WO2011080990A1 - Solder paste and flux - Google Patents

Solder paste and flux Download PDF

Info

Publication number
WO2011080990A1
WO2011080990A1 PCT/JP2010/071765 JP2010071765W WO2011080990A1 WO 2011080990 A1 WO2011080990 A1 WO 2011080990A1 JP 2010071765 W JP2010071765 W JP 2010071765W WO 2011080990 A1 WO2011080990 A1 WO 2011080990A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
hydrocarbon group
additive
solder paste
flux
Prior art date
Application number
PCT/JP2010/071765
Other languages
French (fr)
Japanese (ja)
Inventor
柴田誠治
笠原智彦
中路将一
原拓生
Original Assignee
株式会社タムラ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所 filed Critical 株式会社タムラ製作所
Publication of WO2011080990A1 publication Critical patent/WO2011080990A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces

Definitions

  • This invention relates to solder paste and flux.
  • soldering is performed by a reflow soldering method using a solder paste.
  • solder paste is supplied onto a substrate electrode by a screen printing method and then heated through a reflow furnace to perform soldering.
  • preheating called preheating and then main heating called melting for melting solder powder called main heat are performed.
  • the solder paste is a paste in which solder powder is dispersed in a liquid flux, and various solder pastes having different compositions and properties have been developed.
  • this solder paste after this solder paste is supplied to the substrate, it may be softened during preheating and heat dripping may occur.
  • Patent Document 1 entitled “Cream Solder” has the following description.
  • a thixotropic agent for cream solder a wax-like material obtained by dehydrating a higher aliphatic monocarboxylic acid, polybasic acid and diamine is used. Cream solder using this wax-like material as a thixotropic agent shows very good printability and does not cause sag during preheating, so that almost no solder balls are generated during reflow.
  • a reaction product of stearic acid, sebacic acid and ethylenediamine is prepared.
  • Example 6 these reactants, polymerized rosin, ⁇ -terpinel, hexyl carbitol, and cyclohexylamine HBr salt are charged into a heating container, taken out after being melted by heating, and cooled to produce a flux.
  • Example 7 450 g of Sn / Pb (63/37) solder powder having a spherical diameter of 250 to 325 mesh and 50 g of each flux obtained in Example 6 were mixed to obtain cream solder.
  • Example 8 the evaluation of cream solder is performed. In the evaluation of cream solder, preheating is performed under conditions of 150 ° C. ⁇ 30 seconds, and it is evaluated that no dripping occurs during preheating under these conditions.
  • an object of the present invention is to provide a solder paste and a flux that can suppress the dripping of the solder paste in the reflow soldering method.
  • the first invention includes a solder powder and a flux containing an additive, and the additive includes a soldering suppression component represented by Formula (1) or Formula (2). It is a paste.
  • R12 is a hydrocarbon group.
  • R13 is a hydrocarbon group.
  • R20 is a hydrocarbon group having 14 or more carbon atoms.
  • 2nd invention contains an additive and an additive is a flux containing the heating dripping suppression component shown to Formula (1) or Formula (2).
  • R10 is a hydrocarbon group having 14 or more carbon atoms.
  • R11 is a hydrocarbon group.
  • R12 is a hydrocarbon group.
  • R13 is a hydrocarbon group.
  • R20 is a hydrocarbon group having 14 or more carbon atoms.
  • solder paste and a flux capable of suppressing heating dripping in a reflow soldering method.
  • FIG. 1 is a graph showing the results of DSC measurement of Sample 1.
  • FIG. 2 is a graph showing the results of DSC measurement of Sample 2.
  • FIG. 3 is a graph showing the results of DSC measurement of Sample 3.
  • FIG. 4 is a graph showing the results of DSC measurement of Sample 4.
  • FIG. 5 is a graph showing the results of DSC measurement of Sample 5.
  • FIG. 6 is a graph showing the results of DSC measurement of Sample 6 and Sample 7.
  • solder paste includes a solder powder and a flux including a resin component, a solvent component, an activator, a thixotropic agent, and an additive.
  • solder powder examples of the solder powder include Sn-Pb solder powder and lead-free solder powder. Specific examples of the Sn-Pb solder powder include Sn-Pb solder powder.
  • solder powder examples include Sn—Ag—Cu solder powder (melting point of about 218 ° C.), Sn—Ag solder powder (melting point of about 221 ° C.), Sn—Cu solder powder (melting point of about 227 ° C.), and the like. Since the lead-free solder powder has a high melting point, for example, preheating is performed at 170 ° C. to 190 ° C. (flux)
  • the flux includes a resin component, a solvent component, an activator, a thixotropic agent, and an additive.
  • resin component examples include rosin.
  • rosin examples include natural rosin, polymerized rosin, water-added rosin, and rosin derivatives such as acid-modified rosin.
  • solvent component As a solvent component, what is used for the normal solder paste is mentioned. Examples thereof include hexyl carbitol (boiling point: 260 ° C.), butyl carbitol (boiling point: 230 ° C.), ethylene glycol monobutyl ether, and the like.
  • activator examples of the activator include organic amine hydrohalides and organic acids.
  • organic amine hydrohalides include diphenylguanidine hydrobromide, cyclohexylamine hydrobromide, diethylamine hydrochloride, triethanolamine hydrobromide, and monoethanolamine hydrogen bromide.
  • examples include acid salts.
  • examples of the organic acid include malonic acid, succinic acid, maleic acid, glutaric acid, suberic acid, adipic acid, and sebacic acid.
  • Thixotropic agent examples include hydrogenated castor oil, fatty acid amides, and oxyfatty acid hydrogenated castor oil.
  • Additives include products of condensation reactions of diamines such as aliphatic diamines, aromatic diamines, and alicyclic diamines with polybasic acids having 16 or more carbon atoms and anhydrides thereof using bisamide as a solvent.
  • diamines such as aliphatic diamines, aromatic diamines, and alicyclic diamines with polybasic acids having 16 or more carbon atoms and anhydrides thereof using bisamide as a solvent.
  • diamines such as aliphatic diamines, aromatic diamines, and alicyclic diamines with polybasic acids having 16 or more carbon atoms and anhydrides thereof using bisamide as a solvent.
  • diamines such as aliphatic diamines, aromatic diamines, and alicyclic diamines with polybasic acids having 16 or more carbon atoms and anhydrides thereof using bisamide as a solvent.
  • aliphatic diamine include ethylene diamine and hexamethylene diamine.
  • aromatic diamine include p-
  • polybasic acid examples include eicosanedioic acid, 8,13-dimethyleicosanedioic acid, and 8,13-dimethyl-8,12-eicosadienedioic acid.
  • anhydride of a polybasic acid having 16 or more carbon atoms examples include polyeicosane dianhydride and 8,13-dimethyl-8,12-eicosadiene dianhydride.
  • solvent examples of bisamides include saturated fatty acid bisamides, unsaturated fatty acid bisamides, and aromatic bisamides.
  • ethylene bislauric acid amide ethylene bisstearic acid amide, ethylene bisoleic acid amide, m-xylene bishydroxystearic acid amide and the like
  • a polybasic acid represented by formula (3) or a polybasic acid anhydride represented by formula (4) using bisamide as a solvent for example, ethylenebisstearic acid amide represented by formula (10)
  • a diamine represented by the formula (5) a polyamide compound represented by the formula (1) can be obtained.
  • the polyamide compound represented by the formula (1) is a heating dripping suppressing component of this additive.
  • the additive includes a polyamide compound represented by the formula (1).
  • the solder paste containing the flux containing the additive and the solder powder suppresses the heating dripping in the reflow soldering method.
  • this additive is preferably added to a solder paste containing lead-free solder, which requires preheating at a high temperature.
  • combination of the eicosanedioic acid shown to Formula (11) and the ethylenediamine shown to Formula (12) using the ethylenebis stearic acid amide shown to Formula (10) as a solvent is demonstrated.
  • the additive obtained by this synthesis includes the polyamide compound represented by the formula (13) produced by the dehydration condensation reaction between the eicosane diacid represented by the formula (11) and the ethylenediamine represented by the formula (12) shown below. .
  • the polyamide compound represented by the formula (13) is a heating dripping suppressing component.
  • the additive includes a polyamide compound represented by the formula (13).
  • the solder paste containing the flux containing the additive and the solder powder suppresses the heating dripping in the reflow soldering method. ⁇ Effect>
  • the solder paste according to the first embodiment of the present invention includes a heating dripping suppressing component represented by the formula (1).
  • a solder paste according to a second embodiment of the present invention will be described.
  • the solder paste according to the second embodiment of the present invention is different from the first embodiment except that the additive is different from the first embodiment. This is the same as in the first embodiment.
  • a solder paste according to a second embodiment of the present invention includes a solder powder and a flux including a resin component, a solvent, an activator, a thixotropic agent, and an additive. Since the resin component, the solvent component, the activator, and the thixotropic agent are the same as those in the first embodiment, detailed description thereof is omitted.
  • the additive includes a product of a dealcoholization reaction in the presence of an organic acid between a diamine such as an aliphatic diamine, an aromatic diamine, and an alicyclic diamine and a polybasic acid ester having 16 or more carbon atoms.
  • a diamine such as an aliphatic diamine, an aromatic diamine, and an alicyclic diamine and a polybasic acid ester having 16 or more carbon atoms.
  • Examples of the aliphatic diamine include ethylene diamine and hexamethylene diamine.
  • the aromatic diamine include p-xylene diamine.
  • Examples of the alicyclic diamine include 4,4′-bis (cyclohexylamine).
  • polybasic acid ester examples of the polybasic acid ester having 16 or more carbon atoms include dimethyl eicosanedioate and diethyl eicosanedioate.
  • Organic acid examples of the organic acid include higher fatty acids such as stearic acid.
  • the polyamide compound represented by the formula (2) is a heating dripping suppressing component of this additive.
  • the additive includes a polyamide compound represented by the formula (2).
  • the solder paste containing the flux containing the additive and the solder powder suppresses the heating dripping in the reflow soldering method.
  • this additive is preferably added to a solder paste containing lead-free solder, which requires preheating at a high temperature.
  • a formula (19) is obtained by a dealcoholization reaction between dimethyl eicosanedioate represented by formula (16) in the presence of an organic acid (stearic acid represented by formula (18)) and ethylenediamine represented by formula (17)
  • a polyamide compound and a compound represented by the formula (20) are obtained.
  • the compound represented by the formula (20) acts as a heating dripping suppressing component.
  • the additive includes a compound represented by the formula (20).
  • the solder paste containing the flux containing the additive and the solder powder suppresses the heating dripping in the reflow soldering method.
  • the solder paste according to the second embodiment of the present invention can obtain the same effects as those of the first embodiment.
  • Example 1 to Sample 7> First, the additives of Sample 1 to Sample 7 were prepared.
  • ethylene bis stearic acid amide and decanedioic acid (10 carbon atoms) were charged into a reaction vessel, and introduction of nitrogen gas was started.
  • the oil bath temperature was set to a predetermined temperature (170 ° C.)
  • the reaction vessel was heated for 3 hours, and stirring was started.
  • ethylenediamine was added dropwise using a dropping funnel, and then the set temperature of the reaction vessel was raised (220 ° C.).
  • Example 2 First, ethylene bis stearic acid amide and dotecandioic acid (carbon number 12) were introduced into a reaction vessel, and introduction of nitrogen gas was started. Next, the oil bath temperature was set to a predetermined temperature, and the reaction vessel was heated for 3 hours, and then stirring was started. Next, ethylenediamine was added dropwise using a dropping funnel, and then the set temperature of the reaction vessel was raised, and after heating for 3 hours, stirring was stopped and the mixture was cooled to obtain the additive of Sample 2.
  • ethylene bis stearic acid amide and dotecandioic acid carbon number 12
  • ⁇ Sample 3> First, ethylene bis stearic acid amide and tetradecanedioic acid (carbon number 14) were charged into a reaction vessel, and introduction of nitrogen gas was started. Next, the oil bath temperature was set to a predetermined temperature, and the reaction vessel was heated for 3 hours, and then stirring was started. Next, ethylenediamine was dropped with a dropping funnel, and then the set temperature of the reaction vessel was raised, and after heating for 3 hours, stirring was stopped and cooling was performed to obtain the additive of Sample 3.
  • ⁇ Sample 4> First, ethylene bis stearic acid amide and octadecanedioic acid (carbon number 18) were charged into a reaction vessel, and introduction of nitrogen gas was started.
  • Example 5 First, ethylene bis stearic acid amide and eicosane diacid (carbon number 20) were charged into a reaction vessel, and introduction of nitrogen gas was started. Next, the oil bath temperature was set to a predetermined temperature, and the reaction vessel was heated for 3 hours, and then stirring was started. Next, ethylenediamine was added dropwise using a dropping funnel, and then the set temperature of the reaction vessel was raised.
  • a flux having the following composition was produced by heating and melting.
  • flux Water-added rosin (rosin resin) 51% by weight Diphenylguanidine hydrobromide (activator) 1% by weight
  • Adipic acid (active agent) 1% by weight
  • Ethylhexyl diglycol (solvent) 39% by weight
  • Hydrogenated castor oil (thixotropic agent) 6% by weight
  • Sample 1 (additive) 2% by weight This flux could not be uniformly dispersed with the low softening point component due to reprecipitation after heating and dissolving the synthetic polyamide compound.
  • ⁇ Test Example 2> First, a flux having the following composition was produced by heating and melting.
  • solder paste of Example 4 was obtained by stirring and mixing the produced flux, 12 g, and solder powder (Sn / 3Ag / 0.5Cu, particle size 1 to 12 ⁇ m). (Heating test) The produced solder paste was subjected to the following heating dripping test.
  • Solder paste was printed on a copper substrate using a metal mask with an opening diameter of 0.25 mm ⁇ and a thickness of 0.05 mm, heated at 190 ° C for 90 seconds, measured for the width, and heated under the following evaluation criteria The stopping properties were evaluated. Evaluation criteria: droop width 0 to 20 ⁇ m ( ⁇ ), droop width 20 ⁇ m or more ( ⁇ ) ⁇ Test Example 5> First, a flux having the following composition was produced by heating and melting.
  • solder paste of Example 5 was obtained by stirring and mixing the produced flux, 12 g, and solder powder (Sn / 3Ag / 0.5Cu, particle size 1 to 12 ⁇ m). (Heating test) The produced solder paste was subjected to the same heating dripping test as in Test Example 4.
  • a flux having the following composition was produced by heating and melting.
  • flux Water-added rosin (rosin resin) 51% by weight Diphenylguanidine hydrobromide (activator) 1% by weight Adipic acid (active agent) 1% by weight Ethylhexyl diglycol (solvent) 39% by weight Hydrogenated castor oil (thixotropic agent) 6% by weight
  • the solder paste of Example 5 was obtained by stirring and mixing the produced flux, 12 g, and solder powder (Sn / 3Ag / 0.5Cu, particle size 1 to 12 ⁇ m).
  • solder powder solder powder (Sn / 3Ag / 0.5Cu, particle size 1 to 12 ⁇ m).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Provided are a solder paste and a flux capable of inhibiting heat slump in reflow soldering. The solder paste contains a solder powder and a flux which comprises a resin component, a solvent component, an activator, a thixotropic agent, and additives. The additives include a heat slump inhibitor component represented by formula (1) or formula (2). (R10 is an aliphatic hydrocarbon group having 14 or more carbons. R11 is a hydrocarbon group.) (R12 is a hydrocarbon group. R13 is a hydrocarbon group. R20 is an aliphatic hydrocarbon group having 14 or more carbons.)

