP)産生細胞、及びグレリン産生細胞からなる群より選択されるいずれかである上記[1]~[5]、[8]~[17]のいずれかに記載の製造方法;
[19]上記[1]~[5]、[8]~[18]のいずれかに記載の製造方法で得られた膵ホルモン産生細胞を含む、医薬;
[20]上記[6]または[7]記載の製造方法で得られた膵ホルモン産生前駆細胞を含む、医薬;
[21]以下の工程(1)~(4)からなる群より選択される何れか1種以上の工程によって得られた細胞を用いることを特徴とする、糖尿病治療薬のスクリーニング方法:
(1)幹細胞を、アクチビン受容体様キナーゼ4,7の活性化剤、及びGSK3阻害剤を含む培地で培養する工程
(2)前記工程(1)で得られた細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤を含む培地で培養する工程
(3)前記工程(2)で得られた細胞を、(a)レチノイン酸受容体アゴニスト、(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地で培養する工程
(4)前記工程(3)で得られた細胞を培養する工程;
[22]工程(1)および(2)におけるアクチビン受容体様キナーゼ−4,7の活性化剤がアクチビンであり、工程(3)が、工程(2)で得られた細胞を、(a)レチノイン酸受容体アゴニスト、(b’)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、(c)及びアクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地で培養する工程である、上記[21]記載のスクリーニング方法;
[23]工程(4)が、(i)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤、及びcAMP類縁体からなる群より選択される少なくとも一種、(ii)ステロイド、及び(iii)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地中で実施される、上記[21]又は[22]記載のスクリーニング方法。
 本発明によれば、より効率的に幹細胞から膵ホルモン産生細胞を製造することができる。本発明により製造された膵ホルモン産生細胞は、糖尿病等の膵ホルモン産生及び/又は分泌異常に起因する疾患の予防及び/又は治療に有用な化合物のスクリーニングに用いることができる。さらに、本発明の製造方法により得られる膵ホルモン産生細胞は、そのような疾患を治療するための細胞医療に用いることができる。
各種の因子を用いてヒトiPS細胞からの分化誘導を開始し、最初の3日間における原始線条マーカー(Brachyury)と内胚葉マーカー(SOX17)の発現を定量RT−PCRで1日ごとに測定した結果を示す。分化誘導因子を何も添加しない場合(Ctrl)、アクチビンAのみを3日間添加した場合(Act:比較例1)、アクチビンA(3日間)とWnt3a(最初の1日間のみ)を添加した場合(Act Wnt:比較例2)、アクチビンA(3日間)とCHIR99021(最初の1日間のみ)を添加した場合(Act CHIR:実施例1)の各遺伝子の発現量を、ハウスキーピング遺伝子であるGAPDHの発現量に対する相対値で示した。Brachyuryの発現は分化誘導1日目にアクチビンAとCHIR99021の組み合わせで最も高値を示し、SOX17は分化誘導2~3日目にアクチビンAとWnt3aあるいはCHIR99021との組み合わせで高値を示した。 図1の場合と同様の方法で3日間分化誘導したヒトiPS細胞に対し、抗ヒトSOX17抗体を用いた免疫蛍光染色を行った結果を示す。SOX17陽性細胞の核はAlexa488により緑色を呈し、陰性の細胞の核はヘキスト33342によって青色を呈する。アクチビンAとWnt3a(比較例2)あるいはCHIR99021(実施例1)を組み合わせた場合にSOX17陽性細胞が顕著に検出され、特にCHIR99021を用いた場合(実施例1)に最もSOX17陽性細胞の割合が高かった。 ヒトiPS細胞からアクチビンA(3日間添加)とCHIR99021(最初の1日間のみアクチビンAと同時に添加)を用いて3日間分化誘導した細胞に対し、さらに3日目から9日目の間に種々の分化誘導因子を添加して培養し、9日目の時点における膵前駆細胞マーカー(PDX1)と膵ホルモン産生前駆細胞マーカー(NGN3)の発現を定量RT−PCRで測定した結果を示す。ハウスキーピング遺伝子であるGAPDHの発現量に対する相対値で示す。分化誘導因子としては、レチノイン酸(RA)、SB431542(SB)、ドーソモルフィン(DM)をそれぞれ単独あるいは図中に示す組み合わせで使用し(実施例2~8)、また、一部の細胞はコントロール(Ctrl)として分化誘導因子を添加せずに培養した。PDX1はレチノイン酸とドーソモルフィンを組み合わせて添加した場合(実施例2、実施例7)に顕著に高い値を示し、NGN3はレチノイン酸、SB431542、ドーソモルフィンの3種類を組み合わせた場合(実施例2)に最も高い値を示した。 図3の場合と同様に、レチノイン酸、SB431542、ドーソモルフィンの3種類を組み合わせた条件で培養した分化誘導9日後の細胞(実施例2)に対し、抗ヒトPDX1抗体を用いた免疫蛍光染色を行った結果を示す。PDX1陽性細胞の核はAlexa488により緑色を呈し、陰性の細胞の核はヘキスト33342によって青色を呈する。大部分の細胞がPDX1陽性を呈しており、本発明の方法によって非常に高効率に膵前駆細胞への分化が誘導されている。 ヒトiPS細胞からアクチビンA(3日間添加)とCHIR99021(最初の1日間のみアクチビンAと同時に添加)を用いて3日間分化誘導した細胞に対し、図3の方法と同様にして分化誘導因子単独あるいはその組み合わせで3日目~9日目の6日間分化誘導し、さらに分化誘導因子を添加していない培地で9日目~15日目の6日間培養した細胞(実施例9~15)におけるPDX1とインスリンの発現量を定量RT−PCRで測定した結果を示す。ハウスキーピング遺伝子であるGAPDHの発現量に対する相対値として表示する。PDX1とインスリンのいずれも、レチノイン酸、SB431542、ドーソモルフィンの3種類を組み合わせた場合(実施例9)に最も高い値を示した。 分化誘導15日後の実施例9の細胞に対して、抗インスリン抗体と抗ヒトCペプチド抗体を用いた免疫蛍光染色を行った結果を示す。インスリン産生細胞(インスリン陽性細胞)はAlexa568により赤色を、Cペプチド陽性細胞はAlexa488により緑色を呈し、細胞の核はヘキスト33342によって青色を呈する。それぞれの染色像を重ね合わせると、インスリン産生細胞とCペプチド陽性の細胞が一致するため黄色を呈した。 膵臓細胞への分化誘導法の概略を示す。本分化誘導法は4つの段階からなり、未分化なヒトiPS細胞に対して図に示した順番で基礎培地と増殖分化因子を組み合わせて加えることで、膵臓系譜の細胞への分化を誘導できる。 図7で示した手法に従って分化を誘導した際の、各種分化マーカーの発現の様子を示す。分化誘導3日後、9日後、11日後、15日後において、各種遺伝子の発現量を測定し、ハウスキーピング遺伝子であるGAPDHの発現量に対する相対値として表示する。内胚葉マーカーであるSOX17は分化誘導の初期に高値を示し、レチノイン酸、SB431542、ドーソモルフィンの3種類を組み合わせた分化誘導処理によって膵前駆細胞マーカーであるPDX1の持続的な発現が見られた。また、PDX1が発現する時期の初期には膵ホルモン産生前駆細胞マーカーであるNGN3が一過性に高値を示した後、分化誘導処理の後期に膵β細胞マーカーであるインスリンの発現が検出された。 本分化誘導法の工程(4)において、フォルスコリンとニコチンアミドを同時に添加、もしくはDMSOのみを添加して分化を誘導した際のインスリンの発現の様子を示す。分化誘導10日目、12日目、14日目、16日目、18日目、20日目におけるインスリンの発現量を、ハウスキーピング遺伝子であるβ−actinの発現量に対する相対値として表示する。フォルスコリンとニコチンアミドを同時に添加することでインスリンの発現亢進が誘導14日目より認められ、20日目まで維持された。 本分化誘導法の工程(4)(分化誘導10日目から22日目まで)においてフォルスコリン及びニコチンアミドを同時に添加、もしくはDMSOのみを添加して分化を誘導した細胞に対して、抗インスリン抗体を用いた免疫蛍光染色を行った結果を示す。インスリン産生細胞(インスリン陽性細胞)はAlexa568により赤色を呈し、細胞の核はヘキスト33342によって青色を呈する。フォルスコリン及びニコチンアミドを同時に添加することで、高効率にインスリン産生細胞への分化が誘導されている。 本分化誘導法の工程(4)においてフォルスコリン、ニコチンアミド、デキサメタゾン、ALK5阻害剤IIをそれぞれ単独で、あるいはその組み合わせで添加して分化を誘導した際のインスリンの発現の様子を示す。図中のNはニコチンアミドを、Fはフォルスコリンを、Dはデキサメタゾンを、AはALK5阻害剤IIを示す。図中に示す組み合わせで各因子を添加して培養した後、誘導12日目、16日目、20日目におけるインスリンの発現量を測定した。工程(4)においてフォルスコリン、デキサメタゾン、ALK5阻害剤IIをそれぞれ単独で、あるいはフォルスコリン、ニコチンアミド、デキサメタゾン、ALK5阻害剤IIを組み合わせて添加した場合に、インスリンの発現は高値を示した。 本分化誘導法の工程(4)(分化誘導10日目から20日目まで)において、フォルスコリン、ニコチンアミド、デキサメタゾン、ALK5阻害剤IIを図中に示す組み合わせで添加、あるいはコントロールとして誘導因子を添加せずに分化させた細胞に対して、抗インスリン抗体を用いた免疫蛍光染色を行った結果を示す。図中のNはニコチンアミドを、Fはフォルスコリンを、Dはデキサメタゾンを、AはALK5阻害剤IIを示す。インスリン産生細胞(インスリン陽性細胞)はAlexa568により赤色を呈し、細胞の核はヘキスト33342によって青色を呈する。フォルスコリン、ニコチンアミド、デキサメタゾン、ALK5阻害剤IIを組み合わせて添加することで、高効率にインスリン産生細胞への分化が誘導されている。 本分化誘導法の工程(1)(分化誘導0日目から1日目まで)において各種GSK3阻害剤をアクチビンAと同時に添加して1日間培養した後に、さらに工程(2)に従い2日間培養した細胞に対して、抗ヒトSOX17抗体を用いた免疫蛍光染色を行った結果を示す。SOX17陽性細胞の核はAlexa488により緑色を呈し、陰性の細胞の核はヘキスト33342によって青色を呈する。CHIR99021(実施例32)、SB415286(実施例33)、SB216763(実施例34)をアクチビンAと組み合わせて添加することで、アクチビンAを単独(コントロール)で添加した場合よりもSOX17陽性細胞の割合が増加している。 本分化誘導法の工程(3)(分化誘導3日目から10日目まで)において、各種レチノイン酸受容体アゴニストをドーソモルフィンとSB431542と同時に添加、あるいはコントロールとしてドーソモルフィンとSB431542のみを添加して分化させた細胞に対して、抗PDX1抗体を用いた免疫蛍光染色を行った結果を示す。図中のDMはドーソモルフィンを、SBはSB431542を示す。PDX1陽性細胞はAlexa488により緑色を呈し、細胞の核はヘキスト33342によって青色を呈する。各種レチノイン酸受容体アゴニストをドーソモルフィンとSB431542と同時に添加することで大部分の細胞がPDX1陽性細胞へと誘導されている。 本分化誘導法の工程(3)(分化誘導3日目から10日目まで)において、Noggin、レチノイン酸、ドーソモルフィンを単独で、あるいはNogginとレチノイン酸またはドーソモルフィンとレチノイン酸の組み合わせで添加して分化を誘導した。また、一部の細胞では、コントロールとして誘導因子を添加せずに培養した。培養後の細胞に対して、抗PDX1抗体を用いた免疫蛍光染色を行った結果を示す。図中のCtrlは誘導因子を添加していないコントロールを、NogはNogginを、RAはレチノイン酸を、DMはドーソモルフィンを示す。PDX1陽性細胞はAlexa488により緑色を呈し、細胞の核はヘキスト33342によって青色を呈する。Nogginとレチノイン酸またはドーソモルフィンとレチノイン酸の組み合わせで添加した場合に、多くの細胞がPDX1陽性細胞へと誘導されている。 本分化誘導法の工程(3)(分化誘導3日目から10日目まで)において、各種アクチビン受容体様キナーゼ−4,5,7の阻害剤をドーソモルフィンとレチノイン酸と同時に添加、あるいはコントロールとしてドーソモルフィンとレチノイン酸のみを添加して培養した細胞におけるNGN3の発現量を定量RT−PCRで測定した結果を示す。ハウスキーピング遺伝子であるGAPDHの発現量に対する相対値として表示する。いずれのアクチビン受容体様キナーゼ−4,5,7の阻害剤においても、ドーソモルフィンとレチノイン酸と同時に添加することでNGN3の発現が上昇した。 本分化誘導法の工程(4)(分化誘導10日目から21日目まで)においてフォルスコリン(Fsk)、ジブチルcAMP(dbcAMP)、IBMX、ALK5阻害剤II、A−83−01、SB431542、TGFβRIキナーゼ阻害剤VIIIをそれぞれ添加して培養した細胞、もしくはコントロール(Ctrl)として誘導因子を添加せずに培養した細胞に対して、抗インスリン抗体を用いた免疫蛍光染色を行った結果を示す。インスリン陽性細胞はAlexa568により赤色を呈し、細胞の核はヘキスト33342によって青色を呈する。これらの化合物を添加して培養することで、高効率にインスリン陽性細胞への分化が誘導されている。 本分化誘導法の工程(4)(分化誘導10日目から21日目まで)においてデキサメタゾン、ヒドロコルチゾン、ベタメタゾン、ベクロメタゾンをそれぞれ添加して培養した細胞、もしくはコントロール(Ctrl)として誘導因子を添加せずに培養した細胞に対して、抗インスリン抗体を用いて免疫蛍光染色を行った結果を示す。インスリン陽性細胞はAlexa568により赤色を呈し、細胞の核はヘキスト33342によって青色を呈する。これらの化合物を添加して培養することで、高効率にインスリン陽性細胞への分化が誘導されている。 本分化誘導法に従って分化を誘導した細胞に対して、各種のインスリン分泌を促進する因子を1時間添加した場合の上清中に分泌されるCペプチドの量を測定した。図中の値は2.5mMグルコースを添加した時のCペプチドの分泌量を基準とした相対値を示している。2.5mMグルコースを含む緩衝液中に各種化合物を添加することで、細胞外へのCペプチドの分泌量が上昇している。 本分化誘導法に従って分化を誘導した培養21日目の細胞に対して、抗グルカゴン抗体、抗グレリン抗体、抗ソマトスタチン抗体、抗Cペプチド抗体を用いて免疫蛍光染色を行った結果を示す。グルカゴン陽性細胞、グレリン陽性細胞、ソマトスタチン陽性細胞はAlexa488により緑色を呈し、Cペプチド陽性細胞はAlexa568により赤色を呈し、細胞の核はヘキスト33342によって青色を呈する。本分化誘導法を用いることで、Cペプチド陽性細胞だけでなく、グルカゴン陽性細胞、グレリン陽性細胞、ソマトスタチン陽性細胞も同時に誘導されている。 本分化誘導法に従って、異なるヒトiPS細胞株から内胚葉を誘導した。培養3日目の細胞に対して、抗SOX17抗体、抗FOXA2抗体を用いて免疫蛍光染色を行った結果を示す。SOX17陽性細胞はAlexa488により緑色を呈し、FOXA2陽性細胞はAlexa568により赤色を呈し、細胞の核はヘキスト33342によって青色を呈する。本分化誘導法を用いることで、全てのヒトiPS細胞株から効率的にSOX17陽性FOXA2陽性の内胚葉が誘導されている。 本分化誘導法に従って、異なるヒトiPS細胞株から膵前駆細胞を誘導した。分化誘導後の培養10日目の細胞に対して、抗PDX1抗体を用いて免疫蛍光染色を行った結果を示す。PDX1陽性細胞はAlexa488により緑色を呈し、細胞の核はヘキスト33342によって青色を呈する。本分化誘導法を用いることで、全てのヒトiPS細胞株から効率的にPDX1陽性の膵前駆細胞が誘導されている。 本分化誘導法に従って、異なるヒトiPS細胞株からインスリン産生細胞を誘導した。分化誘導後の培養21日目の細胞に対して、抗インスリン抗体を用いて免疫蛍光染色を行った結果を示す。インスリン陽性細胞はAlexa568により赤色を呈し、細胞の核はヘキスト33342によって青色を呈する。本分化誘導法を用いることで、全てのヒトiPS細胞株から効率的にインスリン産生細胞への分化が誘導されている。
 以下、本発明を説明する。本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味を有する。
 本明細書において、「膵ホルモン」としては、例えば、インスリン、グルカゴン、ソマトスタチン、膵ポリペプチド、グレリンが挙げられる。
 本明細書において、「膵ホルモン産生細胞」とは膵ホルモンを産生する能力を有する細胞を意味する。該膵ホルモン産生細胞は常に膵ホルモンを産生している必要はなく、膵ホルモンの産生能力を有していればよい。また、産生される膵ホルモン量は特に限定されない。
 「膵ホルモン産生細胞」における、「膵ホルモン」としては、上記、本明細書における「膵ホルモン」として例示されたものが挙げられる。「膵ホルモン産生細胞」の具体例としては、インスリン産生細胞、グルカゴン産生細胞(本明細書中、膵α細胞と称することがある)、ソマトスタチン産生細胞(本明細書中、膵δ細胞と称することがある)、PP産生細胞、グレリン産生細胞が挙げられる。
 本明細書において「幹細胞」とは、インビトロにおいて培養することが可能で、かつ、生体を構成する複数系列の細胞に分化しうる細胞をいう。具体的にはES細胞、胎児の始原生殖細胞由来の多能性幹細胞(EG細胞:Proc Natl Acad Sci U S A.1998,95:13726−31)、精巣由来の多能性幹細胞(GS細胞:Nature.2008,456:344−9)、体細胞由来人工多能性幹細胞(induced pluripotent stem cells;iPS細胞)、ヒトの体性幹細胞(組織幹細胞)が挙げられ、好ましくは、iPS細胞、ES細胞またはヒトの体性幹細胞、さらに好ましくはiPS細胞である。
 ES細胞としては、任意の温血動物、好ましくは哺乳動物に由来するES細胞を使用できる。哺乳動物としては、例えば、マウス、ラット、モルモット、ハムスター、ウサギ、ネコ、イヌ、ヒツジ、ブタ、ウシ、ウマ、ヤギ、サル、ヒトが挙げられる。ES細胞の好ましい例としては、ヒトに由来するES細胞が挙げられる。
 ES細胞の具体例として、着床以前の初期胚を培養することによって樹立した哺乳動物等のES細胞、体細胞の核を核移植することによって作製された初期胚を培養することによって樹立したES細胞、及びこれらのES細胞の染色体上の遺伝子を遺伝子工学の手法を用いて改変したES細胞が挙げられる。
 各ES細胞は当該分野で通常実施されている方法や、公知文献に従って調製することができる。
 マウスのES細胞は、1981年にエバンスら(Evans et al.,1981,Nature 292:154−6)や、マーチンら(Martin GR.et al.,1981,Proc Natl Acad Sci 78:7634−8)によって樹立されており、例えば大日本住友製薬株式会社(大阪、日本)などから購入可能である。
 ヒトのES細胞は、1998年にトムソンら(Thomson et al.,Science,1998,282:1145−7)によって樹立されており、WiCell研究施設(WiCell Research Institute、ウェブサイト:http://www.wicell.org/、マジソン、ウイスコンシン州、米国)、米国国立衛生研究所(National Institute of Health)、京都大学などから入手可能であり、例えばCellartis社(ウェブサイト:http://www.cellartis.com/、スウェーデン)などから購入可能である。
 iPS細胞としては、任意の温血動物、好ましくは哺乳動物に由来するiPS細胞を使用できる。該哺乳動物としては、例えば、マウス、ラット、モルモット、ハムスター、ウサギ、ネコ、イヌ、ヒツジ、ブタ、ウシ、ウマ、ヤギ、サル、ヒトが挙げられる。iPS細胞の好ましい例としては、ヒトに由来するiPS細胞が挙げられる。
 iPS細胞の具体例として、皮膚細胞等の体細胞に複数の遺伝子を導入して得られる、ES細胞同様の多分化能を獲得した細胞が挙げられ、例えばOct3/4遺伝子、Klf4遺伝子、C−Myc遺伝子及びSox2遺伝子を導入することによって得られるiPS細胞、Oct3/4遺伝子、Klf4遺伝子及びSox2遺伝子を導入することによって得られるiPS細胞(Nat Biotechnol 2008;26:101−106)が挙げられる。他にも、導入遺伝子をさらに減らした方法(Nature.2008 Jul 31;454(7204):646−50)、低分子化合物を利用した方法(Cell Stem Cell.2009 Jan 9;4(1):16−9、Cell Stem Cell.2009 Nov 6;5(5):491−503)、遺伝子の代わりに転写因子タンパク質を利用した方法(Cell Stem Cell.2009 May 8;4(5):381−4)などが挙げられる。
 作成されたiPS細胞は、その作出方法によらずいずれも本発明に用いられうる。
 ヒトiPS細胞株としては、具体的には、253G1株(36歳女性の皮膚線維芽細胞にOCT4/SOX2/KLF4を発現させて作成されたiPS細胞株)、201B7株(36歳女性の皮膚線維芽細胞にOCT4/SOX2/KLF4/c−MYCを発現させて作成されたiPS細胞株)、1503−iPS(297A1)(73歳女性の皮膚線維芽細胞にOCT4/SOX2/KLF4/c−MYCを発現させて作成されたiPS細胞株)、1392−iPS(297F1)(56歳男性の皮膚線維芽細胞にOCT4/SOX2/KLF4/c−MYCを発現させて作成されたiPS細胞株)、NHDF−iPS(297L1)(新生児男性の皮膚線維芽細胞にOCT4/SOX2/KLF4/c−MYCを発現させて作成されたiPS細胞株)等が挙げられる。
 体性幹細胞としては、ヒトに由来するものが使用できる。ここで体性幹細胞とは、膵ホルモン産生細胞へと分化し得る細胞であり、例えば骨髄や脂肪由来の間葉系幹細胞や膵臓内に存在する幹細胞が挙げられる。
