WO2011079507A1 - 紫杉醇及多西紫杉醇的用途 - Google Patents

紫杉醇及多西紫杉醇的用途 Download PDF

Info

Publication number
WO2011079507A1
WO2011079507A1 PCT/CN2010/002008 CN2010002008W WO2011079507A1 WO 2011079507 A1 WO2011079507 A1 WO 2011079507A1 CN 2010002008 W CN2010002008 W CN 2010002008W WO 2011079507 A1 WO2011079507 A1 WO 2011079507A1
Authority
WO
WIPO (PCT)
Prior art keywords
paclitaxel
vaccine
docetaxel
adjuvant
antigen
Prior art date
Application number
PCT/CN2010/002008
Other languages
English (en)
French (fr)
Inventor
胡松华
Original Assignee
Hu Songhua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hu Songhua filed Critical Hu Songhua
Publication of WO2011079507A1 publication Critical patent/WO2011079507A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants

Definitions

  • the present invention relates to the use of paclitaxel and its docetaxel for the preparation of vaccines.
  • Vaccines are an important means of controlling infectious diseases in humans and animals.
  • An ideal vaccine for immunization not only produces sufficient immune response in the immunized individual, but also produces a suitable type of immune response for immunoprotection.
  • the effectiveness of the vaccine is usually ensured by increasing the amount of antigen or by adding an adjuvant to the vaccine.
  • Increasing the amount of antigen increases the cost of production of the vaccine and potentially increases the disadvantages of antigen-dependent side effects. Purification of the antigen can reduce the toxic side effects of the vaccine, but this in turn increases the cost of producing the vaccine.
  • Adding adjuvant to the vaccine can reduce the amount of antigen, reduce the cost of producing antigen, and reduce the cost of antigen-dependent side effects such as local redness and pain during injection.
  • the adjuvant used is sufficiently safe, the addition of an adjuvant to the vaccine will not only reduce the cost of the vaccine but also increase the safety of the vaccine while ensuring the effectiveness of the vaccine.
  • aluminum hydroxide is the only adjuvant. The aluminum adjuvant adsorbs the antigen in the vaccine to form a complex, and forms an antigen reservoir locally after the injection, and slowly releases the antigen to act as an adjuvant.
  • the aluminum adjuvant mainly promotes the humoral immune response and is suitable for vaccines against which antibodies are protective immunity, such as diphtheria, tetanus, hepatitis B, and measles.
  • protective immunity such as diphtheria, tetanus, hepatitis B, and measles.
  • aluminum adjuvants are widely used in human or veterinary vaccines, there are still many disadvantages, such as mild local reactions, granuloma formation, and even local aseptic abscesses; local tissue damage of a human muscle may be associated with aluminum.
  • the colloidal state of the aluminum gel is destroyed, and the colloidal state is not able to function as an adjuvant, so it cannot be cryopreserved; the aluminum gel adjuvant of different preparation batches has different colloidal states, and it is difficult to obtain the same adjuvant effect.
  • the existing aluminum gel adjuvant has the following drawbacks:
  • the existing aluminum gel adjuvant mainly promotes humoral immune response, but has a weak effect on cellular immune response;
  • the separation of this active ingredient begins. Since the active ingredients were extremely low in plants, it was not until 1971 that they collaborated with Duke University's chemistry professor Andre T. cPhai l to determine the active ingredient by X-ray analysis.
  • the chemical structure is a tetracyclic diterpene compound and is named paclitaxel (tax 0 l ).
  • the pure paclitaxel has a white crystalline powder with a relative molecular mass of 853. 9, a melting point of 213 to 216 ° C, an odorless, tasteless, chemical structural formula as shown in FIG. Due to its extremely low natural content, it did not attract people's attention at the time. In 1977, Dr.
  • paclitaxel has been reported to be effective in the treatment of ovarian cancer, breast cancer, head and neck cancer, esophageal cancer, seminoma, and Hejin's lymphoma. At present, paclitaxel preparation has been approved by the US FDA as a new anti-cancer drug in clinical application, and is widely used in cancer treatment in China.
  • paclitaxel has a lipopolysaccharide (LPS)-like effect that activates the natural immune system and up-regulates the expression of some cytokines and related genes.
  • LPS lipopolysaccharide
  • Docetaxel is synthesized on the basis of paclitaxel. It contains a heterocyclic ring structure with oxygen ring at the C4 and C5 positions, and contains a large ester side chain at the C13 position. The structural formula is shown in Figure 2.
  • the pure docetaxel is a white powder having a relative molecular mass of 807. 1 88 and a melting point of 232 ° C.
  • the technical problem to be solved by the present invention is to provide a new use of paclitaxel and docetaxel: as a vaccine adjuvant.
  • the present invention provides the use of paclitaxel as a vaccine adjuvant.
  • the invention also provides for the use of docetaxel as a vaccine adjuvant.
  • the above vaccine is a protein vaccine, a nucleic acid vaccine, a polypeptide vaccine or a whole virus vaccine.
  • paclitaxel or docetaxel is added during the manufacture of the vaccine; 0.1 to 10 mg of paclitaxel or its docetaxel is contained per ml of the vaccine.
  • the invention fully utilizes the principle that paclitaxel and docetaxel can activate the natural immune system, and the use of paclitaxel and docetaxel as vaccine adjuvants for vaccine preparation can greatly improve the intensity of vaccine-induced cellular and humoral immune responses, and reduce injection. Local irritation of the site, and the vaccine can be stored frozen to prolong the storage period of the vaccine.
  • Paclitaxel and its docetaxel are used in vaccine production with a simple method that does not require excessive changes to existing manufacturing processes.
  • paclitaxel and its docetaxel have been approved for use in human medicine, the development of novel vaccines with paclitaxel and its docetaxel as adjuvants avoids the cumbersome safety trials for adjuvants.
  • Figure 1 is the chemical structural formula of paclitaxel
  • Figure 2 is the chemical structural formula of docetaxel
  • Figure 3 is a comparison of the serum OVA-specific IgG and IgM antibody titers of mice in each group two weeks after the second week and two weeks after the second day; in Figure 3, A represents the IgG antibody titer and B represents the IgM antibody titer;
  • Figure 4 shows the serum OVA-specific IgG subclass levels (serum 1 : 100 dilution) of mice in each group two weeks after the second week and two weeks after the second immunization;
  • Figure 5 is a comparison of the proliferation of spleen cells of each group in the two weeks after the second immunization with specific antigen OVA and mitotic sources ConA and LPS.
