WO2011081065A1 - 化合物及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

化合物及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2011081065A1
WO2011081065A1 PCT/JP2010/073121 JP2010073121W WO2011081065A1 WO 2011081065 A1 WO2011081065 A1 WO 2011081065A1 JP 2010073121 W JP2010073121 W JP 2010073121W WO 2011081065 A1 WO2011081065 A1 WO 2011081065A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
same
different
aryl
substituent
Prior art date
Application number
PCT/JP2010/073121
Other languages
English (en)
French (fr)
Inventor
小林 諭
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to EP10840922A priority Critical patent/EP2520576A1/en
Priority to CN2010800597991A priority patent/CN102695707A/zh
Priority to US13/519,220 priority patent/US8779137B2/en
Publication of WO2011081065A1 publication Critical patent/WO2011081065A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/68Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/54Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C229/56Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring with amino and carboxyl groups bound in ortho-position
    • C07C229/58Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring with amino and carboxyl groups bound in ortho-position having the nitrogen atom of at least one of the amino groups further bound to a carbon atom of a six-membered aromatic ring, e.g. N-phenyl-anthranilic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • C08G2261/5222Luminescence fluorescent electrofluorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • the present invention relates to a compound and a production method thereof.
  • the present invention also relates to a light-emitting element such as a composition, a thin film, and an organic electroluminescent element (hereinafter referred to as “organic EL element”) containing a compound, a display device including such a light-emitting element, and the like.
  • a light-emitting element such as a composition, a thin film, and an organic electroluminescent element (hereinafter referred to as “organic EL element”) containing a compound
  • a display device including such a light-emitting element, and the like.
  • organic EL elements In recent years, color displays using organic EL elements have been actively developed, and various light emitting materials and charge transport materials useful for organic EL elements have been studied.
  • organic EL element it is known that when a compound exhibiting excellent hole injecting properties is used as the material, the driving voltage can be reduced.
  • Patent Document 1 a polymer compound obtained by polymerizing 2,7-bis (4-methyl-4′-bromo-diphenylamino) -9,9-dioctylfluorene has been reported. (Patent Document 1).
  • the polymer compound has insufficient hole injection properties.
  • the objective of this invention is providing the compound which shows the outstanding hole injection property.
  • the present inventor succeeded in developing a compound or the like exhibiting excellent hole injecting properties, and completed the present invention. That is, the present invention is as follows.
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent.
  • R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • Two R 2 bonded to the same carbon atom may be bonded to each other to form a ring, and R 4 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group. ,these R 4 group is located may.
  • the combined good .R 15 also form a ring with each other , Alkyl group, alkoxy group, aryl group, aryloxy group, arylalkyl group, arylalkoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group , a carbamoyl group, a monovalent heterocyclic group, a heterocyclic oxy group, a carboxyl group, a nitro group or a cyano group, when these groups have a plurality which may .R 15 is substituted, they And e represents an integer of 0 to 6. A plurality of e may be the same or different.)
  • the compound containing the residue remove
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent. 1 may be the same or different, and R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 3 also form a ring with each other, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an aryl Lucoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, carbamoyl group, monovalent heterocyclic group, heterocyclic oxy group, carboxyl group, Represents a nitro group or a cyano group, and these groups may have a substituent, and when there are a plurality of R 3 , they
  • R 4 s may be bonded to each other to form a ring, a represents an integer of 0 to 5.
  • a plurality of a may be the same or different.
  • the repeating unit represented by the formula (2) is represented by the following formula (3): (In the formula, R 1 , R 2 , R 3 , R 4 and a have the same definition as the formula (2)). The compound of said [2] which is a repeating unit represented by these.
  • the repeating unit represented by the formula (4) is represented by the following formula (5): (In the formula, A ring and B ring each independently represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent. A 2 represents a linking group. ) The compound of said [4] which is a repeating unit represented by these.
  • the repeating unit represented by the formula (5) is represented by the following formula (6): (Wherein, R 13 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, and these groups may have a substituent. Plural R 13 is, And may be the same or different, and two R 13 may be bonded to each other to form a ring.)
  • the compound of said [5] which is a repeating unit represented by these.
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent. 1 may be the same or different, and R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 3 also form a ring with each other, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an aryl Lucoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, carbamoyl group, monovalent heterocyclic group, heterocyclic oxy group, carboxyl group, Represents a nitro group or a cyano group, and these groups may have a substituent, and when there are a plurality of R 3 , they
  • X 1 may form a ring with each other, polymerization represents a group capable of participating. plurality of X 1 may optionally be the same or different .a is , 0-5 . Plurality of a representative of the may also be the same or different.) Is polymerized, Following formula (3): (In the formula, R 1 , R 2 , R 3 , R 4 and a are the same as those in the formula (7).) The manufacturing method of the compound containing the repeating unit represented by Formula (3) including obtaining the compound containing the repeating unit represented by (3).
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent. 1 may be the same or different, and R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 3 also form a ring with each other, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an aryl Lucoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, carbamoyl group, monovalent heterocyclic group, heterocyclic oxy group, carboxyl group, Represents a nitro group or a cyano group, and these groups may have a substituent, and when there are a plurality of R 3 , they
  • X 1 may form a ring with each other, polymerization represents a group capable of participating. plurality of X 1 may optionally be the same or different .a is , 0-5 . Plurality of a representative of the may also be the same or different.)
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent. 1 may be the same or different, and R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 3 also form a ring with each other, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an aryl Lucoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, carbamoyl group, monovalent heterocyclic group, heterocyclic oxy group, carboxyl group, Represents a nitro group or a cyano group, and these groups may have a substituent, and when there are a plurality of R 3 , they
  • R 4 s may be bonded to each other to form a ring, a represents an integer of 0 to 5.
  • a plurality of a may be the same or different.
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent. 1 may be the same or different, and R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 3 also form a ring with each other, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an aryl Lucoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, carbamoyl group, monovalent heterocyclic group, heterocyclic oxy group, carboxyl group, Represents a nitro group or a cyano group, and these groups may have a substituent, and when there are a plurality of R 3 , they
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent.
  • R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 3 also form a ring with each other, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an aryl Lucoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, carbamoyl group, monovalent heterocyclic group, heterocyclic oxy group, carboxyl group, Represents a nitro group or a cyano group, and these groups may have a substituent, and when there are a plurality of R 3 , they
  • R 4 s may be bonded to each other to form a ring, a represents an integer of 0 to 5.
  • a plurality of a may be the same or different. Is reacted in the presence of an acid, Following formula (8): (Wherein R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent.
  • R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 3 also form a ring with each other, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an aryl Lucoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, carbamoyl group, monovalent heterocyclic group, heterocyclic oxy group, carboxyl group, Represents a nitro group or a cyano group, and these groups may have a substituent, and when there are a plurality of R 3 , they may be the same or different, and R 4 represents a hydrogen atom, An alkyl group, an aryl group, an arylalkyl group, or a monovalent heterocyclic group, which may have a substituent, and a
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent.
  • R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 3 also form a ring with each other, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an aryl Lucoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, carbamoyl group, monovalent heterocyclic group, heterocyclic oxy group, carboxyl group, Represents a nitro group or a cyano group, and these groups may have a substituent, and when there are a plurality of R 3 , they
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent.
  • R 3 represents an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an alkynyl group, an aryl group.
  • R 3 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R 4 may be the same or different.
  • R 16 represents an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R 16 may be the same or different.
  • a represents an integer of 0 to 5.
  • a plurality of a may be the same or different.
  • R 17 represents an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group, an acyloxy group, a monovalent heterocyclic group or a heterocyclic group.
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent.
  • R 3 represents an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an alkynyl group, an aryl group.
  • R 3 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R 4 may be the same or different.
  • R 16 represents an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R 16 may be the same or different.
  • a represents an integer of 0 to 5.
  • a plurality of a may be the same or different.
  • R 3 is an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an alkynyl group, an arylalkynyl group, an amino group, a silyl group, a halogen atom, an acyl group, an acyloxy group, a carbamoyl group, a monovalent heterocyclic group, a heterocyclic oxy group, a carboxyl group, a nitro group or a cyano group, these groups may have a substituent group .
  • R 3 When there are a plurality of these, they may be the same or different, and R 4 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, and these groups are substituted there may.
  • R 4 is the same one .2 or different R 4 s may be bonded to each other to form a ring.
  • 3 is a chlorine atom.
  • Plurality of X 3 representing a bromine atom or an iodine atom, may be different even in the same .f, the.
  • Plurality of f represents an integer of 0 to 2, a same Or different.
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group or a monovalent heterocyclic group
  • R 16 represents an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, and these groups may have a substituent
  • g is , Represents an integer of 0 to 4.
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent. 1 may be the same or different, and R 3 represents an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an alkynyl group, an aryl group.
  • R 3 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R 4 may be the same or different.
  • R 16 represents an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R 16 may be the same or different.
  • a represents an integer of 0 to 5.
  • a plurality of a may be the same or different.
  • the manufacturing method of the compound represented by Formula (10) including obtaining the compound represented by these.
  • a composition comprising (a) a compound according to any one of [1] to [6] above and (b) at least one material selected from the group consisting of a hole transport material, an electron transport material and a light emitting material .
  • a liquid composition comprising the compound according to any one of [1] to [6] above.
  • a thin film comprising the compound according to any one of [1] to [6] above.
  • the compound of the present invention has an excellent hole injection property. Therefore, the compound of the present invention is useful as a material for a light emitting element such as an organic EL element and a material for an electronic device such as a transistor.
  • the compounds of the present invention are also useful for display devices including elements such as compositions, liquid compositions, thin films (eg, light-emitting thin films, conductive thin films, semiconductor thin films), and light-emitting elements that can be the materials described above. .
  • the present invention also provides compounds that can be used in the synthesis of such compounds.
  • Me represents a methyl group
  • Ph represents a phenyl group
  • the compound of this invention contains the residue remove
  • the position of the residue may be the main chain, the end of the main chain, or the side chain.
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent.
  • R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 4 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group. ,these R 4 group is located may.
  • the combined good .R 15 also form a ring with each other , Alkyl group, alkoxy group, aryl group, aryloxy group, arylalkyl group, arylalkoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group , a carbamoyl group, a monovalent heterocyclic group, a heterocyclic oxy group, a carboxyl group, a nitro group or a cyano group, when these groups have a plurality which may .R 15 is substituted, they And e represents an integer of 0 to 6. A plurality of e may be the same or different.)
  • the alkyl group represented by R 1 may be linear, branched or cyclic, and usually has 1 to 30 carbon atoms and may have a substituent.
  • substituent which may be present include an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an acyl group, an acyloxy group, a monovalent heterocyclic group, and a heterocyclic oxy group.
  • alkyl group examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isoamyl, and n-hexyl.
  • the aryl group represented by R 1 is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon compound, and may be a group having a condensed ring or a group having two or more rings.
  • the aryl group may have a substituent, but the carbon number does not include the carbon number of the substituent.
  • the aryl group usually has 6 to 60 carbon atoms, and preferably 6 to 30 carbon atoms. Examples of the aryl group include a phenyl group and a C 1 -C 12 alkoxyphenyl group (C 1 -C 12 is the number of carbon atoms of the organic group immediately after C 1 -C 12 (here, The number of carbon atoms in the alkoxy group is 1 to 12.
  • C 1 -C 12 alkylphenyl group pentafluorophenyl group, 1-naphthyl group, 2-naphthyl group, 1 -Anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, biphenyl group, and terphenyl group.
  • C 1 -C 12 alkoxy A phenyl group and a C 1 -C 12 alkylphenyl group are preferred, and a C 1 -C 12 alkylphenyl group is particularly preferred.
  • the arylalkyl group represented by R 1 may have a substituent, but the number of carbons does not include the number of carbons on the substituent.
  • the arylalkyl group usually has 7 to 60 carbon atoms, and includes, for example, a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, a C 1- C 12 alkylphenyl -C 1 ⁇ C 12 alkyl group, 1-naphthyl -C 1 ⁇ C 12 alkyl group, a 2-naphthyl -C 1 ⁇ C 12 alkyl group.
  • the acyl group represented by R 1 usually has 2 to 30 carbon atoms and may have a substituent, but the carbon number does not include the carbon number on the substituent.
  • Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
  • the monovalent heterocyclic group represented by R 1 is a heterocyclic compound (that is, among organic compounds having a cyclic structure, the elements constituting the ring are not only carbon atoms but also oxygen atoms, sulfur atoms, nitrogen atoms)
  • An organic compound containing a hetero atom such as an atom, phosphorus atom, or boron atom in the ring.
  • the remaining atomic group obtained by removing one hydrogen atom.
  • the carbon number of the monovalent heterocyclic group is usually 2 to 30, preferably 2 to 15.
  • the heterocyclic ring may have a substituent, but the carbon number does not include the carbon number of the substituent on the heterocyclic ring.
  • Examples of the monovalent heterocyclic group include thienyl group, C 1 -C 12 alkyl thienyl group, pyrrolyl group, furyl group, pyridyl group, C 1 -C 12 alkyl pyridyl group, piperidyl group, quinolyl group, isoquinolyl group and the like.
  • a monovalent aromatic heterocyclic group is preferable, and a thienyl group, a C 1 -C 12 alkyl thienyl group, a pyridyl group, and a C 1 -C 12 alkyl pyridyl group are more preferable.
  • the alkyl group, aryl group, arylalkyl group, acyl group, and monovalent heterocyclic group represented by R 2 are the same as those described and exemplified for R 1 .
  • the alkoxy group represented by R 2 may be linear, branched or cyclic, and usually has 1 to 30 carbon atoms and may have a substituent. The number of carbons does not include the number of carbons on the substituent.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, an n-pentyloxy group, and an isoamyloxy group. N-hexyloxy group, cyclohexyloxy group, n-heptyloxy group, n-octyloxy group and trifluoromethoxy group.
  • the aryloxy group represented by R 2 usually has 6 to 60 carbon atoms and may have a substituent. The number of carbons does not include the number of carbons on the substituent.
  • Examples of the aryloxy group include phenoxy group, C 1 -C 12 alkoxyphenoxy group, C 1 -C 12 alkylphenoxy group, pentafluorophenyloxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthra Examples include a senyloxy group, a 2-anthracenyloxy group, a 9-anthracenyloxy group, a biphenyloxy group, and a terphenyloxy group.
  • the arylalkoxy group represented by R 2 usually has 7 to 60 carbon atoms and may have a substituent. The number of carbons does not include the number of carbons on the substituent.
  • the arylalkoxy group is, for example, a phenyl-C 1 -C 12 alkoxy group such as a phenylmethoxy group, a phenylethoxy group, a phenylbutoxy group, a phenylpentyloxy group, a phenylhexyloxy group, a phenylheptyloxy group, or a phenyloctyloxy group.
  • C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group, 1-naphthyl-C 1 -C 12 alkoxy group, 2-naphthyl-C Examples include 1 to C 12 alkoxy groups.
  • the alkenyl group represented by R 2 has 2 to 30 carbon atoms and may have a substituent. The number of carbons does not include the number of carbons on the substituent.
  • Examples of the alkenyl group include a vinyl group, 1-propylenyl group, 2-propylenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, and cyclohexenyl group.
  • the arylalkenyl group represented by R 2 usually has 8 to 60 carbon atoms and may have a substituent. The number of carbons does not include the number of carbons on the substituent.
  • the arylalkenyl group for example, a phenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkenyl group, Examples include 1-naphthyl-C 2 -C 12 alkenyl group and 2-naphthyl-C 2 -C 12 alkenyl group.
  • the acyloxy group represented by R 2 usually has 2 to 30 carbon atoms and may have a substituent. The number of carbons does not include the number of carbons on the substituent.
  • Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
  • Heterocyclic oxy group represented by R 2 has the formula: Q 1 -O-, a group represented by (.
  • Q 1 is representative of a monovalent heterocyclic group), is the number of carbon atoms, usually 2 to 30.
  • the monovalent heterocyclic group represented by Q 1 is the same as described and exemplified as the monovalent heterocyclic group represented by R 1 .
  • carbon number of a substituent is not included in carbon number.
  • heterocyclic oxy group examples include thienyloxy group, C 1 -C 12 alkylthienyloxy group, pyrrolyloxy group, furyloxy group, pyridyloxy group, C 1 -C 12 alkylpyridyloxy group, imidazolyloxy group, and pyrazolyloxy group. , Triazolyloxy group, oxazolyloxy group, thiazoleoxy group, thiadiazoleoxy group.
  • Each oxy group is the same as described and exemplified for R 1 or R 2 .
  • the alkynyl group represented by R 15 has 2 to 30 carbon atoms and may have a substituent. The number of carbons does not include the number of carbons on the substituent.
  • Examples of the alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group, and cyclohexylethynyl group.
  • the arylalkynyl group represented by R 15 usually has 8 to 60 carbon atoms and may have a substituent. The number of carbons does not include the number of carbons on the substituent.
  • the arylalkynyl group for example, a phenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group, Examples thereof include a 1-naphthyl-C 2 -C 12 alkynyl group and a 2-naphthyl-C 2 -C 12 alkynyl group.
  • the amino group represented by R 15 is one or two groups selected from the group consisting of alkyl groups, aryl groups, arylalkyl groups and monovalent heterocyclic groups, even if they are unsubstituted amino groups. It may be a substituted amino group.
  • the alkyl group, aryl group, arylalkyl group, and monovalent heterocyclic group may have a substituent.
  • the amino group usually has 1 to 60 carbon atoms, not including the carbon number of the substituent, such as methylamino group, dimethylamino group, ethylamino group, diethylamino group, n-propyl group.
  • Amino group di (n-propyl) amino group, isopropylamino group, di (isopropyl) amino group, di (n-butyl) amino group, di (isobutyl) amino group, di (sec-butyl) amino group, di ( tert-butyl) amino group, dicyclohexylamino group, pyrrolidyl group, piperidyl group, phenylamino group, diphenylamino group, C 1 -C 12 alkoxyphenylamino group, di (C 1 -C 12 alkoxyphenyl) amino group, di ( C 1 -C 12 alkylphenyl) amino group.
  • the silyl group represented by R 15 is an unsubstituted silyl group, it is substituted with 1 to 3 groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group. It may be a silyl group.
  • the silyl group usually has 1 to 60 carbon atoms. Note that the alkyl group, aryl group, arylalkyl group, and monovalent heterocyclic group may have a substituent.
  • silyl group examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tri-isopropylsilyl group, dimethyl-isopropylsilylsilyl group, tert-butyldimethylsilyl group, triphenylsilyl group, tribenzylsilyl group, diphenyl Examples thereof include a methylsilyl group, a tert-butyldiphenylsilyl group, and a dimethylphenylsilyl group.
  • the monovalent heterocyclic group a monovalent aromatic heterocyclic group is preferable.
  • Examples of the halogen atom represented by R 15 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the carbamoyl group represented by R 15 usually has 1 to 30 carbon atoms and may have a substituent.
  • the number of carbons does not include the number of carbons on the substituent.
  • the carboxyl group represented by R 15 may be an unsubstituted carboxyl group or a carboxyl group substituted with an alkyl group, an aryl group, an arylalkyl group, or a monovalent heterocyclic group.
  • the carboxyl group usually has 2 to 30 carbon atoms.
  • Examples of the carboxyl group include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group, n -Pentyloxycarbonyl group, n-hexyloxycarbonyl group, cyclohexyloxycarbonyl group, n-heptyloxycarbonyl group, n-octyloxycarbonyl group, trifluoromethoxycarbonyl group.
  • the alkyl group, aryl group, arylalkyl group and monovalent heterocyclic group represented by R 4 are the same as those described and exemplified for R 1 .
  • Two R 4 may be bonded to each other to form a ring, but it is preferable not to form a ring.
  • E represents an integer of 0 to 6, preferably 2 e are not 6 at the same time, more preferably 0 or 1.
  • the compound containing a residue obtained by removing at least one hydrogen atom from the structure represented by the formula (1) is preferably a polymer compound (hereinafter referred to as “polymer compound of the present invention”). From the viewpoint of ease of synthesis and ease of control of the copolymerization ratio of the polymer compound, a polymer compound containing a repeating unit represented by the following formula (2) is preferable.
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent.
  • R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 3 also form a ring with each other, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an aryl Lucoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, carbamoyl group, monovalent heterocyclic group, heterocyclic oxy group, carboxyl group, Represents a nitro group or a cyano group, and these groups may have a substituent, and when there are a plurality of R 3 , they
  • a silyl group, a halogen atom, an acyl group, an acyloxy group, a carbamoyl group, a monovalent heterocyclic group, a heterocyclic oxy group, a carboxyl group, a nitro group, a cyano group, and a substituent that these groups may have are It is the same as the atom and group described as R 15 .
  • a represents an integer of 0 to 5, and is preferably 0.
  • the repeating unit represented by the formula (2) includes the following repeating units.
  • a polymer compound containing a repeating unit represented by the following formula (3) is preferable.
  • the polymer compound of the present invention preferably further contains a repeating unit represented by the following formula (4) from the viewpoint of luminance half life when used in a light emitting device.
  • Ar 1 represents an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • R 11 and R 12 are each independently a hydrogen atom, an alkyl group, An aryl group, a monovalent heterocyclic group, or a cyano group, which may have a substituent, n represents 0 or 1.
  • the arylene group represented by Ar 1 is usually an arylene group having 6 to 60 carbon atoms, such as a phenylene group (the following formulas 1 to 3), a naphthalenediyl group (the following formula 4-13), anthracenylene groups (formulas 14 to 19), biphenylene groups (formulas 20 to 25), terphenylene groups (formulas 26 to 28), and condensed ring compound groups (formulas 29 to 56).
  • a phenylene group the following formulas 1 to 3
  • a naphthalenediyl group the following formula 4-13
  • anthracenylene groups formulas 14 to 19
  • biphenylene groups formulas 20 to 25
  • terphenylene groups formulas 26 to 28
  • condensed ring compound groups formulas 29 to 56.
  • R represents a hydrogen atom, alkyl group, alkoxy group, aryl group, aryloxy group, arylalkyl group, arylalkoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group Represents a group, a halogen atom, an acyl group, an acyloxy group, a carbamoyl group, a monovalent heterocyclic group, a heterocyclic oxy group, a carboxyl group, a nitro group or a cyano group.
  • R ′ represents an alkyl group, an aryl group, or a monovalent heterocyclic group.
  • the carbon number of the arylene group does not include the carbon numbers of R and R ′.
  • the group and atom represented by R and R ′ have the same definition as described and exemplified as the group and atom represented by R 3 .
  • the divalent heterocyclic group represented by Ar 1 means the remaining atomic group obtained by removing two hydrogen atoms from the heterocyclic compound.
  • a divalent aromatic heterocyclic group is preferable.
  • the divalent heterocyclic group generally has 2 to 60 carbon atoms, and examples thereof include groups represented by the following formulae. The carbon number of the divalent heterocyclic group does not include the carbon number of R.
  • Divalent heterocyclic group containing nitrogen as a hetero atom pyridinediyl group (formula 57-62), diazaphenylene group (formula 63-66), quinolinediyl group (formula 67-81), quinoxalinediyl group (Formula 82 to 86), phenoxazine diyl group (formula 87), phenothiazinediyl group (formula 88), acridine diyl group (formula 89 to 90), bipyridyldiyl group (formula 91 to 93), phenanthroline Diyl groups (following formulas 94-96); Groups having a biphenyl structure containing a silicon atom, nitrogen atom, sulfur atom, selenium atom or the like as a hetero atom and having a bridge structure (the following formulas 97 to 126); 5-membered heterocyclic groups containing silicon atom, nitrogen atom, sulfur atom,
  • heteroatoms the following formulas 133 to 142
  • benzothiadiazole-4,7-diyl groups benzooxadiazole-4, 7-diyl group and the like
  • a 5-membered ring heterocyclic group containing a silicon atom, nitrogen atom, sulfur atom, selenium atom, etc. as a hetero atom and bonded to the ⁇ position of the hetero atom to form a dimer or oligomer (the following formulas 143, 144 );
  • a tricyclic group in which a condensed heterocyclic group containing a nitrogen atom, oxygen atom, sulfur atom or the like as a hetero atom and a benzene ring or a monocyclic heterocyclic group are bonded (the following formulas 152 to 157).
  • a ring and B ring each independently represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent.
  • a 2 represents a linking group.
  • An aromatic hydrocarbon ring is preferable as the A ring and the B ring.
  • Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, and an anthracene ring, and a benzene ring is preferable.
  • the linking group represented by A 2 is preferably —C (R 13 ) 2 —.
  • R 13 is as described later.
  • the repeating unit represented by the above formula (5) is preferably a repeating unit represented by the following formula (6).
  • R 13 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • Plural R 13 is, And may be the same or different, and two R 13 may be bonded to each other to form a ring.
  • the alkyl group, aryl group, arylalkyl group and monovalent heterocyclic group represented by R 13 are the same as those described and exemplified for R 1 . It is preferable that two R 13 do not form a ring.
  • the repeating unit represented by the above formula (6) is preferably a repeating unit in which R 13 is an alkyl group, an aryl group or an arylalkyl group from the viewpoint of device characteristics when used in a light-emitting device. From the viewpoint of solubility in the solvent, a repeating unit in which R 13 has an alkyl group having 4 or more carbon atoms is preferred.
  • the repeating unit represented by the above formula (6) includes repeating units represented by the following formula.
  • each of the repeating units represented by the above formulas (4), (5) and (6) may be contained alone or in combination of two or more.
  • the substituent on the repeating unit is preferably an alkyl group, an aryl group, or an arylalkyl group.
  • the polymer compound of the present invention is preferably a conjugated polymer from the viewpoint of charge injection / transport properties when formed into a thin film and device characteristics when used in a light emitting device.
  • the conjugated polymer means a polymer compound in which a delocalized ⁇ electron pair is present along the main chain skeleton of the polymer compound. Including high molecular compounds in which electron pairs participate in resonance.
  • repeating units may be linked with non-conjugated units within a range not impairing desired properties, and the non-conjugated units may be included in the repeating units.
  • the non-conjugated unit include one or a combination of two or more of the groups shown below.
  • Ar represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • the polymer compound of the present invention may be a random copolymer, a block copolymer or a graft copolymer, or a polymer compound having an intermediate structure thereof, for example, a random copolymer having a block property, Further, a polymer or a dendrimer having a branched main chain and having three or more terminal portions may be used.
  • the polymer compound of the present invention when used for production of a light-emitting element, and when another layer is laminated on the thin film containing the polymer compound by a coating method, the polymer compound has a crosslinkable group.
  • a crosslinkable group By having a crosslinkable group, it is possible to crosslink by treating with heat or light, so that a layer containing a polymer compound that has been crosslinked when the other layer is applied is prevented from dissolving in a solvent. As a result, it becomes easy to laminate.
  • the crosslinkable group include groups represented by the following formulas (Z-1) to (Z-12).
  • R C represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an aryl group.
  • R N is Represents an alkyl group, an aryl group, an arylalkyl group, an acyl group or a monovalent heterocyclic group, and the group represented by R C and R N may have a substituent.
  • a plurality of R C may be the same or different.
  • the repeating unit having a crosslinkable group may have one or two or more types.
  • the crosslinkable group is preferably a group represented by the above formulas (Z-1), (Z-2) and (Z-5), and more preferably when R C is a hydrogen atom.
  • the copolymerization ratio of the repeating unit having a crosslinkable group is 0.1 to 50 mol%, preferably 1 to 30 mol%, more preferably 3 to 20 mol% based on all repeating units. Mol%.
  • repeating unit When the polymer compound of the present invention includes a repeating unit having a crosslinkable group, examples of the repeating unit include the following repeating units.
  • the polymer compound of the present invention contains a repeating unit represented by the above formula (2)
  • the polymer compound of the present invention can be used in terms of device characteristics when used as a light emitting layer of a light emitting device.
  • the unit is preferably contained in an amount of 0.1 to 50 mol%, more preferably 0.5 to 30 mol% of all repeating units.
  • the ratio is 1 to 1 of all repeating units. 99.9 mol% is preferable, and 50 to 99.5 mol% is more preferable.
  • the ratio is 1 to 99.9 mol% of all repeating units is preferable, and 50 to 99.5 mol% is more preferable.
  • the polystyrene-equivalent number average molecular weight of the polymer compound of the present invention is preferably 2 ⁇ 10 3 to 1 ⁇ 10 8 , preferably 1 ⁇ 10 4 to 1 ⁇ 10 6 from the viewpoint of luminance half-life when a light emitting device is formed. More preferred.
  • the polymer compound of the present invention is a polymer compound having a repeating unit represented by the above formula (2) and a repeating unit represented by the above formula (4) from the viewpoint of color purity as a blue light emitting material.
  • the repeating unit represented by the above formula (2) and the repeating unit represented by the above formula (4), wherein n 0, and Ar 1 is an arylene group having 6 to 15 carbon atoms.
  • a polymer compound is preferred.
  • the total of the repeating unit represented by the above formula (2) and the repeating unit represented by the above formula (4) is preferably 95 mol% or more of all repeating units in the polymer compound. 99 mol% or more is more preferable, and 99.9 mol% or more is particularly preferable.
  • the compound of the present invention is a low molecular compound, for example, the following compounds can be mentioned.
  • the compound of the present invention is a polymer compound
  • the compounds shown in Table a below are mentioned, the compounds shown in Table b are preferred, the compounds shown in Table c are more preferred, and the compounds shown in Table d are particularly preferred preferable.
  • the compound shown in Table a is composed of the repeating unit represented by the formula (2), the repeating unit represented by the formula (4), and other repeating units. % (The total of all repeating units is 100 mol%).
  • the “other repeating unit” means one atomic group connecting a plurality of repeating units represented by the formulas (2) and (4).
  • the terminal group of the polymer compound is not included in the repeating unit.
  • the repeating unit represented by the formula (2) may be used alone or in combination of two or more.
  • the repeating unit represented by the formula (4) may be used alone or in combination of two or more.
  • the compound shown in Table b is composed of the repeating unit represented by the formula (3), the repeating unit represented by the formula (4), and other repeating units. % (The total of all repeating units is 100 mol%).
  • the “other repeating unit” means one atomic group connecting a plurality of repeating units represented by the formulas (3) and (4).
  • the terminal group of the polymer compound is not included in the repeating unit.
  • the repeating unit represented by the formula (3) may be used alone or in combination of two or more.
  • the repeating unit represented by the formula (4) may be used alone or in combination of two or more.
  • the compound shown in Table c is composed of the repeating unit represented by the formula (3), the repeating unit represented by the formula (5), and other repeating units, and each repeating unit is represented by the mole shown in the table. % (The total of all repeating units is 100 mol%).
  • the “other repeating unit” means one atomic group connecting a plurality of repeating units represented by the formulas (3) and (5).
  • the terminal group of the polymer compound is not included in the repeating unit.
  • the repeating unit represented by the formula (3) may be used alone or in combination of two or more.
  • the repeating unit represented by the formula (5) may be used alone or in combination of two or more.
  • the compound shown in Table d is composed of the repeating unit represented by the formula (3), the repeating unit represented by the formula (6), and other repeating units. % (The total of all repeating units is 100 mol%).
  • the “other repeating unit” means one atomic group connecting a plurality of repeating units represented by the formulas (3) and (6).
  • the terminal group of the polymer compound is not included in the repeating unit.
  • the repeating unit represented by the formula (3) may be used alone or in combination of two or more.
  • the repeating unit represented by the formula (6) may be used alone or in combination of two or more.
  • R1 is 0.1 to 100 mol%
  • the polymer compound of the present invention may be produced by any method.
  • the method for producing a polymer compound of the present invention includes polymerizing a compound represented by the following formula (7) to obtain a polymer compound having a repeating unit represented by the above formula (3), A method for producing a polymer compound having a repeating unit represented by the formula (3) can be exemplified.
  • the polymerization can be performed in the presence of a transition metal catalyst.
  • it can process with a terminal treating agent.
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent.
  • R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 3 also form a ring with each other, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an aryl Lucoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, carbamoyl group, monovalent heterocyclic group, heterocyclic oxy group, carboxyl group, Represents a nitro group or a cyano group, and these groups may have a substituent, and when there are a plurality of R 3 , they
  • X 1 may form a ring with each other, polymerization represents a group capable of participating.
  • plurality of X 1 may optionally be the same or different .a is , 0-5 .
  • Plurality of a representative of the may also be the same or different.
  • R 1 , R 2 , R 3 , and R 4 are the same as those described and exemplified for R 1 , R 2 , R 3 , and R 4 in the above formula (1) or formula (2). .
  • the group that can participate in the polymerization represented by X 1 represents a group that is partially or wholly eliminated during the condensation reaction, and includes a formyl group, a halogen atom, —B (OH) 2 , a borate ester residue, Examples include magnesium monohalide, stannyl group, alkylsulfonyloxy group, arylsulfonyloxy group, arylalkylsulfonyloxy group, sulfonium methyl group, phosphonium methyl group, phosphonate methyl group, and monohalogenated methyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint of ease of reaction control, a chlorine atom, a bromine atom, and an iodine atom are preferable, and a bromine atom. Is more preferable.
  • boric acid ester residues examples include dialkyl ester residues, diaryl ester residues, and diaryl alkyl ester residues, as well as groups represented by the following formulae.
  • Examples of the monohalogenated magnesium that can participate in polymerization include monochloromagnesium, monobromomagnesium, and monoiodomagnesium.
  • Examples of the sulfonium methyl group include groups represented by the following formula. -CH 2 S + Me 2 X - , -CH 2 S + Ph 2 X - (In the formula, X represents a halogen atom, and the same shall apply hereinafter.)
  • Examples of the phosphonium methyl group include groups represented by the following formula. -CH 2 P + Ph 3 X -
  • Examples of the phosphonate methyl group include groups represented by the following formula. —CH 2 PO (OR ′′) 2 (In the formula, R ′′ represents an alkyl group, an aryl group, or an arylalkyl group.)
  • Examples of the monohalogenated methyl group include a monofluorinated methyl group, a monochloromethyl group, a monobrominated methyl group, and a monoiodinated methyl group.
  • Examples of the polymerization method used for the polymerization in the presence of a transition metal include [3], [4], [11], [12], [13], [14], and [15] described later.
  • the amount of the transition metal catalyst used varies depending on the polymerization method, but is usually in the range of 0.0001 mol to 10 mol with respect to 1 mol of all monomers used for polymerization.
  • transition metal catalyst examples include a nickel catalyst and a palladium catalyst.
  • nickel catalyst examples include tetrakis (triphenylphosphine) nickel (0), bis (cyclooctadienyl) nickel (0), dichlorobis (triphenylphosphine) nickel (II), [1,3-bis (diphenylphosphine) Propane] dichloronickel (II), [1,1′-bis (diphenylphosphino) ferrocene] dichloronickel (II).
  • the palladium catalyst examples include palladium acetate, palladium [tetrakis (triphenylphosphine)], bis (tricyclohexylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, [1,1′-bis (diphenylphosphino) ferrocene] dichloro.
  • Palladium (II) is mentioned.
  • polymerization by Wittig reaction polymerization by Heck reaction, polymerization by Horner-Wadsworth-Emmons method, polymerization by Knoevenagel reaction, polymerization by Suzuki coupling reaction, polymerization method by Grignard reaction, method using Stille coupling, Ni Polymerization by (0) catalyst is preferable from the viewpoint of structure control, polymerization by Suzuki coupling reaction, polymerization by Grignard reaction, and polymerization by Ni (0) catalyst are from the viewpoint of availability of raw materials and operability of polymerization reaction. preferable.
  • the monomer may be dissolved in an organic solvent, if necessary, and reacted, for example, using an alkali or a suitable catalyst and not lower than the melting point of the organic solvent and not higher than the boiling point.
  • the organic solvent is preferably subjected to sufficient deoxygenation / dehydration treatment in order to suppress side reactions.
  • the reaction system is preferably an inert atmosphere, but the reaction is not limited to the reaction in a two-phase system with water such as the Suzuki coupling reaction.
  • the alkali and catalyst are sufficiently soluble in the solvent used for the reaction.
  • a method of adding alkali or catalyst slowly add the alkali or catalyst solution while stirring the reaction solution under an inert atmosphere such as argon or nitrogen, or slowly add the reaction solution to the alkali or catalyst solution. And a method of adding them.
  • the polymer compound of the present invention is preferably polymerized after purifying the monomer before polymerization by a method such as distillation, sublimation purification, recrystallization, etc., because the purity affects the luminescent properties. It is preferable to perform a purification treatment such as purification and fractionation by chromatography.
  • the polymer compound of the present invention when there are a plurality of monomers as raw materials, they may be mixed and reacted, or may be divided and mixed for reaction.