1.細胞の製造方法
 本発明の製造方法は、幹細胞や内胚葉細胞あるいは膵ホルモン産生前駆細胞から膵ホルモン産生細胞を製造する方法、幹細胞から内胚葉細胞を製造する方法、内胚葉細胞から膵ホルモン産生前駆細胞を製造する方法であるが、より未分化な状態にある細胞をより分化した状態へと分化誘導する方法でもある。
 本発明は、幹細胞を、以下の工程(1)~(4)に付すことを特徴とする、膵ホルモン産生細胞の製造方法:
(1)幹細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤、及びGSK3阻害剤を含む培地で培養する工程
(2)前記工程(1)で得られた細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤を含む培地で培養する工程
(3)前記工程(2)で得られた細胞を、(a)レチノイン酸受容体アゴニスト、(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地で培養する工程
(4)前記工程(3)で得られた細胞を培養する工程、
を提供する。
 本発明の製造方法(分化誘導方法)において幹細胞は、通常培養器上で培養される。ここで用いられる培養器としては、例えば、フラスコ、組織培養用フラスコ、デッシュ、ペトリデッシュ、組織培養用デッシュ、マルチデッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、ローラーボトルが挙げられる。好ましくは、デッシュ、ペトリデッシュ、組織培養用デッシュ、マルチデッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート等である。培養器は、幹細胞を維持・培養するのに適するようなコーティングが施されていることが好ましい。具体的にはフィーダー細胞や、細胞外基質成分でコーティングされた培養器を用いることが好ましい。フィーダー細胞としては、特に限定されないが、例えば、線維芽細胞(マウス胎仔線維芽細胞(MEF)、マウス線維芽細胞(STO)等)が挙げられる。フィーダー細胞は自体公知の方法、例えば放射線(ガンマ線等)照射や抗癌剤(マイトマイシンC等)処理等で不活化されていることが好ましい。細胞外基質成分としては、ゼラチン、コラーゲン、エラスチン等の繊維性タンパク質、ヒアルロン酸、コンドロイチン硫酸等のグルコサミノグリカンやプロテオグリカン、フィブロネクチン、ビトロネクチン、ラミニン等の細胞接着性タンパク質、あるいはマトリゲル等の基底膜成分等が挙げられる。
工程(1):幹細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤、及びGSK3阻害剤を含む培地で培養する工程
 本工程は、単独、好ましくは後述する工程(2)とともに幹細胞から内胚葉細胞への分化を誘導する工程に相当する。従って、本発明では、本工程(1)によって、幹細胞を出発材料とした内胚葉細胞の製造方法も提供することができる。
 本工程で使用されるアクチビン受容体様キナーゼ(ALK)−4,7の活性化剤は、ALK−4及び/又はALK−7に対し活性化作用を有する物質から選択される。
 本工程で使用されるアクチビン受容体様キナーゼ−4,7の活性化剤の例としては、アクチビン、Nodal、Myostatinが挙げられる。なかでも、本工程で使用されるアクチビン受容体様キナーゼ−4,7の活性化剤としてはアクチビンが好ましい。
 上記アクチビンはTGFβ(トランスフォーミング増殖因子β)ファミリーに属する大きさ24kDのペプチド性細胞増殖、分化因子であり、2個のβサブユニットがSS結合を介して2量体を構成している(Ling,N.,et al.,(1986)Nature 321,779−782;Vale,W.,et al.,(1986)Nature 321,776−779)。アクチビンには、アクチビンA、B、C、DおよびABが知られているが、本工程においてはアクチビンA、B、C、D、ABのいずれのアクチビンも使用することができる。本工程に用いるアクチビンとしては特にアクチビンAが好適に用いられる。また、該アクチビンとしてはヒト、マウス等いずれの哺乳動物由来のアクチビンをも使用することができる。本工程に使用するアクチビンとしては、分化に用いる幹細胞と同一の動物種由来のアクチビンを用いることが好ましく、例えばヒト由来の幹細胞を出発原料とする場合、ヒト由来のアクチビンを用いることが好ましい。これらのアクチビンは商業的に入手可能である。
 本工程における培地中のアクチビン受容体様キナーゼ−4,7の活性化剤の濃度は、用いるアクチビン受容体様キナーゼ−4,7の活性化剤の種類によって適宜設定されるが、アクチビン受容体様キナーゼ−4,7の活性化剤としてヒトアクチビンAを使用する場合の濃度は、通常0.1~200ng/ml、好ましくは5~150ng/ml、特に好ましくは10~100ng/mlである。
 また、本工程においては、アクチビン受容体様キナーゼ−4,7の活性化剤(好ましくはアクチビンA)とともにGSK3阻害剤を含む培地を用いることを特徴とする。アクチビン受容体様キナーゼ−4,7の活性化剤及びGSK3阻害剤との存在下に幹細胞を培養すれば、より好適に内胚葉細胞へと分化させることができる。
 なお、本明細書中、物質には、低分子化合物、ペプチド、タンパク質等が含まれる。
 本工程で用いるGSK3阻害剤は、GSK3α阻害活性を有する物質、GSK3β阻害活性を有する物質、及びGSK3α阻害活性とGSK3β阻害活性とを併せ持つ物質からなる群より選択される。本工程で用いるGSK3阻害剤としては、GSK3β阻害活性を有する物質またはGSK3α阻害活性とGSK3β阻害活性とを併せ持つ物質が好ましい。
 上記GSK3阻害剤として、具体的にはCHIR98014、CHIR99021、ケンパウロン(Kenpaullone)、AR−AO144−18、TDZD−8、SB216763、BIO、TWS−119及びSB415286等が例示される。これらはAxon Medchem BV社、和光純薬工業社、Enzo Life Sciences,Inc.社、Merck Bioscience社、Tocris bioscience社、Stemgent社、Sigma社などから購入可能であり、同一名称あるいは同一の商品名であれば、同一の物質を指し、構造ならびに物性は製造元によらず同等である。また、市販品として入手できない場合であっても、当業者であれば既知文献に従って調製することもできる。
 また、GSK3のmRNAに対するアンチセンスオリゴヌクレオチドやsiRNA等もGSK3阻害剤として使用することができる。これらはいずれも商業的に入手可能であるか既報に従って合成することができる。
 上記GSK3阻害剤は、好ましくはCHIR99021(6−[[2−[[4−(2,4−ジクロロフェニル)−5−(4−メチル−1H−イミダゾール−2−イル)−2−ピリミジニル]アミノ]エチル]アミノ]ニコチノニトリル)、SB216763(3−(2,3−ジクロロフェニル)−4−(1−メチル−1H−インドール−3−イル)−1H−ピロール−2,5−ジオン)、SB415286(3−[(3−クロロ−4−ヒドロキシフェニル)アミノ]−4−(2−ニトロフェニル)−1H−ピロール−2,5−ジオン)である。
 本工程では、好ましくは、GSK3阻害剤であるCHIR99021(6−[[2−[[4−(2,4−ジクロロフェニル)−5−(4−メチル−1H−イミダゾール−2−イル)−2−ピリミジニル]アミノ]エチル]アミノ]ニコチノニトリル)が用いられる。
 GSK3阻害剤の培地中の濃度は、用いるGSK3阻害剤の種類によって適宜設定されるが、GSK3阻害剤としてCHIR99021を使用する場合の濃度は、通常0.1~20μM、好ましくは1~5μMである。GSK3阻害剤としてSB415286を使用する場合の濃度は、通常0.1~20μM、好ましくは1~10μMである。GSK3阻害剤としてSB216763を使用する場合の濃度は、通常0.1~30μM、好ましくは0.5~20μMである。
 本工程において、アクチビン受容体様キナーゼ−4,7の活性化剤とGSK3阻害剤とは、培地中に同時に添加されてもよく、また、幹細胞の内胚葉細胞への分化を誘導し得る限り、別個に時間差を設けて培地中に添加されてもよい。アクチビン受容体様キナーゼ−4,7の活性化剤とGSK3阻害剤とは、培地中に同時に添加されることが簡便であり、また好ましい。
 本工程で用いる培地は、上記のようにアクチビン受容体様キナーゼ−4,7の活性化剤とGSK3阻害剤を含有している限り特に限定されず、通常、幹細胞を培養するのに用いられる培地(以下では、基礎培地と称することもある)にアクチビン受容体様キナーゼ−4,7の活性化剤とGSK3阻害剤を添加してなるものである。
 上記基礎培地は、BME培地、BGJb培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM ZincOption培地、IMDM培地、Medium 199培地、Eagle MEM培地、αMEM培地、DMEM培地、ハム培地、RPMI 1640培地、Fischer’s培地、及びこれらの混合培地等、動物細胞の培養に用いることのできる培地であれば特に限定されない。これらの基礎培地は、Invitrogen社、SIGMA社、和光純薬工業社、大日本住友製薬社などから購入可能であり、同一名称あるいは同一商品名の培地であれば培地の組成は製造元によらず同等である。本工程で用いる基礎培地は、好ましくは、RPMI 1640培地、Improved MEM Zinc Option培地である。
 本工程で用いられる培地は、血清含有培地であっても無血清培地であってもよい。ここで、無血清培地とは、無調整又は未精製の血清を含まない基礎培地を意味し、精製された血液由来成分や動物組織由来成分(例えば、増殖因子)が混入している培地は無血清培地に該当するものとする。本工程で用いられる培地が血清含有培地である場合、該血清としてはウシ胎児血清(Fetal Bovine Serum)などの哺乳動物の血清が使用できる。該血清の培地中の濃度は通常0.01~20重量%、好ましくは0.1~10重量%である。
 本工程で用いられる培地はまた、血清代替物を含んでいてもよい。血清代替物としては、例えば、アルブミン(例えば、脂質リッチアルブミン)、トランスフェリン、脂肪酸、コラーゲン前駆体、微量元素(例えば亜鉛、セレン)、B−27サプリメント、N2サプリメント、ノックアウトシーラムリプレースメント、2−メルカプトエタノール、3’チオールグリセロール、又はこれらの均等物が挙げられる。これらの培地中の濃度は、前記した血清の培地中の濃度と同様である。
 ノックアウトシーラムリプレースメントはInvitrogen社から購入可能である。その他の血清代替物については、Invitrogen社、SIGMA社、和光純薬工業社、大日本住友製薬社などから購入可能であり、同一名称あるいは同一商品名の試薬あるいは添加物であれば組成は製造元によらず同等である。
 本工程で用いられる培地はまた、脂質、アミノ酸(例えば、非必須アミノ酸)、ビタミン、増殖因子、サイトカイン、抗酸化剤、2−メルカプトエタノール、ピルビン酸、緩衝剤、無機塩類、抗生物質(例えばペニシリンやストレプトマイシン)又は抗菌剤(例えばアンホテリシンB)等を含有してもよい。これらの培地中の濃度は、前記した血清の培地中の濃度と同様である。
 本工程は、使用する幹細胞の培養に適した培養温度(通常30~40℃、好ましくは37℃程度)で、6~60時間(好ましくは12~36時間)、1~10%(好ましくは5%)の二酸化炭素を通気したCOインキュベーター内にて培養することによって実施される。
工程(2):前記工程(1)で得られた細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤を含む培地で培養する工程
 本工程は、上記工程(1)に続いて実施する工程であり、幹細胞からの内胚葉細胞への分化誘導を完了させる工程に相当する。
 即ち、前記工程(1)で得られた細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤を含む培地で培養する工程である。
 具体的には、幹細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤、及びGSK3阻害剤を含む培地で培養した(工程(1))後、アクチビン受容体様キナーゼ−4,7の活性化剤を含有する培地に培地交換することによって実施される。
 本工程で用いる培地は、前記工程(1)で例示した基礎培地(所望により前記工程(1)で例示した各種添加物、血清又は血清代替物を含有していてもよい)にアクチビン受容体様キナーゼ−4,7の活性化剤を添加することにより作製される。また、所望により培地中に前記工程(1)で例示したGSK3阻害剤が含有されていてもよい。
 本工程で用いられる培地は、前記工程(1)で用いた基礎培地と同種の基礎培地を用いて作製されたものであっても、異種の基礎培地を用いて作製されたものであってもよいが、同種の基礎培地を用いて作製されたものであることが好ましい。
 本工程で用いられるアクチビン受容体様キナーゼ−4,7の活性化剤の例としては、前記工程(1)で例示したアクチビン受容体様キナーゼ−4,7の活性化剤が挙げられる。
 本工程においてアクチビン受容体様キナーゼ−4,7の活性化剤としてアクチビンを用いる場合には、該アクチビンはアクチビンA、B、C、D、ABのいずれでもよく、なかでもアクチビンAが好適である。また該アクチビンはヒト、マウス等いずれの動物種由来のアクチビンでもよい。本工程に使用するアクチビンとしては、出発原料とする幹細胞と同一の動物種由来のアクチビンを用いるのが好ましく、例えばヒト由来の幹細胞を出発原料とする場合、ヒトアクチビンを用いるのが好ましい。これらのアクチビンは商業的に入手可能である。
 本工程における培地中のアクチビン受容体様キナーゼ−4,7の活性化剤の濃度は、用いるアクチビン受容体様キナーゼ−4,7の活性化剤の種類によって適宜設定されるが、アクチビン受容体様キナーゼ−4,7の活性化剤としてヒトアクチビンAを使用する場合の濃度は、通常0.1~200ng/ml、好ましくは5~150ng/ml、特に好ましくは10~100ng/mlである。
 本工程は、使用する幹細胞の培養に適した培養温度(通常30~40℃、好ましくは37℃程度)で、6~144時間(好ましくは12~72時間)、1~10%(好ましくは5%)の二酸化炭素を通気したCOインキュベーター内にて培養することによって実施される。
 本工程において、幹細胞が内胚葉細胞に分化したことの確認は、内胚葉細胞特異的に発現するタンパク質や遺伝子(本明細書において、上記タンパク質や遺伝子を内胚葉マーカーと称することがある)の発現変動を評価することによって行うことができる。上記内胚葉マーカーの発現変動の評価は、例えば、抗原抗体反応を利用したタンパク質の発現評価方法、定量RT−PCRを利用した遺伝子発現評価方法等によって行なうことができる。上記内胚葉マーカーの例としては、SOX17(性決定領域Y、Sex determining region Y)、Goosecoid(goosecoid homeobox)、CXCR4(chemokine(C−X−Cmotif)receptor 4)、FOXA2(forkhead box A2)が挙げられる。
工程(3):前記工程(2)で得られた細胞を、(a)レチノイン酸受容体アゴニスト、(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地で培養する工程
 本工程は、上記工程(1)及び(2)を経て得られた内胚葉細胞から膵ホルモン産生前駆細胞への分化を誘導する工程に相当する。
 本工程で用いるレチノイン酸受容体(RAR)アゴニストは、天然に存在するレチノイドであっても、化学的に合成されたレチノイド、レチノイド骨格を持たないレチノイン酸受容体アゴニスト化合物やレチノイン酸受容体アゴニスト活性を有する天然物であってもよい。RARアゴニストとしての活性をもつ天然レチノイドの例としては、レチノイン酸(立体異性体の全トランス−レチノイン酸(全トランスRA)と9−シス−レチノイン酸(9−シスRA)が知られている)が挙げられる。化学的に合成されたレチノイドは当技術分野で公知である(米国特許第5,234,926号、米国特許第4,326,055号等)。レチノイド骨格を持たないレチノイン酸受容体アゴニスト化合物の例としては、Am80、AM580、TTNPB、AC55649が挙げられる。レチノイン酸受容体アゴニスト活性を有する天然物の例としては、ホノキオール、マグノロールが挙げられる(生物機能開発研究所紀要 9:55−61、2009年)。本工程で用いるRARアゴニストは、好ましくはレチノイン酸、AM580(4−[[5,6,7,8−テトラヒドロ−5,5,8,8−テトラメチル−2−ナフタレニル]カルボキシアミド]ベンゾイック アシッド)、TTNPB(4−[[E]−2−[5,6,7,8−テトラヒドロ−5,5,8,8−テトラメチル−2−ナフタレニル]−1−プロペニル]ベンゾイックアシッド)、AC55649(4’−オクチル−[1,1’−ビフェニル]−4−カルボキシリックアシッド)であり、さらに好ましくはレチノイン酸である。RARアゴニストの培地中の濃度は、用いるRARアゴニストの種類によって適宜設定されるが、RARアゴニストとしてレチノイン酸を用いる場合の濃度は、通常0.1~100μM、好ましくは0.5~10μMである。RARアゴニストとしてTTNPBを用いる場合の濃度は、通常0.02~20μM、好ましくは0.05~10μMである。RARアゴニストとしてAM580を用いる場合の濃度は、通常0.02~20μM、好ましくは0.05~10μMである。RARアゴニストとしてAC55649を用いる場合の濃度は、通常0.02~20μM、好ましくは0.1~10μMである。
 本工程で用いるAMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤は、AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害活性を有する物質(例えば、AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害活性を有する化合物、AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6に対するmRNAのアンチセンスオリゴヌクレオチドやsiRNA)であれば特に限定されない。合成可能な(低分子)化合物に加え、サイトカイン等の各種生理活性物質も当該作用を有する限り好適に用いることができる。AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害活性を有する物質の好ましい例としてはAMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害活性を有する化合物が挙げられる。該化合物は、AMP活性化プロテインキナーゼ(AMPK)阻害活性を有する化合物、アクチビン受容体様キナーゼ(ALK)−2,3,6阻害活性を有する化合物、及びAMP活性化プロテインキナーゼ阻害活性とアクチビン受容体様キナーゼ−2,3,6阻害活性とを併せ持つ化合物からなる群より選択される。
 ここで、アクチビン受容体様キナーゼ(ALK)−2,3,6の阻害剤あるいはALK−2,3,6の阻害活性を有する物質とは、ALK−2、ALK−3、及びALK−6からなる群より選択される少なくとも一種のALKに対して阻害活性を有する化合物あるいは物質を意味する。
 AMPK阻害活性を有する化合物としては、ドーソモルフィン(Dorsomorphin:6−[4−(2−ピペリジン−1−イルエトキシ)フェニル]−3−ピリジン−4−イルピラゾロ[1,5−a]ピリミジン)、araA(アデニン−9−β−d−アラビノフラノシド)、C75等が挙げられる。アクチビン受容体様キナーゼ(ALK)としては、BMP(Bone Morphogenetic Protein)の1型受容体であるALK−2,3,6や、後述するTGF−β、Activin、Nodalの1型受容体であるALK−4,5,7などが知られている。ALK−2,3,6阻害活性を有する化合物としては、ドーソモルフィン、LDN−193189等が挙げられる。ドーソモルフィンは、AMPK阻害活性及びALK−2,3,6阻害活性の両方の活性を有する。本工程で用いるAMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤としては、ドーソモルフィンが好ましい。
 本工程で用いるBMPのアンタゴニストは、BMPが有する機能(すなわちアクチビン受容体様キナーゼ−2,3,6を介したシグナルの活性化)を阻害する物質(例えば、BMPと結合してBMPが有する機能を阻害するタンパク質(Trends Cell Biol.20(2001)244−256)や、該タンパク質に対するmRNAのアンチセンスオリゴヌクレオチドやsiRNA)であれば特に限定されない。本工程で用いるBMPのアンタゴニストの例としては、Nogginが挙げられる。
 これらの化合物はSIGMA社、Tocris bioscience社、Stemgent社、Merck Bioscience社などから購入可能であり、同一名称あるいは同一商品名であれば同一の化合物を指し、構造ならびに物性は製造元によらず同等である。また、市販品として入手できない場合には、既知文献に従って調製することもできる。
 また、AMP活性化プロテインキナーゼ、ALK−2,3,6のmRNAに対するアンチセンスオリゴヌクレオチドやsiRNA等もAMP活性化プロテインキナーゼ及び/又はALK−2,3,6の阻害剤として使用することができる。また、本工程中において培養中の細胞から培地中にBMPファミリーに属する分化因子の増加、あるいは当該分化因子の分泌が確認された場合には、当該分化因子の活性を中和する抗体、あるいはBMPに結合してその作用を阻害することが知られているNoggin、Chordin、Cerberus、Gremlin等もAMP活性化プロテインキナーゼ及び/又はALK−2,3,6の阻害剤として使用することができる。
 また、本工程中において培養中の細胞から培地中に上記工程(1)で例示したアクチビンのファミリーに属する分化因子の増加、あるいは当該分化因子の分泌が確認された場合には、当該分化因子の活性を中和する抗体、あるいはアクチビンに結合してその作用を阻害することが知られているホリスタチンもAMP活性化プロテインキナーゼ及び/又はALK−2,3,6の阻害剤として使用することができる。