  • Figure 6 is a graph showing the mRNA expression of cytokines IL-12, IFN- ⁇ , IL-4 and IL-10 after spleen cells of each group in the two weeks after the second immunization;
  • Figure 7 is a graph showing the expression of T-bet/GATA3 mRNA in spleen cells of each group after stimulation with specific antigen 0VA two weeks after the second immunization;
  • Figure 8 shows the adjuvant effect of paclitaxel (Taxol) and docetaxel on the model antigen 0VA.
  • Figure 9 shows the adjuvant effect of paclitaxel (Taxol) and docetaxel on the inactivation of foot-and-mouth disease virus by whole virus antigens.
  • Figure 10 is a comparison of serum H1N1 specific IgG antibody levels in mice of each group two weeks after the second week and two weeks after the second one;
  • Figure 11 is a comparison of IgG levels before and after the freeze-thaw test. detailed description ,
  • Example 1 Adjuvant effects of different doses of paclitaxel on injection of model antigen ovalbumin (0VA) in mice
  • OVA ovalbumin
  • Paclitaxel was first dissolved in absolute ethanol (40 mg/ml), and OVA was dissolved in physiological saline (0.25 mg/ml). Add Tween-80, absolute ethanol, OVA physiological saline solution, physiological saline, paclitaxel solution or aluminum hydroxide aluminum gel to a test tube.
  • the content of OVA, Taxel and aluminum gel contained in each 100 ⁇ l of the experimental vaccine is as follows. Table 1 shows.
  • mice Sixty mice were randomly divided into 6 groups, 10 in each group. Each mouse was injected with 0.1 ml of subcutaneous vaccine twice a time, 3 weeks apart. The adjuvant and antigen dose are shown in Table 1.
  • Blood was collected after 2 days of exemption and 2 weeks after exemption.
  • the blood sample was placed in a refrigerator at 4 °C overnight, 600 g, centrifuged, and the serum was aspirated and dispensed in a 0.2 ml plastic centrifuge tube and stored at -80 °C.
  • the IgM and IgG antibody titer detection steps are as follows:
  • a 96-well polyester plate was coated with 5 g/ml OVA (dissolved in carbonate buffer, pH 9.6) and placed at 4 ° C overnight.
  • HRP-labeled secondary antibody (goat anti-mouse IgG or IgM, 1:5000) was added to the wells for 100 ⁇ M, incubated for 1 hour, and washed three times with PBST.
  • the detection steps are as follows:
  • a 96-well polyester plate was coated with 5 g/ml OVA (dissolved in carbonate buffer, pH 9.6) and placed at 4 ° C overnight.
  • Biotin-labeled secondary antibody IgG1, IgG2a, IgG2b or IgG3 (1:1000) was added, incubated for 1 hour, and washed 3 times with PBST.
  • the endpoint of the positive titer was 2.1 times the mean value of the negative serum (saline group) with an OD value higher than the equivalent dilution.
  • the steps for lymphocyte proliferation testing are as follows:
  • the culture plate was cultured at 37 ° C, 5 % C0 2 . Con A and LPS were incubated for 48 hours; OVA plates were incubated for 4 days.
  • SI (stimulated cell OD value) I (non-stimulated cell OD value).
  • RNA extraction Centrifuge the above cell culture plates (500 X g, 5 min) and carefully remove the cell culture medium. Total RNA was extracted from 1 ml of RNA extraction reagent (RNAisoTMPlus, TaKaRa Co., Ltd) per well. 30 ⁇ l of de-RNase and DNase in water was added to the extracted total RNA. The extract was stored in liquid nitrogen.
  • RNA extraction reagent RNAisoTMPlus, TaKaRa Co., Ltd
  • cDNA synthesis The reverse transcription reagent was carried out in a 200 ⁇ M PCR tube (Axygen, USA) with a total reaction system of 15 ⁇ RNA + 4 ⁇ 5 X iScript reaction mix + 1 ⁇ iScript reverse transcriptase (Bio-Rad Laboratories , Inc. USA). Reverse transcription was performed on a MyCycler (Bio-Rad Laboratories, Inc. USA) apparatus, which was incubated at 25 ° C for 5 minutes, 42 ° C for 30 minutes, and 85 ° C for 5 minutes. Reverse transcription obtained cDNA was stored at -2 (TC.
  • Two-fold TagMan probe was used to detect the expression of the target gene, in which e-actin was used as an internal reference gene and the other was a target gene.
  • the PCR reaction system is 20 ⁇ l, of which 2 ⁇ 10 X PCR buffer and 0.4 ⁇ Lag enzyme (5 U/ ⁇ , TakaRa, Co, LTD.
  • PCR amplification efficiency amplification of the internal reference gene ⁇ -actin and the target genes IL_4, IL-10, IFN- ⁇ , IL-12, GATA-3 and ⁇ -bet amplification by ordinary PCR, PCR
  • the template is the reverse transcription cDNA described above, and the primer is a real-time double PCR primer; the PCR reaction system is 50 ⁇ : wherein 5 ⁇ 10 X PCR buffer and 0.4 lTag enzyme (5 U/ ⁇ , TakaRa, Co, LTD.
  • PCR amplification was performed on a MyCycler apparatus. The procedure was: pre-denaturation at 95 ° C for 3 minutes, denaturation at 95 ° C for 15 seconds, annealing at 60 ° C for 30 seconds, for a total of 35 cycles.
  • the PCR product was electrophoretically separated (3% agarose) target gene fragment, and the target DNA was purified by the Takara Agarose Gel DNA Purification Kit (DaLian, China) and sent to Shanghai Bioengineering Co., Ltd. for sequencing (Sangon Co, Ltd. Shanghai, China).
  • the purified internal reference gene ⁇ -actin and the fragment DNA of the target gene were subjected to multiple 10-fold dilutions as a template for real-time double PCR reaction, and each template was obtained from the standard internal reference gene ⁇ -actin and the fragment DNA of the target gene. .
  • the reaction system, equipment and procedures used in PCR are completely the same as in step (5).
  • the PCR was optimized, and 8 dilution gradients were selected from the standard internal reference gene ⁇ -actin and the target gene, so that the PCR Ct value was within 15 to 45 cycles. Each time the target gene is detected, two different dilutions of double PCR of the reference gene ⁇ -actin and the target gene are simultaneously performed. The amplification efficiency of the internal reference gene and the target gene under the conditions was obtained by the Ct value thereof.
  • the model antigen 0VA was supplemented with an adjuvant (paclitaxel or aluminum hydroxide gel), and the IgG titer produced by the animals after I and II was higher than that of the control without adjuvant.
  • the adjuvant effect of paclitaxel was dose-dependent.
  • the IgG response of the animals was higher than that of the other groups, and was 4.8 times and 14.9 times of the control group, respectively (P ⁇ 0. 05 ), as shown in Figure 3A.
  • the IgG subclasses IgG1, IgG2a, IgG2b and IgG3 produced by the animals were higher than those of the control group without adjuvant.
  • the change in IgG subclass was dependent on the dose of paclitaxel.
  • the response level of IgG1 was higher in the 200 ⁇ g dose group of paclitaxel than in the 50 ⁇ g dose group; the response level of IgG2a was higher than the 200 ⁇ g dose group in the 50 ⁇ g dose group of paclitaxel; When the dose of paclitaxel was 100 micrograms, the IgG subclass was higher than the other groups. Adjuvant significantly promoted the production of IgGl (P ⁇
  • the model antigen was immunized with 100 ⁇ g or 200 ⁇ g of paclitaxel in OVA, and the level of IgM produced by the animals was 4. 7 times (P ⁇ 0.05). There was no significant difference in IgM levels between the two animals (P > 0.05) (see Figure 3B).