  • the reaction conditions will be described in more detail.
  • the reaction is carried out using an alkali equivalent to or more, preferably 1 to 3 equivalents of the functional group of the monomer.
  • the alkali include metal alcoholates such as potassium tert-butoxide, sodium tert-butoxide, sodium ethylate and lithium methylate, hydride reagents such as sodium hydride, amides such as sodium amide, and the like.
  • the solvent include N, N-dimethylformamide, tetrahydrofuran, dioxane, toluene and the like.
  • the reaction temperature is usually from room temperature to 150 ° C.
  • the reaction time is a time for which the reaction proceeds sufficiently, but is usually 5 minutes to 40 hours.
  • the concentration of the reaction is usually 0.1 to 20% by weight.
  • a monomer is reacted using a palladium catalyst in the presence of a base such as triethylamine.
  • a base such as triethylamine.
  • a solvent having a relatively high boiling point such as N, N-dimethylformamide or N-methylpyrrolidone is used, the reaction temperature is 80 to 160 ° C., and the reaction time is 1 to 100 hours.
  • a palladium catalyst such as palladium [tetrakis (triphenylphosphine)] or palladium acetate is used as a catalyst
  • an inorganic base such as potassium carbonate, sodium carbonate or barium hydroxide, triethylamine, tetraethylammonium hydroxy
  • An organic base such as Cd and an inorganic salt such as cesium fluoride are added in an equivalent amount or more, preferably 1 to 10 equivalents, relative to the monomer.
  • An inorganic salt may be used as an aqueous solution and reacted in a two-phase system.
  • the solvent examples include N, N-dimethylformamide, toluene, dimethoxyethane, tetrahydrofuran and the like.
  • the reaction temperature is preferably 50 to 160 ° C. The temperature may be raised to near the boiling point of the solvent and refluxed. The reaction time is 1 to 200 hours.
  • a halide and metal magnesium are reacted in an ether solvent such as tetrahydrofuran, diethyl ether, dimethoxyethane or the like to form a Grignard reagent solution, and a monomer solution prepared separately is mixed.
  • an ether solvent such as tetrahydrofuran, diethyl ether, dimethoxyethane or the like.
  • An example is a method in which a nickel catalyst or a palladium catalyst is added while paying attention to excessive reaction, and then the temperature is raised and the reaction is performed while refluxing.
  • the Grignard reagent is used in an equivalent amount or more, preferably 1 to 1.5 equivalents, relative to the monomer.
  • the compound that can be a raw material of the polymer compound of the present invention may be produced by any method.
  • a compound represented by the following formula (7-1) is used.
  • the low molecular weight compound having the structure represented by the formula (1) includes, for example, Suzuki coupling of a compound represented by the following formula (7-1) and boric acid or a borate ester compound, Grignard reagent and It can be synthesized by various coupling reactions such as Kumada coupling of, and Negishi coupling with a zinc reagent.
  • R 1, R 2, R 3, R 4 and a are, .X 2 wherein the same expression (8) represents a halogen atom.
  • Plurality of X 2 may be the same or different May be.
  • the halogen atom represented by X 2 is the same as that described and exemplified for X 1 above, but from the viewpoint of ease of synthesis, two X 2 are the same. It is preferable.
  • the compound represented by the above formula (7-1) can be produced, for example, by the following reactions 1) to 4).
  • Reaction 1) Synthesis of compound represented by formula (10) from compound represented by formula (12) and compound represented by formula (13)
  • Reaction 2 From compound represented by formula (10) Synthesis reaction of compound represented by formula (9) 3) Synthesis reaction of compound represented by formula (8) from compound represented by formula (9) 4) represented by formula (8)
  • the reaction 1) includes a compound represented by the following formula (12) and a compound represented by the following formula (13) in the presence of a transition metal catalyst and a base.
  • This is a synthesis reaction of the compound represented by (10).
  • R 3 is an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an alkynyl group, an arylalkynyl group, an amino group, a silyl group, a halogen atom, an acyl group, an acyloxy group, a carbamoyl group, a monovalent heterocyclic group, a heterocyclic oxy group, a carboxyl group, a nitro group or a cyano group, these groups may have a substituent group .
  • R 3 When there are a plurality of these, they may be the same or different, and R 4 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, and these groups are substituted there may.
  • R 4 is the same one .2 or different R 4 s may be bonded to each other to form a ring.
  • 3 is a chlorine atom.
  • Plurality of X 3 representing a bromine atom or an iodine atom, may be different even in the same .f, the.
  • Plurality of f represents an integer of 0 to 2, a same Or different.
  • R 3 is the same as the formula (12).
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group or a monovalent heterocyclic group
  • R 16 represents an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, and these groups may have a substituent
  • g is , Represents an integer of 0 to 4.
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent.
  • R 3 represents an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an alkynyl group, an aryl group.
  • R 4 is a hydrogen atom, an alkyl group, an aryl , Arylalkyl group or monovalent heterocyclic group, and these groups may have a substituent.
  • R 4 are the same one .2 or different R 4 s R 16 may be bonded to each other to form a ring, and R 16 represents an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of R 16 may be the same or different, a represents an integer of 0 to 5.
  • the plurality of a may be the same or different.
  • each group represented by R 1 , R 3 , R 4 , and R 16 and the integer of a are described in the formula (1) or (2). It is the same as illustrated.
  • f is an integer of 0 to 2, preferably 0.
  • g is an integer of 0 to 4, preferably 0.
  • Examples of the transition metal catalyst used in the reaction 1) include a palladium catalyst, a nickel catalyst, and a copper catalyst.
  • Reaction 1) can be performed, for example, under the Ullmann coupling conditions in the presence of a copper catalyst and a base. Reaction 1) can also be carried out under amination reaction conditions as described in Angelwandte Chemie, International Edition in England, (1995), 34 (12), 1348.
  • the reaction temperature of reaction 1) is 0 to 200 ° C., preferably room temperature to the boiling point of the solvent.
  • examples of the base used in the reaction 1) include strong inorganic bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate and the like.
  • the solvent used in the reaction 1) is preferably a high-boiling aprotic solvent, and examples thereof include pyridine, collidine, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, nitrobenzene and dioxane. These solvents can be used alone or in combination of two or more. Further, the reaction can be accelerated by adding a phase transfer catalyst or crown ether.
  • Reaction 2 is a synthesis reaction of the compound represented by the formula (9) by reacting the compound represented by the formula (10) with a compound represented by the following formula (11) or a reducing agent. .
  • R 17 represents an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group, an acyloxy group, a monovalent heterocyclic group or a heterocyclic group; Represents a ring oxy group, and M represents a lithium atom or a monohalogenated magnesium halide.
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent.
  • R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 3 also form a ring with each other, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an aryl Lucoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, carbamoyl group, monovalent heterocyclic group, heterocyclic oxy group, carboxyl group, Represents a nitro group or a cyano group, and these groups may have a substituent, and when there are a plurality of R 3 , they
  • the cyclic group and the heterocyclic oxy group are the same as those described and exemplified for R 1 in the formula (1). Among these, an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group are preferable.
  • M represents a lithium atom or a monohalogenated magnesium halide.
  • Magnesium monohalide represented by M are the same as those described and exemplified as the group capable of participating in polymerization of X 1 in the formula (7).
  • Examples of the reducing agent include lithium aluminum hydride and diisobutylaluminum hydride.
  • the equivalent of the compound represented by the formula (11) or the reducing agent is preferably 4 equivalents or more when R 1 in the compound represented by the formula (10) is a hydrogen atom.
  • the equivalent of the compound represented by the formula (11) or the reducing agent is 3 equivalents or more. preferable.
  • the equivalent of the compound represented by the formula (11) or the reducing agent is preferably 2 equivalents or more.
  • R 2 in the formula is preferably a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, more preferably an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocycle. It is a cyclic group.
  • Reaction 2 is preferably performed in an atmosphere of an inert gas such as argon or nitrogen.
  • Examples of the solvent used in the reaction 2) include saturated hydrocarbons such as pentane, hexane, heptane, octane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, ethylbenzene and xylene; dimethyl ether, diethyl ether, methyl-tert- Examples include ethers such as butyl ether, tetrahydrofuran, tetrahydropyran, and dioxane. These solvents may be used alone or in combination of two or more.
  • reaction temperature of reaction 2 is from ⁇ 100 ° C. to the boiling point of the solvent, preferably from ⁇ 80 ° C. to room temperature.
  • Reaction 3 is a synthesis reaction of the compound represented by the following formula (8) by reacting the compound represented by the formula (9) in the presence of an acid.
  • R 1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an acyl group, or a monovalent heterocyclic group, and these groups each optionally have a substituent.
  • R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an alkenyl group, an arylalkenyl group, an acyl group.
  • R 3 also form a ring with each other, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an aryl Lucoxy group, alkenyl group, arylalkenyl group, alkynyl group, arylalkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, carbamoyl group, monovalent heterocyclic group, heterocyclic oxy group, carboxyl group, Represents a nitro group or a cyano group, and these groups may have a substituent, and when there are a plurality of R 3 , they
  • the compound represented by the formula (9) is more preferably a compound represented by the following formula (9-1). (In the formula, R 1 , R 2 , R 3 , R 4 and a are the same as those in the formula (9).)
  • the acid used in reaction 3) may be a protonic acid or a Lewis acid.
  • the protic acid include sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid and p-toluenesulfonic acid, carboxylic acids such as formic acid, acetic acid, trifluoroacetic acid and propionic acid; sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid and the like Inorganic acids.
  • strong inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid are preferred.
  • Lewis acids include boron halides such as boron tribromide, boron trichloride, boron trifluoride ether complex; aluminum chloride, titanium trichloride, titanium tetrachloride, manganese chloride, iron (II) chloride, iron chloride (III), cobalt chloride, copper chloride (I), copper chloride (II), zinc chloride, aluminum bromide, titanium tribromide, titanium tetrabromide, manganese bromide, iron bromide (II), iron bromide Examples thereof include metal halides such as (III), cobalt bromide, copper (I) bromide, copper (II) bromide, and zinc bromide. These protonic acids and Lewis acids can be used alone or in combination of two or more.
  • the above acid may be used, but other solvents may be used.
  • the solvent to be used include saturated hydrocarbons such as pentane, hexane, heptane, octane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene; carbon tetrachloride, chloroform, dichloromethane, chlorobutane, bromobutane and chloropentane.
  • Halogenated saturated hydrocarbons such as bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane; halogenated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene; and nitro compounds such as nitromethane and nitrobenzene.
  • halogenated saturated hydrocarbons such as bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane
  • halogenated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene
  • nitro compounds such as nitromethane and nitrobenzene.
  • reaction temperature of reaction 3 is from ⁇ 100 ° C. to the boiling point of the solvent, preferably from 0 to 100 ° C.
  • Reaction 4 is a synthesis reaction of the compound represented by the formula (7-1) by reacting the compound represented by the formula (8) with a halogenating agent.
  • Reaction 4 is preferably performed in an atmosphere of an inert gas such as argon or nitrogen.
  • halogenating agent used in the reaction 4) examples include N-chlorosuccinimide, N-chlorophthalimide, N-bromosuccinimide, N-bromophthalimide, 4,4,5,5-tetramethyl, 1, N-halogeno compounds such as 3-dibromo-5,5-dimethylhydantoin, N-iodosuccinimide, N-iodophthalic acid imide; halogen elements such as chlorine and bromine; benzyltrimethylammonium tribromide, and N-halogeno compounds preferable.
  • Examples of the solvent used in the reaction 4) include saturated hydrocarbons such as pentane, hexane, heptane, octane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene; carbon tetrachloride, chloroform, dichloromethane, and chlorobutane.
  • Halogenated saturated hydrocarbons such as bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, and bromocyclohexane; halogenated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene, and trichlorobenzene; methanol, ethanol, propanol, Alcohols such as isopropanol, butanol, tert-butyl alcohol; carboxylic acids such as formic acid, acetic acid, propionic acid; dimethyl ether, diethyl ether, methyl-t ethers such as rt-butyl ether, tetrahydrofuran, tetrahydropyran, dioxane; amines such as trimethylamine, triethylamine, N, N, N ′, N′-tetramethylethylenediamine, pyridine; N, N-d
  • reaction temperature of reaction 4) is from ⁇ 100 ° C. to the boiling point of the solvent, preferably from ⁇ 20 to 50 ° C.
  • the composition of the present invention is a composition comprising (a) the compound of the present invention and (b) at least one material selected from the group consisting of a hole transport material, an electron transport material and a light emitting material.
  • the composition of the present invention can contain a solvent (the composition of the present invention containing a solvent is hereinafter referred to as a “liquid composition”. Generally, it is referred to as an ink or an ink composition. There is.)
  • the compound, hole transport material, electron transport material, light emitting material, and solvent of the present invention may be used singly or in combination of two or more.
  • the ratio of the total of the hole transport material, the electron transport material and the light emitting material and the compound of the present invention is such that the hole transport material and the electron transport material are 100 parts by weight of the compound of the present invention.
  • the total of the light emitting materials is usually 1 to 10,000 parts by weight, preferably 10 to 1000 parts by weight, and more preferably 20 to 500 parts by weight.
  • the ratio of the solvent in the liquid composition is usually 1 to 99.9% by weight, preferably 80 to 99.9% by weight, based on the total weight of the liquid composition.
  • the viscosity of the liquid composition varies depending on the printing method. However, when the liquid composition such as an ink jet printing method passes through a discharge device, the viscosity is 25 in order to prevent clogging and flight bending at the time of discharge. It is preferably 1 to 20 mPa ⁇ s at ° C.
  • the liquid composition may further contain an additive for adjusting viscosity and / or surface tension.
  • additives include high molecular weight compounds for increasing viscosity (hereinafter referred to as “thickeners”), poor solvents, low molecular weight compounds for decreasing viscosity, and surfactants for decreasing surface tension. Is mentioned.
  • the above thickener is not particularly limited as long as it is soluble in the same solvent as the compound of the present invention and does not inhibit light emission or charge transport.
  • examples thereof include high molecular weight polystyrene and polymethyl methacrylate.
  • a poor solvent can also be used as a thickener. That is, the viscosity can be increased by adding a small amount of a poor solvent for the solid content in the liquid composition.
  • the liquid composition of the present invention may contain an antioxidant in order to improve storage stability, for example, a compound that is soluble in the same solvent as the compound of the present invention and does not inhibit light emission or charge transport Phenolic antioxidants and phosphorus antioxidants are preferred.
  • solvent contained in the liquid composition examples include chlorinated solvents such as chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, and o-dichlorobenzene; ethers such as tetrahydrofuran, dioxane, and anisole.
  • chlorinated solvents such as chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, and o-dichlorobenzene
  • ethers such as tetrahydrofuran, dioxane, and anisole.
  • Solvents aromatic hydrocarbon solvents such as toluene and xylene; aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane Solvents; ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, benzophenone, acetophenone; ester solvents such as ethyl acetate, butyl acetate, ethyl cellosolve acetate, methyl benzoate, phenyl acetate; ethylene glycol, ethylene glycol monobutyl Ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, dimethoxyethane, propylene glycol, diethoxymethane, triethylene glycol monoethy
  • one of them may be in a solid state at 25 ° C.
  • one kind of solvent is preferably a solvent having a boiling point of 180 ° C. or higher, more preferably a solvent having a boiling point of 200 ° C. or higher, and a viewpoint of viscosity.
  • a solvent in which the compound is soluble is preferable.
  • the solvent having the highest boiling point is preferably 40 to 90% by weight with respect to the total weight of the three or more types of solvents from the viewpoint of viscosity and film formability. More preferably, it is 50 to 90% by weight.
  • the liquid composition may contain 1 to 1000 ppm (by weight) of water, metal and a salt thereof.
  • the metal include lithium, sodium, calcium, potassium, iron, copper, nickel, aluminum, zinc, chromium, manganese, cobalt, platinum, and iridium.
  • the liquid composition may contain 1 to 1000 ppm (by weight) of silicon, phosphorus, fluorine, chlorine and bromine.
  • the thin film of the present invention can be easily produced by a coating method such as a printing method, an offset printing method, and an ink jet printing method.
  • the thin film of the present invention is a thin film containing the compound of the present invention, and types thereof include a light-emitting thin film, a conductive thin film, and an organic semiconductor thin film.
  • the light-emitting thin film is useful when forming a light-emitting layer in the production of a light-emitting element described later.
  • the conductive thin film preferably has a surface resistance of 1 K ⁇ / ⁇ or less.
  • the conductive thin film of the present invention can increase electrical conductivity by doping with a Lewis acid, an ionic compound or the like.
  • the organic semiconductor thin film preferably has a higher electron mobility or hole mobility of 1 ⁇ 10 ⁇ 5 cm 2 / V / second or more.
  • An organic transistor can be formed by forming an organic semiconductor thin film on a Si substrate on which an insulating film such as SiO 2 and a gate electrode are formed, and forming a source electrode and a drain electrode with Au or the like.
  • the element of the present invention is an element comprising (a) an electrode composed of an anode and a cathode, and (b) an organic layer containing the compound of the present invention provided between the electrodes. (Hereinafter referred to as “the light-emitting element of the present invention”).
  • the light-emitting element of the present invention comprises a pair of electrodes composed of an anode and a cathode, and a thin film composed of a single layer (single layer type) or a plurality of layers (multilayer type) having a light emitting layer between the electrodes. At least one of the thin film layers contains the compound of the present invention.
  • the total content of the compound of the present invention in the thin film is usually 0.1 to 100% by weight, preferably 0.1 to 80% by weight, based on the weight of the entire light emitting layer.
  • the light emitting layer preferably contains the compound of the present invention as a light emitting material.
  • the thin film is a light emitting layer, and this light emitting layer contains the compound of the present invention.
  • the light emitting element of this invention is a multilayer type, it takes the following structures, for example.
  • the anode of the light emitting device of the present invention preferably has a work function of 4.5 eV or more.
  • a metal, an alloy, a metal oxide, an electrically conductive compound, or a mixture thereof can be used as an anode material.
  • Materials for the anode include conductive metal oxides such as tin oxide, zinc oxide, indium oxide and indium tin oxide (ITO), metals such as gold, silver, chromium and nickel, and these conductive metal oxides and metals And an inorganic conductive material such as copper iodide and copper sulfide, organic conductive materials such as polyanilines, polythiophenes (such as PEDOT) and polypyrrole, and a laminate of these with ITO.
  • conductive metal oxides such as tin oxide, zinc oxide, indium oxide and indium tin oxide (ITO)
  • ITO indium oxide and indium tin oxide
  • an inorganic conductive material such as copper iodide and
  • a metal, an alloy, a metal halide, a metal oxide, an electrically conductive compound, or a mixture thereof can be used.
  • materials used for the hole injection layer and the hole transport layer of the light emitting device of the present invention known materials can be used.
  • known materials can be used.
  • the hole injection layer and the hole transport layer may have a single layer structure composed of one or more of the materials, or a multilayer structure composed of a plurality of layers having the same composition or different compositions. May be.
  • Examples of materials used for the electron injection layer and the electron transport layer of the light emitting device of the present invention include, for example, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone.
  • the electron injection layer and the electron transport layer may have a single layer structure composed of one or more of the materials, or a multilayer structure composed of a plurality of layers having the same composition or different compositions. Good.
  • an insulator or a semiconductor inorganic compound can also be used as a material used for the electron injection layer and the electron transport layer. If the electron injection layer and the electron transport layer are made of an insulator or a semiconductor, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides can be used.
  • Preferred alkaline earth metal chalcogenides include CaO, BaO, SrO, BeO, BaS, and CaSe.
  • the semiconductor constituting the electron injection layer and the electron transport layer is selected from the group consisting of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb and Zn. And oxides, nitrides, and oxynitrides containing at least one kind of element. These oxides, nitrides, and oxynitrides may be used alone or in combination of two or more.
  • a reducing dopant may be added to the interface region with the thin film in contact with the cathode.
  • Reducing dopants include alkali metals, alkaline earth metal oxides, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metal oxides, alkaline earth metal Preference is given to at least one compound selected from the group consisting of halides, rare earth metal oxides, rare earth metal halides, alkali metal complexes, alkaline earth metal complexes and rare earth metal complexes.
  • the light emitting layer of the light emitting device of the present invention can inject holes from an anode or a hole injection layer when a voltage is applied, and can inject electrons from a cathode or an electron injection layer. It has a function of moving holes) by the force of an electric field, a field of recombination of electrons and holes, and a function of connecting this to light emission.
  • the light emitting layer of the light emitting device of the present invention preferably contains the compound of the present invention, and may contain a host material using the compound as a guest material.
  • Examples of the host material include those having a fluorene skeleton, those having a carbazole skeleton, those having a diarylamine skeleton, those having a pyridine skeleton, those having a pyrazine skeleton, those having a triazine skeleton, and having an arylsilane skeleton And the like.
  • the host material T1 (energy level of the lowest triplet excited state) is preferably larger than that of the guest material, and more preferably the difference is larger than 0.2 eV.
  • the host material may be a low molecular compound or a high molecular compound.
  • a light-emitting layer in which the host material is doped with the host material can be formed by mixing the host material and a light-emitting material such as the metal complex, or by performing co-evaporation.
  • the method for forming each layer includes a vacuum deposition method (resistance heating deposition method, electron beam method, etc.), sputtering method, LB method, molecular lamination method, coating method (casting method, spin coating method, Bar coating method, blade coating method, roll coating method, gravure printing, screen printing, inkjet printing method, etc.).
  • a vacuum deposition method resistance heating deposition method, electron beam method, etc.
  • sputtering method LB method
  • coating method (casting method, spin coating method, Bar coating method, blade coating method, roll coating method, gravure printing, screen printing, inkjet printing method, etc.).
  • coating method the compound of the present invention can be formed by dissolving a compound in a solvent to prepare a coating solution, and coating and drying the coating solution on a desired layer (or electrode).
  • the coating solution may contain a resin as a host material and / or a binder, and the resin can be dissolved in a solvent or dispersed.
  • a resin for example, polyvinyl carbazole
  • a conjugated polymer for example, a polyolefin-based polymer
  • polyvinyl chloride polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), hydrocarbon resin, ketone resin, phenoxy resin
  • Polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin can be selected according to the purpose.
  • the solution may contain an antioxidant and a viscosity modifier as optional components.
  • the compound of this invention can be used also for manufacture of a photoelectric element.
  • the photoelectric element include a photoelectric conversion element.
  • a photoelectric conversion element in which a layer containing the compound of the present invention is provided between two electrodes, at least one of which is transparent or translucent, is formed on a substrate.
  • a photoelectric element having a comb-shaped electrode formed on a layer containing the compound of the present invention can be given.
  • fullerene or carbon nanotubes may be mixed.
  • Examples of the method for producing a photoelectric conversion element include the method described in Japanese Patent No. 3146296.
  • a layer (thin film) containing the compound of the present invention is formed on a substrate having a first electrode, and then a photoelectric conversion element is produced.
  • Examples thereof include a method of forming the second electrode and a method of forming a layer (thin film) containing the compound of the present invention on a pair of comb-shaped electrodes formed on the substrate.
  • One of the first and second electrodes is transparent or translucent.
  • the light-emitting element of the present invention can be used as a backlight of a planar light source, a segment display device, a dot matrix display device, or a liquid crystal display device.
  • the planar anode and cathode may be arranged so as to overlap each other.
  • a segment type display element capable of displaying numbers, letters, simple symbols, etc. can be obtained by forming a pattern by any of these methods and arranging several electrodes so that they can be turned ON / OFF independently.
  • both the anode and the cathode may be formed in a stripe shape and arranged so as to be orthogonal to each other. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively or may be driven actively in combination with TFTs.
  • planar light emitting element is self-luminous and thin, and can be suitably used as a planar light source for a backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can be used as a curved light source or display device.
  • NMR, LC-MS, number average molecular weight, weight average molecular weight, ionization potential, and fluorescence wavelength were measured by the following methods, respectively.
  • the polystyrene-equivalent number average molecular weight and weight average molecular weight were determined by GPC (manufactured by Shimadzu Corporation, trade name: LC-10Avp). The measurement sample was dissolved in tetrahydrofuran to a concentration of about 0.5% by weight, 50 ⁇ L was injected into GPC, tetrahydrofuran was used as the mobile phase of GPC, and flowed at a flow rate of 0.6 mL / min, and the column was TSKgel.
  • Example 6 Synthesis of Polymer Compound 1 Under a nitrogen atmosphere, 0.533 g of 2,7-bis (1,3,2-dioxaborolan-2-yl) -9,9-di-n-octylfluorene, compound (V 1.660 g, 0.7 mg of dichlorobis (triphenylphosphine) palladium, 0.129 g of trioctylmethylammonium chloride (manufactured by Aldrich, trade name: Aliquat 336), and 20 ml of toluene were mixed and heated to 90 ° C. To the resulting mixture, 5.4 ml of a 17.5% by weight aqueous sodium carbonate solution was added dropwise and refluxed for 6 hours.
  • V 1.660 g 0.7 mg of dichlorobis (triphenylphosphine) palladium
  • trioctylmethylammonium chloride manufactured by Aldrich, trade name: Aliquat 336
  • the obtained toluene solution was dropped into 150 ml of methanol and stirred, and then the obtained precipitate was collected by filtration and dried to obtain 1.24 g of polymer compound 1 represented by the following formula.
  • the number average molecular weight in terms of polystyrene of the polymer compound 1 was 4.6 ⁇ 10 4 , and the weight average molecular weight was 1.0 ⁇ 10 5 .
  • n * represents the number of repeating units.
  • Synthesis Example 1 Synthesis of polymer compound 2 Under a nitrogen atmosphere, 2,7-bis (1,3,2-dioxaborolan-2-yl) -9,9-di-n-octylfluorene 2.101 g, 2,7 -Bis ⁇ (4-bromophenyl) (4-methylphenyl) amino ⁇ -9,9-di (n-octyl) fluorene 3.644 g, palladium acetate 2.7 mg, tris (o-tolyl) phosphine 29.6 mg, 0.517 g of trioctylmethylammonium chloride (manufactured by Aldrich, trade name: Aliquat336) and 40 ml of toluene were mixed and heated to 90 ° C.
  • the mixture was washed twice with 52 ml of water, twice with 52 ml of 3% by weight acetic acid aqueous solution and twice with 52 ml of water, and the resulting solution was dropped into 620 mL of methanol and collected by filtration to obtain a precipitate.
  • This precipitate was dissolved in 120 mL of toluene and purified by passing through a column in which activated alumina was spread on silica gel.
  • the obtained toluene solution was dropped into 620 ml of methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 2.80 g of polymer compound 2 represented by the following formula.
  • the polymer compound 2 had a polystyrene-equivalent number average molecular weight of 6.6 ⁇ 10 4 and a weight average molecular weight of 2.2 ⁇ 10 5 .
  • n * represents the number of repeating units.
  • Example 7 Synthesis of polymer compound 3 Under a nitrogen stream, 2,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9,9-bis ( 3-n-hexylphenyl) fluorene (synthesized according to the method described in WO2010-013723) 1.26 g, 2,7-dibromo-9,9-di (n-octyl) fluorene 0.19 g, 2,7-dibromo- 9,9-di (4-penten-1-yl) fluorene (synthesized according to the method described in WO2010-013723) 0.078 g, 2,7-dibromo-9,9-bis (bicyclo [4,2,0] Octa-1,3,5-trien-3-yl) fluorene (synthesized according to the method described in WO2008-38747) 0.090 g, compound (V) 1.69 g, palladium a
  • the polymer compound 3 had a polystyrene-equivalent number average molecular weight of 7.4 ⁇ 10 5 and a polystyrene-equivalent weight average molecular weight of 2.3 ⁇ 10 6 .
  • the number on the lower right of () represents the copolymerization ratio of each repeating unit, and n * represents the number of repeating units.
  • the number average molecular weight of polystyrene conversion of the high molecular compound 4 was 5.4 * 10 ⁇ 5 >, and the weight average molecular weight of polystyrene conversion was 1.1 * 10 ⁇ 6 >.
  • the number on the lower right of () represents the copolymerization ratio of each repeating unit, and n * represents the number of repeating units.
  • Example 8 Synthesis of polymer compound 5 The reaction was performed in a nitrogen-substituted glove box. In a 100 ml reaction vessel, 1.00 g of compound (V) and 0.45 g of 2,2′-bipyridyl were taken and dissolved in 45 ml of dehydrated tetrahydrofuran. After the temperature was raised to 60 ° C., 0.45 g of bis (1,5-cyclooctadiene) nickel (0) was added and stirred for 4 hours. In a 500 ml beaker, 43 ml of water, 43 ml of methanol, and 2 ml of 25 wt% aqueous ammonia were taken, and the reaction mass was poured into this solution while stirring.
  • polymer compound 5 represented by the following formula.
  • the polymer compound 5 had a polystyrene-equivalent number average molecular weight of 1.4 ⁇ 10 4 and a weight average molecular weight of 1.2 ⁇ 10 5 . (In the formula, n * represents the number of repeating units.)
  • Example 9 Synthesis of Polymer Compound 6 Under a nitrogen atmosphere, 2.393 g of the above compound (VI), 2,7-bis (1,3,2-dioxaborolan-2-yl) -9,9-di-n- 0.668 g of octylfluorene, 2.552 g of 2,7-dibromo-9,9-bis (3-n-hexylphenyl) fluorene (synthesized according to the method described in WO2010-13723), 0.897 g of the compound (V) and 50 ml of toluene was mixed.
  • the obtained toluene solution was poured into 1 L of methanol and stirred at room temperature for 30 minutes, and then the obtained solid was filtered and dried under vacuum.
  • the polymer compound 6 represented by the following formula was obtained. Obtained.
  • the polymer compound 6 had a polystyrene-equivalent number average molecular weight of 1.3 ⁇ 10 5 and a weight average molecular weight of 2.9 ⁇ 10 5 . (In the formula, the number on the lower right of () represents the copolymerization ratio of each repeating unit, and n * represents the number of repeating units.)
  • Synthesis Example 4 Synthesis of polymer compound 7 2,7-bis ⁇ (4-bromophenyl) (4-methylphenyl) amino ⁇ -9,9-di-n-octylfluorene was synthesized in place of compound (V). The compound was synthesized in the same manner as the polymer compound 6 except that 492 g was used. As a result, 3.86 g of polymer compound 7 represented by the following formula was obtained. The polymer compound 7 had a polystyrene-equivalent number average molecular weight of 1.6 ⁇ 10 5 and a weight average molecular weight of 4.9 ⁇ 10 5 . (In the formula, the number on the lower right of () represents the copolymerization ratio of each repeating unit, and n * represents the number of repeating units.)
  • Test Example 1 Evaluation of hole injection property and measurement of emission wavelength
  • the hole injection property was evaluated using an ionization potential as an index.
  • the ionization potential was measured according to the above (iv).
  • the measurement of the emission wavelength was performed according to the above (v), and the peak top ( ⁇ em) of the emission wavelength was determined.
  • the polymer compound 1 had a smaller absolute value of the measured ionization potential than the polymer compound 2. Therefore, the polymer compound 1 exhibits better hole injection properties than the polymer compound 2.
  • the polymer compound 1 showed a peak top ( ⁇ em) having a shorter emission wavelength than the polymer compound 2. Therefore, it can be evaluated that the polymer compound 1 exhibits a blue color with a higher color tone than the polymer compound 2.
  • Element Example 1 (1-1: Formation of hole injection layer)
  • the glass substrate on which the ITO anode was formed was subjected to UV ozone cleaning, and then the hole injection layer forming composition was applied onto the substrate, and a coating film having a film thickness of 60 nm was obtained by spin coating.
  • the substrate provided with this coating film was heated at 200 ° C. for 10 minutes to insolubilize the coating film, and then naturally cooled to room temperature to form a hole injection layer.
  • a PEDOT PSS aqueous solution (poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid, product name Baytron) available from Stark Vitec Co., Ltd. was used as the hole injection layer forming composition. .
  • Element Example 2 (HOD1-2) The hole transport material was operated in the same manner as in Example 1 except that a mixture of the polymer compound 3 and the polymer compound 4 having a weight ratio of 1: 1 was used instead of the polymer compound 3, and the hole single charge was A device (HOD1-2) was fabricated and evaluated. In this evaluation, when an electric field strength of 7 ⁇ 10 5 [V / cm 2 ] was applied to the device, no light emission due to current excitation was observed, and the electron current flowing in the device was It was confirmed that the amount was extremely small.
  • Element Example 3 (HOD1-3) The hole transport material was operated in the same manner as in Example 1 except that a mixture of the polymer compound 5 and the polymer compound 4 in a weight ratio of 1: 4 was used instead of the polymer compound 3, and the hole single charge was A device (HOD1-3) was fabricated and evaluated. In this evaluation, when an electric field strength of 7 ⁇ 10 5 [V / cm 2 ] was applied to the device, no light emission due to current excitation was observed, and the electron current flowing in the device was It was confirmed that the amount was extremely small.
  • HOD1-4 hole single charge device
  • Element Example 4 (HOD2-1) (2-1: Formation of hole injection layer)
  • the glass substrate on which the ITO anode was formed was subjected to UV ozone cleaning, and then the hole injection layer forming composition was applied onto the substrate, and a coating film having a film thickness of 60 nm was obtained by spin coating.
  • the substrate provided with this coating film was heated at 200 ° C. for 10 minutes to insolubilize the coating film, and then naturally cooled to room temperature to form a hole injection layer.
  • a PEDOT PSS aqueous solution (poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid, product name Baytron) available from Stark Vitec Co., Ltd. was used as the hole injection layer forming composition. .
  • the polymer compound 3 which is a hole transport material and xylene were mixed so that the ratio of the hole transport material was 0.8% by weight to obtain a composition for forming a hole transport layer.
  • the composition for forming a hole transport layer was applied by a spin coating method to obtain a coating film having a thickness of 20 nm.
  • the substrate provided with this coating film was heated at 180 ° C. for 60 minutes to insolubilize the coating film, and then naturally cooled to room temperature to form a hole transport layer.
  • HOD2-2 A hole single charge device (HOD2-2) was prepared and evaluated in the same manner as in Device Example 4 except that the polymer compound 4 was used instead of the polymer compound 3 as the hole transport material. In this evaluation, when an electric field strength of 7 ⁇ 10 5 [V / cm 2 ] was applied to the device, no light emission due to current excitation was observed, and the electron current flowing in the device was It was confirmed that the amount was extremely small.
  • HOD2-3 A hole single charge device (HOD2-3) was prepared and evaluated in the same manner as in Device Example 5 except that the polymer compound 7 was used instead of the polymer compound 6 as the light emitting material. In this evaluation, when an electric field strength of 7 ⁇ 10 5 [V / cm 2 ] was applied to the device, no light emission due to current excitation was observed, and the electron current flowing in the device was It was confirmed that the amount was extremely small.
  • the compound of the present invention has a high hole transporting property regardless of whether it is used for the hole transporting layer or the light emitting layer.
  • Element Example 6 (BPD1-1) (3-1: Formation of hole injection layer)
  • the glass substrate on which the ITO anode was formed was subjected to UV ozone cleaning, and then the hole injection layer forming composition was applied onto the substrate, and a coating film having a film thickness of 60 nm was obtained by spin coating.
  • the substrate provided with this coating film was heated at 200 ° C. for 10 minutes to insolubilize the coating film, and then naturally cooled to room temperature to form a hole injection layer.
  • PEDOT PSS aqueous solution (poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid, product name Baytron) available from Stark Vitec Co., Ltd. was used as the hole injection layer forming composition. .
  • the polymer compound 3 which is a hole transport material and xylene were mixed so that the ratio of the hole transport material was 0.8% by weight to obtain a composition for forming a hole transport layer.
  • a composition for forming a hole transport layer was applied by spin coating to obtain a coating film having a thickness of 20 nm.
  • the substrate provided with this coating film was heated at 180 ° C. for 60 minutes to insolubilize the coating film, and then naturally cooled to room temperature to form a hole transport layer.
  • the polymer compound 7 which is a light emitting polymer material and xylene were mixed so that the light emitting material was in a ratio of 1.4% by weight to form a composition for forming a light emitting layer.
  • a composition for forming a light emitting layer was applied, and the film thickness was determined by spin coating. An 80 nm coating film was obtained.
  • the substrate provided with this coating film was heated at 130 ° C. for 20 minutes to evaporate the solvent, and then naturally cooled to room temperature to form a light emitting layer.
  • Element Example 7 (BPD1-2) The light emitting device (BPD1) was operated in the same manner as in Device Example 6 except that a polymer compound 3 and a polymer compound 4 in a weight ratio of 1: 1 were used instead of the polymer compound 3 as the hole transport material. -2) was prepared and evaluated.
  • Element Example 8 (BPD1-3) The light emitting device (BPD1) was operated in the same manner as in Device Example 6, except that a polymer having a weight ratio of 1: 4 of the polymer compound 5 and the polymer compound 4 was used instead of the polymer compound 3 as the hole transport material. -3) was prepared and evaluated.
  • BPD1-4 A light emitting device (BPD1-4) was prepared and evaluated in the same manner as in Example 6 except that the polymer compound 4 was used instead of the polymer compound 3 as the hole transport material.
  • BPD2-2 A light emitting device (BPD2-2) was prepared in the same manner as in Device Example 9 except that a mixture of the polymer compound 5 and the polymer compound 7 having a weight ratio of 7:93 was used instead of the polymer compound 6 as the light emitting material. ) Were prepared and evaluated.
  • BPD2-3 A light emitting device (BPD2-3) was prepared in the same manner as in Device Example 9 except that a mixture of the compound (IV) and the polymer compound 7 having a weight ratio of 7:93 was used instead of the polymer compound 6 as the light emitting material. ) Were prepared and evaluated.
  • BPD2-4 A light emitting device (BPD2-4) was prepared and evaluated in the same manner as in Device Example 9, except that the polymer compound 3 was used instead of the polymer compound 4 as the hole transport material.
  • the compound of the present invention is useful as a material for light-emitting elements such as organic EL elements, and as a material for photoelectric elements such as solar cells.
  • the compounds of the present invention are also useful, for example, in display devices including compositions for the materials, liquid compositions, thin films (eg, light-emitting thin films, conductive thin films, semiconductor thin films), and light-emitting elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