 本工程においてAMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤を用いる場合の、培地中の濃度は、用いる阻害剤の種類によって適宜設定されるが、ドーソモルフィンの場合、通常0.1~20μM、好ましくは0.2~5μMである。
 本工程においてBMPのアンタゴニストを用いる場合の、培地中の濃度は、用いるBMPのアンタゴニストの種類によって適宜設定されるが、Nogginの場合、通常1ng/ml~1000ng/ml、好ましくは20ng/ml~500ng/mlである。
 アクチビン受容体様キナーゼ(ALK)−4,5,7の阻害剤は、ALK−4、ALK−5およびALK−7からなる群より選択される少なくとも一種のALKに対し阻害活性を有する化合物から選択される。
 本工程で用いるALK−4,5,7の阻害剤としては、SB−431542、SB−505124、SB−525334、A−83−01、GW6604、LY580276、ALK5阻害剤II、TGFβRIキナーゼ阻害剤VIII及びSD−208等が挙げられる。
 これらはSIGMA社、Tocris bioscience社、和光純薬工業社などから購入可能であり、同一名称あるいは同一商品名であれば同一の化合物を指し、構造ならびに物性は製造元によらず同等である。また、市販品として入手できない場合には、既知文献に従って調製することもできる。
 また、ALK−4,5,7のmRNAに対するアンチセンスオリゴヌクレオチドやsiRNA等もALK−4,5,7の阻害剤として使用することができる。
 本工程で用いるALK−4,5,7の阻害剤としては、SB−431542(4−[4−(1,3−ベンゾジオキソール−5−イル)−5−(2−ピリジニル)−1H−イミダゾール−2−イル]−ベンズアミド又はその水和物)、A−83−01(3−[6−メチル−2−ピリジニル]−N−フェニル−4−[4−キノリニル]−1H−ピラゾル−1−カルボチオアミド)、ALK5阻害剤II(2−[3−[6−メチルピリジン−2−イル]−1H−ピラゾル−4−イル]−1,5−ナフチリジン)、TGFβRIキナーゼ阻害剤VIII(6−[2−tert−ブチル−5−[6−メチル−ピリジン−2−イル]−1H−イミダゾル−4−イル]−キノキサリン)が好ましく、さらにSB−431542(4−[4−(1,3−ベンゾジオキソール−5−イル)−5−(2−ピリジニル)−1H−イミダゾール−2−イル]−ベンズアミド又はその水和物)が好ましい。アクチビン受容体様キナーゼ−4,5,7の阻害剤の培地中の濃度は、用いる阻害剤の種類によって適宜設定されるが、アクチビン受容体様キナーゼ−4,5,7の阻害剤としてSB−431542を用いる場合の濃度は、通常、0.1~50μM、好ましくは1~20μMである。アクチビン受容体様キナーゼ−4,5,7の阻害剤としてALK5阻害剤IIを用いる場合の濃度は、通常0.05~50μM、好ましくは0.2~10μMである。アクチビン受容体様キナーゼ−4,5,7の阻害剤としてA−83−01を用いる場合の濃度は、通常0.05~50μM、好ましくは0.1~10μMである。アクチビン受容体様キナーゼ−4,5,7の阻害剤としてTGFβRIキナーゼ阻害剤VIIIを用いる場合の濃度は、通常0.05~50μM、好ましくは0.1~10μMである。
 工程(3)は、(a)レチノイン酸受容体アゴニスト、(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤の3種類全ての成分を含む培地中で実施することが好ましく、レチノイン酸受容体アゴニスト、AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、及びアクチビン受容体様キナーゼ−4,5,7の阻害剤の3種類全ての成分を含む培地中で実施することが好ましく、レチノイン酸、ドーソモルフィン、及び4−[4−(1,3−ベンゾジオキソール−5−イル)−5−(2−ピリジニル)−1H−イミダゾール−2−イル]−ベンズアミド又はその水和物を含む培地中で実施することがさらに好ましく、レチノイン酸、ドーソモルフィン、及び4−[4−(1,3−ベンゾジオキソール−5−イル)−5−(2−ピリジニル)−1H−イミダゾール−2−イル]−ベンズアミド又はその水和物を含む培地中で実施することが特に好ましい。
 本工程において、(a)レチノイン酸受容体アゴニスト、(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤のうち2種以上を組み合わせて用いる場合、それらは培地中に同時に添加されてもよく、また、膵ホルモン産生前駆細胞への分化を誘導し得る限り、別個に時間差を設けて培地中に添加されてもよい。用いる各因子の種類によっても適宜設定され得るが、(a)レチノイン酸受容体アゴニスト、(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤は、培地中に同時に添加されることが簡便であり、また好ましい。
 本工程で用いる培地は、前記工程(1)で例示した基礎培地(所望により前記工程(1)で例示した各種添加物、血清又は血清代替物を含有していてもよい)に、(a)レチノイン酸受容体アゴニスト、(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択されるいずれか1種以上を添加することにより作製される。本工程で用いる培地は、上記工程(1)や工程(2)と同種の基礎培地を用いて作製されたものであっても、異種の基礎培地を用いて作製されたものであってもよい。膵ホルモン産生前駆細胞への分化誘導がより効率的に行えるという点で、Improved MEM Zinc Option培地(Invitrogen社)が本工程での基礎培地として好適に用いられるが、当該培地は公知文献(Richter A.et al.,National Cancer(1972)49,1705)に従って調製することもできる。さらに、血清代替物としてのB−27サプリメント(Brewer G.J.et al.,J.Neurosci.Res.(1993)35,567)もまた好適に培地中に添加され得る。
 培地中、B−27サプリメントの濃度は、0.01~10重量%、好ましくは0.1~2重量%である。
 本工程は、使用する幹細胞又は内胚葉細胞の培養に適した培養温度(通常30~40℃、好ましくは37℃程度)で、72~288時間(好ましくは120~216時間)、1~10%(好ましくは5%)の二酸化炭素を通気したCOインキュベーター内にて培養することによって実施される。
 本工程において、内胚葉細胞が膵ホルモン産生前駆細胞に分化誘導されたことの確認は、膵ホルモン産生前駆細胞特異的に発現するタンパク質や遺伝子(本明細書において、上記タンパク質や遺伝子を膵ホルモン産生前駆細胞マーカーと称することがある)の発現変動を評価することによって行うことができる。上記膵ホルモン産生前駆細胞マーカーの発現変動の評価は、例えば、抗原抗体反応を利用したタンパク質の発現評価方法、定量RT−PCRを利用した遺伝子発現評価方法等によって評価することができる。上記膵ホルモン産生前駆細胞マーカーとしては、NGN3、HNF6(hepatocyte nuclear factor 6、別名:One cut homeobox 1)、PDX1(pancreatic and duodenal homeobox 1)等が挙げられる。
 本工程(3)を用いれば、上記工程(1)及び(2)を経て得られた内胚葉細胞以外の内胚葉細胞または幹細胞を出発材料として膵ホルモン産生前駆細胞を効率良く製造することもできる。従って、本発明では、本工程(3)によって、内胚葉細胞または幹細胞を出発材料とした膵ホルモン産生前駆細胞の製造方法、すなわち、内胚葉細胞または幹細胞を、以下の(a)~(c)からなる群より選択される何れか1種以上を含む培地、より好ましくは以下の(a)~(c)を全て含む培地で培養することを特徴とする、膵ホルモン産生前駆細胞の製造方法も提供する:
(a)上記したレチノイン酸受容体アゴニスト
(b)上記したAMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも1種
(c)上記したアクチビン受容体様キナーゼ−4,5,7の阻害剤。
 なお、上記工程(1)及び(2)を経て得られた内胚葉細胞以外の内胚葉細胞または幹細胞を出発材料とした膵ホルモン産生前駆細胞の製造方法においても、上記(a)~(c)それぞれについての培地中の濃度、培養に用いる基礎培地、および細胞の培養条件(温度、時間など)は、上記工程(1)及び(2)を経て得られた内胚葉細胞または幹細胞を出発材料とした膵ホルモン産生前駆細胞を製造する方法における工程(3)と同様に行うことができる。
工程(4):前記工程(3)で得られた細胞を培養する工程
 本工程は、膵ホルモン産生前駆細胞から膵ホルモン産生細胞への分化を誘導する工程に相当する。
 本工程で用いる基礎培地としては、前記工程(1)で例示した基礎培地が挙げられる。本工程で用いる培地は、上記工程(1)~(3)と同種の基礎培地を用いて作製されたものであっても、異種の基礎培地を用いて作製されたものであってもよい。膵ホルモン産生細胞への分化誘導がより効率的に行えるという点で、Improved MEM Zinc Option培地(Invitrogen社)が本工程での基礎培地として好適に用いられ、該培地は公知文献(Richter A.et al.,National Cancer(1972)49,1705)に従って調製することも可能である。特に、B−27サプリメントが添加されたImproved MEM Zinc Option培地(Invitrogen社)が好適に用いられる。培地中、B−27サプリメントの濃度は、0.01~10重量%、好ましくは0.1~2重量%である。また、Improved MEM Zinc Option培地へは、細胞の生存率を向上させる添加剤を添加してもよい。そのような添加物として、例えば、ウシ胎児血清(Fetal Bovine Serum)や、ノックアウトシーラムリプレースメント、N2サプリメント等の血清代替物等が挙げられる。培地中の前記添加剤の濃度は、0.01~10重量%、好ましくは0.1~2重量%である。
 本工程の、より好ましい別の実施態様においては、(i)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤及びcAMP類縁体からなる群より選択される少なくとも一種、(ii)ステロイド、及び(iii)アクチビン受容体様キナーゼ−4,5,7(ALK−4,5,7)の阻害剤からなる群より選択される少なくとも1種が添加された培地を用いる。所望によりさらにニコチンアミドが添加された培地を用いることもできる。
 本工程で用いる(i)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤及びcAMP類縁体の例としては、アデニル酸シクラーゼ活性を有する化合物、cAMPホスホジエステラーゼ阻害活性を有する化合物、及びアデニル酸シクラーゼ活性とcAMPホスホジエステラーゼ阻害活性とを併せ持つ化合物等が挙げられる。より具体的には、フォルスコリン、ジブチルcAMP、PACAP27(pituitary adenylate cyclase activating polypeptide 27)、IBMX(3−イソブチル−1−メチルキサンチン)等が挙げられる。なかでもフォルスコリンが好適に用いられる。本工程で用いる(i)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤及びcAMP類縁体からなる群より選択される少なくとも1種の培地中の濃度は、用いるアデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤及びcAMP類縁体の種類によって適宜設定されるが、フォルスコリンを使用する場合の濃度は、通常0.1~50μM、好ましくは2~50μMであり、IBMXを使用する場合の濃度は、通常5~1000μM、好ましくは50~500μMであり、ジブチルcAMPを使用する場合の濃度は、通常10~4000μM、好ましくは100~1000μMである。
 本工程で用いる(ii)ステロイドとしては、細胞の分化誘導に寄与し得るものであれば特に限定されない。本工程で用いる(ii)ステロイドの例としては、デキサメタゾン、ヒドロコルチゾン、ベタメタゾン、ベクロメタゾンが挙げられる。なかでもデキサメタゾンが好適に用いられる。当該ステロイドの培地中の濃度は、用いるステロイドの種類によって適宜設定されるが、ステロイドとしてデキサメタゾンを使用する場合の濃度は、通常0.1~50μM、好ましくは2~50μMである。ステロイドとしてヒドロコルチゾンを使用する場合の濃度は、通常0.1~100μM、好ましくは1~50μMである。ステロイドとしてベタメタゾンを使用する場合の濃度は、通常0.1~50μM、好ましくは0.5~20μMである。ステロイドとしてベクロメタゾンを使用する場合の濃度は、通常0.1~50μM、好ましくは0.2~20μMである。
 本工程で用いる(iii)アクチビン受容体様キナーゼ(ALK)−4,5,7の阻害剤は、ALK−4、ALK−5およびALK−7からなる群より選択される少なくとも一種のALKに対し阻害活性を有する化合物から選択される。本工程で用いる(iii)アクチビン受容体様キナーゼ(ALK)−4,5,7の阻害剤の例としては、ALK−4,5,7の活性を阻害する化合物が挙げられ、具体的には、2−(3−(6−メチルピリジン−2−イル)−1H−ピラゾール−4−イル)−1,5−ナフチリジン(ALK5阻害剤II)、ALK5阻害剤I、ALK5阻害剤VII、SB−431542、SB−505124、SB−525334、A−83−01、GW6604、LY580276、TGFβRIキナーゼ阻害剤VIII及びSD−208等が挙げられる。なかでもALK5阻害剤II、SB−431542、A−83−01、TGFβRIキナーゼ阻害剤VIII(6−[2−tert−ブチル−5−[6−メチル−ピリジン−2−イル]−1H−イミダゾル−4−イル]−キノキサリン)が好ましく、とりわけALK5阻害剤IIが好適に用いられる。ALK−4,5,7阻害剤の培地中の濃度は、用いるALK−4,5,7阻害剤の種類によって適宜設定されるが、ALK−4,5,7阻害剤としてALK5阻害剤IIを使用する場合の濃度は、通常0.1~50μM、好ましくは1~20μMである。ALK−4,5,7阻害剤としてA−83−01を使用する場合の濃度は、通常0.1~50μM、好ましくは0.1~10μMである。ALK−4,5,7阻害剤としてSB−431542を使用する場合の濃度は、通常0.1~50μM、好ましくは1~20μMである。ALK−4,5,7阻害剤としてTGFβRIキナーゼ阻害剤VIIIを使用する場合の濃度は、通常0.1~50μM、好ましくは0.5~10μMである。
 本工程では、所望によりニコチンアミド(ナイアシンまたはニコチン酸アミドとも呼ばれる)をその培地中に添加することができる。ニコチンアミドは、そのポリADPリボース合成阻害剤としての機能により、膵β細胞の細胞死を抑制することが報告されている。当該ニコチンアミドの培地中の濃度は、通常0.1~20mM、好ましくは5~20mMである。
 前述した(i)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤及びcAMP類縁体からなる群より選択される少なくとも一種、(ii)ステロイド、及び(iii)アクチビン受容体様キナーゼ−4,5,7(ALK−4,5,7)の阻害剤は、SIGMA社、Enzo Life Sciences,Inc.社、Merck Bioscience社などから購入可能であり、同一名称あるいは同一商品名であれば同一の化合物を指し、構造ならびに物性は製造元によらず同等である。また、市販品として入手できない場合には、既知文献に従って調製することもできる。
 本工程で用いる培地は、基礎培地に、(i)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤及びcAMP類縁体からなる群より選択される少なくとも一種、(ii)ステロイド、及び(iii)ALK−4,5,7の阻害剤からなる群より選択される何れか1種以上の成分を添加することにより作製される。培地には、上記した1種以上の成分に加え、所望によりニコチンアミドが添加されていてもよい。上記した1種以上の成分とニコチンアミドを組み合わせて用いる場合、それらは培地中に同時に添加されてもよく、また、膵ホルモン産生細胞への分化を誘導し得る限り、別個に時間差を設けて培地中に添加されてもよい。上記した1種以上の成分及び/又はニコチンアミドの培地への添加は、同時に行なわれることが簡便であり、また好ましい。
 本工程は、使用する膵ホルモン産生前駆細胞の培養に適した培養温度(通常30~40℃、好ましくは37℃程度)で、24~240時間(好ましくは72~192時間)、1~10%(好ましくは5%)の二酸化炭素を通気したCOインキュベーター内にて培養することによって実施される。
 本工程において膵ホルモン産生前駆細胞が膵ホルモン産生細胞に分化誘導されたことの確認は、膵ホルモン産生細胞特異的に発現するタンパク質や遺伝子(本明細書において、上記タンパク質や遺伝子を膵ホルモン産生細胞マーカーと称することがある)の発現変動の評価、あるいは培地中に分泌される膵ホルモンの量を測定することによって行うことができる。上記膵ホルモン産生細胞マーカーの発現変動の評価は、例えば、抗原抗体反応を利用したタンパク質の発現評価方法、定量RT−PCRを利用した遺伝子発現評価方法等によって評価することができる。上記培地中に分泌される膵ホルモンの量の測定は、ウエスタンブロッティング解析、ELISA法などの方法又はそれに準じる方法等により行なうことができる。上記膵ホルモン産生細胞マーカーの例としては、インスリン、グルカゴン、パンクレアティックポリペプチド、ソマトスタチン、PCSK1(proprotein convertase subtilisin/kexin type 1)、SUR1(sulfonylurea receptor 1、別名:ATP−binding cassette,sub−family C(CFTR/MRP),member 8)、NKX6.1(NK6 homeobox 1)、PAX6(paired box 6)、NEUROD(neurogenic differentiation 1)、ARX(aristaless related homeobox)等が挙げられる。
 上記した通り、本発明は、幹細胞から膵ホルモン産生細胞を製造する方法を提供するが、同様の方法、すなわち、より未分化な状態にある細胞をより分化した状態へと分化誘導する方法によって、幹細胞から、多様な分化状態にある細胞(内胚葉細胞、膵管細胞、膵内分泌細胞、膵外分泌細胞やそれらに共通する前駆細胞等)へと分化誘導することができる。誘導された分化の程度は各細胞に特異的に発現しているタンパク質や遺伝子の発現の有無を確認することによって知ることができる。
 本発明の製造方法では、幹細胞を膵ホルモン産生細胞へ効率的に分化誘導することにより、高い膵ホルモン分泌能を有する膵ホルモン産生細胞を大量に供給できる。この膵ホルモン産生細胞は、医薬(特に細胞医療の為の医薬)や、糖尿病治療薬を開発するためのツールとして利用することができる。
2.細胞を含む医薬
 本発明は、上記した本発明の製造方法により製造された膵ホルモン産生細胞又は膵ホルモン産生前駆細胞を含む医薬(本明細書中、本発明の医薬と略記する場合がある)を提供する。
 ここで膵ホルモン産生細胞又は膵ホルモン産生前駆細胞は、上記した本発明の膵ホルモン産生細胞の製造方法又は膵ホルモン産生前駆細胞の製造方法により得られた細胞であれば特に限定されない。
 該医薬において、膵ホルモン産生細胞又は膵ホルモン産生前駆細胞はそのまま、もしくはフィルター濾過などにより濃縮したペレットなどの細胞塊などとして用いられる。さらに、該医薬は、DMSO(ジメチルスルホキシド)などの保護剤を加え、凍結保存することもできる。該医薬は、医薬として、より安全に利用するために、加熱処理、放射線処理など、膵ホルモン産生細胞としての機能又は膵ホルモン産生前駆細胞としての機能を残しつつ、病原体のタンパク質が変性する程度の条件下での処理に付してもよい。また、膵ホルモン産生細胞又は膵ホルモン産生前駆細胞が必要量以上に増殖することを防止するために、上記処理と組み合わせて、マイトマイシンC前処理等による増殖の抑制や、哺乳類が自然には持っていない代謝酵素の遺伝子を当該細胞に導入して、その後、必要に応じて未活性型の薬を投与し、哺乳類が自然には持っていない代謝酵素の遺伝子を導入した細胞の中だけでその薬を毒物に変化させて細胞を死滅させる方法(自殺遺伝子療法)等の処理に付してもよい。
 本発明の医薬は、安全で低毒性であり、哺乳動物(例えば、ヒト、マウス、ラット、モルモット、ブタ、サル)に投与することができる。
 本発明の医薬のヒトへの投与形態(移植方法)としては、例えば、ヒト患者の右下腹部に小切開を置き、腸間膜の細い血管を露出して直視下にカテーテルを挿入して細胞を移植する方法;エコーにて肝臓の門脈を同定して、カテーテルを穿刺して細胞を移植する方法;又は腹部エコーガイド下に脾臓を直接穿刺することにより脾臓に移植する方法(Nagata H,Ito M,Shirota C,Edge A,McCowan TC,Fox IJ:Route of hepatocyte delivery affects hepatocyte engraftment in the spleen.Transplantation,76(4):732−4,2003.参照)が挙げられる。なかでも、エコーを用いて細胞移植を行う方法の方が、侵襲が少ないため好ましく、このような方法の具体例として、腹部エコーガイド下に直接穿刺することにより脾臓や肝臓に移植する方法が挙げられる。本発明の医薬の投与量(移植量)は、例えば、1×10~1×1010細胞/個体、好ましくは、5×10~1×1010細胞/個体、さらに好ましくは、1×10~1×1010細胞/個体である。本発明の医薬において、患者本人の細胞あるいは組織適合型が許容範囲のドナーの細胞を用いて作成された膵ホルモン産生細胞を用いることが好ましいが、年齢や体質などの理由から充分な細胞が得られない場合には、ポリエチレングリコールやシリコンのようなカプセル、多孔性の容器などに包埋して拒絶反応を回避した状態で移植することも可能である。そのような場合には、腹腔内や皮下への移植も可能である。また、本発明の医薬の投与量(移植量)は、投与される患者の年齢、体重、症状などによって適宜変更することができる。