  • the model antigen was added to the OVA (paclitaxel or aluminum hydroxide gel), and the lymphocyte stimulation index of each group was higher than that of the control group without adjuvant. Among them, the lymphocyte stimulation index of the 100 ⁇ g paclitaxel group was the highest (Fig. 5).
  • Pattern antigens OVA was immunized with adjuvants (paclitaxel or aluminum hydroxide gel), and spleen lymphocytes produced significant changes in cytokine mRNA expression. This change depends on the type of adjuvant and the dose of paclitaxel. Flavone promotes higher IL4 and IL10 mRNA expression and lower IFN Y and IL12 mRNA expression at high doses (200 ⁇ g); paclitaxel promotes lower IL4 and IL10 mRNA expression at low doses (50 ⁇ g) High IFN Y and IL12 mRNA expression. The 100 ⁇ g paclitaxel group produced the highest IL4, IL10, IFN Y and IL12 mRNA expression. Aluminum gel significantly promoted the expression of IL4 and IL10 mRNA, but did not promote IFN Y and IL12 mRNA (see Figure 6).
  • adjuvants paclitaxel or aluminum hydroxide gel
  • the expression of the transcription factors T-bet and GATA-3 mRNA depends on the type and dose of the adjuvant. High-dose paclitaxel (200 ⁇ g) promoted higher DATA-3 and lower T-bet mRNA expression than low-dose paclitaxel (50 ⁇ g); low-dose paclitaxel (50 ⁇ g) promoted higher than high-dose paclitaxel (200 ⁇ g) T-bet and lower GATA-3 mRNA expression.
  • Aluminum gel significantly promoted GATA-3 (P ⁇ 0.05) T-bet mRNA expression, but did not promote GATA-3 mRNA (P > 0.05) (see Figure 7).
  • Example 2 Adjuvant effects of paclitaxel and docetaxel on injection of model antigen ovalbumin (0VA) in mice
  • OVA ovalbumin
  • Paclitaxel or docetaxel was first dissolved in absolute ethanol (40 mg / ml), and OVA was dissolved in physiological saline (0.25 mg / ml). Tween-80, absolute ethanol, OVA physiological saline solution, physiological saline, paclitaxel solution or docetaxel was added to a test tube, and the contents of each 100 ⁇ l of the test vaccine were as shown in Table 2.
  • mice Thirty mice were randomly divided into 3 groups of 10 animals each. Each mouse was given a subcutaneous injection of 0.1 ml each time. Adjuvant and antigen doses are shown in Table 2.
  • Blood was collected 2 weeks after the exemption.
  • the blood sample was placed in a refrigerator at 4 °C overnight, 600 g, centrifuged, and the serum was aspirated and dispensed in a 0.2 ml plastic centrifuge tube and stored at -80 °C.
  • the IgG antibody titer detection steps are as follows:
  • a 96-well polyester plate was coated with 5 g/ml OVA (dissolved in carbonate buffer, pH 9.6) and placed at 4 ° C overnight.
  • HRP-labeled secondary antibody (goat anti-mouse IgG, 1:5000) 100 ⁇ l was added to the well, incubated for 1 hour, and washed three times with PBST.
  • the antigen is inactivated Foot-and-mouth Disease Virus (FMDV), which is provided by Inner Mongolia Jinyu Biological Products Co., Ltd. Taxol and Docetaxel were purchased from Shanghai Tauto Biotech Co., Ltd.
  • FMDV Foot-and-mouth Disease Virus
  • paclitaxel or docetaxel was dissolved in absolute ethanol (40 mg / ml); FMDV was diluted with normal saline 1:4 (volume ratio), and Tween-80, absolute ethanol, FMDV physiology was added to a test tube.
  • a saline solution, physiological saline, paclitaxel or docetaxel solution was used to make the contents of each 200 ⁇ l of the experimental vaccine as shown in Table 3.
  • mice Twenty-four mice were randomly divided into 3 groups of 8 animals each. Each mouse was intramuscularly injected with 0.2 ml of each injection and injected twice, at intervals of 3 weeks.
  • Blood sample collection 2 weeks after the second blood collection.
  • the blood sample was placed in a refrigerator at 4 °C overnight, 600 g, centrifuged, and the serum was aspirated and stored in a 0.2 ml plastic centrifuge tube and stored at -20 °C.
  • Tween -20) 1 50 diluted serum to be tested, incubated at 37 °C for 1 hour.
  • the antigen is an inactivated H1N1 influenza split virus, provided by the Zhejiang Institution Center for Disease Control. Docetaxel was purchased from Shanghai Tauto Biotech Co., Ltd.
  • docetaxel was dissolved in absolute ethanol (40 mg / ml), inactivated H1N1 influenza split virus dissolved in physiological saline (0.25 mg / ml) c Tween-80 was added to a test tube (5% by volume) ), absolute ethanol (5% by volume), H1N1 influenza antigen physiological saline solution, physiological saline, and docetaxel solution, as shown in Table 4 for each 100 ⁇ l of the experimental vaccine.
  • mice Sixty-four mice were randomly divided into 8 groups of 8 animals each. Each mouse was intramuscularly injected with 0.2 ml of each injection and injected twice, at intervals of 3 weeks.
  • Blood was collected 2 weeks after the first exemption and the second exemption.
  • the blood sample is placed at 4. C refrigerator overnight, 600g, centrifuge, draw serum, dispense in 0.2 ml plastic centrifuge tube, store at -20 °C.
  • the microplate reader measures 0D 5 . value.
  • OVA ovalbumin
  • Paclitaxel or docetaxel was first dissolved in absolute ethanol (40 mg / ml), and OVA was dissolved in physiological saline (0.25 mg / ml). Tween-80 (5%), absolute ethanol (5%), OVA physiological saline solution, physiological saline, paclitaxel or docetaxel solution or aluminum hydroxide aluminum gel were added to a test tube to make an experiment per 100 ⁇ l. The substances contained in the vaccine are shown in Table 5.
  • the experimental vaccine prepared in step 5 was repeatedly frozen and thawed 3 times at room temperature to -20 ° C, and was used.
  • mice Thirty-two mice were randomly divided into 4 groups of 8 animals each. Each mouse was given a subcutaneous injection of 0.1 ml each time, 2 times, at intervals of 3 weeks.
  • the adjuvant and antigen dose are shown in Table 5.
  • the blood sample was placed in a refrigerator at 4 °C overnight, 600 g, centrifuged, and the serum was aspirated and dispensed in a 0.2 ml plastic centrifuge tube, -80. C save.
  • the IgM and IgG antibody titer detection steps are as follows:
  • a 96-well polyester plate was coated with 5 g/ml OVA (dissolved in carbonate buffer, pH 9.6) and placed at 4 ° C overnight.
  • OVA dissolved in carbonate buffer, pH 9.6
  • PBST PBS containing 0.05% Tween-20
  • HRP-labeled secondary antibody (goat anti-mouse IgG or IgM, 1:5000) to the well 100 ⁇ l, incubate for 1 hour, and wash three times with PBST.
  • the experimental vaccine with aluminum gel as adjuvant was immunized to animals after three freeze-thaw cycles, and the IgG level was significantly lower than that of the unfrozen aluminum gel group (P ⁇ 0.05).
  • the experimental vaccine with paclitaxel or docetaxel as adjuvant was frozen three times. After immunization, the IgG levels were not significantly lower than those in the unfrozen paclitaxel or docetaxel group (P > 0.05) (see Figure 10).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

