WO2011080011A1 - Mehrphasen-gleichspannungswandler und verfahren zum steuern eines mehrphasen-gleichspannungswandlers - Google Patents

Mehrphasen-gleichspannungswandler und verfahren zum steuern eines mehrphasen-gleichspannungswandlers Download PDF

Info

Publication number
WO2011080011A1
WO2011080011A1 PCT/EP2010/068101 EP2010068101W WO2011080011A1 WO 2011080011 A1 WO2011080011 A1 WO 2011080011A1 EP 2010068101 W EP2010068101 W EP 2010068101W WO 2011080011 A1 WO2011080011 A1 WO 2011080011A1
Authority
WO
WIPO (PCT)
Prior art keywords
coils
sensor element
magnetic field
converter
phase
Prior art date
Application number
PCT/EP2010/068101
Other languages
English (en)
French (fr)
Inventor
Rasmus Rettig
Werner Schiemann
Franziska Kalb
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201080057473.5A priority Critical patent/CN102656788B/zh
Priority to JP2012543574A priority patent/JP5456171B2/ja
Priority to EP10781513A priority patent/EP2514085A1/de
Priority to US13/514,142 priority patent/US9667135B2/en
Publication of WO2011080011A1 publication Critical patent/WO2011080011A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/40Means for preventing magnetic saturation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/32Regulating voltage or current wherein the variable actually regulated by the final control device is ac using magnetic devices having a controllable degree of saturation as final control devices
    • G05F1/325Regulating voltage or current wherein the variable actually regulated by the final control device is ac using magnetic devices having a controllable degree of saturation as final control devices with specific core structure, e.g. gap, aperture, slot, permanent magnet
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Definitions