 本発明の医薬のうち、膵ホルモン産生細胞を含む医薬は、それ自体の投与(移植)により、患者の体内で膵ホルモンの産生(分泌)が可能となり、膵ホルモンの産生(分泌)の低下に起因する疾患の治療に有用である。例えばインスリン産生細胞を含む医薬は、糖尿病の治療に有用である。一方、本発明の医薬のうち、膵ホルモン産生前駆細胞を含む医薬は、患者に投与(移植)された後、適当な条件下で膵ホルモン産生細胞に分化誘導されることによって、膵ホルモンが産生(分泌)される。ここで適当な条件としては、例えば、ヒト患者の右下腹部に小切開を置き、腸間膜の細い血管を露出して直視下にカテーテルを挿入して細胞を移植する方法、エコーにて肝臓の門脈を同定して、カテーテルを穿刺して細胞を移植する方法、又は腹部エコーガイド下に脾臓を直接穿刺することにより脾臓に移植する方法(Nagata H,Ito M,Shirota C,Edge A,McCowan TC,Fox IJ:Route of hepatocyte delivery affects hepatocyte engraftment in the spleen.Transplantation,76(4):732−4,2003.参照)が挙げられる。なかでも、エコーを用いて細胞を移植する方法は侵襲が少ないため好ましく、このような方法の具体例として、腹部エコーガイド下に直接穿刺することにより脾臓や肝臓に移植する方法が挙げられる。本発明の医薬の投与量(移植量)は、例えば、1×10~1×1010細胞/個体、好ましくは、5×10~1×1010細胞/個体、さらに好ましくは、1×10~1×1010細胞/個体である。膵ホルモン産生前駆細胞から膵ホルモン産生細胞への分化は患者自身の体内環境を利用することもできるが、分化の効率と特異性を高めるために、本発明に使用した分化誘導因子等を体外から投与することも可能である。本発明の医薬において、患者本人の細胞あるいは組織適合型が許容範囲のドナーの細胞を用いて作成された膵ホルモン産生細胞を用いることが好ましいが、年齢や体質などの理由から充分な細胞が得られない場合には、ポリエチレングリコールやシリコンのようなカプセル、多孔性の容器などに包埋して拒絶反応を回避した状態で移植することも可能である。そのような場合には、腹腔内や皮下への移植も可能である。また、本発明の医薬の投与量(移植量)は、投与される患者の年齢、体重、症状などによって適宜変更することができる。
3.スクリーニング方法
 本発明は、以下の工程(1)~(4)からなる群より選択される何れか1種以上の工程によって得られた細胞を用いることを特徴とする、医薬(好ましくは糖尿病治療薬)のスクリーニング方法(本明細書中、「本発明のスクリーニング方法」と称する場合がある)を提供する:
(1)幹細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤、及びGSK3阻害剤を含む培地で培養する工程
(2)前記工程(1)で得られた細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤を含む培地で培養する工程
(3)前記工程(2)で得られた細胞を、(a)レチノイン酸受容体アゴニスト、(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種,及び(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地で培養する工程
(4)前記工程(3)で得られた細胞を培養する工程。
 本発明の別の実施態様においては、工程(4)は、(i)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤、及びcAMP類縁体からなる群より選択される少なくとも一種、(ii)ステロイド、及び(iii)ALK−4,5,7阻害剤からなる群より選択される少なくとも1種を含む(所望によりさらにニコチンアミドを含む)培地中で実施される。
 各種因子の種類、および培地中の濃度等については、前述した細胞の製造方法(1.)と同じである。
 上記工程(1)~(4)は、上記した本発明の膵ホルモン産生細胞の製造方法における工程(1)~(4)と同様にして実施され得る。
 本スクリーニングに用いられる細胞としては、上記工程(1)~(4)を経て得られる膵ホルモン産生細胞、上記工程(1)~(3)を経て得られる膵ホルモン産生前駆細胞、上記工程(1)~(2)を経て得られる内胚葉細胞、上記工程(1)を経て得られる細胞が挙げられる。
 本発明のスクリーニング方法は具体的には以下のようにして実施される(態様1)。
(a)試験化合物存在下で膵ホルモン産生細胞を培養した場合と、(b)試験化合物非存在下で膵ホルモン産生細胞を培養した場合における、該細胞内の膵ホルモン発現量又は該細胞外への膵ホルモン分泌量をそれぞれ測定し、比較する方法が挙げられる。
 膵ホルモンの発現量としては、膵ホルモンタンパク質の発現量、膵ホルモンタンパク質をコードするポリヌクレオチド(例、mRNAなど)の発現量などが挙げられる。膵ホルモンタンパク質の発現量及び分泌量は、公知の方法、例えば、膵ホルモンタンパク質を認識する抗体を用いて、細胞抽出液中や培地中などに存在する前記膵ホルモンタンパク質を、ウエスタンブロッティング解析、ELISA法などの方法又はそれに準じる方法等により測定することができる。
 mRNA量の測定は、公知の方法、例えば、ノザンハイブリダイゼーション、S1マッピング法、PCR法、定量RT−PCR法、DNAチップあるいはアレイ法又はそれに準じる方法に従って行われる。
 細胞の培養は、膵ホルモンが発現および/または分泌される条件下であれば特に限定されず公知の方法に従って行えばよい。培地としては、例えば、約1~20%の牛胎児血清を含むMEM培地〔Science,122巻,501(1952)等〕、DMEM培地〔Virology,8巻,396(1959)〕、RPMI 1640培地〔The Journal of the American Medical Association 199巻,519(1967)〕、199培地〔Proceeding of the Society for the Biological Medicine,73巻,1(1950)〕が用いられる。培地のpHは約6~8であるのが好ましい。培養は通常約30℃~40℃で約15時間~5日間、必要に応じて通気や撹拌を行なって実施される。
 試験化合物としては、例えばペプチド、タンパク質、抗体、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿が挙げられる。ここで試験化合物は塩を形成していてもよい。該塩としては、生理学的に許容される酸(例、無機酸、有機酸)や塩基(例、アルカリ金属塩、アルカリ土類金属塩、アルミニウム塩)などとの塩が用いられ、この様な塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸)との塩、又は有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸)との塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、バリウム塩、アルミニウム塩が用いられる。
 例えば、上記(a)の場合における膵ホルモンの発現量又は分泌量を、上記(b)の場合に比べて、約20%以上、好ましくは30%以上、より好ましくは約50%以上抑制(阻害)する試験化合物を、膵ホルモン産生細胞における膵ホルモン発現を抑制(阻害)する化合物として選択することができる。
 上記(a)の場合における膵ホルモンの発現量又は分泌量を、上記(b)の場合に比べて、約20%以上、好ましくは30%以上、より好ましくは約50%以上促進する試験化合物を、膵ホルモン産生細胞におけるに膵ホルモン発現を促進する化合物として選択することができる。
 膵ホルモン産生細胞がインスリン産生細胞である場合、インスリン発現を促進する化合物は糖尿病治療薬として有用である。膵ホルモン産生細胞がグルカゴン産生細胞である場合、グルカゴン発現を抑制(阻害)する化合物は糖尿病治療薬として有用である。
 本発明のスクリーニング方法の別の実施態様は、(a)試験化合物存在下で膵ホルモン産生細胞を培養した場合と、(b)試験化合物非存在下で膵ホルモン産生細胞を培養した場合における、該細胞の増殖能をそれぞれ測定し、比較する方法が挙げられる(態様2)。使用する試験化合物としては、上記態様1で用いられるものと同様のものが挙げられる。また、本態様における細胞の培養は、上記態様1と同様にして行うことができる。細胞の増殖能を測定する方法としては、通常、当分野で実施されている方法が用いられ、例えば細胞数を計測する方法やH、5−bromo−2’−deoxy−uridine(BrdU)等の取り込み、ATP量、テトラゾリウム化合物からホルマザン産物への変換量を評価する方法等が挙げられる。
 例えば、膵ホルモン産生細胞がインスリン産生細胞である場合、有意にインスリン産生細胞の増殖を促進する化合物は糖尿病治療薬として有用である。膵ホルモン産生細胞がグルカゴン産生細胞である場合、有意にグルカゴン産生細胞の増殖を抑制(阻害)する化合物は糖尿病治療薬として有用である。
 本発明のスクリーニング方法の別の実施態様は、(a)試験化合物存在下で膵ホルモン産生前駆細胞を培養した場合と、(b)試験化合物非存在下で膵ホルモン産生前駆細胞を培養した場合における、該細胞の分化の程度をそれぞれ調べ、比較する方法が挙げられる(態様3)。使用する試験化合物としては、上記態様1で用いられるものと同様のものが挙げられる。また、本態様における細胞の培養は、上記態様1と同様にして行うことができる。膵ホルモン産生前駆細胞の分化の程度は、例えば膵ホルモン産生前駆細胞及び/又は膵ホルモン産生細胞の特異マーカーの発現の有無によって調べられる。膵ホルモン産生前駆細胞の特異マーカーとしては、NGN3(neurogenin 3)、PAX4(paired box 4)が、膵ホルモン産生細胞の特異マーカーとしてはインスリン、グルカゴン、パンクレアティックポリペプチド、ソマトスタチン、グレリン、PCSK1(proprotein convertase subtilisin/kexin type 1)、SUR1(sulfonylurea receptor 1、別名 ATP−binding cassette,sub−family C(CFTR/MRP),member 8)、グルコキナーゼ、MAFA(v−maf musculoaponeurotic fibrosarcoma oncogene homolog A)、IAPP(islet amyloid polypeptide)等がそれぞれ例示される。また、膵ホルモン産生前駆細胞の分化の程度は、ホルモン分泌を促進する物質を添加したときのホルモン分泌量によっても調べることが可能である。例えば、膵ホルモン産生細胞がインスリン産生細胞である場合、高濃度のグルコースを添加したときのインスリン分泌量を、ウェスタンブロッティング法やELISA(enzyme−linked immunosorbent assay)法により調べることでインスリン産生細胞の分化の程度を評価することができる。
 例えば、膵ホルモン産生前駆細胞がインスリン産生前駆細胞である場合、有意にインスリン産生前駆細胞の分化を促進する化合物は糖尿病治療薬として有用である。膵ホルモン産生前駆細胞がグルカゴン産生前駆細胞である場合、有意にグルカゴン産生前駆細胞の分化を抑制(阻害)する化合物は糖尿病治療薬として有用である。
 本発明のスクリーニング方法の別の実施態様は、(a)試験化合物存在下で内胚葉細胞を培養した場合と、(b)試験化合物非存在下で内胚葉細胞を培養した場合における、該細胞の増殖あるいは分化能をそれぞれ測定し、比較する方法が挙げられる(態様4)。使用する試験化合物としては、上記態様1で用いられるものと同様のものが挙げられる。また、本態様における細胞の培養は、上記態様1と同様にして行うことができる。内胚葉細胞の増殖能を測定する方法としては、通常、当分野で実施されている方法が用いられ、例えば細胞数を計測する方法やH、5−bromo−2’−deoxy−uridine(BrdU)等の取り込み、ATP量、テトラゾリウム化合物からホルマザン産物への変換量を評価する方法が挙げられる。内胚葉細胞の分化能は、例えば内胚葉系細胞の特異マーカーの発現の有無によって調べられる。内胚葉系細胞の特異マーカーとしては、アルファフェトプロテイン、アルブミン、ペプシン、肺サーファクタントプロテインなどが挙げられる。一般に内胚葉系細胞の分化誘導や培養は中胚葉あるいは外胚葉系細胞に比べて技術的に困難であり、当該スクリーニング系によって得られた化合物を利用して作製した細胞自体及び/又は内胚葉の分化誘導系は、新たな医薬のスクリーニング系に利用し得る。
 例えば、内胚葉系細胞が肺胞細胞である場合、肺胞細胞の分化や増殖を促進する化合物は肺気腫などの治療薬として有用である。
 膵ホルモン産生細胞の機能を保護する(維持する)医薬等も本発明のスクリーニング方法に準じた方法で得ることができる。本発明のスクリーニング方法の別の実施態様は、(a)試験化合物存在下で膵ホルモン産生細胞を培養した場合と、(b)試験化合物非存在下で膵ホルモン産生細胞を培養した場合における、該細胞の生存数あるいは機能をそれぞれ測定し、比較する方法が挙げられる(態様5)。使用する試験化合物としては、上記態様1で用いられるものと同様のものが挙げられる。また、本態様における細胞の培養は、上記態様1と同様にして行うことができる。細胞の生存数を測定する方法としては、通常、当分野で実施されている方法が用いられ、例えば細胞数を計測する方法やH、5−bromo−2’−deoxy−uridine(BrdU)等の取り込み、ATP量、テトラゾリウム化合物からホルマザン産物への変換量を評価する方法等が挙げられる。また、アポトーシスが誘発された細胞の数は、形態的な特徴(クロマチンの凝縮、核の断片化、細胞の収縮など)を呈する細胞の計数の他に、TUNNEL(TdT−mediated dUTP nick end labeling)法による断片化DNAの検出や活性カスパーゼの有無の検出、7−AAD(7−amino−actinomycin D)など生細胞不透過性色素による核染色、ホスファチジルセリンの細胞表面への露出やミトコンドリアメンブレンの脱分極化、特定の細胞内タンパク質の切断や分解などの測定によって定量化し得る。また、細胞の機能を測定する方法としては、グルコース濃度に応じたインスリンあるいはCペプチドの分泌量や細胞膜電位の変動を測定する方法などが挙げられる。本態様では、膵ホルモン産生細胞に対して障害を与えることが知られている因子、例えば炎症性サイトカインや活性酸素およびその産生誘導物質、高濃度の脂肪酸やグルコースなどを細胞の培養時に添加し、該細胞の生存数あるいは機能を測定し、比較する。
 膵ホルモン産生細胞がインスリン産生細胞である場合、膵ホルモン産生細胞に対して障害を与えることが知られている因子に対して有意にインスリン産生細胞の生存あるいは機能維持を促進する化合物は糖尿病治療薬として有用である。
 また、本発明のスクリーニング方法の原理を用いて、分化誘導過程における未分化な状態の細胞あるいは前駆細胞を得ることができる。
 分化誘導過程における未分化な状態あるいは前駆細胞等において、癌胎児抗原のようないわゆる「分化関連抗原」と呼ばれる腫瘍抗原に類する抗原が発現することが知られている。新規な抗原の発現をプロテオームやグライコームなどの手法とバイオインフォーマティックスの手法を組み合わせて検索し、その発現自体の抑制や抗原を発現するがん細胞の増殖抑制、細胞死等を指標にした抗がん剤のスクリーニングも実施できる。あるいは、これらの細胞を免疫原としてそのままあるいはホルマリン等による変性処理、あるいは細胞膜成分を分画、精製してマウス、ラット、ウサギ、モルモット、ヤギ、ニワトリ等の動物に投与し、腫瘍細胞と交差反応する抗体を取得し、その抗体との反応性(抗原量の増減)を指標にした抗がん剤のスクリーニングも実施できる。また、得られた抗体自体を医薬あるいは診断薬として使用することもできるし、精製した抗原あるいはその一部を抗腫瘍ワクチンとして使用することもできる。
 従って、本発明は、新規な「分化関連抗原」の検出や該抗原に対する抗体、該抗体を含む医薬、あるいは診断薬等のスクリーニングの実施を可能とするツールを提供することができる。
 さらに、本発明のスクリーニング方法の原理を用いて、ある特定のホルモン産生細胞から別のホルモン産生細胞への分化転換を促す化合物のスクリーニングを実施することができる。例えば、グルカゴン産生細胞への分化を誘導した後、グルカゴン産生細胞からインスリン産生細胞に分化転換を促す化合物のスクリーニングを実施することができる。
 特定の膵ホルモン産生細胞への分化転換の程度は、膵ホルモン産生細胞の特異マーカーの発現量を定量RT−PCR法等により測定することにより、あるいは膵ホルモン産生細胞から分泌される膵ホルモン量をウェスタンブロッティング法やELISA法等により測定することにより調べることができる。
 上記スクリーニング方法を用いて得られる医薬は、生理学的に許容し得る添加剤(例、担体、香味剤、賦形剤、防腐剤、安定剤、結合剤)を用いて、公知の方法に従って製剤化することができる。
 このようにして得られる製剤の剤形としては、例えば、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などの経口剤;注射剤などの非経口剤が挙げられる。これら製剤における有効成分(本発明のスクリーニング方法により選択された化合物)の含量は例えば、0.1~90重量%である。
 前記添加剤としては、例えば、ゼラチン、コーンスターチ、トラガント、アラビアゴムなどの結合剤;結晶性セルロースなどの賦形剤;コーンスターチ、ゼラチン、アルギン酸などの膨化剤;ステアリン酸マグネシウムなどの潤滑剤;ショ糖、乳糖、サッカリンなどの甘味剤;ペパーミント、アカモノ油、チェリーなどの香味剤;油脂、注射用水、植物油(例えば、ゴマ油、ヤシ油、大豆油)、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)などの液状担体;溶解補助剤(例えば、エタノール、プロピレングリコール、ポリエチレングリコール);非イオン性界面活性剤(例えば、ポリソルベート80TM、HCO−50);溶解補助剤(例えば、安息香酸ベンジル、ベンジルアルコール);無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカイン);安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコール);保存剤(例えば、ベンジルアルコール、フェノール);酸化防止剤が挙げられる。
 前記注射用水としては、例えば、生理食塩水;ブドウ糖、D−ソルビトール、D−マンニトール、塩化ナトリウムなどを含む等張液があげられる。
 本発明のスクリーニング方法によって得られる医薬(好ましくは糖尿病治療薬)は安全で低毒性であるので、例えば、哺乳動物(例えば、ヒト、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サル、チンパンジー)に対して経口的または非経口的に投与することができる。
 該医薬の投与量は、その作用、対象疾患、投与対象、投与ルートなどにより適宜設定される。
 以下に実施例を用いて本発明を詳述するが、本発明は以下の実施例に何ら限定されるものではない。
実施例1:アクチビンAとCHIR99021を用いたヒトiPS細胞から内胚葉細胞への分化誘導〔工程(1)~工程(2)〕
 ヒトiPS細胞(Oct3/4遺伝子、Klf4遺伝子及びSox2遺伝子を導入することによって得られるiPS細胞:Nat Biotechnol 2008;26:101−106参照)を膵臓細胞(特に膵ホルモン産生細胞)に分化誘導させるための最初の段階として、96穴プレートを用いてヒトiPS細胞を内胚葉細胞へと分化誘導させた。
 ヒトiPS細胞は253G1株(レトロウィルスによりOCT4/SOX2/KLF4を発現させて作成されたiPS細胞株;Nature Biotechnology 26,101−106)を使用した。未分化状態のiPS細胞の維持培養は、マイトマイシン処理をしたマウス線維芽細胞(MEFs)をゼラチンコートしたプレート上に播種したものをフィーダー細胞として使用し、培地として4ng/ml bFGF(PeproTech EC)と0.5×Penicillin−streptomycin(SIGMA)を添加した霊長類ES細胞用培地(リプロセル)を用いて、37℃、5%CO下で行った。培地交換は毎日行い、4~5日ごとに霊長類ES細胞用細胞剥離液(リプロセル)を用いて細胞塊の状態で剥離させ、新しいフィーダー細胞上に播種して継代を行った。
 内胚葉細胞への分化誘導の前培養として、未分化なiPS細胞を96穴プレートに播種した。まず、細胞塊の状態で維持していたiPS細胞を0.25%トリプシン−1mM EDTA溶液(GIBCO)で処理し、単一細胞になるまで解離させた。続いて、培地に分散させたiPS細胞を96穴プレートに1穴あたり2×10個の密度で播種し、37℃、5%CO下で1日間培養した。96穴プレートは、ゼラチンコート後に5×10個のMEFsを播種し、37℃、5%CO下で5時間培養したものを用いた。また、播種時の培養液としては、10μMのY−27632(和光純薬)を添加した霊長類ES細胞用培地を使用した。播種1日後にY−27632を添加していない霊長類ES細胞用培地に交換してさらに2日間培養し、コンフルエントな状態になるまで培養した。
 iPS細胞から内胚葉細胞への分化誘導は、次の方法で行った。まず、コンフルエントとなった細胞をRPMI培地(GIBCO)で洗浄した後、各種分化誘導因子と2%牛胎児血清(FBS)を含むRPMI培地を添加して1日間培養した。分化誘導因子としては、アクチビンA(100ng/ml)とGSK3β阻害剤であるCHIR99021(3μM)の組み合わせを使用した。1日間培養した後にRPMI培地で洗浄し、2%のFBSと100ng/mlのアクチビンAを添加したRPMI培地を用いてさらに2日間培養した。コントロールとしては、一部の細胞を3日間とも2%FBSのみを添加したRPMI培地で培養した。