 本発明は、有機EL素子等の素子への正孔注入性に優れた新規化合物を提供する。具体的には、本発明は、下記式(1): (式中、Rは、水素原子、アルキル基等を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基等を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基等を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。R15は、アルキル基等を表し、これらの基は置換基を有していてもよい。R15が複数ある場合、それらは、同一であっても異なっていてもよい。eは、0~6の整数を表す。複数あるeは、同一であっても異なっていてもよい。) で表される構造から少なくとも1つの水素原子を除いた残基を含む化合物を提供する。

Description

化合物及びそれを用いた有機エレクトロルミネッセンス素子
 本発明は、化合物及びその製造方法に関する。本発明はまた、化合物を含む、組成物、薄膜、及び有機エレクトロルミネッセンス素子(以下、「有機EL素子」と言う。)等の発光素子、並びにこのような発光素子を含む表示装置等に関する。
 近年、有機EL素子を用いたカラーディスプレイの開発が活発に進められており、有機EL素子に有用な発光材料や電荷輸送材料が種々検討されている。有機EL素子において、優れた正孔注入性を示す化合物を前記材料として用いると、その駆動電圧を低減できることが知られている。
 正孔注入性を示す化合物としては、例えば、2,7-ビス(4-メチル-4’-ブロモ-ジフェニルアミノ)-9,9-ジオクチルフルオレンを重合して得られる高分子化合物が報告されている(特許文献1)。
特表2007-512249号公報
 しかし、前記高分子化合物は、正孔注入性が十分ではない。
 そこで、本発明の目的は、優れた正孔注入性を示す化合物を提供することにある。
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、優れた正孔注入性を示す化合物等を開発することに成功し、本発明を完成するに至った。
 即ち、本発明は、以下のとおりである。
〔1〕下記式(1):
Figure JPOXMLDOC01-appb-C000023
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。R15は、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。R15が複数ある場合、それらは、同一であっても異なっていてもよい。eは、0~6の整数を表す。複数あるeは、同一であっても異なっていてもよい。)
で表される構造から少なくとも1つの水素原子を除いた残基を含む化合物。
〔2〕下記式(2):
Figure JPOXMLDOC01-appb-C000024
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
で表される繰返し単位を含む高分子化合物である、上記〔1〕の化合物。
〔3〕前記式(2)で表される繰返し単位が下記式(3):
Figure JPOXMLDOC01-appb-C000025
(式中、R、R、R、R及びaは、前記式(2)と同じ定義である。)
で表される繰返し単位である、上記〔2〕の化合物。
〔4〕さらに、下記式(4):
Figure JPOXMLDOC01-appb-C000026
(式中、Arは、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。R11及びR12はそれぞれ独立に、水素原子、アルキル基、アリール基、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。nは、0又は1を表す。)
で表される繰返し単位を含む、上記〔2〕又は〔3〕の化合物。
〔5〕前記式(4)で表される繰返し単位が下記式(5):
Figure JPOXMLDOC01-appb-C000027
(式中、A環及びB環はそれぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。Aは、連結基を表す。)
で表される繰返し単位である、上記〔4〕の化合物。
〔6〕前記式(5)で表される繰返し単位が下記式(6):
Figure JPOXMLDOC01-appb-C000028
(式中、R13は、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるR13は、同一であっても異なっていてもよい。2つのR13は、互いに結合して環を形成してもよい。)
で表される繰返し単位である、上記〔5〕の化合物。
〔7〕下記式(7):
Figure JPOXMLDOC01-appb-C000029
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。Xは、重合に関与し得る基を表す。複数あるXは、同一であっても異なっていてもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
で表される化合物を重合させて、
 下記式(3):
Figure JPOXMLDOC01-appb-C000030
(式中、R、R、R、R及びaは、前記式(7)と同じである。)
で表される繰返し単位を含む化合物を得ることを含む、式(3)で表される繰返し単位を含む化合物の製造方法。
〔8〕下記式(7):
Figure JPOXMLDOC01-appb-C000031
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。Xは、重合に関与し得る基を表す。複数あるXは、同一であっても異なっていてもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
で表される化合物。
〔9〕下記式(8):
Figure JPOXMLDOC01-appb-C000032
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
で表される化合物を、ハロゲン化剤と反応させて、
 下記式(7-1):
Figure JPOXMLDOC01-appb-C000033
(式中、R、R、R、R及びaは、前記式(8)と同じである。Xは、ハロゲン原子を表す。複数あるXは、同一であっても異なっていてもよい。)
で表される化合物を得ることを含む、式(7-1)で表される化合物の製造方法。
〔10〕下記式(8):
Figure JPOXMLDOC01-appb-C000034
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
で表される化合物。
〔11〕下記式(9):
Figure JPOXMLDOC01-appb-C000035
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
で表される化合物を、酸の存在下で反応させて、
 下記式(8):
Figure JPOXMLDOC01-appb-C000036
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
で表される化合物を得ることを含む、式(8)で表される化合物の製造方法。
〔12〕下記式(9):
Figure JPOXMLDOC01-appb-C000037
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
で表される化合物。
〔13〕下記式(10):
Figure JPOXMLDOC01-appb-C000038
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。
が複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。R16は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるR16は、同一であっても異なっていてもよい。aは、0~5の整数を表す。
複数あるaは、同一であっても異なっていてもよい。)
で表される化合物を、
 下記式(11):
Figure JPOXMLDOC01-appb-C000039
(式中、R17は、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表す。Mは、リチウム原子又はモノハロゲン化マグネシウムを表す。)
で表される化合物又は還元剤と反応させて、
 下記式(9):
Figure JPOXMLDOC01-appb-C000040
(式中、R、R2、R、R及びaは、前記式(10)と同じである。)
で表される化合物を得ることを含む、式(9)で表される化合物の製造方法。
〔14〕下記式(10):
Figure JPOXMLDOC01-appb-C000041
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。
が複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。R16は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるR16は、同一であっても異なっていてもよい。aは、0~5の整数を表す。
複数あるaは、同一であっても異なっていてもよい。)
で表される化合物。
〔15〕下記式(12):
Figure JPOXMLDOC01-appb-C000042
(式中、Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。Xは、塩素原子、臭素原子又はヨウ素原子を表す。複数あるXは、同一であっても異なっていてもよい。fは、0~2の整数を表す。複数あるfは、同一であっても異なっていてもよい。)
で表される化合物、及び
 下記式(13):
Figure JPOXMLDOC01-appb-C000043
(式中、Rは、前記式(12)と同じである。Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。R16は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。gは、0~4の整数を表す。