  • the invention relates to a polyphase DC-DC converter and a method for controlling a polyphase DC-DC converter.
  • the current ripple reduces significantly in the superimposed output signal and the frequency of the output signal of the DC-DC converter increases by the number of offset clocked converter units relative to the basic clock frequency of the converter units. As a result, costs and volumes for output filters of the DC-DC converter can be reduced.
  • the currents must usually be uniform or Be divided "symmetrically" to the individual converter units or phase modules.
  • the present invention provides a multiphase DC-DC converter with at least two parallel, time-shifted coils, at least one control unit for driving the coils and at least one magnetic field-sensitive sensor element for detecting a magnetic field generated by the current flow through the coils, wherein the control unit controls the current flow through the coils in Dependence on an output signal of the at least one sensor element controls.
  • the magnetic field-sensitive sensor element can be designed, for example, as a Hall sensor or as a magnetoresistive sensor or as a measuring coil.
  • a magnetic feedback is realized by the detection and evaluation of the magnetic field generated in the coils, which can be used to compensate for load fluctuations or in the case of using a magnetic core to avoid saturation of the magnetic core, so that a regulated output signal is generated.
  • asymmetries in the control or the structure of the polyphase DC-DC converter can be compensated.
  • the at least two coils are magnetically counter-coupled, that is to say arranged and driven such that the magnetic fields generated by current flows through the coupled coils are directed in opposite directions.
  • the coupling of the coils can take place, for example, via a common magnetic core, on which the coils are arranged.
  • the magnetic core has an air gap.
  • constant magnetic field components are almost completely eliminated and thus also prevents possible saturation of the magnetic core. This allows the use of smaller coils and magnetic cores and thus leads to smaller designs. If, despite the symmetrical structure, for example due to component tolerances or environmental influences, constant magnetic field components nevertheless result, they can be detected by the magnetic field-sensitive sensor and compensated by suitable control of the coils by the control unit.
  • At least one magnetic field-sensitive sensor element is arranged in the vicinity of the air gap of the magnetic core.
  • a magnetic flux leakage can be detected, which allows a conclusion on the magnetic field in the magnetic core and thus the stored amount of energy.
  • the coils can then be controlled by the control unit in a suitable manner.
  • the output signal of the sensor element can be evaluated integrally over time and thereby an offset value can be determined. This offset value provides a measure of a constant magnetic flux.
  • the controller can then control the current flow through the coils to minimize this offset value.
  • a sensor element can also be positioned in the air gap.
  • the position is advantageously selected such that, with optimum symmetrical control of the coils, an output signal results without any offset.
  • the sensor element detects a sum signal, that is, a signal which is based on the magnetic fields generated by a plurality of coils
  • a sum signal that is, a signal which is based on the magnetic fields generated by a plurality of coils
  • the sensor elements each deliver an output signal which generates a signal which is generated by the current flow through the respective coil. characterized magnetic field.
  • the magnetic fields generated by the individual coils are evaluated so to speak separately in such a positioning of the sensor elements.
  • separate evaluation and summation can also be combined in any way, that is, it can be both sensor elements are provided which detect individual magnetic fields, as well as other sensor elements which detect sum magnetic fields.
  • the at least one magnetic field-sensitive sensor element is integrated into a control circuit of the polyphase DC-DC converter.
  • the control circuit also comprises at least the control unit, but may also comprise further units, such as evaluation units for the output signals of the sensor elements.
  • the control circuit also comprises at least the control unit, but may also comprise further units, such as evaluation units for the output signals of the sensor elements.
  • FIG. 1 is a schematic representation of an embodiment of a multi-phase DC-DC converter according to the invention with coupled coils
  • Fig. 2 is a schematic representation of a first embodiment of a
  • FIG. 3 is a schematic representation of a second embodiment of a control circuit for a multiphase according to the invention.
  • DC-DC converter with two integrated magnetic field-sensitive sensor elements DC-DC converter with two integrated magnetic field-sensitive sensor elements
  • Fig. 4 is a schematic side view of a first embodiment of a printed circuit with a polyphase DC-DC converter according to the invention.
  • Fig. 5 is a schematic side view of a second embodiment of a printed circuit with a polyphase DC-DC converter according to the invention.
  • FIG. 1 shows schematically and greatly simplified the structure of a polyphase DC-DC converter according to the invention.
  • a magnetic core 1 which has an air gap 2
  • two coils 3 and 4 are arranged in parallel, which are each part of a converter unit or a phase module of the polyphase DC-DC converter.
  • the magnetic core 1 per se, the position of the air gap 2 and the arrangement and position of the coils 3 and 4 is advantageously carried out symmetrically.
  • the arrangement of the coils 3 and 4 on a common magnetic core has a magnetic coupling of the two coils result.
  • the coils 3 and 4 are each connected to an output stage 5 and 6, which comprise switching elements, not shown, for blocking or enabling a current flow through the coils 3 and 4.
  • the output stages 5 and 6 are connected to a control unit 7, which controls the output stages 5 and 6 and thus the current flow through the coils 3 and 4 with a time offset or out of phase.
  • the arrangement and control of the coils 3 and 4 is carried out such that there is a negative feedback between the coils 3 and 4, that is, the two coils generate magnetic fields with opposite orientation. With optimal symmetry of the arrangement and the control of the negative feedback all constant magnetic field components are eliminated, so that the DC component or DC component of the resulting magnetic field is zero. Due to component tolerances or other environmental influences However, even with symmetrical design and symmetrical activation, constant DC components result whose elimination leads to an improved function of the multiphase DC-DC converter.
