WO2011077899A1 - Insulating substrate and light emitting element - Google Patents

Insulating substrate and light emitting element Download PDF

Info

Publication number
WO2011077899A1
WO2011077899A1 PCT/JP2010/071126 JP2010071126W WO2011077899A1 WO 2011077899 A1 WO2011077899 A1 WO 2011077899A1 JP 2010071126 W JP2010071126 W JP 2010071126W WO 2011077899 A1 WO2011077899 A1 WO 2011077899A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
treatment
substrate
aluminum substrate
insulating substrate
Prior art date
Application number
PCT/JP2010/071126
Other languages
French (fr)
Japanese (ja)
Inventor
優介 畠中
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011077899A1 publication Critical patent/WO2011077899A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an insulating substrate used for a light emitting element, and more particularly to an insulating substrate used for a light emitting diode (hereinafter referred to as “LED”).
  • LED light emitting diode
  • a white LED light emitting element an LED light emitting element for illuminating a display device that performs color display using an RGB color filter is generally known, and among them, a multicolor mixed type LED light emitting element is used. It has been.
  • This multi-color mixed type LED light emitting element emits white light by simultaneously emitting LEDs of three colors of RGB, and performs color display by using the white light and a color filter of a display device.
  • this multi-color mixed type LED light emitting element emits light from each of RGB LEDs, so that each color purity is high and color rendering is excellent.
  • a large number of LEDs are used to obtain white light. There was a problem that required and the price was high.
  • FIG. 6 is a schematic diagram showing a configuration example of a phosphor mixed color white LED light emitting element disclosed in Patent Documents 1 and 2.
  • FIG. 6 in the white LED light emitting element 100, the blue LED 110 is molded with a transparent resin 160 mixed with YAG fluorescent particles 150, and the light excited by the YAG fluorescent particles 150 and the blue LED 110 White light is emitted by the afterglow.
  • the blue LED 110 is face-down bonded to a substrate 140 having external connection electrodes 120 and 130.
  • the thickness of the transparent resin mixed with the fluorescent particles is increased, or the fluorescent particle content of the transparent resin is increased.
  • Methods such as increasing are being studied.
  • the blue light transmission from the blue LED may be weak, and the white light emission output may decrease. It was.
  • an object of the present invention is to provide an insulating substrate and a light-emitting element having an improved white light-emitting output using the insulating substrate.
  • the present inventors have insulated an aluminum anodic oxide film having a content of elements other than aluminum and oxygen of 20 atomic% or less on an aluminum substrate having a predetermined surface shape.
  • the present invention provides the following (1) to (3).
  • An insulating substrate having an aluminum substrate and an insulating layer provided on the surface of the aluminum substrate,
  • the insulating layer is an anodized film of aluminum;
  • the content of elements other than aluminum and oxygen is 20 atomic% or less,
  • An insulating substrate wherein the surface of the aluminum substrate has a large wave structure with an average wavelength of 5 to 100 ⁇ m and / or a medium wave structure with an average aperture diameter of 0.7 to 5 ⁇ m.
  • An insulating substrate manufacturing method for manufacturing the insulating substrate according to (1) above A step of anodizing a part of the aluminum substrate to form an anodized aluminum film on the aluminum substrate; A method for producing an insulating substrate, wherein the current density in the anodizing treatment is 0.001 to 20 A / dm 2 .
  • FIG. 1 is a graph showing an example of an alternating waveform current waveform diagram used for electrochemical roughening treatment in the production of an insulating substrate of the present invention.
  • FIG. 2 is a schematic view showing an example of a radial cell in an electrochemical surface roughening process using alternating current in the production of the insulating substrate of the present invention.
  • FIG. 3 is a schematic view of an anodizing apparatus used for anodizing in the production of the insulating substrate of the present invention.
  • FIG. 4 is a schematic view showing the concept of the brush graining process used for the mechanical surface roughening process in the production of the insulating substrate of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a configuration example of the white LED light emitting element of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a configuration example of a conventional phosphor-mixed white LED light emitting element.
  • the insulating substrate of the present invention is an insulating substrate having an aluminum substrate and an insulating layer provided on the surface of the aluminum substrate, wherein the insulating layer is an anodized film of aluminum, and the elements constituting the insulating layer are Among them, the content of elements other than aluminum and oxygen is 20 atomic% or less, and the surface of the aluminum substrate has a large wave structure with an average wavelength of 5 to 100 ⁇ m and / or a medium wave structure with an average aperture diameter of 0.7 to 5 ⁇ m.
  • An insulating substrate having a shape.
  • the aluminum substrate and insulating layer (aluminum anodic oxide film) constituting the insulating substrate of the present invention will be described.
  • ⁇ Aluminum substrate> As the aluminum substrate used for the insulating substrate of the present invention, a known aluminum substrate can be used. In addition to a pure aluminum substrate, an alloy plate containing aluminum as a main component and a trace amount of foreign elements; low-purity aluminum (for example, recycled) A substrate in which high-purity aluminum is vapor-deposited on the material); a substrate in which high-purity aluminum is coated on the surface of a silicon wafer, quartz, glass or the like by a method such as vapor deposition or sputtering; a resin substrate in which aluminum is laminated; it can.
  • the foreign elements that may be included in the alloy plate include silicon, iron, copper, manganese, magnesium, chromium, zinc, bismuth, nickel, titanium, etc., and the content of the foreign elements in the alloy is It is preferably 10% by mass or less.
  • the composition of the aluminum substrate used for the insulating substrate of the present invention is not specified.
  • a conventionally known material described in Aluminum Handbook 4th Edition (1990, published by Light Metal Association) For example, an Al—Mn-based aluminum substrate such as JIS50A1050, JIS A1100, JIS A1070, JIS A3004 containing Mn, and internationally registered alloy 3103A can be used as appropriate.
  • an Al—Mg alloy or an Al—Mn—Mg alloy JIS A3005
  • an Al—Zr alloy or an Al—Si alloy containing Zr or Si can also be used.
  • an Al—Mg—Si based alloy can also be used.
  • JP-A-59-153861 JP-A-61-51395, JP-A-62-146694, JP-A-60-215725, JP-A-60-215726, JP-A-60- No.
  • JP-A-7-81264, JP-A-7-305133, JP-A-8-49034, JP-A-8-73974, JP-A-8-108659, and JP-A-8-92679 is disclosed. Are listed.
  • JP-B-62-5080, JP-B-63-60823, JP-B-3-61753, JP-A-60-203396, JP-A-60-203497, JP-B-3-11635 are used.
  • JP-A-62-86143, JP-A-3-222296, JP-B-63-60824, JP-A-60-63346, JP-A-60-63347 and JP-A-60-63347 are disclosed. No. 1-293350, European Patent No. 223,737, US Pat. No. 4,818,300, British Patent No. 1,222,777 and the like.
  • the Al—Zr alloy is described in Japanese Patent Publication Nos. 63-15978, 61-51395, 63-143234, and 63-143235.
  • the Al—Mg—Si alloy is described in British Patent No. 1,421,710.
  • a molten aluminum alloy adjusted to a predetermined alloy component content is subjected to a cleaning process and cast according to a conventional method.
  • a cleaning process in order to remove unnecessary gas such as hydrogen in the molten metal, flux treatment, degassing process using argon gas, chlorine gas, etc., so-called rigid media filter such as ceramic tube filter, ceramic foam filter, A filtering process using a filter that uses alumina flakes, alumina balls or the like as a filter medium, a glass cloth filter, or a combination of a degassing process and a filtering process is performed.
  • These cleaning treatments are preferably carried out in order to prevent defects caused by foreign substances such as non-metallic inclusions and oxides in the molten metal and defects caused by gas dissolved in the molten metal.
  • filtering of the molten metal JP-A-6-57432, JP-A-3-162530, JP-A-5-140659, JP-A-4-231425, JP-A-4-276031, JP-A-5-312661, JP-A-5-312661 It is described in each publication of JP-A-6-136466. Further, the degassing of the molten metal is described in JP-A-5-1659, JP-A-5-49148, and the like. The present applicant has also proposed a technique relating to degassing of molten metal in Japanese Patent Application Laid-Open No. 7-40017.
  • the casting method there are a method using a fixed mold represented by a DC casting method and a method using a driving mold represented by a continuous casting method.
  • DC casting solidification occurs at a cooling rate of 0.5 to 30 ° C./second. When the temperature is less than 1 ° C., many coarse intermetallic compounds may be formed.
  • DC casting is performed, an ingot having a thickness of 300 to 800 mm can be produced. The ingot is chamfered as necessary according to a conventional method, and usually 1 to 30 mm, preferably 1 to 10 mm, of the surface layer is cut.
  • soaking treatment is performed as necessary. When soaking treatment is performed, heat treatment is performed at 450 to 620 ° C. for 1 to 48 hours so that the intermetallic compound does not become coarse. If the heat treatment is shorter than 1 hour, the effect of soaking may be insufficient.
  • hot rolling and cold rolling are performed to obtain a rolled plate of an aluminum substrate.
  • a suitable starting temperature for hot rolling is 350 to 500 ° C.
  • An intermediate annealing treatment may be performed before or after hot rolling or in the middle thereof.
  • the conditions for the intermediate annealing treatment are heating at 280 to 600 ° C. for 2 to 20 hours, preferably 350 to 500 ° C. for 2 to 10 hours using a batch annealing furnace, or 400 to 600 ° C. using a continuous annealing furnace. Heating is performed for 6 minutes or less, preferably 450 to 550 ° C. for 2 minutes or less.
  • the crystal structure can be made finer by heating at a heating rate of 10 to 200 ° C./second using a continuous annealing furnace.
  • the flatness of the aluminum substrate finished to a predetermined thickness, for example, 0.1 to 0.5 mm by the above steps may be further improved by a correction device such as a roller leveler or a tension leveler.
  • the flatness may be improved after the aluminum substrate is cut into a sheet, but in order to improve the productivity, it is preferable to perform it in a continuous coil state. Further, a slitter line may be used for processing into a predetermined plate width.
  • the continuous casting method a twin roll method (hunter method), a method using a cooling roll typified by the 3C method, a double belt method (Hazley method), a cooling belt or a cooling block typified by Al-Swiss Caster II type
  • the method using is industrially performed.
  • the continuous casting method solidifies at a cooling rate of 100 to 1000 ° C./second. Since the continuous casting method generally has a higher cooling rate than the DC casting method, it has a feature that the solid solubility of the alloy component in the aluminum matrix can be increased.
  • JP-A-3-79798 JP-A-5-201166, JP-A-5-156414, JP-A-6-262203, and JP-A-6-122949.
  • JP-A-6-210406 JP-A-6-26308, and the like.
  • a cast plate having a thickness of 1 to 10 mm can be directly continuously cast, and the hot rolling step is omitted.
  • a method using a cooling roll such as the Hunter method
  • a cast plate having a thickness of 10 to 50 mm can be cast.
  • a hot rolling roll is arranged immediately after casting and continuously rolled.
  • a continuous cast and rolled plate having a thickness of 1 to 10 mm can be obtained.
  • the crystal structure of the aluminum substrate may cause poor surface quality when the surface of the aluminum substrate is subjected to chemical or electrochemical surface roughening. It is preferably not too coarse.
  • the crystal structure on the surface of the aluminum substrate preferably has a width of 200 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, and the length of the crystal structure is 5000 ⁇ m or less. Is preferably 1000 ⁇ m or less, and more preferably 500 ⁇ m or less. With respect to these, techniques proposed by the present applicant are described in Japanese Patent Laid-Open Nos. 6-218495, 7-39906, and 7-124609.
  • the distribution of alloy components on the aluminum substrate may cause poor surface quality due to non-uniform distribution of alloy components on the surface of the aluminum substrate when chemical or electrochemical surface roughening is performed. Therefore, it is preferable that the surface is not very uneven.
  • techniques proposed by the present applicant are described in JP-A-6-48058, JP-A-5-301478, JP-A-7-132689, and the like.
  • the size and density of the intermetallic compound may affect the chemical roughening treatment or the electrochemical roughening treatment.
  • techniques proposed by the present applicant are described in Japanese Patent Laid-Open Nos. 7-138687 and 4-254545.
  • an aluminum substrate as described above can be used by forming irregularities by lamination rolling, transfer, etc. in the final rolling step or the like.
  • the aluminum substrate used for the insulating substrate of the present invention may be an aluminum web or a sheet-like sheet.
  • the packing form of aluminum is, for example, laying hardboard and felt on an iron pallet, applying cardboard donut plates to both ends of the product, wrapping the whole with a polytube, and inserting a wooden donut into the inner diameter of the coil Then, a felt is applied to the outer periphery of the coil, the band is squeezed with a band, and the display is performed on the outer periphery.
  • a polyethylene film can be used as the packaging material, and a needle felt or a hard board can be used as the cushioning material.
  • the present invention is not limited to this method as long as it is stable and can be transported without being damaged.
  • the thickness of the aluminum substrate used for the insulating substrate of the present invention is about 0.1 to 2.0 mm, preferably 0.15 to 1.5 mm, and more preferably 0.2 to 1.0 mm. preferable. This thickness can be appropriately changed according to the user's wishes or the like.
  • the insulating layer constituting the insulating substrate of the present invention is a layer provided on the surface of the aluminum substrate, and is an anodized film of aluminum.
  • the insulating layer may be an anodized film of an aluminum base different from the aluminum substrate, but as shown in the method for manufacturing an insulating substrate of the present invention described later, a part of the aluminum substrate.
  • An anodized film formed on an aluminum substrate by anodizing is preferably used.
  • the content of elements other than aluminum and oxygen (hereinafter referred to as “X element”) is 20 atomic% or less.
  • the X element is assumed to be residual ions (acid radicals) derived from the electrolytic solution used in the later-described anodizing treatment and is not particularly limited because it varies depending on the type of the electrolytic solution.
  • sulfur, phosphorus, chromium, carbon , Boron, nitrogen, chlorine, sodium, potassium and the like is a value measured using an EDX (Energy Dispersive X-ray Spectrometer).
  • a light emitting element using the insulating substrate of the present invention having such an insulating layer has a white light emitting output better than a conventional white LED light emitting element.
  • this is because the light transmittance in the insulating layer is increased by lowering the X element content (specifically, the visible light transmittance in the Examples described later). This is probably because the high light reflectivity of the aluminum substrate can be utilized.
  • the X element content is preferably 10 atomic% or less for the reason that the white light emission output becomes better.
  • the insulating substrate of the present invention has a large wave structure with an average wavelength of 5 to 100 ⁇ m and / or a medium wave structure with an average aperture diameter of 0.7 to 5 ⁇ m on the surface of the aluminum substrate described above.
  • the aspect having both the large wave structure and the medium wave structure refers to a structure in which the large wave structure and the medium wave structure are superimposed.
  • the insulating substrate of the present invention is a small wave having an average opening diameter of 0.01 to 0.2 ⁇ m because the adhesion to the metal electrical wiring layer provided when mounting the LED is improved on the surface of the aluminum substrate described above. It is preferable to have a shape of a structure in which the structures are further superimposed.
  • the measuring method of the average wavelength of the large wave structure on the surface of the aluminum substrate, the average opening diameter of the medium wave structure, and the average opening diameter of the small wave structure is as follows.
  • the average wavelength stylus roughness meter large wave structure performs a two-dimensional roughness measurement, the average peak distance S m as defined in ISO4287 were measured 5 times, and the average value as the average wavelength.
  • the large wave structure having an average wavelength of 5 to 100 ⁇ m preferably has an average wavelength of 7 to 75 ⁇ m, more preferably an average wavelength of 10 to 50 ⁇ m, for the reason that the above-described light scattering property is further improved.
  • the medium wave structure having an average aperture diameter of 0.70 to 5 ⁇ m has an average aperture diameter of 0.85 to 4 ⁇ m because the above-described effect of suppressing the absorption of visible light is further improved and the light scattering property is also improved.
  • the average opening diameter is more preferably 1 to 3 ⁇ m.
  • the small wave structure having an average opening diameter of 0.01 to 0.2 ⁇ m has an average opening diameter of 0.02 to 0.18 ⁇ m because the adhesion to the metal electric wiring layer provided when mounting the LED is further improved.
  • the average opening diameter is preferably 0.03 to 0.15 ⁇ m.
  • the method for producing an insulating substrate according to the present invention is a method for producing the above-described insulating substrate according to the present invention, wherein an anodic oxidation treatment is performed on a part of the aluminum substrate to form an anodized aluminum film on the aluminum substrate. And an insulating substrate manufacturing method in which the current density in the anodizing treatment is 0.001 to 20 A / dm 2 .
  • the manufacturing method of the insulated substrate of this invention can perform other surface treatments, such as a roughening process and an alkali etching process, with respect to the said aluminum substrate other than an anodizing process.
  • a typical method for forming the above-described surface shape for example, mechanical roughening treatment, alkali etching treatment, desmutting treatment with acid, and electrochemical roughening using an electrolytic solution on an aluminum substrate A method of sequentially performing a surface treatment; a method of performing a mechanical surface roughening treatment, an alkali etching treatment, a desmutting treatment with an acid and an electrochemical surface roughening treatment using different electrolytes a plurality of times; an alkali etching on an aluminum substrate Treatment, desmutting treatment with acid and electrochemical surface roughening treatment using electrolyte solution; alkaline etching treatment on aluminum substrate, acid desmutting treatment and electrochemical surface roughening treatment using different electrolyte solution A method of applying a plurality of times; In these methods
  • an electrolytic solution mainly composed of nitric acid A method of sequentially performing an electrochemical surface roughening treatment using a solution and an electrochemical surface roughening treatment using an electrolytic solution mainly composed of hydrochloric acid is preferable.
  • the mechanical surface roughening treatment can form a rough surface with an average wavelength of 5 to 100 ⁇ m at a lower cost than the electrochemical surface roughening treatment. It is effective as a processing means.
  • Examples of the mechanical surface roughening treatment include, for example, a wire brush grain method in which the surface of an aluminum substrate is scratched with a metal wire, a ball grain method in which the aluminum surface is grained with a polishing ball and an abrasive, JP-A-6-135175, and A brush grain method in which the surface is grained with a nylon brush and an abrasive as described in JP-B-50-40047 can be used.
  • a transfer method in which the uneven surface is pressed against the aluminum substrate can also be used.
  • a method of repeatedly transferring using a transfer roll with fine irregularities etched, or an irregular surface coated with fine particles on an aluminum substrate It is also possible to use a method in which the surface is brought into contact and a pressure is repeatedly applied a plurality of times, and a concavo-convex pattern corresponding to the average diameter of fine particles is repeatedly transferred to the aluminum substrate a plurality of times.
  • a method for imparting fine irregularities to the transfer roll known methods described in JP-A-3-8635, JP-A-3-66404, JP-A-63-65017, etc. may be used. it can.
  • a fine groove may be cut from two directions using a die, a cutting tool, a laser, or the like on the roll surface, and the surface may be provided with square irregularities.
  • the roll surface may be subjected to a known etching process or the like so that the formed square irregularities are rounded.
  • quenching, hard chrome plating, or the like may be performed.
  • mechanical surface roughening treatment methods described in JP-A Nos. 61-162351 and 63-104889 can be used. In the present invention, the above-described methods can be used in combination in consideration of productivity and the like. These mechanical surface roughening treatments are preferably performed before the electrochemical surface roughening treatment.
  • the brush grain method used suitably as a mechanical roughening process is demonstrated.
  • the brush grain method uses a roller-shaped brush in which a large number of synthetic resin bristles made of synthetic resin such as nylon (trademark), propylene, and vinyl chloride resin are implanted on the surface of a cylindrical body.
  • synthetic resin bristles made of synthetic resin such as nylon (trademark), propylene, and vinyl chloride resin are implanted on the surface of a cylindrical body.
  • a slurry liquid containing an abrasive is sprayed onto the roller-shaped brush.
  • a polishing roller which is a roller having a polishing layer on the surface can be used.
  • flexural modulus preferably 10,000 ⁇ 40,000kgf / cm 2, and more is preferably 15,000 ⁇ 35,000kgf / cm 2, and the strength of hair waist preferably Brush hair of 500 gf or less, more preferably 400 gf or less is used.
  • the diameter of the bristles is generally 0.2 to 0.9 mm.
  • the length of the brush bristles can be appropriately determined according to the outer diameter of the roller brush and the diameter of the cylinder, but is generally 10 to 100 mm.
  • abrasives such as pumicestone, silica sand, aluminum hydroxide, alumina powder, silicon carbide, silicon nitride, volcanic ash, carborundum, and gold sand; a mixture thereof can be used.
  • pumiston and silica sand are preferable.
  • silica sand is preferable in terms of excellent surface roughening efficiency because it is harder and less likely to break than Pamiston.
  • the average particle diameter of the abrasive is preferably 3 to 50 ⁇ m, more preferably 6 to 45 ⁇ m, from the viewpoints of excellent surface roughening efficiency and a narrow graining pitch.
  • the abrasive is suspended in water and used as a slurry.
  • the slurry liquid may contain a thickener, a dispersant (for example, a surfactant), a preservative, and the like.
  • the specific gravity of the slurry liquid is preferably 0.5-2.
  • an apparatus suitable for the mechanical surface roughening treatment for example, an apparatus described in Japanese Patent Publication No. 50-40047 can be given.
  • electrochemical surface roughening treatment For the electrochemical surface roughening treatment (hereinafter also referred to as “electrolytic surface roughening treatment”), an electrolytic solution used for the electrochemical surface roughening treatment using a normal alternating current can be used. Among them, it is preferable to use an electrolytic solution mainly composed of hydrochloric acid or nitric acid because the above-described surface shape can be easily obtained.
  • Electrolytic surface roughening can be performed according to, for example, the electrochemical grain method (electrolytic grain method) described in Japanese Patent Publication No. 48-28123 and British Patent No. 896,563.
  • This electrolytic grain method uses a sinusoidal alternating current, but it may be performed using a special waveform as described in JP-A-52-58602. Further, the waveform described in JP-A-3-79799 can also be used.
  • the methods described in JP-A-3-267400 and JP-A-1-141094 can also be applied.
  • JP-A-52-58602, JP-A-52-152302, JP-A-53-12738, JP-A-53-12739, JP-A-53-32821, JP-A-53-32222, JP 53-32833, JP 53-32824, JP 53-32825, JP 54-85802, JP 55-122896, JP 55-13284, JP 48-28123, JP-B-51-7081, JP-A-52-13338, JP-A-52-133840, JP-A-52-133844, JP-A-52-133845, JP-A-53- Nos. 149135 and 54-146234 can also be used.
  • the concentration of the acidic solution is preferably 0.5 to 2.5% by mass, but it is particularly preferably 0.7 to 2.0% by mass in consideration of use in the smut removal treatment.
  • the liquid temperature is preferably 20 to 80 ° C., more preferably 30 to 60 ° C.
  • An aqueous solution mainly composed of hydrochloric acid or nitric acid is an aqueous solution of hydrochloric acid or nitric acid with a concentration of 1 to 100 g / L, such as nitric acid compounds having nitrate ions such as aluminum nitrate, sodium nitrate and ammonium nitrate, or aluminum chloride, sodium chloride and ammonium chloride.
  • nitric acid compounds having hydrochloric acid ions can be used by adding in a range from 1 g / L to saturation.
  • the metal contained in aluminum alloys such as iron, copper, manganese, nickel, titanium, magnesium, a silica, may melt
  • a solution obtained by adding aluminum chloride, aluminum nitrate or the like to an aqueous solution of hydrochloric acid or nitric acid having a concentration of 0.5 to 2% by mass so that aluminum ions are 3 to 50 g / L is preferably used.
  • the compound capable of forming a complex with Cu include ammonia; hydrogen atom of ammonia such as methylamine, ethylamine, dimethylamine, diethylamine, trimethylamine, cyclohexylamine, triethanolamine, triisopropanolamine, EDTA (ethylenediaminetetraacetic acid). And amines obtained by substituting with a hydrocarbon group (aliphatic, aromatic, etc.); metal carbonates such as sodium carbonate, potassium carbonate, potassium hydrogen carbonate and the like.
  • ammonium salts such as ammonium nitrate, ammonium chloride, ammonium sulfate, ammonium phosphate, and ammonium carbonate are also included.
  • the temperature is preferably 10 to 60 ° C, more preferably 20 to 50 ° C.
  • the AC power source wave used for the electrochemical surface roughening treatment is not particularly limited, and a sine wave, a rectangular wave, a trapezoidal wave, a triangular wave or the like is used, but a rectangular wave or a trapezoidal wave is preferable, and a trapezoidal wave is particularly preferable.
  • a trapezoidal wave means what was shown in FIG. In this trapezoidal wave, the time (TP) until the current reaches a peak from zero is preferably 1 to 3 msec. If it is less than 1 msec, processing irregularities such as chatter marks that occur perpendicular to the traveling direction of the aluminum substrate are likely to occur.
  • TP exceeds 3 msec, especially when a nitric acid electrolyte is used, it is easily affected by trace components in the electrolyte typified by ammonium ions and the like that spontaneously increase by electrolytic treatment, and uniform graining is performed. It becomes hard to be broken.
  • a trapezoidal wave AC duty ratio of 1: 2 to 2: 1 can be used. However, as described in Japanese Patent Laid-Open No. 5-195300, in an indirect power feeding method that does not use a conductor roll for aluminum. A duty ratio of 1: 1 is preferable.
  • a trapezoidal AC frequency of 0.1 to 120 Hz can be used, but 50 to 70 Hz is preferable in terms of equipment. When the frequency is lower than 50 Hz, the carbon electrode of the main electrode is easily dissolved, and when the frequency is higher than 70 Hz, it is easily affected by an inductance component on the power supply circuit, and the power supply cost is increased.
  • One or more AC power supplies can be connected to the electrolytic cell.
  • the current ratio between the AC anode and cathode applied to the aluminum substrate facing the main electrode is controlled to achieve uniform graining and to dissolve the carbon of the main electrode.
  • 11 is an aluminum substrate
  • 12 is a radial drum roller
  • 13a and 13b are main poles
  • 14 is an electrolytic treatment liquid
  • 15 is an electrolytic solution supply port
  • 16 is a slit.
  • the ratio of the amount of electricity involved in the cathode reaction and the anodic reaction is preferably 0.3 to 0.95.
  • electrolytic cell electrolytic cells used for known surface treatments such as a vertical type, a flat type, and a radial type can be used, but a radial type electrolytic cell as described in JP-A-5-195300 is particularly preferable.
  • the electrolytic solution passing through the electrolytic cell may be parallel to the traveling direction of the aluminum web or may be a counter.
  • Irregularities (medium wave structure) having an average opening diameter of 0.7 to 5 ⁇ m can be formed by electrochemical surface roughening using an electrolytic solution mainly composed of nitric acid.
  • the electrolytic reaction is concentrated, and irregularities exceeding the wavelength of 5 ⁇ m are also generated.
  • the total amount of electricity involved in the anode reaction of the aluminum substrate at the end of the electrolytic reaction is preferably 1 to 1000 C / dm 2 , and preferably 50 to 300 C / dm 2. It is more preferable that The current density at this time is preferably 20 to 100 A / dm 2 .
  • electrolysis is performed at 30 to 60 ° C. using a nitric acid electrolytic solution having a high concentration, for example, a nitric acid concentration of 15 to 35% by mass, or a high temperature using a nitric acid electrolytic solution having a nitric acid concentration of 0.7 to 2% by mass.
  • a nitric acid electrolytic solution having a high concentration for example, a nitric acid concentration of 15 to 35% by mass, or a high temperature using a nitric acid electrolytic solution having a nitric acid concentration of 0.7 to 2% by mass.
  • irregularities small wave structure having an average opening diameter of 0.01 to 0.2 ⁇ m can be formed.
  • the total amount of electricity involved in the anode reaction of the aluminum substrate at the end of the electrolytic reaction is preferably 1 to 100 C / dm 2 , preferably 20 to 70 C / dm 2 . More preferably.
  • the current density at this time is preferably 20 to 50 A / dm 2 .
  • a large crater-like swell is simultaneously formed by increasing the total amount of electricity involved in the anode reaction to 400 to 2000 C / dm 2. It is also possible. In this case, fine irregularities having an average opening diameter of 0.01 to 0.3 ⁇ m are formed on the entire surface by superimposing on a crater-like wave having an average wavelength of 10 to 30 ⁇ m. In this case, a medium wave structure with an average opening diameter of 0.7 to 5 ⁇ m is not generated.
  • cathodic electrolysis treatment it is preferable to perform a cathodic electrolysis treatment on the aluminum substrate before and / or after the electrolytic surface-roughening treatment performed in an electrolytic solution such as nitric acid or hydrochloric acid.
  • an electrolytic solution such as nitric acid or hydrochloric acid.
  • Cathodic electrolysis is carried out in an acidic solution with a cathodic charge of preferably 3 to 80 C / dm 2 , more preferably 5 to 30 C / dm 2 .
  • the electrolytic solution may be the same as or different from the solution used in the electrolytic surface roughening treatment.
  • the alkali etching treatment is a treatment for dissolving the surface layer by bringing the aluminum substrate into contact with an alkali solution.
  • the alkali etching treatment performed before the electrolytic surface roughening treatment removes rolling oil, dirt, natural oxide film, etc. on the surface of the aluminum substrate (rolled aluminum) when the mechanical surface roughening treatment is not performed.
  • the edge portion of the unevenness generated by the mechanical surface roughening treatment is dissolved, and the steep unevenness is converted into a surface having smooth undulations. It is done for the purpose of changing.
  • the etching amount is preferably 0.1 to 10 g / m 2 , and more preferably 1 to 5 g / m 2 . If the etching amount is less than 0.1 g / m 2 , rolling oil, dirt, natural oxide film, etc. may remain on the surface, so that uniform unevenness cannot be generated in the subsequent electrolytic surface roughening treatment, resulting in unevenness. May occur. On the other hand, when the etching amount is from 1 to 10 g / m 2 , the surface of the rolling oil, dirt, natural oxide film and the like are sufficiently removed. An etching amount exceeding the above range is economically disadvantageous.
  • the etching amount is preferably 3 to 20 g / m 2 , and more preferably 5 to 15 g / m 2 . If the etching amount is less than 3 g / m 2 , the unevenness formed by mechanical surface roughening may not be smoothed, and uniform unevenness may not be formed in the subsequent electrolytic surface roughening treatment. On the other hand, when the etching amount exceeds 20 g / m 2 , the concavo-convex structure may disappear.
  • the alkali etching treatment performed immediately after the electrolytic surface roughening treatment is performed for the purpose of dissolving the smut generated in the acidic electrolyte and dissolving the uneven edge portion formed by the electrolytic surface roughening treatment.
  • the unevenness formed by the electrolytic surface roughening treatment varies depending on the type of the electrolytic solution, so the optimum etching amount also varies.
  • the etching amount of the alkali etching treatment performed after the electrolytic surface roughening treatment is 0.1 to 5 g / m. 2 is preferred.
  • the etching amount needs to be set larger than when a hydrochloric acid electrolyte is used.
  • an alkali etching treatment can be performed as necessary after each treatment.
  • Examples of the alkali used in the alkaline solution include caustic alkali and alkali metal salts.
  • caustic alkali include caustic soda and caustic potash.
  • alkali metal salts include alkali metal silicates such as sodium silicate, sodium silicate, potassium metasilicate, and potassium silicate; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium aluminate and alumina.
  • Alkali metal aluminates such as potassium acid; alkali metal aldones such as sodium gluconate and potassium gluconate; dibasic sodium phosphate, dibasic potassium phosphate, tribasic sodium phosphate, tertiary potassium phosphate, etc.
  • An alkali metal hydrogen phosphate is mentioned.
  • a caustic alkali solution and a solution containing both a caustic alkali and an alkali metal aluminate are preferable from the viewpoint of high etching rate and low cost.
  • an aqueous solution of caustic soda is preferable.
  • the concentration of the alkaline solution can be determined according to the etching amount, but is preferably 1 to 50% by mass, more preferably 10 to 35% by mass.
  • the concentration of aluminum ions is preferably 0.01 to 10% by mass, and more preferably 3 to 8% by mass.
  • the temperature of the alkaline solution is preferably 20 to 90 ° C.
  • the treatment time is preferably 1 to 120 seconds.
  • Examples of the method of bringing the aluminum substrate into contact with the alkaline solution include, for example, a method in which the aluminum substrate is passed through a tank containing the alkaline solution, a method in which the aluminum substrate is immersed in a tank containing the alkaline solution, and the alkali solution being aluminum.
  • substrate is mentioned.
  • pickling is preferably performed in order to remove dirt (smut) remaining on the surface.
  • the acid used include nitric acid, sulfuric acid, phosphoric acid, chromic acid, hydrofluoric acid, and borohydrofluoric acid.
  • the desmutting treatment is performed, for example, by bringing the aluminum substrate into contact with an acidic solution (containing aluminum ions of 0.01 to 5% by mass) having a concentration of 0.5 to 30% by mass such as hydrochloric acid, nitric acid, and sulfuric acid. .
  • the method of bringing the aluminum substrate into contact with the acidic solution examples include a method in which the aluminum substrate is passed through a tank containing the acidic solution, a method in which the aluminum substrate is immersed in a tank containing the acidic solution, and the acidic solution being aluminum.
  • substrate is mentioned.
  • the acid solution is mainly composed of an aqueous solution mainly composed of nitric acid or an aqueous solution mainly composed of hydrochloric acid discharged in the above-described electrolytic surface-roughening treatment, or sulfuric acid discharged in an anodic oxidation process described later. It is possible to use a waste solution of an aqueous solution.
  • the temperature of the desmut treatment is preferably 25 to 90 ° C.
  • the processing time is preferably 1 to 180 seconds.
  • Aluminum and aluminum alloy components may be dissolved in the acidic solution used for the desmut treatment.
  • an anodizing treatment is performed on the aluminum substrate that has been subjected to the surface treatment as described above.
  • an anodized film made of aluminum oxide is formed on the surface of the aluminum substrate, and a porous or non-porous insulating layer is obtained.
  • the anodic oxidation treatment is performed by a conventional method used in the production of a lithographic printing plate support.
  • a conventional method used in the production of a lithographic printing plate support can do. Specifically, sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amidosulfonic acid, malonic acid, citric acid, tartaric acid, boric acid, etc. are used alone as the solution used for the anodizing treatment. Or in combination of two or more.
  • the 2nd, 3rd component may be added.
  • the second and third components herein include metal ions such as Na, K, Mg, Li, Ca, Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn; Cation such as ammonium ion; anion such as nitrate ion, carbonate ion, chloride ion, phosphate ion, fluoride ion, sulfite ion, titanate ion, silicate ion, borate ion, etc., 0 to 10,000 ppm It may be contained at a concentration of about.
  • the conditions for anodizing treatment vary depending on the electrolyte used, and cannot be determined unconditionally.
  • the solution temperature is 5 to 70 ° C.
  • the voltage is 1 to 100 V
  • the electrolysis time is 15 seconds to 50 minutes.
  • the concentration of the electrolytic solution is preferably 0.1 to 30.0 mass%.
  • direct current may be applied between the aluminum substrate and the counter electrode, or alternating current may be applied.
  • the content of the X element in the formed anodic oxide film is reduced, and the visible light transmittance is reduced.
  • the current density which can be improved is 0.001 ⁇ 20A / dm 2, is preferably from 0.005 ⁇ 10A / dm 2, 0.01 ⁇ 5.0A / dm 2 Gayori It is preferably 0.01 to 0.4 A / dm 2 .
  • current is applied at a low current density at the beginning of anodizing so that current is not concentrated on a part of the aluminum substrate and so-called “burning” does not occur.
  • the anodizing process is performed by a liquid power feeding method in which power is supplied to the aluminum substrate through an electrolytic solution.
  • the average pore diameter is about 5 to 1000 nm, and the average pore density is about 1 ⁇ 10 6 to 1 ⁇ 10 10 / mm 2 .
  • the thickness of the anodized film is preferably 1 to 200 ⁇ m. If the thickness is less than 1 ⁇ m, the insulation is poor and the withstand voltage is lowered. On the other hand, if it exceeds 200 ⁇ m, a large amount of electric power is required for production, which is economically disadvantageous.
  • the thickness of the anodized film is more preferably 2 to 100 ⁇ m.
  • FIG. 3 is a schematic view showing an example of an apparatus for anodizing the surface of an aluminum substrate.
  • the aluminum substrate 416 is transported as indicated by arrows in FIG.
  • the aluminum substrate 416 is charged (+) by the power supply electrode 420 in the power supply tank 412 in which the electrolytic solution 418 is stored.
  • the aluminum substrate 416 is conveyed upward by the roller 422 in the power supply tank 412, changed in direction downward by the nip roller 424, and then conveyed toward the electrolytic treatment tank 414 in which the electrolytic solution 426 is stored. The direction is changed horizontally. Subsequently, the aluminum substrate 416 is charged to ( ⁇ ) by the electrolytic electrode 430 to form an anodized film on the surface thereof, and the aluminum substrate 416 exiting the electrolytic treatment tank 414 is transported to a subsequent process.
  • the roller 422, the nip roller 424 and the roller 428 constitute a direction changing means, and the aluminum substrate 416 is disposed between the power supply tank 412 and the electrolytic treatment tank 414 between the rollers 422, 424 and By 428, it is conveyed into a mountain shape and an inverted U shape.
  • the feeding electrode 420 and the electrolytic electrode 430 are connected to a DC power source 434.
  • the feature of the anodizing apparatus 410 in FIG. 3 is that the feeding tank 412 and the electrolytic treatment tank 414 are partitioned by a single tank wall 432, and the aluminum substrate 416 is conveyed in a mountain shape and an inverted U shape between the tanks. It is in. As a result, the length of the aluminum substrate 416 in the inter-tank portion can be minimized. Therefore, the overall length of the anodizing apparatus 410 can be shortened, so that the equipment cost can be reduced. Further, by transporting the aluminum substrate 416 in a mountain shape and an inverted U shape, it is not necessary to form an opening for allowing the aluminum substrate 416 to pass through the tank wall 432 of each tank 412 and 414. Therefore, since the liquid feeding amount required to maintain the liquid level height in each tank 412 and 414 at a required level can be suppressed, the operating cost can be reduced.
  • the anodizing treatment may be performed independently under a certain processing condition.
  • the shape of the anodized film such as the shape depending on the location or the shape in the depth direction
  • Two or more different anodizing treatments under different conditions may be sequentially combined.
  • a sealing treatment for sealing the existing micropores may be performed.
  • the sealing treatment can be performed according to a known method such as boiling water treatment, hot water treatment, steam treatment, sodium silicate treatment, nitrite treatment, ammonium acetate treatment and the like.
  • the sealing treatment is performed by the apparatus and method described in JP-B-56-12518, JP-A-4-4194, JP-A-5-20296, JP-A-5-179482, etc. Good.
  • ⁇ Washing treatment> it is preferable to wash with water after completion
  • pure water, well water, tap water, or the like can be used.
  • a nip device may be used to prevent the processing liquid from being brought into the next process.
  • an insulating substrate of the present invention various treatments can be applied to the surface of the insulating substrate as necessary.
  • an inorganic insulating layer made of a white insulating material such as titanium oxide or an organic insulating layer such as a white resist may be provided.
  • a desired color can be colored on the insulating layer made of aluminum oxide, for example, by electrodeposition.
  • Co Ion, Fe ion, Au ion, Pb ion, Ag ion, Se ion, Sn ion, Ni ion, Cu ion, Bi ion, Mo ion, Sb ion, Cd ion, As ion, etc. are mixed in the electrolytic solution and electrolysis is performed. By processing, it can color.
  • the sol-gel method is a method in which a sol generally made of a metal alkoxide is made into a gel that loses fluidity by hydrolysis and polycondensation reaction, and this gel is heated to form an oxide layer (ceramic layer).
  • the metal alkoxide is not particularly limited, but Al (O—R) n, Ba (O—R) n, B (O—R) n, from the viewpoint of forming a layer having a uniform thickness.
  • Bi (O—R) n Ca (O—R) n, Fe (O—R) n, Ga (O—R) n, Ge (O—R) n, Hf (O—R) n, In ( O—R) n, K (O—R) n, La (O—R) n, Li (O—R) n, Mg (O—R) n, Mo (O—R) n, Na (O— R) n, Nb (O—R) n, Pb (O—R) n, Po (O—R) n, Po (O—R) n, P (O—R) n, Sb (O—R) n, Si (O—R) n, Sn (O—R) n, Sr (O—R) n, Ta (O—R) n, Ti (O—R) n, V (O—R) n, And W (O—R) n, Y (O—R) n, Zn (
  • R may have a substituent.
  • a chain, a branched, and a cyclic hydrocarbon group, n represents an arbitrary natural number).
  • Si (O—R) n type which has excellent reactivity with the insulating layer and excellent sol-gel layer formability, is more preferable.
  • the method for forming the sol-gel layer is not particularly limited, but from the viewpoint of controlling the thickness of the layer, a method in which a sol solution is applied and heated is preferred.
  • the concentration of the sol solution is preferably 0.1 to 90% by mass, more preferably 1 to 80% by mass, and particularly preferably 5 to 70% by mass.
  • the thickness is preferably from 0.01 ⁇ m to 20 ⁇ m, more preferably from 0.05 ⁇ m to 15 ⁇ m, and more preferably from 0.1 ⁇ m to 0.1 ⁇ m, from the viewpoint of high reflectivity and insulation. 10 ⁇ m is particularly preferable. If it is thicker than this range, it is not preferable from the viewpoint of high reflectance, and if it is thinner than this range, it is not preferable from the viewpoint of insulation. In addition, in order to make a layer thick, you may apply
  • the white LED light-emitting element of the present invention includes the above-described insulating substrate of the present invention, a blue LED light-emitting element provided on the insulating layer side of the insulating substrate, and a fluorescent light provided on at least the blue LED light-emitting element.
  • a white LED light emitting element including a light emitter is not limited to the shape of the light emitting element to be used, the type of LED, and the like, and can be used for various applications. Next, the configuration of the white LED light emitting element of the present invention will be described with reference to the drawings.
  • FIG. 5 is a schematic cross-sectional view showing an example of a preferred embodiment of the white LED light-emitting element of the present invention.
  • the white LED light emitting element 100 shown in FIG. 5 is configured as a phosphor mixed color white LED light emitting element, and includes an insulating substrate 30 having an insulating layer 32 and an aluminum substrate 33, and an insulating substrate 30.
  • the blue LED light emitting element 22 provided in the upper part by the side of the insulating layer 32 and the fluorescent light-emitting body 26 provided in at least the upper part of the blue LED light emitting element 22 are comprised.
  • the blue LED light emitting element 22 is sealed with a resin 24.
  • the fluorescent light emitter 26 the fluorescent light emitting units described in Japanese Patent Application Nos. 2009-134007 and 2009-139261 can be used.
  • FIG. 6 is a schematic cross-sectional view showing an example of a preferred embodiment of a known white LED light-emitting element as described in the “Background Art” section.
  • the white LED light emitting element of the present invention can be obtained by using the insulating substrate of the present invention.
  • Example 1 to 4 Production of Insulating Substrate Si: 0.06% by mass, Fe: 0.30% by mass, Cu: 0.005% by mass, Mn: 0.001% by mass, Mg: 0.001% by mass, Zn: 0.001% by mass %, Ti: 0.03% by mass, the balance is prepared by using Al and an inevitable impurity aluminum alloy, and after the molten metal treatment and filtration, an ingot having a thickness of 500 mm and a width of 1200 mm is formed. Created by DC casting.
  • the surface was shaved with a chamfering machine with an average thickness of 10 mm, it was kept soaked at 550 ° C. for about 5 hours, and when the temperature dropped to 400 ° C., rolling with a thickness of 2.7 mm using a hot rolling mill A board was used. Furthermore, after performing heat processing at 500 degreeC using a continuous annealing machine, it finished by cold rolling to 0.24 mm in thickness, and obtained the aluminum substrate of JIS1050 material. After making this aluminum substrate width 1030mm, it used for the surface treatment shown below and produced the insulated substrate with which the anodic oxide film was provided on the aluminum substrate.
  • the surface treatment was carried out by successively applying the treatments indicated by “ ⁇ ” in Table 1 from the left in Table 1 among the following treatments (a) to (j). In addition, after each process and water washing, the liquid was drained with the nip roller.
  • FIG. 4 A Mechanical surface roughening treatment Using an apparatus as shown in FIG. 4, a suspension of slurry (pumice) and water (specific gravity 1.12) is supplied as a polishing slurry to the surface of the aluminum substrate. However, a mechanical surface roughening treatment was performed with a rotating roller-like nylon brush.
  • reference numeral 1 is an aluminum substrate
  • reference numerals 2 and 4 are roller brushes
  • reference numeral 3 is a polishing slurry liquid
  • reference numerals 5, 6, 7 and 8 are support rollers.
  • the average particle size of the abrasive was 40 ⁇ m, and the maximum particle size was 100 ⁇ m.
  • the material of the nylon brush was 6 ⁇ 10 nylon, the hair length was 50 mm, and the hair diameter was 0.3 mm.
  • the nylon brush was planted so as to be dense by making a hole in a stainless steel tube having a diameter of 300 mm. Three rotating brushes were used. The distance between the two support rollers ( ⁇ 200 mm) at the bottom of the brush was 300 mm. The brush roller was pressed until the load of the drive motor for rotating the brush became 7 kW plus with respect to the load before the brush roller was pressed against the aluminum substrate. The rotation direction of the brush was the same as the movement direction of the aluminum substrate. The rotation speed of the brush was 200 rpm.
  • the aluminum substrate was subjected to an etching treatment by spraying using an aqueous solution having a caustic soda concentration of 2.6 mass%, an aluminum ion concentration of 6.5 mass%, and a temperature of 70 ° C., thereby dissolving the aluminum substrate by 6 g / m 2 . . Then, water washing by spraying was performed.
  • (C) Desmutting treatment The desmutting treatment was performed by spraying with a 1% by mass aqueous solution of nitric acid at a temperature of 30 ° C. (containing 0.5% by mass of aluminum ions), and then washed with water by spraying.
  • the nitric acid aqueous solution used for the desmut treatment was a waste liquid from a process of performing an electrochemical surface roughening treatment using alternating current in a nitric acid aqueous solution.
  • Electrochemical roughening treatment An electrochemical roughening treatment was carried out continuously using an alternating voltage of 60 Hz.
  • the electrolytic solution at this time was a 10.5 g / L aqueous solution of nitric acid (containing 5 g / L of aluminum ions and 0.007% by mass of ammonium ions) at a liquid temperature of 50 ° C.
  • the AC power supply waveform is the waveform shown in FIG. 1.
  • the time TP until the current value reaches the peak from zero is 0.8 msec, the duty ratio is 1: 1, and a trapezoidal rectangular wave AC is used with the carbon electrode as the counter electrode.
  • An electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode.
  • the electrolytic cell used was the one shown in FIG.
  • the current density was 30 A / dm 2 at the peak current value, and the amount of electricity was 220 C / dm 2 in terms of the total amount of electricity when the aluminum substrate was the anode. 5% of the current flowing from the power source was shunted to the auxiliary anode. Then, water washing by spraying was performed.
  • Desmut treatment by spraying was performed with a 15% by weight aqueous solution of sulfuric acid at a temperature of 30 ° C. (containing 4.5% by weight of aluminum ions), and then washed with water by spraying.
  • the nitric acid aqueous solution used for the desmut treatment was a waste liquid from a process of performing an electrochemical surface roughening treatment using alternating current in a nitric acid aqueous solution.
  • Electrochemical surface roughening treatment An electrochemical surface roughening treatment was performed continuously using an alternating voltage of 60 Hz.
  • the electrolytic solution at this time was a hydrochloric acid 7.5 g / L aqueous solution (containing 5 g / L of aluminum ions) at a temperature of 35 ° C.
  • the AC power supply waveform is the waveform shown in FIG. 1.
  • the time TP until the current value reaches the peak from zero is 0.8 msec, the duty ratio is 1: 1, and a trapezoidal rectangular wave AC is used with the carbon electrode as the counter electrode.
  • An electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode.
  • the electrolytic cell used was the one shown in FIG.
  • the current density was 25 A / dm 2 at the peak current value, and the amount of electricity was 50 C / dm 2 in terms of the total amount of electricity when the aluminum substrate was the anode.
  • water washing by spraying was performed.
  • (H) Alkali etching treatment The aluminum substrate was subjected to an etching treatment at 32 ° C. using an aqueous solution having a caustic soda concentration of 26 mass% and an aluminum ion concentration of 6.5 mass% to dissolve the aluminum substrate by 0.1 g / m 2 , Removes smut component mainly composed of aluminum hydroxide that was generated when electrochemical roughening treatment was performed using AC in the previous stage, and also melted the generated uneven edge part to smooth the edge part. did. Then, water washing by spraying was performed.
  • Desmutting treatment A desmutting treatment by spraying was performed with a 25% by weight aqueous solution of sulfuric acid at a temperature of 60 ° C. (containing 0.5% by weight of aluminum ions), followed by washing with water by spraying.
  • Anodizing treatment was performed using an anodizing apparatus having a structure shown in FIG.
  • the conditions of the electrolyte supplied to the first and second electrolysis parts were an sulfuric acid concentration of 30 g / L, a current density of 0.7 A / dm 2 , and an anodic oxide film having a film thickness of 10 ⁇ m. Then, water washing by spraying was performed. The final oxide film thickness was 10 ⁇ m.
  • Example 5 An anodized film having a film thickness of 10 ⁇ m was formed in the same manner as in Example 3 except that the anodizing treatment was performed under conditions of a sulfuric acid concentration of 10 g / L and a current density of 0.2 A / dm 2 .
  • Example 6 An anodized film having a film thickness of 10 ⁇ m was formed by the same method as in Example 3 except that the anodizing treatment was performed under conditions of a sulfuric acid concentration of 100 g / L and a current density of 15.0 A / dm 2 .
  • Example 7 A film thickness of 10 ⁇ m was obtained in the same manner as in Example 3 except that anodization was performed at a phosphoric acid concentration of 15 g / L and a current density of 0.6 A / dm 2 , and the above (g) electrochemical roughening treatment was performed. A thick anodized film was formed.
  • Example 1 An anodized film having a film thickness of 10 ⁇ m was formed in the same manner as in Example 3 except that the anodizing treatment was performed at a sulfuric acid concentration of 150 g / L and a current density of 22.0 A / dm 2 .
  • Example 2 An anodized film having a film thickness of 10 ⁇ m was formed by the same method as in Example 3 except that the anodizing treatment was performed at a sulfuric acid concentration of 350 g / L and a current density of 30.0 A / dm 2 .
  • Example 3 The same method as in Example 1 except that the mirror surface finishing treatment (a ′) shown below was performed instead of the mechanical surface roughening treatment (a), and the alkali etching treatment (b) to the desmutting treatment (i) were not performed. As a result, an anodized film having a film thickness of 10 ⁇ m was formed.
  • a ′ Mirror surface finishing treatment A mirror surface finishing treatment was performed by performing polishing using a polishing cloth, buffing and electrolytic polishing in this order. After buffing, it was washed with water.
  • Polishing using a polishing cloth uses a polishing disk (Struers Abramin, manufactured by Marumoto Kogyo Co., Ltd.) and a water-resistant polishing cloth (commercially available), and the number of the water-resistant polishing cloth is # 200, # 500, # 800, # 1000 and # The change was made in the order of 1500.
  • the buffing was performed using a slurry-like abrasive (FM No. 3 (average particle size 1 ⁇ m) and FM No. 4 (average particle size 0.3 ⁇ m), both manufactured by Fujimi Incorporated).
  • the electrolytic polishing was performed for 2 minutes using an electrolytic solution (temperature: 70 ° C.) having the following composition, using the anode as a substrate and the cathode as a carbon electrode at a constant current of 130 mA / cm 2 .
  • a power source GP0110-30R (manufactured by Takasago Seisakusho) was used.
  • Luminance evaluation in LED element mounting unit Using the insulating substrates produced in Examples 1 to 7 and Comparative Examples 1 to 3 and the commercial products of Comparative Example 4 obtained as described above, fluorescence was obtained as follows. The luminance of the body-mixed white LED light emitting element was evaluated. Specifically, a blue LED is provided as shown in FIG. 5 on the insulating substrate produced in Examples 1 to 7 and Comparative Examples 1 to 3 and a commercial product of Comparative Example 4, and the blue LED is disposed above the blue LED. A fluorescent light emitting unit was provided so as to be in contact with each other, and the luminance when the blue LED was driven at 6 V was compared. Table 3 shows the relative evaluation using the reflective substrate of Comparative Example 4 with a luminance of 1.0.
  • the insulating substrates of Comparative Examples 1 and 2 having an insulating layer in which the content of elements other than aluminum and oxygen exceeds 20 atomic% have a low transmittance of the insulating layer. It was found that the brightness was comparable to that of the commercial product of Example 4.
  • the insulating substrate of Comparative Example 3 using an aluminum substrate that does not have a predetermined large wave structure or medium wave structure on the surface has a low diffuse reflectance, although the insulating layer has excellent transmittance. It was found that the brightness was only comparable.
  • Examples 1 to 7 having an insulating layer in which the content of elements other than aluminum and oxygen is 20 atomic% or less on a surface-shaped aluminum substrate having a predetermined large wave structure and / or medium wave structure By using an insulating substrate, it was found that 1.3 to 1.5 times the luminance was obtained as compared with the case where the commercial product of Comparative Example 4 was used.
  • Electrolytic process liquid 15 Electrolyte supply port 16 Slit 17 Electrolyte path 18 Auxiliary Anode 19a, 19b Thyristor 20 AC power supply 22 Blue LED 24 resin 26 fluorescent light emitting unit 30 insulating substrate 32 insulating layer 33 aluminum substrate 40 main electrolytic cell 50 auxiliary anode cell 100 light emitting element 110 blue LED 120, 130 Electrodes 140 Substrate 150 Fluorescent particles 160 Transparent resin 410 Anodizing device 412 Power supply tank 414 Electrolytic treatment tank 416 Aluminum substrate 418, 426 Electrolytic solution 420 Power supply electrode 422, 428 Roller 424 Nip roller 430 Electrolytic electrode 432 Tank wall 434 DC power supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Materials For Photolithography (AREA)