Description

ソルダペーストおよびフラックスSolder paste and flux
 この発明は、ソルダペーストおよびフラックスに関する。 This invention relates to solder paste and flux.
 表面実装技術では、ソルダペーストを用いて、リフローハンダ付け法などにより、ハンダ付けが行われる。このリフローハンダ付け法では、基板の電極上に、ソルダペーストをスクリーン印刷法により供給した後、リフロー炉に通して加熱しハンダ付けが行われる。リフロー炉では、プリヒートと称する予備加熱と、その後、メインヒートと称するハンダ粉末を溶融させるために行う本加熱が行われる。
 ソルダペーストは、ハンダ粉末を液状のフラックス中に分散させたペースト状のものであり、組成や性状などが異なる種々のソルダペーストが開発されている。リフローハンダ付け法では、このソルダペーストが、基板に供給された後、プリヒートの際に軟化し、加熱だれが生じる場合がある。加熱だれが大きいと、ハンダボールの形成やハンダブリッジの形成により、基板不良が生じてしまう問題がある。
 この問題に対して、様々な技術が提案されている。例えば、「クリームはんだ」と題する特許文献1には、次の記載がある。クリームはんだのチクソ剤として、高級脂肪族モノカルボン酸、多塩基酸およびジアミンを脱水反応せしめて得られるワックス状物を用いる。このワックス状物をチクソ剤として用いたクリームはんだは非常によい印刷性を示し、また、予備加熱時にダレを起こさないので、リフローの時のはんだボールの発生がほとんどみられない。
 また、特許文献1の実施例1~実施例5では、ステアリン酸、セバシン酸およびエチレンジアミンの反応物を作製している。実施例6において、これらの反応物と、重合ロジン、α−テルピネール、ヘキシルカルビトール、シクロヘキシルアミンHBr塩とを加熱容器に仕込み、加熱溶融後取り出して、冷却することによりフラックスを作製している。実施例7において、球径250~325メッシュのSn/Pb(63/37)ハンダ粉末450gと実施例6で得られたそれぞれのフラックス50gを混合してクリームハンダを得ている。実施例8において、クリームハンダの評価を行っている。クリームハンダの評価では、150℃×30秒の条件で予備加熱を行い、この条件において、予備加熱時のだれが生じないと評価している。
In the surface mounting technology, soldering is performed by a reflow soldering method using a solder paste. In this reflow soldering method, solder paste is supplied onto a substrate electrode by a screen printing method and then heated through a reflow furnace to perform soldering. In the reflow furnace, preheating called preheating and then main heating called melting for melting solder powder called main heat are performed.
The solder paste is a paste in which solder powder is dispersed in a liquid flux, and various solder pastes having different compositions and properties have been developed. In the reflow soldering method, after this solder paste is supplied to the substrate, it may be softened during preheating and heat dripping may occur. When heating is large, there is a problem that a substrate defect occurs due to the formation of solder balls or solder bridges.
Various techniques have been proposed for this problem. For example, Patent Document 1 entitled “Cream Solder” has the following description. As a thixotropic agent for cream solder, a wax-like material obtained by dehydrating a higher aliphatic monocarboxylic acid, polybasic acid and diamine is used. Cream solder using this wax-like material as a thixotropic agent shows very good printability and does not cause sag during preheating, so that almost no solder balls are generated during reflow.
In Examples 1 to 5 of Patent Document 1, a reaction product of stearic acid, sebacic acid and ethylenediamine is prepared. In Example 6, these reactants, polymerized rosin, α-terpinel, hexyl carbitol, and cyclohexylamine HBr salt are charged into a heating container, taken out after being melted by heating, and cooled to produce a flux. In Example 7, 450 g of Sn / Pb (63/37) solder powder having a spherical diameter of 250 to 325 mesh and 50 g of each flux obtained in Example 6 were mixed to obtain cream solder. In Example 8, the evaluation of cream solder is performed. In the evaluation of cream solder, preheating is performed under conditions of 150 ° C. × 30 seconds, and it is evaluated that no dripping occurs during preheating under these conditions.
特開平7−75894号公報Japanese Unexamined Patent Publication No. 7-75894
 しかしながら、近年、環境問題等から融点がSn−Pb系のハンダ粉末より高い、鉛フリーハンダ粉末を含むソルダペーストが用いられている。この鉛フリーハンダ粉末を含むソルダペーストを用いたリフローハンダ付けでは、特許文献1の予備加熱温度より高温条件下(例えば190℃程度)で、プリヒートが行われるため、このような高温条件下のプリヒートでも、加熱だれが生じないソルダペーストが求められている。
 したがって、この発明の目的は、リフローハンダ付け法において、ソルダペーストの加熱だれを抑制することができるソルダペーストおよびフラックスを提供することにある。
However, in recent years, solder paste containing lead-free solder powder having a melting point higher than that of Sn-Pb solder powder has been used due to environmental problems and the like. In reflow soldering using a solder paste containing this lead-free solder powder, preheating is performed under conditions higher than the preheating temperature of Patent Document 1 (for example, about 190 ° C.). However, there is a need for a solder paste that does not cause heating.
Accordingly, an object of the present invention is to provide a solder paste and a flux that can suppress the dripping of the solder paste in the reflow soldering method.
 上述した課題を解決するために、第1の発明は、ハンダ粉末と、添加剤を含むフラックスとを含み、添加剤は、式(1)または式(2)に示す加熱だれ抑制成分を含むソルダペーストである。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(式中、R12は炭化水素基である。R13は炭化水素基である。R20は炭素数14以上の炭化水素基である。)
 第2の発明は、添加剤を含み、添加剤は、式(1)または式(2)に示す加熱だれ抑制成分を含むフラックスである。
Figure JPOXMLDOC01-appb-C000011
(式中、R10は炭素数14以上の炭化水素基である。R11は炭化水素基である。)
Figure JPOXMLDOC01-appb-C000012
(式中、R12は炭化水素基である。R13は炭化水素基である。R20は炭素数14以上の炭化水素基である。)
 第1の発明および第2の発明では、フラックス中に、式(1)または式(2)に示す加熱だれ抑制成分を含む添加剤を含む。これにより、リフローハンダ付け法において、ソルダペーストの加熱だれを抑制することができる。
In order to solve the above-described problems, the first invention includes a solder powder and a flux containing an additive, and the additive includes a soldering suppression component represented by Formula (1) or Formula (2). It is a paste.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(In the formula, R12 is a hydrocarbon group. R13 is a hydrocarbon group. R20 is a hydrocarbon group having 14 or more carbon atoms.)
2nd invention contains an additive and an additive is a flux containing the heating dripping suppression component shown to Formula (1) or Formula (2).
Figure JPOXMLDOC01-appb-C000011
(In the formula, R10 is a hydrocarbon group having 14 or more carbon atoms. R11 is a hydrocarbon group.)
Figure JPOXMLDOC01-appb-C000012
(In the formula, R12 is a hydrocarbon group. R13 is a hydrocarbon group. R20 is a hydrocarbon group having 14 or more carbon atoms.)
In 1st invention and 2nd invention, the additive containing the heating dripping suppression component shown to Formula (1) or Formula (2) is included in a flux. Thereby, in the reflow soldering method, heating dripping of the solder paste can be suppressed.
 この発明によれば、リフローハンダ付け法において、加熱だれを抑制することができるソルダペーストおよびフラックスを提供することにある。 According to the present invention, there is provided a solder paste and a flux capable of suppressing heating dripping in a reflow soldering method.
 図1はサンプル1のDSC測定の結果を示すグラフである。
 図2はサンプル2のDSC測定の結果を示すグラフである。
 図3はサンプル3のDSC測定の結果を示すグラフである。
 図4はサンプル4のDSC測定の結果を示すグラフである。
 図5はサンプル5のDSC測定の結果を示すグラフである。
 図6はサンプル6およびサンプル7のDSC測定の結果を示すグラフである。
FIG. 1 is a graph showing the results of DSC measurement of Sample 1.
FIG. 2 is a graph showing the results of DSC measurement of Sample 2.