  • a magnetic field-sensitive sensor element 8 for example in the form of a Hall sensor, a magnetoresistive sensor or a measuring coil, is arranged. Via an evaluation unit 9, the output signal of the sensor element 8 is transmitted to the control unit 7. In this way, a magnetic feedback is realized. If the magnetic field sensitive Liehe sensor element 8, as shown, arranged in the vicinity of the air gap 2 of the magnetic core 1, then a magnetic leakage flux is detected by the sensor element 8, which allows conclusions about the magnetic field within the magnetic core 1 and thus to the amount of energy stored therein , Alternatively, the sensor element 8 may also be arranged in the region of the air gap 2. The sensor element 8 then does not detect the leakage flux, but enters
  • Output signal which directly characterizes the magnetic flux in the magnetic core 1.
  • the output signal of the sensor element 8 can be viewed integrally over time by the evaluation unit 9 and from this an offset value of the output signal can be determined.
  • This offset value represents a measure of an existing constant magnetic flux.
  • the control unit 7 can then control the coils 3 and 4 via the output stages 5 and 6, respectively, so that the offset value is minimized.
  • an asymmetry of the coils 3 and 4 can be compensated.
  • control unit 7, the two output stages 5 and 6 and the evaluation unit 9 are shown as separate units. Of course, these units can also be completely or partially integrated into a higher-level unit. It is also conceivable to provide the control of the individual output stages 5 and 6 or the coils 3 and 4 separate control units.
  • FIG. 1 shows by way of example a two-phase DC-DC converter. However, by providing additional coils with corresponding output stages and control units, this arrangement can easily be expanded by further converter units or phase modules. If appropriate, other magnetic field-sensitive sensor elements should then also be provided in order to detect the magnetic fields generated by the further coils to be able to.
  • the representation of the coupled by means of a magnetic core 1 coils 3 and 4 is merely exemplary understood. Other embodiments of the magnetic core 1 are possible. By suitable arrangement of the coils, a magnetic coupling of the coils can be achieved even without the use of a magnetic core.
  • the invention is also applicable to multiphase DC-DC converters with coils which are not coupled.
  • the prerequisite is that a separate magnetic field-sensitive sensor element is provided for each of the coils, which is arranged in such a way that it can be fed through a magnetic field-sensitive sensor element
  • Figure 2 shows a schematic representation of a first embodiment of a
  • a control circuit 20 comprises, besides the sensor element 8, the control unit 7, the output stages 5 and 6, the evaluation unit 9 and a digital logic 21 and a digital interface 22.
  • the output stages 5 and 6 are shown as a common unit 23.
  • the sensor element 8 is preferably arranged in an edge region of the control circuit 20.
  • the control circuit 20 is then positioned with respect to the coils of the polyphase DC-DC converter such that the sensor element is at the desired position, e.g. comes to lie in the vicinity of the air gap 2 of the magnetic core 1.
  • FIG. 3 shows an alternative embodiment of a control circuit 20 'of a multiphase DC-DC converter.
  • This embodiment differs from the embodiment shown in FIG. 2 only in that a second magnetic field-sensitive sensor element 8 'with an associated second evaluation unit 9' is provided. It is of course also possible again, the output signals of the sensor elements 8 and 8 'deviating from the illustrated embodiment by a common evaluation to process.
  • the provision of two sensor elements 8 and 8 ' allows for a two-phase DC-DC converter the separate evaluation of the magnetic fields generated by the current flow in the coils, in particular if the two sensor elements 8 and 8' within the control circuit
  • control circuit 20 is spaced from each other.
  • Such a configuration of the control circuit can consequently also be used for a DC-DC converter with uncoupled coils.
  • the control circuits shown in FIGS. 2 and 3 apply
  • circuit components shown can also be combined in any manner in higher-level units.
  • further circuit components or units can be integrated in the control circuit.
  • further magnetic field-sensitive sensor elements can be integrated into a control unit, so that the control circuit can also be used, for example, for DC-DC converters having more than two converter units or phase modules.
  • FIG. 4 shows a schematic side view of a first embodiment of a printed circuit with a multiphase device according to the invention.
  • the DC-DC converter is designed as an example as two-phase DC-DC converter with coupled coils.
  • two coils 41 and 42 are arranged on a printed circuit board 40 (printed circuit board, PCB), which are designed for example in SMD technology (Surface Mounted Device).
  • the magnetic coupling of the two coils 41 and 42 is achieved by a magnetic core 43 which is inserted into the coils 41 and 42 after the SMD soldering process, for example.
  • the magnetic field-sensitive sensor element, not shown, is then placed in a suitable position, e.g. positioned near an air gap 44 of the magnetic core 43.
  • FIG. 5 shows a schematic side view of a second embodiment of a printed circuit with a polyphase DC-DC converter according to the invention.
  • a coil arrangement 51 is arranged on the upper side of a guide plate 50.
  • this coil arrangement also involves two coils coupled via a magnetic core with an air gap.
  • a control circuit 52 in which at least one Control unit and a magnetic field-sensitive sensor element (both not shown separately) is disposed on the underside of the circuit board 50.
  • the control circuit 52 is realized as an integrated circuit which is positioned such that it at least partially overlaps with the coil arrangement 51 in such a way that the magnetic field-sensitive sensor element integrated in the control circuit comes to lie in a suitable position with respect to the coil arrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Die Erfindung betrifft einen Mehrphasen-Gleichspannungswandler und ein verfahren zum Steuern eines Mehrphasen-Gleichspannungswandlers mit mindestens zwei parallelen, zeitversetzt gesteuerten Spulen (3, 4; 41, 42), mindestens einer Steuereinheit (7) zum Ansteuern der Spulen (3, 4) und mindestens einem magnetfeldempfindlichen Sensorelement (8; 8') zum Erfassen eines durch den Stromfluss durch die Spulen erzeugten Magnetfeldes. Die Steuereinheit (7) steuert den Stromfluss durch die Spulen (3, 4; 41, 42) in Abhängigkeit von einem Ausgangssignal des mindestens einen Sensorelementes (8).