Abstract

Disclosed are an insulating substrate, and a light emitting element which uses the insulating substrate and has improved white luminous output. Specifically disclosed is an insulating substrate, which comprises an aluminum substrate and an insulating layer that is provided on the surface of the aluminum substrate, and which is characterized in that: the insulating layer is an anodic oxide coating of aluminum; the content of the constituent elements of the insulating layer other than aluminum and oxygen is 20% by atom or less; and the surface of the aluminum substrate has a profile with a long wavelength structure having an average wavelength of 5-100 μm and/or a medium wavelength structure having an average opening diameter of 0.7-5 μm.

Description

絶縁基板および発光素子Insulating substrate and light emitting element
 本発明は、発光素子に用いられる絶縁基板に関するものであり、詳しくは発光ダイオード(以下、「LED」という。)に用いられる絶縁基板に関するものである。 The present invention relates to an insulating substrate used for a light emitting element, and more particularly to an insulating substrate used for a light emitting diode (hereinafter referred to as “LED”).
 従来、白色系LED発光素子として、RGBのカラーフイルタを用いてカラー表示を行う表示装置を照明するLED発光素子が一般的に知られており、なかでも、多色混合型のLED発光素子が用いられている。
 この多色混合型のLED発光素子は、RGBの3色のLEDを同時に発光させることによって白色光を発光させ、この白色光と表示装置のカラーフイルタによってカラー表示を行うものである。
Conventionally, as a white LED light emitting element, an LED light emitting element for illuminating a display device that performs color display using an RGB color filter is generally known, and among them, a multicolor mixed type LED light emitting element is used. It has been.
This multi-color mixed type LED light emitting element emits white light by simultaneously emitting LEDs of three colors of RGB, and performs color display by using the white light and a color filter of a display device.
 しかし、この多色混合型のLED発光素子は、RGBの各LEDが発光しているため、各色純度が高く演色性にも優れているが、反面、白色光を得るためにLEDの数を多く必要とし、価格が高くなるという問題があった。 However, this multi-color mixed type LED light emitting element emits light from each of RGB LEDs, so that each color purity is high and color rendering is excellent. However, on the other hand, a large number of LEDs are used to obtain white light. There was a problem that required and the price was high.
 この問題を解決するLED発光素子として、例えば、特許文献1や特許文献2等に開示されている蛍光体混色型のLED発光素子が知られている。
 ここで、図6は、特許文献1および2に開示される蛍光体混色型の白色系LED発光素子の一構成例を示した模式図である。図6に示すように、白色系LED発光素子100は、青色LED110がYAG系の蛍光粒子150を混入した透明樹脂160でモールドされており、YAG系の蛍光粒子150によって励起された光と青色LED110の残光とにより、白色系光が発光されるものである。なお、青色LED110は、外部接続用の電極120,130を有する基板140にフェースダウンボンディングされている。
As LED light-emitting elements that solve this problem, for example, phosphor-mixed LED light-emitting elements disclosed in Patent Document 1, Patent Document 2, and the like are known.
Here, FIG. 6 is a schematic diagram showing a configuration example of a phosphor mixed color white LED light emitting element disclosed in Patent Documents 1 and 2. FIG. As shown in FIG. 6, in the white LED light emitting element 100, the blue LED 110 is molded with a transparent resin 160 mixed with YAG fluorescent particles 150, and the light excited by the YAG fluorescent particles 150 and the blue LED 110 White light is emitted by the afterglow. The blue LED 110 is face-down bonded to a substrate 140 having external connection electrodes 120 and 130.
 また、このような従来公知の蛍光体混色型のLED発光素子では、白色系の発光出力を高めるに、蛍光粒子が混入された透明樹脂の厚みを厚くしたり、透明樹脂の蛍光粒子含有量を増やしたりする等の手法が検討されている。
 しかしながら、これらの手法を採用した場合、透明樹脂の厚みや透明樹脂の蛍光粒子含有量によっては、青色LEDからの青色光の透過性が弱くなり、かえって白色系の発光出力が低下する場合があった。
In addition, in such conventionally known phosphor-mixed LED light emitting elements, in order to increase the white light emission output, the thickness of the transparent resin mixed with the fluorescent particles is increased, or the fluorescent particle content of the transparent resin is increased. Methods such as increasing are being studied.
However, when these methods are adopted, depending on the thickness of the transparent resin and the content of the fluorescent particles in the transparent resin, the blue light transmission from the blue LED may be weak, and the white light emission output may decrease. It was.
特許第2998696号公報Japanese Patent No. 2998696 特開平11-87784号公報Japanese Patent Laid-Open No. 11-87784
 そこで、本発明は、絶縁基板、および、この絶縁基板を用いて白色系の発光出力を向上させた発光素子を提供することを目的とする。 Therefore, an object of the present invention is to provide an insulating substrate and a light-emitting element having an improved white light-emitting output using the insulating substrate.
 本発明者は、上記目的を達成すべく鋭意検討した結果、所定の表面形状を有するアルミニウム基板上に、アルミニウムおよび酸素以外の元素の含有率が20原子%以下としたアルミニウムの陽極酸化被膜を絶縁材料として設けることで、光源からの光の透過性を確保しつつアルミニウム基板の高い光反射性を活かすことが可能となり、白色系の発光出力が向上することを見出し、本発明を完成させた。
 すなわち、本発明は、以下の(1)~(3)を提供する。
As a result of intensive studies to achieve the above object, the present inventors have insulated an aluminum anodic oxide film having a content of elements other than aluminum and oxygen of 20 atomic% or less on an aluminum substrate having a predetermined surface shape. By providing it as a material, it was possible to make use of the high light reflectivity of the aluminum substrate while ensuring the light transmission from the light source, and it was found that the white light emission output was improved, and the present invention was completed.
That is, the present invention provides the following (1) to (3).
 (1)アルミニウム基板と、上記アルミニウム基板の表面に設けられる絶縁層とを有する絶縁基板であって、
 上記絶縁層がアルミニウムの陽極酸化皮膜であり、
 上記絶縁層を構成する元素のうち、アルミニウムおよび酸素以外の元素の含有率が20原子%以下であり、
 上記アルミニウム基板の表面が、平均波長5~100μmの大波構造および/または平均開口径0.7~5μmの中波構造の形状を有する絶縁基板。
(1) An insulating substrate having an aluminum substrate and an insulating layer provided on the surface of the aluminum substrate,
The insulating layer is an anodized film of aluminum;
Of the elements constituting the insulating layer, the content of elements other than aluminum and oxygen is 20 atomic% or less,
An insulating substrate wherein the surface of the aluminum substrate has a large wave structure with an average wavelength of 5 to 100 μm and / or a medium wave structure with an average aperture diameter of 0.7 to 5 μm.
 (2)上記(1)に記載の絶縁基板を製造する絶縁基板の製造方法であって、
 アルミニウム基板の一部に陽極酸化処理を施して、アルミニウム基板上にアルミニウムの陽極酸化被膜を形成させる工程を有し、
 上記陽極酸化処理における電流密度が0.001~20A/dm2である絶縁基板の製造方法。
(2) An insulating substrate manufacturing method for manufacturing the insulating substrate according to (1) above,
A step of anodizing a part of the aluminum substrate to form an anodized aluminum film on the aluminum substrate;
A method for producing an insulating substrate, wherein the current density in the anodizing treatment is 0.001 to 20 A / dm 2 .
 (3)上記(1)に記載の絶縁基板と、上記絶縁基板の上記絶縁層側の上部に設けられる青色LED発光素子と、上記青色LED発光素子の少なくとも上部に設けられる蛍光発光体とを具備する白色系LED発光素子。 (3) The insulating substrate according to (1) above, a blue LED light emitting element provided on the insulating layer side of the insulating substrate, and a fluorescent light emitter provided on at least the blue LED light emitting element. White LED light emitting element.
 以下に説明するように、本発明によれば、絶縁基板、および、この絶縁基板を用いて白色系の発光出力を向上させた発光素子を提供することができる。 As will be described below, according to the present invention, it is possible to provide an insulating substrate and a light-emitting element with improved white light-emitting output using the insulating substrate.
図1は、本発明の絶縁基板の作製における電気化学的粗面化処理に用いられる交番波形電流波形図の一例を示すグラフである。FIG. 1 is a graph showing an example of an alternating waveform current waveform diagram used for electrochemical roughening treatment in the production of an insulating substrate of the present invention. 図2は、本発明の絶縁基板の作製における交流を用いた電気化学的粗面化処理におけるラジアル型セルの一例を示す概略図である。FIG. 2 is a schematic view showing an example of a radial cell in an electrochemical surface roughening process using alternating current in the production of the insulating substrate of the present invention. 図3は、本発明の絶縁基板の作製における陽極酸化処理に用いられる陽極酸化処理装置の概略図である。FIG. 3 is a schematic view of an anodizing apparatus used for anodizing in the production of the insulating substrate of the present invention. 図4は、本発明の絶縁基板の作製における機械粗面化処理に用いられるブラシグレイニングの工程の概念を示す概略図である。FIG. 4 is a schematic view showing the concept of the brush graining process used for the mechanical surface roughening process in the production of the insulating substrate of the present invention. 図5は、本発明の白色系LED発光素子の一構成例を示した模式的な断面図である。FIG. 5 is a schematic cross-sectional view showing a configuration example of the white LED light emitting element of the present invention. 図6は、従来の蛍光体混色型の白色系LED発光素子の一構成例を示した模式的な断面図である。FIG. 6 is a schematic cross-sectional view showing a configuration example of a conventional phosphor-mixed white LED light emitting element.
 〔絶縁基板〕
 以下に、本発明の絶縁基板について詳細に説明する。
 本発明の絶縁基板は、アルミニウム基板と、上記アルミニウム基板の表面に設けられる絶縁層とを有する絶縁基板であって、上記絶縁層がアルミニウムの陽極酸化皮膜であり、上記絶縁層を構成する元素のうち、アルミニウムおよび酸素以外の元素の含有率が20原子%以下であり、上記アルミニウム基板の表面が、平均波長5~100μmの大波構造および/または平均開口径0.7~5μmの中波構造の形状を有する絶縁基板である。
 次に、本発明の絶縁基板を構成するアルミニウム基板および絶縁層(アルミニウムの陽極酸化皮膜)について説明する。
[Insulated substrate]
Hereinafter, the insulating substrate of the present invention will be described in detail.
The insulating substrate of the present invention is an insulating substrate having an aluminum substrate and an insulating layer provided on the surface of the aluminum substrate, wherein the insulating layer is an anodized film of aluminum, and the elements constituting the insulating layer are Among them, the content of elements other than aluminum and oxygen is 20 atomic% or less, and the surface of the aluminum substrate has a large wave structure with an average wavelength of 5 to 100 μm and / or a medium wave structure with an average aperture diameter of 0.7 to 5 μm. An insulating substrate having a shape.
Next, the aluminum substrate and insulating layer (aluminum anodic oxide film) constituting the insulating substrate of the present invention will be described.
 <アルミニウム基板>
 本発明の絶縁基板に用いられるアルミニウム基板は、公知のアルミニウム基板を用いることができ、純アルミニウム基板のほか、アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハー、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等を用いることもできる。
 ここで、上記合金板に含まれてもよい異元素としては、ケイ素、鉄、銅、マンガン、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタン等が挙げられ、合金中の異元素の含有量は、10質量%以下であるのが好ましい。
<Aluminum substrate>
As the aluminum substrate used for the insulating substrate of the present invention, a known aluminum substrate can be used. In addition to a pure aluminum substrate, an alloy plate containing aluminum as a main component and a trace amount of foreign elements; low-purity aluminum (for example, recycled) A substrate in which high-purity aluminum is vapor-deposited on the material); a substrate in which high-purity aluminum is coated on the surface of a silicon wafer, quartz, glass or the like by a method such as vapor deposition or sputtering; a resin substrate in which aluminum is laminated; it can.
Here, the foreign elements that may be included in the alloy plate include silicon, iron, copper, manganese, magnesium, chromium, zinc, bismuth, nickel, titanium, etc., and the content of the foreign elements in the alloy is It is preferably 10% by mass or less.
 このように本発明の絶縁基板に用いられるアルミニウム基板は、その組成が特定されるものではなく、例えば、アルミニウムハンドブック第4版(1990年、軽金属協会発行)に記載されている従来公知の素材、例えば、JIS A1050、JIS A1100、JIS A1070、Mnを含むJIS A3004、国際登録合金 3103A等のAl-Mn系アルミニウム基板を適宜利用することができる。また、引張強度を増す目的で、これらのアルミニウム合金に0.1質量%以上のマグネシウムを添加したAl-Mg系合金、Al-Mn-Mg系合金(JIS A3005)を用いることもできる。更に、ZrやSiを含むAl-Zr系合金やAl-Si系合金を用いることもできる。更に、Al-Mg-Si系合金を用いることもできる。 Thus, the composition of the aluminum substrate used for the insulating substrate of the present invention is not specified. For example, a conventionally known material described in Aluminum Handbook 4th Edition (1990, published by Light Metal Association), For example, an Al—Mn-based aluminum substrate such as JIS50A1050, JIS A1100, JIS A1070, JIS A3004 containing Mn, and internationally registered alloy 3103A can be used as appropriate. For the purpose of increasing the tensile strength, an Al—Mg alloy or an Al—Mn—Mg alloy (JIS A3005) obtained by adding 0.1 mass% or more of magnesium to these aluminum alloys can also be used. Furthermore, an Al—Zr alloy or an Al—Si alloy containing Zr or Si can also be used. Furthermore, an Al—Mg—Si based alloy can also be used.
 JIS1050材に関しては、特開昭59-153861号、特開昭61-51395号、特開昭62-146694号、特開昭60-215725号、特開昭60-215726号、特開昭60-215727号、特開昭60-216728号、特開昭61-272367号、特開昭58-11759号、特開昭58-42493号、特開昭58-221254号、特開昭62-148295号、特開平4-254545号、特開平4-165041号、特公平3-68939号、特開平3-234594号、特公平1-47545号、特開昭62-140894号、特公平1-35910号および特公昭55-28874号の各公報に記載されている。 Regarding JIS 1050 materials, JP-A-59-153861, JP-A-61-51395, JP-A-62-146694, JP-A-60-215725, JP-A-60-215726, JP-A-60- No. 215727, JP-A-60-216728, JP-A-61-272367, JP-A-58-11759, JP-A-58-42493, JP-A-58-212254, JP-A-62-148295 JP-A-4-254545, JP-A-4-165541, JP-B-3-68939, JP-A-3-234594, JP-B-1-47545, JP-A-62-140894, JP-B-1-35910 And Japanese Patent Publication No. 55-28874.
 JIS1070材に関しては、特開平7-81264号、特開平7-305133号、特開平8-49034号、特開平8-73974号、特開平8-108659号および特開平8-92679号の各公報に記載されている。 Regarding the JIS 1070 material, each of JP-A-7-81264, JP-A-7-305133, JP-A-8-49034, JP-A-8-73974, JP-A-8-108659, and JP-A-8-92679 is disclosed. Are listed.
 Al-Mg系合金に関しては、特公昭62-5080号、特公昭63-60823号、特公平3-61753号、特開昭60-203496号、特開昭60-203497号、特公平3-11635号、特開昭61-274993号、特開昭62-23794号、特開昭63-47347号、特開昭63-47348号、特開昭63-47349号、特開昭64-1293号、特開昭63-135294号、特開昭63-87288号、特公平4-73392号、特公平7-100844号、特開昭62-149856号、特公平4-73394号、特開昭62-181191号、特公平5-76530号、特開昭63-30294号、特公平6-37116号、特開平2-215599号および特開昭61-201747号の各公報に記載されている。 Regarding Al-Mg alloys, JP-B-62-5080, JP-B-63-60823, JP-B-3-61753, JP-A-60-203396, JP-A-60-203497, JP-B-3-11635 are used. JP, 61-274993, JP 62-23794, JP 63-47347, JP 63-47348, JP 63-47349, JP 64-12793, JP-A-63-135294, JP-A-63-87288, JP-B-4-73392, JP-B-7-1000084, JP-A-62-149856, JP-B-4-73394, JP-A-62- 181911, JP-B-5-76530, JP-A-63-30294, JP-B-6-37116, JP-A-2-215599, and JP-A-61-201747. It is.
 Al-Mn系合金に関しては、特開昭60-230951号、特開平1-306288号、特開平2-293189号、特公昭54-42284号、特公平4-19290号、特公平4-19291号、特公平4-19292号、特開昭61-35995号、特開昭64-51992号および特開平4-226394号の各公報、米国特許第5,009,722号明細書、同第5,028,276号明細書等に記載されている。 Regarding Al-Mn alloys, JP-A-60-230951, JP-A-1-306288, JP-A-2-293189, JP-B-54-42284, JP-B-4-19290, JP-B-4-19291 JP-B-4-19292, JP-A-61-35995, JP-A-64-51992, and JP-A-4-226394, US Pat. No. 5,009,722, No. 028,276 and the like.
 Al-Mn-Mg系合金に関しては、特開昭62-86143号、特開平3-222796号、特公昭63-60824号、特開昭60-63346号、特開昭60-63347号および特開平1-293350号の各公報、欧州特許第223,737号、米国特許第4,818,300号、英国特許第1,222,777号の各明細書等に記載されている。 Regarding Al-Mn-Mg alloys, JP-A-62-86143, JP-A-3-222296, JP-B-63-60824, JP-A-60-63346, JP-A-60-63347 and JP-A-60-63347 are disclosed. No. 1-293350, European Patent No. 223,737, US Pat. No. 4,818,300, British Patent No. 1,222,777 and the like.
 Al-Zr系合金に関しては、特公昭63-15978号、特開昭61-51395号、特開昭63-143234号および特開昭63-143235号の各公報等に記載されている。 The Al—Zr alloy is described in Japanese Patent Publication Nos. 63-15978, 61-51395, 63-143234, and 63-143235.
 Al-Mg-Si系合金に関しては、英国特許第1,421,710号明細書等に記載されている。 The Al—Mg—Si alloy is described in British Patent No. 1,421,710.
 アルミニウム合金を板材とするには、例えば、下記の方法を採用することができる。
 まず、所定の合金成分含有量に調整したアルミニウム合金溶湯に、常法に従い、清浄化処理を行い、鋳造する。清浄化処理には、溶湯中の水素等の不要ガスを除去するために、フラックス処理、アルゴンガス、塩素ガス等を用いる脱ガス処理、セラミックチューブフィルタ、セラミックフォームフィルタ等のいわゆるリジッドメディアフィルタや、アルミナフレーク、アルミナボール等をろ材とするフィルタや、グラスクロスフィルタ等を用いるフィルタリング処理、あるいは、脱ガス処理とフィルタリング処理を組み合わせた処理が行われる。
In order to use an aluminum alloy as a plate material, for example, the following method can be employed.
First, a molten aluminum alloy adjusted to a predetermined alloy component content is subjected to a cleaning process and cast according to a conventional method. In the cleaning process, in order to remove unnecessary gas such as hydrogen in the molten metal, flux treatment, degassing process using argon gas, chlorine gas, etc., so-called rigid media filter such as ceramic tube filter, ceramic foam filter, A filtering process using a filter that uses alumina flakes, alumina balls or the like as a filter medium, a glass cloth filter, or a combination of a degassing process and a filtering process is performed.
 これらの清浄化処理は、溶湯中の非金属介在物、酸化物等の異物による欠陥や、溶湯に溶け込んだガスによる欠陥を防ぐために実施されることが好ましい。溶湯のフィルタリングに関しては、特開平6-57432号、特開平3-162530号、特開平5-140659号、特開平4-231425号、特開平4-276031号、特開平5-311261号、特開平6-136466号の各公報等に記載されている。また、溶湯の脱ガスに関しては、特開平5-51659号公報、実開平5-49148号公報等に記載されている。本出願人も、特開平7-40017号公報において、溶湯の脱ガスに関する技術を提案している。 These cleaning treatments are preferably carried out in order to prevent defects caused by foreign substances such as non-metallic inclusions and oxides in the molten metal and defects caused by gas dissolved in the molten metal. Regarding filtering of the molten metal, JP-A-6-57432, JP-A-3-162530, JP-A-5-140659, JP-A-4-231425, JP-A-4-276031, JP-A-5-312661, JP-A-5-312661 It is described in each publication of JP-A-6-136466. Further, the degassing of the molten metal is described in JP-A-5-51659, JP-A-5-49148, and the like. The present applicant has also proposed a technique relating to degassing of molten metal in Japanese Patent Application Laid-Open No. 7-40017.
 ついで、上述したように清浄化処理を施された溶湯を用いて鋳造を行う。鋳造方法に関しては、DC鋳造法に代表される固定鋳型を用いる方法と、連続鋳造法に代表される駆動鋳型を用いる方法がある。
 DC鋳造においては、冷却速度が0.5~30℃/秒の範囲で凝固する。1℃未満であると粗大な金属間化合物が多数形成されることがある。DC鋳造を行った場合、板厚300~800mmの鋳塊を製造することができる。その鋳塊を、常法に従い、必要に応じて面削を行い、通常、表層の1~30mm、好ましくは1~10mmを切削する。その前後において、必要に応じて、均熱化処理を行う。均熱化処理を行う場合、金属間化合物が粗大化しないように、450~620℃で1~48時間の熱処理を行う。熱処理が1時間より短い場合には、均熱化処理の効果が不十分となることがある。
Next, casting is performed using the molten metal that has been subjected to the cleaning treatment as described above. As for the casting method, there are a method using a fixed mold represented by a DC casting method and a method using a driving mold represented by a continuous casting method.
In DC casting, solidification occurs at a cooling rate of 0.5 to 30 ° C./second. When the temperature is less than 1 ° C., many coarse intermetallic compounds may be formed. When DC casting is performed, an ingot having a thickness of 300 to 800 mm can be produced. The ingot is chamfered as necessary according to a conventional method, and usually 1 to 30 mm, preferably 1 to 10 mm, of the surface layer is cut. Before and after that, soaking treatment is performed as necessary. When soaking treatment is performed, heat treatment is performed at 450 to 620 ° C. for 1 to 48 hours so that the intermetallic compound does not become coarse. If the heat treatment is shorter than 1 hour, the effect of soaking may be insufficient.
 その後、熱間圧延、冷間圧延を行ってアルミニウム基板の圧延板とする。熱間圧延の開始温度は350~500℃が適当である。熱間圧延の前もしくは後、またはその途中において、中間焼鈍処理を行ってもよい。中間焼鈍処理の条件は、バッチ式焼鈍炉を用いて280~600℃で2~20時間、好ましくは350~500℃で2~10時間加熱するか、連続焼鈍炉を用いて400~600℃で6分以下、好ましくは450~550℃で2分以下加熱するかである。連続焼鈍炉を用いて10~200℃/秒の昇温速度で加熱して、結晶組織を細かくすることもできる。 Then, hot rolling and cold rolling are performed to obtain a rolled plate of an aluminum substrate. A suitable starting temperature for hot rolling is 350 to 500 ° C. An intermediate annealing treatment may be performed before or after hot rolling or in the middle thereof. The conditions for the intermediate annealing treatment are heating at 280 to 600 ° C. for 2 to 20 hours, preferably 350 to 500 ° C. for 2 to 10 hours using a batch annealing furnace, or 400 to 600 ° C. using a continuous annealing furnace. Heating is performed for 6 minutes or less, preferably 450 to 550 ° C. for 2 minutes or less. The crystal structure can be made finer by heating at a heating rate of 10 to 200 ° C./second using a continuous annealing furnace.
 以上の工程によって、所定の厚さ、例えば、0.1~0.5mmに仕上げられたアルミニウム基板は、更にローラレベラ、テンションレベラ等の矯正装置によって平面性を改善してもよい。平面性の改善は、アルミニウム基板をシート状にカットした後に行ってもよいが、生産性を向上させるためには、連続したコイルの状態で行うことが好ましい。また、所定の板幅に加工するため、スリッタラインを通してもよい。また、アルミニウム基板同士の摩擦による傷の発生を防止するために、アルミニウム基板の表面に薄い油膜を設けてもよい。油膜には、必要に応じて、揮発性のものや、不揮発性のものが適宜用いられる。 The flatness of the aluminum substrate finished to a predetermined thickness, for example, 0.1 to 0.5 mm by the above steps may be further improved by a correction device such as a roller leveler or a tension leveler. The flatness may be improved after the aluminum substrate is cut into a sheet, but in order to improve the productivity, it is preferable to perform it in a continuous coil state. Further, a slitter line may be used for processing into a predetermined plate width. Moreover, in order to prevent the generation | occurrence | production of the damage | wound by friction between aluminum substrates, you may provide a thin oil film on the surface of an aluminum substrate. As the oil film, a volatile or non-volatile film is appropriately used as necessary.
 一方、連続鋳造法としては、双ロール法(ハンター法)、3C法に代表される冷却ロールを用いる方法、双ベルト法(ハズレー法)、アルスイスキャスターII型に代表される冷却ベルトや冷却ブロックを用いる方法が、工業的に行われている。連続鋳造法を用いる場合には、冷却速度が100~1000℃/秒の範囲で凝固する。連続鋳造法は、一般的には、DC鋳造法に比べて冷却速度が速いため、アルミマトリックスに対する合金成分固溶度を高くすることができるという特徴を有する。連続鋳造法に関しては、本出願人によって提案された技術が、特開平3-79798号、特開平5-201166号、特開平5-156414号、特開平6-262203号、特開平6-122949号、特開平6-210406号、特開平6-26308号の各公報等に記載されている。 On the other hand, as the continuous casting method, a twin roll method (hunter method), a method using a cooling roll typified by the 3C method, a double belt method (Hazley method), a cooling belt or a cooling block typified by Al-Swiss Caster II type The method using is industrially performed. When the continuous casting method is used, it solidifies at a cooling rate of 100 to 1000 ° C./second. Since the continuous casting method generally has a higher cooling rate than the DC casting method, it has a feature that the solid solubility of the alloy component in the aluminum matrix can be increased. Regarding the continuous casting method, the techniques proposed by the present applicant are disclosed in JP-A-3-79798, JP-A-5-201166, JP-A-5-156414, JP-A-6-262203, and JP-A-6-122949. JP-A-6-210406, JP-A-6-26308, and the like.
 連続鋳造を行った場合において、例えば、ハンター法等の冷却ロールを用いる方法を用いると、板厚1~10mmの鋳造板を直接、連続鋳造することができ、熱間圧延の工程を省略することができるというメリットが得られる。また、ハズレー法等の冷却ベルトを用いる方法を用いると、板厚10~50mmの鋳造板を鋳造することができ、一般的に、鋳造直後に熱間圧延ロールを配置し連続的に圧延することで、板厚1~10mmの連続鋳造圧延板が得られる。 When continuous casting is performed, for example, if a method using a cooling roll such as the Hunter method is used, a cast plate having a thickness of 1 to 10 mm can be directly continuously cast, and the hot rolling step is omitted. The advantage of being able to In addition, when a method using a cooling belt such as the Husley method is used, a cast plate having a thickness of 10 to 50 mm can be cast. Generally, a hot rolling roll is arranged immediately after casting and continuously rolled. Thus, a continuous cast and rolled plate having a thickness of 1 to 10 mm can be obtained.