 比較例として、分化誘導因子として、アクチビンA(100ng/ml)のみ(比較例1)、又はアクチビンA(100ng/ml)とWnt3a(25ng/ml)の組み合わせ(比較例2)を用いた以外は、実施例1と同様にしてiPS細胞を処理した。
 それぞれの条件下で培養した時の内胚葉分化マーカーの発現変動を調べるため、分化誘導した細胞を経時的に回収し、RNeasy96(Qiagen社)を用いて全RNA画分を精製した。PrimeScript RT reagent kit(タカラバイオ社)を用いてcDNAを合成した後、定量RT−PCRを実施して、原始線条マーカーであるBRACHYURY、内胚葉マーカーであるSOX17の遺伝子発現量を測定した。発現解析の結果を図1に示す。アクチビンAとCHIR99021を1日間添加することで(実施例1)、BRACHYURYの発現量が分化誘導1日後に一過的に上昇した。さらにその後、この細胞をアクチビンAのみを含む培地で2日間培養することで、SOX17の発現量が顕著に増加した。一方で、内胚葉誘導の際に一般的によく用いられるWnt3aをアクチビンAとともに1日間処理した場合(比較例2)では、BRACHYURYの発現量はCHIR99021で処理した場合と比較して低いレベルであった。また、その2日後のSOX17の発現量も、CHIR99021で処理した場合と比較すると低いものであった。
 次に、培養3日後のSOX17タンパク質の発現を調べるため、抗SOX17抗体を用いた免疫蛍光染色を実施した。図1と同様の手法で3日目まで培養した後、2%パラホルムアルデヒド(PFA)を用いて10分間、さらに4%PFAを用いて20分間、室温において細胞の固定を行った。1次抗体として抗ヒトSOX17抗体(AF1924、R&D社)と反応させ、さらに2次抗体としてAlexa488標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡で観察した。結果を図2に示す。分化誘導因子としてアクチビンAとCHIR99021を添加した場合(実施例1)に、大部分の細胞がSOX17タンパクを発現している様子が観察された。アクチビンA(比較例1)のみを添加した場合やアクチビンAとWnt3aを添加した場合(比較例2)においても一部の細胞はSOX17タンパクを発現していたが、その割合はアクチビンAとCHIR99021を添加した場合と比較すると低いものであった。
 以上の検討により、アクチビンAとCHIR99021を添加した培地で1日間、さらにアクチビンAのみを添加した培地で2日間培養することによって効率的に内胚葉細胞への分化を誘導できることが明らかとなった。
(実施例2~8)レチノイン酸、ドーソモルフィン及びSB431542を用いた内胚葉細胞から膵ホルモン産生前駆細胞への分化誘導〔工程(3)〕
 内胚葉細胞へ分化させた細胞から、さらに膵ホルモン産生前駆細胞へと分化誘導させた。
 実施例1で示す方法に従って内胚葉細胞へと分化誘導した細胞をImproved MEM Zinc Option培地(Invitrogen社)で洗浄後、1%のB−27(GIBCO)を含むImproved MEM Zinc Option培地(Invitrogen社)に、ドーソモルフィン(1μM)、レチノイン酸(2μM)及びSB431542(10μM)の組合せ(実施例2)で加えた培地に交換した。ドーソモルフィンはAMP活性化プロテインキナーゼ(AMPK)の阻害剤でありかつ、アクチビン受容体様キナーゼ(ALK)のうちALK2、ALK3及びALK6の阻害剤である。また、SB431542はALKのうちALK4、ALK5及びALK7の阻害剤である。培地を交換した後、37℃、5%COの条件下で6日間培養し、膵前駆細胞マーカーであるPDX1と膵ホルモン産生前駆細胞マーカーであるNGN3の発現量を実施例1と同様の手法を用いて測定した。
 レチノイン酸単独(実施例3)、SB431542単独(実施例4)、レチノイン酸とSB431542との組み合わせ(実施例5)、ドーソモルフィン単独(実施例6)、ドーソモルフィンとレチノイン酸との組合せ(実施例7)、ドーソモルフィンとSB431542との組み合わせ(実施例8)を用いた以外は、実施例2と同様にして内胚葉細胞を処理した。
 発現解析の結果を図3に示す。ドーソモルフィンとレチノイン酸とSB431542を同時に添加して(実施例2)6日間培養することで、PDX1とNGN3の発現量が顕著に増加していた。ドーソモルフィンとレチノイン酸との組合せ(実施例7)を添加した場合は、PDX1の発現は大きく増加するもののNGN3の発現は顕著には増加しなかった。その他の条件についてはPDX1もNGN3の発現も顕著には変動しなかった。これらの結果より、ドーソモルフィンとレチノイン酸を添加することでPDX1を発現する膵前駆細胞への分化が誘導され、さらにドーソモルフィンとレチノイン酸にSB431542を追加することで膵前駆細胞への分化に加え、NGN3を発現する膵ホルモン産生前駆細胞への分化も誘導されることが明らかとなった。
 次に、培養9日後のPDX1タンパク発現を調べるため、抗PDX1抗体を用いた免疫染色を実施した。内胚葉細胞へと分化させた細胞に対してドーソモルフィンとレチノイン酸とSB431542を添加して(実施例2)6日間培養した後、4%PFAを添加して室温で30分間の固定を行った。さらに、1次抗体として抗ヒトPDX1抗体(AF2419、R&D社)と反応させ、さらに2次抗体としてAlexa488標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡下にて細胞を観察した。その結果を図4に示す。大部分の細胞がPDX1タンパクを発現している様子が観察された。この結果より、大部分の細胞において膵臓方向への分化が誘導されていることが確認された。
(実施例9~15)膵前駆細胞から膵ホルモン産生細胞への分化誘導〔工程(4)〕
 膵ホルモン産生前駆細胞へと分化を誘導させた細胞に対して、さらに後期過程の分化を誘導する方法について検討した。
 実施例1で示す方法に従って内胚葉に分化させた細胞に対して、実施例2~8と同様に分化誘導因子(ドーソモルフィン、レチノイン酸、SB431542それぞれ単独あるいはそれらの組み合わせ)を添加し、培養3日目から培養9日目まで培養した後、細胞をImproved MEM Zinc Option培地(Invitrogen社)で洗浄し、Improved MEM Zinc Option培地(Invitrogen社)に1%のB−27(GIBCO)を加えた培地に交換して、さらに6日間(分化誘導開始から15日目まで)培養した。ドーソモルフィン、レチノイン酸及びSB431542の組合せを添加した場合を実施例9、レチノイン酸のみを添加した場合を実施例10、SB431542のみを添加した場合を実施例11、レチノイン酸及びSB431542の組合せを添加した場合を実施例12、ドーソモルフィンのみを添加した場合を実施例13、ドーソモルフィン及びレチノイン酸の組合せを添加した場合を実施例14、ドーソモルフィン及びSB431542の組合せを添加した場合を実施例15とした。膵前駆細胞マーカーであるPDX1と膵β細胞(インスリン産生細胞)マーカーであるインスリンの発現量は実施例1に示す方法と同様にして測定した。発現解析の結果を図5に示す。培養9日目までドーソモルフィンとレチノイン酸とSB431542を同時に添加してNGN3を高発現させた細胞(実施例9)でのみ、培養15日目においてインスリンの発現が顕著に誘導された。また、この時、PDX1の発現量についても他の条件と比較すると高いレベルであった。
 次に、インスリンとCペプチドのタンパク質の発現について調べるため、抗インスリン抗体と抗Cペプチド抗体を用いた免疫蛍光染色を実施した。内胚葉へと分化させた細胞に対してドーソモルフィンとレチノイン酸とSB431542を添加して6日間培養した後、さらに1%のB−27を含むImproved MEM Zinc Option培地(Invitrogen社)に交換して6日間培養した(実施例9)。培養後、2%PFAを用いて4℃で1晩固定を行った。その後、1次抗体として抗インスリン抗体(A0564、DAKO社)又は抗ヒトCペプチド抗体(C−PEP−01、MONOSAN社)と反応させ、さらに2次抗体としてAlexa488標識2次抗体(Invitrogen社)又はAlexa568標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡で観察した。免疫蛍光染色の結果を図6に示す。インスリンとCペプチドを発現している細胞が数多く認められた。また、蛍光像を重ね合わせたところ、染色された細胞の殆どが黄色を呈し、同一の細胞が抗インスリン抗体と抗Cペプチド抗体で染色されることを確認した。インスリンは培地中にも大量に含まれているため、細胞が培地中のインスリンを取り込んで疑陽性となる可能性が考えられるが、培地中には添加されていないCペプチドの抗体でも染色されることから、インスリンタンパクが細胞内において発現していることが確認された。
(試験例1)分化誘導過程における各分化マーカーの発現変動
 実施例1~15の結果をもとにして、図7に示した4つの段階からなる膵臓分化誘導系を設定し、未分化iPS細胞から膵臓方向への分化誘導過程における各種分化マーカーの発現変動を調べた。
 段階1では、2%のFBSを含むRPMI培地にアクチビンA(100ng/ml)とCHIR99021(3μM)を添加して1日間培養した。段階2では、2%のFBSを含むRPMI培地にアクチビンA(100ng/ml)を添加して2日間培養した。段階3では、1%のB−27を含むImproved MEM Zinc Option培地(Invitrogen社)にドーソモルフィン(1μM)、レチノイン酸(2μM)、SB431542(2μM)の3種類を同時に添加して6日間培養した。段階4では、1%のB−27を含むImproved MEM Zinc Option培地(Invitrogen社)を用いてさらに6日間培養した。培養後、各種分化マーカーの経時的な発現変動を、実施例1と同様の方法を用いて測定した。発現解析の結果を図8に示す。
 内胚葉マーカーであるSOX17発現は培養3日目で顕著に誘導され、その後は徐々に低下した。PDX1発現は培養9日目に発現が上昇し、培養15日目までその発現量が維持されていた。NGN3発現は培養9日目に一過性に上昇した後、培養11日目以降の発現量は急激に低下した。インスリン発現は培養15日目から急激に増加した。これらの結果は発生過程で膵臓が形成されるまでの遺伝子発現パターンとよく合致しており、本分化誘導系を用いることで膵発生を模倣した形で膵細胞への分化を誘導できることが明らかとなった。
(実施例16)膵ホルモン産生前駆細胞から膵臓細胞への分化誘導〔工程(4);フォルスコリン及びニコチンアミドでの処理〕
 工程(4)において、インスリン発現細胞への分化効率を上昇させる因子を探索した。その結果、工程(4)においてフォルスコリン及びニコチンアミドを同時に添加した場合にインスリン発現細胞への分化効率が上昇することが見出された。
 実施例1で示す方法に従って内胚葉細胞を誘導した後、1%のB−27を含むImproved MEM Zinc Option培地(Invitrogen社)にドーソモルフィン(1μM)、レチノイン酸(2μM)、SB431542(10μM)の3種類を同時に添加して7日間培養した。培地交換は誘導7日目に一度行った。誘導10日目の細胞をImproved MEM Zinc Option培地で洗浄した後、1%のB−27(GIBCO)を含むImproved MEM Zinc Option培地にフォルスコリン(10μM)及びニコチンアミド(10mM)を加えた培地、またはコントロールとして0.1%DMSOを加えた培地に交換して、さらに10日間もしくは12日間培養した(実施例16)。培地交換は3日~4日ごとに行った。培養後、インスリンの発現量を、試験例1に示す方法と同様にして測定した。発現解析の結果を図9に示す。フォルスコリン及びニコチンアミドを添加した培地を用いて培養した細胞では、DMSOを添加した細胞と比較し、誘導14日目よりインスリンの発現が高値を示しており、その発現は培養20日目まで維持されていた。
 次に、インスリンタンパク質の発現について調べるため、抗インスリン抗体を用いた免疫蛍光染色を実施した。上記と同様の方法で分化を誘導した誘導22日目の細胞に対して、2%PFAを用いて4℃で1晩固定を行った。その後、1次抗体として抗インスリン抗体(A0564、DAKO社)と、さらに2次抗体としてAlexa568標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡で観察した。免疫染色の結果を図10に示す。フォルスコリン及びニコチンアミドを添加して培養した場合(実施例16)において、DMSOを添加した場合と比較して、全体の細胞数に対するインスリン産生細胞の割合が高くなっている様子が観察された。
 これらの結果より、フォルスコリン及びニコチンアミドを同時に添加することによって、高効率にインスリン産生細胞への分化を誘導できることが示された。
(実施例17~31)膵ホルモン産生前駆細胞から膵臓細胞への分化誘導〔工程(4);フォルスコリン、ニコチンアミド、デキサメタゾン、ALK5阻害剤IIでの処理〕
 フォルスコリン及びニコチンアミド以外で、工程(4)において、インスリン発現細胞への分化効率を上昇させる因子を探索した。その結果、デキサメタゾンまたはALK5阻害剤II(2−(3−(6−メチルピリジン−2−イル)−1H−ピラゾール−4−イル)−1,5−ナフチリジン)を工程(4)において添加した場合にインスリン発現細胞への分化効率が上昇することが見出された。
 実施例1で示す方法に従って内胚葉細胞を誘導した後、1%のB−27を含むImproved MEM Zinc Option培地(Invitrogen社)にドーソモルフィン(1μM)、レチノイン酸(2μM)、SB431542(10μM)の3種類を同時に添加して7日間培養した。培地交換は誘導7日目に一度行った。誘導10日目の細胞をImproved MEM Zinc Option培地で洗浄した後、1%のB−27(GIBCO)を含むImproved MEM Zinc Option培地にフォルスコリン(10μM)、ニコチンアミド(10mM)、デキサメタゾン(10μM)、ALK5阻害剤II(5μM)のうちの一種類以上の誘導因子を添加した培地、もしくはコントロールとして前記誘導因子を添加していない培地に交換して、さらに10日間培養した。培地交換は5日ごとに行った。
 ニコチンアミドのみを添加した場合を実施例17、フォルスコリンのみを添加した場合を実施例18、デキサメタゾンのみを添加した場合を実施例19、ALK5阻害剤IIのみを添加した場合を実施例20、ニコチンアミド及びフォルスコリンを添加した場合を実施例21、ニコチンアミド及びデキサメタゾンを添加した場合を実施例22、ニコチンアミド及びALK5阻害剤IIを添加した場合を実施例23、フォルスコリン及びデキサメタゾンを添加した場合を実施例24、フォルスコリン及びALK5阻害剤IIを添加した場合を実施例25、デキサメタゾン及びALK5阻害剤IIを添加した場合を実施例26、ニコチンアミド、フォルスコリン及びデキサメタゾンを添加した場合を実施例27、ニコチンアミド、フォルスコリン及びALK5阻害剤IIを添加した場合を実施例28、ニコチンアミド、デキサメタゾン及びALK5阻害剤IIを添加した場合を実施例29、フォルスコリン、デキサメタゾン及びALK5阻害剤IIを添加した場合を実施例30、ニコチンアミド、フォルスコリン、デキサメタゾン及びALK5阻害剤IIを添加した場合を実施例31とした。各条件で培養後、分化誘導12日目、分化誘導16日目、分化誘導20日目の細胞におけるインスリンの発現量を、実施例1に示す方法と同様にして測定した。発現解析の結果を図11に示す。フォルスコリン(実施例18)、デキサメタゾン(実施例19)、ALK5阻害剤II(実施例20)をそれぞれ単独で添加することで、インスリンの発現が顕著に増加した。さらに、フォルスコリン、ニコチンアミド、デキサメタゾン、ALK5阻害剤IIの中から2種類以上を組み合わせて添加した場合(実施例21~31)にもインスリンの発現量は顕著に増加していた。
 次に、フォルスコリン、ニコチンアミド、デキサメタゾン、ALK5阻害剤IIを組み合わせて添加した場合のインスリンのタンパク質レベルでの発現について調べるため、抗インスリン抗体を用いた免疫蛍光染色を実施した。実施例1で示した方法に従って内胚葉細胞を誘導した後、1%のB−27を含むImproved MEM Zinc Option培地(Invitrogen社)にドーソモルフィン(1μM)、レチノイン酸(2μM)、SB431542(10μM)の3種類を同時に添加して7日間培養した。培地交換は誘導7日目に一度行った。誘導10日目の細胞をImproved MEM Zinc Option培地で洗浄した後、上記の実験においてインスリン発現を特に高値に誘導した培地として、1%のB−27(GIBCO)を含むImproved MEM Zinc Option培地にフォルスコリン、ニコチンアミド、デキサメタゾン及びALK5阻害剤IIを添加した培地(実施例31)、フォルスコリン、ニコチンアミド及びALK5阻害剤II(実施例28)を添加した培地、ニコチンアミド、デキサメタゾン及びALK5阻害剤IIを添加した培地(実施例29)、フォルスコリン及びALK5阻害剤IIを添加した培地(実施例25)、またはコントロールとして誘導因子を添加していない培地に交換して、さらに10日間培養した。培地交換は5日ごとに行った。培養後、2%PFAを用いて10分間、さらに4%PFAを用いて20分間、室温において細胞の固定を行った。その後、1次抗体として抗インスリン抗体(A0564、DAKO社)と反応させ、さらに2次抗体としてAlexa568標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡で観察した。免疫蛍光染色の結果を図12に示す。フォルスコリン、ニコチンアミド、デキサメタゾン、ALK5阻害剤IIを組み合わせて添加することで、インスリン産生細胞の割合が顕著に増加している様子が観察された。これらの結果は、各培養条件下においてmRNAレベルでのインスリン発現が顕著に増加するという前述の結果とよく合致するものであった。以上の結果より、膵前駆細胞に対してフォルスコリン、デキサメタゾン、ALK5阻害剤IIを単独で、またはフォルスコリン、ニコチンアミド、デキサメタゾン、ALK5阻害剤IIを2種類以上組み合わせて添加することで、インスリン産生細胞への分化をさらに効率よく誘導できることが明らかとなった。
(実施例32~34)GSK3阻害剤としてCHIR99021以外の化合物を用いたヒトiPS細胞から内胚葉細胞への分化誘導〔工程(1)〕
 工程(1)において、CHIR99021以外のGSK3阻害剤を用いた場合でも内胚葉細胞への分化誘導が可能であるか検討した。ヒトiPS細胞から内胚葉細胞への分化誘導は、次の方法で行った。まず、実施例1と同様にしてコンフルエントな状態のヒトiPS細胞を調製した。その後、RPMI培地(GIBCO)で洗浄した後、各種GSK3阻害剤、アクチビンA(100ng/ml)、2%牛胎児血清(FBS)を含むRPMI培地を用いて1日間培養した。GSK3阻害剤としては、CHIR99021(3μM)、SB415286(3−[(3−クロロ−4−ヒドロキシフェニル)アミノ]−4−(2−ニトロフェニル)−1H−ピロール−2,5−ジオン,3μM)、SB216763(3−(2,3−ジクロロフェニル)−4−(1−メチル−1H−インドール−3−イル)−1H−ピロール−2,5−ジオン,20μM)を用いた。また、コントロールとしてGSK3阻害剤を含まずアクチビンAのみを添加した培地で処理した。1日間の培養後、RPMI培地で洗浄した後、2%のFBSと100ng/mlのアクチビンAを添加したRPMI培地を用いてさらに2日間培養した。
 CHIR99021を用いた場合を実施例32、SB415286を用いた場合を実施例33、SB216763を用いた場合を実施例34とした。分化誘導3日目のSOX17タンパク質の発現を調べるため、抗SOX17抗体を用いた免疫蛍光染色を実施した。各条件で培養後3日目の細胞に、4%PFAを添加して室温で30分間インキュベートし、細胞の固定を行った。1次抗体として抗ヒトSOX17抗体(AF1924、R&D社)と反応させ、さらに2次抗体としてAlexa488標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡で観察した。結果を図13に示す。実施例1で示したとおり、アクチビンAとCHIR99021を添加した場合(実施例32)では大部分の細胞がSOX17タンパクを発現している様子が観察された。さらに、アクチビンAとSB415286(実施例33)またはアクチビンAとSB216763(実施例34)を添加した場合でも、SOX17タンパクを発現する細胞の割合が、アクチビンAのみを添加した場合(比較例)と比較して増加している様子が観察された。以上の検討により、工程(1)において、CHIR99021以外のGSK3阻害剤をアクチビンAと同時に添加した場合でも内胚葉への分化を誘導できることが明らかとなった。
(実施例35~38)レチノイン酸以外のレチノイン酸受容体アゴニストを用いた内胚葉細胞から膵ホルモン産生前駆細胞への分化誘導〔工程(3)〕
 工程(3)において、レチノイン酸以外のレチノイン酸受容体アゴニストを用いた場合でも膵ホルモン産生前駆細胞への分化を誘導できるか検討した。実施例1で示す方法に従って内胚葉細胞へと分化誘導した細胞をImproved MEM Zinc Option培地(Invitrogen社)で洗浄後、ドーソモルフィン(1μM)、SB431542(10μM)及び1%のB−27(GIBCO)を含むImproved MEM Zinc Option培地(Invitrogen社)に各種レチノイン酸受容体アゴニストを加えた培地に交換した。レチノイン酸受容体アゴニストとして、レチノイン酸(2μM、実施例35)、TTNPB(0.2μM、実施例36)、AM580(0.2μM、実施例37)及びAC55649(0.5μM、実施例38)を用いた。また、コントロールの細胞ではレチノイン酸受容体アゴニストを添加していない培地に交換した(コントロール)。培地を交換した後、37℃、5%COの条件下で7日間培養した。培養後、2%PFAを用いて10分間、さらに4%PFAを用いて20分間、室温において細胞の固定を行った。その後、1次抗体として抗ヒトPDX1抗体(AF2419、R&D社)と反応させ、さらに2次抗体としてAlexa488標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡下にて細胞を観察した。免疫蛍光染色の結果を図14に示す。いずれのレチノイン酸受容体アゴニストを添加した場合でもドーソモルフィンとSB431542を同時に添加することで、大部分の細胞がPDX1陽性細胞へと分化した。これらの結果より、工程(3)においてレチノイン酸以外のレチノイン酸受容体アゴニストを用いた場合でも膵ホルモン産生前駆細胞への分化を誘導できることが明らかとなった。