Description

Beschreibung
Titel
Mehrphasen-Gleichspannungswandler und Verfahren zum Steuern eines Mehrphasen-Gleichspannungswandlers
Die Erfindung betrifft einen Mehrphasen-Gleichspannungswandler und ein Verfahren zum Steuern eines Mehrphasen-Gleichspannungswandlers.
Stand der Technik
In modernen sowie zukünftigen Energiebordnetzen von Kraftfahrzeugen, insbesondere Hybrid- oder Elektrofahrzeugen, werden leistungsstarke Gleichspannungswandler - häufig auch als DC/DC-Wandler bezeichnet - benötigt, um den Energiefluss zwischen verschiedenen Spannungsebenen regeln zu können. So wird beispielsweise in Start-Stopp-Systemen ein Einbruch der Bordnetspannung beim start durch einen Gleichspannungswandler ausgeglichen. Den bestehenden Kosten-, Bauraum- und Gewichtsbeschränkungen im Kraftfahrzeugbereich wird dabei durch Verwendung so genannter Mehrphasen-Gleichspannungswandler Rechnung getragen. Dabei wird die zu übertragende Leistung auf mehrere parallel geschaltete Wandlereinheiten oder Phasenmodule aufgeteilt. Vorzugsweise werden die einzelnen Phasenmodule phasen- oder zeitversetzt angesteuert. Durch die phasenversetzte Ansteuerung reduzieren sich im überlagerten Ausgangssignal die Stromrippel erheblich und die Frequenz des Ausgangssignals des Gleichspannungswandlers erhöht sich um die Anzahl der versetzt getakteten Wandlereinheiten gegenüber der Grundtaktfrequenz der Wandlereinheiten. Dadurch können Kosten und Volumen für Ausgangsfilter des Gleichspannungswandlers reduziert werden.
Um den oben genannten Vorteil bei Mehrphasen-Gleichspannungswandlern effektiv nutzen zu können, müssen die Ströme in der Regel gleichmäßig oder „symmetrisch" auf die einzelnen Wandlereinheiten oder Phasenmodule aufgeteilt werden.
Aus J. Czogalla, J. Li, C. Sullivan: Automotive Application of Multi-Phase Cou- pled Inductor DC-DC-Converter", 0-7803-7883-0/03. IEEE, 2003, ist der Einsatz von Mehrphasen-Gleichspannungswandlern mit gekoppelten Spulen im Kraftfahrzeugbereich bekannt.
Offenbarung der Erfindung
Die vorliegende Erfindung schafft einen Mehrphasen-Gleichspannungswandler mit mindestens zwei parallelen, zeitversetzt gesteuerten Spulen, mindestens einer Steuereinheit zum Ansteuern der Spulen und mindestens einem magnetfeldempfindlichen Sensorelement zum Erfassen eines durch den Stromfluss durch die Spulen erzeugten Magnetfeldes, wobei die Steuereinheit den Stromfluss durch die Spulen in Abhängigkeit von einem Ausgangssignal des mindestens einen Sensorelementes steuert. Das magnetfeldempfindliche Sensorelement kann dabei beispielsweise als Hall-Sensor oder als magnetoresistiver Sensor oder auch als Messspule ausgeführt sein.
Bei dem erfindungsgemäßen Mehrphasen-Gleichspannungswandler wird durch die Erfassung und die Auswertung des in den Spulen erzeugten Magnetfeldes eine magnetische Rückkopplung realisiert, welche zur Kompensation von Lastschwankungen oder im Fall der Verwendung eines Magnetkerns auch zur Vermeidung einer Sättigung des Magnetkerns genutzt werden kann, so dass ein geregeltes Ausgangssignal erzeugt wird. Außerdem können auch Asymmetrien in der Ansteuerung oder dem Aufbau des Mehrphasen-Gleichspannungswandlers kompensiert werden. Gemäß einer Ausführungsform der Erfindung sind die mindestens zwei Spulen magnetisch gegengekoppelt, das heißt derart angeordnet und angesteuert, dass die durch Stromflüsse durch die gekoppelten Spulen erzeugten Magnetfelder entgegengesetzt gerichtet sind. Die Kopplung der Spulen kann beispielsweise über einen gemeinsamen Magnetkern erfolgen, auf welchem die Spulen ange- ordnet sind. Um einer Sättigung des Magnetkerns vorzubeugen, weist der Magnetkern einen Luftspalt auf. Bei symmetrischem Aufbau der gegengekoppelten Spulen, sowie ggf. des Magnetkerns und des Luftspaltes werden konstante Magnetfeldanteile nahezu vollständig eliminiert und damit auch einer möglichen Sättigung des Magnetkerns vorgebeugt. Das ermöglicht die Verwendung kleinerer Spulen und Magnetkerne und führt somit zu kleineren Bauformen. Ergeben sich trotz des symmetrischen Aufbaus, z.B. aufgrund von Bauteiltoleranzen oder Umgebungseinflüssen dennoch konstante Magnetfeldanteile, können diese erfindungsgemäß mit Hilfe des magnetfeldempfindlichen Sensors erfasst und durch geeignete Ansteuerung der Spulen durch die Steuereinheit kompensiert werden.
Gemäß einer weiteren Ausführungsform der Erfindung ist mindestens ein magnetfeldempfindliches Sensorelement, in der Nähe des Luftspaltes des Magnetkerns angeordnet. In diesem Bereich kann ein magnetischer Streufluss erfasst werden, welcher einen Rückschluss auf das magnetische Feld im Magnetkern und damit die gespeicherte Energiemenge zulässt. Die Spulen können dann durch die Steuereinheit in geeigneter Weise angesteuert werden. Insbesondere kann das Ausgangssignal des Sensorelementes integral über der Zeit ausgewertet werden und dabei ein Offset-Wert ermittelt werden. Dieser Offset-Wert stellt ein Maß für einen konstanten magnetischen Fluss dar. Die Steuereinheit kann dann den Stromfluss durch die Spulen derart steuern, dass dieser Offset-Wert minimiert wird.
Alternativ zu einer Positionierung des magnetfeldempfindlichen Sensorelementes in der Nähe des Luftspaltes, kann ein Sensorelement auch im Luftspalt positioniert werden. Die Position wird vorteilhaft so gewählt, dass sich bei optimaler symmetrischer Ansteuerung der Spulen ein Ausgangssignal ohne jegliches Offset ergibt.