FIG. 3 is a graph showing the results of DSC measurement of Sample 3.
FIG. 4 is a graph showing the results of DSC measurement of Sample 4.
FIG. 5 is a graph showing the results of DSC measurement of Sample 5.
FIG. 6 is a graph showing the results of DSC measurement of Sample 6 and Sample 7.
 以下、この発明の実施の形態について図面を参照して説明する。なお、説明は、以下の順序で行う。
1.第1の実施の形態(ソルダペーストの第1の例)
2.第2の実施の形態(ソルダペーストの第2の例)
3.他の実施の形態(変形例)
1.第1の実施の形態
(ソルダペーストの構成)
 この発明の第1の実施の形態によるソルダペーストについて説明する。このソルダペーストは、ハンダ粉末と、樹脂成分、溶剤成分、活性剤、チキソ剤および添加剤を含むフラックスとを含む。
(ハンダ粉末)
 ハンダ粉末としては、Sn−Pb系ハンダ粉末、鉛フリーハンダ粉末などが挙げられる。Sn−Pb系ハンダ粉末としては、具体的には、Sn−Pbハンダ粉末などが挙げられる。鉛フリーハンダ粉末としては、Sn−Ag−Cuハンダ粉末(融点218℃程度)、Sn−Agハンダ粉末(融点221℃程度)、Sn−Cuハンダ粉末(融点227℃程度)などが挙げられる。鉛フリーハンダ粉末は、融点が高いので、例えば、170℃~190℃でプリヒートが行われる。
(フラックス)
 フラックスは、樹脂成分、溶剤成分、活性剤、チキソ剤および添加剤を含む。
(樹脂成分)
 樹脂成分としては、ロジンが挙げられる。ロジンとしては天然ロジン、重合ロジンや水添加ロジン、酸変性ロジン等のロジン誘導体などが挙げられる。
(溶剤成分)
 溶剤成分としては、通常のソルダペーストに用いられているものが挙げられる。例えば、ヘキシルカルビトール(沸点:260℃)、ブチルカルビトール(沸点:230℃)、エチレングリコールモノブチルエーテルなどが挙げられる。
(活性剤)
 活性剤としては、例えば、有機アミンのハロゲン化水素酸塩、有機酸などが挙げられる。有機アミンのハロゲン化水素酸塩としては、具体的に、ジフェニルグアニジン臭化水素酸塩、シクロヘキシルアミン臭化水素酸塩、ジエチルアミン塩酸塩、トリエタノールアミン臭化水素酸塩、モノエタノールアミン臭化水素酸塩などが挙げられる。また、有機酸としては、マロン酸、コハク酸、マレイン酸、グルタル酸、スベリン酸、アジピン酸、セバシン酸などが挙げられる。
(チキソ剤)
 チキソ剤としては、水素添加ヒマシ油、脂肪酸アマイド類、オキシ脂肪酸類水添ヒマシ油などが挙げられる。
(添加剤)
 添加剤は、溶媒としてビスアマイドを用いた、脂肪族ジアミン、芳香族ジアミン、脂環式ジアミンなどのジアミンと、炭素数16以上の多塩基酸およびその無水物との縮合反応の生成物を含む。
(ジアミン)
 脂肪族ジアミンとしては、例えば、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。芳香族ジアミンとしては、例えば、p−キシレンジアミンなどが挙げられる。脂環式ジアミンとしては、例えば、4,4’−ビス(シクロヘキシルアミン)などが挙げられる。
(多塩基酸)
 炭素数16以上の多塩基酸としては、エイコサン二酸、8,13−ジメチルエイコサン二酸、8,13−ジメチル−8,12−エイコサジエン二酸などが挙げられる。炭素数16以上の多塩基酸の無水物としては、ポリエイコサン二酸無水物、8,13−ジメチル−8,12−エイコサジエン二酸無水物などが挙げられる。
(溶媒)
 ビスアマイドとしては、飽和脂肪酸ビスアマイド、不飽和脂肪酸ビスアマイド、芳香族ビスアマイドなどが挙げられる。より具体的には、エチレンビスラウリン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスオレイン酸アマイド、m−キシレンビスヒドロキシステアリン酸アマイドなどが挙げられる。
(生成物)
 以下に示すように、溶媒としてのビスアマイド(例えば、式(10)に示すエチレンビスステアリン酸アマイド)を用いて、式(3)に示す多塩基酸または式(4)に示す多塩基酸無水物と、式(5)に示すジアミンと、の縮合反応により、式(1)に示すポリアミド化合物を得られる。式(1)に示すポリアミド化合物が、この添加剤の加熱だれ抑制成分である。
Figure JPOXMLDOC01-appb-C000013
 添加剤は式(1)に示すポリアミド化合物を含む。この添加剤を含むフラックスとハンダ粉末とを含むソルダペーストは、リフローハンダ付け法において、加熱だれが抑制される。なお、この添加剤は、特に、高温でのプリヒートが必要となる、鉛フリーハンダを含むソルダペーストに添加することが好ましい。
(添加剤具体例)
 一例として、溶媒として式(10)に示すエチレンビスステアリン酸アマイドを用い、式(11)に示すエイコサン二酸と、式(12)に示すエチレンジアミンとの合成により得た添加剤を説明する。
 この合成により得た添加剤は、以下に示す、式(11)に示すエイコサン二酸と、式(12)に示すエチレンジアミンとの脱水縮合反応により生成された式(13)に示すポリアミド化合物を含む。この添加剤において、式(13)に示すポリアミド化合物が、加熱だれ抑制成分である。
Figure JPOXMLDOC01-appb-C000014
 添加剤は式(13)に示すポリアミド化合物を含む。この添加剤を含むフラックスとハンダ粉末とを含むソルダペーストは、リフローハンダ付け法において、加熱だれが抑制される。
<効果>
 この発明の第1の実施の形態によるソルダペーストは、式(1)に示す加熱だれ抑制成分を含む。これにより、リフローハンダ付け法において、ソルダペーストの加熱だれを抑制することができる。
2.第2の実施の形態
 この発明の第2の実施の形態によるソルダペーストについて説明する、この発明の第2の実施の形態によるソルダペーストは、添加剤が第1の実施の形態と異なる点以外は、第1の実施の形態と同様である。
(ソルダペーストの構成)
 この発明の第2の実施の形態によるソルダペーストは、ハンダ粉末と、樹脂成分、溶剤、活性剤、チキソ剤および添加剤を含むフラックスとを含む。樹脂成分、溶剤成分、活性剤、チキソ剤は第1の実施の形態と同様であるので、詳細な説明を省略する。
(添加剤)
 添加剤は、脂肪族ジアミン、芳香族ジアミン、脂環式ジアミンなどのジアミンと、炭素数16以上の多塩基酸エステルとの有機酸存在下の脱アルコール反応の生成物を含む。
(ジアミン)
 脂肪族ジアミンとしては、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。芳香族ジアミンとしては、p−キシレンジアミンなどが挙げられる。脂環式ジアミンとしては、例えば、4,4’−ビス(シクロヘキシルアミン)などが挙げられる。
(多塩基酸エステル)
 炭素数16以上の多塩基酸エステルとしては、エイコサン二酸ジメチル、エイコサン二酸ジエチルなどが挙げられる。
(有機酸)
 有機酸としては、ステアリン酸などの高級脂肪酸などが挙げられる。
(生成物)
 以下に示す、式(14)に示す有機酸存在下の式(6)に示す多塩基酸エステルと、式(7)に示すジアミンとの脱アルコール反応により、式(2)に示すポリアミド化合物および式(15)に示す化合物が得られる。式(2)に示すポリアミド化合物が、この添加剤の加熱だれ抑制成分である。
Figure JPOXMLDOC01-appb-C000015
 添加剤は式(2)に示すポリアミド化合物を含む。この添加剤を含むフラックスとハンダ粉末とを含むソルダペーストは、リフローハンダ付け法において、加熱だれが抑制される。なお、この添加剤は、特に、高温でのプリヒートが必要となる、鉛フリーハンダを含むソルダペーストに添加することが好ましい。
(添加剤具体例)
 具体例として、有機酸(式(18)に示すステアリン酸)存在下の式(16)に示すエイコサン二酸ジメチルと、式(17)に示すエチレンジアミンとの脱アルコール反応により、式(19)示すポリアミド化合物および式(20)に示す化合物が得られる。この添加剤において、式(20)に示す化合物が加熱だれ抑制成分として作用する。
Figure JPOXMLDOC01-appb-C000016
 添加剤は式(20)に示す化合物を含む。この添加剤を含むフラックスとハンダ粉末とを含むソルダペーストは、リフローハンダ付け法において、加熱だれが抑制される。
<効果>
 この発明の第2の実施の形態によるソルダペーストは、第1の実施の形態と同様の効果を得ることができる。
Embodiments of the present invention will be described below with reference to the drawings. The description will be given in the following order.
1. First embodiment (first example of solder paste)
2. Second embodiment (second example of solder paste)
3. Other embodiment (modification)
1. First Embodiment (Configuration of Solder Paste)
A solder paste according to the first embodiment of the present invention will be described. This solder paste includes a solder powder and a flux including a resin component, a solvent component, an activator, a thixotropic agent, and an additive.
(Solder powder)
Examples of the solder powder include Sn-Pb solder powder and lead-free solder powder. Specific examples of the Sn-Pb solder powder include Sn-Pb solder powder. Examples of the lead-free solder powder include Sn—Ag—Cu solder powder (melting point of about 218 ° C.), Sn—Ag solder powder (melting point of about 221 ° C.), Sn—Cu solder powder (melting point of about 227 ° C.), and the like. Since the lead-free solder powder has a high melting point, for example, preheating is performed at 170 ° C. to 190 ° C.
(flux)
The flux includes a resin component, a solvent component, an activator, a thixotropic agent, and an additive.
(Resin component)
Examples of the resin component include rosin. Examples of the rosin include natural rosin, polymerized rosin, water-added rosin, and rosin derivatives such as acid-modified rosin.
(Solvent component)
As a solvent component, what is used for the normal solder paste is mentioned. Examples thereof include hexyl carbitol (boiling point: 260 ° C.), butyl carbitol (boiling point: 230 ° C.), ethylene glycol monobutyl ether, and the like.
(Active agent)
Examples of the activator include organic amine hydrohalides and organic acids. Specific examples of organic amine hydrohalides include diphenylguanidine hydrobromide, cyclohexylamine hydrobromide, diethylamine hydrochloride, triethanolamine hydrobromide, and monoethanolamine hydrogen bromide. Examples include acid salts. Examples of the organic acid include malonic acid, succinic acid, maleic acid, glutaric acid, suberic acid, adipic acid, and sebacic acid.
(Thixotropic agent)
Examples of thixotropic agents include hydrogenated castor oil, fatty acid amides, and oxyfatty acid hydrogenated castor oil.
(Additive)
Additives include products of condensation reactions of diamines such as aliphatic diamines, aromatic diamines, and alicyclic diamines with polybasic acids having 16 or more carbon atoms and anhydrides thereof using bisamide as a solvent.
(Diamine)