 これらの連続鋳造圧延板は、DC鋳造について説明したのと同様に、冷間圧延、中間焼鈍、平面性の改善、スリット等の工程を経て、所定の厚さ、例えば、0.1~0.5mmの板厚に仕上げられる。連続鋳造法を用いた場合の中間焼鈍条件および冷間圧延条件については、本出願人によって提案された技術が、特開平6-220593号、特開平6-210308号、特開平7-54111号、特開平8-92709号の各公報等に記載されている。 These continuous cast and rolled sheets are subjected to processes such as cold rolling, intermediate annealing, improvement of flatness, slits, and the like in the same manner as described for DC casting, and a predetermined thickness, for example, 0.1 to 0.00. Finished to a thickness of 5 mm. As for the intermediate annealing conditions and the cold rolling conditions when using the continuous casting method, the techniques proposed by the present applicant are disclosed in JP-A-6-220593, JP-A-6-210308, JP-A-7-54111, It is described in JP-A-8-92709.
 アルミニウム基板の結晶組織は、化学的粗面化処理や電気化学的粗面化処理を行った場合、アルミニウム基板の表面の結晶組織が面質不良の発生の原因となることがあるので、表面においてあまり粗大でないことが好ましい。アルミニウム基板の表面の結晶組織は、幅が200μm以下であるのが好ましく、100μm以下であるのがより好ましく、50μm以下であるのが更に好ましく、また、結晶組織の長さが5000μm以下であるのが好ましく、1000μm以下であるのがより好ましく、500μm以下であるのが更に好ましい。これらに関して、本出願人によって提案された技術が、特開平6-218495号、特開平7-39906号、特開平7-124609号の各公報等に記載されている。 The crystal structure of the aluminum substrate may cause poor surface quality when the surface of the aluminum substrate is subjected to chemical or electrochemical surface roughening. It is preferably not too coarse. The crystal structure on the surface of the aluminum substrate preferably has a width of 200 μm or less, more preferably 100 μm or less, still more preferably 50 μm or less, and the length of the crystal structure is 5000 μm or less. Is preferably 1000 μm or less, and more preferably 500 μm or less. With respect to these, techniques proposed by the present applicant are described in Japanese Patent Laid-Open Nos. 6-218495, 7-39906, and 7-124609.
 アルミニウム基板の合金成分分布は、化学的粗面化処理や電気化学的粗面化処理を行った場合、アルミニウム基板の表面の合金成分の不均一な分布に起因して面質不良が発生することがあるので、表面においてあまり不均一でないことが好ましい。これらに関して、本出願人によって提案された技術が、特開平6-48058号、特開平5-301478号、特開平7-132689号の各公報等に記載されている。 The distribution of alloy components on the aluminum substrate may cause poor surface quality due to non-uniform distribution of alloy components on the surface of the aluminum substrate when chemical or electrochemical surface roughening is performed. Therefore, it is preferable that the surface is not very uneven. With regard to these, techniques proposed by the present applicant are described in JP-A-6-48058, JP-A-5-301478, JP-A-7-132689, and the like.
 アルミニウム基板の金属間化合物は、その金属間化合物のサイズや密度が、化学的粗面化処理や電気化学的粗面化処理に影響を与える場合がある。これらに関して、本出願人によって提案された技術が、特開平7-138687号、特開平4-254545号の各公報等に記載されている。 In the case of an intermetallic compound on an aluminum substrate, the size and density of the intermetallic compound may affect the chemical roughening treatment or the electrochemical roughening treatment. With regard to these, techniques proposed by the present applicant are described in Japanese Patent Laid-Open Nos. 7-138687 and 4-254545.
 本発明においては、上記に示されるようなアルミニウム基板をその最終圧延工程等において、積層圧延、転写等により凹凸を形成させて用いることもできる。 In the present invention, an aluminum substrate as described above can be used by forming irregularities by lamination rolling, transfer, etc. in the final rolling step or the like.
 本発明の絶縁基板に用いられるアルミニウム基板は、アルミニウムウェブであってもよく、枚葉状シートであってもよい。
 アルミニウムウェブの場合、アルミニウムの荷姿としては、例えば、鉄製パレットにハードボードとフェルトとを敷き、製品両端に段ボールドーナツ板を当て、ポリチュ-ブで全体を包み、コイル内径部に木製ドーナツを挿入し、コイル外周部にフェルトを当て、帯鉄で絞め、その外周部に表示を行う。また、包装材としては、ポリエチレンフィルム、緩衝材としては、ニードルフェルト、ハードボードを用いることができる。この他にもいろいろな形態があるが、安定して、キズも付かず運送等が可能であればこの方法に限るものではない。
The aluminum substrate used for the insulating substrate of the present invention may be an aluminum web or a sheet-like sheet.
In the case of an aluminum web, for example, the packing form of aluminum is, for example, laying hardboard and felt on an iron pallet, applying cardboard donut plates to both ends of the product, wrapping the whole with a polytube, and inserting a wooden donut into the inner diameter of the coil Then, a felt is applied to the outer periphery of the coil, the band is squeezed with a band, and the display is performed on the outer periphery. Moreover, a polyethylene film can be used as the packaging material, and a needle felt or a hard board can be used as the cushioning material. There are various other forms, but the present invention is not limited to this method as long as it is stable and can be transported without being damaged.
 本発明の絶縁基板に用いられるアルミニウム基板の厚みは、0.1~2.0mm程度であり、0.15~1.5mmであるのが好ましく、0.2~1.0mmであるのがより好ましい。この厚さは、ユーザーの希望等により適宜変更することができる。 The thickness of the aluminum substrate used for the insulating substrate of the present invention is about 0.1 to 2.0 mm, preferably 0.15 to 1.5 mm, and more preferably 0.2 to 1.0 mm. preferable. This thickness can be appropriately changed according to the user's wishes or the like.
 <絶縁層(アルミニウムの陽極酸化皮膜)>
 本発明の絶縁基板を構成する絶縁層は、上記アルミニウム基板の表面に設けられる層であって、アルミニウムの陽極酸化皮膜である。
 ここで、上記絶縁層は、上記アルミニウム基板とは別のアルミニウム基材の陽極酸化皮膜であってもよいが、後述する本発明の絶縁基板の製造方法に示すように、上記アルミニウム基板の一部に陽極酸化処理を施すことによりアルミニウム基板上に形成される陽極酸化皮膜であるのが好ましい。
<Insulating layer (anodized film of aluminum)>
The insulating layer constituting the insulating substrate of the present invention is a layer provided on the surface of the aluminum substrate, and is an anodized film of aluminum.
Here, the insulating layer may be an anodized film of an aluminum base different from the aluminum substrate, but as shown in the method for manufacturing an insulating substrate of the present invention described later, a part of the aluminum substrate. An anodized film formed on an aluminum substrate by anodizing is preferably used.
 本発明においては、上記絶縁層を構成する元素のうち、アルミニウムおよび酸素以外の元素(以下、「X元素」という。)の含有率は20原子%以下である。
 ここで、X元素は、後述する陽極酸化処理で用いる電解液に由来する残留イオン(酸根)を想定したものであり、電解液の種類によって異なるため特に限定されないが、硫黄、リン、クロム、炭素、ホウ素、窒素、塩素、ナトリウム、カリウム等が挙げられる。
 また、X元素の含有率は、EDX(Energy Dispersive X-ray Spectrometer エネルギー分散型X線分光器)を用いて測定した値である。
In the present invention, among the elements constituting the insulating layer, the content of elements other than aluminum and oxygen (hereinafter referred to as “X element”) is 20 atomic% or less.
Here, the X element is assumed to be residual ions (acid radicals) derived from the electrolytic solution used in the later-described anodizing treatment and is not particularly limited because it varies depending on the type of the electrolytic solution. However, sulfur, phosphorus, chromium, carbon , Boron, nitrogen, chlorine, sodium, potassium and the like.
The X element content is a value measured using an EDX (Energy Dispersive X-ray Spectrometer).
 このような絶縁層を有する本発明の絶縁基板を用いた発光素子は、従来の白色系LED発光素子よりも白色系の発光出力が良好となる。
 これは、後述する実施例の結果から推測できるように、X元素の含有率を低くすることにより絶縁層における光の透過率が高く(具体的には、後述する実施例においては可視光透過率が70%以上と)なり、アルミニウム基板の高い光反射性を活かすことが可能になったためと考えられる。
 また、白色系の発光出力がより良好となる理由から、X元素の含有率は10原子%以下であるのが好ましい。
A light emitting element using the insulating substrate of the present invention having such an insulating layer has a white light emitting output better than a conventional white LED light emitting element.
As can be inferred from the results of Examples described later, this is because the light transmittance in the insulating layer is increased by lowering the X element content (specifically, the visible light transmittance in the Examples described later). This is probably because the high light reflectivity of the aluminum substrate can be utilized.
In addition, the X element content is preferably 10 atomic% or less for the reason that the white light emission output becomes better.
 <表面形状>
 本発明の絶縁基板は、上述したアルミニウム基板の表面において、平均波長5~100μmの大波構造および/または平均開口径0.7~5μmの中波構造の形状を有する。
 ここで、上記大波構造および上記中波構造をいずれも有する態様は、上記大波構造と上記中波構造とが重畳した構造のことをいう。
 このような形状を有すると、上述したアルミニウム基板と絶縁層との界面における可視光の吸収が抑制され、かつ、光散乱性が向上することにより、発光素子の白色系の発光出力が良好となる。
 また、本発明の絶縁基板は、上述したアルミニウム基板の表面において、LEDを実装する際に設ける金属電気配線層との密着性が向上する理由から、平均開口径0.01~0.2μmの小波構造が更に重畳した構造の形状を有するのが好ましい。
<Surface shape>
The insulating substrate of the present invention has a large wave structure with an average wavelength of 5 to 100 μm and / or a medium wave structure with an average aperture diameter of 0.7 to 5 μm on the surface of the aluminum substrate described above.
Here, the aspect having both the large wave structure and the medium wave structure refers to a structure in which the large wave structure and the medium wave structure are superimposed.
With such a shape, absorption of visible light at the above-described interface between the aluminum substrate and the insulating layer is suppressed, and the light scattering property is improved, so that the white light emission output of the light emitting element is improved. .
In addition, the insulating substrate of the present invention is a small wave having an average opening diameter of 0.01 to 0.2 μm because the adhesion to the metal electrical wiring layer provided when mounting the LED is improved on the surface of the aluminum substrate described above. It is preferable to have a shape of a structure in which the structures are further superimposed.
 ここで、アルミニウム基板表面の大波構造の平均波長、中波構造の平均開口径および小波構造の平均開口径の測定方法は、以下の通りである。 Here, the measuring method of the average wavelength of the large wave structure on the surface of the aluminum substrate, the average opening diameter of the medium wave structure, and the average opening diameter of the small wave structure is as follows.
 (1)大波構造の平均波長
 触針式粗さ計で2次元粗さ測定を行い、ISO4287に規定されている平均山間隔Smを5回測定し、その平均値を平均波長とする。
(1) the average wavelength stylus roughness meter large wave structure performs a two-dimensional roughness measurement, the average peak distance S m as defined in ISO4287 were measured 5 times, and the average value as the average wavelength.
 (2)中波構造の平均開口径
 高分解能走査型電子顕微鏡(SEM)を用いて多孔質アルミナ担体の表面を真上から倍率2000倍で撮影し、得られた電子顕微鏡写真においてピットの周囲が環状に連なっている中波構造のピット(中波ピット)を少なくとも50個抽出し、その直径を読み取って開口径とし、平均開口径を算出する。大波構造を重畳した構造の場合も同じ方法で測定する。
 また、測定のバラツキを抑制するために、市販の画像解析ソフトによる等価円直径測定を行うこともできる。この場合、上記電子顕微鏡写真をスキャナーで取り込んでデジタル化し、ソフトウェアにより二値化した後、等価円直径を求める。
 本発明者が測定したところ、目視測定の結果とデジタル処理の結果とは、ほぼ同じ値を示した。大波構造を重畳した構造の場合も同様であった。
(2) Average aperture diameter of medium wave structure The surface of the porous alumina carrier was photographed at a magnification of 2000 times from directly above using a high resolution scanning electron microscope (SEM). At least 50 pits (medium wave pits) having a medium wave structure connected in a ring shape are extracted, and the diameter is read to obtain the opening diameter, and the average opening diameter is calculated. The same method is used for a structure with a large wave structure superimposed.
In addition, in order to suppress variation in measurement, it is possible to perform equivalent circle diameter measurement using commercially available image analysis software. In this case, the electron micrograph is captured by a scanner, digitized, and binarized by software, and then an equivalent circle diameter is obtained.
As a result of measurement by the present inventor, the result of visual measurement and the result of digital processing showed almost the same value. The same applies to the structure in which the large wave structure is superimposed.
 (3)小波構造の平均開口径
 高分解能走査型電子顕微鏡(SEM)を用いて多孔質アルミナ担体の表面を真上から倍率50000倍で撮影し、得られたSEM写真において小波構造のピット(小波ピット)を少なくとも50個抽出し、その直径を読み取って開口径とし、平均開口径を算出する。
(3) Average aperture diameter of the small wave structure The surface of the porous alumina support was photographed at a magnification of 50000 times from directly above using a high resolution scanning electron microscope (SEM). At least 50 pits) are extracted, and the diameter is read to obtain the opening diameter, and the average opening diameter is calculated.
 本発明においては、平均波長5~100μmの大波構造は、上述した光散乱性がより向上する理由から、平均波長7~75μmであるのが好ましく、平均波長10~50μmであるのがより好ましい。
 また、平均開口径0.70~5μmの中波構造は、上述した可視光の吸収抑制効果がより向上し、光散乱性もより向上する理由から、平均開口径0.85~4μmであるのが好ましく、平均開口径1~3μmであるのがより好ましい。
 更に、平均開口径0.01~0.2μmの小波構造は、LEDを実装する際に設ける金属電気配線層との密着性がより向上する理由から、平均開口径0.02~0.18μmであるのが好ましく、平均開口径0.03~0.15μmであるのがより好ましい。
In the present invention, the large wave structure having an average wavelength of 5 to 100 μm preferably has an average wavelength of 7 to 75 μm, more preferably an average wavelength of 10 to 50 μm, for the reason that the above-described light scattering property is further improved.
In addition, the medium wave structure having an average aperture diameter of 0.70 to 5 μm has an average aperture diameter of 0.85 to 4 μm because the above-described effect of suppressing the absorption of visible light is further improved and the light scattering property is also improved. The average opening diameter is more preferably 1 to 3 μm.
Further, the small wave structure having an average opening diameter of 0.01 to 0.2 μm has an average opening diameter of 0.02 to 0.18 μm because the adhesion to the metal electric wiring layer provided when mounting the LED is further improved. The average opening diameter is preferably 0.03 to 0.15 μm.
 〔絶縁基板の製造方法〕
 以下に、本発明の絶縁基板の製造方法について詳細に説明する。
 本発明の絶縁基板の製造方法は、上述した本発明の絶縁基板を製造する方法であって、上記アルミニウム基板の一部に陽極酸化処理を施して、アルミニウム基板上にアルミニウムの陽極酸化被膜を形成させる工程を有し、上記陽極酸化処理における電流密度が0.001~20A/dm2である絶縁基板の製造方法である。
[Insulating substrate manufacturing method]
Below, the manufacturing method of the insulated substrate of this invention is demonstrated in detail.
The method for producing an insulating substrate according to the present invention is a method for producing the above-described insulating substrate according to the present invention, wherein an anodic oxidation treatment is performed on a part of the aluminum substrate to form an anodized aluminum film on the aluminum substrate. And an insulating substrate manufacturing method in which the current density in the anodizing treatment is 0.001 to 20 A / dm 2 .
 また、本発明の絶縁基板の製造方法は、上記アルミニウム基板に対して、陽極酸化処理以外に、粗面化処理やアルカリエッチング処理等の他の表面処理を施すことができる。
 具体的には、上述した表面形状を形成させるための代表的方法として、例えば、アルミニウム基板に機械的粗面化処理、アルカリエッチング処理、酸によるデスマット処理および電解液を用いた電気化学的粗面化処理を順次施す方法;アルミニウム基板に機械的粗面化処理、アルカリエッチング処理、酸によるデスマット処理および異なる電解液を用いた電気化学的粗面化処理を複数回施す方法;アルミニウム基板にアルカリエッチング処理、酸によるデスマット処理および電解液を用いた電気化学的粗面化処理を順次施す方法;アルミニウム基板にアルカリエッチング処理、酸によるデスマット処理および異なる電解液を用いた電気化学的粗面化処理を複数回施す方法;が挙げられる。なお、これらの方法において、上記電気化学的粗面化処理の後、更に、アルカリエッチング処理および酸によるデスマット処理を施してもよい。
Moreover, the manufacturing method of the insulated substrate of this invention can perform other surface treatments, such as a roughening process and an alkali etching process, with respect to the said aluminum substrate other than an anodizing process.
Specifically, as a typical method for forming the above-described surface shape, for example, mechanical roughening treatment, alkali etching treatment, desmutting treatment with acid, and electrochemical roughening using an electrolytic solution on an aluminum substrate A method of sequentially performing a surface treatment; a method of performing a mechanical surface roughening treatment, an alkali etching treatment, a desmutting treatment with an acid and an electrochemical surface roughening treatment using different electrolytes a plurality of times; an alkali etching on an aluminum substrate Treatment, desmutting treatment with acid and electrochemical surface roughening treatment using electrolyte solution; alkaline etching treatment on aluminum substrate, acid desmutting treatment and electrochemical surface roughening treatment using different electrolyte solution A method of applying a plurality of times; In these methods, after the electrochemical roughening treatment, an alkali etching treatment and an acid desmutting treatment may be further performed.
 中でも、他の表面処理(アルカリエッチング処理等)の条件にもよるが、大波構造および中波構造が重畳した表面形状を形成させるには、機械的粗面化処理、硝酸を主体とする電解液を用いた電気化学的粗面化処理および塩酸を主体とする電解液を用いた電気化学的粗面化処理を順次施す方法が好適に挙げられる。 Among them, although depending on the conditions of other surface treatment (alkali etching treatment, etc.), in order to form a surface shape on which a large wave structure and a medium wave structure are superimposed, a mechanical roughening treatment, an electrolytic solution mainly composed of nitric acid A method of sequentially performing an electrochemical surface roughening treatment using a solution and an electrochemical surface roughening treatment using an electrolytic solution mainly composed of hydrochloric acid is preferable.
 次に、これらの表面処理について説明する。 Next, these surface treatments will be described.
 <機械的粗面化処理>
 機械的粗面化処理は、電気化学的粗面化処理と比較して、より安価に、平均波長5~100μmの凹凸のある表面を形成することができるため、大波構造を形成させる粗面化処理の手段として有効である。
 機械的粗面化処理方法としては、例えば、アルミニウム基板の表面を金属ワイヤーでひっかくワイヤーブラシグレイン法、研磨球と研磨剤でアルミニウム表面を砂目立てするボールグレイン法、特開平6-135175号公報および特公昭50-40047号公報に記載されているナイロンブラシと研磨剤で表面を砂目立てするブラシグレイン法を用いることができる。
 また、凹凸面をアルミニウム基板に圧接する転写方法を用いることもできる。即ち、特開昭55-74898号、特開昭60-36195号、特開昭60-203496号の各公報に記載されている方法のほか、転写を数回行うことを特徴とする特開平6-55871号公報、表面が弾性であることを特徴とする特開平6-24168号公報に記載されている方法も適用可能である。
 また、放電加工、ショットブラスト、レーザ、プラズマエッチング等を用いて、微細な凹凸を食刻した転写ロールを用いて繰り返し転写を行う方法や、微細粒子を塗布した凹凸のある面を、アルミニウム基板に接面させ、その上より複数回繰り返し圧力を加え、アルミニウム基板に微細粒子の平均直径に相当する凹凸パターンを複数回繰り返し転写させる方法を用いることもできる。転写ロールへ微細な凹凸を付与する方法としては、特開平3-8635号、特開平3-66404号、特開昭63-65017号の各公報等に記載されている公知の方法を用いることができる。また、ロール表面にダイス、バイト、レーザ等を使って2方向から微細な溝を切り、表面に角形の凹凸をつけてもよい。このロール表面には、公知のエッチング処理等を行って、形成させた角形の凹凸が丸みを帯びるような処理を行ってもよい。
 また、表面の硬度を上げるために、焼き入れ、ハードクロムメッキ等を行ってもよい。
 そのほかにも、機械的粗面化処理としては、特開昭61-162351号公報、特開昭63-104889号公報等に記載されている方法を用いることもできる。
 本発明においては、生産性等を考慮して上述したそれぞれの方法を併用することもできる。これらの機械的粗面化処理は、電気化学的粗面化処理の前に行うのが好ましい。
<Mechanical roughening>
The mechanical surface roughening treatment can form a rough surface with an average wavelength of 5 to 100 μm at a lower cost than the electrochemical surface roughening treatment. It is effective as a processing means.
Examples of the mechanical surface roughening treatment include, for example, a wire brush grain method in which the surface of an aluminum substrate is scratched with a metal wire, a ball grain method in which the aluminum surface is grained with a polishing ball and an abrasive, JP-A-6-135175, and A brush grain method in which the surface is grained with a nylon brush and an abrasive as described in JP-B-50-40047 can be used.
A transfer method in which the uneven surface is pressed against the aluminum substrate can also be used. That is, in addition to the methods described in JP-A-55-74898, JP-A-60-36195, and JP-A-60-20396, transfer is performed several times. The method described in Japanese Patent Laid-Open No. 558871 and Japanese Patent Laid-Open No. 6-24168 characterized in that the surface is elastic is also applicable.
Also, by using electric discharge machining, shot blasting, laser, plasma etching, etc., a method of repeatedly transferring using a transfer roll with fine irregularities etched, or an irregular surface coated with fine particles on an aluminum substrate It is also possible to use a method in which the surface is brought into contact and a pressure is repeatedly applied a plurality of times, and a concavo-convex pattern corresponding to the average diameter of fine particles is repeatedly transferred to the aluminum substrate a plurality of times. As a method for imparting fine irregularities to the transfer roll, known methods described in JP-A-3-8635, JP-A-3-66404, JP-A-63-65017, etc. may be used. it can. Further, a fine groove may be cut from two directions using a die, a cutting tool, a laser, or the like on the roll surface, and the surface may be provided with square irregularities. The roll surface may be subjected to a known etching process or the like so that the formed square irregularities are rounded.
Further, in order to increase the surface hardness, quenching, hard chrome plating, or the like may be performed.
In addition, as the mechanical surface roughening treatment, methods described in JP-A Nos. 61-162351 and 63-104889 can be used.
In the present invention, the above-described methods can be used in combination in consideration of productivity and the like. These mechanical surface roughening treatments are preferably performed before the electrochemical surface roughening treatment.
 以下、機械的粗面化処理として好適に用いられるブラシグレイン法について説明する。ブラシグレイン法は、一般に、円柱状の胴の表面に、ナイロン(商標)、プロピレン、塩化ビニル樹脂等の合成樹脂からなる合成樹脂毛等のブラシ毛を多数植設したローラ状ブラシを用い、回転するローラ状ブラシに研磨剤を含有するスラリー液を噴きかけながら、上記アルミニウム基板の表面の一方または両方を擦ることにより行う方法である。上記ローラ状ブラシおよびスラリー液の代わりに、表面に研磨層を設けたローラである研磨ローラを用いることもできる。ローラ状ブラシを用いる場合、曲げ弾性率が好ましくは10,000~40,000kgf/cm2、より好ましくは15,000~35,000kgf/cm2であり、かつ、毛腰の強さが好ましくは500gf以下、より好ましくは400gf以下であるブラシ毛を用いる。ブラシ毛の直径は、一般的には、0.2~0.9mmである。ブラシ毛の長さは、ローラ状ブラシの外径および胴の直径に応じて適宜決定することができるが、一般的には、10~100mmである。 Hereinafter, the brush grain method used suitably as a mechanical roughening process is demonstrated. In general, the brush grain method uses a roller-shaped brush in which a large number of synthetic resin bristles made of synthetic resin such as nylon (trademark), propylene, and vinyl chloride resin are implanted on the surface of a cylindrical body. In this method, one or both of the surfaces of the aluminum substrate are rubbed while a slurry liquid containing an abrasive is sprayed onto the roller-shaped brush. Instead of the roller brush and the slurry liquid, a polishing roller which is a roller having a polishing layer on the surface can be used. When using a roller-shaped brush, flexural modulus preferably 10,000 ~ 40,000kgf / cm 2, and more is preferably 15,000 ~ 35,000kgf / cm 2, and the strength of hair waist preferably Brush hair of 500 gf or less, more preferably 400 gf or less is used. The diameter of the bristles is generally 0.2 to 0.9 mm. The length of the brush bristles can be appropriately determined according to the outer diameter of the roller brush and the diameter of the cylinder, but is generally 10 to 100 mm.
 研磨剤は公知の物を用いることができる。例えば、パミストン、ケイ砂、水酸化アルミニウム、アルミナ粉、炭化ケイ素、窒化ケイ素、火山灰、カーボランダム、金剛砂等の研磨剤;これらの混合物を用いることができる。中でも、パミストン、ケイ砂が好ましい。特に、ケイ砂は、パミストンに比べて硬く、壊れにくいので粗面化効率に優れる点で好ましい。研磨剤の平均粒径は、粗面化効率に優れ、かつ、砂目立てピッチを狭くすることができる点で、3~50μmであるのが好ましく、6~45μmであるのがより好ましい。研磨剤は、例えば、水中に懸濁させて、スラリー液として用いる。スラリー液には、研磨剤のほかに、増粘剤、分散剤(例えば、界面活性剤)、防腐剤等を含有させることができる。スラリー液の比重は0.5~2であるのが好ましい。 A well-known thing can be used for an abrasive | polishing agent. For example, abrasives such as pumicestone, silica sand, aluminum hydroxide, alumina powder, silicon carbide, silicon nitride, volcanic ash, carborundum, and gold sand; a mixture thereof can be used. Of these, pumiston and silica sand are preferable. In particular, silica sand is preferable in terms of excellent surface roughening efficiency because it is harder and less likely to break than Pamiston. The average particle diameter of the abrasive is preferably 3 to 50 μm, more preferably 6 to 45 μm, from the viewpoints of excellent surface roughening efficiency and a narrow graining pitch. For example, the abrasive is suspended in water and used as a slurry. In addition to the abrasive, the slurry liquid may contain a thickener, a dispersant (for example, a surfactant), a preservative, and the like. The specific gravity of the slurry liquid is preferably 0.5-2.