(実施例39~43)ドーソモルフィンの代わりにNogginを用いた内胚葉細胞から膵ホルモン産生前駆細胞への分化誘導〔工程(3)〕
 ドーソモルフィンの活性の一つとしてALK−2,3,6を阻害することでBMPシグナルを遮断することが知られている。工程(3)において、同じくBMPシグナルを遮断することが知られているNogginをドーソモルフィンの代わりを用いた場合でも膵ホルモン産生前駆細胞への分化を誘導できるか検討した。実施例1で示す方法に従って内胚葉細胞へと分化誘導した細胞をImproved MEM Zinc Option培地(Invitrogen社)で洗浄後、1%のB−27(GIBCO)を含むImproved MEM Zinc Option培地(Invitrogen社)にレチノイン酸(2μM)を加えた培地(実施例39)、Noggin(100ng/ml)を加えた培地(実施例40)、ドーソモルフィン(1μM)を加えた培地(実施例41)、Nogginとレチノイン酸を加えた培地(実施例42)、ドーソモルフィンとレチノイン酸を加えた培地(実施例43)に交換した。また、コントロールの細胞では前記誘導因子を添加していない培地に交換した(Ctrl)。培地を交換した後、37℃、5%COの条件下で7日間培養した。培養後、2%PFAを用いて10分間、さらに4%PFAを用いて20分間、室温において細胞の固定を行った。その後、1次抗体として抗ヒトPDX1抗体(AF2419、R&D社)と反応させ、さらに2次抗体としてAlexa488標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡下にて細胞を観察した。免疫蛍光染色の結果を図15に示す。Nogginとレチノイン酸を同時に添加した場合に、ドーソモルフィンとレチノイン酸を同時に添加した場合と同様、PDX1陽性細胞への分化が顕著に誘導された。膵前駆細胞への分化誘導にはレチノイン酸を添加すると同時にBMPシグナルを遮断することが重要であることが明らかとなった。
(実施例44~47)SB431542以外のアクチビン受容体様キナーゼ−4,5,7の阻害剤を用いた内胚葉細胞から膵ホルモン産生前駆細胞への分化誘導〔工程(3)〕
 工程3において、SB431542以外のアクチビン受容体様キナーゼ−4,5,7の阻害剤を用いた場合でも膵ホルモン産生前駆細胞への分化を誘導できるか検討した。実施例1で示す方法に従って内胚葉細胞へと分化誘導した細胞をImproved MEM Zinc Option培地(Invitrogen社)で洗浄後、ドーソモルフィン(1μM)、レチノイン酸(2μM)及び1%のB−27(GIBCO)を含むImproved MEM Zinc Option培地(Invitrogen社)に各種アクチビン受容体様キナーゼ−4,5,7の阻害剤を加えた培地に交換した。アクチビン受容体様キナーゼ−4,5,7の阻害剤として、SB431542(5μM、実施例44)の他にALK5阻害剤II(2μM、実施例45)、A−83−01(0.2μM、実施例46)、TGFβRIキナーゼ阻害剤VIII(0.2μM、実施例47)を用いた。また、コントロールとして、ドーソモルフィンとレチノイン酸のみを添加した培地に交換した(Ctrl)。培地を交換した後、37℃、5%COの条件下で7日間培養した。培養後、膵ホルモン産生前駆細胞マーカーであるNGN3の発現量を実施例1と同様の手法で測定した。実験の結果を図16に示す。いずれのアクチビン受容体様キナーゼ−4,5,7の阻害剤を用いた場合でも、ドーソモルフィンとレチノイン酸を同時に添加することで顕著にNGN3の発現が増加した。これらの結果より、工程(3)においてSB431542以外のアクチビン受容体様キナーゼ−4,5,7の阻害剤を用いた場合でも膵ホルモン産生前駆細胞への分化を誘導できることが明らかとなった。
(実施例48~54)膵ホルモン産生前駆細胞から膵臓細胞への分化誘導〔工程(4);cAMPホスホジエステラーゼ阻害剤、cAMP類縁体、アクチビン受容体様キナーゼ−4,5,7の阻害剤での処理〕
 インスリン産生細胞への分化を誘導したフォルスコリンは細胞内cAMPを増加させる作用が知られている。同じく細胞内cAMPを増加させることが知られているcAMPホスホジエステラーゼ阻害剤であるIBMXまたはcAMP類縁体であるジブチルcAMPを添加した場合でもインスリン産生細胞への分化が誘導されるか検討した。また、インスリン産生細胞への分化を誘導したALK5阻害剤IIはアクチビン受容体様キナーゼ−4,5,7の阻害剤であることが知られている。他のアクチビン受容体様キナーゼ−4,5,7の阻害剤を添加した場合でもインスリン産生細胞への分化が誘導されるかについても同様に検討した。
 実施例1で示す方法に従って内胚葉細胞を誘導した後、1%のB−27を含むImproved MEM Zinc Option培地(Invitrogen社)にドーソモルフィン(1μM)、レチノイン酸(2μM)、SB431542(10μM)の3種類を同時に添加して7日間培養した。培地交換は誘導7日目に一度行った。誘導10日目の細胞をImproved MEM Zinc Option培地で洗浄した後、1%のB−27(GIBCO)を含むImproved MEM Zinc Option培地にフォルスコリン(10μM)を添加した培地(実施例48)、ジブチルcAMP(500μM)を添加した培地(実施例49)、IBMX(200μM)を添加した培地(実施例50)、ALK5阻害剤II(5μM)を添加した培地(実施例51)、A−83−01(0.5μM)を添加した培地(実施例52)、SB431542(10μM)を添加した培地(実施例53)、TGFβRIキナーゼ阻害剤VIII(2μM)を添加した培地(実施例54)、もしくはコントロールとして前記誘導因子を添加していない培地(Ctrl)に交換して、さらに11日間培養した。培地交換は3~4日ごとに行った。培養後、2%PFAを用いて10分間、さらに4%PFAを用いて20分間、室温において細胞の固定を行った。その後、1次抗体として抗インスリン抗体(A0564、DAKO社)と反応させ、さらに2次抗体としてAlexa568標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡で観察した。実験の結果を図17に示す。ジブチルcAMP、IBMX、A−83−01、SB431542、TGFβRIキナーゼ阻害剤VIIIを添加した場合に、フォルスコリンあるいはALK5阻害剤IIを添加した場合と同様にインスリン発現細胞の陽性率が顕著に増加する様子が観察された。これらの結果より、細胞内cAMPシグナルを増強させること、またはアクチビン受容体様キナーゼ−4,5,7を阻害することで膵ホルモン産生前駆細胞からインスリン産生細胞への分化を誘導できることが明らかとなった。
(実施例55~58)膵ホルモン産生前駆細胞から膵臓細胞への分化誘導〔工程(4);ステロイドでの処理〕
 インスリン産生細胞への分化を誘導したデキサメタゾンはステロイドの1種であることが知られている。他のステロイドを添加した場合でもインスリン産生細胞への分化が誘導されるか検討した。
 実施例1で示す方法に従って内胚葉細胞を誘導した後、1%のB−27を含むImproved MEM Zinc Option培地(Invitrogen社)にドーソモルフィン(1μM)、レチノイン酸(2μM)、SB431542(10μM)の3種類を同時に添加して7日間培養した。培地交換は誘導7日目に一度行った。誘導10日目の細胞をImproved MEM Zinc Option培地で洗浄した後、1%のB−27(GIBCO)を含むImproved MEM Zinc Option培地にデキサメタゾン(10μM)を添加した培地(実施例55)、ヒドロコルチゾン(5μM)を添加した培地(実施例56)、ベタメタゾン(2μM)を添加した培地(実施例57)、ベクロメタゾン(1μM)を添加した培地(実施例58)、もしくはコントロールとして前記誘導因子を添加していない培地(Ctrl)に交換して、さらに11日間培養した。培地交換は3~4日ごとに行った。培養後、2%PFAを用いて10分間、さらに4%PFAを用いて20分間、室温において細胞の固定を行った。その後、1次抗体として抗インスリン抗体(A0564、DAKO社)と反応させ、さらに2次抗体としてAlexa568標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡で観察した。実験の結果を図18に示す。ヒドロコルチゾン、ベタメタゾン、ベクロメタゾンを添加した場合に、デキサメタゾンを添加した場合と同様にインスリン発現細胞の陽性率が顕著に増加する様子が観察された。これらの結果より、ステロイドを添加することで膵ホルモン産生前駆細胞からインスリン産生細胞への分化を誘導できることが明らかとなった。
(実施例59)分化させたインスリン産生細胞における各種刺激に応答したインスリン分泌
 生体内の膵β細胞は、各種刺激に応答してインスリンを細胞外に分泌することが知られている。本分化誘導法を用いて分化させたインスリン産生細胞が、生体内の膵β細胞と同様に各種刺激に応答してインスリンを分泌するかどうか検討した。
 実施例1で示す方法に従って内胚葉細胞を誘導した後、1%のB−27を含むImproved MEM Zinc Option培地(Invitrogen社)にドーソモルフィン(1μM)、レチノイン酸(2μM)、SB431542(10μM)の3種類を同時に添加して7日間培養した。培地交換は誘導7日目に一度行った。誘導10日目の細胞をImproved MEM Zinc Option培地で洗浄した後、1%のB−27(GIBCO)を含むImproved MEM Zinc Option培地にフォルスコリン(10μM)、ニコチンアミド(10mM)、デキサメタゾン(10μM)、ALK5阻害剤II(5μM)を添加した培地に交換してさらに11日間培養した。培地交換は3~4日ごとに行った。培養後、2.5mMグルコースを含む緩衝液(NaCl(116mM)、KCl(4.7mM)、KHPO(1.18mM)、MgSO(1.18mM)、NaHCO(25mM)、CaCl(2.52mM)、HEPES(24mM)、0.1%BSA)で洗浄し、さらに2.5mMグルコースを含む緩衝液を添加して37℃で2時間培養した。上清を完全に除去した後、2.5mMグルコースを含む緩衝液、22.5mMグルコースを含む緩衝液、2.5mMグルコースと2μM(−)−Bay K8644を含む緩衝液、2.5mMグルコースと100μM tolbutamideを含む緩衝液、2.5mMグルコースと250μM carbacholを含む緩衝液、2.5mMグルコースと0.5mM IBMXを含む緩衝液、2.5mMグルコースと30mM KClを含む緩衝液をそれぞれ添加した。37℃で1時間培養した後、培養上清を回収し、培養上清中に含まれるCペプチド量をHuman C−peptide ELISA kit(Mercodia AB)を用いて測定した。その結果を図19に示す。(−)−Bay K8644、tolbutamide、carbachol、IBMX、KClを添加した場合にCペプチド分泌量が上昇していた。これらの結果より、本発明の手法を用いて分化させたインスリン産生細胞は各種刺激に応答してインスリンを細胞外に分泌することが明らかとなった。
(実施例60)インスリン産生細胞以外の膵ホルモン産生細胞への分化
 本分化誘導法を用いることでインスリン産生細胞以外の膵ホルモン産生細胞も同時に誘導されるか検討した。実施例1で示す方法に従って内胚葉細胞を誘導した後、1%のB−27を含むImproved MEM Zinc Option培地(Invitrogen社)にドーソモルフィン(1μM)、レチノイン酸(2μM)、SB431542(10μM)の3種類を同時に添加して7日間培養した。培地交換は誘導7日目に一度行った。誘導10日目の細胞をImproved MEM Zinc Option培地で洗浄した後、1%のB−27(GIBCO)を含むImproved MEM Zinc Option培地にフォルスコリン(10μM)、ニコチンアミド(10mM)、デキサメタゾン(10μM)、ALK5阻害剤II(5μM)を添加した培地に交換してさらに11日間培養した。培地交換は3~4日ごとに行った。培養後、2%PFAを用いて10分間、さらに4%PFAを用いて20分間、室温において細胞の固定を行った。その後、1次抗体として抗ヒトCペプチド抗体(C−PEP−01、MONOSAN社)、抗グルカゴン抗体(SC−7780、Santa Cruz社)、抗グレリン抗体(SC−10368、Santa Cruz社)又は抗ソマトスタチン抗体(A0566、DAKO社)と反応させ、さらに2次抗体としてAlexa488標識2次抗体(Invitrogen社)又はAlexa568標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡で観察した。免疫蛍光染色の結果を図20に示す。Cペプチド陽性細胞に加え、グルカゴン陽性細胞、グレリン陽性細胞、ソマトスタチン陽性細胞がそれぞれ観察された。本分化誘導法を用いることでインスリン産生細胞以外の膵ホルモン産生細胞も同時に誘導されることが確認された。
(実施例61)複数のヒトiPS細胞株からのインスリン産生細胞への分化誘導
 上述の実施例ではヒトiPS細胞株として253G1株を利用していた。253G1株以外のヒトiPS細胞株からも膵臓細胞への分化が誘導されるか検討した。ヒトiPS細胞株として、253G1株(36歳女性の皮膚線維芽細胞にOCT4/SOX2/KLF4を発現させて作成されたiPS細胞株)以外に、201B7株(36歳女性の皮膚線維芽細胞にOCT4/SOX2/KLF4/c−MYCを発現させて作成されたiPS細胞株)、1503−iPS(297A1)(73歳女性の皮膚線維芽細胞にOCT4/SOX2/KLF4/c−MYCを発現させて作成されたiPS細胞株)、1392−iPS(297F1)(56歳男性の皮膚線維芽細胞にOCT4/SOX2/KLF4/c−MYCを発現させて作成されたiPS細胞株)、NHDF−iPS(297L1)(新生児男性の皮膚線維芽細胞にOCT4/SOX2/KLF4/c−MYCを発現させて作成されたiPS細胞株)を用いて分化を誘導した(Cell 2007;131(5),p861−72,PLoS ONE 2009;4(12),p.e8067参照)。
 実施例1で示す手法に従って内胚葉への分化を誘導した。培養3日後、SOX17とFOXA2タンパク質の発現を調べるため、抗SOX17抗体と抗FOXA2抗体を用いた免疫蛍光染色を実施した。実施例1と同様の手法で3日目まで培養した後、2%PFAを用いて10分間、さらに4%PFAを用いて20分間、室温において細胞の固定を行った。1次抗体として抗ヒトSOX17抗体(AF1924、R&D社)、抗FOXA2抗体(07−633、Millipore社)と反応させ、さらに2次抗体としてAlexa488標識2次抗体(Invitrogen社)又はAlexa568標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡で観察した。結果を図21に示す。201B7株、1503−iPS(297A1)株、1392−iPS(297F1)株、NHDF−iPS(297L1)株を用いて分化させた場合でも、大部分の細胞がSOX17陽性FOXA2陽性の内胚葉細胞に分化している様子が観察された。
 内胚葉細胞を誘導した後、1%のB−27を含むImproved MEM Zinc Option培地(Invitrogen社)にドーソモルフィン(1μM)、レチノイン酸(2μM)、SB431542(10μM)の3種類を同時に添加して7日間培養した。培地交換は誘導7日目に一度行った。培養後、2%PFAを用いて10分間、さらに4%PFAを用いて20分間、室温において細胞の固定を行った。その後、1次抗体として抗ヒトPDX1抗体(AF2419、R&D社)と反応させ、さらに2次抗体としてAlexa488標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡下にて細胞を観察した。免疫蛍光染色の結果を図22に示す。201B7株、1503−iPS(297A1)株、1392−iPS(297F1)株、NHDF−iPS(297L1)株を用いて分化させた場合でも、大部分の細胞がPDX1陽性の膵ホルモン産生前駆細胞に分化している様子が観察された。
 さらに、誘導10日目の細胞をImproved MEM Zinc Option培地で洗浄した後、1%のB−27(GIBCO)を含むImproved MEM Zinc Option培地にフォルスコリン(10μM)、ニコチンアミド(10mM)、デキサメタゾン(10μM)、ALK5阻害剤II(5μM)を添加した培地に交換して、さらに11日間培養した。培地交換は3~4日ごとに行った。培養後、2%PFAを用いて10分間、さらに4%PFAを用いて20分間、室温において細胞の固定を行った。その後、1次抗体として抗インスリン抗体(A0564、DAKO社)と反応させ、さらに2次抗体としてAlexa568標識2次抗体(Invitrogen社)と順次反応させた後、蛍光顕微鏡で観察した。免疫蛍光染色の結果を図23に示す。253G1株と同様に、201B7株、1503−iPS(297A1)株、1392−iPS(297F1)株、NHDF−iPS(297L1)株より分化させた場合でも効率よくインスリン産生細胞への分化が誘導されている様子が観察された。以上の結果より、本分化誘導法を用いることでヒトiPS細胞株の種類によらずにインスリン産生細胞への分化を誘導できることが明らかとなった。
(実施例62~64)フィーダー細胞をフィブロネクチンやマトリゲルマトリゲルで代用し、ヒトiPS細胞から膵ホルモン産生細胞を誘導する方法
 本分化誘導系においてフィーダー細胞の代用としてフィブロネクチンまたはマトリゲルを用いた場合でも、膵ホルモン産生細胞への分化が誘導されるか検討した。フィブロネクチンでの代用の場合は、96穴プレートにDMEM/F12培地で40倍希釈したhuman plasmaフィブロネクチン(Invitrogen)を50μl添加し、室温で3時間以上静置させたのちに除去したものを利用した。一方、マトリゲルでの代用の場合は、96穴プレートにDMEM/F12培地で60倍希釈したMatrigel−growth factor reduced mouse(COLLABORATIVE RESEARCH,INC.)を50μl添加し、室温で3時間以上静置させたのちに除去したものを利用した。細胞塊の状態で維持していたiPS細胞を0.25%トリプシン−1mM EDTA溶液(GIBCO)で処理し、単一細胞になるまで解離させた。続いて、培地に分散させたiPS細胞をフィブロネクチンあるいはマトリゲルでコートした96穴プレートに1穴あたり4×10個の密度で播種し、37℃、5%CO下で1日間培養した。播種時の培養液としては、10μMのY−27632(和光純薬)を添加した霊長類ES細胞用培地を使用した。播種1日後にY−27632を添加していない霊長類ES細胞用培地に交換してさらに2日間培養し、コンフルエントな状態になるまで培養した。培養後、RPMI培地(GIBCO)で洗浄した後、CHIR99021、2%FBSおよびアクチビンA(100ng/ml)を添加したRPMI培地を用いて1日間培養した。1日間培養した後にRPMI培地で洗浄し、2%のFBSと100ng/mlのアクチビンAを添加したRPMI培地を用いてさらに2日間培養した。その後、1%のB−27を含むImproved MEM Zinc Option培地(Invitrogen社)にドーソモルフィン(1μM)、レチノイン酸(2μM)、SB431542(10μM)の3種類を同時に添加して7日間培養した。培地交換は誘導7日目に一度行った。誘導10日目の細胞をImproved MEM Zinc Option培地で洗浄した後、1%のB−27(GIBCO)を含むImproved MEM Zinc Option培地にフォルスコリン(10μM)、ニコチンアミド(10mM)、デキサメタゾン(10μM)、ALK5阻害剤II(5μM)を添加した培地に交換してさらに11日間培養した。培地交換は3~4日ごとに行って膵ホルモン産生細胞を誘導した。
 フィーダー細胞上で膵ホルモン産生細胞を誘導した場合を実施例62、フィブロネクチン上で膵ホルモン産生細胞を誘導した場合を実施例63、マトリゲル上で膵ホルモン産生細胞を誘導した場合を実施例64とした。誘導0日目及び21日目の細胞からRNAを回収し、インスリンmRNAの発現量を実施例1に示す方法と同様にして測定した。結果を表1に示す。いずれの条件においても、培養日数に伴ってインスリンmRNA発現が上昇した。これらの結果より、本分化誘導法を用いることで、フィーダー細胞の代用としてフィブロネクチンやマトリゲルをコーティング剤として用いた培養系においても、膵ホルモン産生細胞への誘導が可能であることが明らかとなった。
Figure JPOXMLDOC01-appb-T000001
 本出願は、日本で出願された特願2009−299276、及び特願2010−144283を基礎としておりそれらの内容は本明細書に全て包含されるものである。
 本発明の製造方法によれば、より効率的に幹細胞から膵臓細胞、特に膵ホルモン産生細胞を製造することができる。該製造方法により得られた膵ホルモン産生細胞は、膵ホルモン産生及び/又は分泌異常に起因する疾患(例、糖尿病)の予防及び/又は治療に有用な化合物のスクリーニングに用いることができる。さらに本発明の製造方法により得られる膵ホルモン産生細胞を含む医薬は、そのような疾患を治療するために用いることができる。