Examples of the aliphatic diamine include ethylene diamine and hexamethylene diamine. Examples of the aromatic diamine include p-xylene diamine. Examples of the alicyclic diamine include 4,4′-bis (cyclohexylamine).
(Polybasic acid)
Examples of the polybasic acid having 16 or more carbon atoms include eicosanedioic acid, 8,13-dimethyleicosanedioic acid, and 8,13-dimethyl-8,12-eicosadienedioic acid. Examples of the anhydride of a polybasic acid having 16 or more carbon atoms include polyeicosane dianhydride and 8,13-dimethyl-8,12-eicosadiene dianhydride.
(solvent)
Examples of bisamides include saturated fatty acid bisamides, unsaturated fatty acid bisamides, and aromatic bisamides. More specifically, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bisoleic acid amide, m-xylene bishydroxystearic acid amide and the like can be mentioned.
(Product)
As shown below, a polybasic acid represented by formula (3) or a polybasic acid anhydride represented by formula (4) using bisamide as a solvent (for example, ethylenebisstearic acid amide represented by formula (10)) And a diamine represented by the formula (5), a polyamide compound represented by the formula (1) can be obtained. The polyamide compound represented by the formula (1) is a heating dripping suppressing component of this additive.
Figure JPOXMLDOC01-appb-C000013
The additive includes a polyamide compound represented by the formula (1). The solder paste containing the flux containing the additive and the solder powder suppresses the heating dripping in the reflow soldering method. In particular, this additive is preferably added to a solder paste containing lead-free solder, which requires preheating at a high temperature.
(Additive example)
As an example, the additive obtained by the synthesis | combination of the eicosanedioic acid shown to Formula (11) and the ethylenediamine shown to Formula (12) using the ethylenebis stearic acid amide shown to Formula (10) as a solvent is demonstrated.
The additive obtained by this synthesis includes the polyamide compound represented by the formula (13) produced by the dehydration condensation reaction between the eicosane diacid represented by the formula (11) and the ethylenediamine represented by the formula (12) shown below. . In this additive, the polyamide compound represented by the formula (13) is a heating dripping suppressing component.
Figure JPOXMLDOC01-appb-C000014
The additive includes a polyamide compound represented by the formula (13). The solder paste containing the flux containing the additive and the solder powder suppresses the heating dripping in the reflow soldering method.
<Effect>
The solder paste according to the first embodiment of the present invention includes a heating dripping suppressing component represented by the formula (1). Thereby, in the reflow soldering method, heating dripping of the solder paste can be suppressed.
2. Second Embodiment A solder paste according to a second embodiment of the present invention will be described. The solder paste according to the second embodiment of the present invention is different from the first embodiment except that the additive is different from the first embodiment. This is the same as in the first embodiment.
(Structure of solder paste)
A solder paste according to a second embodiment of the present invention includes a solder powder and a flux including a resin component, a solvent, an activator, a thixotropic agent, and an additive. Since the resin component, the solvent component, the activator, and the thixotropic agent are the same as those in the first embodiment, detailed description thereof is omitted.
(Additive)
The additive includes a product of a dealcoholization reaction in the presence of an organic acid between a diamine such as an aliphatic diamine, an aromatic diamine, and an alicyclic diamine and a polybasic acid ester having 16 or more carbon atoms.
(Diamine)
Examples of the aliphatic diamine include ethylene diamine and hexamethylene diamine. Examples of the aromatic diamine include p-xylene diamine. Examples of the alicyclic diamine include 4,4′-bis (cyclohexylamine).
(Polybasic acid ester)
Examples of the polybasic acid ester having 16 or more carbon atoms include dimethyl eicosanedioate and diethyl eicosanedioate.
(Organic acid)
Examples of the organic acid include higher fatty acids such as stearic acid.
(Product)
A polyamide compound represented by formula (2) and a polybasic acid ester represented by formula (6) in the presence of an organic acid represented by formula (14) and a diamine represented by formula (7) shown below, and A compound represented by formula (15) is obtained. The polyamide compound represented by the formula (2) is a heating dripping suppressing component of this additive.
Figure JPOXMLDOC01-appb-C000015
The additive includes a polyamide compound represented by the formula (2). The solder paste containing the flux containing the additive and the solder powder suppresses the heating dripping in the reflow soldering method. In particular, this additive is preferably added to a solder paste containing lead-free solder, which requires preheating at a high temperature.
(Additive example)
As a specific example, a formula (19) is obtained by a dealcoholization reaction between dimethyl eicosanedioate represented by formula (16) in the presence of an organic acid (stearic acid represented by formula (18)) and ethylenediamine represented by formula (17) A polyamide compound and a compound represented by the formula (20) are obtained. In this additive, the compound represented by the formula (20) acts as a heating dripping suppressing component.
Figure JPOXMLDOC01-appb-C000016
The additive includes a compound represented by the formula (20). The solder paste containing the flux containing the additive and the solder powder suppresses the heating dripping in the reflow soldering method.
<Effect>
The solder paste according to the second embodiment of the present invention can obtain the same effects as those of the first embodiment.
 以下、実施例によりこの発明を具体的に説明するが、この発明はこれらの実施例のみに限定されるものではない。
<サンプル1~サンプル7>
 まず、サンプル1~サンプル7の添加剤を作製した。
<サンプル1>
 まず、エチレンビスステアリン酸アマイドと、デカン二酸(炭素数10)とを反応容器に投入し、窒素ガスの導入を開始した。次に、オイルバス温度を所定温度(170℃)に設定して、反応容器を3時間加熱後、攪拌を開始した。次に、エチレンジアミンを滴下漏斗にて滴下し、その後、反応容器の設定温度を上げて(220℃)、3時間加熱後、攪拌を停止し、冷却することにより、サンプル1の添加剤を得た。
<サンプル2>