 機械的粗面化処理に適した装置としては、例えば、特公昭50-40047号公報に記載された装置を挙げることができる。 As an apparatus suitable for the mechanical surface roughening treatment, for example, an apparatus described in Japanese Patent Publication No. 50-40047 can be given.
 <電気化学的粗面化処理>
 電気化学的粗面化処理(以下、「電解粗面化処理」ともいう。)には、通常の交流を用いた電気化学的粗面化処理に用いられる電解液を用いることができる。中でも、塩酸または硝酸を主体とする電解液を用いるのが、上述した表面形状を得やすいので好ましい。
<Electrochemical roughening treatment>
For the electrochemical surface roughening treatment (hereinafter also referred to as “electrolytic surface roughening treatment”), an electrolytic solution used for the electrochemical surface roughening treatment using a normal alternating current can be used. Among them, it is preferable to use an electrolytic solution mainly composed of hydrochloric acid or nitric acid because the above-described surface shape can be easily obtained.
 電解粗面化処理は、例えば、特公昭48-28123号公報および英国特許第896,563号明細書に記載されている電気化学的グレイン法(電解グレイン法)に従うことができる。この電解グレイン法は、正弦波形の交流電流を用いるものであるが、特開昭52-58602号公報に記載されているような特殊な波形を用いて行ってもよい。また、特開平3-79799号公報に記載されている波形を用いることもできる。また、特開昭55-158298号、特開昭56-28898号、特開昭52-58602号、特開昭52-152302号、特開昭54-85802号、特開昭60-190392号、特開昭58-120531号、特開昭63-176187号、特開平1-5889号、特開平1-280590号、特開平1-118489号、特開平1-148592号、特開平1-178496号、特開平1-188315号、特開平1-154797号、特開平2-235794号、特開平3-260100号、特開平3-253600号、特開平4-72079号、特開平4-72098号、特開平3-267400号、特開平1-141094の各公報に記載されている方法も適用できる。また、前述のほかに、電解コンデンサーの製造方法として提案されている特殊な周波数の交番電流を用いて電解することも可能である。例えば、米国特許第4,276,129号明細書および同第4,676,879号明細書に記載されている。 Electrolytic surface roughening can be performed according to, for example, the electrochemical grain method (electrolytic grain method) described in Japanese Patent Publication No. 48-28123 and British Patent No. 896,563. This electrolytic grain method uses a sinusoidal alternating current, but it may be performed using a special waveform as described in JP-A-52-58602. Further, the waveform described in JP-A-3-79799 can also be used. Further, JP-A-55-158298, JP-A-56-28898, JP-A-52-58602, JP-A-52-152302, JP-A-54-85802, JP-A-60-190392, JP-A-58-120531, JP-A-63-176187, JP-A-1-5889, JP-A-1-280590, JP-A-1-118489, JP-A-1-148592, and JP-A-1-17896. JP-A-1-188315, JP-A-1-1549797, JP-A-2-235794, JP-A-3-260100, JP-A-3-253600, JP-A-4-72079, JP-A-4-72098, The methods described in JP-A-3-267400 and JP-A-1-141094 can also be applied. In addition to the above, it is also possible to perform electrolysis using an alternating current having a special frequency that has been proposed as a method of manufacturing an electrolytic capacitor. For example, it is described in US Pat. Nos. 4,276,129 and 4,676,879.
 電解槽および電源については、種々提案されているが、米国特許第4203637号明細書、特開昭56-123400号、特開昭57-59770号、特開昭53-12738号、特開昭53-32821号、特開昭53-32822号、特開昭53-32823号、特開昭55-122896号、特開昭55-132884号、特開昭62-127500号、特開平1-52100号、特開平1-52098号、特開昭60-67700号、特開平1-230800号、特開平3-257199号の各公報等に記載されているものを用いることができる。また、特開昭52-58602号、特開昭52-152302号、特開昭53-12738号、特開昭53-12739号、特開昭53-32821号、特開昭53-32822号、特開昭53-32833号、特開昭53-32824号、特開昭53-32825号、特開昭54-85802号、特開昭55-122896号、特開昭55-132884号、特公昭48-28123号、特公昭51-7081号、特開昭52-133838号、特開昭52-133840号号、特開昭52-133844号、特開昭52-133845号、特開昭53-149135号、特開昭54-146234号の各公報等に記載されているもの等も用いることができる。 Various electrolyzers and power sources have been proposed. US Pat. No. 4,023,637, JP-A-56-123400, JP-A-57-59770, JP-A-53-12738, JP-A-53. -32821, JP-A-53-32222, JP-A-53-32823, JP-A-55-122896, JP-A-55-13284, JP-A-62-127500, JP-A-1-52100. JP-A-1-52098, JP-A-60-67700, JP-A-1-230800, JP-A-3-257199 and the like can be used. Further, JP-A-52-58602, JP-A-52-152302, JP-A-53-12738, JP-A-53-12739, JP-A-53-32821, JP-A-53-32222, JP 53-32833, JP 53-32824, JP 53-32825, JP 54-85802, JP 55-122896, JP 55-13284, JP 48-28123, JP-B-51-7081, JP-A-52-13338, JP-A-52-133840, JP-A-52-133844, JP-A-52-133845, JP-A-53- Nos. 149135 and 54-146234 can also be used.
 電解液である酸性溶液としては、硝酸、塩酸のほかに、米国特許第4,671,859号、同第4,661,219号、同第4,618,405号、同第4,600,482号、同第4,566,960号、同第4,566,958号、同第4,566,959号、同第4,416,972号、同第4,374,710号、同第4,336,113号、同第4,184,932号の各明細書等に記載されている電解液を用いることもできる。 As an acidic solution which is an electrolytic solution, in addition to nitric acid and hydrochloric acid, U.S. Pat. Nos. 4,671,859, 4,661,219, 4,618,405, 4,600, 482, 4,566,960, 4,566,958, 4,566,959, 4,416,972, 4,374,710, The electrolyte solution described in each specification of 4,336,113 and 4,184,932 can also be used.
 酸性溶液の濃度は0.5~2.5質量%であるのが好ましいが、上記のスマット除去処理での使用を考慮すると、0.7~2.0質量%であるのが特に好ましい。また、液温は20~80℃であるのが好ましく、30~60℃であるのがより好ましい。 The concentration of the acidic solution is preferably 0.5 to 2.5% by mass, but it is particularly preferably 0.7 to 2.0% by mass in consideration of use in the smut removal treatment. The liquid temperature is preferably 20 to 80 ° C., more preferably 30 to 60 ° C.
 塩酸または硝酸を主体とする水溶液は、濃度1~100g/Lの塩酸または硝酸の水溶液に、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウム等の硝酸イオンを有する硝酸化合物または塩化アルミニウム、塩化ナトリウム、塩化アンモニウム等の塩酸イオンを有する塩酸化合物の少なくとも一つを1g/Lから飽和するまでの範囲で添加して使用することができる。また、塩酸または硝酸を主体とする水溶液には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、シリカ等のアルミニウム合金中に含まれる金属が溶解していてもよい。好ましくは、塩酸または硝酸の濃度0.5~2質量%の水溶液にアルミニウムイオンが3~50g/Lとなるように、塩化アルミニウム、硝酸アルミニウム等を添加した液を用いることが好ましい。 An aqueous solution mainly composed of hydrochloric acid or nitric acid is an aqueous solution of hydrochloric acid or nitric acid with a concentration of 1 to 100 g / L, such as nitric acid compounds having nitrate ions such as aluminum nitrate, sodium nitrate and ammonium nitrate, or aluminum chloride, sodium chloride and ammonium chloride. At least one of the hydrochloric acid compounds having hydrochloric acid ions can be used by adding in a range from 1 g / L to saturation. Moreover, the metal contained in aluminum alloys, such as iron, copper, manganese, nickel, titanium, magnesium, a silica, may melt | dissolve in the aqueous solution which has hydrochloric acid or nitric acid as a main component. Preferably, a solution obtained by adding aluminum chloride, aluminum nitrate or the like to an aqueous solution of hydrochloric acid or nitric acid having a concentration of 0.5 to 2% by mass so that aluminum ions are 3 to 50 g / L is preferably used.
 更に、Cuと錯体を形成しうる化合物を添加して使用することによりCuを多く含有するアルミニウム基板に対しても均一な砂目立てが可能になる。Cuと錯体を形成しうる化合物としては、例えば、アンモニア;メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、シクロヘキシルアミン、トリエタノールアミン、トリイソプロパノールアミン、EDTA(エチレンジアミン四酢酸)等のアンモニアの水素原子を炭化水素基(脂肪族、芳香族等)等で置換して得られるアミン類;炭酸ナトリウム、炭酸カリウム、炭酸水素カリウム等の金属炭酸塩類が挙げられる。また、硝酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム、炭酸アンモニウム等のアンモニウム塩も挙げられる。温度は10~60℃が好ましく、20~50℃がより好ましい。 Furthermore, by adding and using a compound capable of forming a complex with Cu, uniform graining is possible even for an aluminum substrate containing a large amount of Cu. Examples of the compound capable of forming a complex with Cu include ammonia; hydrogen atom of ammonia such as methylamine, ethylamine, dimethylamine, diethylamine, trimethylamine, cyclohexylamine, triethanolamine, triisopropanolamine, EDTA (ethylenediaminetetraacetic acid). And amines obtained by substituting with a hydrocarbon group (aliphatic, aromatic, etc.); metal carbonates such as sodium carbonate, potassium carbonate, potassium hydrogen carbonate and the like. In addition, ammonium salts such as ammonium nitrate, ammonium chloride, ammonium sulfate, ammonium phosphate, and ammonium carbonate are also included. The temperature is preferably 10 to 60 ° C, more preferably 20 to 50 ° C.
 電気化学的粗面化処理に用いられる交流電源波は、特に限定されず、サイン波、矩形波、台形波、三角波等が用いられるが、矩形波または台形波が好ましく、台形波が特に好ましい。台形波とは、図1に示したものをいう。この台形波において電流がゼロからピークに達するまでの時間(TP)は1~3msecであるのが好ましい。1msec未満であると、アルミニウム基板の進行方向と垂直に発生するチャタマークという処理ムラが発生しやすい。TPが3msecを超えると、特に硝酸電解液を用いる場合、電解処理で自然発生的に増加するアンモニウムイオン等に代表される電解液中の微量成分の影響を受けやすくなり、均一な砂目立てが行われにくくなる。 The AC power source wave used for the electrochemical surface roughening treatment is not particularly limited, and a sine wave, a rectangular wave, a trapezoidal wave, a triangular wave or the like is used, but a rectangular wave or a trapezoidal wave is preferable, and a trapezoidal wave is particularly preferable. A trapezoidal wave means what was shown in FIG. In this trapezoidal wave, the time (TP) until the current reaches a peak from zero is preferably 1 to 3 msec. If it is less than 1 msec, processing irregularities such as chatter marks that occur perpendicular to the traveling direction of the aluminum substrate are likely to occur. When TP exceeds 3 msec, especially when a nitric acid electrolyte is used, it is easily affected by trace components in the electrolyte typified by ammonium ions and the like that spontaneously increase by electrolytic treatment, and uniform graining is performed. It becomes hard to be broken.
 台形波交流のduty比は1:2~2:1のものが使用可能であるが、特開平5-195300号公報に記載されているように、アルミニウムにコンダクタロールを用いない間接給電方式においてはduty比が1:1のものが好ましい。台形波交流の周波数は0.1~120Hzのものを用いることが可能であるが、50~70Hzが設備上好ましい。50Hzよりも低いと、主極のカーボン電極が溶解しやすくなり、また、70Hzよりも高いと、電源回路上のインダクタンス成分の影響を受けやすくなり、電源コストが高くなる。 A trapezoidal wave AC duty ratio of 1: 2 to 2: 1 can be used. However, as described in Japanese Patent Laid-Open No. 5-195300, in an indirect power feeding method that does not use a conductor roll for aluminum. A duty ratio of 1: 1 is preferable. A trapezoidal AC frequency of 0.1 to 120 Hz can be used, but 50 to 70 Hz is preferable in terms of equipment. When the frequency is lower than 50 Hz, the carbon electrode of the main electrode is easily dissolved, and when the frequency is higher than 70 Hz, it is easily affected by an inductance component on the power supply circuit, and the power supply cost is increased.
 電解槽には1個以上の交流電源を接続することができる。主極に対向するアルミニウム基板に加わる交流の陽極と陰極との電流比をコントロールし、均一な砂目立てを行うことと、主極のカーボンを溶解することとを目的として、図2に示したように、補助陽極18を設置し、交流電流の一部を分流させることが好ましい。図2において、11はアルミニウム基板であり、12はラジアルドラムローラであり、13aおよび13bは主極であり、14は電解処理液であり、15は電解液供給口であり、16はスリットであり、17は電解液通路であり、18は補助陽極であり、19aおよび19bはサイリスタであり、20は交流電源であり、40は主電解槽であり、50は補助陽極槽である。整流素子またはスイッチング素子を介して電流値の一部を二つの主電極とは別の槽に設けた補助陽極に直流電流として分流させることにより、主極に対向するアルミニウム基板上で作用するアノード反応にあずかる電流値と、カソード反応にあずかる電流値との比を制御することができる。主極に対向するアルミニウム基板上で、陰極反応と陽極反応とにあずかる電気量の比(陰極時電気量/陽極時電気量)は、0.3~0.95であるのが好ましい。 One or more AC power supplies can be connected to the electrolytic cell. As shown in FIG. 2, the current ratio between the AC anode and cathode applied to the aluminum substrate facing the main electrode is controlled to achieve uniform graining and to dissolve the carbon of the main electrode. In addition, it is preferable to install the auxiliary anode 18 and divert part of the alternating current. In FIG. 2, 11 is an aluminum substrate, 12 is a radial drum roller, 13a and 13b are main poles, 14 is an electrolytic treatment liquid, 15 is an electrolytic solution supply port, and 16 is a slit. , 17 is an electrolyte passage, 18 is an auxiliary anode, 19a and 19b are thyristors, 20 is an AC power source, 40 is a main electrolytic cell, and 50 is an auxiliary anode cell. An anodic reaction that acts on the aluminum substrate facing the main electrode by diverting a part of the current value as a direct current to an auxiliary anode provided in a tank separate from the two main electrodes via a rectifier or switching element It is possible to control the ratio between the current value for the current and the current value for the cathode reaction. On the aluminum substrate facing the main electrode, the ratio of the amount of electricity involved in the cathode reaction and the anodic reaction (cathode amount of electricity / anode amount of electricity) is preferably 0.3 to 0.95.
 電解槽は、縦型、フラット型、ラジアル型等の公知の表面処理に用いる電解槽が使用可能であるが、特開平5-195300号公報に記載されているようなラジアル型電解槽が特に好ましい。電解槽内を通過する電解液は、アルミニウムウェブの進行方向に対してパラレルであってもカウンターであってもよい。 As the electrolytic cell, electrolytic cells used for known surface treatments such as a vertical type, a flat type, and a radial type can be used, but a radial type electrolytic cell as described in JP-A-5-195300 is particularly preferable. . The electrolytic solution passing through the electrolytic cell may be parallel to the traveling direction of the aluminum web or may be a counter.
 (硝酸電解)
 硝酸を主体とする電解液を用いた電気化学的粗面化処理により、平均開口径0.7~5μmの凹凸(中波構造)を形成させることができる。ただし、電気量を比較的多くしたときは、電解反応が集中し、波長5μmを超える凹凸も生成する。
 このような表面形状を得るためには、電解反応が終了した時点でのアルミニウム基板のアノード反応にあずかる電気量の総和が、1~1000C/dm2であるのが好ましく、50~300C/dm2であるのがより好ましい。この際の電流密度は20~100A/dm2であるのが好ましい。
 また、例えば、高濃度、例えば、硝酸濃度15~35質量%の硝酸電解液を用いて30~60℃で電解を行ったり、硝酸濃度0.7~2質量%の硝酸電解液を用いて高温、例えば、80℃以上で電解を行ったりすることで、平均開口径0.01~0.2μmの凹凸(小波構造)を形成させることもできる。
(Nitric acid electrolysis)
Irregularities (medium wave structure) having an average opening diameter of 0.7 to 5 μm can be formed by electrochemical surface roughening using an electrolytic solution mainly composed of nitric acid. However, when the amount of electricity is relatively large, the electrolytic reaction is concentrated, and irregularities exceeding the wavelength of 5 μm are also generated.
In order to obtain such a surface shape, the total amount of electricity involved in the anode reaction of the aluminum substrate at the end of the electrolytic reaction is preferably 1 to 1000 C / dm 2 , and preferably 50 to 300 C / dm 2. It is more preferable that The current density at this time is preferably 20 to 100 A / dm 2 .
Further, for example, electrolysis is performed at 30 to 60 ° C. using a nitric acid electrolytic solution having a high concentration, for example, a nitric acid concentration of 15 to 35% by mass, or a high temperature using a nitric acid electrolytic solution having a nitric acid concentration of 0.7 to 2% by mass. For example, by performing electrolysis at 80 ° C. or higher, irregularities (small wave structure) having an average opening diameter of 0.01 to 0.2 μm can be formed.
 (塩酸電解)
 塩酸はそれ自身のアルミニウム溶解力が強いため、わずかな電解を加えるだけで表面に微細な凹凸を形成させることが可能である。この微細な凹凸は、平均開口径が0.01~0.2μmの小波構造であり、アルミニウム基板の表面の全面に均一に生成する。
 このような表面形状を得るためには電解反応が終了した時点でのアルミニウム基板のアノード反応にあずかる電気量の総和が、1~100C/dm2であるのが好ましく、20~70C/dm2であるのがより好ましい。この際の電流密度は20~50A/dm2であるのが好ましい。
(Hydrochloric acid electrolysis)
Since hydrochloric acid itself has a strong ability to dissolve aluminum, it is possible to form fine irregularities on the surface with only slight electrolysis. The fine irregularities have a small wave structure with an average opening diameter of 0.01 to 0.2 μm, and are uniformly generated on the entire surface of the aluminum substrate.
In order to obtain such a surface shape, the total amount of electricity involved in the anode reaction of the aluminum substrate at the end of the electrolytic reaction is preferably 1 to 100 C / dm 2 , preferably 20 to 70 C / dm 2 . More preferably. The current density at this time is preferably 20 to 50 A / dm 2 .
 このような塩酸を主体とする電解液での電気化学的粗面化処理では、アノード反応にあずかる電気量の総和を400~2000C/dm2と大きくすることでクレーター状の大きなうねりを同時に形成することも可能である。この場合は平均波長10~30μmのクレーター状のうねりに重畳して平均開口径0.01~0.3μmの微細な凹凸が全面に生成する。この場合、平均開口径0.7~5μmの中波構造は生成しない。 In such an electrochemical surface roughening treatment with an electrolyte mainly composed of hydrochloric acid, a large crater-like swell is simultaneously formed by increasing the total amount of electricity involved in the anode reaction to 400 to 2000 C / dm 2. It is also possible. In this case, fine irregularities having an average opening diameter of 0.01 to 0.3 μm are formed on the entire surface by superimposing on a crater-like wave having an average wavelength of 10 to 30 μm. In this case, a medium wave structure with an average opening diameter of 0.7 to 5 μm is not generated.
 上記の硝酸、塩酸等の電解液中で行われる電解粗面化処理の前および/または後に、アルミニウム基板に陰極電解処理を行うことが好ましい。この陰極電解処理により、アルミニウム基板表面にスマットが生成するとともに、水素ガスが発生してより均一な電解粗面化処理が可能となる。
 陰極電解処理は、酸性溶液中で陰極電気量が好ましくは3~80C/dm2、より好ましくは5~30C/dm2で行われる。陰極電気量が3C/dm2未満であると、スマット付着量が不足する場合があり、また、80C/dm2を超えると、スマット付着量が過剰となる場合がある。電解液は、電解粗面化処理で使用する溶液と同一であっても異なっていてもよい。
It is preferable to perform a cathodic electrolysis treatment on the aluminum substrate before and / or after the electrolytic surface-roughening treatment performed in an electrolytic solution such as nitric acid or hydrochloric acid. By this cathodic electrolysis treatment, smut is generated on the surface of the aluminum substrate, and hydrogen gas is generated to enable more uniform electrolytic surface roughening treatment.
Cathodic electrolysis is carried out in an acidic solution with a cathodic charge of preferably 3 to 80 C / dm 2 , more preferably 5 to 30 C / dm 2 . When the amount of cathodic electricity is less than 3 C / dm 2 , the amount of smut adhesion may be insufficient, and when it exceeds 80 C / dm 2 , the amount of smut adhesion may be excessive. The electrolytic solution may be the same as or different from the solution used in the electrolytic surface roughening treatment.
 <アルカリエッチング処理>
 アルカリエッチング処理は、上記アルミニウム基板をアルカリ溶液に接触させることにより、表層を溶解させる処理である。
 電解粗面化処理より前に行われるアルカリエッチング処理は、機械的粗面化処理を行っていない場合には、アルミニウム基板(圧延アルミ)の表面の圧延油、汚れ、自然酸化皮膜等を除去することを目的として、また、既に機械的粗面化処理を行っている場合には、機械的粗面化処理によって生成した凹凸のエッジ部分を溶解させ、急峻な凹凸を滑らかなうねりを持つ表面に変えることを目的として行われる。
<Alkaline etching treatment>
The alkali etching treatment is a treatment for dissolving the surface layer by bringing the aluminum substrate into contact with an alkali solution.
The alkali etching treatment performed before the electrolytic surface roughening treatment removes rolling oil, dirt, natural oxide film, etc. on the surface of the aluminum substrate (rolled aluminum) when the mechanical surface roughening treatment is not performed. For this purpose, and when the mechanical surface roughening treatment has already been performed, the edge portion of the unevenness generated by the mechanical surface roughening treatment is dissolved, and the steep unevenness is converted into a surface having smooth undulations. It is done for the purpose of changing.
 アルカリエッチング処理の前に機械的粗面化処理を行わない場合、エッチング量は、0.1~10g/m2であるのが好ましく、1~5g/m2であるのがより好ましい。エッチング量が0.1g/m2未満であると、表面の圧延油、汚れ、自然酸化皮膜等が残存する場合があるため、後段の電解粗面化処理において均一な凹凸生成ができずムラが発生してしまう場合がある。一方、エッチング量が1~10g/m2であると、表面の圧延油、汚れ、自然酸化皮膜等の除去が十分に行われる。上記範囲を超えるエッチング量とするのは、経済的に不利となる。 When the mechanical surface roughening treatment is not performed before the alkali etching treatment, the etching amount is preferably 0.1 to 10 g / m 2 , and more preferably 1 to 5 g / m 2 . If the etching amount is less than 0.1 g / m 2 , rolling oil, dirt, natural oxide film, etc. may remain on the surface, so that uniform unevenness cannot be generated in the subsequent electrolytic surface roughening treatment, resulting in unevenness. May occur. On the other hand, when the etching amount is from 1 to 10 g / m 2 , the surface of the rolling oil, dirt, natural oxide film and the like are sufficiently removed. An etching amount exceeding the above range is economically disadvantageous.
 アルカリエッチング処理の前に機械的粗面化処理を行う場合、エッチング量は、3~20g/m2であるのが好ましく、5~15g/m2であるのがより好ましい。エッチング量が3g/m2未満であると、機械的粗面化処理等によって形成された凹凸を平滑化できない場合があり、後段の電解粗面化処理において均一な凹凸形成ができない場合がある。一方、エッチング量が20g/m2を超えると、凹凸構造が消滅してしまう場合がある。 When the mechanical surface roughening treatment is performed before the alkali etching treatment, the etching amount is preferably 3 to 20 g / m 2 , and more preferably 5 to 15 g / m 2 . If the etching amount is less than 3 g / m 2 , the unevenness formed by mechanical surface roughening may not be smoothed, and uniform unevenness may not be formed in the subsequent electrolytic surface roughening treatment. On the other hand, when the etching amount exceeds 20 g / m 2 , the concavo-convex structure may disappear.
 電解粗面化処理の直後に行うアルカリエッチング処理は、酸性電解液中で生成したスマットを溶解させることと、電解粗面化処理により形成された凹凸のエッジ部分を溶解させることを目的として行われる。電解粗面化処理で形成される凹凸は電解液の種類によって異なるためにその最適なエッチング量も異なるが、電解粗面化処理後に行うアルカリエッチング処理のエッチング量は、0.1~5g/m2であるのが好ましい。硝酸電解液を用いた場合、塩酸電解液を用いた場合よりもエッチング量は多めに設定する必要がある。電解粗面化処理が複数回行われる場合には、それぞれの処理後に、必要に応じてアルカリエッチング処理を行うことができる。 The alkali etching treatment performed immediately after the electrolytic surface roughening treatment is performed for the purpose of dissolving the smut generated in the acidic electrolyte and dissolving the uneven edge portion formed by the electrolytic surface roughening treatment. . The unevenness formed by the electrolytic surface roughening treatment varies depending on the type of the electrolytic solution, so the optimum etching amount also varies. However, the etching amount of the alkali etching treatment performed after the electrolytic surface roughening treatment is 0.1 to 5 g / m. 2 is preferred. When a nitric acid electrolyte is used, the etching amount needs to be set larger than when a hydrochloric acid electrolyte is used. When the electrolytic surface roughening treatment is performed a plurality of times, an alkali etching treatment can be performed as necessary after each treatment.
 アルカリ溶液に用いられるアルカリとしては、例えば、カセイアルカリ、アルカリ金属塩が挙げられる。具体的には、カセイアルカリとしては、例えば、カセイソーダ、カセイカリが挙げられる。また、アルカリ金属塩としては、例えば、タケイ酸ソーダ、ケイ酸ソーダ、メタケイ酸カリ、ケイ酸カリ等のアルカリ金属ケイ酸塩;炭酸ソーダ、炭酸カリ等のアルカリ金属炭酸塩;アルミン酸ソーダ、アルミン酸カリ等のアルカリ金属アルミン酸塩;グルコン酸ソーダ、グルコン酸カリ等のアルカリ金属アルドン酸塩;第二リン酸ソーダ、第二リン酸カリ、第三リン酸ソーダ、第三リン酸カリ等のアルカリ金属リン酸水素塩が挙げられる。中でも、エッチング速度が速い点および安価である点から、カセイアルカリの溶液、および、カセイアルカリとアルカリ金属アルミン酸塩との両者を含有する溶液が好ましい。特に、カセイソーダの水溶液が好ましい。 Examples of the alkali used in the alkaline solution include caustic alkali and alkali metal salts. Specifically, examples of caustic alkali include caustic soda and caustic potash. Examples of alkali metal salts include alkali metal silicates such as sodium silicate, sodium silicate, potassium metasilicate, and potassium silicate; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium aluminate and alumina. Alkali metal aluminates such as potassium acid; alkali metal aldones such as sodium gluconate and potassium gluconate; dibasic sodium phosphate, dibasic potassium phosphate, tribasic sodium phosphate, tertiary potassium phosphate, etc. An alkali metal hydrogen phosphate is mentioned. Among these, a caustic alkali solution and a solution containing both a caustic alkali and an alkali metal aluminate are preferable from the viewpoint of high etching rate and low cost. In particular, an aqueous solution of caustic soda is preferable.