で表される化合物を、遷移金属触媒及び塩基の存在下で反応させて、
 下記式(10):
Figure JPOXMLDOC01-appb-C000044
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。
が複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。R16は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるR16は、同一であっても異なっていてもよい。aは、0~5の整数を表す。
複数あるaは、同一であっても異なっていてもよい。)
で表される化合物を得ることを含む、式(10)で表される化合物の製造方法。
〔16〕(a)上記〔1〕~〔6〕のいずれかの化合物と、(b)正孔輸送材料、電子輸送材料及び発光材料からなる群より選ばれる少なくとも1つの材料とを含む組成物。
〔17〕上記〔1〕~〔6〕のいずれかの化合物を含む液状組成物。
〔18〕上記〔1〕~〔6〕のいずれかの化合物を用いてなる薄膜。
〔19〕(a)陽極及び陰極からなる電極と、(b)該電極間に設けられた、上記〔1〕~〔6〕のいずれかの化合物を含む有機層とを用いてなる素子。
〔20〕上記〔19〕の素子を備える表示装置。
 本発明の化合物は、優れた正孔注入性を有する。したがって、本発明の化合物は、有機EL素子等の発光素子の材料、及びトランジスタ等の電子デバイスの材料として有用である。本発明の化合物はまた、例えば、前記材料となり得る組成物、液状組成物、薄膜(例えば、発光性薄膜、導電性薄膜、半導体薄膜)、及び発光素子等の素子を含む表示装置に有用である。本発明はまた、このような化合物の合成に利用できる化合物を提供する。
 以下、本発明を説明する。
 本明細書において、構造式中、Meはメチル基を表し、Phはフェニル基を表す。
 <化合物>
 本発明の化合物は下記式(1)で表される構造から少なくとも1つの水素原子を除いた残基を含む。本発明の化合物が高分子化合物である場合、当該残基の位置は、主鎖であっても、主鎖の末端であっても、側鎖であってもよい。
Figure JPOXMLDOC01-appb-C000045
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。R15は、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。R15が複数ある場合、それらは、同一であっても異なっていてもよい。eは、0~6の整数を表す。複数あるeは、同一であっても異なっていてもよい。)
 Rで表されるアルキル基は、直鎖、分岐又は環状のいずれでもよく、その炭素数が、通常、1~30であり、置換基を有していてもよい。ここで有していてもよい置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アシル基、アシルオキシ基、1価の複素環基、複素環オキシ基及びハロゲン原子が挙げられ、以下、同様である。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソアミル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、トリフルオロメチル基が挙げられる。
 Rで表されるアリール基は、芳香族炭化水素化合物から水素原子1個を除いた残りの原子団であり、縮合環を持つ基でも、2環性以上の基でもよい。アリール基は、置換基を有していてもよいが、炭素数には置換基の炭素数は含まれない。アリール基の炭素数は、通常、6~60であり、好ましくは6~30である。アリール基としては、例えば、フェニル基、C~C12アルコキシフェニル基(C~C12は、C~C12の直後に示す有機基の炭素数(ここでは、アルコキシフェニル基のうちのアルコキシ基中の炭素数)が1~12であることを示す。以下も同じである。)、C~C12アルキルフェニル基、ペンタフルオロフェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、ビフェニル基、ターフェニル基が挙げられ、有機溶媒への溶解性、素子特性、合成の行いやすさの観点からは、C~C12アルコキシフェニル基、C~C12アルキルフェニル基が好ましく、C~C12アルキルフェニル基が特に好ましい。
 Rで表されるアリールアルキル基は置換基を有していてもよいが、炭素数には置換基上の炭素数は含まれない。アリールアルキル基としては、その炭素数が、通常、7~60であり、例えば、フェニル-C~C12アルキル基、C~C12アルコキシフェニル-C~C12アルキル基、C~C12アルキルフェニル-C~C12アルキル基、1-ナフチル-C~C12アルキル基、2-ナフチル-C~C12アルキル基が挙げられる。
 Rで表されるアシル基は、その炭素数が、通常、2~30であり、置換基を有していてもよいが、炭素数には置換基上の炭素数は含まれない。アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基が挙げられる。
 Rで表される1価の複素環基は、複素環式化合物(即ち、環式構造を持つ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子等のヘテロ原子を環内に含む有機化合物である。)から水素原子1個を除いた残りの原子団をいう。1価の複素環基の炭素数は、通常、2~30であり、好ましくは2~15である。なお、1価の複素環基において、複素環は置換基を有していてもよいが、炭素数には、複素環上の置換基の炭素数は含まれない。1価の複素環基としては、チエニル基、C~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C~C12アルキルピリジル基、ピペリジル基、キノリル基、イソキノリル基等が挙げられ、1価の芳香族複素環基が好ましく、チエニル基、C~C12アルキルチエニル基、ピリジル基、C~C12アルキルピリジル基がより好ましい。
 Rで表されるアルキル基、アリール基、アリールアルキル基、アシル基、1価の複素環基はそれぞれ、Rで説明し例示したものと同じである。
 Rで表されるアルコキシ基は、直鎖、分岐又は環状のいずれでもよく、その炭素数が、通常、1~30であり、置換基を有していてもよい。炭素数には置換基上の炭素数は含まれない。アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソアミルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、トリフルオロメトキシ基が挙げられる。
 Rで表されるアリールオキシ基は、その炭素数が、通常、6~60であり、置換基を有していてもよい。炭素数には置換基上の炭素数は含まれない。アリールオキシ基としては、例えば、フェノキシ基、C~C12アルコキシフェノキシ基、C~C12アルキルフェノキシ基、ペンタフルオロフェニルオキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、2-アントラセニルオキシ基、9-アントラセニルオキシ基、ビフェニルオキシ基、ターフェニルオキシ基が挙げられる。
 Rで表されるアリールアルコキシ基は、その炭素数が、通常、7~60であり、置換基を有していてもよい。炭素数には置換基上の炭素数は含まれない。アリールアルコキシ基は、例えば、フェニルメトキシ基、フェニルエトキシ基、フェニルブトキシ基、フェニルペンチロキシ基、フェニルヘキシロキシ基、フェニルヘプチロキシ基、フェニルオクチロキシ基等のフェニル-C~C12アルコキシ基、C~C12アルコキシフェニル-C~C12アルコキシ基、C~C12アルキルフェニル-C~C12アルコキシ基、1-ナフチル-C~C12アルコキシ基、2-ナフチル-C~C12アルコキシ基が挙げられる。
 Rで表されるアルケニル基は、その炭素数が2~30であり、置換基を有していてもよい。炭素数には置換基上の炭素数は含まれない。アルケニル基としては、例えば、ビニル基、1-プロピレニル基、2-プロピレニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、シクロヘキセニル基が挙げられる。
 Rで表されるアリールアルケニル基は、その炭素数が、通常、8~60であり、置換基を有していてもよい。炭素数には置換基上の炭素数は含まれない。アリールアルケニル基としては、例えば、フェニル-C~C12アルケニル基、C~C12アルコキシフェニル-C~C12アルケニル基、C~C12アルキルフェニル-C~C12アルケニル基、1-ナフチル-C~C12アルケニル基、2-ナフチル-C~C12アルケニル基が挙げられる。
 Rで表されるアシルオキシ基は、その炭素数が、通常、2~30であり、置換基を有していてもよい。炭素数には置換基上の炭素数は含まれない。アシルオキシ基としては、例えば、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基が挙げられる。
 Rで表される複素環オキシ基は、式:Q-O-で表される基(式中、Qは1価の複素環基を表す。)であり、その炭素数が、通常、2~30である。Qで表される1価の複素環基は、Rで表される1価の複素環基として説明し例示したものと同じである。
なお、複素環オキシ基上に置換基を有していてもよいが、炭素数には、置換基の炭素数は含まれない。複素環オキシ基としては、例えば、チエニルオキシ基、C~C12アルキルチエニルオキシ基、ピロリルオキシ基、フリルオキシ基、ピリジルオキシ基、C~C12アルキルピリジルオキシ基、イミダゾリルオキシ基、ピラゾリルオキシ基、トリアゾリルオキシ基、オキサゾリルオキシ基、チアゾールオキシ基、チアジアゾールオキシ基が挙げられる。
 R15で表されるアルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基、及び複素環オキシ基はそれぞれ、R又はRで説明し例示したものと同じである。
 R15で表されるアルキニル基は、その炭素数が2~30であり、置換基を有していてもよい。炭素数には置換基上の炭素数は含まれない。アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、ヘプチニル基、オクチニル基、シクロヘキシルエチニル基が挙げられる。
 R15で表されるアリールアルキニル基は、その炭素数が、通常、8~60であり、置換基を有していてもよい。炭素数には置換基上の炭素数は含まれない。アリールアルキニル基としては、例えば、フェニル-C~C12アルキニル基、C~C12アルコキシフェニル-C~C12アルキニル基、C~C12アルキルフェニル-C~C12アルキニル基、1-ナフチル-C~C12アルキニル基、2-ナフチル-C~C12アルキニル基が挙げられる。
 R15で表されるアミノ基は、無置換のアミノ基であっても、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選ばれる1個又は2個の基で置換されたアミノ基であってもよい。該アルキル基、アリール基、アリールアルキル基、1価の複素環基は、置換基を有していてもよい。前記アミノ基としては、その炭素数が、該置換基の炭素数を含めないで、通常、1~60であり、例えば、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、n-プロピルアミノ基、ジ(n-プロピル)アミノ基、イソプロピルアミノ基、ジ(イソプロピル)アミノ基、ジ(n-ブチル)アミノ基、ジ(イソブチル)アミノ基、ジ(sec-ブチル)アミノ基、ジ(tert-ブチル)アミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、フェニルアミノ基、ジフェニルアミノ基、C~C12アルコキシフェニルアミノ基、ジ(C~C12アルコキシフェニル)アミノ基、ジ(C~C12アルキルフェニル)アミノ基が挙げられる。
 R15で表されるシリル基は、無置換のシリル基であっても、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選ばれる1~3個の基で置換されたシリル基であってもよい。シリル基は、その炭素数が、通常、1~60である。なお、該アルキル基、アリール基、アリールアルキル基、1価の複素環基は、置換基を有していてもよい。シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリ-イソプロピルシリル基、ジメチル-イソプロピリシリル基、tert-ブチルジメチルシリル基、トリフェニルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert-ブチルジフェニルシリル基、ジメチルフェニルシリル基が挙げられる。1価の複素環基としては、1価の芳香族複素環基が好ましい。
 R15で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 R15で表されるカルバモイル基としては、その炭素数が、通常、1~30であり、置換基を有していてもよい。炭素数には置換基上の炭素数は含まれない。例えば、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基が挙げられる。
 R15で表されるカルボキシル基は、無置換のカルボキシル基であっても、アルキル基、アリール基、アリールアルキル基又は1価の複素環基で置換されたカルボキシル基であってもよい。カルボキシル基は、その炭素数が、通常、2~30である。カルボキシル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、n-ペンチルオキシカルボニル基、n-ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、n-ヘプチルオキシカルボニル基、n-オクチルオキシカルボニル基、トリフルオロメトキシカルボニル基が挙げられる。
 Rで表されるアルキル基、アリール基、アリールアルキル基及び1価の複素環基はそれぞれ、Rで説明し例示したものと同じである。2つのRは互いに結合して環を形成してもよいが、環を形成しないことが好ましい。
 eは、0~6の整数を表し、好ましくは、2つのeが同時に6ではない場合であり、より好ましくは0又は1の場合である。
 前記式(1)で表される構造から少なくとも1つの水素原子を除いた残基を含む化合物は、高分子化合物であること(以下、「本発明の高分子化合物」と言う。)が好ましく、合成の容易さ、高分子化合物の共重合比の制御のし易さの観点から、下記式(2)で表される繰返し単位を含む高分子化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000046
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
 前記式(2)中、Rで表されるアルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基及びシアノ基、並びにこれらの基が有し得る置換基は、前記R15として説明した原子、基と同じである。aは、0~5の整数を表し、好ましくは0である。
 前記式(2)で表される繰返し単位としては、以下の繰返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
 前記式(2)で表される繰返し単位を含む高分子化合物の中でも、下記式(3)で表される繰返し単位を含む高分子化合物が好ましい。
Figure JPOXMLDOC01-appb-C000052
(式中、R、R、R、R及びaは、前記式(2)と同じ定義である。)
 本発明の高分子化合物は、発光素子に用いた時の輝度半減寿命の観点から、更に下記式(4)で表される繰返し単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000053
(式中、Arは、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。R11及びR12はそれぞれ独立に、水素原子、アルキル基、アリール基、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。nは、0又は1を表す。)
 上記式(4)中、Arで表されるアリーレン基としては、通常、炭素数が6~60のアリーレン基であり、例えば、フェニレン基(下式1~3)、ナフタレンジイル基(下式4~13)、アントラセニレン基(下式14~19)、ビフェニレン基(下式20~25)、ターフェニレン基(下式26~28)、縮合環化合物基(下式29~56)が挙げられる。これらの式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表す。R’は、アルキル基、アリール基又は1価の複素環基を表す。なお、アリーレン基の炭素数には、R及びR’の炭素数は含まない。R及びR’で表される基及び原子は、Rで表される基及び原子として説明し例示したものと同じ定義である。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
 上記式(4)中、Arで表される2価の複素環基は、複素環式化合物から水素原子2個を除いた残りの原子団を意味する。2価の複素環基としては、2価の芳香族複素環基が好ましい。また、2価の複素環基としては、その炭素数が、通常、2~60であり、例えば、以下の式で表される基が挙げられる。なお、2価の複素環基の炭素数には、Rの炭素数は含まない。
 ヘテロ原子として、窒素を含む2価の複素環基:ピリジンジイル基(下式57~62)、ジアザフェニレン基(下式63~66)、キノリンジイル基(下式67~81)、キノキサリンジイル基(下式82~86)、フェノキサジンジイル基(下式87)、フェノチアジンジイル基(下式88)、アクリジンジイル基(下式89~90)、ビピリジルジイル基(下式91~93)、フェナントロリンジイル基(下式94~96);
 ヘテロ原子としてけい素原子、窒素原子、硫黄原子、セレン原子等を含み架橋したビフェニル構造を有する基(下式97~126);
 ヘテロ原子としてけい素原子、窒素原子、硫黄原子、セレン原子等を含む5員環複素環基(下式127~132);
 ヘテロ原子としてけい素原子、窒素原子、硫黄原子、セレン原子等を含む5員環縮合複素環基(下式133~142)、ベンゾチアジアゾール-4,7-ジイル基やベンゾオキサジアゾール-4,7-ジイル基等;
 ヘテロ原子としてけい素原子、窒素原子、硫黄原子、セレン原子等を含む5員環複素環基でそのヘテロ原子のα位で結合し2量体やオリゴマーになっている基(下式143、144);
 ヘテロ原子としてけい素原子、窒素原子、硫黄原子、セレン原子等を含む5員環複素環基でそのヘテロ原子のα位でフェニル基に結合している基(下式145~151);
 ヘテロ原子として窒素原子、酸素原子、硫黄原子等を含む縮合した複素環基とベンゼン環又は単環性の複素環基とが結合した3環性の基(下式152~157)。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
 上記式(4)中、R11及びR12で表されるアルキル基、アリール基、1価の複素環基はそれぞれ、Rで説明し例示したものと同じである。
 上記式(4)で表される繰返し単位としては、n=0の繰返し単位が好ましく、高分子化合物の安定性の観点から、より好ましくはn=0であり、かつ、Arがアリーレン基又は2価の芳香族複素環基の繰返し単位であり、特に好ましくは下記式(5)で表される繰返し単位である。
Figure JPOXMLDOC01-appb-C000074
(式中、A環及びB環はそれぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。Aは、連結基を表す。)
 A環及びB環としては、芳香族炭化水素環が好ましい。この芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環が挙げられ、ベンゼン環が好ましい。
 Aで表される連結基としては、-C(R13-が好ましい。R13は、後述するとおりである。
 上記式(5)で表される繰返し単位としては、下記式(6)で表される繰返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000075
(式中、R13は、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるR13は、同一であっても異なっていてもよい。2つのR13は、互いに結合して環を形成してもよい。)
 上記式(6)中、R13で表されるアルキル基、アリール基、アリールアルキル基及び1価の複素環基は、Rで説明し例示したものと同じである。2つのR13は環を形成しないことが好ましい。
 上記式(6)で表される繰返し単位としては、発光素子に用いた時の素子特性の観点からは、R13がアルキル基、アリール基又はアリールアルキル基である繰返し単位が好ましく、高分子化合物の溶媒への溶解性の観点からは、R13が炭素数4以上のアルキル基を有する繰返し単位が好ましい。
 上記式(6)で表される繰返し単位としては、以下の式で表される繰返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
 本発明の高分子化合物において、上記式(4)、(5)、(6)で表される繰返し単位は、各々、一種のみ含まれていても二種以上含まれていてもよい。
 本発明の高分子化合物において、青色材料としての色純度の観点からは、前記式(1)で表される構造から少なくとも1つの水素原子を除いた残基、前記式(4)で表される繰返し単位上の置換基は、アルキル基、アリール基、アリールアルキル基が好ましい。
 本発明の高分子化合物は、薄膜にした時の電荷注入・輸送性、発光素子に用いた時の素子特性の観点から、共役系高分子が好ましい。ここで、共役系高分子とは、高分子化合物の主鎖骨格に沿って非局在π電子対が存在している高分子化合物を意味するが、二重結合に代えて不対電子又は孤立電子対が共鳴に加わる高分子化合物を含む。
 本発明の高分子化合物において、所期の特性を損なわない範囲で、繰返し単位同士が非共役の単位で連結されていてもよいし、繰返し単位に当該非共役の単位が含まれていてもよい。非共役の単位としては、以下に示す基を一種、又は二種以上組み合わせたものが挙げられる。
Figure JPOXMLDOC01-appb-C000082
(式中、R及びR’は前記と同じである。Arは芳香族炭化水素基又は芳香族複素環基を表す。)
 本発明の高分子化合物は、ランダム共重合体、ブロック共重合体又はグラフト共重合体でも、それらの中間的な構造を有する高分子化合物、例えば、ブロック性を帯びたランダム共重合体でもよく、さらに、主鎖に枝分かれがあり、末端部が3個以上ある重合体、デンドリマーでもよい。
 本発明の高分子化合物を発光素子の作製に用いる場合であって、該高分子化合物を含む薄膜上に塗布法で別の層を積層するときは、該高分子化合物が架橋性基を有することが好ましい。架橋性基を有することにより、熱や光で処理することで架橋させることができるので、前記別の層を塗布した時に架橋させた高分子化合物を含む層が溶媒への溶解するのを防ぐことができ、その結果、積層し易くなる。前記架橋性基としては、下記式(Z-1)~(Z-12)で表される基が例示される。
Figure JPOXMLDOC01-appb-C000083
〔式(Z-1)~(Z-12)中、RCは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、シアノ基又はニトロ基を表し、RNは、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、RC及びRNで表される基は、置換基を有していてもよい。複数存在するRCは、同一であっても異なっていてもよい。〕    
 前記式(Z-2)中の下記式:
Figure JPOXMLDOC01-appb-C000084
で表される波線の存在する二重結合は、E体及びZ体のいずれでもよいことを表す。
 本発明の高分子化合物が架橋性基を有する繰返し単位を含む場合、前記架橋性基を有する繰返し単位は単独で有していてもよいし、2種類以上有していてもよい。架橋性基として好ましくは、前記式(Z-1)、(Z-2)及び(Z-5)で表される基であり、RCが水素原子である場合、より好ましい。
 通常、該架橋性基を有する繰返し単位の共重合比としては、全ての繰返し単位に対し、0.1~50モル%であり、好ましくは1~30モル%であり、より好ましくは3~20モル%である。
 本発明の高分子化合物が架橋性基を有する繰返し単位を含む場合、該繰返し単位としては以下の繰り返し単位が例示される。
Figure JPOXMLDOC01-appb-C000085
 本発明の高分子化合物が、上記式(2)で表される繰返し単位を含む場合、本発明の高分子化合物において、発光素子の発光層として用いたときの素子特性の観点からは、該繰返し単位を、全繰返し単位の0.1~50モル%含むことが好ましく、0.5~30モル%含むことがより好ましい。
 また、本発明の高分子化合物を発光素子の発光層として用いたときの素子特性の観点から、上記式(4)で表される繰返し単位を含む場合、その割合は、全繰返し単位の1~99.9モル%が好ましく、50~99.5モル%がより好ましい。
 さらに、本発明の高分子化合物を発光素子の発光層として用いたときの素子特性の観点、発光色の調整の観点から、上記式(6)で表される繰返し単位を含む場合、その割合は、全繰返し単位の1~99.9モル%が好ましく、50~99.5モル%がより好ましい。
 本発明の高分子化合物のポリスチレン換算の数平均分子量は、発光素子にした時の輝度半減寿命の観点から、2×10~1×10が好ましく、1×10~1×10がより好ましい。
 本発明の高分子化合物は、青色発光材料としての色純度の観点からは、上記式(2)で表される繰返し単位と、上記式(4)で表される繰返し単位とを有する高分子化合物が好ましく、上記式(2)で表される繰返し単位と、上記式(4)で表される繰返し単位であって、n=0であり、かつ、Arが炭素数6~15のアリーレン基である高分子化合物が好ましい。その中でも、上記式(2)で表される繰返し単位と、上記式(4)で表される繰返し単位との合計が、高分子化合物中の全繰返し単位の95モル%以上であることが好ましく、99モル%以上であることがより好ましく、99.9モル%以上であることが特に好ましい。
 本発明の化合物が低分子化合物である場合、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000086
 本発明の化合物が高分子化合物である場合、例えば、以下の表aに示す化合物が挙げられるが、表bに示す化合物が好ましく、表cに示す化合物がより好ましく、表dに示す化合物が特に好ましい。
 表aに示す化合物は、前記式(2)で表される繰返し単位、前記式(4)で表される繰返し単位、及び、その他の繰返し単位からなり、各繰返し単位を、表中に示すモル%(全ての繰返し単位の合計は100モル%である。)で含有する高分子化合物である。ここで、「その他の繰返し単位」とは、前記式(2)、(4)で表される繰返し単位の複数を連結する1原子団を意味する。ただし、高分子化合物の末端基は繰返し単位に含めない。前記式(2)で表される繰返し単位は、1種又は2種以上を組み合わせて使用してもよい。前記式(4)で表される繰返し単位は、1種又は2種以上を組み合わせて使用してもよい。
 前記高分子化合物を正孔注入層又は正孔輸送層として用いる場合、EP1が好ましく、EP2がより好ましい。
 前記高分子化合物を発光層として用いる場合、EP2が好ましく、EP3がより好ましく、EP4が特に好ましい。
Figure JPOXMLDOC01-appb-T000087
 表bに示す化合物は、前記式(3)で表される繰返し単位、前記式(4)で表される繰返し単位、及び、その他の繰返し単位からなり、各繰返し単位を、表中に示すモル%(全ての繰返し単位の合計は100モル%である。)で含有する高分子化合物である。ここで、「その他の繰返し単位」とは、前記式(3)、(4)で表される繰返し単位の複数を連結する1原子団を意味する。ただし、高分子化合物の末端基は繰返し単位に含めない。前記式(3)で表される繰返し単位は、1種又は2種以上を組み合わせて使用してもよい。前記式(4)で表される繰返し単位は、1種又は2種以上を組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-T000088
 表cに示す化合物は、前記式(3)で表される繰返し単位、前記式(5)で表される繰返し単位、及び、その他の繰返し単位からなり、各繰返し単位を、表中に示すモル%(全ての繰返し単位の合計は100モル%である。)で含有する高分子化合物である。ここで、「その他の繰返し単位」とは、前記式(3)、(5)で表される繰返し単位の複数を連結する1原子団を意味する。ただし、高分子化合物の末端基は繰返し単位に含めない。前記式(3)で表される繰返し単位は、1種又は2種以上を組み合わせて使用してもよい。前記式(5)で表される繰返し単位は、1種又は2種以上を組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-T000089
 表dに示す化合物は、前記式(3)で表される繰返し単位、前記式(6)で表される繰返し単位、及び、その他の繰返し単位からなり、各繰返し単位を、表中に示すモル%(全ての繰返し単位の合計は100モル%である。)で含有する高分子化合物である。ここで、「その他の繰返し単位」とは、前記式(3)、(6)で表される繰返し単位の複数を連結する1原子団を意味する。ただし、高分子化合物の末端基は繰返し単位に含めない。前記式(3)で表される繰返し単位は、1種又は2種以上を組み合わせて使用してもよい。前記式(6)で表される繰返し単位は、1種又は2種以上を組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-T000090
 以下、表d中のEP13、EP14、EP15、EP16の高分子化合物の好ましい例を示す。なお、構造式の右側に付した数字は、各繰返し単位の比率(モル比)を表す。
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r1+r2=100モル%である。)
Figure JPOXMLDOC01-appb-C000096
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r1+r2=100モル%である。)
Figure JPOXMLDOC01-appb-C000097
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r1+r2=100モル%である。)
Figure JPOXMLDOC01-appb-C000098
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r1+r2=100モル%である。)
Figure JPOXMLDOC01-appb-C000099
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r1+r2=100モル%である。)
Figure JPOXMLDOC01-appb-C000100
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r1+r2=100モル%である。)
Figure JPOXMLDOC01-appb-C000101
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r1+r2=100モル%である。)
Figure JPOXMLDOC01-appb-C000102
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r1+r2=100モル%である。)
Figure JPOXMLDOC01-appb-C000103
(r1は0.1~100モル%であり、r2-1及びr2-2はそれぞれ独立に0~99.9モル%であり、r1+(r2-1)+(r2-2)=100モル%である。)
Figure JPOXMLDOC01-appb-C000104
(r1は0.1~100モル%であり、r2-1及びr2-2はそれぞれ独立に0~99.9モル%であり、r1+(r2-1)+(r2-2)=100モル%である。)
Figure JPOXMLDOC01-appb-C000105
(r1は0.1~100モル%であり、r2-1及びr2-2はそれぞれ独立に0~99.9モル%であり、r1+(r2-1)+(r2-2)=100モル%である。)
Figure JPOXMLDOC01-appb-C000106
(r1は0.1~100モル%であり、r2-1及びr2-2はそれぞれ独立に0~99.9モル%であり、r1+(r2-1)+(r2-2)=100モル%である。)
Figure JPOXMLDOC01-appb-C000107
(r1は0.1~100モル%であり、r2-1、r2-2及びr2-3はそれぞれ独立に0~99.9モル%であり、r1+(r2-1)+(r2-2)+(r2-3)=100モル%である。)
Figure JPOXMLDOC01-appb-C000108
(r1は0.1~100モル%であり、r2-1、r2-2、r2-3及びr2-4はそれぞれ独立に0~99.9モル%であり、r1+(r2-1)+(r2-2)+(r2-3)+(r2-4)=100モル%である。)
Figure JPOXMLDOC01-appb-C000109
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r3は0~50モル%であり、r1+r2+r3=100モル%である。)
Figure JPOXMLDOC01-appb-C000110
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r3は0~50モル%であり、r1+r2+r3=100モル%である。)
Figure JPOXMLDOC01-appb-C000111
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r3は0~50モル%であり、r1+r2+r3=100モル%である。)
Figure JPOXMLDOC01-appb-C000112
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r3は0~50モル%であり、r1+r2+r3=100モル%である。)
Figure JPOXMLDOC01-appb-C000113
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r3は0~50モル%であり、r1+r2+r3=100モル%である。)
Figure JPOXMLDOC01-appb-C000114
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r3は0~50モル%であり、r1+r2+r3=100モル%である。)
Figure JPOXMLDOC01-appb-C000115
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r3は0~50モル%であり、r1+r2+r3=100モル%である。)
Figure JPOXMLDOC01-appb-C000116
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r3は0~50モル%であり、r1+r2+r3=100モル%である。)
Figure JPOXMLDOC01-appb-C000117
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r3は0~50モル%であり、r1+r2+r3=100モル%である。)
Figure JPOXMLDOC01-appb-C000118
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r3は0~50モル%であり、r1+r2+r3=100モル%である。)
Figure JPOXMLDOC01-appb-C000119
(r1は0.1~100モル%であり、r2は0~99.9モル%であり、r3は0~50モル%であり、r1+r2+r3=100モル%である。)
 <高分子化合物の製造方法>
 本発明の高分子化合物は、如何なる方法で製造されたものであってもよい。本発明の高分子化合物の製造方法としては、下記式(7)で表される化合物を重合して、上記式(3)で表される繰返し単位を有する高分子化合物を得ることを含む、上記式(3)で表される繰返し単位を有する高分子化合物の製造方法が例示できる。本発明の高分子化合物の製造に重合を用いる場合、重合は、遷移金属触媒の存在下で、行うことができる。
 また、重合性官能基の影響を排除するため、末端処理剤で処理することができる。
Figure JPOXMLDOC01-appb-C000120
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。Xは、重合に関与し得る基を表す。複数あるXは、同一であっても異なっていてもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
 R、R、R、Rで表される基は、上記式(1)又は式(2)のR、R、R、Rで説明し例示したものと同じである。
 Xで表される重合に関与し得る基は、縮合反応の際に一部又は全部が脱離する基を表し、ホルミル基、ハロゲン原子、-B(OH)、ホウ酸エステル残基、モノハロゲン化マグネシウム、スタニル基、アルキルスルホニルオキシ基、アリールスルホニルオキシ基、アリールアルキルスルホニルオキシ基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基及びモノハロゲン化メチル基が挙げられる。
 重合に関与し得る基であるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、反応制御のしやすさの観点から塩素原子、臭素原子、ヨウ素原子が好ましく、臭素原子がより好ましい。
 重合に関与し得る基であるホウ酸エステル残基としては、ジアルキルエステル残基、ジアリールエステル残基、ジアリールアルキルエステル残基のほか、以下の式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000121
 重合に関与し得る基であるモノハロゲン化マグネシウムとしては、モノクロロマグネシウム、モノブロモマグネシウム、モノヨードマグネシウムが挙げられる。
 重合に関与し得る基であるスタニル基としては、スタニル基、トリクロロスタニル基、トリメチルスタニル基、トリエチルスタニル基、トリ-n-ブチルスタニル基が挙げられる。
 重合に関与し得る基であるアルキルスルホニルオキシ基としては、メタンスルホニルオキシ基、エタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基が挙げられる。
 重合に関与し得る基であるアリールスルホニルオキシ基としては、ベンゼンスルホニルオキシ基、p-トルエンスルホニルオキシ基が挙げられる。
 重合に関与し得る基であるアリールアルキルスルホニルオキシ基としては、ベンジルスルホニルオキシ基が挙げられる。
 スルホニウムメチル基としては、下記式で示される基が例示される。
-CHMe、-CHPh
(式中、Xはハロゲン原子を示し、以下、同じである。)
 ホスホニウムメチル基としては、下記式で示される基が例示される。
-CHPh
 ホスホネートメチル基としては、下記式で示される基が例示される。
-CHPO(OR’’)
(式中、R’’は、アルキル基、アリール基、アリールアルキル基を示す。)
 モノハロゲン化メチル基としては、モノフッ化メチル基、モノクロロメチル基、モノ臭化メチル基、モノヨウ化メチル基が例示される。
 次に、上記式(3)で表される繰返し単位を有する高分子化合物の製造方法を代表例として説明する。なお、本発明の高分子化合物が、上記式(2)又は式(3)の繰返し単位以外の繰返し単位を有する場合には、反応系中に、式(2)又は式(3)で表される繰返し単位以外の繰返し単位に対応する単量体を共存させればよい。
 遷移金属存在下の重合に用いる重合方法としては、後述の[3]、[4]、[11]、[12]、[13]、[14]、[15]が挙げられる。
 遷移金属触媒の使用量は、重合方法により異なるが、重合に供する全単量体1モルに対して、通常、0.0001モル~10モルの範囲である。
 上記遷移金属触媒としては、ニッケル触媒、パラジウム触媒等が挙げられる。
 上記ニッケル触媒としては、テトラキス(トリフェニルホスフィン)ニッケル(0)、ビス(シクロオクタジエニル)ニッケル(0)、ジクロロビス(トリフェニルホスフィン)ニッケル(II)、[1,3-ビス(ジフェニルホスフィン)プロパン]ジクロロニッケル(II)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロニッケル(II)が挙げられる。
 上記パラジウム触媒としては、酢酸パラジウム、パラジウム[テトラキス(トリフェニルホスフィン)]、ビス(トリシクロヘキシルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)が挙げられる。
 本発明の高分子化合物の製造には、高分子化合物が主鎖にビニレン基を有する場合には、以下の[1]~[11]の反応を用いることができる。
[1]ホルミル基を有する化合物とホスホニウムメチル基を有する化合物とのWittig反応による重合
[2]ホルミル基とホスホニウムメチル基とを有する化合物のWittig反応による重合[3]ビニル基を有する化合物とハロゲン原子を有する化合物とのHeck反応による重合
[4]ビニル基とハロゲン原子とを有する化合物のHeck反応による重合
[5]ホルミル基を有する化合物とホスホネートメチル基を有する化合物とのHorner-Wadsworth-Emmons法による重合
[6]ホルミル基とホスホネートメチル基とを有する化合物のHorner-Wadsworth-Emmons法による重合
[7]モノハロゲン化メチル基を2個以上有する化合物の脱ハロゲン化水素法による重縮合
〔8]スルホニウム塩基を2個以上有する化合物のスルホニウム塩分解法による重縮合
[9]ホルミル基を有する化合物とシアノメチル基を有する化合物とのKnoevenagel反応による重合
[10]ホルミル基とシアノメチル基とを有する化合物のKnoevenagel反応による重合
[11]ホルミル基を2個以上有する化合物のMcMurry反応による重合
 これらの[1]~[11]は、以下の式で示すとおりである。
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
 本発明の高分子化合物の製造には、高分子化合物が主鎖にビニレン基を有しない場合、以下の[12]~[17]の反応を用いることができる。
[12]Suzukiカップリング反応による重合
[13]Grignard反応による重合
[14]Stilleカップリング反応による重合
[15]Ni(0)触媒による重合
[16]FeCl等の酸化剤による重合、電気化学的に酸化重合
[17]適切な脱離基を有する中間体高分子の分解による方法
 これらの[12]~[17]は、以下の式で示すとおりである。
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
 これらの中でも、Wittig反応による重合、Heck反応による重合、Horner-Wadsworth-Emmons法による重合、Knoevenagel反応による重合、Suzukiカップリング反応による重合、Grignard反応による重合する方法、Stilleカップリングを用いる方法、Ni(0)触媒による重合が、構造制御の観点から好ましく、Suzukiカップリング反応による重合、Grignard反応による重合、Ni(0)触媒による重合が、原料の入手容易性、重合反応の操作性の観点から好ましい。
 単量体を、必要に応じて、有機溶媒に溶解させ、例えば、アルカリや適切な触媒を用い、有機溶媒の融点以上沸点以下で、反応させればよい。詳細は、“オルガニック リアクションズ(Organic Reactions)”,第14巻,270-490頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1965年、“オルガニック リアクションズ(Organic Reactions)”,第27巻,345-390頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1982年、“オルガニック シンセシーズ(Organic Syntheses)”,コレクティブ第6巻(Collective Volume VI),407-411頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1988年、ケミカル レビュー(Chem.Rev.),第95巻,2457頁(1995年)、ジャーナル オブ オルガノメタリック ケミストリー(J.Organomet.Chem.),第576巻,147頁(1999年)、ジャーナル オブ プラクティカル ケミストリー(J.Prakt.Chem.),第336巻,247頁(1994年)、マクロモレキュラー ケミストリー マクロモレキュラー シンポジウム(Makromol.Chem.,Macromol.Symp.),第12巻,229頁(1987年)等の記載を参考にすることができる。
 上記有機溶媒は、副反応を抑制するために、十分に脱酸素・脱水処理を施すことが好ましい。また、反応系は、不活性雰囲気下であることが好ましいが、Suzukiカップリング反応等の水との2相系での反応においては、その限りではない。
 上記アルカリ、触媒は、反応に用いる溶媒に十分に溶解するものが好ましい。アルカリ、触媒を添加する方法としては、反応液をアルゴンや窒素等の不活性雰囲気下で攪拌しながらゆっくりとアルカリ、触媒の溶液を添加するか、又は、アルカリ、触媒の溶液に反応液をゆっくりと添加する方法が挙げられる。
 本発明の高分子化合物は、純度が発光特性に影響を与えるため、重合前の単量体を蒸留、昇華精製、再結晶等の方法で精製した後に重合することが好ましく、合成後、再沈精製、クロマトグラフィーによる分別等の純化処理をすることが好ましい。
 本発明の高分子化合物の製造において、原料となる単量体が複数ある場合、それらを一括混合して反応させてもよいし、分割して混合して反応させてもよい。
 より詳細に反応条件を説明すると、Wittig反応、Horner反応、Knoevenagel反応の場合は、単量体の官能基に対して当量以上、好ましくは1~3当量のアルカリを用いて反応させる。
 上記アルカリとしては、カリウム-tert-ブトキシド、ナトリウム-tert-ブトキシド、ナトリウムエチラート、リチウムメチラート等の金属アルコラートや、水素化ナトリウム等のハイドライド試薬、ナトリウムアミド等のアミド類等が挙げられる。
 上記溶媒としては、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジオキサン、トルエン等が挙げられる。
 上記反応の温度は、通常、室温~150℃である。
 上記反応の時間は、十分に反応が進行する時間であるが、通常、5分間~40時間である。
 上記反応の濃度は、通常、0.1~20重量%である。
 Heck反応の場合は、パラジウム触媒を用い、トリエチルアミン等の塩基の存在下で、単量体を反応させる。例えば、N,N-ジメチルホルムアミドやN-メチルピロリドン等の比較的沸点の高い溶媒を用い、反応温度は80~160℃、反応時間は1~100時間である。
 Suzukiカップリング反応の場合は、触媒として、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類等のパラジウム触媒を用い、炭酸カリウム、炭酸ナトリウム、水酸化バリウム等の無機塩基、トリエチルアミン、テトラエチルアンモニウムヒドロキシド等の有機塩基、フッ化セシウム等の無機塩を単量体に対して当量以上、好ましくは1~10当量加えて反応させる。無機塩を水溶液として、2相系で反応させてもよい。
 溶媒としては、N,N-ジメチルホルムアミド、トルエン、ジメトキシエタン、テトラヒドロフラン等が挙げられる。
 反応温度は、50~160℃が好ましい。溶媒の沸点近くまで昇温し、還流させてもよい。
 反応時間は1~200時間である。
 Grignard反応の場合は、テトラヒドロフラン、ジエチルエーテル、ジメトキシエタン等のエーテル系溶媒中で、ハロゲン化物と金属マグネシウムとを反応させてGrignard試薬溶液とし、これと別に用意した単量体溶液とを混合し、ニッケル触媒又はパラジウム触媒を過剰反応に注意しながら添加した後、昇温して、還流させながら反応させる方法が挙げられる。Grignard試薬は単量体に対して当量以上、好ましくは1~1.5当量用いる。
 ニッケル触媒の存在下で反応させる場合は、上述のNi(0)触媒により重合する方法が挙げられる。
 <単量体の製造方法>
 本発明の高分子化合物の原料となり得る化合物は、如何なる方法で製造されたものであってもよい。例えば、下記式(7-1)で表される化合物が用いられる。また、前記式(1)で表される構造を有する低分子化合物は、例えば、下記式(7-1)で表される化合物とホウ酸又はホウ酸エステル化合物とのSuzukiカップリング、Grignard試薬とのKumadaカップリング、亜鉛試薬とのNegishiカップリング等の種々カップリング反応により合成することができる。
 以下、下記式(7-1)で表される化合物の製造方法を代表例として説明する。
Figure JPOXMLDOC01-appb-C000139
(式中、R、R、R、R及びaは、前記式(8)と同じである。Xは、ハロゲン原子を表す。複数あるXは、同一であっても異なっていてもよい。)
 前記式(7-1)において、Xで表されるハロゲン原子は、前記Xで説明し例示したものと同じであるが、合成の容易さの観点から、2つのXは同一であることが好ましい。
 上記式(7-1)で表される化合物は、例えば、以下の反応1)~反応4)により製造することができる。
反応1)式(12)で表される化合物、及び式(13)で表される化合物からの、式(10)で表される化合物の合成
反応2)式(10)で表される化合物からの、式(9)で表される化合物の合成
反応3)式(9)で表される化合物からの、式(8)で表される化合物の合成
反応4)式(8)で表される化合物からの、式(7-1)で表される化合物の合成
 具体的には、反応1)は、下記式(12)で表される化合物、及び下記式(13)で表される化合物を、遷移金属触媒及び塩基の存在下で反応させることによる、下記式(10)で表される化合物の合成反応である。
Figure JPOXMLDOC01-appb-C000140
(式中、Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。Xは、塩素原子、臭素原子又はヨウ素原子を表す。複数あるXは、同一であっても異なっていてもよい。fは、0~2の整数を表す。複数あるfは、同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000141
(式中、Rは、前記式(12)と同じである。Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。R16は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。gは、0~4の整数を表す。
Figure JPOXMLDOC01-appb-C000142
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。R16は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるR16は、同一であっても異なっていてもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
 式(10)、(12)、(13)中、R、R、R、R16で表される各々の基、及びaの整数は、前記式(1)又は(2)で説明し例示したものと同じである。
 式(12)中、fは、0~2の整数、好ましくは0である。
 式(13)中、gは、0~4の整数、好ましくは0である。
 反応1)で用いられる遷移金属触媒としては、パラジウム触媒、ニッケル触媒、及び銅触媒が挙げられる。
 反応1)は、例えば、銅触媒と塩基の存在下、Ullmannカップリング条件で行なわれ得る。反応1)はまた、Angewandte Chemie,International Edition in English,(1995),34(12),1348に記載のあるアミノ化反応条件下で行われ得る。反応1)の反応温度は、0~200℃であり、好ましくは室温~溶媒の沸点である。
 反応1)で用いられる塩基としては、Ullmannカップリングの場合、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム等の無機の強塩基が挙げられる。
 反応1)で用いられる溶媒としては、高沸点の非プロトン性溶媒が好ましく、ピリジン、コリジン、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、ニトロベンゼン、ジオキサンが挙げられる。これらの溶媒は、1種を単独で又は2種以上を組み合わせて使用することができる。
 また、相間移動触媒やクラウンエーテルの添加により、反応を促進することができる。
 反応2)は、前記式(10)で表される化合物を、下記式(11)で表される化合物又は還元剤と反応させることによる、式(9)で表される化合物の合成反応である。
Figure JPOXMLDOC01-appb-C000143
(式中、R17は、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表す。Mは、リチウム原子又はモノハロゲン化マグネシウムを表す。)
Figure JPOXMLDOC01-appb-C000144
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
 式(11)中、R17で表されるアルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基及び複素環オキシ基は、前記式(1)のRで説明し例示したものと同じである。これらの中でも、アルキル基、アリール基、アリールアルキル基及び1価の複素環基が好ましい。
 式(11)中、Mは、リチウム原子又はモノハロゲン化マグネシウムを表す。Mで表されるモノハロゲン化マグネシウムは、前記式(7)のXにおける重合に関与し得る基として説明し例示したものと同じである。
 還元剤としては、水素化リチウムアルミニウム、ジイソブチルアルミニウムヒドリドが挙げられる。
 上記式(11)で表される化合物又は還元剤の当量は、上記式(10)で表される化合物中のRがいずれも水素原子の場合、4当量以上であることが好ましい。また、上記式(10)で表される化合物中のRのいずれか一方が水素原子の場合、上記式(11)で表される化合物又は還元剤の当量は、3当量以上であることが好ましい。さらに、上記式(10)で表される化合物中のRがいずれも水素原子でない場合、上記式(11)で表される化合物又は還元剤の当量は、2当量以上であることが好ましい。
 (9)式中のRとしては、水素原子、アルキル基、アリール基、アリールアルキル基及び1価の複素環基が好ましく、より好ましくはアルキル基、アリール基、アリールアルキル基及び1価の複素環基である。
 反応2)は、アルゴンや窒素等の不活性ガスの雰囲気下で行うことが好ましい。
 反応2)で用いられる溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の飽和炭化水素;ベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素;ジメチルエーテル、ジエチルエーテル、メチル-tert-ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテル類が挙げられる。これらの溶媒は、1種又は2種以上を組み合わせて使用してもよい。