说 明 书 一 紫杉醇及多西紫杉醇的用途 技术领域
本发明涉及紫杉醇及其多西紫杉醇用于制备疫苗的佐剂用途。
背景技术
疫苗是控制人类和动物传染病的重要手段。 一个理想的疫苗用于免疫接种后, 不仅可 以在被免疫的个体中产生足够的免疫反应强度, 而且可以产生适宜的免疫反应类型, 发挥 免疫保护作用。 在疫苗生产阶段, 通常采用增加抗原用量或在疫苗中加入佐剂的方法来保 障疫苗的有效性。 增加抗原的用量使疫苗的生产成本提高, 以及潜在着增加抗原依赖性毒 副作用的缺点。 纯化抗原可以减少疫苗的毒副作用, 但这又使生产疫苗的成本增加。 在疫 苗中加入佐剂可以在保障疫苗有效性的同时, 减少抗原的用量, 减少生产抗原所需的成本, 并可在免疫注射时降低抗原依赖性毒副作用的产生, 如注射局部红肿、 疼痛, 头晕等。 如 果所用的佐剂足够安全, 则疫苗中加了佐剂后, 在保障疫苗有效性的同时, 既可降低疫苗 的生产成本, 又可提高疫苗的安全性。 具有佐剂作用的物质虽然很多, 但迄今被美国食品 和药物管理局 (FDA)准许的人用疫苗中, 氢氧化铝是唯一的一种佐剂。 铝佐剂在疫苗中吸附 抗原而形成复合物, 注射后在局部形成抗原贮存库, 缓慢释放出抗原发挥佐剂作用。 铝佐 剂主要促进体液免疫应答, 适用于以抗体为保护性免疫的疾病疫苗, 如白喉、 破伤风、 乙 肝、 麻疹等。 铝佐剂虽然在人用或兽用疫苗上广泛应用, 仍存在许多缺点, 如轻度局部反 应, 形成肉芽肿, 甚至发生局部无菌性脓肿; 人的一种肌肉的局部组织损伤可能和铝佐剂 有关; 此外, 铝胶冷冻后胶体状态被破坏, 不能发挥佐剂作用, 因此不能冷冻保存; 不同 制备批次的铝胶佐剂, 胶体状态不同, 难以获得相同佐剂效果。
综上所述, 现有的铝胶佐剂存在着以下缺陷:
1 ) 现有的铝胶佐剂主要促进体液免疫反应, 而对细胞免疫反应的效果弱;
2) 现有的铝胶佐剂引起的注射部位局部刺激反应大;
3 ) 现有的铝胶佐剂疫苗不能冰冻保存, 贮存期短。
1963年美国化学家瓦尼 (M. C. Wani ) 和沃尔 (Monre E. Wall ) 首次从一种生长在美 国西部大森林中称谓太平洋杉 (Pacific Yew) 树皮和木材中获得紫杉醇的粗提物。 在筛选 实验中,. Wani 和 Wall 发现紫杉醇粗提物对离体培养的鼠肿瘤细胞有很高的抑制作用, 并
1
确 认 本 开始分离这种活性成份。 由于该活性成份在植物中含量极低, 直到 1971年, 他们才同杜克 (Duke) 大学的化学教授姆克法尔 (Andre T. cPhai l ) 合作, 通过 X-射线分析确定了该 活性成份的化学结构是一种四环二萜化合物, 并把它命名为紫杉醇 (tax0l )。 纯品紫杉醇 呈白色结晶性粉末状,相对分子质量为 853. 9, 熔点为 213〜216°C, 无臭, 无味, 化学结构 式如图 1所示。 由于其天然含量极低, 在当时未引起人们的注意。 1977年, Horwitz博士 发现其抗癌机理是能够与癌细胞的微管蛋白结合, 促进微管蛋白聚合装配成微管二聚体, 从而抑制微管的正常生理解聚, 使细胞有丝分裂停止在 G2期及 M期, 阻止了癌细胞的快速 繁殖。 紫杉醇抗癌机理的发现推动了它在临床方面的研究。 已有报道, 紫杉醇可有效治疗 卵巢癌、 乳腺癌、 头颈癌、 食管癌、 精原细胞瘤和何金氏淋巴瘤等。 目前, 紫杉醇制剂己 被美国 FDA批准作为抗癌新药在临床应用, 在我国临床上也广泛用于癌症治疗。最近的研究 发现, 紫杉醇有具有脂多糖(LPS)样作用, 能够激活天然免疫系统, 上调一些细胞因子和相关 基因的表达。 多西紫杉醇 (docetaxel ) 是在紫杉醇的基础上人工合成的, 在 C4和 C5位置 上含有一个带有氧四环的紫杉垸环结构, 并在 C13 位置上含有一个庞大的酯侧链, 化学结 构式如图 2所示。 纯品多西紫杉醇为白色粉末,相对分子质量为 807.188, 熔点为 232°C。
虽然发现紫杉醇和多西紫杉醇的抗癌作用迄今已有 40多年, 但将上述 2者作为疫苗佐 剂的使用尚未见报道。
发明内容
本发明要解决的技术问题是提供一种紫杉醇以及多西紫杉醇的新用途: 能作为疫苗佐 剂。
为了解决上述技术问题, 本发明提供紫杉醇作为疫苗佐剂的应用。
本发明还同时提供了多西紫杉醇作为疫苗佐剂的应用。
上述疫苗为蛋白质疫苗、 核酸疫苗、 多肽疫苗或全病毒疫苗。
本发明实际应用中,是在制造疫苗的过程中加入紫杉醇或多西紫杉醇;使每毫升疫苗中 含紫杉醇或其多西紫杉醇 0.1〜10毫克。
本发明充分运用了紫杉醇和多西紫杉醇能够激活天然免疫系统的原理, 以紫杉醇和多西 紫杉醇作为疫苗佐剂应用于疫苗的制备, 可以大幅度提高疫苗诱导的细胞和体液免疫反应 强度, 减少注射部位的局部刺激反应, 且可以冰冻保存疫苗, 延长疫苗贮存期。 紫杉醇及 其多西紫杉醇用于疫苗生产, 方法简便, 无需过多改变现有生产工艺。 此外, 由于紫杉醇 及其多西紫杉醇已经被批准用于人医临床, 用紫杉醇及其多西紫杉醇作为佐剂开发新型疫 苗避免了针对佐剂进行的繁杂的安全性试验。 附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图 1是紫杉醇的化学结构式;
图 2是多西紫杉醇的化学结构式;
图 3是一免后两周和二免后两周各组小鼠血清 OVA特异性 IgG和 IgM抗体效价对比图; 图 3中 A代表 IgG抗体效价, B代表 IgM抗体效价;
图 4是一免后两周和二免后两周各组小鼠血清 OVA特异性 IgG亚类水平 (血清 1 : 100 稀释);
' 图 5是二免后两周各组小鼠脾细胞在特异性抗原 OVA和有丝分裂源 ConA以及 LPS刺 激后的增殖情况对比图;
图 6是二免后两周各组小鼠脾细胞在特异性抗原 0VA剌激后细胞因子 IL-12, IFN- γ , IL-4和 IL- 10的 mRNA表达情况对比图;
图 7是二免后两周各组小鼠脾细胞在特异性抗原 0VA刺激后 T-bet/GATA3 mRNA表达情 况对比图;
图 8是紫杉醇 (Taxol ) 和多西紫杉醇(Docetaxel)对模式抗原 0VA的佐剂作用。
图 9 是紫杉醇 (Taxol ) 和多西紫杉醇 (Docetaxel)对全病毒抗原灭活口蹄疫病毒的佐 剂作用。
上述图 3〜9中, 具有 a、 b不同字母的组表示有统计学差异 (P < 0. 05);
图 10是一免后两周和二免后两周各组小鼠血清 H1N1特异性 IgG抗体水平对比图; 图 11是冻融实验前后的 IgG水平的对比图。 具体实施方式 ,
为验证本发明的紫杉醇及其多西紫杉醇疫苗佐剂作用, 用卵清白蛋白 (0VA) 作为模式 抗原进行动物试验。
实例 1 : 不同剂量的紫杉醇对小鼠注射模式抗原卵清白蛋白 (0VA) 的佐剂作用
一、 材料和方法
1. 实验动物
雌性 ICR小鼠 60只, 购自上海实验动物中心。
2. 抗原
模式抗原卵清白蛋白 (OVA)购自 Sigma公司。 OVA通过内毒素去除柱 (Pierce公司) 去除两次, 除去内毒素, 然后用 BCA试剂盒法定量 (Pierce公司)。 3. 紫杉醇 (Taxol)
购于上海和氏璧生物技术有限公司 (Shanghai Tauto Biotech Co., Ltd.)。
4. 氢氧化铝铝胶
购于浙江万马有限公司。
5. 试验疫苗制备
先将紫杉醇溶解在无水乙醇中 (40mg/ml), OVA溶解在生理盐水中 (0.25mg/ml)。 向一试管内加入吐温 -80、 无水乙醇、 OVA生理盐水溶液、 生理盐水、 紫杉醇溶液或者氢氧 化铝铝胶, 每 100微升的实验疫苗中所含 OVA、 Taxel和铝胶的含量如表 1所示。
各组实验疫苗所含成分 ( /ΙΟΟμΙ)
Figure imgf000005_0001
6. 免疫方法
60只小鼠随机分成 6组, 每组 10只。 每只小鼠每次皮下注射疫苗 0.1ml, 注射 2次, 间隔 3周。 佐剂及抗原剂量见表 1。
7. 血样采集
一免后和二免后 2周分别采血。 血样静置于 4 °C冰箱过夜, 600g, 离心, 吸取血清, 分装于 0.2 ml塑料离心管中, -80°C保存。