 まず、エチレンビスステアリン酸アマイドと、ドテカン二酸(炭素数12)とを反応容器に投入し、窒素ガスの導入を開始した。次に、オイルバス温度を所定温度に設定して、反応容器を3時間加熱後、攪拌を開始した。次に、エチレンジアミンを滴下漏斗にて滴下し、その後、反応容器の設定温度を上げて、3時間加熱後、攪拌を停止し、冷却することにより、サンプル2の添加剤を得た。
<サンプル3>
 まず、エチレンビスステアリン酸アマイドと、テトラデカン二酸(炭素数14)とを反応容器に投入し、窒素ガスの導入を開始した。次に、オイルバス温度を所定温度に設定して、反応容器を3時間加熱後、攪拌を開始した。次に、エチレンジアミンを滴下漏斗にて滴下し、その後、反応容器の設定温度を上げて、3時間加熱後、攪拌を停止し、冷却することにより、サンプル3の添加剤を得た。
<サンプル4>
 まず、エチレンビスステアリン酸アマイドと、オクタデカン二酸(炭素数18)とを反応容器に投入し、窒素ガスの導入を開始した。次に、オイルバス温度を所定温度に設定して、反応容器を3時間加熱後、攪拌を開始した。次に、エチレンジアミンを滴下漏斗にて滴下し、その後、反応容器の設定温度を上げて、3時間加熱後、攪拌を停止し、冷却することにより、サンプル4の添加剤を得た。
<サンプル5>
 まず、エチレンビスステアリン酸アマイドと、エイコサン二酸(炭素数20)とを反応容器に投入し、窒素ガスの導入を開始した。次に、オイルバス温度を所定温度に設定して、反応容器を3時間加熱後、攪拌を開始した。次に、エチレンジアミンを滴下漏斗にて滴下し、その後、反応容器の設定温度を上げて、3時間加熱後、攪拌を停止し、冷却することにより、サンプル5の添加剤を得た。
<サンプル6>
 まず、デカン二酸ジメチルと、ステアリン酸とを反応容器に投入し、窒素ガスの導入を開始した。次に、オイルバス温度を所定温度に設定して、反応容器を3時間加熱後、攪拌を開始した。次に、エチレンジアミンを滴下漏斗にて滴下し、その後、反応容器の設定温度を上げて、3時間加熱後、攪拌を停止し、冷却することにより、サンプル6の添加剤を得た。
<サンプル7>
 まず、デカン二酸と、ステアリン酸とを反応容器に投入し、窒素ガスの導入を開始した。次に、オイルバス温度を所定温度に設定して、反応容器を3時間加熱後、攪拌を開始した。次に、エチレンジアミンを滴下漏斗にて滴下し、その後、反応容器の設定温度を上げて、3時間加熱後、攪拌を停止し、冷却することにより、サンプル7の添加剤を得た。
 〔DSC測定(示唆走査熱量測定:Differential Scanning Calorimetry))〕
 サンプル1~サンプル7の添加剤について、DSC測定を行った。測定結果を図1~図6に示す。DSCの測定結果により得られた熱特性をまとめたものを表1に示す。
Figure JPOXMLDOC01-appb-T000017
<試験例1~試験例6>
 次に、サンプル1~サンプル5の添加剤を含むフラックスおよび添加剤無添加のフラックスを作製して、加熱だれ抑制効果を確認した。
<試験例1>
 まず、加熱溶解により、以下の組成のフラックスを作製した。
 フラックス:
 水添加ロジン(ロジン系樹脂)            51重量%
 ジフェニルグアニジン臭化水素酸塩(活性剤)      1重量%
 アジピン酸(活性剤)                 1重量%
 エチルヘキシルジグリコール(溶剤)         39重量%
 水添ヒマシ油(チクソ剤)               6重量%
 サンプル1(添加剤)                 2重量%
 このフラックスでは、合成ポリアミド化合物の加熱溶解後の再析出により、低軟化点成分と均一分散させることができなかった。
<試験例2>
 まず、加熱溶解により、以下の組成のフラックスを作製した。
 フラックス:
 水添加ロジン(ロジン系樹脂)            51重量%
 ジフェニルグアニジン臭化水素酸塩(活性剤)      1重量%
 アジピン酸(活性剤)                 1重量%
 エチルヘキシルジグリコール(溶剤)         39重量%
 水添ヒマシ油(チクソ剤)               6重量%
 サンプル2(添加剤)                 2重量%
 このフラックスでは、合成ポリアミド化合物の加熱溶解後の再析出により、低軟化点成分と均一分散させることができなかった。
<試験例3>
 まず、加熱溶解により、以下の組成のフラックスを作製した。
 フラックス:
 水添加ロジン(ロジン系樹脂)            51重量%
 ジフェニルグアニジン臭化水素酸塩(活性剤)      1重量%
 アジピン酸(活性剤)                 1重量%
 エチルヘキシルジグリコール(溶剤)         39重量%
 水添ヒマシ油(チクソ剤)               6重量%
 サンプル3(添加剤)                 2重量%
 このフラックスでは、合成ポリアミド化合物の加熱溶解後の再析出により、低軟化点成分と均一分散させることができなかった。
<試験例4>
 まず、加熱溶解により、以下の組成のフラックスを作製した。
 フラックス:
 水添加ロジン(ロジン系樹脂)            51重量%
 ジフェニルグアニジン臭化水素酸塩(活性剤)      1重量%
 アジピン酸(活性剤)                 1重量%
 エチルヘキシルジグリコール(溶剤)         39重量%
 水添ヒマシ油(チクソ剤)               6重量%
 サンプル4(添加剤)                 2重量%
 次に、作製したフラックスと12gと、ハンダ粉末(Sn/3Ag/0.5Cu、粒子径1~12μm)を攪拌混合することにより、実施例4のソルダペーストを得た。
(加熱だれ試験)
 作製したソルダペーストについて、以下の加熱だれ試験を行った。ソルダペーストを開口径0.25mmΦ、厚み0.05mmのメタルマスクを用いて銅基板上に印刷し、190℃オープンにて90秒加熱した後、だれ幅を測定し、以下の評価基準で加熱だれ止め特性を評価した。
 評価基準:だれ幅0~20μm(○)、だれ幅20μm以上(×)
<試験例5>
 まず、加熱溶解により、以下の組成のフラックスを作製した。
 フラックス:
 水添加ロジン(ロジン系樹脂)            51重量%
 ジフェニルグアニジン臭化水素酸塩(活性剤)      1重量%
 アジピン酸(活性剤)                 1重量%
 エチルヘキシルジグリコール(溶剤)         39重量%
 水添ヒマシ油(チクソ剤)               6重量%
 サンプル5(添加剤)                 2重量%
 次に、作製したフラックスと12gと、ハンダ粉末(Sn/3Ag/0.5Cu、粒子径1~12μm)を攪拌混合することにより、実施例5のソルダペーストを得た。
(加熱だれ試験)
 作製したソルダペーストについて、試験例4と同様の加熱だれ試験を行った。
<試験例6>
 まず、加熱溶解により、以下の組成のフラックスを作製した。
 フラックス:
 水添加ロジン(ロジン系樹脂)            51重量%
 ジフェニルグアニジン臭化水素酸塩(活性剤)      1重量%
 アジピン酸(活性剤)                 1重量%
 エチルヘキシルジグリコール(溶剤)         39重量%
 水添ヒマシ油(チクソ剤)               6重量%
 次に、作製したフラックスと12gと、ハンダ粉末(Sn/3Ag/0.5Cu、粒子径1~12μm)を攪拌混合することにより、実施例5のソルダペーストを得た。
(加熱だれ試験)
 作製したソルダペーストについて、試験例4と同様の加熱だれ試験を行った。
Figure JPOXMLDOC01-appb-T000018
(評価)
 試験例4~実施例5では、加熱だれ止め効果が大きく、評価基準○であった。一方で、比較例6のソルダペーストは、加熱だれが大きく、評価基準×であった。
3.他の実施の形態
 この発明は、上述したこの発明の実施形態に限定されるものでは無く、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、上述の実施の形態において挙げた数値、材料等はあくまでも例にすぎず、必要に応じて、これらと異なる数値、材料等を用いてもよい。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.
<Sample 1 to Sample 7>
First, the additives of Sample 1 to Sample 7 were prepared.
<Sample 1>
First, ethylene bis stearic acid amide and decanedioic acid (10 carbon atoms) were charged into a reaction vessel, and introduction of nitrogen gas was started. Next, the oil bath temperature was set to a predetermined temperature (170 ° C.), the reaction vessel was heated for 3 hours, and stirring was started. Next, ethylenediamine was added dropwise using a dropping funnel, and then the set temperature of the reaction vessel was raised (220 ° C.). After heating for 3 hours, stirring was stopped and the sample 1 was obtained by cooling. .
<Sample 2>
First, ethylene bis stearic acid amide and dotecandioic acid (carbon number 12) were introduced into a reaction vessel, and introduction of nitrogen gas was started. Next, the oil bath temperature was set to a predetermined temperature, and the reaction vessel was heated for 3 hours, and then stirring was started. Next, ethylenediamine was added dropwise using a dropping funnel, and then the set temperature of the reaction vessel was raised, and after heating for 3 hours, stirring was stopped and the mixture was cooled to obtain the additive of Sample 2.
<Sample 3>
First, ethylene bis stearic acid amide and tetradecanedioic acid (carbon number 14) were charged into a reaction vessel, and introduction of nitrogen gas was started. Next, the oil bath temperature was set to a predetermined temperature, and the reaction vessel was heated for 3 hours, and then stirring was started. Next, ethylenediamine was dropped with a dropping funnel, and then the set temperature of the reaction vessel was raised, and after heating for 3 hours, stirring was stopped and cooling was performed to obtain the additive of Sample 3.
<Sample 4>
First, ethylene bis stearic acid amide and octadecanedioic acid (carbon number 18) were charged into a reaction vessel, and introduction of nitrogen gas was started. Next, the oil bath temperature was set to a predetermined temperature, and the reaction vessel was heated for 3 hours, and then stirring was started. Next, ethylenediamine was dropped with a dropping funnel, and then the set temperature of the reaction vessel was raised, and after heating for 3 hours, stirring was stopped and cooling was performed to obtain the additive of Sample 4.
<Sample 5>
First, ethylene bis stearic acid amide and eicosane diacid (carbon number 20) were charged into a reaction vessel, and introduction of nitrogen gas was started. Next, the oil bath temperature was set to a predetermined temperature, and the reaction vessel was heated for 3 hours, and then stirring was started. Next, ethylenediamine was added dropwise using a dropping funnel, and then the set temperature of the reaction vessel was raised. After heating for 3 hours, stirring was stopped and the mixture was cooled to obtain the additive of Sample 5.