 反応2)の反応温度は、-100℃~溶媒の沸点であり、-80℃~室温が好ましい。
 反応3)は、前記式(9)で表される化合物を、酸の存在下で反応させることによる、下記式(8)で表される化合物の合成反応である。
Figure JPOXMLDOC01-appb-C000145
(式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
 反応3)に用いられる原料として、式(9)で表される化合物は、下記式(9-1)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000146
(式中、R、R、R、R、aは、前記式(9)と同じである。)
 反応3)で用いられる酸としては、プロトン酸でもルイス酸でもよい。
 プロトン酸としては、例えば、メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸等のスルホン酸類、蟻酸、酢酸、トリフルオロ酢酸、プロピオン酸等のカルボン酸類;硫酸、塩酸、硝酸、リン酸等の無機酸が挙げられる。これらのプロトン酸の中でも、塩酸、硫酸、硝酸等の無機強酸が好ましい。
 ルイス酸としては、例えば、三臭化ホウ素、三塩化ホウ素、三フッ化ホウ素エーテル錯体等ハロゲン化ホウ素化物;塩化アルミニウム、三塩化チタン、四塩化チタン、塩化マンガン、塩化鉄(II)、塩化鉄(III)、塩化コバルト、塩化銅(I)、塩化銅(II)、塩化亜鉛、臭化アルミニウム、三臭化チタン、四臭化チタン、臭化マンガン、臭化鉄(II)、臭化鉄(III)、臭化コバルト、臭化銅(I)、臭化銅(II)、臭化亜鉛等のハロゲン化金属が挙げられる。
 これらのプロトン酸、ルイス酸は、1種又は2種以上を組み合わせて使用することができる。
 反応3)で用いられる溶媒としては上記の酸を用いてもよいが、それ以外の溶媒を用いてもよい。用いる溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の飽和炭化水素;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素;四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素;ニトロメタン、ニトロベンゼン等のニトロ化合物が挙げられる。これらの溶媒は、1種又は2種以上を組み合わせて使用することができる。
 反応3)の反応温度は、-100℃~溶媒の沸点であり、好ましくは0~100℃である。
 反応4)は、前記式(8)で表される化合物を、ハロゲン化剤と反応させることによる、前記式(7-1)で表される化合物の合成反応である。
 反応4)は、アルゴンや窒素等の不活性ガスの雰囲気下で行うことが好ましい。
 反応4)で用いられるハロゲン化剤としては、例えば、N-クロロスクシンイミド、N-クロロフタル酸イミド、N-ブロモスクシンイミド、N-ブロモフタル酸イミド、4,4,5,5,-テトラメチル、1,3-ジブロモ-5,5-ジメチルヒダントイン、N-ヨウドスクシンイミド、N-ヨウドフタル酸イミド等のN-ハロゲノ化合物;塩素、臭素等のハロゲン元素;ベンジルトリメチルアンモニウムトリブロミドが挙げられ、N-ハロゲノ化合物が好ましい。
 反応4)で用いられる溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の飽和炭化水素;ベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素;四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert-ブチルアルコール等のアルコール類;蟻酸、酢酸、プロピオン酸等のカルボン酸類;ジメチルエーテル、ジエチルエーテル、メチル-tert-ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテル類;トリメチルアミン、トリエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、ピリジン等のアミン類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチルモルホリンオキシド、N-メチル-2-ピロリドン等のアミド類が挙げられる。これらの溶媒は、1種又は2種以上を組み合わせて使用することができる。
 反応4)の反応温度は、-100℃~溶媒の沸点であり、好ましくは-20~50℃である。
 <組成物>
 本発明の組成物は、(a)本発明の化合物と、(b)正孔輸送材料、電子輸送材料及び発光材料からなる群より選ばれる少なくとも1つの材料とを含む組成物である。また、本発明の組成物は、溶媒を含有することができる(溶媒を含有する本発明の組成物を、以下、「液状組成物」と言う。一般的には、インク、インク組成物と言うことがある。)である。なお、本発明の組成物において、本発明の化合物、正孔輸送材料、電子輸送材料、発光材料、溶媒は、それぞれ、一種単独で用いても二種以上を併用してもよい。
 本発明の組成物において、正孔輸送材料、電子輸送材料及び発光材料の合計と、本発明の化合物との比率は、本発明の化合物100重量部に対して、正孔輸送材料、電子輸送材料及び発光材料の合計が、通常、1~10000重量部であり、好ましくは10~1000重量部であり、より好ましくは20~500重量部である。
 次に、本発明の液状組成物について説明する。
 上記液状組成物における溶媒の割合は、液状組成物の全重量に対して、通常、1~99.9重量%であり、好ましくは80~99.9重量%である。なお、液状組成物の粘度は、印刷法によって異なるが、インクジェットプリント法等液状組成物中が吐出装置を経由するもの場合には、吐出時の目づまりや飛行曲がりを防止するために粘度が25℃において1~20mPa・sが好ましい。
 上記液状組成物は、さらに、粘度及び/又は表面張力を調節するための添加剤を含有していてもよい。この添加剤としては、粘度を高めるための高分子量の化合物(以下、「増粘剤」と言う。)や貧溶媒、粘度を下げるための低分子量の化合物、表面張力を下げるための界面活性剤が挙げられる。
 上記増粘剤としては、本発明の化合物と同じ溶媒に可溶性であり、発光や電荷輸送を阻害しないものであればよく、例えば、高分子量のポリスチレン、ポリメチルメタクリレートが挙げられる。また、貧溶媒を増粘剤として用いることもできる。即ち、液状組成物中の固形分に対する貧溶媒を少量添加することで、粘度を高めることができる。
 本発明の液状組成物は、保存安定性を改善するために、酸化防止剤を含有していてもよく、例えば、本発明の化合物と同じ溶媒に可溶性であり、発光や電荷輸送を阻害しない化合物が挙げられ、フェノール系酸化防止剤、リン系酸化防止剤が好ましい。
 上記液状組成物に含まれる溶媒としては、クロロホルム、塩化メチレン、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、ベンゾフェノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2-ヘキサンジオール等の多価アルコール及びその誘導体;メタノール、エタノール、プロパノール、イソプロパノール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。また、これらの溶媒は、1種単独で又は2種以上を併用してもよい。さらに、これらの溶媒の種類は、成膜性の観点や素子特性の観点から、2種類以上が好ましく、2~3種類がより好ましく、2種類が特に好ましい。
 上記溶媒が2種類の組み合わせである場合、それらのうちの1種類は25℃において固体状態でもよい。2種類の溶媒の組み合わせとしては、成膜性の観点からは、1種類の溶媒は沸点が180℃以上の溶媒であることが好ましく、200℃以上の溶媒であることがより好ましく、粘度の観点からは、2種類の溶媒ともに60℃において1重量%以上の濃度で本発明の化合物が溶解する溶媒であることが好ましく、少なくとも1種類の溶媒は25℃において1重量%以上の濃度で本発明の化合物が溶解する溶媒であることが好ましい。
 また、上記溶媒が3種類以上の組み合わせである場合、粘度及び成膜性の観点から、これら3種類以上の溶媒の全重量に対して、最も沸点が高い溶媒が、好ましくは40~90重量%であり、より好ましくは50~90重量%である。
 上記液状組成物には、水、金属及びその塩を1~1000ppm(重量基準)含んでいてもよい。金属としては、リチウム、ナトリウム、カルシウム、カリウム、鉄、銅、ニッケル、アルミニウム、亜鉛、クロム、マンガン、コバルト、白金、イリジウムが挙げられる。また、上記液状組成物は、珪素、リン、フッ素、塩素、臭素を1~1000ppm(重量基準)含んでいてもよい。
 上記液状組成物を用いると、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布方法により、本発明の薄膜を容易に作製することができる。
 <薄膜>
 本発明の薄膜は、本発明の化合物を含む薄膜であり、その種類としては、発光性薄膜、導電性薄膜、有機半導体薄膜がある。
 発光性薄膜は、後述の発光素子の作製において、発光層を形成する際に有用である。
 導電性薄膜は、表面抵抗が1KΩ/□以下であることが好ましい。本発明の導電性薄膜は、ルイス酸、イオン性化合物等をドープすることにより、電気伝導度を高めることができる。
 有機半導体薄膜は、電子移動度又は正孔移動度のうちの大きいほうが、1×10-5cm/V/秒以上であることが好ましい。また、SiO等の絶縁膜とゲート電極とを形成したSi基板上に有機半導体薄膜を形成し、Au等でソース電極とドレイン電極を形成することにより、有機トランジスタとすることができる。
 <素子>
 本発明の素子は、(a)陽極及び陰極からなる電極と、(b)該電極間に設けられた、本発明の化合物を含む有機層とを備える素子であり、代表的には、発光素子である(以下、「本発明の発光素子」と言う。)。
 本発明の発光素子は、陽極と陰極からなる一対の電極と、該電極間に発光層を有する一層(単層型)又は複数層(多層型)からなる薄膜が挟持されているものである。該薄膜層の少なくとも1層は、本発明の化合物を含有する。前記薄膜中の本発明の化合物の合計含有量は、発光層全体の重量に対して、通常、0.1~100重量%であり、0.1~80重量%であることが好ましい。本発明の発光素子は、前記発光層が、本発明の化合物を発光材料として含有することが好ましい。
 本発明の発光素子が単層型である場合には、前記薄膜が発光層であり、この発光層が本発明の化合物を含有する。また、本発明の発光素子が多層型である場合には、例えば、以下の構成をとる。
(a)陽極/正孔注入層(正孔輸送層)/発光層/陰極
(b)陽極/発光層/電子注入層(電子輸送層)/陰極
(c)陽極/正孔注入層(正孔輸送層)/発光層/電子注入層(電子輸送層)/陰極
 本発明の発光素子の陽極は、4.5eV以上の仕事関数を有することが好ましい。陽極の材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物を用いることができる。陽極の材料としては、酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの導電性金属酸化物と金属との混合物又は積層物、ヨウ化銅、硫化銅等の無機導電性物質、ポリアニリン類、ポリチオフェン類(PEDOT等)、ポリピロール等の有機導電性材料、これらとITOとの積層物等が挙げられる。
 本発明の発光素子の陰極の材料としては、金属、合金、金属ハロゲン化物、金属酸化物、電気伝導性化合物又はこれらの混合物を用いることができ、例えば、アルカリ金属(リチウム、ナトリウム、カリウム、セシウム等)並びにそのフッ化物及び酸化物、アルカリ土類金属(マグネシウム、カルシウム、バリウム等)並びにそのフッ化物及び酸化物、金、銀、鉛、アルミニウム、合金及び混合金属類(ナトリウム-カリウム合金、ナトリウム-カリウム混合金属、リチウム-アルミニウム合金、リチウム-アルミニウム混合金属、マグネシウム-銀合金、マグネシウム-銀混合金属等)、希土類金属(イッテルビウム等)、インジウム等が挙げられる。
 本発明の発光素子の正孔注入層及び正孔輸送層に用いられる材料には、公知の材料を使用できるが、例えば、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、有機シラン誘導体、本発明の化合物、これらを含む重合体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子、オリゴマーが挙げられる。これらの材料は1種単独であっても複数の成分が併用されていてもよい。また、前記正孔注入層及び前記正孔輸送層は、前記材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
 本発明の発光素子の電子注入層及び電子輸送層に用いられる材料としては、例えば、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、有機シラン誘導体、本発明の化合物が挙げられる。また、前記電子注入層及び前記電子輸送層は、前記材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
 本発明の発光素子において、電子注入層、電子輸送層に用いられる材料としては、絶縁体又は半導体の無機化合物も使用することもできる。電子注入層、電子輸送層が絶縁体や半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を向上させることができる。このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選ばれる少なくとも一種の金属化合物を使用できる。好ましいアルカリ土類金属カルコゲニドとしては、CaO、BaO、SrO、BeO、BaS、CaSeが挙げられる。また、電子注入層、電子輸送層を構成する半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnからなる群から選ばれる少なくとも一種の元素を含む酸化物、窒化物及び酸化窒化物が挙げられる。これら酸化物、窒化物及び酸化窒化物は、一種単独で用いても二種以上を併用してもよい。
 本発明の発光素子において、陰極と接する薄膜との界面領域に還元性ドーパントが添加されていてもよい。還元性ドーパントとしては、アルカリ金属、アルカリ土類金属の酸化物、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属錯体、アルカリ土類金属錯体及び希土類金属錯体からなる群から選ばれる少なくとも一種の化合物が好ましい。
 本発明の発光素子の発光層は、電圧印加時に陽極又は正孔注入層より正孔を注入することができ、陰極又は電子注入層より電子を注入することができる機能、注入した電荷(電子と正孔)を電界の力で移動させる機能、電子と正孔の再結合の場を提供し、これを発光につなげる機能を有するものである。本発明の発光素子の発光層は、本発明の化合物を含有することが好ましく、該化合物をゲスト材料とするホスト材料を含有させてもよい。前記ホスト材料としては、例えば、フルオレン骨格を有するもの、カルバゾール骨格を有するもの、ジアリールアミン骨格を有するもの、ピリジン骨格を有するもの、ピラジン骨格を有するもの、トリアジン骨格を有するもの、アリールシラン骨格を有するもの等が挙げられる。前記ホスト材料のT1(最低三重項励起状態のエネルギーレベル)は、ゲスト材料のそれより大きいことが好ましく、その差が0.2eVよりも大きいことがさらに好ましい。前記ホスト材料は低分子化合物であっても、高分子化合物であってもよい。また、前記ホスト材料と前記金属錯体等の発光材料とを混合して塗布するか、或いは共蒸着等することによって、前記発光材料が前記ホスト材料にドープされた発光層を形成することができる。
 本発明の発光素子では、前記各層の形成方法としては、真空蒸着法(抵抗加熱蒸着法、電子ビーム法等)、スパッタリング法、LB法、分子積層法、塗布法(キャスティング法、スピンコート法、バーコート方、ブレードコート法、ロールコート法、グラビア印刷、スクリーン印刷、インクジェットプリント法等)等が挙げられる。これらの中では、製造プロセスを簡略化できる点で、塗布で成膜することが好ましい。前記塗布法では、本発明の化合物を溶媒に溶解させて塗布液を調製し、該塗布液を所望の層(又は電極)上に、塗布・乾燥することによって形成することができる。該塗布液中には、ホスト材料及び/又はバインダーとして樹脂を含有させてもよく、該樹脂は溶媒に溶解状態とすることも、分散状態とすることもできる。前記樹脂としては、非共役系高分子(例えば、ポリビニルカルバゾール)、共役系高分子(例えば、ポリオレフィン系高分子)を使用することができる。より具体的には、例えば、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ポリ(N-ビニルカルバゾール)、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコン樹脂から目的に応じて選択できる。溶液は、任意成分として、酸化防止剤、粘度調整剤を含有してもよい。
 本発明の化合物は、光電素子の製造にも用いることができる。
 光電素子としては、光電変換素子が挙げられ、例えば、少なくとも一方が透明又は半透明な二個の電極間に、本発明の化合物を含む層が設けられた光電素子や、基板上に成膜した本発明の化合物を含む層上に形成した櫛型電極を有する光電素子が挙げられる。特性を向上するために、フラーレンやカーボンナノチューブを混合してもよい。
 光電変換素子の製造方法としては、特許第3146296号公報に記載の方法が挙げられ、例えば、第一の電極を有する基板上に本発明の化合物を含む層(薄膜)を形成し、その上に第二の電極を形成する方法、基板上に形成した一組の櫛型電極の上に本発明の化合物を含む層(薄膜)を形成する方法が挙げられる。第一又は第二の電極のうち一方が透明又は半透明である。
 本発明の発光素子は面状光源、セグメント表示装置、ドットマトリックス表示装置等の表示装置、液晶表示装置のバックライトとして用いることができる。
 本発明の発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得るためには、前記面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機層を極端に厚く形成し実質的に非発光とする方法、陽極又は陰極のいずれか一方、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字や文字、簡単な記号などを表示できるセグメントタイプの表示素子が得られる。更に、ドットマトリックス表示装置とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法や、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFTなどと組み合わせてアクティブ駆動してもよい。これらの表示装置は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダー等の表示装置として用いることができる。
 さらに、前記面状の発光素子は、自発光薄型であり、液晶表示装置のバックライト用の面状光源、あるいは面状の照明用光源として好適に用いることができる。また、フレキシブルな基板を用いれば、曲面状の光源や表示装置としても使用できる。
 以下、実施例に基づいて本発明を説明するが、本発明はこれらに限定されるものではない。なお、NMR、LC-MS、数平均分子量、重量平均分子量、イオン化ポテンシャル及び蛍光波長は、それぞれ以下の方法により測定した。
(i)NMR
 測定試料5~10mgを0.5mlの重溶媒に溶解させて、バリアン(Varian,Inc.)製、商品名:MERCURY300を用いて測定した。
(ii)LC-MS
 測定試料を約2mg/mLの濃度になるようにクロロホルム又はテトラヒドロフランに溶解させて、LC-MS(アジレント・テクノロジー製、商品名:1100LCMSD)に1μL注入し、カラムは、L-column 2 ODS(3μm)(化学物質評価研究機構製、内径:2.1mm、長さ:100mm、粒径3μm)を用いて、測定した。
(iii)数平均分子量及び重量平均分子量
 数平均分子量及び重量平均分子量は、GPC(島津製作所社製、商品名:LC-10Avp)によりポリスチレン換算の数平均分子量及び重量平均分子量を求めた。測定試料は、約0.5重量%の濃度になるようにテトラヒドロフランに溶解させ、GPCに50μL注入し、GPCの移動相にはテトラヒドロフランを用い、0.6mL/分の流速で流し、カラムはTSKgel SuperHM-H(東ソー社製)2本とTSKgel SuperH2000(東ソー製)1本を直列に繋げ、検出器は示差屈折率検出器(島津製作所製:RID-10A)を用いて、測定した。
(iv)イオン化ポテンシャル
 測定試料の0.8重量%トルエン溶液を調製し、石英板上にスピンコートして測定試料の薄膜を形成し、この薄膜について、大気中光電子分光装置AC-2(理研計器株式会社製)により測定した。
(v)発光波長
 測定試料の0.8重量%トルエン溶液を石英上にスピンコートし、測定試料の薄膜を作製し、この薄膜を350nmの波長で励起し、蛍光分光光度計(堀場製作所社製、商品名:Fluorolog)により、測定試料の発光波長を測定した。
実施例1:化合物(I)の合成
Figure JPOXMLDOC01-appb-C000147
 300ml 4口フラスコ内の気体を窒素置換し、アントラニル酸メチル 5.65g、2,7-ジブロモ-9,9-ジオクチルフルオレン 10.00gを200mlの脱水トルエンに溶解させ、30分間アルゴンでバブリングした。そこに、炭酸セシウム8.91g、トリス(ジベンジリデンアセトン)ジパラジウム43mg、トリ(tert-ブチル)ホスフィンテトラフルオロボレート53mgを加え還流させた。そこに、炭酸セシウム26.1gを追加しながら90時間還流させた。生成物を、セライトを敷いたグラスフィルターを通して濾過し、トルエンで洗浄した。溶媒を留去したところ、13.07gの黄色液体を得た。この黄色液体をヘキサンに溶解させ、シリカゲル50gを敷いたグラスフィルターで濾過し、トルエンで洗浄した。溶媒を留去したところ、13.13gの化合物(I)の粗生成物を得た。精製は行わず、次の工程に用いた。
H-NMR(CDCl
δ(ppm)=0.71(4H,br),0.82(6H,t),1.08-1.20(20H,m),1.87-1.93(4H,m),3.93(6H,s),6.73(2H,t),7.16-7.34(8H,m),7.61(2H,d),7.98(2H,d),9.55(2H,s)
13C-NMR(CDCl
δ(ppm)=14.6,22.9,24.5,29.6,30.3,32.1,41.1,52.1,55.7,112.0,114.2,117.1、117.9,120.1,122.1,132.0,134.4,137.1,139.3,149.0,152.4,169.5
*LC-MS
APCI,positive  689([M+H]、exact mass=688)
実施例2:化合物(II)の合成
Figure JPOXMLDOC01-appb-C000148
 1L 4口フラスコ内の気体を窒素置換し、4-ブロモ-n-ヘキシルベンゼン 24.50gを245mlの脱水THFに溶解させ、-78℃に冷却した。そこに、n-ブチルリチウム63.5ml(1.6Mヘキサン溶液)を10分で滴下し、2時間保温しながら攪拌した後、先に合成した化合物(I) 10.00gを100mlの脱水THFに溶解させた溶液を30分で滴下した。徐々に昇温しながら室温まで昇温し、6時間攪拌した。0℃に冷却し、200mlの水を滴下した。分液後、水層を酢酸エチル200mlで複数回抽出し、複数回に分けて抽出した有機層を合わせ、水、飽和食塩水で洗浄した後、硫酸ナトリウムで乾燥させ、溶媒を留去したところ、25.51gの化合物(II)の粗生成物を得た。精製は行わず、次の工程に用いた。
H-NMR(CDCl
δ(ppm)=0.65(4H,br),0.84-0.95(18H,m),1.08-1.39(44H,m),1.56-1.65(8H,m),1.74-1.79(4H,m),2.52-2.62(8H,m),4.88(2H,s),5.80(2H,s),6.55(2H,d),6.63(2H,m),6.77-6.82(4H,m),7.03-7.40(22H,m)
13C-NMR(300MHz,CDCl
δ(ppm)=14.3,14.3,22.7,22.9,29.3,29.4,30.4,31.6,31.7,31.8,31.9,32.0,32.1,34.0,35.5,35.9,36.3,82.8,125.8,127.9,128.4,128.5,128.7,130.5,131.5,142.4,143.4
*LC-MS
API-ES,positive  1312([M+K]、exact mass=1273)
API-ES,negative  1308([M+Cl]、exact mass=1273)
実施例3:化合物(III)の合成
Figure JPOXMLDOC01-appb-C000149
 上記で得られた化合物(II) 22.00gを220mlの酢酸に溶解させた。そこに、塩酸5.8mlを滴下して1時間室温で攪拌した後、110℃で9時間攪拌した。放冷後、水700mlに注加し、吸引濾過した。得られた残渣をトルエン200mlに溶解させ、水100mlを加えて分液し、水層を更に200mlのトルエンで複数回抽出した。複数回に分けて抽出した有機層を合わせ、水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。溶媒を留去したところ、16.64gの化合物(III)の粗生成物を得た。粗生成物にヘキサン160ml、酢酸エチル6mlを加え、還流、溶解させた。室温までゆっくり放冷し、結晶を濾過したところ、6.49gの化合物(III)を得た。
H-NMR(CDCl
δ(ppm)=0.80-0.94(18H,m),1.08-1.43(48H,m),1.54-1.63(12H,m),2.52-2.63(8H,m),6.80(4H,br),7.08(2H,s),7.17(2H,d),7.26(2H,d),6.90-7.40(20H,m)
13C-NMR(CDCl
δ(ppm)=14.4,22.9,29.5,29.6,29.8,31.6,31.7,31.8,31.9,32.0,32.1,36.0,36.1,36.3,40.2,51.2,126.0,128.5,128.7
*LC-MS
APCI,positive  1237([M+H]、exact mass=1236)
実施例4:化合物(IV)の合成
Figure JPOXMLDOC01-appb-C000150
 100ml 2口フラスコ内の気体を窒素置換し、上記で合成した化合物(III) 0.90g、1-ブロモ-4-n-ブチルベンゼン0.35gを取り、15mlのトルエンに溶解させた。得られた溶液を30分間アルゴンでバブリングした後、トリス(ジベンジリデンアセトン)ビスパラジウム3.5mg、トリ(tert-ブチル)ホスフィンテトラフルオロボレート2.2mg、ナトリウムtert-ブトキシド0.15gを加え、110℃で2時間攪拌した。放冷後、水10mlを加え、分液し、水層をトルエンで複数回抽出し、複数回に分けて抽出した有機層を合わせ、水、飽和食塩水で洗浄した。シリカゲル10gを敷いたグラスフィルターを通した後、溶媒を留去したところ、1.12gの化合物(IV)の粗生成物を得た。
H-NMR(CDCl
δ(ppm)=0.52(4H,br),0.83-0.98(28H,m),1.09-1.50(48H,m),1.56-1.72(12H,m),2.57(8H,t),2.70(4H,t),6.23(2H,s),6.39(2H,d),6.67(2H,s),6.83-6.91(14H,m),6.99(12H,d),7.27(4H,d)
*LC-MS
APCI,positive  1502([M+H]、exact mass=1501)
実施例5:化合物(V)の合成
Figure JPOXMLDOC01-appb-C000151
 500mlジャケット付セパラブルフラスコ内の気体を窒素置換し、6.00gの化合物(IV)と60mlのジクロロメタンを仕込み、攪拌した。-19℃に冷却後、1.466gのN-ブロモスクシンイミド(NBS)を固体で加えた。-20℃で29時間攪拌後、チオ硫酸ナトリウム水溶液を滴下し、0℃に昇温した。分液後、水層を50mlのクロロホルムで複数回抽出し、複数回に分けて抽出した有機層を合わせ、シリカゲル20gを敷いたグラスフィルターを通し、濾過した。溶媒を留去したところ、7.67gの化合物(V)の粗生成物を得た。シリカゲルカラムクロマトグラフィーにより精製(シリカゲル70g、ヘキサン:トルエン=100:1(体積比))し、淡黄色の粘性液体を得た。メタノール100mlを加え、還流後、冷却したところ、白色固体を得た。この白色固体を、濾過で回収後、アセトン30mlから再結晶し、5.67gの化合物(V)を得た。
H-NMR(THF-d
δ(ppm)=0.64(4H,br),0.90-1.78(88H,m),2.68(8H,t),2.77(4H,t),6.34(2H,d),6.39(2H,s),6.66(2H,s),6.87(8H,d),6.97(4H,d),7.09(8H,d),7.14-7.16(4H,m),7.40(4H,d)
13C-NMR(THF-d
δ(ppm)=15.5,15.7,24.4,25.0,31.3,31.4,31.8,33.6,33.9,34.1,35.6,37.3,37.6,41.9,56.3,58.6,110.7,114.0,117.9,121.9,129.5,130.2,131.2,132.2,132.4,132.5,132.6,133.5,134.7,136.5,140.6,142.9,143.3,143.7,145.1,145.2,151.3
*LC-MS
APCI,positive  1658([M+H]、exact mass=1657)
実施例6:高分子化合物1の合成
 窒素雰囲気下、2,7-ビス(1,3,2-ジオキサボロラン-2-イル)-9,9-ジ-n-オクチルフルオレン0.533g、化合物(V) 1.660g、ジクロロビス(トリフェニルホスフィン)パラジウム0.7mg、トリオクチルメチルアンモニウムクロライド(アルドリッチ社製、商品名:Aliquat336)0.129g、及びトルエン20mlを混合し、90℃に加熱した。得られた混合液に、17.5重量%の炭酸ナトリウム水溶液5.4mlを滴下し、6時間還流させた。フェニルホウ酸0.01gを加え、さらに4時間還流させた。次いで、そこに、10重量%ジエチルジチアカルバミン酸ナトリウム水溶液6mlを加え、85℃で2時間撹拌した。冷却後、水13mlで2回、3重量%酢酸水溶液13mlで2回、水13mlで2回洗浄し、得られた溶液をメタノール150mLに滴下し、ろ取することで沈殿物を得た。この沈殿物をトルエン30mLに溶解させ、シリカゲルの上に活性アルミナを敷いたカラムを通すことにより精製した。得られたトルエン溶液をメタノール150mlに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させて、下記式で表される高分子化合物1を1.24g得た。高分子化合物1のポリスチレン換算の数平均分子量は4.6×10、重量平均分子量は1.0×10であった。
Figure JPOXMLDOC01-appb-C000152
(式中、nは、繰返し単位数を表す。)
合成例1:高分子化合物2の合成
 窒素雰囲気下、2,7-ビス(1,3,2-ジオキサボロラン-2-イル)-9,9-ジ-n-オクチルフルオレン2.101g、2,7-ビス{(4-ブロモフェニル)(4-メチルフェニル)アミノ}-9,9-ジ(n-オクチル)フルオレン 3.644g、酢酸パラジウム2.7mg、トリス(o-トリル)ホスフィン29.6mg、トリオクチルメチルアンモニウムクロライド(アルドリッチ社製、商品名:Aliquat336)0.517g、及びトルエン40mlを混合し90℃に加熱した。
 得られた混合液に、17.5重量%の炭酸ナトリウム水溶液10.9mlを滴下し、6時間還流させた後、フェニルホウ酸0.1gを加え、さらに2時間還流させた。次いで、そこに、10重量%ジエチルジチアカルバミン酸ナトリウム水溶液24mlを加え、85℃で1時間撹拌した。冷却後、水52mlで2回、3重量%酢酸水溶液52mlで2回、水52mlで2回洗浄し、得られた溶液をメタノール620mLに滴下し、ろ取することで沈殿物を得た。この沈殿物をトルエン120mLに溶解させ、シリカゲルの上に活性アルミナを敷いたカラムを通すことにより精製した。得られたトルエン溶液をメタノール620mlに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させて、下記式で表される高分子化合物2を2.80g得た。高分子化合物2のポリスチレン換算の数平均分子量は6.6×10、重量平均分子量は2.2×10であった。
Figure JPOXMLDOC01-appb-C000153
(式中、nは、繰返し単位数を表す。)
合成例2:化合物(VI)の合成
Figure JPOXMLDOC01-appb-C000154
 窒素置換したフラスコに2,7-ジブロモ-9,9-ビス(4-n-ヘキシルフェニル)フルオレン(WO2009-131255に記載の方法に従って合成)61gを取り、1Lの脱水テトラヒドロフランに溶解させた。ドライアイス/アセトンバスで-78℃に冷却し、95mlのn-ブチルリチウム(2.5Mヘキサン溶液)を-70℃以下に保つよう滴下速度をコントロールし、滴下した。滴下終了後、-78℃で6時間攪拌し、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン52.3gを-70℃以下に保つように滴下速度をコントロールし、滴下した。室温まで昇温し、終夜攪拌後、-30℃に冷却し、塩酸ジエチルエーテル溶液143mlを滴下した。滴下終了後、室温まで昇温し、反応溶液を濃縮した。トルエン1Lを加え、懸濁液をシリカゲルを敷いたグラスフィルターを通して濾過し、トルエンで洗浄した。濾洗液を濃縮し、トルエン80ml、アセトニトリル1.5Lから再結晶し、更に5回再結晶を繰返した。得られた結晶を真空乾燥機で減圧乾燥させ、45gの化合物(VI)を得た。
H-NMR(CDCl
δ(ppm)=0.86(6H、t)、1.25(24H、s)、1.25~1.36(12H、m)、1.53~1.61(4H、m)、2.51(4H、t)、7.00(4H、d)、7.11(4H、d)、7.76(2H、d)、7.80(2H、s)、7.81(2H,d)
13C-NMR(CDCl
δ(ppm)=14.4,22.7,25.2,29.4,31.6,32.0,35.8,65.3,83.9,120.0,128.4,128.6,132.7,134.4,141.2,143.1,143.2,151.9
*LC-MS
ESI,positive  777([M+K]、exact mass=738)
実施例7:高分子化合物3の合成
 窒素気流下、2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ビス(3-n-ヘキシルフェニル)フルオレン(WO2010-013723の記載の方法に従って合成)1.26g、2,7-ジブロモ-9,9-ジ(n-オクチル)フルオレン0.19g、2,7-ジブロモ-9,9-ジ(4-ペンテン-1-イル)フルオレン(WO2010-013723に記載の方法に従って合成)0.078g、2,7-ジブロモ-9,9-ビス(ビシクロ[4,2,0]オクタ-1,3,5-トリエン-3-イル)フルオレン(WO2008-38747の記載の方法に従って合成)0.090g、化合物(V)1.69g、酢酸パラジウム0.4mg、トリス(o-メトキシフェニル)ホスフィン2.4mg、及びトルエン38mlを混合し、105℃に加熱した。得られた反応溶液に20重量%の水酸化トリエチルアンモニウム水溶液6mlを滴下し、3時間還流させた。その後、フェニルホウ酸200mgを加え、さらに17時間還流させた。次いで、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液20mlを加え、80℃で4時間撹拌した。室温まで冷却後、分液し、有機層を水22mlで3回、3重量%の酢酸水溶液22mlで3回、更に水22mlで3回洗浄し、シリカゲルの上に活性アルミナを敷いたカラムを通すことにより精製した。得られたトルエン溶液をメタノール250ml中に滴下し、1時間撹拌した後、得られた固体をろ取し、乾燥させたところ、下記式で表される高分子化合物3を1.8g得た。高分子化合物3のポリスチレン換算の数平均分子量が7.4×10であり、ポリスチレン換算の重量平均分子量が2.3×10であった。
Figure JPOXMLDOC01-appb-C000155
(式中、( )右下の数字は各繰返し単位の共重合比を表し、nは、繰返し単位数を表す。)
合成例3:高分子化合物4の合成
 窒素気流下、2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ビス(3-n-ヘキシルフェニル)フルオレン1.48g、2,7-ジブロモ-9,9-ジ(n-オクチル)フルオレン0.22g、2,7-ジブロモ-9,9-ジ(4-ペンテン-1-イル)フルオレン0.09g、2,7-ジブロモ-9,9-ビス(ビシクロ[4,2,0]オクタ-1,3,5-トリエン-3-イル)フルオレン0.11g、2,7-ビス{(4-ブロモフェニル)(4-メチルフェニル)アミノ}-9,9-ジ(n-オクチル)フルオレン1.09g、酢酸パラジウム0.4mg、トリス(o-メトキシフェニル)ホスフィン2.8mg、及びトルエン44mlを混合し、105℃に加熱した。得られた反応溶液に20重量%の水酸化トリエチルアンモニウム水溶液7mlを滴下し、4時間還流させた。その後、フェニルホウ酸244mgを加え、さらに20時間還流させた。次いで、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液20mlを加え、80℃で4時間撹拌した。室温まで冷却後、分液し、有機層を水30mlで3回、3重量%の酢酸水溶液30mlで3回、水30mlで3回洗浄し、シリカゲルの上に活性アルミナを敷いたカラムを通すことにより精製した。得られたトルエン溶液をメタノール300ml中に滴下し、1時間撹拌した後、得られた固体をろ取し、乾燥させたところ、下記式で表される高分子化合物4を1.7g得た。高分子化合物4のポリスチレン換算の数平均分子量が5.4×10であり、ポリスチレン換算の重量平均分子量が1.1×10であった。
Figure JPOXMLDOC01-appb-C000156
(式中、( )右下の数字は各繰返し単位の共重合比を表し、nは、繰返し単位数を表す。)
実施例8:高分子化合物5の合成
 窒素置換したグローブボックス中で反応をおこなった。100mlの反応容器に化合物(V)1.00g、2,2’-ビピリジル0.45gを取り、45mlの脱水テトラヒドロフランに溶解させた。60℃に昇温した後、ビス(1,5-シクロオクタジエン)ニッケル(0)0.45g加え、4時間攪拌した。500mlビーカーに水43ml、メタノール43ml、25重量%アンモニア水2mlを取り、攪拌しながら、この溶液中に反応マスを注いだ。30分攪拌後、吸引濾過し、0.96gの粗生成物を得た。得られた粗生成物にトルエン18ml加え、桐山ロートにラジオライトを敷いて吸引濾過した。トルエン5mlで3回洗浄し、濾洗液をアルミナを通して濾過し、トルエン2mlで2回洗浄した。得られた濾洗液に5重量%塩酸40ml加え、室温で2時間攪拌し、分液した。有機層に4重量%アンモニア水36ml加え、室温で3時間攪拌し、分液した。有機層に水36ml加え、室温で2.5時間攪拌し、分液した。有機層をろ紙で濾過し、メタノール100ml中に滴下し、1時間攪拌した。析出した固体を濾過し、真空乾燥機で終夜乾燥させたところ、下記式で表される高分子化合物5を0.63g得た。高分子化合物5のポリスチレン換算の数平均分子量は1.4×10、重量平均分子量は1.2×10であった。
Figure JPOXMLDOC01-appb-C000157
(式中、nは、繰返し単位数を表す。)
実施例9:高分子化合物6の合成
 窒素雰囲気下、前記化合物(VI)2.393g、2,7-ビス(1,3,2-ジオキサボロラン-2-イル)-9,9-ジ-n-オクチルフルオレン0.668g、2,7-ジブロモ-9,9-ビス(3-n-ヘキシルフェニル)フルオレン(WO2010-13723に記載の方法に従って合成)2.552g、前記化合物(V)0.897g及びトルエン50mlを混合した。ジクロロビス(トリフェニルホスフィン)パラジウム(II)3.2mg加えた後、5分間でテトラエチルアンモニウムヒドロキシド(20重量%水溶液)15mlを滴下し、バス温105℃に昇温し、20時間攪拌した。バスを外し、(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンゼン0.96gとジクロロビス(トリフェニルホスフィン)パラジウム(II)3.2mg加え、105℃で4時間攪拌した後、ブロモベンゼン0.96gを加え、更に105℃で4時間反応させた。バス温を65℃に下げ、5重量%ジエチルジチアカルバミン酸ナトリウム水溶液50mlを加え、更に4時間攪拌した。分液し、有機層を500mlのメタノール中に注加し、室温で30分攪拌した後、得られた固体を濾過し、乾燥させた。得られた粗生成物をトルエン150mlに溶解させ、シリカゲルの上に活性アルミナを敷いたカラムを通すことにより精製した。得られたトルエン溶液をメタノール1L中に注加し、室温で30分攪拌した後、得られた固体を濾過し、真空乾燥させたところ、下記式で表される高分子化合物6を3.68g得た。高分子化合物6のポリスチレン換算の数平均分子量は1.3×10、重量平均分子量は2.9×10であった。
Figure JPOXMLDOC01-appb-C000158
(式中、( )右下の数字は各繰返し単位の共重合比を表し、nは、繰返し単位数を表す。)
合成例4:高分子化合物7の合成
 化合物(V)の代わりに2,7-ビス{(4-ブロモフェニル)(4-メチルフェニル)アミノ}-9,9-ジ-n-オクチルフルオレン0.492g用いた以外は高分子化合物6と同様に合成した。その結果、下記式で表される高分子化合物7を3.86g得た。高分子化合物7のポリスチレン換算の数平均分子量は1.6×10、重量平均分子量は4.9×10であった。
Figure JPOXMLDOC01-appb-C000159
(式中、( )右下の数字は各繰返し単位の共重合比を表し、nは、繰返し単位数を表す。)
試験例1:正孔注入性の評価、及び、発光波長の測定
 正孔注入性の評価は、イオン化ポテンシャルを指標として行った。
 イオン化ポテンシャルの測定は、前記(iv)に従って行った。
 発光波長の測定は、前記(v)に従って行い、発光波長のピークトップ(λem)を決定した。
 その結果、高分子化合物1は、高分子化合物2に比し、イオン化ポテンシャルの測定値の絶対値が小さかった。従って、高分子化合物1は、高分子化合物2に比し、より優れた正孔注入性を示す。
 また、高分子化合物1は、高分子化合物2に比し、より短い発光波長のピークトップ(λem)を示した。従って、高分子化合物1は、高分子化合物2に比し、より色調に優れた青色を示すと評価できる。
Figure JPOXMLDOC01-appb-T000160
<正孔輸送性の評価1>
 正孔のみを流すことができる素子である正孔単電荷素子を作製し、本発明の化合物の正孔輸送性を評価した。
素子実施例1(HOD1-1)
(1-1:正孔注入層の形成)
 ITO陽極が成膜されたガラス基板にUVオゾン洗浄を施した後、該基板上に、正孔注入層形成用組成物を塗布し、スピンコート法によって膜厚60nmの塗膜を得た。
 この塗膜を設けた基板を200℃で10分間加熱し、塗膜を不溶化させた後、室温まで自然冷却させ、正孔注入層を成膜した。ここで正孔注入層形成用組成物にはスタルクヴイテック(株)より入手可能なPEDOT:PSS水溶液(ポリ(3,4-エチレンジオキシチオフェン)・ポリスチレンスルホン酸、製品名Baytron)を用いた。
(1-2:正孔輸送層の形成)
 正孔輸送材料である高分子化合物3及びキシレンを、該正孔輸送材料が1.75重量%の割合となるように混合し、正孔輸送層形成用組成物を得た。
 上記(1-1)で得た正孔注入層の上に、正孔輸送層形成用組成物をスピンコート法により塗布し、膜厚80nmの塗膜を得た。この塗膜を設けた基板を180℃で60分間加熱し、塗膜を不溶化させた後、室温まで自然冷却させ、正孔輸送層を成膜した。
(1-3:陰極の形成)
 上記(1-2)で得た、陽極、正孔注入層、正孔輸送層を有する基板の正孔輸送層の上に、真空蒸着法によって、膜厚80nmの金を成膜し、陰極を形成した。
(1-4:封止)
 上記(1-3)で得た、積層を有する基板を真空蒸着装置より取り出し、窒素雰囲気下で、封止ガラス及び2液混合エポキシ樹脂にて封止し、正孔単電荷素子(HOD1-1)を得た。
(評価)
 上記の正孔単電荷素子(HOD1-1)に、直流電圧電流発生器を用いて、-1Vから+20Vまで電圧を印加し、電界強度が7×10[V/cm]の時に素子に流れる電流密度[mA/cm]を測定した。結果を表fに示す。
 なお、本評価において、7×10[V/cm]の電界強度が素子に印加された際に、電流励起による発光は観測されず、素子中を流れる電子電流は、正孔電流に対して極微量であることが確認された。
素子実施例2(HOD1-2)
 正孔輸送材料として高分子化合物3の代わりに高分子化合物3と高分子化合物4との重量比1:1の混合物を用いた他は、素子実施例1と同様に操作し、正孔単電荷素子(HOD1-2)を作製し、評価した。
 なお、本評価において、7×10[V/cm]の電界強度が素子に印加された際に、電流励起による発光は観測されず、素子中を流れる電子電流は、正孔電流に対して極微量であることが確認された。
素子実施例3(HOD1-3)
 正孔輸送材料として高分子化合物3の代わりに高分子化合物5と高分子化合物4との重量比1:4の混合物を用いた他は、素子実施例1と同様に操作し、正孔単電荷素子(HOD1-3)を作製し、評価した。
 なお、本評価において、7×10[V/cm]の電界強度が素子に印加された際に、電流励起による発光は観測されず、素子中を流れる電子電流は、正孔電流に対して極微量であることが確認された。
素子比較例1(HOD1-4)
 正孔輸送材料として高分子化合物3の代わりに高分子化合物4を用いた他は、実施例1と同様に操作し、正孔単電荷素子(HOD1-4)を作製し、評価した。
 なお、本評価において、7×10[V/cm]の電界強度が素子に印加された際に、電流励起による発光は観測されず、素子中を流れる電子電流は、正孔電流に対して極微量であることが確認された。
Figure JPOXMLDOC01-appb-T000161
 表fから明らかなように、本発明の化合物を用いた素子実施例1~3では、素子比較例1に比べ電流が大きく、本発明化合物の高い正孔輸送性が示された。
<正孔輸送性の評価2>
 正孔のみを流すことができる素子である正孔単電荷素子を作製し、本発明化合物の正孔輸送性を評価した。
 素子実施例4(HOD2-1)
(2-1:正孔注入層の形成)
 ITO陽極が成膜されたガラス基板にUVオゾン洗浄を施した後、該基板上に、正孔注入層形成用組成物を塗布し、スピンコート法によって膜厚60nmの塗膜を得た。
 この塗膜を設けた基板を200℃で10分間加熱し、塗膜を不溶化させた後、室温まで自然冷却させ、正孔注入層を成膜した。ここで正孔注入層形成用組成物にはスタルクヴイテック(株)より入手可能なPEDOT:PSS水溶液(ポリ(3,4-エチレンジオキシチオフェン)・ポリスチレンスルホン酸、製品名Baytron)を用いた。
(2-2:正孔輸送層の形成)
 正孔輸送材料である高分子化合物3及びキシレンを、該正孔輸送材料が0.8重量%の割合となるように混合し、正孔輸送層形成用組成物を得た。
 上記(2-1)で得た正孔注入層の上に、正孔輸送層形成用組成物をスピンコート法により塗布し、膜厚20nmの塗膜を得た。この塗膜を設けた基板を180℃で60分間加熱し、塗膜を不溶化させた後、室温まで自然冷却させ、正孔輸送層を成膜した。
(2-3:発光層の形成)
 発光材料である高分子化合物6及びキシレンを、該発光性高分子材料が1.4重量%の割合となるように混合し、発光層形成用組成物を得た。
 上記(2-2)で得た、陽極、正孔注入層、及び正孔輸送層を有する基板の正孔輸送層の上に、発光層形成用組成物を塗布し、スピンコート法によって膜厚80nmの塗膜を得た。この塗膜を設けた基板を130℃で20分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、発光層を成膜した。
(2-4:陰極の形成)
 上記(2-3)で得た、陽極、正孔注入層、正孔輸送層及び発光層を有する基板の発光層の上に、真空蒸着法によって、膜厚80nmの金を成膜し、陰極を形成した。
(2-5:封止)
 上記(2-4)で得た、積層を有する基板を真空蒸着装置より取り出し、窒素雰囲気下で、封止ガラス及び2液混合エポキシ樹脂にて封止し、正孔単電荷素子(HOD2-1)を得た。
(評価)
 上記の正孔単電荷素子(HOD2-1)に、直流電圧電流発生器を用いて、-1Vから+20Vまで電圧を印加し、電界強度が7×10[V/cm]の時に素子に流れる電流密度[mA/cm]を測定した。結果を表gに示す。
 なお、本評価において、7×10[V/cm]の電界強度が素子に印加された際に、電流励起による発光は観測されず、素子中を流れる電子電流は、正孔電流に対して極微量であることが確認された。正孔単電荷素子では発光層からの発光は見られないが、バイポーラデバイスにおいては、ここで記載した発光層からの発光が見られることから、ここでは発光層と記載した。
素子実施例5(HOD2-2)
 正孔輸送材料として高分子化合物3の代わりに高分子化合物4を用いた他は、素子実施例4と同様に操作し、正孔単電荷素子(HOD2-2)を作製し、評価した。
 なお、本評価において、7×10[V/cm]の電界強度が素子に印加された際に、電流励起による発光は観測されず、素子中を流れる電子電流は、正孔電流に対して極微量であることが確認された。
素子比較例2(HOD2-3)
 発光材料として高分子化合物6の代わりに高分子化合物7を用いた他は、素子実施例5と同様に操作し、正孔単電荷素子(HOD2-3)を作製し、評価した。
 なお、本評価において、7×10[V/cm]の電界強度が素子に印加された際に、電流励起による発光は観測されず、素子中を流れる電子電流は、正孔電流に対して極微量であることが確認された。
Figure JPOXMLDOC01-appb-T000162
 表gから明らかなように、本発明の化合物を正孔輸送層に用いても、発光層に用いても、高い正孔輸送性を有することが示された。
<発光素子(バイポーラデバイス)の評価1>
素子実施例6(BPD1-1)
(3-1:正孔注入層の形成)
 ITO陽極が成膜されたガラス基板にUVオゾン洗浄を施した後、該基板上に、正孔注入層形成用組成物を塗布し、スピンコート法によって膜厚60nmの塗膜を得た。
 この塗膜を設けた基板を200℃で10分間加熱し、塗膜を不溶化させた後、室温まで自然冷却させ、正孔注入層を成膜した。ここで正孔注入層形成用組成物にはスタルクヴイテック(株)より入手可能なPEDOT:PSS水溶液(ポリ(3,4-エチレンジオキシチオフェン)・ポリスチレンスルホン酸、製品名Baytron)を用いた。
(3-2:正孔輸送層の形成)
 正孔輸送材料である高分子化合物3及びキシレンを、該正孔輸送材料が0.8重量%の割合となるように混合し、正孔輸送層形成用組成物を得た。
 上記(3-1)で得た正孔注入層の上に、正孔輸送層形成用組成物をスピンコート法により塗布し、膜厚20nmの塗膜を得た。この塗膜を設けた基板を180℃で60分間加熱し、塗膜を不溶化させた後、室温まで自然冷却させ、正孔輸送層を成膜した。
(3-3:発光層の形成)
 発光性高分子材料である高分子化合物7及びキシレンを、該発光材料が1.4重量%の割合となるように混合し、発光層形成用組成物を成膜した。
 上記(3-2)で得た、陽極、正孔注入層、及び正孔輸送層を有する基板の正孔輸送層の上に、発光層形成用組成物を塗布し、スピンコート法によって膜厚80nmの塗膜を得た。この塗膜を設けた基板を130℃で20分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、発光層を成膜した。
(3-4:陰極の形成)
 上記(1-3)で得た、陽極、正孔注入層、正孔輸送層及び発光層を有する基板の発光層の上に、真空蒸着法によって、膜厚3nmのフッ化ナトリウム層を、続いて膜厚80nmのアルミニウム層を、連続的に成膜し、陰極を形成した。
(3-5:封止)
 上記(3-4)で得た、積層を有する基板を真空蒸着装置より取り出し、窒素雰囲気下で、封止ガラス及び2液混合エポキシ樹脂にて封止し、発光素子(BPD1-1)を得た。
(評価)
 上記の発光素子(BPD1-1)に、直流電圧電流発生器を用いて電圧3Vを印加し、素子に流れる電流密度[mA/cm]と、発光輝度[cd/m]を測定した。結果を表hに示す。
素子実施例7(BPD1-2)
 正孔輸送材料として高分子化合物3の代わりに高分子化合物3と高分子化合物4との重量比1:1の混合物を用いた他は、素子実施例6と同様に操作し、発光素子(BPD1-2)を作製し、評価した。
素子実施例8(BPD1-3)
 正孔輸送材料として高分子化合物3の代わりに高分子化合物5と高分子化合物4との重量比1:4の混合物を用いた他は、素子実施例6と同様に操作し、発光素子(BPD1-3)を作製し、評価した。
素子比較例3(BPD1-4)
 正孔輸送材料として高分子化合物3の代わりに高分子化合物4を用いた他は、実施例6と同様に操作し、発光素子(BPD1-4)を作製し、評価した。
Figure JPOXMLDOC01-appb-T000163
 表hから明らかなように、本発明の化合物を用いた素子実施例6~8では、素子比較例3に比べ電流が大きく、発光輝度が高い。
<発光素子(バイポーラデバイス)の評価2>
素子実施例9(BPD2-1)
 正孔輸送材料として高分子化合物3の代わりに高分子化合物4を用い、且つ、発光材料として高分子化合物7の代わりに高分子化合物6を用いた他は、素子実施例6と同様に操作し、発光素子(BPD2-1)を作製した。
(評価)
 上記の発光素子(BPD2-1)に、直流電圧電流発生器を用いて-1Vから+20Vまで電圧を印加し、発光輝度[cd/m]、及び、発光スペクトルを測定した。発光輝度が1000[cd/m]の時の発光スペクトルを用いて、CIE表色系における色度を評価した。結果を表iに示す。
素子実施例10(BPD2-2)
 発光材料として高分子化合物6の代わりに高分子化合物5と高分子化合物7との重量比7:93の混合物を用いたほかは、素子実施例9と同様に操作し、発光素子(BPD2-2)を作製し、評価した。
素子実施例11(BPD2-3)
 発光材料として高分子化合物6の代わりに化合物(IV)と高分子化合物7との重量比7:93の混合物を用いた他は、素子実施例9と同様に操作し、発光素子(BPD2-3)を作製し、評価した。
素子実施例12(BPD2-4)
 正孔輸送材料として高分子化合物4の代わりに高分子化合物3を用いた他は、素子実施例9と同様に操作し、発光素子(BPD2-4)を作製し、評価した。
Figure JPOXMLDOC01-appb-T000164
 表iから明らかなように、本発明の化合物を用いた素子実施例9~12では、素子比較例3に比べ、CIE表色系の色座標のCIE-y値が小さく、青色の純度がより高い。
 本発明の化合物は、有機EL素子等の発光素子の材料、及び太陽電池等の光電素子の材料として有用である。本発明の化合物はまた、例えば、前記材料用の組成物、液状組成物、薄膜(例、発光性薄膜、導電性薄膜、半導体薄膜)、及び発光素子を含む表示装置に有用である。