8. OVA特异性 IgM和 IgG的检测
IgM和 IgG抗体效价检测步骤如下:
(1) 用 5 g/ml OVA (溶于碳酸盐缓冲液, pH 9.6) 包被 96孔聚酯板, 置于 4'C过夜。
(2) 用 PBST (含 0.05%吐温 -20的 PBS) 洗 3次。
(3) 用含 5 %小牛血清的 PBS封闭 96孔板 1小时, PBST清洗 3次。
(4) 向孔内加入 100 μΐ血清 (一免后的血清 1: 100稀释; 二免后血清 1: 1000稀释), 然后倍比稀释。
(5) 将含上述血清的 96孔板孵育 1小时, 再次用 PBST洗三次。 (6) 向孔内加入 HRP标记的二抗(山羊抗鼠 IgG 或 IgM, 1:5000) 100 μΐ, 孵育 1小时, 用 PBST洗三次。
(7) 加入 ΙΟΟμΙΤΜΒ 底物 (Exalplia Biologicals, Inc) 显色 10-20分钟。
(8) 最后用 50μ1 的 2MH2S04终止显色反应, 用酶标仪上在 450 nm处读取 OD值。
(9) 阳性滴度的终点为 OD值高于同等稀释度的阴性血清(生理盐水组)平均值的 2.1倍。 . OVA特异性 IgG亚类的检测
检测步骤如下:
(1) 用 5 g/mlOVA (溶于碳酸盐缓冲液, pH9.6) 包被 96孔聚酯板, 置于 4°C过夜。
(2) 用 PBST (含 0.05%吐温 -20的 PBS) 洗 3次。
(3) 用含 5 %小牛血清的 PBS封闭 96孔板 1小时, PBST.清洗 3次。
(4) 向孔内加入 100 μΐ血清 (一免后的血清 1: 100稀释; 二免后血清 1: 1000稀释)。
(5) 将含上述血清的 96孔板孵育 1小时, 再次用 PBST洗三次。
(6) 加入生物素(biotin)标记的二抗 IgGl,IgG2a, IgG2b或 IgG3 (1:1000), 孵育 1小时, 用 PBST清洗 3次。
(7) 加入抗生物素标记的辣根过氧化酶 (1: 5000), 孵育 30分钟, 用 PBST洗三次。
(8) 加入 100 μΐ ΤΜΒ 底物 (Exalpha Biologicals, Inc) 显色 10-20分钟。
(9) 最后用 50 μΐ 的 2Μ H2S04终止显色反应, 用酶标仪上在 450inm处读取 OD值。
(10) 阳性滴度的终点为 OD值高于同等稀释度的阴性血清(生理盐水组)平均值的 2.1倍。
10. 淋巴细胞增值试验
淋巴细胞增值试验步骤如下:
(1) 二免后两周从小鼠脾脏分离出脾细胞, 细胞悬浮在 RPMI 1640培养液 (含 10% 小牛 血清(HyClone), 100 Ul/ml青霉素和 100 μδ/ηι1链霉素)。若有红细胞混杂,用 0.01 M Tris-HCl
(含 0.83%NH4Cl,pH=7.2) 裂解, 用完全 Hank's 液清洗细胞, 计数, 调节细胞浓度至 5X 106个细胞 /ml。
(2) 向 96孔板上每孔加入 5 X 106个细胞。
(3) 向细胞悬液中加入 Con A, LPS或者 OVA溶液,使其最终浓度分别为 5.ug/ml, 8 g/ml 或 100 g/ml。
(4) 培养板置 37'C, 5 % C02培养。 Con A和 LPS培养孵育 48小时; OVA培养板孵育 4 天。
(5) 向细胞培养液内加入 50μ1ΜΤΤ溶液 (2mg/ml), 孵育 2〜4小时。 (6) 离心培养板 ( 1400 g, 5 min), 小心倒去细胞培养液。
(7) 每孔加入 150 ^ DMSO (含 4%的 1M HC1) 溶解结晶染料。
( 8) 用酶标仪上在 450 nm处读取 OD值。 刺激指数 (SI) 的计算公式如下: SI = (刺激 的细胞 OD值) I (非刺激细胞 OD值)。
11.细胞因子与 T-bet/GATA-3转录因子检测
( 1 ) 细胞制备: 二免后两周从小鼠脾脏分离出脾细胞, 细胞悬浮在 RPMI 1640培养液 (含 10% 小牛血清(HyClone), 100 UI/ml青霉素和 100 g/ml链霉素)。 若有红细胞混杂, 用 0.01M Tris-HCl (含 0.83%NH4C1, pH=7.2) 裂解, 用完全 Hank's 液清洗细胞, 计数, 调 节细胞浓度至 5 X 106个细胞 /ml。
(2) 抗原刺激: 在细胞悬液加入 OVA溶液, 在 5% C02、 37°C条件下, 培养 15小时。
(3) 总 RNA提取: 将上述细胞培养板离心 (500 X g, 5 min), 小心的除去细胞培养液。 向每孔加入 1 ml RNA提取试剂 (RNAiso™Plus, TaKaRa Co. , Ltd) 提取细胞总 RNA。 在提取 的总 RNA中加入 30 μ 1去 RNase和 DNase的水溶解。 保存提取物于液氮中。
(4) cDNA合成: 反转录试剂在 200 μΐ的 PCR管 (Axygen, USA) 中进行, 反应总体系 为 15 μΐ RNA + 4 μΐ 5 X iScript reaction mix + 1 μΐ iScript reverse transcriptase (Bio-Rad Laboratories, Inc. USA)。 反转录在 MyCycler (Bio - Rad Laboratories, Inc. USA) 设备上进行, 程序为 25°C保温 5分钟, 42°C保温 30分钟, 85°C保温 5分钟。 .反转录 获得 cDNA保存在 -2(TC。
(5 ) 实时双重 PCR法检测目的基因的表达: 采用两重 TagMan探针来检测目的基因的表 达,其中 e - actin作为内参基因,另外的为一条目的基因。内参基因 e -actin探针(Probe) 的 5' 端标记荧光信号 HEX和 3' 端标记荧光淬灭集团 BHQ-1 ; 所有待定量的目基因探针的 5 ' 端标记荧光信号 FAM和 3 ' 端标记荧光淬灭集团 BHQ- 1。PCR反应体系为 20 μ1, 其中 2 μΐ 10 X PCR buffer 与 0. 4 lTag 酶 (5 U/μΙ, TakaRa, Co, LTD. DaLian, China), 2 μΐ dNTPmix (2. 5 mM)、 β - actin上下游引物各 2 μΐ (5 μΜ)、目的基因上下游引物各 2 μΐ ( 5 μΜ)、 β - actin的探针 1 μΐ (5 μΜ)、 目的基因的探针 1 μΐ ( 5 μΜ)、 cDNA模板 2 μ1、 去离子水 3. 6 μ1。 在 ΑΒΙ7500 (PE Applied Biosystems, Warrington, U. K. )设备上检测, PCR程序 为 2步法: 95°C预变性 3分钟, 95°C 变性 15秒, 6CTC 退火与延伸 30秒, 共 45个循环。
(6) PCR扩增效率的计算:通过普通 PCR分别扩增内参基因 β― actin和目的基因 IL_4、 IL-10、 IFN- γ、 IL- 12、 GATA- 3和 Τ- bet扩增, PCR使用的模板为上述反转录的 cDNA, 引 物就是实时双重 PCR的引物; PCR反应体系为 50 μΐ : 其中 5 μΐ 10 X PCR buffer与 0. 4 lTag酶 (5 U/μΙ, TakaRa, Co, LTD. DaLian, China), 4 μΐ dNTPmix (2. 5 mM)、 β - actin 上下游引物各 4 μΐ (5 μΜ)或目的基因上下游引物各 4 μΐ ( 5 μΜ) 、 cDNA模板 2 μΐ、 去离 子水 30. 6 μ1。 PCR扩增在 MyCycler 备上进行, 程序为: 95°C预变性 3分钟, 95°C变性 15秒, 60°C退火与延伸 30秒, 共 35个循环。 PCR产物经过电泳分离 (3%琼脂糖) 目的基 因片段, 通过胶回收试剂盒(TakaRa Agarose Gel DNA Purification Kit, DaLian, China) 纯化出目的 DNA并送上海生物工程有限公司测序 (Sangon Co, Ltd. Shanghai, China)。 将 上述纯化出来的内参基因 β -actin和目的基因的片段 DNA进行多次的 10倍稀释作为实时 双重 PCR反应的模板,每次模板从标准内参基因 β -actin和目的基因的片段 DNA各取 lul。 PCR采用的反应体系、 设备及其程序完全与步骤 (5 ) —样。 优化 PCR,从标准的内参基因 β -actin和目的基因中选出 8个稀释梯度, 使得其 PCR的 Ct值在 15至 45个循环内。每次 目的基因的检测都要同时做该内参基因 β - actin和目的基因的 8个不同稀释度双重 PCR。 通过其 Ct值获得该条件下内参基因和目的基因的扩增效率。