Alternativ zur Anordnung eines oder auch mehrerer Sensorelemente in einem Bereich des Mehrphasen-Gleichspannungswandler, an dem das Sensorelement ein Summensignal erfasst, das heißt ein Signal, welches auf den durch mehrere Spulen erzeugten Magnetfeldern beruht, kann auch in der Umgebung jeder einzelnen Spule jeweils mindestens ein magnetfeldempfindliches Sensorelement angeordnet sein. Dadurch liefern die Sensorelemente jeweils ein Ausgangssignal, welches ein von dem durch den Stromfluss durch die jeweilige Spule erzeug- tes Magnetfeld charakterisiert. Die durch die einzelnen Spulen erzeugten Magnetfelder werden bei einer derartigen Positionierung der Sensorelemente sozusagen getrennt ausgewertet. Selbstverständlich können getrennte Auswertung und Summenauswertung auch in beliebiger Weise kombiniert werden, das heißt es können sowohl Sensorelemente vorgesehen sein, welche einzelne Magnetfelder erfassen, als auch weitere Sensorelemente, welche Summen- Magnetfelder erfassen.
Vorteilhaft wird das mindestens eine magnetfeldempfindliche Sensorelement in eine Steuerschaltung des Mehrphasen-Gleichspannungswandlers integriert. Dabei umfasst die Steuerschaltung zumindest auch die Steuereinheit, kann aber auch weitere Einheiten, wie zum Beispiel Auswerteeinheiten für die Ausgangssignale der Sensorelemente umfassen. Auf diese Weise ergibt sich eine besonders einfache und kostengünstige Realisierung des erfindungsgemäßen Mehrphasen-Gleichspannungswandlers.
Weitere Merkmale und Vorteile von Ausführungsformen der Erfindung ergeben sich aus der nachfolgenden Beschreibung mit Bezug auf die beigefügten Figuren.
Kurze Beschreibung der Figuren. Es zeigen:
Fig. 1 eine schematische Darstellung einer Ausführungsform eines erfindungsgemäßen Mehrphasen-Gleichspannungswandlers mit gekoppelten Spulen,
Fig. 2 eine schematische Darstellung einer ersten Ausführungsform einer
Steuerschaltung für einen erfindungsgemäßen Mehrphasen- Gleichspannungswandler mit einem integrierten magnetfeldempfindlichen Sensorelement,
Fig. 3 eine schematische Darstellung einer zweiten Ausführungsform einer Steuerschaltung für einen erfindungsgemäßen Mehrphasen- Gleichspannungswandler mit zwei integrierte magnetfeldempfindlichen Sensorelementen,
Fig. 4 eine schematische Seitenansicht einer ersten Ausführungsform einer gedruckten Schaltung mit einem erfindungsgemäßen Mehrphasen-Gleichspannungswandler und
Fig. 5 eine schematische Seitenansicht einer zweiten Ausführungsform einer gedruckten Schaltung mit einem erfindungsgemäßen Mehrphasen-Gleichspannungswandler.
Beschreibung der Ausführungsbeispiele
In den Figuren sind identische oder funktionsgleiche Komponenten jeweils mit dem gleichen Bezugszeichen gekennzeichnet.
Figur 1 zeigt schematisch und stark vereinfacht den Aufbau eines erfindungsgemäßen Mehrphasen-Gleichspannungswandlers. Auf einem Magnetkern 1 , welcher einen Luftspalt 2 aufweist, sind zwei Spulen 3 und 4 parallel angeordnet, welche jeweils Bestandteil einer Wandlereinheit oder eines Phasenmoduls des Mehrphasen-Gleichspannungswandlers sind. Der Magnetkern 1 an sich, die Lage des Luftspaltes 2 sowie die Anordnung und Lage der Spulen 3 und 4 ist vorteilhaft symmetrisch ausgeführt. Die Anordnung der Spulen 3 und 4 auf einem gemeinsamen Magnetkern hat eine magnetische Kopplung der beiden Spulen zur Folge. Die Spulen 3 und 4 sind jeweils mit einer Ausgangsstufe 5 bzw. 6 verbunden, welche nicht dargestellte Schaltelemente zur Sperrung oder Freigabe eines Stromflusses durch die Spulen 3 und 4 umfassen. Die Ausgangsstufen 5 und 6 sind mit einer Steuereinheit 7 verbunden, welche die Ausgangsstufen 5 und 6 und damit den Stromfluss durch die Spulen 3 und 4 zeitversetzt oder phasenversetzt steuert. Die Anordnung und Ansteuerung der Spulen 3 und 4 ist dabei derart ausgeführt, dass sich zwischen den Spulen 3 und 4 eine Gegenkopplung ergibt, das heißt die beiden Spulen Magnetfelder mit entgegen gesetzter Orientierung erzeugen. Bei optimaler Symmetrie der Anordnung und der Ansteuerung werden durch die Gegenkopplung sämtliche konstanten Magnetfeldanteile eliminiert, so dass der Gleichanteil oder DC-Anteil des resultierenden Magnetfeldes gleich Null ist. Durch Bauteiltoleranzen oder sonstige Umgebungseinflüsse ergeben sich aber auch bei symmetrischem Aufbau und symmetrischer Ansteue- rung konstante Gleichanteile, deren Eliminierung zu einer verbesserten Funktion des Mehrphasen-Gleichspannungswandlers führt. In der Nähe des Luftspaltes 2 ist ein magnetfeldempfindliches Sensorelement 8, zum Beispiel in Form eines Hall-Sensors, eines magnetoresistiven Sensors oder einer Messspule, angeordnet. Über eine Auswerteeinheit 9 wird das Ausgangssignal des Sensorelementes 8 an die Steuereinheit 7 übertragen. Auf diese Weise wird eine magnetische Rückkopplung realisiert. Wird das magnetfeldempfind- liehe Sensorelement 8, wie dargestellt, in der Nähe des Luftspaltes 2 des Magnetkerns 1 angeordnet, so wird durch das Sensorelement 8 ein magnetischer Streufluss erfasst, der Rückschlüsse auf das Magnetfeld innerhalb des Magnetkerns 1 und damit auf die darin gespeicherte Energiemenge zulässt. Alternativ dazu kann das Sensorelement 8 auch im Bereich des Luftspaltes 2 angeordnet sein. Das Sensorelement 8 erfasst dann nicht den Streufluss, sondern gibt ein
Ausgangssignals aus, welches unmittelbar den magnetischen Fluss in dem Magnetkern 1 charakterisiert. Das Ausgangssignal des Sensorelementes 8 kann durch die Auswerteeinheit 9 integral über der Zeit betrachtet werden und daraus ein Offset-Wert des Ausgangssignals bestimmt werden. Dieser Offset-Wert stellt ein Maß für einen bestehenden konstanten magnetischen Fluss dar. Die Steuereinheit 7 kann dann die Spulen 3 und 4 über die Ausgangsstufen 5 bzw. 6 derart steuern, dass der Offset-Wert minimiert wird. So kann zum Beispiel durch Korrektur des Pulsweitenverhältnisses der Ansteuersignale der beiden Spulen 3 und 4 eine Asymmetrie der Spulen 3 und 4 kompensiert werden.