Claims (20)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。R15は、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。R15が複数ある場合、それらは、同一であっても異なっていてもよい。eは、0~6の整数を表す。複数あるeは、同一であっても異なっていてもよい。)
    で表される構造から少なくとも1つの水素原子を除いた残基を含む化合物。
  2.  下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
    で表される繰返し単位を含む高分子化合物である、請求項1に記載の化合物。
  3.  前記式(2)で表される繰返し単位が下記式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式中、R、R、R、R及びaは、前記式(2)と同じ定義である。)
    で表される繰返し単位である、請求項2に記載の化合物。
  4.  さらに、下記式(4):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Arは、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。R11及びR12はそれぞれ独立に、水素原子、アルキル基、アリール基、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。nは、0又は1を表す。)
    で表される繰返し単位を含む、請求項2に記載の化合物。
  5.  前記式(4)で表される繰返し単位が下記式(5):
    Figure JPOXMLDOC01-appb-C000005
    (式中、A環及びB環はそれぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。Aは、連結基を表す。)
    で表される繰返し単位である、請求項4に記載の化合物。
  6.  前記式(5)で表される繰返し単位が下記式(6):
    Figure JPOXMLDOC01-appb-C000006
    (式中、R13は、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるR13は、同一であっても異なっていてもよい。2つのR13は、互いに結合して環を形成してもよい。)
    で表される繰返し単位である、請求項5に記載の化合物。
  7.  下記式(7):
    Figure JPOXMLDOC01-appb-C000007
    (式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。Xは、重合に関与し得る基を表す。複数あるXは、同一であっても異なっていてもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
    で表される化合物を重合させて、
     下記式(3):
    Figure JPOXMLDOC01-appb-C000008
    (式中、R、R、R、R及びaは、前記式(7)と同じである。)
    で表される繰返し単位を含む化合物を得ることを含む、式(3)で表される繰返し単位を含む化合物の製造方法。
  8.  下記式(7):
    Figure JPOXMLDOC01-appb-C000009
    (式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。Xは、重合に関与し得る基を表す。複数あるXは、同一であっても異なっていてもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
    で表される化合物。
  9.  下記式(8):
    Figure JPOXMLDOC01-appb-C000010
    (式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
    で表される化合物を、ハロゲン化剤と反応させて、
     下記式(7-1):
    Figure JPOXMLDOC01-appb-C000011
    (式中、R、R、R、R及びaは、前記式(8)と同じである。Xは、ハロゲン原子を表す。複数あるXは、同一であっても異なっていてもよい。)
    で表される化合物を得ることを含む、式(7-1)で表される化合物の製造方法。
  10.  下記式(8):
    Figure JPOXMLDOC01-appb-C000012
    (式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
    で表される化合物。
  11.  下記式(9):
    Figure JPOXMLDOC01-appb-C000013
    (式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
    で表される化合物を、酸の存在下で反応させて、
     下記式(8):
    Figure JPOXMLDOC01-appb-C000014
    (式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
    で表される化合物を得ることを含む、式(8)で表される化合物の製造方法。
  12.  下記式(9):
    Figure JPOXMLDOC01-appb-C000015
    (式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。同一の炭素原子に結合する2つのRは、互いに結合して環を形成してもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
    で表される化合物。
  13.  下記式(10):
    Figure JPOXMLDOC01-appb-C000016
    (式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。R16は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるR16は、同一であっても異なっていてもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
    で表される化合物を、
     下記式(11):
    Figure JPOXMLDOC01-appb-C000017
    (式中、R17は、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アシル基、アシルオキシ基、1価の複素環基又は複素環オキシ基を表す。Mは、リチウム原子又はモノハロゲン化マグネシウムを表す。)
    で表される化合物又は還元剤と反応させて、
     下記式(9):
    Figure JPOXMLDOC01-appb-C000018
    (式中、R、R、R、R及びaは、前記式(10)と同じである。)
    で表される化合物を得ることを含む、式(9)で表される化合物の製造方法。
  14.  下記式(10):
    Figure JPOXMLDOC01-appb-C000019
    (式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。R16は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるR16は、同一であっても異なっていてもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
    で表される化合物。
  15.  下記式(12):
    Figure JPOXMLDOC01-appb-C000020
    (式中、Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。Xは、塩素原子、臭素原子又はヨウ素原子を表す。複数あるXは、同一であっても異なっていてもよい。fは、0~2の整数を表す。複数あるfは、同一であっても異なっていてもよい。)
    で表される化合物、及び
     下記式(13):
    Figure JPOXMLDOC01-appb-C000021
    (式中、Rは、前記式(12)と同じである。Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。R16は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。gは、0~4の整数を表す。