( 7 ) 引物设计与目的基因的相对表达计算方法: 所有检测的目的基因与内参基因 ^ -actin 的引物与探针都参考软件 Primer Express 3. 0 (PE Appl ied Biosystems, Warrington, U. K. ) 设计, 并且所有目的基因的引物都跨内含子设计, 在该双重 PCR 反应 条件下不能从脾细胞基因组上扩出目的片段。 双重 PCR所获得的每组样本的内参基因和检 测的目的基因 Ct值输入软件 REST 2005 (Eppendorf 公司获得), 同时输入用标准模板做的 双重 PCR的内参基因和检测的目的基因的实际扩增效率。 其中设置 actin为内参基因; 生理盐水组为校正组, 最后获得每组样本中检测的目的基因相对于生理盐水组的表达倍数 值。
二、 结果
1. 0VA特异性 IgG及其亚类
模式抗原 0VA中加入佐剂 (紫杉醇或氢氧化铝胶) 后进行免疫, 动物于一免和二免后 所产生的 IgG效价均高于不加佐剂的对照组。 紫杉醇的佐剂作用呈量效关系。 紫杉醇的剂 量在 100微克时, 动物于一免和二免后产生的 IgG应答均高于其它各组产生的 IgG效价, 并分别为对照组的 4. 8倍和 14. 9倍 (P < 0. 05 ), 如图 3A所示。
模式抗原 0VA中加入佐剂 (紫杉醇或氢氧化铝胶) 后进行免疫, 动物于一免和二免后 所产生的 IgG 亚类 IgGl, IgG2a, IgG2b and IgG3均高于不加佐剂的对照组。 在含紫杉醇 的三组中, IgG 亚类的变化依赖紫杉醇的剂量。 IgGl的应答水平在紫杉醇 200微克剂量组 高于 50微克剂量组; IgG2a的应答水平在紫杉醇为 50微克剂量组高于 200微克的剂量组; 紫杉醇的剂量为 100微克时, IgG各亚类高于其它各组。 佐剂显著促进了 IgGl的产生 (P <
0. 05), 但对其它 IgG亚类无显著促进作用(P > 0. 05) (见图 4)。
2. OVA特异性 IgM
模式抗原 OVA中加入 100微克或 200微克紫杉醇后免疫动物, 一免后动物产生的 IgM 水平是不加佐剂的对照组的 4. 7倍 (P < 0. 05)。 二免后动物产生的 IgM水平无显著性差异 (P> 0. 05) (见图 3B)。
3. 淋巴细胞增殖试验
模式抗原 OVA中加入佐剂 (紫杉醇或氢氧化铝胶) 后免疫动物, 加佐剂各组的淋巴细 胞刺激指数均高于不加佐剂的对照组。 其中以 100微克紫杉醇组的淋巴细胞刺激指数为最 高 (见图 5 )。
4. 细胞因子 mRNA的表达
模式抗原 OVA中加入佐剂 (紫杉醇或氢氧化铝胶) 后免疫动物, 脾淋巴细胞对细胞因子 mRNA的表达产生了显著的变化。 这种变化取决于佐剂的种类以及紫杉醇的剂量。 杉醇在 高剂量 (200微克) 时促进较高的 IL4和 IL10 mRNA表达以及较低的 IFN Y 和 IL12 mRNA表达; 紫杉醇在低剂量(50微克)时促进较低的 IL4和 ILlO mRNA表达以及较高的 IFN Y和 IL12 mRNA 表达。 100微克紫杉醇组产生最高的 IL4, IL10, IFN Y和 IL12 mRNA表达。 铝胶显著促进 IL4 和 IL10 mRNA的表达, 但对 IFN Y和 IL12 mRNA无促进作用 (见图 6)。
5. 转录因子 T-bet和 GATA- 3 mRNA表达
转录因子 T-bet和 GATA- 3 mRNA 的表达依赖于佐剂的种类和剂量。 高剂量紫杉醇 (200 微克) 比低剂量紫杉醇 (50微克) 促进更高的 DATA- 3 和更低的 T-bet mRNA表达; 低剂量紫 杉醇(50微克)比高剂量紫杉醇(200微克)促进更高的 T-bet和更低的 GATA- 3mRNA表达。 铝 胶显著促进 GATA-3 (P < 0. 05) T- bet mRNA表达, 但对 GATA-3 mRNA无促进作用 (P > 0. 05) (见图 7 )。 实例 2 紫杉醇和多西紫杉醇对小鼠注射模式抗原卵清白蛋白 (0VA) 的佐剂作用
一、 材料和方法
1. 实验动物
雌性 ICR小鼠 30只, 购自上海实验动物中心。
2. 抗原
模式抗原卵清白蛋白 (OVA) 购自 Sigma公司。 OVA通过内毒素去除柱 (Pierce公司) 去 除两次, 除去内毒素, 然后用 BCA试剂盒法定量 (Pierce公司)。
3. 紫杉醇 (Taxol) 和多西紫杉醇 (Docetaxel)
购于上海和氏璧生物技术有限公司 ( Shanghai Tauto Biotech Co., Ltd. )
4. 试验疫苗制备
先将紫杉醇或多西紫杉醇溶解在无水乙醇中 (40 mg / ml), OVA溶解在生理盐水中 (0.25 mg/ml)。 向一试管内加入吐温 -80、 无水乙醇、 OVA生理盐水溶液、 生理盐水、 紫杉醇溶液 或多西紫杉醇, 使每 100微升的实验疫苗中所含物质如表 2所示。
表 2 、 各组实验疫苗所含成分 ( /ΙΟΟμΙ)
Figure imgf000010_0001
5. 免疫方法
30只小鼠随机分成 3组, 每组 10只。 每只小鼠每次皮下注射疫苗 0.1ml—次。 佐剂及抗原 剂量见表 2。
6. 血样采集
一免后 2周采血。 血样静置于 4 °C冰箱过夜, 600g, 离心, 吸取血清, 分装于 0.2 ml塑料 离心管中, -80°C保存。
7. OVA特异性 IgG的检测
IgG抗体效价检测步骤如下:
(1) 用 5 g/mlOVA (溶于碳酸盐缓冲液, pH9.6) 包被 96孔聚酯板, 置于 4'C过夜。
(2) 用 PBST (含 0.05%吐温 -20的 PBS) 洗 3次。
(3) 用含 5 %小牛血清的 PBS封闭 96孔板 1小时, PBST清洗 3次。
(4) 向孔内加入 100 μΐ血清 (1: 50稀释)。
(5) 将含上述血清的 96孔板孵育 1小时, 再次用 PBST洗三次。
(6) 向孔内加入 HRP标记的二抗(山羊抗鼠 IgG, 1:5000) 100 μ1, 孵育 1小时,用 PBST 洗三次。
(7) 加入 ΙΟΟ μΙΤΜΒ 底物 (Exalpha Biologicals, Inc) 显色 10-20分钟。
(8) 最后用 50μ1 的 2M¾S04终止显色反应, 用酶标仪上在 450 nm处读取 OD值。 二、 结果 紫杉醇组和多西紫杉醇组的 IgG水平均显著高于对照组, 说明紫杉醇和多西紫杉醇有佐 剂作用 (见图 8)。 实例 3 紫杉醇和多西紫杉醇对小鼠注射全病毒抗原灭活口蹄疫病毒 (FNIDV) 的佐剂作用 一 材料和方法
1. 实验动物
雌性 ICR小鼠 24只, 购自上海实验动物中心。
2. 抗原和佐剂
抗原为灭活 Ό型口蹄疫病毒 (FMDV),由内蒙古金宇生物制品有限公司提供。紫杉醇 (Taxol) 和多西紫杉醇 (Docetaxel) 购于上海和氏璧生物技术有限公司 (Shanghai Tauto Biotech Co., Ltd. )。
3. 实验疫苗的制备:
先将紫杉醇或多西紫杉醇溶解在无水乙醇中 (40 mg / ml); FMDV用生理盐水 1: :4 (体积 比) 稀释, 向一试管内加入吐温 -80、 无水乙醇、 FMDV生理盐水溶液、 生理盐水、 紫杉醇 或多西紫杉醇溶液, 使每 200微升的实验疫苗中所含物质如表 3所示。
表 3 各组实验疫苗所含成分( /200 μΐ)