 アルカリ溶液の濃度は、エッチング量に応じて決定することができるが、1~50質量%であるのが好ましく、10~35質量%であるのがより好ましい。アルカリ溶液中にアルミニウムイオンが溶解している場合には、アルミニウムイオンの濃度は、0.01~10質量%であるのが好ましく、3~8質量%であるのがより好ましい。アルカリ溶液の温度は20~90℃であるのが好ましい。処理時間は1~120秒であるのが好ましい。 The concentration of the alkaline solution can be determined according to the etching amount, but is preferably 1 to 50% by mass, more preferably 10 to 35% by mass. When aluminum ions are dissolved in the alkaline solution, the concentration of aluminum ions is preferably 0.01 to 10% by mass, and more preferably 3 to 8% by mass. The temperature of the alkaline solution is preferably 20 to 90 ° C. The treatment time is preferably 1 to 120 seconds.
 アルミニウム基板をアルカリ溶液に接触させる方法としては、例えば、アルミニウム基板をアルカリ溶液を入れた槽の中を通過させる方法、アルミニウム基板をアルカリ溶液を入れた槽の中に浸せきさせる方法、アルカリ溶液をアルミニウム基板の表面に噴きかける方法が挙げられる。 Examples of the method of bringing the aluminum substrate into contact with the alkaline solution include, for example, a method in which the aluminum substrate is passed through a tank containing the alkaline solution, a method in which the aluminum substrate is immersed in a tank containing the alkaline solution, and the alkali solution being aluminum. The method of spraying on the surface of a board | substrate is mentioned.
 <デスマット処理>
 電解粗面化処理またはアルカリエッチング処理を行った後、表面に残留する汚れ(スマット)を除去するために酸洗い(デスマット処理)が行われるのが好ましい。
 用いられる酸としては、例えば、硝酸、硫酸、リン酸、クロム酸、フッ化水素酸、ホウフッ化水素酸が挙げられる。上記デスマット処理は、例えば、上記アルミニウム基板を塩酸、硝酸、硫酸等の濃度0.5~30質量%の酸性溶液(アルミニウムイオン0.01~5質量%を含有する。)に接触させることにより行う。アルミニウム基板を酸性溶液に接触させる方法としては、例えば、アルミニウム基板を酸性溶液を入れた槽の中を通過させる方法、アルミニウム基板を酸性溶液を入れた槽の中に浸せきさせる方法、酸性溶液をアルミニウム基板の表面に噴きかける方法が挙げられる。デスマット処理においては、酸性溶液として、上述した電解粗面化処理において排出される硝酸を主体とする水溶液もしくは塩酸を主体とする水溶液の廃液、または、後述する陽極酸化処理において排出される硫酸を主体とする水溶液の廃液を用いることができる。デスマット処理の液温は、25~90℃であるのが好ましい。また、処理時間は、1~180秒であるのが好ましい。デスマット処理に用いられる酸性溶液には、アルミニウムおよびアルミニウム合金成分が溶け込んでいてもよい。
<Desmut treatment>
After the electrolytic surface roughening treatment or the alkali etching treatment, pickling (desmut treatment) is preferably performed in order to remove dirt (smut) remaining on the surface.
Examples of the acid used include nitric acid, sulfuric acid, phosphoric acid, chromic acid, hydrofluoric acid, and borohydrofluoric acid. The desmutting treatment is performed, for example, by bringing the aluminum substrate into contact with an acidic solution (containing aluminum ions of 0.01 to 5% by mass) having a concentration of 0.5 to 30% by mass such as hydrochloric acid, nitric acid, and sulfuric acid. . Examples of the method of bringing the aluminum substrate into contact with the acidic solution include a method in which the aluminum substrate is passed through a tank containing the acidic solution, a method in which the aluminum substrate is immersed in a tank containing the acidic solution, and the acidic solution being aluminum. The method of spraying on the surface of a board | substrate is mentioned. In the desmut treatment, the acid solution is mainly composed of an aqueous solution mainly composed of nitric acid or an aqueous solution mainly composed of hydrochloric acid discharged in the above-described electrolytic surface-roughening treatment, or sulfuric acid discharged in an anodic oxidation process described later. It is possible to use a waste solution of an aqueous solution. The temperature of the desmut treatment is preferably 25 to 90 ° C. The processing time is preferably 1 to 180 seconds. Aluminum and aluminum alloy components may be dissolved in the acidic solution used for the desmut treatment.
 <陽極酸化処理>
 本発明の絶縁基板の製造方法においては、所望により以上のような表面処理を施したアルミニウム基板に、陽極酸化処理を施す。
 陽極酸化処理を施すことにより、酸化アルミニウムからなる陽極酸化皮膜がアルミニウム基板の表面に形成され、多孔質または非孔質の絶縁層が得られる。
<Anodizing treatment>
In the method for manufacturing an insulating substrate according to the present invention, an anodizing treatment is performed on the aluminum substrate that has been subjected to the surface treatment as described above.
By performing the anodizing treatment, an anodized film made of aluminum oxide is formed on the surface of the aluminum substrate, and a porous or non-porous insulating layer is obtained.
 本発明においては、上記陽極酸化処理における電流密度を0.001~20A/dm2とする以外は、平版印刷版用支持体の製造等で行われている従来の方法で陽極酸化処理を施すことができる。
 具体的には、陽極酸化処理に用いられる溶液としては、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸、マロン酸、クエン酸、酒石酸、ホウ酸等を単独でまたは2種以上を組み合わせて用いることができる。
 この際、少なくともアルミニウム基板、電極、水道水、地下水等に通常含まれる成分が電解液中に含まれていても構わない。更には、第2、第3の成分が添加されていても構わない。ここでいう第2、第3の成分としては、例えば、Na、K、Mg、Li、Ca、Ti、Al、V、Cr、Mn、Fe、Co、Ni、Cu、Zn等の金属のイオン;アンモニウムイオン等の陽イオン;硝酸イオン、炭酸イオン、塩化物イオン、リン酸イオン、フッ化物イオン、亜硫酸イオン、チタン酸イオン、ケイ酸イオン、ホウ酸イオン等の陰イオンが挙げられ、0~10000ppm程度の濃度で含まれていてもよい。
In the present invention, except that the current density in the anodic oxidation treatment is 0.001 to 20 A / dm 2 , the anodic oxidation treatment is performed by a conventional method used in the production of a lithographic printing plate support. Can do.
Specifically, sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amidosulfonic acid, malonic acid, citric acid, tartaric acid, boric acid, etc. are used alone as the solution used for the anodizing treatment. Or in combination of two or more.
At this time, at least a component usually contained in an aluminum substrate, an electrode, tap water, ground water, or the like may be contained in the electrolytic solution. Furthermore, the 2nd, 3rd component may be added. Examples of the second and third components herein include metal ions such as Na, K, Mg, Li, Ca, Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn; Cation such as ammonium ion; anion such as nitrate ion, carbonate ion, chloride ion, phosphate ion, fluoride ion, sulfite ion, titanate ion, silicate ion, borate ion, etc., 0 to 10,000 ppm It may be contained at a concentration of about.
 また、陽極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、液温5~70℃、電圧1~100V、電解時間15秒~50分とするのが適当であるが、電流密度を0.001~20A/dm2とするには、電解液の濃度0.1~30.0質量%とするのが好ましい。 In addition, the conditions for anodizing treatment vary depending on the electrolyte used, and cannot be determined unconditionally. However, the solution temperature is 5 to 70 ° C., the voltage is 1 to 100 V, and the electrolysis time is 15 seconds to 50 minutes. Although appropriate, in order to set the current density to 0.001 to 20 A / dm 2 , the concentration of the electrolytic solution is preferably 0.1 to 30.0 mass%.
 本発明においては、アルミニウム基板と対極との間に直流を印加してもよく、交流を印加してもよいが、形成される陽極酸化皮膜のX元素の含有率を低くし、可視光透過率を向上させることができる理由から、電流密度は、0.001~20A/dm2であり、0.005~10A/dm2であるのが好ましく、0.01~5.0A/dm2がより好ましく、0.01~0.4A/dm2であるのが特に好ましい。
 また、連続的に陽極酸化処理を行う場合には、アルミニウム基板の一部に電流が集中していわゆる「焼け」が生じないように、陽極酸化処理の開始当初は、低電流密度で電流を流し、陽極酸化処理が進行するにつれ、電流密度を増加させるのが好ましい。連続的に陽極酸化処理を行う場合には、アルミニウム基板に、電解液を介して給電する液給電方式により行うのが好ましい。
In the present invention, direct current may be applied between the aluminum substrate and the counter electrode, or alternating current may be applied. However, the content of the X element in the formed anodic oxide film is reduced, and the visible light transmittance is reduced. reason the current density which can be improved is 0.001 ~ 20A / dm 2, is preferably from 0.005 ~ 10A / dm 2, 0.01 ~ 5.0A / dm 2 Gayori It is preferably 0.01 to 0.4 A / dm 2 .
In addition, when anodizing is continuously performed, current is applied at a low current density at the beginning of anodizing so that current is not concentrated on a part of the aluminum substrate and so-called “burning” does not occur. It is preferable to increase the current density as the anodizing treatment proceeds. In the case where the anodizing process is continuously performed, it is preferable that the anodizing process is performed by a liquid power feeding method in which power is supplied to the aluminum substrate through an electrolytic solution.
 陽極酸化皮膜が多孔質である場合、その平均ポア径が5~1000nm程度であり、平均ポア密度が1×106~1×1010/mm2程度である。 When the anodized film is porous, the average pore diameter is about 5 to 1000 nm, and the average pore density is about 1 × 10 6 to 1 × 10 10 / mm 2 .
 陽極酸化皮膜の厚さは1~200μmであるのが好ましい。1μm未満であると絶縁性に乏しく耐電圧が低下し、一方、200μmを超えると製造に多大な電力が必要となり、経済的に不利となる。陽極酸化皮膜の厚さは、2~100μmであるのがより好ましい。 The thickness of the anodized film is preferably 1 to 200 μm. If the thickness is less than 1 μm, the insulation is poor and the withstand voltage is lowered. On the other hand, if it exceeds 200 μm, a large amount of electric power is required for production, which is economically disadvantageous. The thickness of the anodized film is more preferably 2 to 100 μm.
 陽極酸化処理に用いられる電解装置としては、特開昭48-26638号、特開昭47-18739号、特公昭58-24517号の各公報等に記載されているものを用いることができる。中でも、図3に示す装置が好適に用いられる。図3は、アルミニウム基板の表面を陽極酸化処理する装置の一例を示す概略図である。陽極酸化処理装置410において、アルミニウム基板416は、図3中矢印で示すように搬送される。電解液418が貯溜された給電槽412にてアルミニウム基板416は給電電極420によって(+)に荷電される。そして、アルミニウム基板416は、給電槽412においてローラ422によって上方に搬送され、ニップローラ424によって下方に方向変換された後、電解液426が貯溜された電解処理槽414に向けて搬送され、ローラ428によって水平方向に方向転換される。ついで、アルミニウム基板416は、電解電極430によって(-)に荷電されることにより、その表面に陽極酸化皮膜が形成され、電解処理槽414を出たアルミニウム基板416は後工程に搬送される。上記陽極酸化処理装置410において、ローラ422、ニップローラ424およびローラ428によって方向転換手段が構成され、アルミニウム基板416は、給電槽412と電解処理槽414との槽間部において、上記ローラ422、424および428により、山型および逆U字型に搬送される。給電電極420と電解電極430とは、直流電源434に接続されている。 As the electrolysis apparatus used for the anodizing treatment, those described in JP-A-48-26638, JP-A-47-18739, JP-B-58-24517 and the like can be used. Among these, the apparatus shown in FIG. 3 is preferably used. FIG. 3 is a schematic view showing an example of an apparatus for anodizing the surface of an aluminum substrate. In the anodizing apparatus 410, the aluminum substrate 416 is transported as indicated by arrows in FIG. The aluminum substrate 416 is charged (+) by the power supply electrode 420 in the power supply tank 412 in which the electrolytic solution 418 is stored. Then, the aluminum substrate 416 is conveyed upward by the roller 422 in the power supply tank 412, changed in direction downward by the nip roller 424, and then conveyed toward the electrolytic treatment tank 414 in which the electrolytic solution 426 is stored. The direction is changed horizontally. Subsequently, the aluminum substrate 416 is charged to (−) by the electrolytic electrode 430 to form an anodized film on the surface thereof, and the aluminum substrate 416 exiting the electrolytic treatment tank 414 is transported to a subsequent process. In the anodizing apparatus 410, the roller 422, the nip roller 424 and the roller 428 constitute a direction changing means, and the aluminum substrate 416 is disposed between the power supply tank 412 and the electrolytic treatment tank 414 between the rollers 422, 424 and By 428, it is conveyed into a mountain shape and an inverted U shape. The feeding electrode 420 and the electrolytic electrode 430 are connected to a DC power source 434.
 図3の陽極酸化処理装置410の特徴は、給電槽412と電解処理槽414とを1枚の槽壁432で仕切り、アルミニウム基板416を槽間部において山型および逆U字型に搬送したことにある。これによって、槽間部におけるアルミニウム基板416の長さを最短にすることができる。よって、陽極酸化処理装置410の全体長を短くできるので、設備費を低減することができる。また、アルミニウム基板416を山型および逆U字型に搬送することによって、各槽412および414の槽壁432にアルミニウム基板416を通過させるための開口部を形成する必要がなくなる。よって、各槽412および414内の液面高さを必要レベルに維持するのに要する送液量を抑えることができるので、稼働費を低減することができる。 The feature of the anodizing apparatus 410 in FIG. 3 is that the feeding tank 412 and the electrolytic treatment tank 414 are partitioned by a single tank wall 432, and the aluminum substrate 416 is conveyed in a mountain shape and an inverted U shape between the tanks. It is in. As a result, the length of the aluminum substrate 416 in the inter-tank portion can be minimized. Therefore, the overall length of the anodizing apparatus 410 can be shortened, so that the equipment cost can be reduced. Further, by transporting the aluminum substrate 416 in a mountain shape and an inverted U shape, it is not necessary to form an opening for allowing the aluminum substrate 416 to pass through the tank wall 432 of each tank 412 and 414. Therefore, since the liquid feeding amount required to maintain the liquid level height in each tank 412 and 414 at a required level can be suppressed, the operating cost can be reduced.
 また、陽極酸化処理は、ある1つの処理条件で単独処理されてもよいが、陽極酸化皮膜の、場所による形状、あるいは深さ方向における形状、等のように形状を制御したい場合には、2つ以上の条件の異なる陽極酸化処理を順次組み合わせて処理してもよい。 In addition, the anodizing treatment may be performed independently under a certain processing condition. However, when it is desired to control the shape of the anodized film such as the shape depending on the location or the shape in the depth direction, 2 Two or more different anodizing treatments under different conditions may be sequentially combined.
 <封孔処理>
 本発明の絶縁基板の製造方法においては、必要に応じて陽極酸化皮膜が多孔質の場合、存在するマイクロポアを封じる封孔処理を行ってもよい。
 封孔処理は、沸騰水処理、熱水処理、蒸気処理、ケイ酸ソーダ処理、亜硝酸塩処理、酢酸アンモニウム処理等の公知の方法に従って行うことができる。例えば、特公昭56-12518号公報、特開平4-4194号公報、特開平5-202496号公報、特開平5-179482号公報等に記載されている装置および方法で封孔処理を行ってもよい。
<Sealing treatment>
In the method for producing an insulating substrate of the present invention, if necessary, if the anodized film is porous, a sealing treatment for sealing the existing micropores may be performed.
The sealing treatment can be performed according to a known method such as boiling water treatment, hot water treatment, steam treatment, sodium silicate treatment, nitrite treatment, ammonium acetate treatment and the like. For example, even if the sealing treatment is performed by the apparatus and method described in JP-B-56-12518, JP-A-4-4194, JP-A-5-20296, JP-A-5-179482, etc. Good.
 <水洗処理>
 また、本発明の絶縁基板の製造方法においては、上述した各処理の工程終了後には水洗を行うのが好ましい。水洗には、純水、井水、水道水等を用いることができる。処理液の次工程への持ち込みを防ぐためにニップ装置を用いてもよい。
<Washing treatment>
Moreover, in the manufacturing method of the insulated substrate of this invention, it is preferable to wash with water after completion | finish of the process of each process mentioned above. For washing, pure water, well water, tap water, or the like can be used. A nip device may be used to prevent the processing liquid from being brought into the next process.
 <その他の処理>
 更に、本発明の絶縁基板の製造方法においては、必要に応じて絶縁基板の表面に種々の処理を施すことができる。
 例えば、反射基板の白色性を高めるために、酸化チタン等の白色性絶縁性材料からなる無機絶縁層、白色レジスト等の有機絶縁層を設けてもよい。
 また、上記白色以外にも、例えば電着処理により、酸化アルミニウムよりなる絶縁層に所望の色を着色することができる。具体的には、「陽極酸化」金属表面技術協会編.金属表面技術講座B(1969 PP.195~207)、「新アルマイト理論」カロス出版(1997 PP.95~96)等に記載されているような有色染色性のイオン種、具体的には、Coイオン、Feイオン、Auイオン、Pbイオン、Agイオン、Seイオン、Snイオン、Niイオン、Cuイオン、Biイオン、Moイオン、Sbイオン、Cdイオン、Asイオン等を電解液に混入して、電解処理することにより、着色を施すことができる。
<Other processing>
Furthermore, in the method for manufacturing an insulating substrate of the present invention, various treatments can be applied to the surface of the insulating substrate as necessary.
For example, in order to improve the whiteness of the reflective substrate, an inorganic insulating layer made of a white insulating material such as titanium oxide or an organic insulating layer such as a white resist may be provided.
In addition to the white color described above, a desired color can be colored on the insulating layer made of aluminum oxide, for example, by electrodeposition. Specifically, “Anodizing” Metal Surface Technology Association. Colored dyeing ion species as described in Metal Surface Technology Course B (1969 PP. 195 to 207), “New Anodized Theory”, Karos Publishing (1997 PP. 95 to 96), specifically Co Ion, Fe ion, Au ion, Pb ion, Ag ion, Se ion, Sn ion, Ni ion, Cu ion, Bi ion, Mo ion, Sb ion, Cd ion, As ion, etc. are mixed in the electrolytic solution and electrolysis is performed. By processing, it can color.
 また、同様に酸化アルミニウムよりなる絶縁層に、更に絶縁性および高反射性を高めるため、例えば、特開平6-35174号公報の段落[0016]~[0035]に記載されているような、ゾルゲル法による層を設けることもできる。
 ここで、ゾルゲル法とは、一般に金属アルコキシドからなるゾルを加水分解・重縮合反応により、流動性を失ったゲルとし、このゲルを加熱して酸化物層(セラミック層)を形成する方法である。
 また、上記金属アルコキシドは、特に限定されないが、厚さが均一性の良い層を形成させる観点から、Al(O-R)n、Ba(O-R)n、B(O-R)n、Bi(O-R)n、Ca(O-R)n、Fe(O-R)n、Ga(O-R)n、Ge(O-R)n、Hf(O-R)n、In(O-R)n、K(O-R)n、La(O-R)n、Li(O-R)n、Mg(O-R)n、Mo(O-R)n、Na(O-R)n、Nb(O-R)n、Pb(O-R)n、Po(O-R)n、Po(O-R)n、P(O-R)n、Sb(O-R)n、Si(O-R)n、Sn(O-R)n、Sr(O-R)n、Ta(O-R)n、Ti(O-R)n、V(O-R)n、W(O-R)n、Y(O-R)n、Zn(O-R)n、Zr(O-R)n等が挙げられる(文章中Rは、置換基を有してもよい、鎖状、分枝状、および、環状の、炭化水素基、nは任意の自然数を示す。)。
 中でも、絶縁層との反応性に優れ、ゾルゲル層形成性に優れた、Si(O-R)n系がより好ましい。
Similarly, in order to further improve the insulation and high reflectivity of the insulating layer made of aluminum oxide, for example, a sol-gel as described in paragraphs [0016] to [0035] of JP-A-6-35174 Legal layers can also be provided.
Here, the sol-gel method is a method in which a sol generally made of a metal alkoxide is made into a gel that loses fluidity by hydrolysis and polycondensation reaction, and this gel is heated to form an oxide layer (ceramic layer). .
The metal alkoxide is not particularly limited, but Al (O—R) n, Ba (O—R) n, B (O—R) n, from the viewpoint of forming a layer having a uniform thickness. Bi (O—R) n, Ca (O—R) n, Fe (O—R) n, Ga (O—R) n, Ge (O—R) n, Hf (O—R) n, In ( O—R) n, K (O—R) n, La (O—R) n, Li (O—R) n, Mg (O—R) n, Mo (O—R) n, Na (O— R) n, Nb (O—R) n, Pb (O—R) n, Po (O—R) n, Po (O—R) n, P (O—R) n, Sb (O—R) n, Si (O—R) n, Sn (O—R) n, Sr (O—R) n, Ta (O—R) n, Ti (O—R) n, V (O—R) n, And W (O—R) n, Y (O—R) n, Zn (O—R) n, Zr (O—R) n, etc. (in the text, R may have a substituent). A chain, a branched, and a cyclic hydrocarbon group, n represents an arbitrary natural number).
Among these, Si (O—R) n type, which has excellent reactivity with the insulating layer and excellent sol-gel layer formability, is more preferable.
 本発明においては、ゾルゲル層を形成する方法は特に限定されないが、層の厚さを制御する観点から、ゾル液を塗布して加熱する方法が好ましい。
 また、ゾル液の濃度としては、0.1~90質量%が好ましく、1~80質量%がより好ましく、5~70質量%が特に好ましい。
 また、本発明においてゾルゲル層を形成する際には、その厚さは、高反射率、絶縁性の観点から、0.01μm~20μmが好ましく、0.05μm~15μmがより好ましく、0.1μm~10μmが特に好ましい。この範囲より厚くなると、高反射率の観点から好ましくなく、この範囲より薄くなると絶縁性の観点から好ましくない。なお、層を厚くするために、繰り返し重ねて塗布してもよい。
In the present invention, the method for forming the sol-gel layer is not particularly limited, but from the viewpoint of controlling the thickness of the layer, a method in which a sol solution is applied and heated is preferred.
The concentration of the sol solution is preferably 0.1 to 90% by mass, more preferably 1 to 80% by mass, and particularly preferably 5 to 70% by mass.
In the present invention, when the sol-gel layer is formed, the thickness is preferably from 0.01 μm to 20 μm, more preferably from 0.05 μm to 15 μm, and more preferably from 0.1 μm to 0.1 μm, from the viewpoint of high reflectivity and insulation. 10 μm is particularly preferable. If it is thicker than this range, it is not preferable from the viewpoint of high reflectance, and if it is thinner than this range, it is not preferable from the viewpoint of insulation. In addition, in order to make a layer thick, you may apply | coat repeatedly.
 〔白色系LED発光素子〕
 以下に、本発明の白色系LED発光素子について詳細に説明する。
 本発明の白色系LED発光素子は、上述した本発明の絶縁基板と、上記絶縁基板の上記絶縁層側の上部に設けられる青色LED発光素子と、上記青色LED発光素子の少なくとも上部に設けられる蛍光発光体とを具備する白色系LED発光素子である。
 なお、上述した本発明の絶縁基板は、使用される発光素子の形状やLEDの種類等に限定はなく、種々の用途に用いることができる。
 次に、本発明の白色系LED発光素子の構成を図面を用いて説明する。
[White LED light emitting element]
Hereinafter, the white LED light emitting element of the present invention will be described in detail.
The white LED light-emitting element of the present invention includes the above-described insulating substrate of the present invention, a blue LED light-emitting element provided on the insulating layer side of the insulating substrate, and a fluorescent light provided on at least the blue LED light-emitting element. A white LED light emitting element including a light emitter.
Note that the above-described insulating substrate of the present invention is not limited to the shape of the light emitting element to be used, the type of LED, and the like, and can be used for various applications.
Next, the configuration of the white LED light emitting element of the present invention will be described with reference to the drawings.
 図5は、本発明の白色系LED発光素子の好適な実施態様の一例を示す模式的な断面図である。
 ここで、図5に示す白色系LED発光素子100は、蛍光体混色型の白色系LED発光素子として構成されており、絶縁層32とアルミニウム基板33とを有する絶縁基板30と、絶縁基板30の絶縁層32側の上部に設けられる青色LED発光素子22と、青色LED発光素子22の少なくとも上部に設けられる蛍光発光体26とを具備するものである。
 また、図5に示すように、本発明の白色系LED発光素子は、青色LED発光素子22が樹脂24で封止されているのが好ましい。
 また、本発明においては、蛍光発光体26として、特願2009-134007号明細書および特願2009-139261号明細書に記載した蛍光発光ユニットを用いることができる。
FIG. 5 is a schematic cross-sectional view showing an example of a preferred embodiment of the white LED light-emitting element of the present invention.
Here, the white LED light emitting element 100 shown in FIG. 5 is configured as a phosphor mixed color white LED light emitting element, and includes an insulating substrate 30 having an insulating layer 32 and an aluminum substrate 33, and an insulating substrate 30. The blue LED light emitting element 22 provided in the upper part by the side of the insulating layer 32 and the fluorescent light-emitting body 26 provided in at least the upper part of the blue LED light emitting element 22 are comprised.
Further, as shown in FIG. 5, in the white LED light emitting element of the present invention, it is preferable that the blue LED light emitting element 22 is sealed with a resin 24.
In the present invention, as the fluorescent light emitter 26, the fluorescent light emitting units described in Japanese Patent Application Nos. 2009-134007 and 2009-139261 can be used.
 一方、図6は、[背景技術]の欄で説明したように、公知の白色系LED発光素子の好適な実施態様の一例を示す模式的な断面図であるが、図6に示す基板140の代わりに本発明の絶縁基板を用いることで、本発明の白色系LED発光素子とすることができる。 On the other hand, FIG. 6 is a schematic cross-sectional view showing an example of a preferred embodiment of a known white LED light-emitting element as described in the “Background Art” section. Instead, the white LED light emitting element of the present invention can be obtained by using the insulating substrate of the present invention.
 以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。
(実施例1~4)
1.絶縁基板の作製
 Si:0.06質量%、Fe:0.30質量%、Cu:0.005質量%、Mn:0.001質量%、Mg:0.001質量%、Zn:0.001質量%、Ti:0.03質量%を含有し、残部はAlと不可避不純物のアルミニウム合金を用いて溶湯を調製し、溶湯処理およびろ過を行った上で、厚さ500mm、幅1200mmの鋳塊をDC鋳造法で作成した。表面を平均10mmの厚さで面削機により削り取った後、550℃で、約5時間均熱保持し、温度400℃に下がったところで、熱間圧延機を用いて厚さ2.7mmの圧延板とした。更に、連続焼鈍機を用いて熱処理を500℃で行った後、冷間圧延で、厚さ0.24mmに仕上げ、JIS 1050材のアルミニウム基板を得た。
 このアルミニウム基板を幅1030mmにした後、以下に示す表面処理に供し、アルミニウム基板上に陽極酸化皮膜が設けられた絶縁基板を作製した。
The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these.
(Examples 1 to 4)
1. Production of Insulating Substrate Si: 0.06% by mass, Fe: 0.30% by mass, Cu: 0.005% by mass, Mn: 0.001% by mass, Mg: 0.001% by mass, Zn: 0.001% by mass %, Ti: 0.03% by mass, the balance is prepared by using Al and an inevitable impurity aluminum alloy, and after the molten metal treatment and filtration, an ingot having a thickness of 500 mm and a width of 1200 mm is formed. Created by DC casting. After the surface was shaved with a chamfering machine with an average thickness of 10 mm, it was kept soaked at 550 ° C. for about 5 hours, and when the temperature dropped to 400 ° C., rolling with a thickness of 2.7 mm using a hot rolling mill A board was used. Furthermore, after performing heat processing at 500 degreeC using a continuous annealing machine, it finished by cold rolling to 0.24 mm in thickness, and obtained the aluminum substrate of JIS1050 material.