<Sample 6>
First, dimethyl decanedioate and stearic acid were charged into a reaction vessel, and introduction of nitrogen gas was started. Next, the oil bath temperature was set to a predetermined temperature, and the reaction vessel was heated for 3 hours, and then stirring was started. Next, ethylenediamine was added dropwise using a dropping funnel, and then the set temperature of the reaction vessel was raised. After heating for 3 hours, stirring was stopped and the mixture was cooled to obtain the additive of Sample 6.
<Sample 7>
First, decanedioic acid and stearic acid were charged into a reaction vessel, and introduction of nitrogen gas was started. Next, the oil bath temperature was set to a predetermined temperature, and the reaction vessel was heated for 3 hours, and then stirring was started. Next, ethylenediamine was added dropwise with a dropping funnel, and then the set temperature of the reaction vessel was raised, and after heating for 3 hours, stirring was stopped and the mixture was cooled to obtain the additive of Sample 7.
[DSC measurement (Differential Scanning Calorimetry)]]
DSC measurement was performed on the additives of Sample 1 to Sample 7. The measurement results are shown in FIGS. Table 1 shows a summary of the thermal characteristics obtained from the DSC measurement results.
Figure JPOXMLDOC01-appb-T000017
<Test Example 1 to Test Example 6>
Next, a flux containing the additive of Sample 1 to Sample 5 and a flux containing no additive were prepared, and the heating dripping suppression effect was confirmed.
<Test Example 1>
First, a flux having the following composition was produced by heating and melting.
flux:
Water-added rosin (rosin resin) 51% by weight
Diphenylguanidine hydrobromide (activator) 1% by weight
Adipic acid (active agent) 1% by weight
Ethylhexyl diglycol (solvent) 39% by weight
Hydrogenated castor oil (thixotropic agent) 6% by weight
Sample 1 (additive) 2% by weight
This flux could not be uniformly dispersed with the low softening point component due to reprecipitation after heating and dissolving the synthetic polyamide compound.
<Test Example 2>
First, a flux having the following composition was produced by heating and melting.
flux:
Water-added rosin (rosin resin) 51% by weight
Diphenylguanidine hydrobromide (activator) 1% by weight
Adipic acid (active agent) 1% by weight
Ethylhexyl diglycol (solvent) 39% by weight
Hydrogenated castor oil (thixotropic agent) 6% by weight
Sample 2 (additive) 2% by weight
This flux could not be uniformly dispersed with the low softening point component due to reprecipitation after heating and dissolving the synthetic polyamide compound.
<Test Example 3>
First, a flux having the following composition was produced by heating and melting.
flux:
Water-added rosin (rosin resin) 51% by weight
Diphenylguanidine hydrobromide (activator) 1% by weight
Adipic acid (active agent) 1% by weight
Ethylhexyl diglycol (solvent) 39% by weight
Hydrogenated castor oil (thixotropic agent) 6% by weight
Sample 3 (additive) 2% by weight
This flux could not be uniformly dispersed with the low softening point component due to reprecipitation after heating and dissolving the synthetic polyamide compound.
<Test Example 4>
First, a flux having the following composition was produced by heating and melting.
flux:
Water-added rosin (rosin resin) 51% by weight
Diphenylguanidine hydrobromide (activator) 1% by weight
Adipic acid (active agent) 1% by weight
Ethylhexyl diglycol (solvent) 39% by weight
Hydrogenated castor oil (thixotropic agent) 6% by weight
Sample 4 (additive) 2% by weight
Next, the solder paste of Example 4 was obtained by stirring and mixing the produced flux, 12 g, and solder powder (Sn / 3Ag / 0.5Cu, particle size 1 to 12 μm).
(Heating test)
The produced solder paste was subjected to the following heating dripping test. Solder paste was printed on a copper substrate using a metal mask with an opening diameter of 0.25 mmΦ and a thickness of 0.05 mm, heated at 190 ° C for 90 seconds, measured for the width, and heated under the following evaluation criteria The stopping properties were evaluated.
Evaluation criteria: droop width 0 to 20 μm (◯), droop width 20 μm or more (×)
<Test Example 5>
First, a flux having the following composition was produced by heating and melting.
flux:
Water-added rosin (rosin resin) 51% by weight
Diphenylguanidine hydrobromide (activator) 1% by weight
Adipic acid (active agent) 1% by weight
Ethylhexyl diglycol (solvent) 39% by weight
Hydrogenated castor oil (thixotropic agent) 6% by weight
Sample 5 (additive) 2% by weight
Next, the solder paste of Example 5 was obtained by stirring and mixing the produced flux, 12 g, and solder powder (Sn / 3Ag / 0.5Cu, particle size 1 to 12 μm).
(Heating test)
The produced solder paste was subjected to the same heating dripping test as in Test Example 4.
<Test Example 6>
First, a flux having the following composition was produced by heating and melting.
flux:
Water-added rosin (rosin resin) 51% by weight
Diphenylguanidine hydrobromide (activator) 1% by weight
Adipic acid (active agent) 1% by weight
Ethylhexyl diglycol (solvent) 39% by weight
Hydrogenated castor oil (thixotropic agent) 6% by weight
Next, the solder paste of Example 5 was obtained by stirring and mixing the produced flux, 12 g, and solder powder (Sn / 3Ag / 0.5Cu, particle size 1 to 12 μm).
(Heating test)
The produced solder paste was subjected to the same heating dripping test as in Test Example 4.
Figure JPOXMLDOC01-appb-T000018
(Evaluation)
In Test Example 4 to Example 5, the heating drooling prevention effect was large, and the evaluation standard was good. On the other hand, the solder paste of Comparative Example 6 had a large heating dripping and was evaluated standard x.
3. Other Embodiments The present invention is not limited to the above-described embodiments of the present invention, and various modifications and applications are possible without departing from the spirit of the present invention. For example, the numerical values, materials, and the like given in the above-described embodiment are merely examples, and different numerical values, materials, and the like may be used as necessary.