Figure imgf000011_0001
4. 免疫方法
24只小鼠随机分成 3组, 每组 8只。 每只小鼠每次肌肉注射疫苗 0.2ml, 注射 2次, 间隔 3 周。
5. 血样采集: 二免后 2周采血。 血样静置于 4 °C冰箱过夜, 600g, 离心, 吸取血清, 分 装于 0.2 ml塑料离心管中, -20°C保存。
6. 特异性 IgG检测
( 1 )在 ELISA板上每孔加入 50μ1经碳酸盐缓冲液(ρΗ9.6)稀释的牛抗 0型口蹄疫病毒抗 体 (1 :1000) (内蒙古金宇生物制品有限公司), 封板, 4 °C过夜。
(2)用洗涤液洗涤 5次, 每次 300μ1, 拍干。 每孔加入 300μ1磷酸盐缓冲液(含 5%脱脂奶 +0.05%吐温 -20) 封闭, 37 °C 孵育 2小时。
(3 )用磷酸盐缓冲液洗涤 5次, 每次 300μ1, 拍干。 每孔加入 50μ1 经 1 :3稀释的 0型口蹄 疫病毒抗原, 振荡混匀, 4 °C 孵育 2小曰寸。
(4) 用磷酸盐缓冲液洗涤 5 次, 每次 300μ1, 拍干。 每孔加入 50μ1 经磷酸盐缓冲液 (含
0.05.吐温 -20) 1 : 50稀释的待检血清, 37 °C 孵育 1小时。
(5 ) 用磷酸盐缓冲液洗涤 5次, 每次 300μ1, 拍干。 每孔加入经 1 : 1000稀释的山羊抗小 鼠 IgG(h+l)抗体 (美国 Betheyl Laboratory公司)。 37 °C 孵育 1小时。
( 6 )用磷酸盐缓冲液洗涤 5次,每次 300μ1,拍干。每孔加入经 1: 10000兔抗山羊 IgG FC-HRP, 37 °C 孵育 1小时。 用洗涤液洗涤 5次, 每次 300μ1, 拍干。
(7) 每孔加入 ΙΟΟμΙ ΤΜΒ底物溶液。 室温孵育 15分钟, 每孔加入 50μ1 2 M ¾S04终止反 应, 并轻轻振荡混匀。 在 15分钟内, 用酶标仪测定在 450nm波长的 OD值。
二 结果.
紫杉醇或多西紫杉醇和口蹄疫病毒混合注射比口蹄疫病毒单独注射可以诱导出更高的抗 FMDV抗体 (见图 9 ) ( P〈0. 05 )。 实例 4 多西紫杉醇对小鼠注射灭活 H1 N1流感裂解病毒抗原的佐剂作用
一 材料和方法
1. 实验动物
雌性 ICR小鼠 64只, 购自上海实验动物中心。
2. 抗原和佐剂
抗原为灭活 H1N1 流感裂解病毒, 由浙江省疾病控制中心提供。 多西紫杉醇 (Docetaxel) 购于上海和氏璧生物技术有限公司 ( Shanghai Tauto Biotech Co., Ltd. )。
3. 实验疫苗的制备:
先将多西紫杉醇溶解在无水乙醇中(40 mg / ml), 灭活 H1N1流感裂解病毒溶解在生理盐水 中 (0.25 mg / ml) c 向一试管内加入吐温 -80 (5%体积比)、 无水乙醇 (5%体积比)、 H1N1流 感抗原生理盐水溶液、 生理盐水、 多西紫杉醇溶液, 使每 100微升的实验疫苗中所含物质 如表 4所示。
表 4 各组实验疫苗所含成分
Figure imgf000012_0001
】1 2 5 0
3 10 0
4 . 100 0
5 1 100
6 5 100
7 10 100
8 100 100
4. 免疫方法
64只小鼠随机分成 8组, 每组 8只。 每只小鼠每次肌肉注射疫苗 0.2ml, 注射 2次, 间隔 3 周。
5. 血样采集
首免和二免后 2周采血。 血样静置于 4。C冰箱过夜, 600g, 离心, 吸取血清, 分装于 0.2 ml 塑料离心管中, -20°C保存。
6. 间接 ELISA法检测抗流感病毒 IgG
(1) 在 96孔酶标板中每孔加入 100 μ 1包被液(含流感病毒 1 μ g/ml的 0. 05 mol/L 碳酸盐缓冲液), 4°C过夜;
(2) 用含 0. 05% (v/v) Tw,een-20的 PBS洗涤液(简称 PBST)洗涤 3次, 每孔 300" μ 1, 每 次 3 min。 每孔加入 300 μ 1含 3% (w/v)脱脂乳的 PBS封闭液, 37°C孵育 1 h;
(3) 洗板, 加入待检血清和阴性血清, 每孔 100 μ 1。 血清经 1 : 500稀释后加入, 37°C 孵育 30 min;
(4) 洗板, 加入 1 : 10000辣根过氧化物酶标记羊抗小鼠 IgG抗体, 100 μ 1/孔, 37°C 孵育 30 min;
(5) 洗板, 加入 TMB底物溶液显色, 100 μ ΐ/孔, 37°C孵育 15 min;
(6) 每孔加 50 μ 1 2Ν H2S04终止反应;
(7) 酶标仪测定 0D 5。值。
二 结果
多西紫杉醇和 H1N1流感裂解病毒抗原混合注射比流感病毒抗原单独注射可以诱导出更高的 抗流感病毒抗体 (见图 10 ) (P〈0. 05 )。 实例 5 冻融对紫杉醇、 多西紫杉醇和氢氧化铝铝胶佐剂作用的影响
一、 材料和方法 1. 实验动物
雌性 ICR小鼠 32只, 购自上海实验动物中心。
2. 抗原
模式抗原卵清白蛋白 (OVA) 购自 Sigma公司。 OVA通过内毒素去除柱 (Pierce公司) 去 除两次, 除去内毒素, 然后用 BCA试剂盒法定量 (Pierce公司)。
3. 紫杉醇 (Taxol) 和多西紫杉醇 (Docetaxel)
购于上海和氏璧生物技术有限公司 (Shanghai Tauto Biotech Co., Ltd.)
4. 氢氧化铝铝胶
购于浙江万马有限公司.
5. 试验疫苗制备
先将紫杉醇或多西紫杉醇溶解在无水乙醇中 (40 mg / ml), OVA溶解在生理盐水中 (0.25 mg/ml)。 向一试管内加入吐温 -80 (5%)、 无水乙醇 (5%)、 OVA生理盐水溶液、 生理盐水、 紫杉醇或多西紫杉醇溶液或者氢氧化铝铝胶, 使每 100微升的实验疫苗中所含物质如表 5 所示
表 5 各组实验疫苗所含成分 (μ§/100μ1)
Figure imgf000014_0001
6. 实验疫苗的冻融
步骤 5制备的实验疫苗在室温至- 20°C反复冻融 3次, 备用。
7. 免疫方法
32只小鼠随机分成 4组, 每组 8只。 每只小鼠每次皮下注射疫苗 0.1ml, 注射 2次, 间隔 3 周。 佐剂及抗原剂量见表 5。
8. 血样采集
二免后 2周采血。 血样静置于 4 °C冰箱过夜, 600g, 离心, 吸取血清, 分装于 0.2 ml塑料 离心管中, -80。C保存。
9. OVA特异性 IgG的检测
IgM和 IgG抗体效价检测步骤如下:
(1) 用 5 g/mlOVA (溶于碳酸盐缓冲液, pH9.6) 包被 96孔聚酯板, 置于 4°C过夜。 (2) 用 PBST (含 0.05%吐温 -20的 PBS) 洗 3次。
(3) 用含 5 %小牛血清的 PBS封闭 96孔板 1小时, PBST清洗 3次。
(4) 向孔内加入 100 μΐ血清 (1: 100稀释)。
(5) 将含上述血清的 96孔板孵育 1小时, 再次用 PBST洗三次。
(6) 向孔内加入 HRP标记的二抗(山羊抗鼠 IgG 或 IgM, 1:5000) 100 μ1, 孵育 1小时, 用 PBST洗三次。
(7) 加入 ΙΟΟμΙΤΜΒ 底物 (ExalphaBiologicals, Inc) 显色 10-20分钟。
(8) 最后用 50μ1 的 2MH2S04终止显色反应, 用酶标仪上在 450 nm处读取 OD值。
(9) 阳性滴度的终点为 OD值高于同等稀释度的阴性血清(生理盐水组)平均值的 2.1倍。 二、 结果
以铝胶为佐剂的实验疫苗经三次冻融后免疫动物, IgG水平比未冻融铝胶组显著下降 (P 〈 0.05); 而以紫杉醇或多西紫杉醇为佐剂的实验疫苗经三次冻融后免疫动物, IgG水平和 未经作用未冻融紫杉醇或多西紫杉醇组比较, 没有显著降低 (P > 0.05) (见图 10)。 最后, 还需要注意的是, 以上列举的仅是本发明的若千个具体实施例。 显然, 本发明 不限于以上实施例, 还可以有许多变形。 本领域的普通技术人员能从本发明公开的内容直 接导出或联想到的所有变形, 均应认为是本发明的保护范围。