Bei der dargestellten Ausführungsform sind die Steuereinheit 7, die beiden Ausgangsstufen 5 und 6 sowie die Auswerteeinheit 9 als getrennte Einheiten dargestellt. Selbstverständlich können diese Einheiten auch komplett oder teilweise in eine übergeordnete Einheit integriert sein. Auch ist es denkbar zur Ansteuerung der einzelnen Ausgangsstufen 5 und 6 oder der Spulen 3 und 4 getrennte Steuereinheiten vorzusehen. In Figur 1 ist beispielhaft ein Zweiphasen- Gleichspannungswandler dargestellt. Durch das Vorsehen weiteren Spulen mit entsprechenden Ausgangsstufen und Steuereinheiten ist diese Anordnung aber problemlos um weitere Wandlereinheiten oder Phasenmodule erweiterbar. Ge- gebenenfalls sind dann auch weitere magnetfeldempfindliche Sensorelemente vorzusehen, um die durch die weiteren Spulen erzeugten Magnetfelder erfassen zu können. Auch die Darstellung der mit Hilfe eines Magnetkerns 1 gekoppelten Spulen 3 und 4 ist lediglich beispielhaft zu verstehen. Auch anderweitige Ausgestaltungen des Magnetkerns 1 sind möglich. Durch geeignete Anordnung der Spulen kann selbst ohne Verwendung eines Magnetkerns eine magnetische Kopp- lung der Spulen erreicht werden.
Die Erfindung ist darüber hinaus auch für Mehrphasen-Gleichspannungswandler mit Spulen anwendbar, welche nicht gekoppelt sind. Voraussetzung ist dann aber, dass für jede der Spulen ein eigenes magnetfeldempfindliches Sensorele- ment vorgesehen ist, welches derart angeordnet ist, dass es das durch einen
Stromfluss durch die jeweilige Spule erzeugte Magnetfeld erfassen kann. Die Magnetfelder der einzelnen Spulen werden damit sozusagen getrennt ausgewertet und die Ausgangssignale aller Sensorelemente werden der Steuereinheit über eine oder mehrere Auswerteeinheiten zugeführt. Eine derartige getrennte Aus- wertung ist alternativ oder zusätzlich auch für Systeme mit gekoppelten Spulen anwendbar.
Vorteilhaft wird das oder werden die magnetfeldempfindlichen Sensorelemente in eine Steuerschaltung des Mehrphasen-Gleichspannungswandlers integriert. Fi- gur 2 zeigt eine schematische Darstellung einer ersten Ausführungsform einer
Steuerschaltung mit einem integrierten Sensorelement. Eine Steuerschaltung 20 umfasst dabei neben dem Sensorelement 8, die Steuereinheit 7, die Ausgangsstufen 5 und 6, die Auswerteeinheit 9 sowie eine digitale Logik 21 und eine digitale Schnittstelle 22. Die Ausgangsstufen 5 und 6 sind dabei als gemeinsame Einheit 23 dargestellt. Das Sensorelement 8 ist vorzugsweise in einem Randbereich der Steuerschaltung 20 angeordnet. Die Steuerschaltung 20 wird dann in Bezug auf die Spulen des Mehrphasen-Gleichspannungswandlers derart positioniert, dass das Sensorelement an der gewünschten Position, z.B. in der Nähe des Luftspaltes 2 des Magnetkerns 1 zu liegen kommt.
In Figur 3 ist eine alternative Ausführungsform einer Steuerschaltung 20' eines Mehrphasen-Gleichspannungswandlers dargestellt. Diese Ausführungsform unterscheidet sich von der in Figur 2 dargestellten Ausführungsform lediglich dadurch, dass ein zweites magnetfeldempfindliches Sensorelement 8' mit einer zu- gehörigen zweiten Auswerteeinheit 9' vorgesehen ist. Dabei ist es selbstverständlich auch wieder möglich, die Ausgangssignale der Sensorelemente 8 und 8' abweichend von der dargestellten Ausführungsform durch eine gemeinsame Auswerteeinheit zu verarbeiten. Das Vorsehen von zwei Sensorelementen 8 und 8' erlaubt für einen Zweiphasen-Gleichspannungswandler die getrennte Auswertung der durch den Stromfluss in den Spulen erzeugten Magnetfelder, insbeson- dere wenn die beiden Sensorelemente 8 und 8' innerhalb der Steuerschaltung
20' beabstandet zueinander angeordnet sind. Eine derartige Ausgestaltung der Steuerschaltung ist folglich auch für einen Gleichspannungswandler mit nicht gekoppelten Spulen einsetzbar. Grundsätzlich gilt für die in den Figuren 2 und 3 dargestellten Steuerschaltungen
20 und 20', dass die gezeigten Schaltungskomponenten auch in beliebiger Weise in übergeordneten Einheiten zusammengefasst werden können. Ebenso können in der Steuerschaltung weitere Schaltungskomponenten oder Einheiten integriert sein. Selbstverständlich können in eine Steuereinheit auch weitere magnetfeld- empfindliche Sensorelemente integriert werden, so dass die Steuerschaltung beispielsweise auch für Gleichspannungswandler verwendbar ist, welche mehr als zwei Wandlereinheiten oder Phasenmodule aufweisen.
Figur 4 zeigt eine schematische Seitenansicht einer ersten Ausführungsform ei- ner gedruckten Schaltung mit einem erfindungsgemäßen Mehrphasen-
Gleichspannungswandler. Der Gleichspannungswandler ist dabei beispielhaft als Zweiphasen-Gleichspannungswandler mit gekoppelten Spulen ausgeführt. Dabei sind auf einer Leiterplatte 40 (printed circuit board, PCB) zwei Spulen 41 und 42 angeordnet, welche zum Beispiel in SMD-Technik (Surface Mounted Device) ausgeführt sind. Die magnetische Kopplung der beiden Spulen 41 und 42 wird durch einen Magnetkern 43 erreicht, der zum Beispiel nach dem SMD- Lötprozess in die Spulen 41 und 42 eingeschoben wird. Das nicht dargestellte magnetfeldempfindliche Sensorelement wird dann an geeigneter Stelle, z.B. in der Nähe eines Luftspaltes 44 des Magnetkerns 43 positioniert.
Figur 5 zeigt eine schematische Seitenansicht einer zweiten Ausführungsform einer gedruckten Schaltung mit einem erfindungsgemäßen Mehrphasen- Gleichspannungswandler. Dabei ist auf der Oberseite einer Leiteplatte 50 eine Spulenanordnung 51 angeordnet. Beispielhaft sei angenommen, dass es sich auch bei dieser Spulenanordnung um zwei über einen Magnetkern mit Luftspalt gekoppelte Spulen handle. Eine Steuerschaltung 52, in welche zumindest eine Steuereinheit und ein magnetfeldempfindliches Sensorelement (beide nicht gesondert dargestellt) integriert sind, ist auf der Unterseite der Leiterplatte 50 angeordnet. Die Steuerschaltung 52 ist dabei als integrierte Schaltung realisiert, welche derart positioniert ist, dass sie sich mit der Spulenanordnung 51 zumindest teilweise überlappt und zwar derart, dass das in die Steuerschaltung integrierte magnetfeldempfindlich Sensorelement in geeigneter Position in Bezug auf die Spulenanordnung zu liegen kommt.