Claims (5)

  1.  ハンダ粉末と、
     添加剤を含むフラックスと
    を含み、
     上記添加剤は、式(1)または式(2)に示す加熱だれ抑制成分を含むソルダペースト。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R10は炭素数14以上の脂肪族炭化水素基である。R11は炭化水素基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R12は炭化水素基である。R13は炭化水素基である。R20は炭素数14以上の脂肪族炭化水素基である。)
    Solder powder,
    Including flux containing additives,
    The said additive is a solder paste containing the heating dripping suppression component shown in Formula (1) or Formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R10 is an aliphatic hydrocarbon group having 14 or more carbon atoms. R11 is a hydrocarbon group.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R12 is a hydrocarbon group. R13 is a hydrocarbon group. R20 is an aliphatic hydrocarbon group having 14 or more carbon atoms.)
  2.  上記添加剤は、溶媒としてビスアマイドを用い、式(3)に示す多塩基酸と、式(5)に示すジアミンとの縮合反応によって得た生成物である
    請求項1記載のソルダペースト。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R10は炭素数14以上の脂肪族炭化水素基である。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R11は炭化水素基である。)
    The solder paste according to claim 1, wherein the additive is a product obtained by a condensation reaction of a polybasic acid represented by formula (3) and a diamine represented by formula (5) using bisamide as a solvent.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R10 is an aliphatic hydrocarbon group having 14 or more carbon atoms.)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R11 is a hydrocarbon group.)
  3.  上記添加剤は、式(6)に示す多塩基酸エステルと、式(7)に示すジアミンとの有機酸存在下の脱アルコール反応によって得た生成物である
    請求項1記載のソルダペースト。
    Figure JPOXMLDOC01-appb-C000005
    (式中、R20は炭素数14以上の炭化水素基である。R13は炭化水素基である。R14は炭化水素基である。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R12は炭化水素基である。)
    The solder paste according to claim 1, wherein the additive is a product obtained by a dealcoholization reaction in the presence of an organic acid between a polybasic acid ester represented by formula (6) and a diamine represented by formula (7).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R20 is a hydrocarbon group having 14 or more carbon atoms. R13 is a hydrocarbon group. R14 is a hydrocarbon group.)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, R12 is a hydrocarbon group.)
  4.  上記ハンダ粉末は、鉛フリーハンダ粉末である
    請求項1記載のソルダペースト。
    The solder paste according to claim 1, wherein the solder powder is a lead-free solder powder.
  5.  添加剤を含み、
     上記添加剤は、式(1)または式(2)に示す加熱だれ抑制成分を含むフラックス。
    Figure JPOXMLDOC01-appb-C000007
    (式中、R10は炭素数14以上の脂肪族炭化水素基である。R11は炭化水素基である。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、R12は炭化水素基である。R13は炭化水素基である。R20は炭素数14以上の脂肪族炭化水素基である。)
    Containing additives,
    The said additive is a flux containing the heating dripping suppression component shown to Formula (1) or Formula (2).
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, R10 is an aliphatic hydrocarbon group having 14 or more carbon atoms. R11 is a hydrocarbon group.)
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, R12 is a hydrocarbon group. R13 is a hydrocarbon group. R20 is an aliphatic hydrocarbon group having 14 or more carbon atoms.)
PCT/JP2010/071765 2009-12-29 2010-11-29 Solder paste and flux WO2011080990A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-299274 2009-12-29
JP2009299274A JP5400606B2 (en) 2009-12-29 2009-12-29 Solder paste and flux