    で表される化合物を、遷移金属触媒及び塩基の存在下で反応させて、下記式(10):
    Figure JPOXMLDOC01-appb-C000022
    (式中、Rは、水素原子、アルキル基、アリール基、アリールアルキル基、アシル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アルケニル基、アリールアルケニル基、アルキニル基、アリールアルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、カルバモイル基、1価の複素環基、複素環オキシ基、カルボキシル基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。Rが複数ある場合、それらは、同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるRは、同一であっても異なっていてもよい。2つのRは、互いに結合して環を形成してもよい。R16は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるR16は、同一であっても異なっていてもよい。aは、0~5の整数を表す。複数あるaは、同一であっても異なっていてもよい。)
    で表される化合物を得ることを含む、式(10)で表される化合物の製造方法。
  16.  (a)請求項1~6のいずれか一項に記載の化合物と、(b)正孔輸送材料、電子輸送材料及び発光材料からなる群より選ばれる少なくとも1つの材料とを含む組成物。
  17.  請求項1に記載の化合物を含む液状組成物。
  18.  請求項1に記載の化合物を用いてなる薄膜。
  19.  (a)陽極及び陰極からなる電極と、(b)該電極間に設けられた、請求項1に記載の化合物を用いてなる有機層とを備える素子。
  20.  請求項19に記載の素子を備える表示装置。
PCT/JP2010/073121 2009-12-28 2010-12-22 化合物及びそれを用いた有機エレクトロルミネッセンス素子 WO2011081065A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10840922A EP2520576A1 (en) 2009-12-28 2010-12-22 Compound and organic electroluminescent element using said compound
CN2010800597991A CN102695707A (zh) 2009-12-28 2010-12-22 化合物以及使用其的有机电致发光元件
US13/519,220 US8779137B2 (en) 2009-12-28 2010-12-22 Compound and organic electroluminescent element using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009297187 2009-12-28
JP2009-297187 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011081065A1 true WO2011081065A1 (ja) 2011-07-07