After making this aluminum substrate width 1030mm, it used for the surface treatment shown below and produced the insulated substrate with which the anodic oxide film was provided on the aluminum substrate.
 表面処理は、以下の(a)~(j)の各種処理のうち、第1表に「○」で示されるものを第1表の左から順に連続的に施すことにより行った。
 なお、各処理および水洗の後にはニップローラで液切りを行った。
The surface treatment was carried out by successively applying the treatments indicated by “◯” in Table 1 from the left in Table 1 among the following treatments (a) to (j).
In addition, after each process and water washing, the liquid was drained with the nip roller.
 (a)機械的粗面化処理
 図4に示したような装置を使って、研磨剤(パミス)と水との懸濁液(比重1.12)を研磨スラリー液としてアルミニウム基板の表面に供給しながら、回転するローラ状ナイロンブラシにより機械的粗面化処理を行った。
 図4において、符号1はアルミニウム基板、符号2および4はローラ状ブラシ、符号3は研磨スラリー液、符号5、6、7および8は支持ローラである。
 研磨剤の平均粒径は40μm、最大粒径は100μmであった。ナイロンブラシの材質は6・10ナイロン、毛長は50mm、毛の直径は0.3mmであった。ナイロンブラシはφ300mmのステンレス製の筒に穴をあけて密になるように植毛した。回転ブラシは3本使用した。ブラシ下部の2本の支持ローラ(φ200mm)の距離は300mmであった。ブラシローラはブラシを回転させる駆動モータの負荷が、ブラシローラをアルミニウム基板に押さえつける前の負荷に対して7kWプラスになるまで押さえつけた。ブラシの回転方向はアルミニウム基板の移動方向と同じであった。ブラシの回転数は200rpmであった。
(A) Mechanical surface roughening treatment Using an apparatus as shown in FIG. 4, a suspension of slurry (pumice) and water (specific gravity 1.12) is supplied as a polishing slurry to the surface of the aluminum substrate. However, a mechanical surface roughening treatment was performed with a rotating roller-like nylon brush.
In FIG. 4, reference numeral 1 is an aluminum substrate, reference numerals 2 and 4 are roller brushes, reference numeral 3 is a polishing slurry liquid, and reference numerals 5, 6, 7 and 8 are support rollers.
The average particle size of the abrasive was 40 μm, and the maximum particle size was 100 μm. The material of the nylon brush was 6 · 10 nylon, the hair length was 50 mm, and the hair diameter was 0.3 mm. The nylon brush was planted so as to be dense by making a hole in a stainless steel tube having a diameter of 300 mm. Three rotating brushes were used. The distance between the two support rollers (φ200 mm) at the bottom of the brush was 300 mm. The brush roller was pressed until the load of the drive motor for rotating the brush became 7 kW plus with respect to the load before the brush roller was pressed against the aluminum substrate. The rotation direction of the brush was the same as the movement direction of the aluminum substrate. The rotation speed of the brush was 200 rpm.
 (b)アルカリエッチング処理
 アルミニウム基板をカセイソーダ濃度2.6質量%、アルミニウムイオン濃度6.5質量%、温度70℃の水溶液を用いてスプレーによるエッチング処理を行い、アルミニウム基板を6g/m2溶解した。その後、スプレーによる水洗を行った。
(B) Alkaline etching treatment The aluminum substrate was subjected to an etching treatment by spraying using an aqueous solution having a caustic soda concentration of 2.6 mass%, an aluminum ion concentration of 6.5 mass%, and a temperature of 70 ° C., thereby dissolving the aluminum substrate by 6 g / m 2 . . Then, water washing by spraying was performed.
 (c)デスマット処理
 温度30℃の硝酸濃度1質量%水溶液(アルミニウムイオンを0.5質量%含む。)で、スプレーによるデスマット処理を行い、その後、スプレーで水洗した。デスマット処理に用いた硝酸水溶液は、硝酸水溶液中で交流を用いて電気化学的粗面化処理を行う工程の廃液を用いた。
(C) Desmutting treatment The desmutting treatment was performed by spraying with a 1% by mass aqueous solution of nitric acid at a temperature of 30 ° C. (containing 0.5% by mass of aluminum ions), and then washed with water by spraying. The nitric acid aqueous solution used for the desmut treatment was a waste liquid from a process of performing an electrochemical surface roughening treatment using alternating current in a nitric acid aqueous solution.
 (d)電気化学的粗面化処理
 60Hzの交流電圧を用いて連続的に電気化学的な粗面化処理を行った。このときの電解液は、硝酸10.5g/L水溶液(アルミニウムイオンを5g/L、アンモニウムイオンを0.007質量%含む。)、液温50℃であった。交流電源波形は図1に示した波形であり、電流値がゼロからピークに達するまでの時間TPが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的な粗面化処理を行った。補助アノードにはフェライトを用いた。使用した電解槽は図2に示すものを使用した。電流密度は電流のピーク値で30A/dm2、電気量はアルミニウム基板が陽極時の電気量の総和で220C/dm2であった。補助陽極には電源から流れる電流の5%を分流させた。その後、スプレーによる水洗を行った。
(D) Electrochemical roughening treatment An electrochemical roughening treatment was carried out continuously using an alternating voltage of 60 Hz. The electrolytic solution at this time was a 10.5 g / L aqueous solution of nitric acid (containing 5 g / L of aluminum ions and 0.007% by mass of ammonium ions) at a liquid temperature of 50 ° C. The AC power supply waveform is the waveform shown in FIG. 1. The time TP until the current value reaches the peak from zero is 0.8 msec, the duty ratio is 1: 1, and a trapezoidal rectangular wave AC is used with the carbon electrode as the counter electrode. An electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell used was the one shown in FIG. The current density was 30 A / dm 2 at the peak current value, and the amount of electricity was 220 C / dm 2 in terms of the total amount of electricity when the aluminum substrate was the anode. 5% of the current flowing from the power source was shunted to the auxiliary anode. Then, water washing by spraying was performed.
 (e)アルカリエッチング処理
 アルミニウム基板をカセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%の水溶液を用いてスプレーによるエッチング処理を32℃で行い、アルミニウム基板を1.0g/m2溶解し、前段の交流を用いて電気化学的粗面化処理を行ったときに生成した水酸化アルミニウムを主体とするスマット成分を除去し、また、生成した凹凸のエッジ部分を溶解してエッジ部分を滑らかにした。その後、スプレーによる水洗を行った。
(E) Alkaline etching treatment The aluminum substrate was subjected to an etching treatment at 32 ° C. using an aqueous solution having a caustic soda concentration of 26 mass% and an aluminum ion concentration of 6.5 mass% to dissolve the aluminum substrate by 1.0 g / m 2 , Removes smut component mainly composed of aluminum hydroxide that was generated when electrochemical roughening treatment was performed using AC in the previous stage, and also melted the generated uneven edge part to smooth the edge part. did. Then, water washing by spraying was performed.
 (f)デスマット処理
 温度30℃の硫酸濃度15質量%水溶液(アルミニウムイオンを4.5質量%含む。)で、スプレーによるデスマット処理を行い、その後、スプレーで水洗した。デスマット処理に用いた硝酸水溶液は、硝酸水溶液中で交流を用いて電気化学的粗面化処理を行う工程の廃液を用いた。
(F) Desmut treatment Desmut treatment by spraying was performed with a 15% by weight aqueous solution of sulfuric acid at a temperature of 30 ° C. (containing 4.5% by weight of aluminum ions), and then washed with water by spraying. The nitric acid aqueous solution used for the desmut treatment was a waste liquid from a process of performing an electrochemical surface roughening treatment using alternating current in a nitric acid aqueous solution.
 (g)電気化学的粗面化処理
 60Hzの交流電圧を用いて連続的に電気化学的な粗面化処理を行った。このときの電解液は、塩酸7.5g/L水溶液(アルミニウムイオンを5g/L含む。)、温度35℃であった。交流電源波形は図1に示した波形であり、電流値がゼロからピークに達するまでの時間TPが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的粗面化処理を行った。補助アノードにはフェライトを用いた。使用した電解槽は図2に示すものを使用した。電流密度は電流のピーク値で25A/dm2、電気量はアルミニウム基板が陽極時の電気量の総和で50C/dm2であった。その後、スプレーによる水洗を行った。
(G) Electrochemical surface roughening treatment An electrochemical surface roughening treatment was performed continuously using an alternating voltage of 60 Hz. The electrolytic solution at this time was a hydrochloric acid 7.5 g / L aqueous solution (containing 5 g / L of aluminum ions) at a temperature of 35 ° C. The AC power supply waveform is the waveform shown in FIG. 1. The time TP until the current value reaches the peak from zero is 0.8 msec, the duty ratio is 1: 1, and a trapezoidal rectangular wave AC is used with the carbon electrode as the counter electrode. An electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell used was the one shown in FIG. The current density was 25 A / dm 2 at the peak current value, and the amount of electricity was 50 C / dm 2 in terms of the total amount of electricity when the aluminum substrate was the anode. Then, water washing by spraying was performed.
 (h)アルカリエッチング処理
 アルミニウム基板をカセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%の水溶液を用いてスプレーによるエッチング処理を32℃で行い、アルミニウム基板を0.1g/m2溶解し、前段の交流を用いて電気化学的粗面化処理を行ったときに生成した水酸化アルミニウムを主体とするスマット成分を除去し、また、生成した凹凸のエッジ部分を溶解してエッジ部分を滑らかにした。その後、スプレーによる水洗を行った。
(H) Alkali etching treatment The aluminum substrate was subjected to an etching treatment at 32 ° C. using an aqueous solution having a caustic soda concentration of 26 mass% and an aluminum ion concentration of 6.5 mass% to dissolve the aluminum substrate by 0.1 g / m 2 , Removes smut component mainly composed of aluminum hydroxide that was generated when electrochemical roughening treatment was performed using AC in the previous stage, and also melted the generated uneven edge part to smooth the edge part. did. Then, water washing by spraying was performed.
 (i)デスマット処理
 温度60℃の硫酸濃度25質量%水溶液(アルミニウムイオンを0.5質量%含む。)で、スプレーによるデスマット処理を行い、その後、スプレーによる水洗を行った。
(I) Desmutting treatment A desmutting treatment by spraying was performed with a 25% by weight aqueous solution of sulfuric acid at a temperature of 60 ° C. (containing 0.5% by weight of aluminum ions), followed by washing with water by spraying.
 (j)陽極酸化処理
 図3に示す構造の陽極酸化装置を用いて陽極酸化処理を行った。第1および第2電解部に供給した電解液条件は、硫酸濃度30g/Lとし、電流密度は0.7A/dm2で皮膜厚10μm厚の陽極酸化皮膜を形成した。その後、スプレーによる水洗を行った。最終的な酸化皮膜の厚さは10μmであった。
(J) Anodizing treatment Anodizing treatment was performed using an anodizing apparatus having a structure shown in FIG. The conditions of the electrolyte supplied to the first and second electrolysis parts were an sulfuric acid concentration of 30 g / L, a current density of 0.7 A / dm 2 , and an anodic oxide film having a film thickness of 10 μm. Then, water washing by spraying was performed. The final oxide film thickness was 10 μm.
(実施例5)
 硫酸濃度10g/L、電流密度0.2A/dm2の条件で陽極酸化処理を施した以外は、実施例3と同様の方法により皮膜厚10μm厚の陽極酸化皮膜を形成した。
(Example 5)
An anodized film having a film thickness of 10 μm was formed in the same manner as in Example 3 except that the anodizing treatment was performed under conditions of a sulfuric acid concentration of 10 g / L and a current density of 0.2 A / dm 2 .
(実施例6)
 硫酸濃度100g/L、電流密度15.0A/dm2の条件で陽極酸化処理を施した以外は、実施例3と同様の方法により皮膜厚10μm厚の陽極酸化皮膜を形成した。
(Example 6)
An anodized film having a film thickness of 10 μm was formed by the same method as in Example 3 except that the anodizing treatment was performed under conditions of a sulfuric acid concentration of 100 g / L and a current density of 15.0 A / dm 2 .
(実施例7)
 リン酸濃度15g/L、電流密度0.6A/dm2で陽極酸化処理を施し、上記(g)電気化学的粗面化処理を施した以外は、実施例3と同様の方法により皮膜厚10μm厚の陽極酸化皮膜を形成した。
(Example 7)
A film thickness of 10 μm was obtained in the same manner as in Example 3 except that anodization was performed at a phosphoric acid concentration of 15 g / L and a current density of 0.6 A / dm 2 , and the above (g) electrochemical roughening treatment was performed. A thick anodized film was formed.
(比較例1)
 硫酸濃度150g/L、電流密度22.0A/dm2で陽極酸化処理を施した以外は、実施例3と同様の方法により皮膜厚10μm厚の陽極酸化皮膜を形成した。
(Comparative Example 1)
An anodized film having a film thickness of 10 μm was formed in the same manner as in Example 3 except that the anodizing treatment was performed at a sulfuric acid concentration of 150 g / L and a current density of 22.0 A / dm 2 .
(比較例2)
 硫酸濃度350g/L、電流密度30.0A/dm2で陽極酸化処理を施した以外は、実施例3と同様の方法により皮膜厚10μm厚の陽極酸化皮膜を形成した。
(Comparative Example 2)
An anodized film having a film thickness of 10 μm was formed by the same method as in Example 3 except that the anodizing treatment was performed at a sulfuric acid concentration of 350 g / L and a current density of 30.0 A / dm 2 .
(比較例3)
 機械的粗面化処理(a)に代えて以下に示す鏡面仕上げ処理(a′)を施し、アルカリエッチング処理(b)~デスマット処理(i)を施さなかった以外は実施例1と同様の方法により皮膜厚10μm厚の陽極酸化皮膜を形成した。
 (a′)鏡面仕上げ処理
 研磨布を用いた研磨、バフ研磨および電解研磨をこの順に行うことにより、鏡面仕上げ処理を施した。バフ研磨後には水洗を行った。
 研磨布を用いた研磨は、研磨盤(Struers Abramin、丸本工業社製)および耐水研磨布(市販品)を用い、耐水研磨布の番手を#200、#500、#800、#1000および#1500の順に変更しつつ行った。
 バフ研磨は、スラリー状研磨剤(FM No.3(平均粒径1μm)およびFM No.4(平均粒径0.3μm)、いずれもフジミインコーポレーテッド社製)を用いて行った。
 電解研磨は、下記組成の電解液(温度70℃)を用いて、陽極を基板、陰極をカーボン電極とし、130mA/cm2の定電流で、2分間行った。電源としては、GP0110-30R(高砂製作所社製)を用いた。
 <電解液組成>
 ・85質量%リン酸(和光純薬社製試薬)  660mL
 ・純水  160mL
 ・硫酸  150mL
 ・エチレングリコール  30mL
(Comparative Example 3)
The same method as in Example 1 except that the mirror surface finishing treatment (a ′) shown below was performed instead of the mechanical surface roughening treatment (a), and the alkali etching treatment (b) to the desmutting treatment (i) were not performed. As a result, an anodized film having a film thickness of 10 μm was formed.
(A ′) Mirror surface finishing treatment A mirror surface finishing treatment was performed by performing polishing using a polishing cloth, buffing and electrolytic polishing in this order. After buffing, it was washed with water.
Polishing using a polishing cloth uses a polishing disk (Struers Abramin, manufactured by Marumoto Kogyo Co., Ltd.) and a water-resistant polishing cloth (commercially available), and the number of the water-resistant polishing cloth is # 200, # 500, # 800, # 1000 and # The change was made in the order of 1500.
The buffing was performed using a slurry-like abrasive (FM No. 3 (average particle size 1 μm) and FM No. 4 (average particle size 0.3 μm), both manufactured by Fujimi Incorporated).
The electrolytic polishing was performed for 2 minutes using an electrolytic solution (temperature: 70 ° C.) having the following composition, using the anode as a substrate and the cathode as a carbon electrode at a constant current of 130 mA / cm 2 . As a power source, GP0110-30R (manufactured by Takasago Seisakusho) was used.
<Electrolyte composition>
-660 mL of 85% phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.)
・ Pure water 160mL
・ Sulfuric acid 150mL
・ Ethylene glycol 30mL
(比較例4)
 市販である三洋電機社製のIMST(登録商標)アルミベース基板を用いた。
(Comparative Example 4)
A commercially available IMST (registered trademark) aluminum base substrate manufactured by Sanyo Electric Co., Ltd. was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2.アルミニウム基板の表面形状の測定
 上記(a)~(i)処理で得られたアルミニウム基板の表面の凹凸について、下記(1)~(3)の測定を行い、大波構造の平均波長ならびに中波構造および小波構造の平均開口径を算出した。
 結果を第2表に示す。なお、第2表中、「-」は、該当する平均波長の凹凸がなかったことを示す。
2. Measurement of the surface shape of the aluminum substrate With respect to the irregularities on the surface of the aluminum substrate obtained by the above treatments (a) to (i), the following measurements (1) to (3) are carried out to determine the average wavelength and medium wave structure of the large wave structure And the average opening diameter of the small wave structure was calculated.
The results are shown in Table 2. In Table 2, “-” indicates that there was no unevenness of the corresponding average wavelength.
 (1)大波構造の平均波長
 触針式粗さ計(sufcom575、東京精密社製)で2次元粗さ測定を行い、ISO4287に規定されている平均山間隔Smを5回測定し、その平均値を平均波長とした。
 2次元粗さ測定は、以下の条件で行った。
 <測定条件>
 ・カットオフ値:0.8mm
 ・傾斜補正:FLAT-ML
 ・測定長:3mm
 ・縦倍率:10000倍
 ・走査速度:0.3mm/sec
 ・触針先端径:2μm
(1) Average wavelength of large-wave structure Two-dimensional roughness measurement is performed with a stylus type roughness meter (SUFCOM 575, manufactured by Tokyo Seimitsu Co., Ltd.), and the average mountain spacing S m defined in ISO 4287 is measured five times. The value was taken as the average wavelength.
Two-dimensional roughness measurement was performed under the following conditions.
<Measurement conditions>
・ Cutoff value: 0.8mm
・ Inclination correction: FLAT-ML
・ Measurement length: 3mm
・ Vertical magnification: 10000 times ・ Scanning speed: 0.3 mm / sec
・ Tip tip diameter: 2μm
 (2)中波構造の平均開口径
 高分解能走査型電子顕微鏡(SEM)を用いて多孔質アルミナ担体の表面を真上から倍率2000倍で撮影し、得られたSEM写真において凹凸の周囲が環状に連なっている中波構造の凹凸を50個抽出し、その直径を読み取って平均開口径を算出した。
(2) Average aperture diameter of medium-wave structure The surface of the porous alumina support was photographed at a magnification of 2000 times from directly above using a high-resolution scanning electron microscope (SEM). 50 irregularities of the medium-wave structure connected to are extracted, and the average aperture diameter was calculated by reading the diameter.
 (3)小波構造の平均開口径
 高分解能走査型電子顕微鏡(SEM)を用いて多孔質アルミナ担体の表面を真上から倍率50000倍で撮影し、得られたSEM写真において小波構造の凹凸を50個抽出し、その直径を読み取って平均開口径を算出した。
(3) Average aperture diameter of the small wave structure The surface of the porous alumina support was photographed at a magnification of 50000 from directly above using a high-resolution scanning electron microscope (SEM). Each sample was extracted, and the average opening diameter was calculated by reading the diameter.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
3.陽極酸化処理の電解液由来の分子含有率
 JEOL製SEM-5500EDAXにより、Al、O、X(ここでXとは陽極酸化処理時の電解液に入れた酸を構成する元素であって、実施例1~6および比較例1~3はS、実施例7はPを示す)の各組成比を限定して測定し、絶縁層におけるXの含有率(原子%)を求めた。結果を第3表に示す。
 なお、比較例4は陽極酸化処理を施していないため、第3表中では「-」と示す。
3. Molecule content derived from electrolytic solution of anodizing treatment SEM-5500EDAX manufactured by JEOL, Al, O, X (where X is an element constituting an acid contained in the electrolytic solution during anodizing treatment. 1 to 6 and Comparative Examples 1 to 3 were S, and Example 7 was P). The composition ratio was limited, and the X content (atomic%) in the insulating layer was determined. The results are shown in Table 3.
Since Comparative Example 4 was not anodized, it is indicated as “−” in Table 3.
4.絶縁層の可視光透過率の測定
 上述した(a)~(i)処理時点でのアルミニウム基板を参照サンプルとし、(j)陽極酸化処理まで施した絶縁基板を測定サンプルとして、400~700nmの反射UVスペクトル/透過率モードを、日本分光製U-best50で測定した。上記波長領域での最低透過率を第3表に示す。
 なお、比較例4は陽極酸化処理を施していないため、第3表中では「-」と示す。
4). Measurement of visible light transmittance of insulating layer Reflection of 400 to 700 nm using (a) to (i) the aluminum substrate at the time of processing as a reference sample, and (j) the insulating substrate subjected to anodization as a measurement sample. The UV spectrum / transmittance mode was measured with JASCO U-best50. Table 3 shows the minimum transmittance in the above wavelength region.
Since Comparative Example 4 was not anodized, it is indicated as “−” in Table 3.
5.反射率の測定
 実施例1~7および比較例1~3で作製した絶縁基板ならびに比較例4の市販品について、X-rite社製SP-64型積分球光度計を用いて、400~700nmの全反射率(SPINモードの全平均)および拡散反射率(SPEXモードの全平均)を測定した。これらの結果を第3表に示す。
5. Measurement of reflectance The insulating substrates produced in Examples 1 to 7 and Comparative Examples 1 to 3 and the commercial product of Comparative Example 4 were measured at 400 to 700 nm using an SP-64 type integrating sphere photometer manufactured by X-rite. Total reflectance (total average in SPIN mode) and diffuse reflectance (total average in SPEX mode) were measured. These results are shown in Table 3.
6.LED素子実装ユニットでの輝度評価
 上記のようにして得られた実施例1~7および比較例1~3で作製した絶縁基板と比較例4の市販品を用いて、以下のようにして、蛍光体混色型の白色系LED発光素子の輝度評価を行なった。
 具体的には、実施例1~7および比較例1~3で作製した絶縁基板と比較例4の市販品上に、図5に示すように青色LEDを設け、青色LEDの上方に青色LEDと接するように蛍光発光ユニットを設け、青色LEDを6Vで駆動させた際の輝度を比較した。
 比較例4の反射基板を用いた輝度を1.0とした相対評価を第3表に示す。
6). Luminance evaluation in LED element mounting unit Using the insulating substrates produced in Examples 1 to 7 and Comparative Examples 1 to 3 and the commercial products of Comparative Example 4 obtained as described above, fluorescence was obtained as follows. The luminance of the body-mixed white LED light emitting element was evaluated.
Specifically, a blue LED is provided as shown in FIG. 5 on the insulating substrate produced in Examples 1 to 7 and Comparative Examples 1 to 3 and a commercial product of Comparative Example 4, and the blue LED is disposed above the blue LED. A fluorescent light emitting unit was provided so as to be in contact with each other, and the luminance when the blue LED was driven at 6 V was compared.
Table 3 shows the relative evaluation using the reflective substrate of Comparative Example 4 with a luminance of 1.0.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 第1表~第3表に示す結果から、アルミニウムおよび酸素以外の元素の含有率が20原子%を超える絶縁層を有する比較例1および2の絶縁基板は、絶縁層の透過率が低く、比較例4の市販品と同程度の輝度にしかならないことが分かった。
 また、所定の大波構造や中波構造を表面に有しないアルミニウム基板を用いた比較例3の絶縁基板は、絶縁層の透過率は優れるものの、拡散反射率が低く、比較例4の市販品と同程度の輝度にしかならないことが分かった。
 これに対し、所定の大波構造および/または中波構造を有する表面形状のアルミニウム基板上に、アルミニウムおよび酸素以外の元素の含有率が20原子%以下とした絶縁層を有する実施例1~7の絶縁基板を用いることにより、比較例4の市販品を用いた場合と比較して、1.3~1.5倍の輝度が得られることが分かった。
From the results shown in Tables 1 to 3, the insulating substrates of Comparative Examples 1 and 2 having an insulating layer in which the content of elements other than aluminum and oxygen exceeds 20 atomic% have a low transmittance of the insulating layer. It was found that the brightness was comparable to that of the commercial product of Example 4.
In addition, the insulating substrate of Comparative Example 3 using an aluminum substrate that does not have a predetermined large wave structure or medium wave structure on the surface has a low diffuse reflectance, although the insulating layer has excellent transmittance. It was found that the brightness was only comparable.
On the other hand, in Examples 1 to 7 having an insulating layer in which the content of elements other than aluminum and oxygen is 20 atomic% or less on a surface-shaped aluminum substrate having a predetermined large wave structure and / or medium wave structure By using an insulating substrate, it was found that 1.3 to 1.5 times the luminance was obtained as compared with the case where the commercial product of Comparative Example 4 was used.
 1、11 アルミニウム基板
 2、4 ローラ状ブラシ
 3 研磨スラリー液
 5、6、7、8 支持ローラ
 12 ラジアルドラムローラ
 13a、13b 主極
 14 電解処理液
 15 電解液供給口
 16 スリット
 17 電解液通路
 18 補助陽極
 19a、19b サイリスタ
 20 交流電源
 22 青色LED
 24 樹脂
 26 蛍光発光ユニット
 30 絶縁基板
 32 絶縁層
 33 アルミニウム基板
 40 主電解槽
 50 補助陽極槽
 100 発光素子
 110 青色LED
 120、130 電極
 140 基板
 150 蛍光粒子
 160 透明樹脂
 410 陽極酸化処理装置
 412 給電槽
 414 電解処理槽
 416 アルミニウム基板
 418、426 電解液
 420 給電電極
 422、428 ローラ
 424 ニップローラ
 430 電解電極
 432 槽壁
 434 直流電源
DESCRIPTION OF SYMBOLS 1,11 Aluminum substrate 2, 4 Roller-like brush 3 Polishing slurry liquid 5, 6, 7, 8 Support roller 12 Radial drum roller 13a, 13b Main electrode 14 Electrolytic process liquid 15 Electrolyte supply port 16 Slit 17 Electrolyte path 18 Auxiliary Anode 19a, 19b Thyristor 20 AC power supply 22 Blue LED
24 resin 26 fluorescent light emitting unit 30 insulating substrate 32 insulating layer 33 aluminum substrate 40 main electrolytic cell 50 auxiliary anode cell 100 light emitting element 110 blue LED
120, 130 Electrodes 140 Substrate 150 Fluorescent particles 160 Transparent resin 410 Anodizing device 412 Power supply tank 414 Electrolytic treatment tank 416 Aluminum substrate 418, 426 Electrolytic solution 420 Power supply electrode 422, 428 Roller 424 Nip roller 430 Electrolytic electrode 432 Tank wall 434 DC power supply