Publications (1)

Publication Number Publication Date
WO2011080990A1 true WO2011080990A1 (en) 2011-07-07

Family

ID=44226409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071765 WO2011080990A1 (en) 2009-12-29 2010-11-29 Solder paste and flux

Country Status (2)

Country Link
JP (1) JP5400606B2 (en)
WO (1) WO2011080990A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084755A (en) * 2013-01-31 2013-05-08 广东普赛特电子科技股份有限公司 Blending modification halogen-free solder paste and preparation method thereof
CN116529021A (en) * 2020-11-18 2023-08-01 千住金属工业株式会社 Soldering flux and soldering paste
US11986909B2 (en) 2020-11-18 2024-05-21 Senju Metal Industry Co., Ltd. Flux and solder paste

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5766668B2 (en) * 2012-08-16 2015-08-19 株式会社タムラ製作所 Solder composition and printed wiring board using the same
CN107107275A (en) 2014-12-26 2017-08-29 利默瑞克大学 Scaling powder, soldering paste and the method for manufacturing scaling powder
JP6801879B2 (en) 2015-10-14 2020-12-16 共栄社化学株式会社 Fluctuation agent for flux and flux and solder paste containing it
CN107570911B (en) * 2017-10-30 2021-05-04 厦门理工学院 Lead-free high-temperature soldering paste for mobile phone and computer mainboard and preparation method thereof
JP6643744B1 (en) * 2019-05-27 2020-02-12 千住金属工業株式会社 Solder paste and flux for solder paste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144292A (en) * 1993-11-22 1995-06-06 Sanei Kagaku Kk Cream solder
JP2002263884A (en) * 2001-03-09 2002-09-17 Showa Denko Kk Soldering flux and solder paste
JP2003347718A (en) * 2002-05-29 2003-12-05 Harima Chem Inc Surface mounting method and circuit board
JP2006007300A (en) * 2004-06-28 2006-01-12 Nihon Almit Co Ltd Flux for soldering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144292A (en) * 1993-11-22 1995-06-06 Sanei Kagaku Kk Cream solder
JP2002263884A (en) * 2001-03-09 2002-09-17 Showa Denko Kk Soldering flux and solder paste
JP2003347718A (en) * 2002-05-29 2003-12-05 Harima Chem Inc Surface mounting method and circuit board
JP2006007300A (en) * 2004-06-28 2006-01-12 Nihon Almit Co Ltd Flux for soldering

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084755A (en) * 2013-01-31 2013-05-08 广东普赛特电子科技股份有限公司 Blending modification halogen-free solder paste and preparation method thereof
CN116529021A (en) * 2020-11-18 2023-08-01 千住金属工业株式会社 Soldering flux and soldering paste
CN116529021B (en) * 2020-11-18 2024-03-08 千住金属工业株式会社 Soldering flux and soldering paste
US11986909B2 (en) 2020-11-18 2024-05-21 Senju Metal Industry Co., Ltd. Flux and solder paste
US11986910B2 (en) 2020-11-18 2024-05-21 Senju Metal Industry Co., Ltd. Flux and solder paste

Also Published As

Publication number Publication date
JP5400606B2 (en) 2014-01-29
JP2011136365A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP5400606B2 (en) Solder paste and flux
JP7183314B2 (en) Solder alloy and solder powder
JP5766668B2 (en) Solder composition and printed wiring board using the same
JP6566248B2 (en) Flux for lead-free solder for clearance resist and lead-free solder paste for clearance resist
JP6196036B2 (en) Flux and solder paste
US20060011267A1 (en) Solder paste and process
JP6027655B2 (en) Soldering flux and solder paste
CN108747090A (en) One kind helping weldering glue and preparation method thereof, application
JP2018083211A (en) Solder paste, flux and electronic circuit board
JP6346757B2 (en) Method for manufacturing printed wiring board
CN108213766B (en) Special soldering paste for aluminum product welding and preparation method and use method thereof
JPWO2017065076A1 (en) Thixotropic agent and flux and solder paste containing the same
JP6120139B2 (en) Lead-free solder flux, lead-free solder paste and lead-free thread solder
WO2019167329A1 (en) Flux and solder paste
CN111318832B (en) Low-temperature lead-free soldering paste and preparation method thereof
JP6238007B2 (en) Flux for lead-free solder for clearance resist and lead-free solder paste for clearance resist
JP2017154167A (en) Solder composition and electronic substrate
KR20200035208A (en) Flux composition and solder paste
JP2008110392A (en) Flux for soldering and solder paste composition
JP6259623B2 (en) Low acid value acrylic resin-containing soldering flux and solder paste composition
CN102513736A (en) Paste welding combination and preparation method and application thereof
JP6012946B2 (en) Flux and solder paste composition
JP4348169B2 (en) Thixotropic agent for solder paste and solder paste
JP6342208B2 (en) Flux composition for soldering and electronic board using the same
JP5635561B2 (en) Solder composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840848

Country of ref document: EP

Kind code of ref document: A1