Claims

权 利 要 求 书 、 紫杉醇作为疫苗佐剂的应用。
、 多西紫杉醇作为疫苗佐剂的应用。
PCT/CN2010/002008 2009-12-31 2010-12-10 紫杉醇及多西紫杉醇的用途 WO2011079507A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101556837A CN101766815B (zh) 2009-12-31 2009-12-31 紫杉醇及多西紫杉醇的用途
CN200910155683.7 2009-12-31

Publications (1)

Publication Number Publication Date
WO2011079507A1 true WO2011079507A1 (zh) 2011-07-07

Family

ID=42500016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/002008 WO2011079507A1 (zh) 2009-12-31 2010-12-10 紫杉醇及多西紫杉醇的用途

Country Status (2)

Country Link
CN (1) CN101766815B (zh)
WO (1) WO2011079507A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020037285A1 (en) * 2018-08-16 2020-02-20 Beyondspring Pharmaceuticals, Inc. Method and composition for stimulating immune response
US10912748B2 (en) 2016-02-08 2021-02-09 Beyondspring Pharmaceuticals, Inc. Compositions containing tucaresol or its analogs
US11045467B2 (en) 2015-03-06 2021-06-29 Beyondspring Pharmaceuticals, Inc. Method of treating cancer associated with a RAS mutation
US11229642B2 (en) 2016-06-06 2022-01-25 Beyondspring Pharmaceuticals, Inc. Composition and method for reducing neutropenia
US11254657B2 (en) 2015-07-13 2022-02-22 Beyondspring Pharmaceuticals, Inc. Plinabulin compositions
US11400086B2 (en) 2017-02-01 2022-08-02 Beyondspring Pharmaceuticals, Inc. Method of reducing chemotherapy-induced neutropenia
US11633393B2 (en) 2017-01-06 2023-04-25 Beyondspring Pharmaceuticals, Inc. Tubulin binding compounds and therapeutic use thereof
US11786523B2 (en) 2018-01-24 2023-10-17 Beyondspring Pharmaceuticals, Inc. Composition and method for reducing thrombocytopenia

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292263A (zh) * 1999-10-11 2001-04-25 中国科学院上海细胞生物学研究所 紫杉醇抗肿瘤药物的新用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051354A1 (en) * 2002-03-25 2006-03-09 Eric Simard Chemotherapeutic agents as anti-cancer vaccine adjuvants and therapeutic methods thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292263A (zh) * 1999-10-11 2001-04-25 中国科学院上海细胞生物学研究所 紫杉醇抗肿瘤药物的新用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI TIANQING.: "Update Of Combined Therapies with Docetaxel for Hormone- Independent Prostate Cancer.", NATIONAL JOURNAL OF ANDROLOGY., vol. 14, no. 3, March 2008 (2008-03-01), pages 264 - 267 *
MACHIELS J. H. ET AL.: "Doxorubicin, and Paclitaxel Enhance the Antitumor Immune Response of Granulocyte/Macrophage-Colony Stimulating Factor-secreting Whole-Cell Vaccines in HER-2/neu Tolerized Mice.", CANCER RESEARCH., vol. 61, no. 9, May 2001 (2001-05-01), pages 3689 - 3697 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11918574B2 (en) 2015-03-06 2024-03-05 Beyondspring Pharmaceuticals, Inc. Method of treating cancer associated with a RAS mutation
US11045467B2 (en) 2015-03-06 2021-06-29 Beyondspring Pharmaceuticals, Inc. Method of treating cancer associated with a RAS mutation
US11254657B2 (en) 2015-07-13 2022-02-22 Beyondspring Pharmaceuticals, Inc. Plinabulin compositions
US12024501B2 (en) 2015-07-13 2024-07-02 Beyondspring Pharmaceuticals, Inc. Plinabulin compositions
US10912748B2 (en) 2016-02-08 2021-02-09 Beyondspring Pharmaceuticals, Inc. Compositions containing tucaresol or its analogs
US11857522B2 (en) 2016-02-08 2024-01-02 Beyondspring Pharmaceuticals, Inc. Compositions containing tucaresol or its analogs
US11229642B2 (en) 2016-06-06 2022-01-25 Beyondspring Pharmaceuticals, Inc. Composition and method for reducing neutropenia
US11633393B2 (en) 2017-01-06 2023-04-25 Beyondspring Pharmaceuticals, Inc. Tubulin binding compounds and therapeutic use thereof
US11400086B2 (en) 2017-02-01 2022-08-02 Beyondspring Pharmaceuticals, Inc. Method of reducing chemotherapy-induced neutropenia
US11786523B2 (en) 2018-01-24 2023-10-17 Beyondspring Pharmaceuticals, Inc. Composition and method for reducing thrombocytopenia
WO2020037285A1 (en) * 2018-08-16 2020-02-20 Beyondspring Pharmaceuticals, Inc. Method and composition for stimulating immune response
JP2021534183A (ja) * 2018-08-16 2021-12-09 ビヨンドスプリング ファーマシューティカルズ,インコーポレイテッド 免疫応答を刺激するための方法及び組成物
US20210177952A1 (en) * 2018-08-16 2021-06-17 Beyondspring Pharmaceuticals, Inc. Method and composition for stimulating immune response
CN112638388A (zh) * 2018-08-16 2021-04-09 大连万春布林医药有限公司 刺激免疫反应的方法和组合物

Also Published As

Publication number Publication date
CN101766815B (zh) 2012-04-25
CN101766815A (zh) 2010-07-07

Similar Documents

Publication Publication Date Title
WO2011079507A1 (zh) 紫杉醇及多西紫杉醇的用途
Yuan et al. Paclitaxel acts as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice
US20210299239A1 (en) Novel th1-inducing adjuvant comprising combination of different nucleic acid adjuvants, and use of same
Challacombe et al. Salivary, gut, vaginal and nasal antibody responses after oral immunization with biodegradable microparticles
Zhang et al. Astragalus polysaccharides enhance the immune response to avian infectious bronchitis virus vaccination in chickens
Shukla et al. Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes)
Yang et al. Compound Chinese herbal medicinal ingredients can enhance immune response and efficacy of RHD vaccine in rabbit
KR102254955B1 (ko) 바이러스 면역치료 약물 복합체 및 이의 용도
Feng et al. Enhancement of the immune responses to foot-and-mouth disease vaccination in mice by oral administration of a novel polysaccharide from the roots of Radix Cyathulae officinalis Kuan (RC)
Chen et al. Adjuvant effect of docetaxel on the immune responses to influenza A H1N1 vaccine in mice
Zhang et al. Effect of compound mucosal immune adjuvant on mucosal and systemic immune responses in chicken orally vaccinated with attenuated Newcastle-disease vaccine
JP2023505304A (ja) B型肝炎ウイルスに関連する疾患の治療
Zou et al. Enhancement of humoral and cellular responses to HBsAg DNA vaccination by immunization with praziquantel through inhibition TGF-β/Smad2, 3 signaling
Kim et al. Cholera toxin breakdowns oral tolerance via activation of canonical NF-κB
Holguin et al. Characterization of the temporo-spatial effects of chronic bilateral intrahippocampal cannulae on interleukin-1β
EP3445779A1 (en) Methods and pharmaceutical composition for the treatment of inflammatory skin diseases associated with desmoglein-1 deficiency
Kumar et al. Allergenicity potential of red kidney bean (Phaseolus vulgaris L.) proteins in orally treated BALB/c mice and passively sensitized RBL-2H3 cells
Creticos Allergen immunotherapy: vaccine modification
US20230346826A1 (en) Compositions and methods for treating and/or preventing autoimmune disorders
WO2003025012A2 (fr) Complexe peptidique vaccinal therapeutique destine a la prevention et au traitement d&#39;affections chez les mammiferes
Zhanga et al. Adjuvant effects of Sijunzi decoction in chickens orally vaccinated with attenuated Newcastle-disease vaccine
JPWO2009001673A1 (ja) Atp含有免疫アジュバント
Li et al. Estrogen, Ginsenosides Rb1 and Rg1 Exhibit Adjuvant Activities via Estrogen Receptors.
Sahoo et al. A New HIV Vaccine Heads to Clinical Trials by Moderna's mRNA Technology
Keita et al. Effects of chronic stress on the immune response to oral human serum albumin-conjugated starch microparticles in rats

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840297

Country of ref document: EP

Kind code of ref document: A1