Claims (23)

  1. 幹細胞を、以下の工程(1)~(4)に付すことを特徴とする、膵ホルモン産生細胞の製造方法:
    (1)幹細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤、及びGSK3阻害剤を含む培地で培養する工程
    (2)前記工程(1)で得られた細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤を含む培地で培養する工程
    (3)前記工程(2)で得られた細胞を、(a)レチノイン酸受容体アゴニスト、(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地で培養する工程
    (4)前記工程(3)で得られた細胞を培養する工程。
  2. 工程(1)および(2)におけるアクチビン受容体様キナーゼ−4,7の活性化剤がアクチビンであり、工程(3)が、工程(2)で得られた細胞を、(a)レチノイン酸受容体アゴニスト、(b’)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、及び(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地で培養する工程である、請求項1記載の製造方法。
  3. 工程(4)が、(i)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤、及びcAMP類縁体からなる群より選択される少なくとも一種、(ii)ステロイド、及び(iii)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地中で実施される、請求項1記載の製造方法。
  4. 幹細胞を、少なくともアクチビン受容体様キナーゼ−4,7の活性化剤、及びGSK3阻害剤を含む培地で培養することを特徴とする、内胚葉細胞の製造方法。
  5. アクチビン受容体様キナーゼ−4,7の活性化剤がアクチビンである、請求項4記載の製造方法。
  6. 内胚葉細胞を、以下の(a)~(c)からなる群より選択される何れか1種以上を含む培地で培養することを特徴とする、膵ホルモン産生前駆細胞の製造方法:
    (a)レチノイン酸受容体アゴニスト
    (b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び
    (c)アクチビン受容体様キナーゼ−4,5,7の阻害剤。
  7. 内胚葉細胞を、以下の(a)~(c)を含む培地で培養することを特徴とする、膵ホルモン産生前駆細胞の製造方法:
    (a)レチノイン酸受容体アゴニスト
    (b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び
    (c)アクチビン受容体様キナーゼ−4,5,7の阻害剤。
  8. 工程(3)における培地が、以下の(a)~(c)を含む請求項1記載の製造方法:
    (a)レチノイン酸受容体アゴニスト
    (b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び
    (c)アクチビン受容体様キナーゼ−4,5,7の阻害剤。
  9. 工程(1)におけるGSK3阻害剤が、
    6−[[2−[[4−(2,4−ジクロロフェニル)−5−(4−メチル−1H−イミダゾール−2−イル)−2−ピリミジニル]アミノ]エチル]アミノ]ニコチノニトリルである請求項1記載の製造方法。
  10. 工程(3)におけるアクチビン受容体様キナーゼ−4,5,7の阻害剤が、
    4−[4−(1,3−ベンゾジオキソール−5−イル)−5−(2−ピリジニル)−1H−イミダゾール−2−イル]−ベンズアミド又はその水和物である請求項1記載の製造方法。
  11. 工程(3)におけるAMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種が、ドーソモルフィン、またはNogginである請求項1記載の製造方法。
  12. 工程(3)における培地が、
    レチノイン酸、4−[4−(1,3−ベンゾジオキソール−5−イル)−5−(2−ピリジニル)−1H−イミダゾール−2−イル]−ベンズアミド又はその水和物、及びドーソモルフィンを含む請求項1記載の製造方法。
  13. アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤、及びcAMP類縁体からなる群より選択される少なくとも一種が、フォルスコリン、3−イソブチル−1−メチルキサンチンまたはジブチルcAMPである、請求項3記載の製造方法。
  14. ステロイドが、デキサメタゾンである、請求項3記載の製造方法。
  15. アクチビン受容体様キナーゼ−4,5,7の阻害剤が、2−(3−(6−メチルピリジン−2−イル)−1H−ピラゾール−4−イル)−1,5−ナフチリジン、または4−[4−(1,3−ベンゾジオキソール−5−イル)−5−(2−ピリジニル)−1H−イミダゾール−2−イル]−ベンズアミド又はその水和物である、請求項3記載の製造方法。
  16. 培地がニコチンアミドを含む、請求項3記載の製造方法。
  17. 幹細胞が、人工多能性幹細胞(iPS細胞)、胚性幹細胞(ES細胞)又はヒトの体性幹細胞である請求項1記載の製造方法。
  18. 膵ホルモン産生細胞がインスリン産生細胞、グルカゴン産生細胞、ソマトスタチン産生細胞、膵ポリペプチド(PP)産生細胞、及びグレリン産生細胞からなる群より選択されるいずれかである請求項1記載の製造方法。
  19. 請求項1記載の製造方法で得られた膵ホルモン産生細胞を含む、医薬。
  20. 請求項6記載の製造方法で得られた膵ホルモン産生前駆細胞を含む、医薬。
  21. 以下の工程(1)~(4)からなる群より選択される何れか1種以上の工程によって得られた細胞を用いることを特徴とする、糖尿病治療薬のスクリーニング方法:
    (1)幹細胞を、アクチビン受容体様キナーゼ4,7の活性化剤、及びGSK3阻害剤を含む培地で培養する工程
    (2)前記工程(1)で得られた細胞を、アクチビン受容体様キナーゼ−4,7の活性化剤を含む培地で培養する工程
    (3)前記工程(2)で得られた細胞を、(a)レチノイン酸受容体アゴニスト、(b)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、又はBMPのアンタゴニストからなる群より選択される少なくとも一種、及び(c)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地で培養する工程
    (4)前記工程(3)で得られた細胞を培養する工程。
  22. 工程(1)および(2)におけるアクチビン受容体様キナーゼ−4,7の活性化剤がアクチビンであり、工程(3)が、工程(2)で得られた細胞を、(a)レチノイン酸受容体アゴニスト、(b’)AMP活性化プロテインキナーゼ及び/又はアクチビン受容体様キナーゼ−2,3,6の阻害剤、(c)及びアクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地で培養する工程である、請求項21記載のスクリーニング方法。
  23. 工程(4)が、(i)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤、及びcAMP類縁体からなる群より選択される少なくとも一種、(ii)ステロイド、及び(iii)アクチビン受容体様キナーゼ−4,5,7の阻害剤からなる群より選択される何れか1種以上を含む培地中で実施される、請求項21記載のスクリーニング方法。
PCT/JP2010/073906 2009-12-29 2010-12-28 膵ホルモン産生細胞の製造法 WO2011081222A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2785966A CA2785966C (en) 2009-12-29 2010-12-28 Method for manufacturing pancreatic-hormone-producing cells
US13/520,090 US8932853B2 (en) 2009-12-29 2010-12-28 Method for manufacturing pancreatic-hormone-producing cells
JP2011547740A JP5762979B2 (ja) 2009-12-29 2010-12-28 膵ホルモン産生細胞の製造法
EP10841072.1A EP2505639B1 (en) 2009-12-29 2010-12-28 Method for manufacturing pancreatic-hormone-producing cells