Claims

Ansprüche
1 . Mehrphasen-Gleichspannungswandler mit
- mindestens zwei parallelen, zeitversetzt gesteuerten Spulen (3, 4; 41 , 42),
- mindestens einer Steuereinheit (7) zum Ansteuern der Spulen (3, 4) und
- mindestens einem magnetfeldempfindlichen Sensorelement (8; 8') zum Erfassen eines durch den Stromfluss durch die Spulen erzeugten Magnetfeldes,
wobei die Steuereinheit (7) den Stromfluss durch die Spulen (3, 4; 41 , 42) in Abhängigkeit von einem Ausgangssignal des mindestens einen Sensorelementes (8) steuert.
2. Mehrphasen-Gleichspannungswandler nach Anspruch 1 , wobei die mindestens zwei Spulen (3, 4; 41 , 42) magnetisch gegengekoppelt sind.
3. Mehrphasen-Gleichspannungswandler nach Anspruch 2, wobei die mindestens zwei Spulen (3, 4; 41 , 42) über einen gemeinsamen Magnetkern (1 ; 43), welcher einen Luftspalt (2; 44) aufweist, gegengekoppelt sind.
4. Mehrphasen-Gleichspannungswandler nach Anspruch 1 , wobei mindestens ein magnetfeldempfindliches Sensorelement (8), in der Nähe des Luftspaltes (2; 44), insbesondere in dem Luftspalt, des Magnetkerns (1 ; 43) angeordnet ist.
5. Mehrphasen-Gleichspannungswandler nach Anspruch 1 , wobei in der Umgebung jeder Spule (3, 4; 41 , 42) jeweils mindestens ein magnetfeldempfindliches Sensorelement (8, 8') angeordnet ist, so dass die Sensorelemente (8, 8') jeweils ein Ausgangssignal liefern, welches ein von dem durch den Stromfluss durch die jeweilige Spule (3, 4; 41 , 42) erzeugtes Magnetfeld charakteri- siert.
6. Mehrphasen-Gleichspannungswandler nach einem der vorhergehenden Ansprüche, wobei das mindestens eine magnetfeldempfindliche Sensorelement (8; 8') in eine Steuerschaltung (20; 20') des Mehrphasen- Gleichspannungswandlers integriert ist, welcher zumindest auch die Steuereinheit (7) umfasst.
7. Mehrphasen-Gleichspannungswandler nach Anspruch 6, wobei die Steuerschaltung (20; 20') auch mindestens eine Auswerteeinheit (9; 9') für das Ausgangssignal oder die Ausgangssignale des mindestens einen Sensorelementes (8; 8') umfasst.
8. Mehrphasen-Gleichspannungswandler nach einem der vorhergehenden Ansprüche, wobei das magnetempfindliche Sensorelement (8; 8') als Hall- Sensor oder als magnetoresistiver Sensor oder als Messspule ausgeführt ist.
9. Verfahren zur Steuerung eines Mehrphasen-Gleichspannungswandler mit mindestens zwei parallelen, zeitversetzt gesteuerten Spulen (3, 4; 41 , 42), bei dem mit Hilfe mindestens eines magnetfeldempfindlichen Sensorelements (8; 8') ein durch den Stromfluss durch die Spulen (3, 4; 41 , 42) erzeugtes Magnetfeld erfasst wird und der Stromfluss durch die Spulen (3, 4; 41 , 42) in Abhängigkeit von einem Ausgangssignal des mindestens einen magnetfeldempfindlichen Sensorelements (8; 8') gesteuert wird.
10. Verfahren nach Anspruch 9, wobei aus dem Ausgangssignal des mindestens einen magnetfeldempfindlichen Sensorelements (8; 8') ein Offset-Wert ermittelt wird und der Stromfluss durch die Spulen (3, 4; 41 , 42) derart gesteuert wird, dass der Offset-Wert minimiert wird.
PCT/EP2010/068101 2009-12-18 2010-11-24 Mehrphasen-gleichspannungswandler und verfahren zum steuern eines mehrphasen-gleichspannungswandlers WO2011080011A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080057473.5A CN102656788B (zh) 2009-12-18 2010-11-24 多相直流电压转换器和用于控制多相直流电压转换器的方法
JP2012543574A JP5456171B2 (ja) 2009-12-18 2010-11-24 多相直流電圧変換器、および多相直流電圧変換器の制御方法
EP10781513A EP2514085A1 (de) 2009-12-18 2010-11-24 Mehrphasen-gleichspannungswandler und verfahren zum steuern eines mehrphasen-gleichspannungswandlers
US13/514,142 US9667135B2 (en) 2009-12-18 2010-11-24 Multiphase DC voltage converter and method for controlling a multiphase DC voltage converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009054957.9 2009-12-18
DE102009054957A DE102009054957A1 (de) 2009-12-18 2009-12-18 Mehrphasen-Gleichspannungswandler und Verfahren zum Steuern eines Mehrphasen-Gleichspannungswandlers

Publications (1)

Publication Number Publication Date
WO2011080011A1 true WO2011080011A1 (de) 2011-07-07

Family

ID=43606449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/068101 WO2011080011A1 (de) 2009-12-18 2010-11-24 Mehrphasen-gleichspannungswandler und verfahren zum steuern eines mehrphasen-gleichspannungswandlers

Country Status (7)

Country Link
US (1) US9667135B2 (de)
EP (1) EP2514085A1 (de)
JP (1) JP5456171B2 (de)
CN (1) CN102656788B (de)
DE (1) DE102009054957A1 (de)
TW (1) TWI521846B (de)
WO (1) WO2011080011A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638295C1 (ru) * 2016-08-04 2017-12-13 Надежда Владимировна Антипова Способ управления n-фазным импульсным преобразователем

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012106261A1 (de) 2012-07-12 2014-01-16 Hella Kgaa Hueck & Co. Gleichspannungswandler-Schaltungsanordnung
DE102013101400A1 (de) 2013-02-13 2014-08-14 Hella Kgaa Hueck & Co. Gleichspannungswandler
CN108880249A (zh) 2015-08-25 2018-11-23 华为技术有限公司 电压转换电路、方法和多相并联电源系统
CN107453541A (zh) * 2016-06-01 2017-12-08 德昌电机(深圳)有限公司 电机及具有该电机的风扇
US9837906B1 (en) 2016-09-13 2017-12-05 Dialog Semiconductor (Uk) Limited Multiphase DCDC converter with asymmetric GM
DE102016217857A1 (de) 2016-09-19 2018-03-22 Dialog Semiconductor (Uk) Limited Spitzenstromservo
US10044267B1 (en) 2017-12-14 2018-08-07 Dialog Semiconductor (Uk) Limited Current emulation auto-calibration with peak-current servo

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043267A1 (en) * 1999-12-07 2001-06-14 Advanced Energy Industries, Inc. Power supply with flux-controlled transformer
US20080084717A1 (en) * 2006-10-05 2008-04-10 Wenkai Wu Multi-phase buck converter with a plurality of coupled inductors
US20080303495A1 (en) * 2007-06-08 2008-12-11 Intersil Americas Inc. Power supply with a magnetically uncoupled phase and an odd number of magnetically coupled phases, and control for a power supply with magnetically coupled and magnetically uncoupled phases