Claims (3)

  1.  アルミニウム基板と、前記アルミニウム基板の表面に設けられる絶縁層とを有する絶縁基板であって、
     前記絶縁層がアルミニウムの陽極酸化皮膜であり、
     前記絶縁層を構成する元素のうち、アルミニウムおよび酸素以外の元素の含有率が20原子%以下であり、
     前記アルミニウム基板の表面が、平均波長5~100μmの大波構造および/または平均開口径0.7~5μmの中波構造の形状を有する絶縁基板。
    An insulating substrate having an aluminum substrate and an insulating layer provided on the surface of the aluminum substrate,
    The insulating layer is an anodized film of aluminum;
    Of the elements constituting the insulating layer, the content of elements other than aluminum and oxygen is 20 atomic% or less,
    An insulating substrate in which the surface of the aluminum substrate has a large wave structure with an average wavelength of 5 to 100 μm and / or a medium wave structure with an average aperture diameter of 0.7 to 5 μm.
  2.  請求項1に記載の絶縁基板を製造する絶縁基板の製造方法であって、
     アルミニウム基板の一部に陽極酸化処理を施して、アルミニウム基板上にアルミニウムの陽極酸化被膜を形成させる工程を有し、
     前記陽極酸化処理における電流密度が0.001~20A/dm2である絶縁基板の製造方法。
    An insulating substrate manufacturing method for manufacturing the insulating substrate according to claim 1,
    A step of anodizing a part of the aluminum substrate to form an anodized aluminum film on the aluminum substrate;
    A method for manufacturing an insulating substrate, wherein the current density in the anodizing treatment is 0.001 to 20 A / dm 2 .
  3.  請求項1に記載の絶縁基板と、前記絶縁基板の前記絶縁層側の上部に設けられる青色LED発光素子と、前記青色LED発光素子の少なくとも上部に設けられる蛍光発光体とを具備する白色系LED発光素子。 A white LED comprising: the insulating substrate according to claim 1; a blue LED light emitting element provided on an upper portion of the insulating substrate on the insulating layer side; and a fluorescent light emitter provided on at least the blue LED light emitting element. Light emitting element.
PCT/JP2010/071126 2009-12-25 2010-11-26 Insulating substrate and light emitting element WO2011077899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009295494A JP2011132590A (en) 2009-12-25 2009-12-25 Insulating substrate and light emitting element
JP2009-295494 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011077899A1 true WO2011077899A1 (en) 2011-06-30