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009299276 2009-12-29
JP2009-299276 2009-12-29
JP2010144283 2010-06-24
JP2010-144283 2010-06-24

Publications (1)

Publication Number Publication Date
WO2011081222A1 true WO2011081222A1 (ja) 2011-07-07

Family

ID=44226619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073906 WO2011081222A1 (ja) 2009-12-29 2010-12-28 膵ホルモン産生細胞の製造法

Country Status (5)

Country Link
US (1) US8932853B2 (ja)
EP (1) EP2505639B1 (ja)
JP (1) JP5762979B2 (ja)
CA (1) CA2785966C (ja)
WO (1) WO2011081222A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014033322A1 (en) * 2012-09-03 2014-03-06 Novo Nordisk A/S Generation of pancreatic endoderm from pluripotent stem cells using small molecules
WO2015020113A1 (ja) 2013-08-07 2015-02-12 国立大学法人京都大学 膵ホルモン産生細胞の製造法
JP2015522290A (ja) * 2012-07-20 2015-08-06 ザ コモン サーヴィシス エージェンシー 赤血球の産生
US9157069B2 (en) 2010-08-09 2015-10-13 Takeda Pharmaceutical Company Limited Method of producing pancreatic hormone-producing cells
WO2016021734A1 (ja) * 2014-08-04 2016-02-11 武田薬品工業株式会社 膵前駆細胞の増殖方法
US20160208215A1 (en) * 2013-08-30 2016-07-21 Novo Nordisk A/S Generation of Endocrine Progenitor Cells from Human Pluripotent Stem Cells Using Small Molecules
JPWO2015178397A1 (ja) * 2014-05-20 2017-04-20 国立大学法人 熊本大学 インスリン産生細胞の分化誘導方法
JP2017538438A (ja) * 2014-12-22 2017-12-28 ユニバーシティー オブ サウス オーストラリアUniversity Of South Australia 小分子を使用して尿由来細胞からベータ細胞を誘導する方法
WO2018021293A1 (ja) * 2016-07-26 2018-02-01 国立大学法人京都大学 Ptf1a陽性細胞の製造方法
WO2018139600A1 (ja) * 2017-01-27 2018-08-02 株式会社カネカ 内胚葉系細胞集団、及び多能性細胞から三胚葉のいずれかの細胞集団を製造する方法
EP3450542A1 (en) * 2012-06-08 2019-03-06 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endodrine cells
US10329534B2 (en) 2010-03-01 2019-06-25 Janssen Biotech, Inc. Methods for purifying cells derived from pluripotent stem cells
US10344264B2 (en) 2012-12-31 2019-07-09 Janssen Biotech, Inc. Culturing of human embryonic stem cells at the air-liquid interface for differentiation into pancreatic endocrine cells
US10358628B2 (en) 2011-12-22 2019-07-23 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into single hormonal insulin positive cells
US10377989B2 (en) 2012-12-31 2019-08-13 Janssen Biotech, Inc. Methods for suspension cultures of human pluripotent stem cells
US10421948B2 (en) 2008-10-31 2019-09-24 Janssen Biotech, Inc. Methods for making pancreatic endocrine cells
US10471104B2 (en) 2009-07-20 2019-11-12 Janssen Biotech, Inc. Lowering blood glucose
US10472610B2 (en) 2014-05-21 2019-11-12 Kyoto University Method for generating pancreatic bud cells and therapeutic agent for pancreatic disease containing pancreatic bud cells
US10704025B2 (en) 2009-12-23 2020-07-07 Janssen Biotech, Inc. Use of noggin, an ALK5 inhibitor and a protein kinase c activator to produce endocrine cells
US10870832B2 (en) 2014-05-16 2020-12-22 Janssen Biotech, Inc. Use of small molecules to enhance MAFA expression in pancreatic endocrine cells
US11890304B2 (en) 2007-07-31 2024-02-06 Janssen Biotech, Inc. Pancreatic endocrine cells and methods thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012175633A1 (en) 2011-06-21 2012-12-27 Novo Nordisk A/S Efficient induction of definitive endoderm from pluripotent stem cells
WO2014138671A2 (en) 2013-03-08 2014-09-12 Viacyte, Inc. Cryopreservation, hibernation and room temperature storage of encapulated pancreatic endoderm cell aggregates
CN110551678B (zh) 2013-06-11 2024-02-20 哈佛学院校长同事会 SC-β细胞以及用于产生其的组合物和方法
WO2015088072A1 (ko) * 2013-12-11 2015-06-18 한국과학기술원 인간 다능성 줄기세포로부터 인슐린 생산 배타세포의 내분비 응집체의 제조방법
US10253298B2 (en) 2014-12-18 2019-04-09 President And Fellows Of Harvard College Methods for generating stem cell-derived beta cells and methods of use thereof
WO2019156216A1 (ja) * 2018-02-09 2019-08-15 国立大学法人京都大学 心筋細胞増殖促進剤及びその利用
CN114096557A (zh) * 2019-05-22 2022-02-25 克利夫兰诊所基金会 产生背侧前肠和前部结构域内胚层细胞

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326055A (en) 1977-12-22 1982-04-20 Hoffmann-La Roche Inc. Stilbene derivatives
US5234926A (en) 1987-03-20 1993-08-10 Allergan, Inc. Disubstituted acetylenes bearing heteroaromatic and heterobicyclic groups having retinoid like activity
JP2002538779A (ja) * 1999-02-10 2002-11-19 キュリス インコーポレイテッド 膵臓細胞前駆細胞、それらに関する方法及び利用
WO2003100026A2 (en) 2002-05-28 2003-12-04 Novocell, Inc. Methods, compositions, and growth and differentiation factors for insulin-producing cells
JP2006500003A (ja) * 2001-12-07 2006-01-05 ジェロン・コーポレーション ヒト胚幹細胞由来の膵島細胞
JP2006075022A (ja) 2004-09-07 2006-03-23 Foundation For Biomedical Research & Innovation 膵臓ホルモン産生細胞取得方法
WO2007113505A2 (en) * 2006-03-30 2007-10-11 The University Court Of The University Of Edinburgh Culture medium containing kinase inhibitors. and uses thereof
WO2008015418A2 (en) * 2006-08-01 2008-02-07 The University Court Of The University Of Edinburgh Pluripotent cells from rat and other species
WO2008033408A2 (en) * 2006-09-12 2008-03-20 The General Hospital Corporation Methods for identifying compounds that modulate cell signaling and methods employing such compounds
WO2009012428A2 (en) * 2007-07-18 2009-01-22 Lifescan, Inc. Differentiation of human embryonic stem cells
WO2009018453A1 (en) * 2007-07-31 2009-02-05 Lifescan, Inc. Differentiation of human embryonic stem cells
US7534608B2 (en) 2006-07-26 2009-05-19 Cythera, Inc. Methods of producing pancreatic hormones
WO2009070592A2 (en) * 2007-11-27 2009-06-04 Lifescan, Inc. Differentiation of human embryonic stem cells
JP2009225661A (ja) 2006-12-01 2009-10-08 Okayama Univ 胚性幹細胞のインスリン分泌細胞への分化誘導方法、該方法により誘導されるインスリン分泌細胞およびその用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523226A (en) * 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
US6946293B1 (en) 1999-02-10 2005-09-20 Es Cell International Pte Ltd. Progenitor cells, methods and uses related thereto
US20030138949A1 (en) 2001-12-12 2003-07-24 Anil Bhushan Methods for the regeneration of pancreatic islets and expansion of pancreatic endocrine cells
US20080207594A1 (en) * 2005-05-04 2008-08-28 Davelogen Aktiengesellschaft Use of Gsk-3 Inhibitors for Preventing and Treating Pancreatic Autoimmune Disorders
US7695965B2 (en) * 2006-03-02 2010-04-13 Cythera, Inc. Methods of producing pancreatic hormones

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326055A (en) 1977-12-22 1982-04-20 Hoffmann-La Roche Inc. Stilbene derivatives
US5234926A (en) 1987-03-20 1993-08-10 Allergan, Inc. Disubstituted acetylenes bearing heteroaromatic and heterobicyclic groups having retinoid like activity
JP2002538779A (ja) * 1999-02-10 2002-11-19 キュリス インコーポレイテッド 膵臓細胞前駆細胞、それらに関する方法及び利用
JP2006500003A (ja) * 2001-12-07 2006-01-05 ジェロン・コーポレーション ヒト胚幹細胞由来の膵島細胞
WO2003100026A2 (en) 2002-05-28 2003-12-04 Novocell, Inc. Methods, compositions, and growth and differentiation factors for insulin-producing cells
JP2006075022A (ja) 2004-09-07 2006-03-23 Foundation For Biomedical Research & Innovation 膵臓ホルモン産生細胞取得方法
WO2007113505A2 (en) * 2006-03-30 2007-10-11 The University Court Of The University Of Edinburgh Culture medium containing kinase inhibitors. and uses thereof
US7534608B2 (en) 2006-07-26 2009-05-19 Cythera, Inc. Methods of producing pancreatic hormones
WO2008015418A2 (en) * 2006-08-01 2008-02-07 The University Court Of The University Of Edinburgh Pluripotent cells from rat and other species
WO2008033408A2 (en) * 2006-09-12 2008-03-20 The General Hospital Corporation Methods for identifying compounds that modulate cell signaling and methods employing such compounds
JP2009225661A (ja) 2006-12-01 2009-10-08 Okayama Univ 胚性幹細胞のインスリン分泌細胞への分化誘導方法、該方法により誘導されるインスリン分泌細胞およびその用途
WO2009012428A2 (en) * 2007-07-18 2009-01-22 Lifescan, Inc. Differentiation of human embryonic stem cells
WO2009018453A1 (en) * 2007-07-31 2009-02-05 Lifescan, Inc. Differentiation of human embryonic stem cells
WO2009070592A2 (en) * 2007-11-27 2009-06-04 Lifescan, Inc. Differentiation of human embryonic stem cells

Non-Patent Citations (32)

* Cited by examiner, † Cited by third party
Title
ANNUAL REPORT OF RESEARCH INSTITUTE FOR BIOLOGICAL FUNCTION, vol. 9, 2009, pages 55 - 61
BREWER G.J. ET AL., J. NEUROSCI. RES., vol. 35, 1993, pages 567
CELL STEM CELL, vol. 4, no. 1, 9 January 2009 (2009-01-09), pages 16 - 9
CELL STEM CELL, vol. 4, no. 5, 8 May 2009 (2009-05-08), pages 381 - 4
CELL STEM CELL, vol. 5, no. 5, 6 November 2009 (2009-11-06), pages 491 - 503
CELL, vol. 131, no. 5, 2007, pages 861 - 72
E. KROON ET AL.: "Pancreatic endoderm derived from human embryonic stem cells generates glucose- responsive insulin-secreting cells in vivo", NATURE BIOTECHNOLOGY, vol. 26, no. 4, 2008, pages 443 - 452, XP002561975, DOI: doi:10.1038/nbt1393
EVANS ET AL., NATURE, vol. 292, 1981, pages 154 - 6
J. H. SHIM ET AL.: "Directed differentiation of human embryonic stem cells towards a pancreatic cell fate", DIABETOLOGIA, vol. 50, 2007, pages 1228 - 1238, XP019510579, DOI: doi:10.1007/s00125-007-0634-z
K. A. D'AMOUR ET AL.: "Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells", NATURE BIOTECHNOLOGY, vol. 24, no. 11, 2006, pages 1392 - 1401
LING, N. ET AL., NATURE, vol. 321, 1986, pages 779 - 782
MARTIN GR. ET AL., PROC NATL ACAD SCI, vol. 78, 1981, pages 7634 - 8
NAGATA H; ITO M; SHIROTA C; EDGE A; MCCOWAN TC; FOX IJ: "Route of hepatocyte delivery affects hepatocyte engraftment in the spleen.", TRANSPLANTATION, vol. 76, no. 4, 2003, pages 732 - 4
NAT BIOTECHNOL, vol. 26, 2008, pages 101 - 106
NATURE BIOTECHNOLOGY, vol. 26, pages 101 - 106
NATURE, vol. 454, no. 7204, 31 July 2008 (2008-07-31), pages 646 - 50
NATURE, vol. 456, 2008, pages 344 - 9
PLOS ONE, vol. 4, no. 12, 2009, pages E8067
PROC NATL ACAD SCI U S A., vol. 95, 1998, pages 13726 - 31
PROCEEDING OF THE SOCIETY FOR THE BIOLOGICAL MEDICINE, vol. 73, 1950, pages 1
R. MAEHRA ET AL.: "Generation of pluripotent stem cells from patients with type 1 diabetes", PNAS, vol. 106, no. 37, 2009, pages 15768 - 15773, XP002633665, DOI: doi:10.1073/PNAS.0906894106
RICHTER A. ET AL., NATIONAL CANCER, vol. 49, 1972, pages 1705
SCIENCE, vol. 122, 1952, pages 501
See also references of EP2505639A4
THE JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, vol. 199, 1967, pages 519
THOMSON ET AL., SCIENCE, vol. 282, 1998, pages 1145 - 7
TRENDS CELL BIOL., vol. 20, 2001, pages 244 - 256
VALE, W. ET AL., NATURE, vol. 321, 1986, pages 776 - 779
VIROLOGY, vol. 8, 1959, pages 396
W. JIANG: "In vitro derivation of functional insulin-producing cells from human embryonic stem cells", CELL RESEARCH, vol. 17, 2007, pages 333 - 344, XP002455184, DOI: doi:10.1038/cr.2007.28
WRIGHTON, K.H. ET AL.: "Transforming Growth Factor Can Stimulate Smad1 Phosphorylation Independently of Bone Morphogenic Protein Receptors", J BIOL CHEM, vol. 284, no. 15, 2009, pages 9755 - 9763, XP008153364 *
YU, P.B. ET AL.: "Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism", NAT CHEM BIOL, vol. 4, no. 1, 2008, pages 33 - 41, XP009137445 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11890304B2 (en) 2007-07-31 2024-02-06 Janssen Biotech, Inc. Pancreatic endocrine cells and methods thereof
US10421948B2 (en) 2008-10-31 2019-09-24 Janssen Biotech, Inc. Methods for making pancreatic endocrine cells
US11369642B2 (en) 2009-07-20 2022-06-28 Janssen Biotech, Inc. Methods for lowering blood glucose
US10471104B2 (en) 2009-07-20 2019-11-12 Janssen Biotech, Inc. Lowering blood glucose
US10704025B2 (en) 2009-12-23 2020-07-07 Janssen Biotech, Inc. Use of noggin, an ALK5 inhibitor and a protein kinase c activator to produce endocrine cells
US10329534B2 (en) 2010-03-01 2019-06-25 Janssen Biotech, Inc. Methods for purifying cells derived from pluripotent stem cells
US9157069B2 (en) 2010-08-09 2015-10-13 Takeda Pharmaceutical Company Limited Method of producing pancreatic hormone-producing cells
US10358628B2 (en) 2011-12-22 2019-07-23 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into single hormonal insulin positive cells
US11377640B2 (en) 2011-12-22 2022-07-05 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into single hormonal insulin positive cells
JP2019050810A (ja) * 2012-06-08 2019-04-04 ヤンセン バイオテツク,インコーポレーテツド 膵内分泌細胞へのヒト胚性幹細胞の分化
EP3450542A1 (en) * 2012-06-08 2019-03-06 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endodrine cells
AU2013291758B2 (en) * 2012-07-20 2019-05-09 The Common Services Agency Erythroid production
JP2015522290A (ja) * 2012-07-20 2015-08-06 ザ コモン サーヴィシス エージェンシー 赤血球の産生
CN104903440B (zh) * 2012-09-03 2018-04-06 诺和诺德股份有限公司 使用小分子从多能干细胞产生胰内胚层
WO2014033322A1 (en) * 2012-09-03 2014-03-06 Novo Nordisk A/S Generation of pancreatic endoderm from pluripotent stem cells using small molecules
US10221392B2 (en) 2012-09-03 2019-03-05 Novo Nordisk A/S Generation of pancreatic endoderm from pluripotent stem cells using small molecules
CN104903440A (zh) * 2012-09-03 2015-09-09 诺和诺德股份有限公司 使用小分子从多能干细胞产生胰内胚层
JP2015528289A (ja) * 2012-09-03 2015-09-28 ノヴォ ノルディスク アー/エス 小分子を用いた多能性幹細胞からの膵臓内胚葉の作製
US10344264B2 (en) 2012-12-31 2019-07-09 Janssen Biotech, Inc. Culturing of human embryonic stem cells at the air-liquid interface for differentiation into pancreatic endocrine cells
US10377989B2 (en) 2012-12-31 2019-08-13 Janssen Biotech, Inc. Methods for suspension cultures of human pluripotent stem cells
US9796962B2 (en) 2013-08-07 2017-10-24 Kyoto University Method for generating pancreatic hormone-producing cells
JPWO2015020113A1 (ja) * 2013-08-07 2017-03-02 国立大学法人京都大学 膵ホルモン産生細胞の製造法
WO2015020113A1 (ja) 2013-08-07 2015-02-12 国立大学法人京都大学 膵ホルモン産生細胞の製造法
US20160208215A1 (en) * 2013-08-30 2016-07-21 Novo Nordisk A/S Generation of Endocrine Progenitor Cells from Human Pluripotent Stem Cells Using Small Molecules
US20200002670A1 (en) * 2013-08-30 2020-01-02 Novo Nordisk A/S Generation of Endocrine Progenitor Cells from Human Pluripotent Stem Cells Using Small Molecules
US11981929B2 (en) 2014-05-16 2024-05-14 Janssen Biotech, Inc. Use of small molecules to enhance MAFA expression in pancreatic endocrine cells
US10870832B2 (en) 2014-05-16 2020-12-22 Janssen Biotech, Inc. Use of small molecules to enhance MAFA expression in pancreatic endocrine cells
JPWO2015178397A1 (ja) * 2014-05-20 2017-04-20 国立大学法人 熊本大学 インスリン産生細胞の分化誘導方法
US10472610B2 (en) 2014-05-21 2019-11-12 Kyoto University Method for generating pancreatic bud cells and therapeutic agent for pancreatic disease containing pancreatic bud cells
US10655105B2 (en) 2014-08-04 2020-05-19 Takeda Pharmaceutical Company Limited Method for proliferation of pancreatic progenitor cells
JPWO2016021734A1 (ja) * 2014-08-04 2017-05-18 武田薬品工業株式会社 膵前駆細胞の増殖方法
WO2016021734A1 (ja) * 2014-08-04 2016-02-11 武田薬品工業株式会社 膵前駆細胞の増殖方法
US10752884B2 (en) 2014-12-22 2020-08-25 University Of South Australia Method of inducing beta cells from urine-derived cells using small molecules
JP2017538438A (ja) * 2014-12-22 2017-12-28 ユニバーシティー オブ サウス オーストラリアUniversity Of South Australia 小分子を使用して尿由来細胞からベータ細胞を誘導する方法
JPWO2018021293A1 (ja) * 2016-07-26 2019-05-09 国立大学法人京都大学 Ptf1a陽性細胞の製造方法
JP7065517B2 (ja) 2016-07-26 2022-05-12 国立大学法人京都大学 Ptf1a陽性細胞の製造方法
WO2018021293A1 (ja) * 2016-07-26 2018-02-01 国立大学法人京都大学 Ptf1a陽性細胞の製造方法
JPWO2018139600A1 (ja) * 2017-01-27 2019-11-21 株式会社カネカ 内胚葉系細胞集団、及び多能性細胞から三胚葉のいずれかの細胞集団を製造する方法
WO2018139600A1 (ja) * 2017-01-27 2018-08-02 株式会社カネカ 内胚葉系細胞集団、及び多能性細胞から三胚葉のいずれかの細胞集団を製造する方法
JP7107504B2 (ja) 2017-01-27 2022-07-27 株式会社カネカ 内胚葉系細胞集団、及び多能性細胞から三胚葉のいずれかの細胞集団を製造する方法
US11746331B2 (en) 2017-01-27 2023-09-05 Kaneka Corporation Endodermal cell population, and method for producing cell population of any of three germ layers from pluripotent cell

Also Published As

Publication number Publication date
US8932853B2 (en) 2015-01-13
EP2505639A1 (en) 2012-10-03
US20130022986A1 (en) 2013-01-24
EP2505639A4 (en) 2015-01-21
CA2785966C (en) 2020-10-27
CA2785966A1 (en) 2011-07-07
JP5762979B2 (ja) 2015-08-12
JPWO2011081222A1 (ja) 2013-05-13
EP2505639B1 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP5762979B2 (ja) 膵ホルモン産生細胞の製造法
JP5875517B2 (ja) 膵ホルモン産生細胞の製造法
JP6893527B2 (ja) SC−β細胞及び組成物並びにその生成方法
KR102215373B1 (ko) 도파민 뉴런의 제조 방법
JP6445422B2 (ja) ゼブラフィッシュ割球細胞培養物における高スループット画像ベース化学スクリーニング
US10472610B2 (en) Method for generating pancreatic bud cells and therapeutic agent for pancreatic disease containing pancreatic bud cells
JP2021502830A (ja) 島細胞製造組成物および使用方法
WO2014145625A1 (en) Compositions and methods for promoting the generation of endocrine cells
US12018283B2 (en) Method for producing insulin-producing cells
Samuelson Sca-1 positive pancreatic progenitor cells: a replacement for transplanted islets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547740

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2785966

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010841072

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13520090

Country of ref document: US