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683131A (en) * 1965-06-28 1972-08-08 Bell & Howell Co Magnetic tape recording circuit
US4639665A (en) * 1983-08-22 1987-01-27 Borg-Warner Corporation Sensing system for measuring a parameter
DE3908892A1 (de) * 1989-03-17 1990-09-20 Siemens Ag Schaltungsanordnung und vorrichtung zur kontaktlosen sollwertvorgabe fuer einen mit nichtmagnetischem werkstoff umhuellten integrierten schaltkreis
US6424018B1 (en) * 1998-10-02 2002-07-23 Sanken Electric Co., Ltd. Semiconductor device having a hall-effect element
US6806689B2 (en) 2002-03-22 2004-10-19 International Rectifier Corporation Multi-phase buck converter
JP2004191312A (ja) 2002-12-13 2004-07-08 Auto Network Gijutsu Kenkyusho:Kk 電流検出装置
JP2006122163A (ja) * 2004-10-27 2006-05-18 Seiko Precision Inc 磁場発生装置および磁場制御方法
US7417875B2 (en) * 2005-02-08 2008-08-26 Coldwatt, Inc. Power converter employing integrated magnetics with a current multiplier rectifier and method of operating the same
US7176662B2 (en) * 2005-02-23 2007-02-13 Coldwatt, Inc. Power converter employing a tapped inductor and integrated magnetics and method of operating the same
US7449867B2 (en) * 2005-07-26 2008-11-11 International Rectifier Corporation Multi-phase buck converter with a plurality of coupled inductors
FI120277B (fi) * 2006-06-21 2009-08-31 Valtion Teknillinen RFID-lukulaite ja menetelmä RFID-lukulaitteessa
US20080067990A1 (en) * 2006-09-19 2008-03-20 Intersil Americas Inc. Coupled-inductor assembly with partial winding
US8264073B2 (en) * 2007-03-07 2012-09-11 International Rectifier Corporation Multi-phase voltage regulation module
TWI358187B (en) * 2007-08-16 2012-02-11 Delta Electronics Inc Magnetic integrated circuit for multiphase interle
DE102007043603A1 (de) * 2007-09-13 2009-03-19 Robert Bosch Gmbh Multiphasen-Gleichspannungswandler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043267A1 (en) * 1999-12-07 2001-06-14 Advanced Energy Industries, Inc. Power supply with flux-controlled transformer
US20080084717A1 (en) * 2006-10-05 2008-04-10 Wenkai Wu Multi-phase buck converter with a plurality of coupled inductors
US20080303495A1 (en) * 2007-06-08 2008-12-11 Intersil Americas Inc. Power supply with a magnetically uncoupled phase and an odd number of magnetically coupled phases, and control for a power supply with magnetically coupled and magnetically uncoupled phases

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AUS J. CZOGALLA; J. LI; C. SULLIVAN: "Automotive Application of Multi-Phase Coupled Inductor DC-DC-Converter", IEEE, 2003
See also references of EP2514085A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638295C1 (ru) * 2016-08-04 2017-12-13 Надежда Владимировна Антипова Способ управления n-фазным импульсным преобразователем

Also Published As

Publication number Publication date
JP5456171B2 (ja) 2014-03-26
US9667135B2 (en) 2017-05-30
CN102656788A (zh) 2012-09-05
DE102009054957A1 (de) 2011-06-22
US20130051107A1 (en) 2013-02-28
EP2514085A1 (de) 2012-10-24
TWI521846B (zh) 2016-02-11
CN102656788B (zh) 2016-01-06
TW201126886A (en) 2011-08-01
JP2013514052A (ja) 2013-04-22

Similar Documents

Publication Publication Date Title
EP2514085A1 (de) Mehrphasen-gleichspannungswandler und verfahren zum steuern eines mehrphasen-gleichspannungswandlers
EP1114326B1 (de) Elektrizitätszähler und eingangsbaustein für einen elektrizitätszähler
DE10392527T5 (de) Verfahren zum Messen von Strömen in einem Motorregler und Motorregler, bei dem dieses Verfahren angewandt wird
DE102007043603A1 (de) Multiphasen-Gleichspannungswandler
DE202017105240U1 (de) Strommessung in einer elektromagnetischen Komponente unter Verwendung einer Hilfswicklungs-Stichleitung
EP1762852B1 (de) Vorrichtung und Verfahren zur Messung eines in einem elektrischen Leiter fliessenden Stromes
DE102009028482A1 (de) Detektion einer fehlenden Diode in einer synchronen Ausgangsstufe
WO1998036281A1 (de) Stromsensor nach dem kompensationsprinzip
DE102005041823B3 (de) Steuergerät zum Betrieb wenigstens eines Kraftstoffinjektors einer Brennkraftmaschine
WO2006058808A1 (de) Verfahren zur strommessung mit einem shunt und vorrichtung zur strommessung
DE102009022314A1 (de) Verfahren und Schaltungsanordnung zur Messung des Stroms durch eine induktive Last
WO2002014887A1 (de) Schaltungsanordnung zur überwachung des ladezustands eines akkumulators
DE10112820A1 (de) Verfahren zur Messung von Strömen in Multiphasenwandlern mit Strommesselement-Auslösung
EP3417244B1 (de) Positionssensor
EP2873147B1 (de) Gleichspannungswandler-schaltungsordnung
EP2196811A2 (de) Verfahren und Vorrichtung zur Messung von elektrischen Strömen
DE102021129790A1 (de) Elektronische Vorrichtung, Leistungsfaktorkorrekturfilter und eine Bordladevorrichtung
DE102005035316B4 (de) Messanordnung
WO2011032764A1 (de) Integrierter schaltkreis zur informationsübertragung
EP3063505A1 (de) Positionssensor für die erfassung einer lageposition eines aktuators
DE102008038989A1 (de) Elektrische Anlage
DE102009022135A1 (de) Schaltungsanordnung zur Messung von elektrischem Strom
EP2169797B1 (de) Verfahren und messvorrichtung zur messung eines ausgangsstroms einer getakteten halbbrueckenschaltung
DE102018216594A1 (de) Verbesserung einer elektromagnetischen Verträglichkeit
DE102019119323A1 (de) Leistungswandler und Elektromotorsystem

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057473.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10781513

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010781513

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012543574

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13514142

Country of ref document: US