Family

ID=44195438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071126 WO2011077899A1 (en) 2009-12-25 2010-11-26 Insulating substrate and light emitting element

Country Status (2)

Country Link
JP (1) JP2011132590A (en)
WO (1) WO2011077899A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020114A (en) * 2012-06-22 2017-01-26 アップル インコーポレイテッド White-appearing anodized films, and methods for forming the same
US9839974B2 (en) 2013-11-13 2017-12-12 Apple Inc. Forming white metal oxide films by oxide structure modification or subsurface cracking
US10017872B2 (en) 2013-10-30 2018-07-10 Apple Inc. Metal oxide films with reflective particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232463A (en) * 1992-02-21 1993-09-10 Matsushita Electric Works Ltd Liquid crystal element
JP2000049372A (en) * 1998-07-30 2000-02-18 Kobe Steel Ltd Insulation substrate for solar battery and its manufacture
JP2001091939A (en) * 1999-09-17 2001-04-06 Seiko Epson Corp Reflection type liquid crystal display device and electronic appliance
WO2009141960A1 (en) * 2008-05-20 2009-11-26 Panasonic Corporation Semiconductor light-emitting device as well as light source device and lighting system including the same
JP2009290167A (en) * 2008-06-02 2009-12-10 Mitsui Mining & Smelting Co Ltd Light emitting module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232463A (en) * 1992-02-21 1993-09-10 Matsushita Electric Works Ltd Liquid crystal element
JP2000049372A (en) * 1998-07-30 2000-02-18 Kobe Steel Ltd Insulation substrate for solar battery and its manufacture
JP2001091939A (en) * 1999-09-17 2001-04-06 Seiko Epson Corp Reflection type liquid crystal display device and electronic appliance
WO2009141960A1 (en) * 2008-05-20 2009-11-26 Panasonic Corporation Semiconductor light-emitting device as well as light source device and lighting system including the same
JP2009290167A (en) * 2008-06-02 2009-12-10 Mitsui Mining & Smelting Co Ltd Light emitting module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020114A (en) * 2012-06-22 2017-01-26 アップル インコーポレイテッド White-appearing anodized films, and methods for forming the same
US10184190B2 (en) 2012-06-22 2019-01-22 Apple Inc. White appearing anodized films
US10941503B2 (en) 2012-06-22 2021-03-09 Apple Inc. White appearing anodized films
US10017872B2 (en) 2013-10-30 2018-07-10 Apple Inc. Metal oxide films with reflective particles
US9839974B2 (en) 2013-11-13 2017-12-12 Apple Inc. Forming white metal oxide films by oxide structure modification or subsurface cracking
US10434602B2 (en) 2013-11-13 2019-10-08 Apple Inc. Forming white metal oxide films by oxide structure modification or subsurface cracking

Also Published As

Publication number Publication date
JP2011132590A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
WO2010150810A1 (en) Light reflecting substrate and process for manufacture thereof
WO2011078010A1 (en) Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
US20110267825A1 (en) Insulated light-reflective substrate
US7442491B2 (en) Aluminum alloy blank for lithographic printing plate and support for lithographic printing plate
US20070219092A1 (en) Catalyst supporting body
EP2586621B1 (en) Manufacturing method and manufacturing apparatus of support for planographic printing plate
CN110678257A (en) Aluminum composite material
EP1531014B1 (en) Roll for metal rolling, and support for lithographic printing plate
JP5405475B2 (en) Electrolytic roughening treatment method and electrolytic roughening treatment apparatus
WO2011077899A1 (en) Insulating substrate and light emitting element
WO2012090824A1 (en) Light reflecting substrate
JP2012201891A (en) Insulating substrate and wiring substrate, semiconductor package and led package each using the insulating substrate
WO2010032802A1 (en) Solar cell
EP1516744B1 (en) Aluminium alloy blank for lithographic printing plate and support for lithographic printing plate
JP5480565B2 (en) Aluminum alloy plate for lithographic printing plate and support for lithographic printing plate
JP5582656B2 (en) Production method and production apparatus for lithographic printing plate support
WO2012073875A1 (en) Insulating substrate and method for manufacturing same
JP3787735B2 (en) Method for producing aluminum support for lithographic printing plate and support
JP5715900B2 (en) Method and apparatus for producing aluminum support for lithographic printing plate
JP4832779B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP2011199233A (en) Insulated substrate and process for production of the same
JP2005242135A (en) Lithographic original printing plate
JP2004354905A (en) Lithographic printing original plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839134

Country of ref document: EP

Kind code of ref document: A1