Family

ID=44226472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073121 WO2011081065A1 (ja) 2009-12-28 2010-12-22 化合物及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US8779137B2 (ja)
EP (1) EP2520576A1 (ja)
JP (1) JP5762734B2 (ja)
KR (1) KR20120109532A (ja)
CN (1) CN102695707A (ja)
TW (1) TW201130836A (ja)
WO (1) WO2011081065A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005029A1 (en) * 2011-07-04 2013-01-10 Cambridge Display Technology Limited Organic light emitting composition, device and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101925157B1 (ko) * 2010-07-02 2018-12-04 닛산 가가쿠 가부시키가이샤 정공 수송 조성물 및 관련 소자 및 방법 (i)
WO2013035136A1 (ja) * 2011-09-08 2013-03-14 パナソニック株式会社 発光装置およびその製造方法
CN103717636A (zh) 2011-10-19 2014-04-09 出光兴产株式会社 交联型聚合物及使用该聚合物的有机场致发光元件
WO2014188385A2 (en) * 2013-05-23 2014-11-27 Jawaharlal Nehru Centre For Advanced Scientific Research A process for bromination of arylene dianhydrides and a method of synthesis of diimides thereof
GB2533268A (en) * 2014-12-02 2016-06-22 Cambridge Display Tech Ltd Organic light-emitting device
JP7330018B2 (ja) * 2018-12-06 2023-08-21 住友化学株式会社 高分子化合物の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3146296B2 (ja) 1992-12-14 2001-03-12 勝美 吉野 光導電性組成物
JP2007512249A (ja) 2003-11-14 2007-05-17 住友化学株式会社 ハロゲン化ビスジアリールアミノ多環式芳香族化合物及びそのポリマー
WO2007077810A1 (ja) * 2006-01-05 2007-07-12 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008038747A1 (fr) 2006-09-25 2008-04-03 Sumitomo Chemical Company, Limited composé polymère et dispositif électroluminescent polymère l'utilisant
JP2009114114A (ja) * 2007-11-06 2009-05-28 Tosoh Corp ベンゾフルオレノン誘導体及びその製造方法
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
JP2009263665A (ja) * 2008-04-02 2009-11-12 Mitsubishi Chemicals Corp 高分子化合物、該高分子化合物を架橋させてなる網目状高分子化合物、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
WO2010013723A1 (ja) 2008-07-29 2010-02-04 住友化学株式会社 高分子化合物及びそれを用いた発光素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798985B2 (ja) * 2001-10-30 2006-07-19 ヒロセエンジニアリング株式会社 単一化合物による白色発光照明装置及び白色発光有機el素子
US20100201259A1 (en) 2007-07-31 2010-08-12 Sumitomo Chemical Company, Limited Compound and method for producing the same, and ink composition, thin film, organic transistor and organic electroluminescence device, each using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3146296B2 (ja) 1992-12-14 2001-03-12 勝美 吉野 光導電性組成物
JP2007512249A (ja) 2003-11-14 2007-05-17 住友化学株式会社 ハロゲン化ビスジアリールアミノ多環式芳香族化合物及びそのポリマー
WO2007077810A1 (ja) * 2006-01-05 2007-07-12 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008038747A1 (fr) 2006-09-25 2008-04-03 Sumitomo Chemical Company, Limited composé polymère et dispositif électroluminescent polymère l'utilisant
JP2009114114A (ja) * 2007-11-06 2009-05-28 Tosoh Corp ベンゾフルオレノン誘導体及びその製造方法
JP2009263665A (ja) * 2008-04-02 2009-11-12 Mitsubishi Chemicals Corp 高分子化合物、該高分子化合物を架橋させてなる網目状高分子化合物、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
WO2010013723A1 (ja) 2008-07-29 2010-02-04 住友化学株式会社 高分子化合物及びそれを用いた発光素子

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Organic Reactions", vol. 14, 1965, JOHN WILEY & SONS, INC., pages: 270 - 490
"Organic Reactions", vol. 27, 1982, JOHN WILEY & SONS, INC., pages: 345 - 390
"Organic Syntheses", vol. VI, 1988, JOHN WILEY & SONS, INC., pages: 407 - 411
ANGEWANDTE CHEMIE, INTERNATIONAL EDITION IN ENGLISH, vol. 34, no. 12, 1995, pages 1348
CHEM. REV., vol. 95, 1995, pages 2457
HAHN, W.E. ET AL.: "Relation between color and structure of organic compounds. III. Derivatives of quinolonofluorene", ROCZNIKI CHEMII, vol. 49, no. 7-8, 1975, pages 1309 - 1327, XP001028118 *
J. ORGANOMET. CHEM., vol. 576, 1999, pages 147
J. PRAKT. CHEM., vol. 336, 1994, pages 247
MAKROMOL. CHEM., MACROMOL. SYMP., vol. 12, 1987, pages 229

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005029A1 (en) * 2011-07-04 2013-01-10 Cambridge Display Technology Limited Organic light emitting composition, device and method
GB2505834A (en) * 2011-07-04 2014-03-12 Cambridge Display Tech Ltd Organic light emitting composition, device and method

Also Published As

Publication number Publication date
US20120286654A1 (en) 2012-11-15
CN102695707A (zh) 2012-09-26
KR20120109532A (ko) 2012-10-08
US8779137B2 (en) 2014-07-15
TW201130836A (en) 2011-09-16
EP2520576A1 (en) 2012-11-07
JP2011153134A (ja) 2011-08-11
JP5762734B2 (ja) 2015-08-12

Similar Documents

Publication Publication Date Title
TWI504668B (zh) 高分子化合物及使用該高分子化合物而構成之發光元件
JP5609024B2 (ja) フェノキサジン系高分子化合物及びそれを用いた発光素子
KR100985703B1 (ko) 고분자 화합물 및 이를 사용한 고분자 발광소자
US8519092B2 (en) Polymer compound and polymer light-emitting device using the same
US20100207516A1 (en) Polymer compound and polymer light-emitting device using the same
US20100201259A1 (en) Compound and method for producing the same, and ink composition, thin film, organic transistor and organic electroluminescence device, each using the same
KR20110057199A (ko) 고분자 화합물 및 그것을 이용한 고분자 발광 소자
US20100109517A1 (en) Pyrene polymer compound and light emitting device using the same
JP2009149850A (ja) アミン系高分子化合物及びそれを用いた発光素子
JP2004168999A (ja) 高分子化合物およびそれを用いた高分子発光素子
WO2010013724A1 (ja) 1,3-ジエン構造を含む化合物及びその製造方法
JP5762734B2 (ja) 化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP5162868B2 (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP5581607B2 (ja) 高分子化合物及びそれを用いた有機トランジスタ
JP2010013628A (ja) 高分子化合物及びそれを用いた高分子発光素子
JP4896411B2 (ja) 高分子化合物及びそれを用いた高分子発光素子
JP2008031337A (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP5891798B2 (ja) 高分子化合物及びそれを用いた発光素子
JP2011038103A (ja) 高分子化合物及びそれを用いた高分子発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840922

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010840922

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13519220

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127016779

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE