WO2011077739A1 - Ice creams and method for producing same - Google Patents

Ice creams and method for producing same Download PDF

Info

Publication number
WO2011077739A1
WO2011077739A1 PCT/JP2010/007476 JP2010007476W WO2011077739A1 WO 2011077739 A1 WO2011077739 A1 WO 2011077739A1 JP 2010007476 W JP2010007476 W JP 2010007476W WO 2011077739 A1 WO2011077739 A1 WO 2011077739A1
Authority
WO
WIPO (PCT)
Prior art keywords
milk
nanofiltration
ice cream
desalted
raw material
Prior art date
Application number
PCT/JP2010/007476
Other languages
French (fr)
Japanese (ja)
Inventor
中越誠
小野田敏昭
市場智子
Original Assignee
明治乳業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明治乳業株式会社 filed Critical 明治乳業株式会社
Priority to CN201080052305.7A priority Critical patent/CN102711507B/en
Priority to JP2011547317A priority patent/JP5848611B2/en
Publication of WO2011077739A1 publication Critical patent/WO2011077739A1/en
Priority to HK13100034.3A priority patent/HK1172797A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/04Animal proteins
    • A23J3/08Dairy proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/40Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds characterised by the dairy products used
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/325Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/34Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds characterised by carbohydrates used, e.g. polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/36Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to ice creams obtained by degrading lactose contained in an ice cream mix using desalted and concentrated milk containing a large amount of protein in the ice cream mix, and a method for producing the same.
  • Patent Document 1 discloses an ice cream using lactose and lactase as sweetening ingredients (paragraph [0037]). In this ice cream, lactose is broken down into glucose and galactose by lactase. Ice cream rich in monosaccharides excels in digestion and absorption, for example, causes no diarrhea even if eaten by a person with lactose intolerance.
  • Lactose is broken down into glucose and galactose by lactase in the small intestine and absorbed into the body, but those with a low lactase secretion in the small intestine (people with lactose intolerance) cannot break down lactose, Therefore, lactose is not absorbed by the body and causes diarrhea.
  • an object of the present invention is to provide a method for producing ice cream having excellent storage stability, rich flavor, moderate softness, and good sag.
  • the present invention basically, lactose is decomposed using an enzyme to obtain ice creams having moderate softness and good sag. And in order to improve the storage stability of ice cream, the ice cream mix containing many nonfat milk solid content is used. On the other hand, when ice cream is produced using an ice cream mix containing a large amount of non-fat milk solids, the salty taste of the resulting ice cream becomes strong. Therefore, the present invention uses desalted and concentrated milk in the ice cream mix. In this way, the present invention provides a method for producing ice cream having excellent storage stability, rich flavor, moderate softness, and good sag.
  • the first aspect of the present invention relates to a method for producing ice creams.
  • the method of manufacturing this ice cream includes a desalting process, an enzyme addition process, a lactose decomposition process, and a cooling process.
  • the desalting step is a step for desalting a raw material containing non-fat milk solids in an amount of 5 wt% to 50 wt%.
  • the quantity of the protein contained in an ice cream mix can be increased by using a raw material with many non-fat milk solid content.
  • the storage stability of ice cream can be improved.
  • the enzyme addition step is a step for adding an enzyme that decomposes lactose to the raw material that has undergone the desalting step.
  • other raw materials may be added to the raw material that has undergone the desalting step, and then the enzyme may be added.
  • the lactose decomposition step is a step in which the enzyme breaks down lactose contained in the raw material.
  • a cooling process is a process of cooling the raw material which passed through the lactose decomposition process. This step may be a step of cooling the raw material after the desalting step, that is, a step of cooling the raw material before the enzyme addition step, or before the lactose decomposition step. It may be a step of cooling the raw materials.
  • the cooling step is a step of cooling the ice cream mix prepared through the desalting step, the enzyme addition step, and the lactose decomposition step.
  • This ice cream mix contains non-fat milk solids at 5 wt% or more and 40 wt% or less, and does not contain milk fat or contains milk fat at 25 wt% or less.
  • ice creams having a good flavor can be obtained even when a raw material containing a large amount of non-fat milk solids or an ice cream mix is used.
  • the desalting step is a step in which the residual rate of sodium contained in the raw material is 35% to 80% (desalting rate is 20% to 65%).
  • the salty taste becomes strong.
  • this invention in order to remove sodium and potassium by a desalting process, even if ice cream is manufactured using the raw material and ice cream mix which contain many nonfat milk solid content, the ice cream which has suitable salty taste is obtained. be able to.
  • the desalting step includes a first nanofiltration treatment step, a dilution step, and a second nanofiltration treatment step.
  • the first nanofiltration treatment step is a step of concentrating a raw material containing skim milk by a nanofiltration method to obtain nanofiltration concentrated skim milk.
  • the dilution step is a step of diluting the nanofiltration concentrated skim milk obtained in the first nanofiltration treatment step to obtain nanofiltration skim milk.
  • the second nanofiltration treatment step is a step of concentrating the nanofiltration skim milk obtained in the dilution step by the nanofiltration method to obtain desalted skimmilk.
  • This mode can also be used when raw material contains raw milk.
  • this embodiment is preferably used when the raw material contains skim milk.
  • the content of sodium or potassium can be effectively reduced while maintaining the nonfat milk solid content.
  • a third nanofiltration treatment step, a fourth nanofiltration treatment step, etc. may be provided, but the complexity of the process, the efficiency of desalination, the flavor of the product, etc. From this point of view, it is preferable to keep the second nanofiltration treatment step.
  • the desalting step includes a first nanofiltration treatment step, a reverse osmosis treatment step, a desalted milk acquisition step, and a second nanofiltration treatment step.
  • the first nanofiltration treatment step is a step of concentrating a raw material containing skim milk by a nanofiltration method to obtain nanofiltration concentrated skim milk.
  • the reverse osmosis treatment step is a step of performing reverse osmosis treatment on the permeate obtained in the first nanofiltration treatment step to obtain a reverse osmosis membrane permeate.
  • the desalted milk acquisition step is a step of obtaining the desalted milk by adding the nanofiltration concentrated skim milk obtained in the first nanofiltration treatment step, the reverse osmosis membrane permeate, and moisture.
  • the second nanofiltration treatment step is a step in which the desalted milk obtained in the desalted milk acquisition step is concentrated by the nanofiltration method to obtain desalted skim milk.
  • This mode can also be used when raw material contains raw milk.
  • this embodiment is preferably used when the raw material contains skim milk.
  • the content of sodium or potassium can be effectively reduced while maintaining the nonfat milk solid content.
  • a third nanofiltration treatment step, a fourth nanofiltration treatment step, etc. may be provided, but the complexity of the process, the efficiency of desalination, the flavor of the product, etc. From this point of view, it is preferable to keep the second nanofiltration treatment step.
  • the desalting step includes a first nanofiltration treatment step, a reverse osmosis treatment step, a desalted milk acquisition step, and a second nanofiltration treatment step.
  • the first nanofiltration treatment step is a step of concentrating the raw material by a nanofiltration method to obtain nanofiltration concentrated milk.
  • the reverse permeation treatment step is a step of performing a reverse osmosis treatment on the permeate obtained in the first nanofiltration treatment step to obtain a reverse osmosis membrane permeate.
  • the desalted milk acquisition step is a step of obtaining desalted milk by adding nanofiltration concentrated milk, reverse osmosis membrane permeate, and moisture.
  • the second nanofiltration treatment step is a step in which the desalted milk obtained in the desalted milk acquisition step is concentrated by the nanofiltration method to obtain desalted skim milk.
  • the enzyme added in the enzyme addition step is lactase.
  • lactase is added at 0.01 weight% or more and 0.1 weight% or less, when the raw material and ice cream mix which passed through the desalination process shall be 100 weight%.
  • Lactose decomposition rate increases as lactase addition amount increases. On the other hand, when lactase increases, the cost increases. When the added amount of lactase is the above-described added amount, ice creams having a good flavor can be obtained within an appropriate production time.
  • the lactose decomposition step is a step in which lactose contained in the raw material subjected to the desalting step is decomposed at 30% to 100%. This is achieved, for example, by holding the raw material that has undergone the desalting step at a temperature of 0 ° C. or higher and 20 ° C. or lower for 2 hours or longer.
  • the method for producing ice cream of the present invention can be used by appropriately combining the various configurations described above or described below. Moreover, the manufacturing method of the ice cream of this invention contains not only what was described in this specification but what was suitably corrected in the range obvious to those skilled in the art.
  • the second aspect of the present invention relates to ice creams produced by any one of the above-described methods for producing ice creams.
  • ice creams are ice creams containing 4 to 15% by weight of milk protein and 1 to 10% by weight of lactose-derived glucose. These ice creams are excellent in storage stability, suitable for salty taste, rich in flavor, and are good for ice cream.
  • FIG. 1 is a process chart (flow chart) schematically showing the procedure of the method for producing ice creams of the present invention.
  • FIG. 2 is a process diagram showing in detail the procedure for preparing the ice cream mix in step S100 of FIG.
  • FIG. 3 is a diagram instead of a graph showing the relationship between the lactose decomposition rate and the reaction time when lactose in desalted milk is hydrolyzed by lactase.
  • FIG. 4 is a process diagram showing in detail the procedure of an example of the desalted milk acquisition process in step S110 of FIG.
  • FIG. 5 is a diagram replaced with a graph showing the measurement results of the hardness of the ice cream obtained in the examples.
  • FIG. 6 is a diagram schematically showing an example of a procedure for obtaining desalted milk according to the desalted milk obtaining process (FIG. 4) according to the present invention.
  • the first aspect of the present invention relates to a method for producing ice creams.
  • Ice cream is a general term for ice cream, ice milk, and lacto ice, as defined by a ministerial ordinance such as milk (a ministerial ordinance relating to ingredient standards of milk and dairy products).
  • a ministerial ordinance such as milk (a ministerial ordinance relating to ingredient standards of milk and dairy products).
  • the example of ice cream contains milk solid content by at least 3 weight%.
  • ice creams can be produced by appropriately adopting conditions known to those skilled in the art using an already known ice cream production apparatus.
  • the method of manufacturing this ice cream basically includes a desalting step, an enzyme addition step, a lactose decomposition step, and a cooling step.
  • the method for producing ice cream will be described.
  • the present invention is not limited to the following examples, and includes examples appropriately modified within the scope obvious to those skilled in the art from the examples described below.
  • FIG. 1 is a process chart (flow chart) schematically showing the procedure of a method for producing ice cream.
  • ice creams having a total milk solid content of 3% by weight or more preferably ice creams containing non-fat milk solids (SNF) in an amount of 5% by weight or more and 40% by weight or less
  • SNF non-fat milk solids
  • an ice cream mix which is an ice cream raw material milk
  • Raw materials may contain raw milk, powdered milk, sugar, concentrated milk, desalted milk, and water as appropriate.
  • This step is usually performed at room temperature or under heating (30 ° C. or more and 80 ° C. or less) in a plurality of apparatuses connected by pipes in order to prevent invasion of various bacteria. Details of the process in step S100 will be described in detail with reference to FIGS.
  • the ice cream mix solution prepared in step S100 is homogenized.
  • the ice cream mix solution is filtered to remove impurities.
  • the particle size of the fat in the ice cream mix is reduced to, for example, 2 ⁇ m or less at a temperature of 50 ° C. or higher and 70 ° C. or lower. Adjust.
  • the ice cream mix whose particle size has been adjusted is heated to, for example, 68 ° C. or more and 75 ° C. or less, and held for 30 minutes to sterilize.
  • step S300 the ice cream mix solution homogenized in step S200 is cooled to a temperature of 0 ° C. or higher and 5 ° C. or lower, for example.
  • the ice cream mix solution is not frozen and kept in a certain fluidity state.
  • step S400 a known flavor (for example, vanilla flavor, chocolate flavor, strawberry flavor, cocoa flavor) is appropriately added to the ice cream mix solution in a cooled state. If no flavor is required, the process of step S400 is not performed. Moreover, when flavor is also added when preparing an ice cream mix at step S100, it is not necessary to perform the process of step S400.
  • a known flavor for example, vanilla flavor, chocolate flavor, strawberry flavor, cocoa flavor
  • step S500 the ice cream mix is aged for a predetermined time. Aging is also performed at a temperature of 0 ° C to 5 ° C. By performing this aging, the fat is crystallized and the protein is hydrated to stabilize the ice cream mix.
  • step S600 freezing is performed on the ice cream mix that has been subjected to the aging process. Freezing is performed, for example, by stirring the ice cream mix for a predetermined period at a temperature of ⁇ 2 ° C. to ⁇ 10 ° C. This freezing cools the ice cream mix and freezes the moisture.
  • step S700 the freezing ice cream mix is packaged.
  • This packaging process is also performed under the same temperature as the above-mentioned freezing temperature.
  • the date of manufacture is stamped on the container as necessary.
  • the ice cream mix in the shipping container is rapidly frozen to a temperature in the range of, for example, ⁇ 3 ° C. to ⁇ 15 ° C. by exposing it to a curing temperature of, for example, ⁇ 18 ° C. or less. (Step S800). This freezes (hardens) the entire ice cream mix.
  • ice cream ready for shipment is completed.
  • necessary inspections are performed after the completion of production and before shipment.
  • step S100 of FIG. 1 Next, the preparation of the ice cream mix in step S100 of FIG. 1 will be described in detail.
  • FIG. 2 is a process diagram showing in detail the preparation procedure of the ice cream mix in step S100 of FIG. In this embodiment, an example of preparing an ice cream mix from raw milk will be described.
  • step S110 desalted milk is obtained by subjecting the raw material to desalination.
  • desalted concentrated milk is obtained. This ensures stable ice cream quality and physical properties without the use of stabilizers or emulsifiers.
  • the process of step S110 will be described in detail later with reference to FIGS.
  • the desalted milk may be liquid or powdered (milk powder).
  • desalted concentrated milk may be prepared using concentrated milk in advance instead of raw milk.
  • sugar is added to the desalted milk (sweetening treatment).
  • sugar content include sugar (sucrose), lactose, glucose, fructose and the like, which may be liquid or powder.
  • an example of the added sugar content may be a polysaccharide (for example, starch, fructose, glucose, cellulose, dextrin), but preferably an oligosaccharide, more preferably a disaccharide ( For example, maltose (maltose), cellobiose, sucrose, lactose (lactose), trehalose). This is to promote hydrolysis by an enzyme (glycosidase) described later.
  • step S120 may be performed after the enzyme is added or may be performed before the enzyme is added.
  • an enzyme is added to desalted milk. If the desalted milk is milk powder, add the enzyme after adding the liquid to the milk powder.
  • a raw material to which an enzyme is added a raw material that has undergone a desalting treatment may be used as it is.
  • the raw material to which the enzyme is added may be used by mixing several types of desalting treatments or those that have not undergone desalting treatment, or by repeating the same type of desalting treatment. It may be used.
  • an enzyme glycosidase corresponding to the sugar contained in the desalted milk in step S110 or the sugar added in step S120 is used.
  • a glycosidase is an enzyme capable of decomposing a corresponding saccharide (a saccharide having a monosaccharide as a structural unit) into a saccharide composed of a smaller number of monosaccharides.
  • lactase is used for lactose.
  • trehalose trehalase is used.
  • Lactase and trehalase may be derived from bacteria or yeast. Since lactose is also contained in desalted milk, the enzyme preferably contains at least lactase.
  • Lactase also called ⁇ -D-galactosidase ( ⁇ -D-galactoside galactohydrolase) is an enzyme that hydrolyzes the disaccharide lactose into glucose and galactose.
  • lactase for example, those disclosed in JP-T-10-504449 can be appropriately used.
  • Lactase is preferably added in an amount of 0.01% by weight to 0.1% by weight, assuming that the raw material and ice cream mix are 100% by weight. As the amount of lactase added increases, the rate of lactose degradation increases.
  • the amount of lactase added is preferably 0.01% by weight or more and 0.08% by weight or less, more preferably 0.02% by weight or more and 0.07% by weight or less, and 0.03% by weight or more and 0.05% by weight or less. % Or less is more preferable.
  • the addition amount is as described above, ice cream having a good flavor can be obtained within an appropriate production time.
  • step S140 the hydrolysis reaction is accelerated by placing the desalted milk containing the enzyme under predetermined conditions. That is, the enzyme breaks down lactose contained in the raw material and ice cream mix.
  • the conditions for this lactose decomposition reaction will be described later.
  • lactose contained in the raw material and ice cream mix is decomposed at, for example, 30% to 100%.
  • the preparation of the raw materials and ice cream mix is completed.
  • the raw material and ice cream mix may be powdered by spray drying or the like.
  • cream part rich in milk fat
  • other powdered milk or its reducing solution flavor, sweetened egg yolk, water, etc. may be added to the raw material and ice cream mix as necessary.
  • step S140 sugars such as lactose contained in the desalted milk are hydrolyzed (step S140).
  • the sweetness of the manufactured ice cream can be increased.
  • the sweetness level differs depending on the type of saccharide
  • the sweetness of the ice cream mix can be increased by increasing the number of saccharide molecules before hydrolysis even when the saccharides have low sweetness. Can do.
  • the softness of the ice creams to be produced can be increased moderately, and the saji street can be improved.
  • lactose is hydrolyzed and converted into glucose (glucose) and galactose.
  • the lactose decomposition rate indicating the lactose decomposition rate is 100%
  • the sweetness after hydrolysis is several times that before hydrolysis.
  • one molecule of lactose is decomposed, two molecules of monosaccharide are produced, so that the number of molecules of monosaccharide can be increased efficiently. As a result, the softness of the ice creams produced Can be increased efficiently.
  • FIG. 3 is a diagram replaced with a graph showing a relationship between a lactose decomposition rate when lactose in desalted milk is hydrolyzed by lactase in step S130 and a reaction time (time of lactose decomposition step).
  • the amount of lactase added is constant, and the relationship between the lactose decomposition rate and the reaction time when the temperature of the desalted milk when the lactose decomposition reaction is performed is 1 ° C., 5 ° C., and 10 ° C. It is shown.
  • the lactose decomposition rate can be increased by increasing the reaction time of the lactose decomposition reaction. Therefore, it is preferable that the reaction time of the lactose decomposition reaction is long. On the other hand, when the reaction time is lengthened, the lactose decomposition rate can be brought close to 100% or can be made 100%, but the production efficiency is deteriorated. Therefore, from the viewpoint of production efficiency, the upper limit of the reaction time of the lactose decomposition reaction is, for example, 50 hours, and preferably the reaction time when the lactose decomposition rate exceeds 90% (24 hours in the example shown in FIG. 3). ).
  • the lower limit of the reaction time of the lactose decomposition reaction is, for example, 2 hours. Thereby, a lactose decomposition rate can be ensured to 30%, and the sweetness degree of the ice cream manufactured can be made high reliably.
  • the reaction time when the reaction time is short, the lactose decomposition rate tends to fluctuate greatly. Therefore, when ice creams are produced in large quantities by batch processing, a certain lactose decomposition rate is ensured. Is difficult. Therefore, in order to ensure a substantially constant lactose decomposition rate (for example, within an error of 5%), the reaction time when the lactose decomposition rate exceeds 90% (24 hours in the example shown in FIG. 3).
  • Is preferably set.
  • an inhibitor for example, acarbose, voglibose
  • a substantially constant lactose decomposition rate can be secured, and as a result, the quality of ice creams produced in large quantities by batch processing can be made constant.
  • the temperature when the lactose decomposition reaction is performed is high.
  • bacteria usually tend to grow at temperatures exceeding 20 ° C.
  • the enzyme is generally maintained at a temperature of about 5 ° C. to 10 ° C. Therefore, from the viewpoint of suppressing bacterial growth, it is preferably 0 ° C. or higher and 15 ° C. or lower, and from the viewpoint of preventing bacterial growth, 0 ° C. or higher and 10 ° C. or lower is preferable.
  • the temperature in the lactose decomposition step is preferably 5 ° C. or higher and 20 ° C. or lower, more preferably 6 ° C. or higher and 15 ° C. or lower, and further preferably 7 ° C. or higher and 10 ° C. or lower.
  • lactase is 0.01% to 0.10% by weight, preferably 0.01% to 0.08% by weight, more preferably 0.02%, based on the total amount of desalted milk.
  • Added in the range of 0.03 wt% to 0.07 wt%, more preferably in the range of 0.03 wt% to 0.05 wt%, under refrigerated conditions where lactose decomposition is in the range of 0 ° C to 10 ° C. Preferably for a reaction time in the range of 2 hours to 50 hours. Thereby, lactose decomposition rate can be 50% or more.
  • the same argument as lactase can be applied by using the corresponding glycosidase (for example, trehalase, amylase, sucrase, maltase).
  • raw milk (milk that has been extracted) is exemplified as the raw material of desalted milk, but as cow's milk, component-adjusted milk, low-fat milk, non-fat milk, processed milk, Those milk powders may be sufficient.
  • the raw material of desalted milk is not limited to cow milk, and may be goat milk, noodle sheep milk, or the like. However, raw milk is preferable as a raw material for desalted milk, and milk powder is preferable because it can be easily stored (preserved).
  • the raw material of the desalted milk may be a known ice cream mix.
  • a process for obtaining desalted milk (desalted concentrated milk) desalted by adjusting the raw materials will be described.
  • a raw material containing non-fat milk solids in an amount of 5 wt% to 50 wt% is desalted.
  • the raw material in the desalting step preferably contains non-fat milk solids in an amount of 5 wt% to 40 wt%, and the non-fat milk solids is contained in an amount of 7 wt% to 35 wt% (eg, 13 wt% to 30 wt%). % Or less) is more preferable.
  • An example of the desalting step is a step in which the residual rate of sodium contained in the raw material is 35% or more and 80% or less.
  • a preferable example is a method in which the residual ratio of sodium contained in the raw material is 40% or more and 75% or less, and a more preferable example is a residual ratio of sodium contained in the raw material of 45% or more and 70%. More preferable examples are those in which the residual ratio of sodium contained in the raw material is 50% or more and 65% or less.
  • a desalination rate is high, many nonfat milk solid content can be included in a raw material. For this reason, for example, in this invention, many skim milk powder can also be included in a raw material.
  • the desalination rate is preferably within the above range.
  • NF nanofiltration
  • DF diafiltration
  • IE ion exchange resin
  • ED electrodialysis
  • the nanofiltration method uses, for example, a membrane filter (NF membrane) having nano-sized through-holes (for example, a pore diameter of 0.5 to 2 nm), feeds raw milk into this NF membrane, and penetrates. Filtration using pressure.
  • the nanofiltration membrane is a membrane that mainly transmits monovalent ions and water. Therefore, in the present invention, for example, monovalent cations (sodium ions, potassium ions, chloride ions) can be removed. For this reason, desalting which removes sodium and potassium can be performed by using the nanofiltration method.
  • nanofiltration (NF) membrane materials are polyamide, cellulose acetate, polyethersulfone, polyester, polyimide, vinyl polymer, polyolefin, polysulfone, regenerated cellulose, and polycarbonate.
  • polyamide, cellulose acetate, and polyethersulfone are preferred as materials for the nanofiltration (NF) membrane in order to remove salt.
  • nanofiltration (NF) membrane shapes are flat membranes, spiral membranes, hollow fiber membranes, plate membranes, and tubular membranes.
  • the well-known conditions of a well-known filtration method are employable as a nano filtration method. Examples of the filtration method are a pressure filtration method and a vacuum filtration method.
  • NF film is an NF film (trade name “NF-3838 / 30-FF”) manufactured by Dow Chemical.
  • NF-3838 / 30-FF dead end filtration methods
  • cross flow filtration methods as types of filtration methods.
  • the cross flow method since the production of ice creams is industrially performed in a batch process, it is preferable to use the cross flow method, whereby the ice produced can be produced while suppressing variations caused by clogging of the filtration membrane. The quality of creams can be kept constant.
  • a retentate and a permeate can be obtained from raw milk.
  • the ratio of the amount of retentate and the amount of permeate varies depending on the osmotic pressure for the NF membrane used.
  • the total solid content (TS: total-solids) of raw milk is concentrated in the retentate within a range of 1.5 to 2.5 times (for example, 1.6 times).
  • the total solid content (TS) of raw material milk that is, milk fat (FAT) and non-fat milk solid content (SNF) are concentrated. Therefore, in this specification, the concentrate obtained by the nanofiltration method is also referred to as nanofiltration concentrated milk.
  • the permeate obtained by the nanofiltration method contains much of the moisture in the raw milk and part of the water-soluble components (especially monovalent ions), while the total solid content of the raw milk is , Almost no inclusion.
  • the water-soluble component of raw milk is ash.
  • Ash is an inorganic substance such as sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), chlorine (Cl), phosphorus (S), and vitamins such as vitamin A, B1, B2, and niacin. It is a generic name.
  • Desalination can be promoted by adding an electrolyte that does not permeate nanofiltration.
  • electrolytes that do not permeate the nanofiltration membrane include milk fat, milk casein, whey protein, lactose, and some non-protein nitrogen (NPN).
  • NPN non-protein nitrogen
  • DF diafiltration
  • the ion exchange resin (IE) method is a method of desalting by bringing a raw material and an ion exchange resin into contact with each other.
  • IE ion exchange resin
  • a commercially available anion exchange resin and cation exchange resin which are usually used for the purpose of desalting may be used.
  • Desalination using an ion exchange resin may be performed according to known conditions using known operations and equipment.
  • Electrodialysis is a separation technique that utilizes electrophoresis of ionic substances in a solution and the property that an ion exchange membrane selectively permeates cations and anions. Desalination using the electrodialysis (ED) method may be performed according to known conditions using known operations and devices.
  • the residual ratio of the calcium salt after the desalting step is preferably 80% by weight or more, more preferably 90% by weight or more, and further preferably 95% by weight or more.
  • step S110 of FIG. 2 is diafiltration (DF) (first mode)
  • FIG. 4 is a process diagram showing in detail the procedure of an example of the desalted milk acquisition process in step S110 of FIG.
  • desalted milk particularly desalted concentrated milk
  • the raw material of desalted milk is not restricted to raw milk.
  • raw milk is prepared as a raw material for desalted milk.
  • the total solid content (TS) of raw milk is, for example, 12.8% by weight, and the breakdown is 3.8% by weight of milk fat (FAT: milk fat) and 9.0% by weight of non-fat milk solids. Minute (SNF).
  • FAT milk fat
  • SNF non-fat milk solids. Minute
  • the aqueous solution (reduced milk) of milk powder for example, skim milk powder
  • a well-known ice cream mix may be used.
  • the first nanofiltration (NF) treatment is performed on the raw material by the nanofiltration method.
  • NF nanofiltration
  • an NF membrane manufactured by Dow Chemical (trade name “NF-3838 / 30-FF”) is used as the NF membrane.
  • a retentate (retentate) and a permeate (permeate) are obtained from the raw material.
  • retentate a retentate
  • permeate a permeate
  • the retentate when the NF membrane manufactured by Dow Chemical is used, when the flow rate per unit time of the raw material during the first nanofiltration treatment by the cross flow method is 14 t / h, for example, Almost the same amount (7 t / h) can be obtained with the permeate.
  • the ratio of the amount of the retentate and the amount of the permeate varies depending on the osmotic pressure for the NF membrane to be used, the retentate usually has a total solid content (TS) of 1.5 to 2 times. Concentrate within 5X range (eg 2.0X).
  • the total solids (TS) of the raw material that is, milk fat (FAT) and nonfat milk solids (SNF) are concentrated.
  • the permeate obtained by the nanofiltration method contains much of the raw material water and a part of the water-soluble components, but contains almost no total solid content of the raw material milk. It becomes.
  • the permeate obtained by the nanofiltration method contains sodium (Na), potassium (K), chlorine (Cl), and the like.
  • step S113 reverse osmosis (RO) treatment is performed on the permeate obtained by the nanofiltration method to obtain a permeate (hereinafter also referred to as reverse osmosis membrane permeate).
  • RO reverse osmosis
  • the reverse osmosis treatment uses, for example, a membrane-like filter (reverse osmosis membrane) that captures monovalent cations, and the permeate obtained by the nanofiltration method in step S112 is input to this reverse osmosis membrane, This is performed by applying pressure from the upstream side of the reverse osmosis membrane (the permeate input side obtained by the nanofiltration method in step S112).
  • the downstream side of the reverse osmosis membrane may be decompressed instead of applying pressure from the upstream side of the reverse osmosis membrane.
  • the reverse osmosis membrane permeate is also referred to as demineralized water.
  • step S114 the desalted water obtained in step S113 is added (returned) to the nanofiltration concentrated milk obtained in step S112.
  • step S112 the amount of the permeate obtained by the nanofiltration method in step S112 and the amount of the reverse osmosis membrane permeate are substantially the same, the amount of desalted milk is equal to the amount of the raw material prepared in step S111. It is almost the same. Therefore, this desalted milk contains almost the same amount of total solids (FAT and SNF) as the nanofiltration concentrated milk, and almost the same amount of ash as the nanofiltration concentrated milk. In other words, this desalted milk is desalted concentrated milk from which all of the solid content of the raw material has been concentrated while removing a part of sodium and potassium that are the source of salty taste.
  • FAT and SNF total solids
  • step S115 water is added to the desalted milk as necessary (hydrolysis).
  • water to be added distilled water or tap water can be used, but it is preferable to use tap water in consideration of the point that it can be easily obtained and sterilized at a later stage.
  • step S116 the obtained desalted milk is subjected to the second nanofiltration treatment by the nanofiltration method.
  • a retentate is obtained.
  • This retentate can be said to be a concentrated desalted milk obtained by further concentrating the total solid content of the desalted milk and further desalting the desalted milk.
  • the permeate obtained by this nanofiltration method contains water-soluble components (especially sodium and potassium) in desalted milk. Therefore, one retentate is less salty than desalted milk.
  • the sodium content in the retentate is within the range of 35% to 80% (preferably 40% to 75%) of the sodium content in the raw material used in step S111. In the range of 45% to 70%, more preferably in the range of 50% to 65%.
  • the potassium content is 35% to 80% (preferably within the range of 40% to 75%, more preferably 45% to 70%) of the potassium content of the raw milk. Within a range, more preferably within a range of 50% to 65%.
  • the desalination rate of the retentate is within the range of 20% to 65% (preferably within the range of 25% to 60%, more preferably within the range of 30% to 55%. , More preferably within the range of 35% to 50%).
  • the salty taste of manufactured ice cream can be adjusted, and it can prevent reliably that the flavor of ice cream is impaired.
  • the desalination rate exceeds the upper limit of the above range, the manufactured ice cream has a light flavor and weakness.
  • the desalination rate is below the lower limit of the above range, the ice creams produced will have a salty taste that will impair the flavor.
  • the desalination rate may be within the above range by changing (or selecting appropriately) the NF membrane (that is, osmotic pressure) used in the second nanofiltration treatment.
  • the desalination rate may be adjusted to be within the above range by performing the third nanofiltration treatment on the retentate. In this way, a plurality of nanofiltration (ie, diafiltration) processes are completed.
  • desalted concentrated skim milk is obtained by removing the cream from the desalted concentrated milk obtained in step S116.
  • Cream means the fat-rich portion of raw milk (here, desalted and concentrated milk).
  • desalted and concentrated milk may be set in a centrifuge (separator) and centrifuged, and the separated cream may be collected by filtration.
  • DF desalted skim milk a low fat type
  • the content (content ratio) of milk fat (FAT) can be greatly reduced without greatly reducing the content (content ratio) of non-fat milk solids (SNF) contained in the desalted and concentrated milk. .
  • milk fat globule aggregation (churning) can be made difficult to occur. And it can prevent that variation arises in the quality of the ice cream manufactured by making it difficult to cause churning.
  • step S118 the DF demineralized skim milk obtained in step S117 is further concentrated to obtain DF demineralized degreased concentrated milk.
  • DF demineralized skim milk is evaporated to evaporate the moisture of the DF demineralized skim milk to obtain DF demineralized skim concentrated milk.
  • This concentration can be performed, for example, by heating the DF desalted skim milk under reduced pressure using a vacuum evaporator (evaporator).
  • step S119 DF demineralized skim milk powder is obtained by spray-drying the DF demineralized degreased concentrated milk using a known spray dryer as necessary.
  • the volume (capacity) can be minimized, and storage (preservation) can be facilitated. Note that one or both of step S118 and step S119 need not be performed.
  • the nanofiltration process is performed a plurality of times on the raw material (steps S112 and S116). Further, reverse osmosis treatment is performed, and the obtained reverse osmosis membrane permeate is returned to the nanofiltration concentrated milk obtained from the raw material (steps S113 to S114). By these, the desalted milk which adjusted the desalination rate can be obtained. Further, since the reverse osmosis membrane permeate is returned to the nanofiltration concentrated milk (step S114), the components contained in the raw material can be effectively used without waste.
  • a cream is removed from desalted milk (step S117).
  • the desalinated milk with high content of non-fat milk solid content (SNF) and protein can be obtained from raw materials, such as raw milk.
  • the desalination rate is adjusted as mentioned above, even if ice cream is manufactured using desalted milk having a high protein content, the salty taste of the manufactured ice cream Is never too high.
  • the content rate of non-fat milk solid content (SNF) and protein is high even if it is low fat, a milk flavor is not impaired.
  • ice cream with a high milk fat content premium ice cream
  • the ice cream according to this embodiment is differentiated from such ice cream in that the milk fat content is low. Can be achieved.
  • the second aspect is different from the first aspect only in that the reverse osmosis treatment as described above is not performed and water is added to the nanofiltration concentrate obtained by the first nanofiltration instead of demineralized water. It is. Therefore, detailed processing is omitted.
  • the nanofiltration treatment is performed at least twice (that is, the diafiltration (DF) treatment described above is performed).
  • the sodium content (content ratio) of the desalted milk is reduced within a range of, for example, 14% to 24% compared to the raw milk. Therefore, if the nanofiltration treatment is performed twice, in principle, the sodium content (content ratio) of the desalted milk will fall within a range of 26% to 42%, for example, compared to the raw milk.
  • the residual rate of sodium in the desalted milk falls within the range of, for example, 58% to 74%, so that the desalting rate is as described above (20% to 65%).
  • the possibility of being within the range can be increased. Thereby, the salty taste of manufactured ice cream can be adjusted, and it can prevent that the flavor of ice cream is impaired.
  • the nanofiltration treatment is performed many times, the desalination rate will be out of the above range. Therefore, the maximum number of nanofiltration treatments is 3 to 4 times.
  • the third mode is different from the first mode and the second mode only in that the raw material is concentrated and desalted by an ion exchange resin (IE) method or an electrodialysis (ED) method instead of the nanofiltration treatment. It is. Therefore, detailed processing is omitted.
  • IE ion exchange resin
  • ED electrodialysis
  • the same effect as the first aspect and the second aspect can be obtained.
  • the equipment for performing the nanofiltration treatment is low-cost, it is preferable to prepare the desalted milk according to the first aspect and the second aspect.
  • an ultrafiltration process (UF: ultrafiltration) and a microfiltration process (MF: microfiltration) are not performed.
  • the ion exchange resin (IE) method and the electrodialysis (ED) method may be executed a plurality of times, or at least one of the plurality of times may be executed by the nanofiltration method.
  • the desalted milk obtained in at least two of the first to third aspects is mixed with each other, and the prepared desalted milk is used as part or all of the raw material for ice cream. It is a kind of manufacturing. Also according to this aspect, the effect according to the corresponding aspect can be produced.
  • the total solid content of raw milk is concentrated and desalted by nanofiltration or reverse osmosis, and ice creams are stored under freezing.
  • the enzyme enhances the sweetness of the ice cream and ensures moderate softness. Therefore, according to the present invention, ice creams can be manufactured with a simple manufacturing process and at low cost.
  • an ice cream made from desalted milk having a high total solid content (particularly non-fat milk solid content and protein), a high desalting rate, and a high sweetness as a raw material.
  • the cream mix is prepared, by using the ice cream mix as a raw material, it is possible to produce ice creams that are soft, high in sweetness, and rich in flavor.
  • the ice creams produced in this way have a good texture (tactile texture) because the growth of ice crystals and lactose crystals during frozen storage is suppressed, and the ice creams are preserved under freezing.
  • it is reasonably soft, so the streets of Saji are good, and since the salty taste is suppressed, the flavor is not impaired, and because it is rich in protein, it is milky. The flavor is rich.
  • the ice cream according to the present invention it is possible to eliminate the addition of an excessive sugar content and the addition of an emulsifier and a stabilizer.
  • an emulsifier and a stabilizer may be added to the raw material, but even in that case, the ratio of the emulsifier and the stabilizer to the raw material may be lower than in the conventional case.
  • milk fat can be significantly reduced by increasing the solid content of non-fat milk in ice creams to ensure a milk flavor. Therefore, in the production of ice creams according to the present invention, flavor (fragrance) is added to compensate for the milk flavor damaged by the reduction of milk fat, as in the production of conventional low fat ice creams. It is not necessary to add dextrin or dietary fiber, which is a substitute for milk fat, and even if it is added, it can be reduced compared to the conventional case.
  • ice creams having various contents can be manufactured by appropriately changing the composition of the ice cream mix.
  • the milk fat content (FAT) is 0% to 25% by weight (preferably 0% to 20% by weight, more preferably 0% to 18% by weight, and still more preferably 0% to 15% by weight).
  • Non-fat milk solids (SNF) 5 wt% to 40 wt% preferably 7 wt% to 35 wt%, more preferably 13 wt% to 30 wt%, and even more preferably 15 wt% ⁇ 25% by weight
  • the upper limit of the nonfat milk solid content of the produced ice cream may be 50% by weight.
  • ice creams having a higher content of non-fat milk solids than before (for example, 2 to 5 times higher than before).
  • examples of ice creams according to the present invention are milk protein derived from 4% to 15% by weight (preferably 4% to 13% by weight, more preferably 4% to 11% by weight), derived from lactose Of 1 to 10% by weight (preferably 1.5 to 9% by weight, more preferably 2 to 8% by weight). These ice creams are excellent in storage stability, suitable for salty taste, rich in flavor, have moderate softness, and have good softness.
  • Example 1 in order to confirm whether or not the object can be achieved by the production method of the present invention, DF desalted skim milk powder prepared according to the diafiltration (DF) method (second aspect described above) was used.
  • the flavor and physical properties of the ice cream produced in this way were examined (Production Examples 1, 2, and 5). Specifically, the growth of ice crystals was evaluated by measuring the size of ice crystals produced in the produced ice cream and comparing the measured values. Moreover, the softness (goodness of a saji) was evaluated by measuring the hardness of the produced ice cream. Furthermore, the saltiness, sweetness and milk flavor of the produced ice cream were evaluated. Furthermore, in Example 1, the flavor and physical properties of the ice cream produced using an ice cream mix prepared without performing the nanofiltration (NF) method were also examined (Production Examples 3 and 4).
  • NF nanofiltration
  • DF desalted skim milk powder was prepared as follows. First, skim milk (solid content concentration: about 9% by weight) was concentrated by nanofiltration (NF) method until the solid content concentration became about 20% by weight and desalted to obtain NF concentrated skim milk. At this time, NF-3838 / 30-FF (manufactured by Dow Chemical) was used as a nanofiltration (NF) membrane. Next, NF skim milk was obtained by adding water to NF concentrated skim milk so that the solid concentration was about 10% by weight. Next, NF skim milk was concentrated and desalted by a nanofiltration (NF) method until the solid content concentration was about 20% by weight to obtain DF desalted concentrated skim milk.
  • NF nanofiltration
  • NF-3838 / 30-FF manufactured by Dow Chemical
  • NF nanofiltration
  • DF desalted and concentrated skim milk was sterilized, concentrated by vacuum evaporation, and spray-dried according to conventional methods. In this way, DF desalted skim milk powder was obtained.
  • the resulting DF desalted skim milk powder contained about 1% by weight milk fat and about 95% by weight nonfat milk solids.
  • the ice cream of Production Example 1 was produced using DF desalted skim milk powder containing about 1% by weight of milk fat and about 95% by weight of nonfat milk solids.
  • lactose contained in DF desalted skim milk powder was degraded at 56% by lactase (trade name “GODO-YNL”, manufactured by Godo Shusei Co., Ltd.) (that is, the lactose degradation rate was 56%).
  • Production Example 3 The ice cream of Production Example 3 was produced under the same conditions as in Production Example 1 using an ice cream mix containing 15% by weight of milk fat and 10% by weight of nonfat milk solids. However, this ice cream mix is not subjected to nanofiltration treatment. Furthermore, in Production Example 3, lactase was not added to the ice cream mix, but the same reaction time was maintained in the lactose decomposition step in order to achieve the same conditions as in Production Example 1. The lactose decomposition rate of the ice cream of Production Example 3 was 0%.
  • Production Example 4 The ice cream of Production Example 4 was produced under the same conditions as in Production Example 1 using the same ice cream mix as in Production Example 3 except that lactase was added. Lactose contained in the ice cream mix was degraded by lactase at 85% (that is, lactose degradation rate was 85%).
  • the ice crystals [ ⁇ m] shown in Table 2 are the dimensions measured after storing the ice cream according to each production example for 1 week under freezing at ⁇ 8 ° C.
  • the dimensions of the ice crystals before storage are as follows: All were 30 micrometers.
  • NF desalted and defatted concentrated milk DF desalted and defatted concentrated milk
  • NF desalted whole fat and concentrated milk so that the milk fat content is 12 to 15% by weight and the nonfat milk solid content is 13 to 20% by weight.
  • DF desalted whole fat concentrated milk, NF cream, and ice cream mix mixed with DF cream were produced in plural types, and each was subjected to lactose decomposition to produce ice cream. As for these, compared with the manufacture example 3, although the saltiness was in the state adjusted to the grade which is comparable or just good, sweetness and milk flavor were felt richly.
  • Example 2 in order to confirm the change in the components due to desalting, first, desalted concentrated milk was produced according to the first aspect, and the composition of the obtained desalted concentrated milk (Production Example 6) and the blending ratio thereof were determined. Examined.
  • FIG. 6 schematically shows the procedure for preparing the desalted concentrated milk according to the first embodiment.
  • the step number S shown in FIG. 6 corresponds to the step number S shown in FIG.
  • NF concentrated milk nanofiltered concentrated milk obtained by nanofiltration was obtained (Production Example 7).
  • the permeate obtained by the nanofiltration method was processed by reverse osmosis (RO) to prepare a reverse osmosis membrane permeate (demineralized water).
  • RO reverse osmosis
  • the reverse osmosis membrane permeate and water were added to the nanofiltration concentrated milk to obtain the same weight as the original raw milk to obtain desalted milk.
  • the desalted milk was subjected to nanofiltration (NF) treatment and concentrated to about 2.0 times. In this manner, diafiltered desalted milk (DF desalted concentrated milk) was obtained.
  • This DF desalted concentrated milk was separated into DF cream and DF defatted concentrated milk by a centrifuge (separator). Thereby, DF desalted and defatted concentrated milk of Production Example 6 was obtained. It was also confirmed that DF demineralized skim milk can be obtained by concentrating DF demineralized degreased concentrated milk with a vacuum evaporator (evaporator), and having excellent storage (preservation) properties.
  • Table 3 shows the results of examining each composition
  • Table 4 shows the results of examining the content ratio of each composition.
  • the desalted milk of Production Example 6 has a sodium content in the range of 35% to 80% described above, and the desalted milk of Production Examples 7 and 8 is more than 75%. I understood that. Therefore, it was demonstrated that the desalination rate can be adjusted by concentrating the raw materials and performing the desalting treatment according to the first aspect. In addition, it was found that the residual rate of calcium does not fluctuate greatly even if the nanofiltration treatment or reverse osmosis membrane treatment is applied to the raw material (specifically, 90% can be secured in the residual rate).
  • Example 3 the DF desalted and defatted concentrated milk obtained in the first aspect and the desalted and defatted powdered milk obtained in the second aspect are mixed, and the mixture is used as a material for milk fat and nonfat milk.
  • a plurality of ice creams (Production Examples 9 to 15) having different solid content ratios were produced.
  • ice cream (Manufacturing Example 16) was manufactured without using both the DF desalted and defatted concentrated milk obtained in the first aspect and the desalted and defatted powdered milk obtained in the second aspect.
  • Tables 5 and 6 show the mixing ratio of the raw materials of Production Examples 9 to 16. Tables 5 and 6 also show the content ratio of each composition of the produced ice cream.
  • ice creams can be produced with various blending ratios.
  • the ice creams of Production Examples 9 to 15 were prepared by DF desalted and defatted concentrated milk prepared according to the first embodiment (diafiltration and lactose-degraded desalted and defatted concentrated milk) and desalted and defatted powdered milk prepared according to the second embodiment ( Therefore, even if the amount of sugar (sucrose) added to the raw material is smaller than that in Production Example 16, the sweetness is sufficiently high.
  • the present invention can be used in the food industry.

Abstract

Provided is a method for producing ice creams which have high storage stability and excellent taste and can be easily scooped with a spoon. The method for producing ice creams comprises a desalting step, a step of adding an enzyme, a step of degrading lactose, and a cooling step. In the desalting step, a starting material, which contains 5-50 wt% inclusive of non-fat milk solids, is desalted. In the subsequent step of adding an enzyme, an enzyme capable of degrading lactose is added to the desalted material. In the step of degrading lactose, lactose contained in the material is degraded by the enzyme. In the final cooling step, the material having been treated in the lactose-degrading step is cooled. Thus, ice creams can be produced.

Description

アイスクリーム類及びその製造方法Ice cream and method for producing the same
 本発明は,アイスクリームミックスにタンパク質を多く含む脱塩濃縮乳を用い,アイスクリームミックスに含まれる乳糖が分解されたアイスクリーム類及びその製造方法に関する。 The present invention relates to ice creams obtained by degrading lactose contained in an ice cream mix using desalted and concentrated milk containing a large amount of protein in the ice cream mix, and a method for producing the same.
 特開平7-67542号公報(特許文献1)には,甘味成分として,乳糖及びラクターゼを利用したアイスクリームが開示されている(段落[0037])。このアイスクリームは,ラクターゼにより乳糖がグルコースとガラクトースに分解される。単糖類を多く含むアイスクリームは消化吸収に秀れ,例えば,乳糖不耐症の人が食べても下痢を起こさなくなる。乳糖は小腸でラクターゼによりグルコースとガラクトースに分解され,体内に吸収される訳であるが,小腸でラクターゼの分泌量の少ない体質の人(乳糖不耐症の人)は,乳糖を分解できず,従って,乳糖が体内に吸収されずに下痢を起こすのである。 JP-A-7-67542 (Patent Document 1) discloses an ice cream using lactose and lactase as sweetening ingredients (paragraph [0037]). In this ice cream, lactose is broken down into glucose and galactose by lactase. Ice cream rich in monosaccharides excels in digestion and absorption, for example, causes no diarrhea even if eaten by a person with lactose intolerance. Lactose is broken down into glucose and galactose by lactase in the small intestine and absorbed into the body, but those with a low lactase secretion in the small intestine (people with lactose intolerance) cannot break down lactose, Therefore, lactose is not absorbed by the body and causes diarrhea.
特開平7-67542号公報JP 7-67542 A
 一方,特開平7-67542号公報に開示されたアイスクリームは,単糖類を多く含むため,アイスクリームを保管(保存)する際に温度が高くなると,アイスクリームの結晶が成長し,風味や食感が損なわれるという問題がある。 On the other hand, since the ice cream disclosed in Japanese Patent Application Laid-Open No. 7-67542 contains a large amount of monosaccharides, when the temperature rises when storing (preserving) the ice cream, crystals of the ice cream grow, and flavor and food There is a problem that the feeling is impaired.
 そこで,本発明は,保存安定性に優れ,風味が豊かで,適度な軟らかさを有し,サジ通りの良いアイスクリーム類を製造する方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing ice cream having excellent storage stability, rich flavor, moderate softness, and good sag.
 本発明は,基本的には,酵素を用いて乳糖を分解させることにより,適度な軟らかさを有し,サジ通りの良いアイスクリーム類を得る。そして,アイスクリーム類の保存安定性を高めるため,無脂乳固形分を多く含むアイスクリームミックスを用いる。一方,無脂乳固形分を多く含むアイスクリームミックスを用いて,アイスクリームを製造すると,得られるアイスクリーム類の塩味が強くなる。そこで,本発明は,アイスクリームミックスに脱塩濃縮乳を用いる。このようにして,本発明は,保存安定性に優れ,風味が豊かで,適度な軟らかさを有し,サジ通りの良いアイスクリーム類を製造する方法を提供する。 In the present invention, basically, lactose is decomposed using an enzyme to obtain ice creams having moderate softness and good sag. And in order to improve the storage stability of ice cream, the ice cream mix containing many nonfat milk solid content is used. On the other hand, when ice cream is produced using an ice cream mix containing a large amount of non-fat milk solids, the salty taste of the resulting ice cream becomes strong. Therefore, the present invention uses desalted and concentrated milk in the ice cream mix. In this way, the present invention provides a method for producing ice cream having excellent storage stability, rich flavor, moderate softness, and good sag.
 本発明の第1の側面は,アイスクリーム類を製造する方法に関する。そして,このアイスクリーム類を製造する方法は,脱塩工程と,酵素添加工程と,乳糖分解工程と,冷却工程とを含む。 The first aspect of the present invention relates to a method for producing ice creams. And the method of manufacturing this ice cream includes a desalting process, an enzyme addition process, a lactose decomposition process, and a cooling process.
 脱塩工程は,無脂乳固形分を5重量%以上50重量%以下で含む原料を脱塩処理するための工程である。このように無脂乳固形分の多い原料を用いることで,アイスクリームミックスに含まれるタンパク質の量を多くすることができる。これにより,アイスクリームの保存安定性を高めることができる。このため,本発明では,乳化剤や安定剤を添加する必要が無くなる。よって,このアイスクリーム類を製造する方法を用いれば,風味に優れたアイスクリーム類を製造できることとなる。 The desalting step is a step for desalting a raw material containing non-fat milk solids in an amount of 5 wt% to 50 wt%. Thus, the quantity of the protein contained in an ice cream mix can be increased by using a raw material with many non-fat milk solid content. Thereby, the storage stability of ice cream can be improved. For this reason, in this invention, it is not necessary to add an emulsifier and a stabilizer. Therefore, if this method for producing ice creams is used, ice creams having excellent flavor can be produced.
 酵素添加工程は,脱塩工程を経た原料に,乳糖を分解する酵素を添加するための工程である。この工程では,脱塩工程を経た原料に他の原料を添加し,その後に,酵素を添加しても良い。乳糖分解工程は,酵素が原料に含まれる乳糖を分解する工程である。冷却工程は,乳糖分解工程を経た原料を冷却する工程である。この工程では,脱塩工程を経た原料などを冷却する工程であっても良く,すなわち,酵素添加工程を経る前の原料などを冷却する工程で有っても良いし,乳糖分解工程を経る前の原料などを冷却する工程であっても良い。 The enzyme addition step is a step for adding an enzyme that decomposes lactose to the raw material that has undergone the desalting step. In this step, other raw materials may be added to the raw material that has undergone the desalting step, and then the enzyme may be added. The lactose decomposition step is a step in which the enzyme breaks down lactose contained in the raw material. A cooling process is a process of cooling the raw material which passed through the lactose decomposition process. This step may be a step of cooling the raw material after the desalting step, that is, a step of cooling the raw material before the enzyme addition step, or before the lactose decomposition step. It may be a step of cooling the raw materials.
 本発明の第1の側面の好ましい態様は,冷却工程が,脱塩工程,酵素添加工程,乳糖分解工程を経て調製されたアイスクリームミックスを冷却する工程である。このアイスクリームミックスは,無脂乳固形分を5重量%以上40重量%以下で含み,乳脂肪分を含まないか,乳脂肪分を25重量%以下で含む。 In a preferred embodiment of the first aspect of the present invention, the cooling step is a step of cooling the ice cream mix prepared through the desalting step, the enzyme addition step, and the lactose decomposition step. This ice cream mix contains non-fat milk solids at 5 wt% or more and 40 wt% or less, and does not contain milk fat or contains milk fat at 25 wt% or less.
 後述する実施例により実証されたとおり,本発明によれば,無脂乳固形分を多く含む原料やアイスクリームミックスを用いた場合にも,風味が良好なアイスクリーム類を得ることができる。 As demonstrated by the examples described later, according to the present invention, ice creams having a good flavor can be obtained even when a raw material containing a large amount of non-fat milk solids or an ice cream mix is used.
 本発明の第1の側面の好ましい態様は,脱塩工程が,原料に含まれるナトリウムの残存率を35%以上80%以下(脱塩率を20%以上65%以下)とする工程である。無脂乳固形分を多く含む原料やアイスクリームミックスを用いてアイスクリーム類を製造すると塩味が強くなる。本発明では,脱塩工程によりナトリウムやカリウムを除去するため,無脂乳固形分を多く含む原料やアイスクリームミックスを用いてアイスクリーム類を製造しても適切な塩味を有するアイスクリーム類を得ることができる。 In a preferred embodiment of the first aspect of the present invention, the desalting step is a step in which the residual rate of sodium contained in the raw material is 35% to 80% (desalting rate is 20% to 65%). When ice cream is produced using a raw material containing a large amount of non-fat milk solids or an ice cream mix, the salty taste becomes strong. In this invention, in order to remove sodium and potassium by a desalting process, even if ice cream is manufactured using the raw material and ice cream mix which contain many nonfat milk solid content, the ice cream which has suitable salty taste is obtained. be able to.
 本発明の第1の側面の好ましい態様は,脱塩工程が,第1のナノ濾過処理工程と,希釈工程と,第2のナノ濾過処理工程とを含む。第1のナノ濾過処理工程は,脱脂乳を含む原料をナノ濾過法により濃縮し,ナノ濾過濃縮脱脂乳を得る工程である。希釈工程は,第1のナノ濾過処理工程で得られたナノ濾過濃縮脱脂乳を希釈し,ナノ濾過脱脂乳を得る工程である。第2のナノ濾過処理工程は,希釈工程で得られたナノ濾過脱脂乳をナノ濾過法により濃縮し,脱塩脱脂乳を得る工程である。 In a preferred embodiment of the first aspect of the present invention, the desalting step includes a first nanofiltration treatment step, a dilution step, and a second nanofiltration treatment step. The first nanofiltration treatment step is a step of concentrating a raw material containing skim milk by a nanofiltration method to obtain nanofiltration concentrated skim milk. The dilution step is a step of diluting the nanofiltration concentrated skim milk obtained in the first nanofiltration treatment step to obtain nanofiltration skim milk. The second nanofiltration treatment step is a step of concentrating the nanofiltration skim milk obtained in the dilution step by the nanofiltration method to obtain desalted skimmilk.
 この態様は,原料に生乳を含む場合にも用いることができる。一方,この態様は,原料に脱脂乳を含む場合に好ましく用いられる。後述する実施例により実証されたとおり,この態様の製造方法を用いることで,無脂乳固形分を維持しながら,ナトリウムやカリウムの含有量を効果的に減らすことができる。なお,第2のナノ濾過処理工程に加えて,第3のナノ濾過処理工程,第4のナノ濾過処理工程などを設けても良いが,工程の煩雑さ,脱塩の効率,製品の風味などの観点から,第2のナノ濾過処理工程で留めておくことが好ましい。 This mode can also be used when raw material contains raw milk. On the other hand, this embodiment is preferably used when the raw material contains skim milk. As demonstrated by the examples described later, by using the production method of this aspect, the content of sodium or potassium can be effectively reduced while maintaining the nonfat milk solid content. In addition to the second nanofiltration treatment step, a third nanofiltration treatment step, a fourth nanofiltration treatment step, etc. may be provided, but the complexity of the process, the efficiency of desalination, the flavor of the product, etc. From this point of view, it is preferable to keep the second nanofiltration treatment step.
 本発明の第1の側面の好ましい態様は,脱塩工程が,第1のナノ濾過処理工程と,逆浸透処理工程と,脱塩乳取得工程と,第2のナノ濾過処理工程とを含む。第1のナノ濾過処理工程は,脱脂乳を含む原料をナノ濾過法により濃縮し,ナノ濾過濃縮脱脂乳を得る工程である。逆浸透処理工程は,第1のナノ濾過処理工程で得られた透過液に逆浸透処理を行い,逆浸透膜透過液を得る工程である。脱塩乳取得工程は,第1のナノ濾過処理工程で得られたナノ濾過濃縮脱脂乳と,逆浸透膜透過液と,水分とを加え,脱塩乳を得る工程である。第2のナノ濾過処理工程は,脱塩乳取得工程で得られた脱塩乳をナノ濾過法により濃縮し,脱塩脱脂乳を得る工程である。 In a preferred embodiment of the first aspect of the present invention, the desalting step includes a first nanofiltration treatment step, a reverse osmosis treatment step, a desalted milk acquisition step, and a second nanofiltration treatment step. The first nanofiltration treatment step is a step of concentrating a raw material containing skim milk by a nanofiltration method to obtain nanofiltration concentrated skim milk. The reverse osmosis treatment step is a step of performing reverse osmosis treatment on the permeate obtained in the first nanofiltration treatment step to obtain a reverse osmosis membrane permeate. The desalted milk acquisition step is a step of obtaining the desalted milk by adding the nanofiltration concentrated skim milk obtained in the first nanofiltration treatment step, the reverse osmosis membrane permeate, and moisture. The second nanofiltration treatment step is a step in which the desalted milk obtained in the desalted milk acquisition step is concentrated by the nanofiltration method to obtain desalted skim milk.
 この態様は,原料に生乳を含む場合にも用いることができる。一方,この態様は,原料に脱脂乳を含む場合に好ましく用いられる。後述する実施例により実証されたとおり,この態様の製造方法を用いることで,無脂乳固形分を維持しながら,ナトリウムやカリウムの含有量を効果的に減らすことができる。なお,第2のナノ濾過処理工程に加えて,第3のナノ濾過処理工程,第4のナノ濾過処理工程などを設けても良いが,工程の煩雑さ,脱塩の効率,製品の風味などの観点から,第2のナノ濾過処理工程で留めておくことが好ましい。 This mode can also be used when raw material contains raw milk. On the other hand, this embodiment is preferably used when the raw material contains skim milk. As demonstrated by the examples described later, by using the production method of this aspect, the content of sodium or potassium can be effectively reduced while maintaining the nonfat milk solid content. In addition to the second nanofiltration treatment step, a third nanofiltration treatment step, a fourth nanofiltration treatment step, etc. may be provided, but the complexity of the process, the efficiency of desalination, the flavor of the product, etc. From this point of view, it is preferable to keep the second nanofiltration treatment step.
 本発明の第1の側面の好ましい態様は,脱塩工程が,第1のナノ濾過処理工程と,逆浸透処理工程と,脱塩乳取得工程と,第2のナノ濾過処理工程とを含む。第1のナノ濾過処理工程は,原料をナノ濾過法により濃縮し,ナノ濾過濃縮乳を得る工程である。逆透過処理工程は,第1のナノ濾過処理工程で得られた透過液に逆浸透処理を行い,逆浸透膜透過液を得る工程である。脱塩乳取得工程は,ナノ濾過濃縮乳と,逆浸透膜透過液と,水分とを加え,脱塩乳を得る工程である。第2のナノ濾過処理工程は,脱塩乳取得工程で得られた脱塩乳をナノ濾過法により濃縮し,脱塩脱脂乳を得る工程である。 In a preferred embodiment of the first aspect of the present invention, the desalting step includes a first nanofiltration treatment step, a reverse osmosis treatment step, a desalted milk acquisition step, and a second nanofiltration treatment step. The first nanofiltration treatment step is a step of concentrating the raw material by a nanofiltration method to obtain nanofiltration concentrated milk. The reverse permeation treatment step is a step of performing a reverse osmosis treatment on the permeate obtained in the first nanofiltration treatment step to obtain a reverse osmosis membrane permeate. The desalted milk acquisition step is a step of obtaining desalted milk by adding nanofiltration concentrated milk, reverse osmosis membrane permeate, and moisture. The second nanofiltration treatment step is a step in which the desalted milk obtained in the desalted milk acquisition step is concentrated by the nanofiltration method to obtain desalted skim milk.
 本発明の第1の側面の好ましい態様は,酵素添加工程で添加される酵素が,ラクターゼである。そして,ラクターゼは,脱塩工程を経た原料やアイスクリームミックスを100重量%とすると,0.01重量%以上0.1重量%以下で添加される。 In a preferred embodiment of the first aspect of the present invention, the enzyme added in the enzyme addition step is lactase. And lactase is added at 0.01 weight% or more and 0.1 weight% or less, when the raw material and ice cream mix which passed through the desalination process shall be 100 weight%.
 ラクターゼの添加量が多くなると,乳糖分解速度が速くなる。一方,ラクターゼが多くなると,コストが高くなる。ラクターゼの添加量が,上記の添加量である場合,風味の良好なアイスクリーム類を適切な製造時間内に得ることができる。 Lactose decomposition rate increases as lactase addition amount increases. On the other hand, when lactase increases, the cost increases. When the added amount of lactase is the above-described added amount, ice creams having a good flavor can be obtained within an appropriate production time.
 本発明の第1の側面の好ましい態様は,乳糖分解工程が,脱塩工程を経た原料に含まれる乳糖を30%以上100%以下で分解する工程である。これは,例えば,脱塩工程を経た原料を,0℃以上20℃以下の温度に,2時間以上で保持することにより達成される。 In a preferred embodiment of the first aspect of the present invention, the lactose decomposition step is a step in which lactose contained in the raw material subjected to the desalting step is decomposed at 30% to 100%. This is achieved, for example, by holding the raw material that has undergone the desalting step at a temperature of 0 ° C. or higher and 20 ° C. or lower for 2 hours or longer.
 本発明のアイスクリーム類の製造方法は,上記した又は以下に記載する様々な構成を適宜組み合わせて用いることができるものである。また,本発明のアイスクリーム類の製造方法は,本明細書に記載されたもののみならず,当業者にとって自明な範囲で適宜修正したものも含む。 The method for producing ice cream of the present invention can be used by appropriately combining the various configurations described above or described below. Moreover, the manufacturing method of the ice cream of this invention contains not only what was described in this specification but what was suitably corrected in the range obvious to those skilled in the art.
 本発明の第2の側面は,上記いずれかに記載のアイスクリーム類の製造方法により製造されたアイスクリーム類に関する。このようなアイスクリーム類の例は,乳タンパク質を4重量%以上15重量%以下,乳糖由来のブドウ糖を1重量%以上10重量%以下で含むアイスクリーム類である。このアイスクリーム類は,保存安定性に優れ,塩味が適切で,風味が豊かであり,サジ通りの良いアイスクリーム類である。 The second aspect of the present invention relates to ice creams produced by any one of the above-described methods for producing ice creams. Examples of such ice creams are ice creams containing 4 to 15% by weight of milk protein and 1 to 10% by weight of lactose-derived glucose. These ice creams are excellent in storage stability, suitable for salty taste, rich in flavor, and are good for ice cream.
 本発明によれば,保存安定性に優れ,風味が豊かで,適度な軟らかさを有し,サジ通りの良いアイスクリーム類を,製造する方法を提供することができる。 According to the present invention, it is possible to provide a method for producing ice cream having excellent storage stability, rich flavor, moderate softness, and good sag.
図1は,本発明のアイスクリーム類の製造方法の手順を概略的に示す工程図(フローチャート)である。FIG. 1 is a process chart (flow chart) schematically showing the procedure of the method for producing ice creams of the present invention. 図2は,図1のステップS100におけるアイスクリームミックスの調製手順を詳細に示す工程図である。FIG. 2 is a process diagram showing in detail the procedure for preparing the ice cream mix in step S100 of FIG. 図3は,脱塩乳内の乳糖がラクターゼによって加水分解されるときの乳糖分解率と,反応時間との関係を示すグラフに替わる図である。FIG. 3 is a diagram instead of a graph showing the relationship between the lactose decomposition rate and the reaction time when lactose in desalted milk is hydrolyzed by lactase. 図4は,図2のステップS110における脱塩乳取得処理の一例の手順を詳細に示す工程図である。FIG. 4 is a process diagram showing in detail the procedure of an example of the desalted milk acquisition process in step S110 of FIG. 図5は,実施例において得られたアイスクリームの硬さの測定結果を示すグラフに替わる図である。FIG. 5 is a diagram replaced with a graph showing the measurement results of the hardness of the ice cream obtained in the examples. 図6は,本発明による脱塩乳取得処理(図4)に従って,脱塩乳を取得するときの手順の一例を模式的に示す図である。FIG. 6 is a diagram schematically showing an example of a procedure for obtaining desalted milk according to the desalted milk obtaining process (FIG. 4) according to the present invention.
 本発明の第1の側面は,アイスクリーム類を製造する方法に関する。アイスクリーム類は,乳等省令(乳及び乳製品の成分規格等に関する省令)で定義されるアイスクリーム,アイスミルク,及びラクトアイスの総称である。なお,アイスクリーム類の例は,乳固形分を少なくとも3重量%で含むものである。 The first aspect of the present invention relates to a method for producing ice creams. Ice cream is a general term for ice cream, ice milk, and lacto ice, as defined by a ministerial ordinance such as milk (a ministerial ordinance relating to ingredient standards of milk and dairy products). In addition, the example of ice cream contains milk solid content by at least 3 weight%.
 アイスクリーム類を製造する方法は,既に知られている。本発明では,既に知られたアイスクリーム類の製造装置を用いて,当業者に公知の条件を適宜採用してアイスクリーム類を製造できる。そして,このアイスクリーム類を製造する方法は,基本的には,脱塩工程と,酵素添加工程と,乳糖分解工程と,冷却工程とを含む。以下,アイスクリーム類を製造する方法について説明する。本発明は,以下の例に限定されるものではなく,以下に説明する例から,当業者に自明な範囲で適宜修正したものも含む。 The method of manufacturing ice creams is already known. In the present invention, ice creams can be produced by appropriately adopting conditions known to those skilled in the art using an already known ice cream production apparatus. And the method of manufacturing this ice cream basically includes a desalting step, an enzyme addition step, a lactose decomposition step, and a cooling step. Hereinafter, the method for producing ice cream will be described. The present invention is not limited to the following examples, and includes examples appropriately modified within the scope obvious to those skilled in the art from the examples described below.
 図1は,アイスクリーム類の製造方法の手順を概略的に示す工程図(フローチャート)である。本発明によれば,原料から,乳全固形分が3重量%以上のアイスクリーム類(好ましくは,無脂乳固形分(SNF)を5重量%以上40重量%以下で含むアイスクリーム類)を製造することができる。無脂乳固形分(SNF)を5重量%以上とすると,乳糖分解工程によるアイスクリーム類の風味や物性の改善効果を期待できるからである。そして,以下では,アイスクリーム類として,アイスクリームを製造する場合について説明する。 FIG. 1 is a process chart (flow chart) schematically showing the procedure of a method for producing ice cream. According to the present invention, ice creams having a total milk solid content of 3% by weight or more (preferably ice creams containing non-fat milk solids (SNF) in an amount of 5% by weight or more and 40% by weight or less) from raw materials. Can be manufactured. This is because if the non-fat milk solid content (SNF) is 5% by weight or more, the effect of improving the flavor and physical properties of ice creams by the lactose decomposition process can be expected. And below, the case where ice cream is manufactured as ice cream is demonstrated.
 図1において,まず,ステップS100では,アイスクリーム類の原料乳となるアイスクリームミックスを,複数の原料を調合することにより調製する。原料には,生乳,粉乳,糖類,濃縮乳,脱塩乳及び水分が適宜含まれていても良い。本工程は,雑菌の侵入等を防止するため,通常,パイプで接続された複数の装置内で,常温又は加温下(30℃以上80℃以下)で行われる。なお,ステップS100の処理の詳細については,図2及び図4を用いて詳細に説明する。 Referring to FIG. 1, first, in step S100, an ice cream mix, which is an ice cream raw material milk, is prepared by blending a plurality of raw materials. Raw materials may contain raw milk, powdered milk, sugar, concentrated milk, desalted milk, and water as appropriate. This step is usually performed at room temperature or under heating (30 ° C. or more and 80 ° C. or less) in a plurality of apparatuses connected by pipes in order to prevent invasion of various bacteria. Details of the process in step S100 will be described in detail with reference to FIGS.
 続くステップS200では,ステップS100で調製したアイスクリームミックスの溶液を均質化する。均質化に際しては,まず,必要に応じて,アイスクリームミックスの溶液を濾過して不純物を除去する。その後,例えば,ホモジナイザーを用いて,例えば,50℃以上70℃以下の温度下で,アイスクリームミックスの脂肪の粒径を,例えば,2μm以下へと微粒化するなどして,脂肪などの粒径を調整する。その後,この粒径を調整したアイスクリームミックスを,例えば,68℃以上75℃以下に加熱し,30分間で保持して殺菌する。 In the subsequent step S200, the ice cream mix solution prepared in step S100 is homogenized. For homogenization, first, if necessary, the ice cream mix solution is filtered to remove impurities. Then, for example, by using a homogenizer, the particle size of the fat in the ice cream mix is reduced to, for example, 2 μm or less at a temperature of 50 ° C. or higher and 70 ° C. or lower. Adjust. Thereafter, the ice cream mix whose particle size has been adjusted is heated to, for example, 68 ° C. or more and 75 ° C. or less, and held for 30 minutes to sterilize.
 そして,ステップS300では,ステップS200で均質化したアイスクリームミックスの溶液を,例えば,0℃以上5℃以下の温度に冷却する。ここでは,アイスクリームミックスの溶液を冷凍させず,ある程度の流動性をもった状態で保持する。 In step S300, the ice cream mix solution homogenized in step S200 is cooled to a temperature of 0 ° C. or higher and 5 ° C. or lower, for example. Here, the ice cream mix solution is not frozen and kept in a certain fluidity state.
 ステップS400では,冷却状態にあるアイスクリームミックスの溶液に,適宜公知のフレーバー(例えば,バニラフレーバー,チョコレートフレーバー,ストロベリーフレーバー,ココアフレーバー)を添加する。フレーバーが必要でなければ,ステップS400の処理は行われない。また,ステップS100でアイスクリームミックスを調製する際に,フレーバーも添加した場合,ステップS400の処理を行う必要はない。 In step S400, a known flavor (for example, vanilla flavor, chocolate flavor, strawberry flavor, cocoa flavor) is appropriately added to the ice cream mix solution in a cooled state. If no flavor is required, the process of step S400 is not performed. Moreover, when flavor is also added when preparing an ice cream mix at step S100, it is not necessary to perform the process of step S400.
 続いて,ステップS500では,アイスクリームミックスのエージングを所定時間で行う。エージングも0℃以上5℃以下の温度下で行われる。このエージングを行うことにより,脂肪を結晶化させるとともに,タンパク質を水和させて,アイスクリームミックスを安定化させる。 Subsequently, in step S500, the ice cream mix is aged for a predetermined time. Aging is also performed at a temperature of 0 ° C to 5 ° C. By performing this aging, the fat is crystallized and the protein is hydrated to stabilize the ice cream mix.
 続いて,エージング処理が完了したアイスクリームミックスに対して,フリージングを行う(ステップS600)。フリージングは,例えば,-2℃~-10℃の温度下において,所定期間にわたってアイスクリームミックスを撹拌することにより行われる。このフリージングにより,アイスクリームミックスが冷却され,水分などが凍結する。 Subsequently, freezing is performed on the ice cream mix that has been subjected to the aging process (step S600). Freezing is performed, for example, by stirring the ice cream mix for a predetermined period at a temperature of −2 ° C. to −10 ° C. This freezing cools the ice cream mix and freezes the moisture.
 そして,フリージング中のアイスクリームミックスを,包装する(ステップS700)。この包装処理も,上記フリージングの温度と同様の温度下で行われる。また,必要に応じて,容器に対して製造日の刻印なども行われる。 Then, the freezing ice cream mix is packaged (step S700). This packaging process is also performed under the same temperature as the above-mentioned freezing temperature. In addition, the date of manufacture is stamped on the container as necessary.
 最後に,出荷用の容器内のアイスクリームミックスを,例えば,-18℃以下の硬化の温度下にさらすことにより,例えば,-3℃~-15℃の範囲内の温度にまで急速に冷凍する(ステップS800)。これにより,アイスクリームミックスの全体を凍結(硬化)させる。 Finally, the ice cream mix in the shipping container is rapidly frozen to a temperature in the range of, for example, −3 ° C. to −15 ° C. by exposing it to a curing temperature of, for example, −18 ° C. or less. (Step S800). This freezes (hardens) the entire ice cream mix.
 以上のようにして,出荷可能な状態のアイスクリームの製造が完了する。なお,製造完了後から出荷前までの間に必要な検査が行われる。また,製造したアイスクリームの保管(保存)では,-25℃以下の温度で行うことが好ましい。なお,アイスミルクやラクトアイスもアイスクリームと同様にして製造することができる。 As described above, the manufacture of ice cream ready for shipment is completed. In addition, necessary inspections are performed after the completion of production and before shipment. In addition, it is preferable to store (preserve) the produced ice cream at a temperature of −25 ° C. or lower. Ice milk and lacto ice can be produced in the same manner as ice cream.
 次に,図1のステップS100におけるアイスクリームミックスの調製について詳細に説明する。 Next, the preparation of the ice cream mix in step S100 of FIG. 1 will be described in detail.
 図2は,図1のステップS100におけるアイスクリームミックスの調製手順を詳細に示す工程図である。本態様では,生乳からアイスクリームミックスを調製する場合の例について説明する。 FIG. 2 is a process diagram showing in detail the preparation procedure of the ice cream mix in step S100 of FIG. In this embodiment, an example of preparing an ice cream mix from raw milk will be described.
 図2において,まず,ステップS110では,原料に対して脱塩処理を行うことで脱塩乳を得る。例えば,生乳を原料として,濃縮乳を調製することで脱塩処理を行うと,脱塩濃縮乳が得られる。これにより,安定剤や乳化剤を使用せずに,安定したアイスクリームの品質や物性を確保できる。ステップS110の処理については後で図4や図6を用いて詳細に説明する。脱塩乳は液体状であっても良いし,粉体状(粉乳)であっても良い。また,生乳ではなく,あらかじめ濃縮乳を用いて脱塩濃縮乳を調製しても良い。 In FIG. 2, first, in step S110, desalted milk is obtained by subjecting the raw material to desalination. For example, when desalting is performed by preparing concentrated milk using raw milk as a raw material, desalted concentrated milk is obtained. This ensures stable ice cream quality and physical properties without the use of stabilizers or emulsifiers. The process of step S110 will be described in detail later with reference to FIGS. The desalted milk may be liquid or powdered (milk powder). In addition, desalted concentrated milk may be prepared using concentrated milk in advance instead of raw milk.
 続いて,ステップS120では,脱塩乳に対して,糖分を添加する(加糖処理)。糖分としては,砂糖(ショ糖),乳糖,ブドウ糖,果糖などを挙げることができ,液状であっても良いし,粉体であっても良い。ここで,添加される糖分の例は,多糖類(例えば,デンプン,フルクトース,グルコース,セルロース,デキストリン)であっても良いが,好ましくは,少糖類(オリゴ糖),より好ましくは,二糖類(例えば,麦芽糖(マルトース),セロビオース,スクロース,乳糖(ラクトース),トレハロース)である。これは,後述する酵素(グリコシダーゼ)による加水分解を促進するためである。そして,二糖類の中でも,乳糖(ラクトース)又はトレハロースが好ましい。なお,糖分の添加が必要でない場合,ステップS120の処理は行われない。また,ステップS120は,酵素を添加した後に行っても良いし,酵素を添加する前に行っても良い。 Subsequently, in step S120, sugar is added to the desalted milk (sweetening treatment). Examples of the sugar content include sugar (sucrose), lactose, glucose, fructose and the like, which may be liquid or powder. Here, an example of the added sugar content may be a polysaccharide (for example, starch, fructose, glucose, cellulose, dextrin), but preferably an oligosaccharide, more preferably a disaccharide ( For example, maltose (maltose), cellobiose, sucrose, lactose (lactose), trehalose). This is to promote hydrolysis by an enzyme (glycosidase) described later. Of the disaccharides, lactose (lactose) or trehalose is preferable. In addition, when addition of sugar is not necessary, the process of step S120 is not performed. Step S120 may be performed after the enzyme is added or may be performed before the enzyme is added.
 そして,ステップS130では,脱塩乳に酵素を添加する。脱塩乳が粉乳である場合,粉乳に液体を添加した後に酵素を添加する。酵素が添加される原料として,脱塩処理を経た原料をそのまま用いても良い。また,酵素が添加される原料として,いくつかの種類の脱塩処理を経たものや脱塩処理を経ていないものを混合して用いても良いし,同じ種類の脱塩処理を繰り返したものを用いても良い。酵素の例は,ステップS110の脱塩乳に含まれている糖分やステップS120で添加した糖分に対応する酵素(グリコシダーゼ)が用いられる。グリコシダーゼは,対応する糖類(単糖を構成単位とする糖類)を,より少ない数の単糖で構成された糖類へと分解することが可能な酵素である。例えば,乳糖に対しては,ラクターゼが用いられる。トレハロースに対しては,トレハラーゼが用いられる。ラクターゼやトレハラーゼは,細菌由来のものであっても良いし,酵母由来のものであっても良い。乳糖は脱塩乳にも含まれているため,酵素には少なくともラクターゼを含むことが好ましい。 And in step S130, an enzyme is added to desalted milk. If the desalted milk is milk powder, add the enzyme after adding the liquid to the milk powder. As a raw material to which an enzyme is added, a raw material that has undergone a desalting treatment may be used as it is. In addition, the raw material to which the enzyme is added may be used by mixing several types of desalting treatments or those that have not undergone desalting treatment, or by repeating the same type of desalting treatment. It may be used. As an example of the enzyme, an enzyme (glycosidase) corresponding to the sugar contained in the desalted milk in step S110 or the sugar added in step S120 is used. A glycosidase is an enzyme capable of decomposing a corresponding saccharide (a saccharide having a monosaccharide as a structural unit) into a saccharide composed of a smaller number of monosaccharides. For example, lactase is used for lactose. For trehalose, trehalase is used. Lactase and trehalase may be derived from bacteria or yeast. Since lactose is also contained in desalted milk, the enzyme preferably contains at least lactase.
 ラクターゼは,β-D-ガラクトシダーゼ(β-D-ガラクトシドガラクトヒドロラーゼ)ともよばれ,二糖類であるラクトースをグルコースとガラクトースに加水分解する酵素である。ラクターゼは,例えば,特表平10-504449号公報に開示されたものを適宜用いることができる。ラクターゼは,原料やアイスクリームミックスを100重量%とすると,好ましくは,0.01重量%以上0.1重量%以下で添加される。ラクターゼの添加量が多くなると,乳糖分解速度が速くなる。脱塩処理を経た原料にラクターゼを添加する場合,実験の結果,ラクターゼの含有量が多いと,アイスクリーム類の風味を損なうという事実を見出した。そのため,ラクターゼの添加量には,0.01重量%以上0.08重量%以下が好ましく,0.02重量%以上0.07重量%以下がより好ましく,0.03重量%以上0.05重量%以下がさらに好ましい。上記のような添加量である場合,風味の良好なアイスクリーム類を適切な製造時間内に得ることができる。 Lactase, also called β-D-galactosidase (β-D-galactoside galactohydrolase), is an enzyme that hydrolyzes the disaccharide lactose into glucose and galactose. As the lactase, for example, those disclosed in JP-T-10-504449 can be appropriately used. Lactase is preferably added in an amount of 0.01% by weight to 0.1% by weight, assuming that the raw material and ice cream mix are 100% by weight. As the amount of lactase added increases, the rate of lactose degradation increases. When adding lactase to a raw material that has undergone desalting, the results of an experiment have found that if the content of lactase is high, the flavor of ice cream is impaired. Therefore, the amount of lactase added is preferably 0.01% by weight or more and 0.08% by weight or less, more preferably 0.02% by weight or more and 0.07% by weight or less, and 0.03% by weight or more and 0.05% by weight or less. % Or less is more preferable. When the addition amount is as described above, ice cream having a good flavor can be obtained within an appropriate production time.
 続いて,ステップS140では,酵素を含有する脱塩乳を所定条件下に置くことで,加水分解反応を促進する。すなわち,酵素が原料やアイスクリームミックスに含まれる乳糖を分解する。この乳糖分解反応の条件については後述する。この工程は,原料やアイスクリームミックスに含まれる乳糖が例えば,30%以上100%以下で分解される。 Subsequently, in step S140, the hydrolysis reaction is accelerated by placing the desalted milk containing the enzyme under predetermined conditions. That is, the enzyme breaks down lactose contained in the raw material and ice cream mix. The conditions for this lactose decomposition reaction will be described later. In this step, lactose contained in the raw material and ice cream mix is decomposed at, for example, 30% to 100%.
 以上のようにして,原料やアイスクリームミックスの調製が完了する。必要に応じて,ステップS140の処理後に得られた原料やアイスクリームミックスを濃縮しても良い。また,原料やアイスクリームミックスを,噴霧乾燥等により粉体状にしても良い。また,原料やアイスクリームミックスには,必要に応じて,クリーム(乳脂肪に富んだ部分)や,他の粉乳若しくはその還元液,フレーバー,加糖卵黄,水などが添加されても良い。 Thus, the preparation of the raw materials and ice cream mix is completed. As needed, you may concentrate the raw material and ice cream mix obtained after the process of step S140. The raw material and ice cream mix may be powdered by spray drying or the like. Moreover, cream (part rich in milk fat), other powdered milk or its reducing solution, flavor, sweetened egg yolk, water, etc. may be added to the raw material and ice cream mix as necessary.
 図2の処理によれば,脱塩乳に含まれる乳糖等の糖分が加水分解される(ステップS140)。これにより,アイスクリームミックスに含まれる糖類の分子数が増えるため,製造されるアイスクリームの甘味を高めることができる。なお,糖類の種類によって,その甘味度は異なるが,各糖類の甘味度が低い場合であっても,加水分解前よりも糖類の分子数が増えることで,アイスクリームミックスの甘味度を高めることができる。また,単糖類の分子数が増えることで,製造されるアイスクリーム類の軟らかさを適度に高めて,サジ通りを良くすることができる。 2, sugars such as lactose contained in the desalted milk are hydrolyzed (step S140). Thereby, since the number of molecules of the saccharide contained in the ice cream mix increases, the sweetness of the manufactured ice cream can be increased. Although the sweetness level differs depending on the type of saccharide, the sweetness of the ice cream mix can be increased by increasing the number of saccharide molecules before hydrolysis even when the saccharides have low sweetness. Can do. In addition, by increasing the number of molecules of monosaccharides, the softness of the ice creams to be produced can be increased moderately, and the saji street can be improved.
 具体例を挙げると,乳糖は加水分解されて,ブドウ糖(グルコース)とガラクトースへと変化する。この場合において,乳糖の分解率を示す乳糖分解率を100%であるとすると,加水分解後の甘味度は,加水分解前の数倍にもなる。また,1分子の乳糖が分解されると,2分子の単糖が生成されることから,単糖の分子数を効率的に増やすことができ,その結果,製造されるアイスクリーム類の軟らかさを効率的に高めることができる。 For example, lactose is hydrolyzed and converted into glucose (glucose) and galactose. In this case, if the lactose decomposition rate indicating the lactose decomposition rate is 100%, the sweetness after hydrolysis is several times that before hydrolysis. In addition, when one molecule of lactose is decomposed, two molecules of monosaccharide are produced, so that the number of molecules of monosaccharide can be increased efficiently. As a result, the softness of the ice creams produced Can be increased efficiently.
 図3は,ステップS130において脱塩乳内の乳糖がラクターゼによって加水分解されるときの乳糖分解率と,反応時間(乳糖分解工程の時間)との関係を示すグラフに替わる図である。図3に示す例では,ラクターゼの添加量は一定であり,乳糖分解反応を行うときの脱塩乳の温度を1℃,5℃,10℃としたときにおける乳糖分解率と反応時間との関係が示されている。 FIG. 3 is a diagram replaced with a graph showing a relationship between a lactose decomposition rate when lactose in desalted milk is hydrolyzed by lactase in step S130 and a reaction time (time of lactose decomposition step). In the example shown in FIG. 3, the amount of lactase added is constant, and the relationship between the lactose decomposition rate and the reaction time when the temperature of the desalted milk when the lactose decomposition reaction is performed is 1 ° C., 5 ° C., and 10 ° C. It is shown.
 図3から分かるように,乳糖分解反応の反応時間を長くすることにより,乳糖分解率を高めることができる。従って,乳糖分解反応の反応時間は長い方が好ましい。一方で,反応時間を長くすると,乳糖分解率を100%に近づけることができるか,又は100%にすることができるものの,製造効率が悪くなる。従って,製造効率の観点から,乳糖分解反応の反応時間の上限は,例えば,50時間であり,好ましくは,乳糖分解率が90%を超えるときの反応時間(図3に示す例では,24時間)に設定する。 As can be seen from FIG. 3, the lactose decomposition rate can be increased by increasing the reaction time of the lactose decomposition reaction. Therefore, it is preferable that the reaction time of the lactose decomposition reaction is long. On the other hand, when the reaction time is lengthened, the lactose decomposition rate can be brought close to 100% or can be made 100%, but the production efficiency is deteriorated. Therefore, from the viewpoint of production efficiency, the upper limit of the reaction time of the lactose decomposition reaction is, for example, 50 hours, and preferably the reaction time when the lactose decomposition rate exceeds 90% (24 hours in the example shown in FIG. 3). ).
 乳糖分解反応の反応時間の下限は,例えば,2時間である。これにより,乳糖分解率を30%に確保することができ,製造されるアイスクリーム類の甘味度を確実に高くすることができる。しかし,図3から分かるように,反応時間が短い間は,乳糖分解率が大幅に変動する傾向にあるため,アイスクリーム類をバッチ処理で大量に製造する場合,一定の乳糖分解率を確保することが困難である。従って,略一定(例えば,誤差5%以内)の乳糖分解率を確保するためには,反応時間として,乳糖分解率が90%を超えるときの反応時間(図3に示す例では,24時間)を設定することが好ましい。なお,略一定の乳糖分解率を確保するために,加水分解反応を抑制するための阻害剤(例えば,アカルボース,ボグリボース)を用いても良い。阻害剤を用いることで,略一定の乳糖分解率を確保することができ,その結果,バッチ処理で大量に製造されるアイスクリーム類の品質を一定にすることができる。 The lower limit of the reaction time of the lactose decomposition reaction is, for example, 2 hours. Thereby, a lactose decomposition rate can be ensured to 30%, and the sweetness degree of the ice cream manufactured can be made high reliably. However, as can be seen from FIG. 3, when the reaction time is short, the lactose decomposition rate tends to fluctuate greatly. Therefore, when ice creams are produced in large quantities by batch processing, a certain lactose decomposition rate is ensured. Is difficult. Therefore, in order to ensure a substantially constant lactose decomposition rate (for example, within an error of 5%), the reaction time when the lactose decomposition rate exceeds 90% (24 hours in the example shown in FIG. 3). Is preferably set. In order to ensure a substantially constant lactose decomposition rate, an inhibitor (for example, acarbose, voglibose) for suppressing the hydrolysis reaction may be used. By using an inhibitor, a substantially constant lactose decomposition rate can be secured, and as a result, the quality of ice creams produced in large quantities by batch processing can be made constant.
 また,図3から分かるように,反応時間が同じ場合では,乳糖分解反応を行うときの温度が高いほど,乳糖分解率が高い。従って,乳糖分解反応を行うときの温度は高い方が好ましい。一方で,通常20℃を超える温度では,細菌が増殖しやすい。このため,一般に5℃~10℃前後の温度下で酵素は維持される。よって,細菌の増殖を抑えるという観点からは,0℃以上15℃以下が好ましく,細菌の増殖を防ぐという観点からは,0℃以上10℃以下が好ましい。一方,本発明では,実験により5℃以上の温度において乳糖を分解させた方が得られるアイスクリーム類の風味がまろやかになるという知見を得た。このため,乳糖分解工程の温度には,5℃以上20℃以下が好ましく,6℃以上15℃以下がより好ましく,7℃以上10℃以下がさらに好ましい。 In addition, as can be seen from FIG. 3, when the reaction time is the same, the higher the temperature during the lactose decomposition reaction, the higher the lactose decomposition rate. Therefore, it is preferable that the temperature when the lactose decomposition reaction is performed is high. On the other hand, bacteria usually tend to grow at temperatures exceeding 20 ° C. For this reason, the enzyme is generally maintained at a temperature of about 5 ° C. to 10 ° C. Therefore, from the viewpoint of suppressing bacterial growth, it is preferably 0 ° C. or higher and 15 ° C. or lower, and from the viewpoint of preventing bacterial growth, 0 ° C. or higher and 10 ° C. or lower is preferable. On the other hand, in the present invention, it has been found through experiments that the flavor of ice cream obtained by decomposing lactose at a temperature of 5 ° C. or higher becomes mellow. For this reason, the temperature in the lactose decomposition step is preferably 5 ° C. or higher and 20 ° C. or lower, more preferably 6 ° C. or higher and 15 ° C. or lower, and further preferably 7 ° C. or higher and 10 ° C. or lower.
 乳糖を分解する場合,ラクターゼを,脱塩乳の全量に対して,0.01重量%~0.10重量%,好ましくは0.01重量%~0.08重量%,より好ましくは0.02重量%~0.07重量%,さらに好ましくは0.03重量%~0.05重量%の範囲内で添加し,乳糖の分解が,温度0℃~10℃の範囲内にある冷蔵条件下で,2時間~50時間の範囲内の反応時間にわたって行われることが好ましい。これにより,乳糖分解率を50%以上とすることができる。また,糖分が乳糖でない場合であっても,対応するグリコシダーゼ(例えば,トレハラーゼ,アミラーゼ,スクラーゼ,マルターゼ)を用いることで,ラクターゼと同様の議論を適用することができる。 In the case of degrading lactose, lactase is 0.01% to 0.10% by weight, preferably 0.01% to 0.08% by weight, more preferably 0.02%, based on the total amount of desalted milk. Added in the range of 0.03 wt% to 0.07 wt%, more preferably in the range of 0.03 wt% to 0.05 wt%, under refrigerated conditions where lactose decomposition is in the range of 0 ° C to 10 ° C. , Preferably for a reaction time in the range of 2 hours to 50 hours. Thereby, lactose decomposition rate can be 50% or more. Even when the sugar content is not lactose, the same argument as lactase can be applied by using the corresponding glycosidase (for example, trehalase, amylase, sucrase, maltase).
 なお,上述した態様では,脱塩乳の原料としては,生乳(搾取したままの牛乳)を例示したが,牛の乳としては,成分調整牛乳,低脂肪牛乳,無脂肪牛乳,若しくは加工乳又はそれらの粉乳であっても良い。また,脱塩乳の原料は,牛乳に限られることはなく,山羊乳,めん羊乳などであっても良い。しかしながら,脱塩乳の原料としては,容易に入手することができる点で,生乳が好ましく,保管(保存)が容易である点で,粉乳が好ましい。また,脱塩乳の原料は,公知のアイスクリームミックスであっても良い。 In the above-described embodiment, raw milk (milk that has been extracted) is exemplified as the raw material of desalted milk, but as cow's milk, component-adjusted milk, low-fat milk, non-fat milk, processed milk, Those milk powders may be sufficient. The raw material of desalted milk is not limited to cow milk, and may be goat milk, noodle sheep milk, or the like. However, raw milk is preferable as a raw material for desalted milk, and milk powder is preferable because it can be easily stored (preserved). The raw material of the desalted milk may be a known ice cream mix.
 次に,原料を調整することで脱塩した脱塩乳(脱塩濃縮乳)を得る工程について説明する。この工程では,基本的には,無脂乳固形分を5重量%以上50重量%以下で含む原料が脱塩処理される。脱塩工程における原料は,無脂乳固形分を5重量%以上40重量%以下で含むことが好ましく,無脂乳固形分を7重量%以上35重量%以下(例えば,13重量%以上30重量%以下)で含むことがより好ましい。脱塩工程の例は,原料に含まれるナトリウムの残存率を35%以上80%以下とする工程である。脱塩工程のうち,好ましい例は,原料に含まれるナトリウムの残存率を40%以上75%以下とするものであり,より好ましい例は,原料に含まれるナトリウムの残存率を45%以上70%以下とするものであり,さらに好ましい例は,原料に含まれるナトリウムの残存率を50%以上65%以下とするものである。このように脱塩率が高いため,原料に無脂乳固形分を多く含めることができる。このため,例えば,本発明では,脱脂粉乳を原料に多く含めることもできる。一方,実験の結果,脱塩率を高くしすぎると,コクが弱くなることが判明した。このため,脱塩率は上記の範囲とすることが好ましい。 Next, a process for obtaining desalted milk (desalted concentrated milk) desalted by adjusting the raw materials will be described. In this step, basically, a raw material containing non-fat milk solids in an amount of 5 wt% to 50 wt% is desalted. The raw material in the desalting step preferably contains non-fat milk solids in an amount of 5 wt% to 40 wt%, and the non-fat milk solids is contained in an amount of 7 wt% to 35 wt% (eg, 13 wt% to 30 wt%). % Or less) is more preferable. An example of the desalting step is a step in which the residual rate of sodium contained in the raw material is 35% or more and 80% or less. In the desalting step, a preferable example is a method in which the residual ratio of sodium contained in the raw material is 40% or more and 75% or less, and a more preferable example is a residual ratio of sodium contained in the raw material of 45% or more and 70%. More preferable examples are those in which the residual ratio of sodium contained in the raw material is 50% or more and 65% or less. Thus, since a desalination rate is high, many nonfat milk solid content can be included in a raw material. For this reason, for example, in this invention, many skim milk powder can also be included in a raw material. On the other hand, as a result of experiments, it was found that if the desalination rate is increased too much, the body becomes weaker. For this reason, the desalination rate is preferably within the above range.
 脱塩工程では,例えば,ナノ濾過(NF)法,透析濾過(DF)法,イオン交換樹脂(IE)法,及び電気透析(ED)法を単独又は組み合わせて用いることができる。 In the desalting step, for example, a nanofiltration (NF) method, a diafiltration (DF) method, an ion exchange resin (IE) method, and an electrodialysis (ED) method can be used alone or in combination.
 ナノ濾過法は,例えば,ナノサイズの貫通孔(例えば,細孔径が0.5から2nm)を持つ膜状のフィルタ(NF膜)を用い,このNF膜に対して原料乳を投入し,浸透圧を利用する濾過である。ナノ濾過膜は主に1価のイオンと水を透過する膜である。このため,本発明では,例えば,1価のカチオン(ナトリウムイオン,カリウムイオン,塩化物イオン)を除去できる。このため,ナノ濾過法を用いることで,ナトリウムやカリウムを除去する脱塩を行うことができる。 The nanofiltration method uses, for example, a membrane filter (NF membrane) having nano-sized through-holes (for example, a pore diameter of 0.5 to 2 nm), feeds raw milk into this NF membrane, and penetrates. Filtration using pressure. The nanofiltration membrane is a membrane that mainly transmits monovalent ions and water. Therefore, in the present invention, for example, monovalent cations (sodium ions, potassium ions, chloride ions) can be removed. For this reason, desalting which removes sodium and potassium can be performed by using the nanofiltration method.
 ナノ濾過(NF)膜の素材の例は,ポリアミド,酢酸セルロース,ポリエーテルスルホン,ポリエステル,ポリイミド,ビニルポリマー,ポリオレフィン,ポリスルフォン,再生セルロース,及びポリカーボネートである。本発明では,塩分を除去するため,ナノ濾過(NF)膜の素材として,ポリアミド,酢酸セルロース,ポリエーテルスルホンが好ましい。ナノ濾過(NF)膜の形状の例は,平膜,スパイラル膜,中空糸膜,板状膜,及び管状膜である。また,ナノ濾過法として,公知の濾過方法の公知の条件を採用することができる。濾過方法の例は,加圧濾過法,減圧濾過法である。NF膜の例は,ダウケミカル製のNF膜(商品名「NF-3838/30-FF」)である。また,濾過方法の種別としては,デッドエンド濾過法やクロスフロー濾過法がある。ここで,アイスクリーム類の製造は,工業的には,バッチ処理で行われるため,クロスフロー法を用いることが好ましく,これにより,濾過膜の目詰まりによる,ばらつきを抑えて,製造されるアイスクリーム類の品質を一定に保つことができる。 Examples of nanofiltration (NF) membrane materials are polyamide, cellulose acetate, polyethersulfone, polyester, polyimide, vinyl polymer, polyolefin, polysulfone, regenerated cellulose, and polycarbonate. In the present invention, polyamide, cellulose acetate, and polyethersulfone are preferred as materials for the nanofiltration (NF) membrane in order to remove salt. Examples of nanofiltration (NF) membrane shapes are flat membranes, spiral membranes, hollow fiber membranes, plate membranes, and tubular membranes. Moreover, the well-known conditions of a well-known filtration method are employable as a nano filtration method. Examples of the filtration method are a pressure filtration method and a vacuum filtration method. An example of the NF film is an NF film (trade name “NF-3838 / 30-FF”) manufactured by Dow Chemical. Further, there are dead end filtration methods and cross flow filtration methods as types of filtration methods. Here, since the production of ice creams is industrially performed in a batch process, it is preferable to use the cross flow method, whereby the ice produced can be produced while suppressing variations caused by clogging of the filtration membrane. The quality of creams can be kept constant.
 そして,このナノ濾過法によって,原料乳から,保持液(リテンテート)と,透過液(パーミエート)とが得られることとなる。使用するNF膜に対する浸透圧に応じて,保持液の量と透過液の量の比率は変わる。通常,保持液には,原料乳の全固形分(TS:total-solids)が1.5倍~2.5倍の範囲内(例えば,1.6倍)に濃縮される。 And by this nanofiltration method, a retentate and a permeate can be obtained from raw milk. The ratio of the amount of retentate and the amount of permeate varies depending on the osmotic pressure for the NF membrane used. Usually, the total solid content (TS: total-solids) of raw milk is concentrated in the retentate within a range of 1.5 to 2.5 times (for example, 1.6 times).
 ナノ濾過法で得られる保持液には,原料乳の全固形分(TS),つまり,乳脂肪(FAT)と,無脂乳固形分(SNF)とが濃縮される。そこで,本明細書では,ナノ濾過法で得られた濃縮液をナノ濾過濃縮乳ともいう。そして,ナノ濾過法で得られる透過液には,原料乳の水分の多くと,水溶性の成分の一部(特に1価のイオン)とが含まれている一方,原料乳の全固形分が,ほぼ含まれていないこととなる。ここで,原料乳の水溶性の成分としては,灰分がある。灰分とは,ナトリウム(Na),カリウム(K),マグネシウム(Mg),カルシウム(Ca),塩素(Cl),リン(S)などの無機質や,ビタミンA,B1,B2,ナイアシンなどのビタミンの総称である。 In the retentate obtained by the nanofiltration method, the total solid content (TS) of raw material milk, that is, milk fat (FAT) and non-fat milk solid content (SNF) are concentrated. Therefore, in this specification, the concentrate obtained by the nanofiltration method is also referred to as nanofiltration concentrated milk. The permeate obtained by the nanofiltration method contains much of the moisture in the raw milk and part of the water-soluble components (especially monovalent ions), while the total solid content of the raw milk is , Almost no inclusion. Here, the water-soluble component of raw milk is ash. Ash is an inorganic substance such as sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), chlorine (Cl), phosphorus (S), and vitamins such as vitamin A, B1, B2, and niacin. It is a generic name.
 ナノ濾過処理を行う前に,原料に対してナノ濾過を透過しない電解質を添加することは,本発明の好ましい態様である。ナノ濾過を透過しない電解質を添加することにより,脱塩を促進できる。ナノ濾過膜を透過しない電解質の例は,乳脂肪,ミルクカゼイン,ホエイタンパク質,乳糖,非タンパク態窒素(NPN)の一部などである。なお,後述するように,濾過保持液を原料に添加しても,脱塩を促進できるため好ましい。 It is a preferable aspect of the present invention to add an electrolyte that does not permeate nanofiltration to the raw material before performing the nanofiltration treatment. Desalination can be promoted by adding an electrolyte that does not permeate nanofiltration. Examples of electrolytes that do not permeate the nanofiltration membrane include milk fat, milk casein, whey protein, lactose, and some non-protein nitrogen (NPN). As will be described later, it is preferable to add a filtration retentate to the raw material because desalting can be promoted.
 透析濾過(DF)法は,濾過して濃縮した乳など(保持液)に水を加えて稀釈し,濾過液(保持液)の容量を濾過前の容量近くに戻した上で,濾過処理を行う方法である。本発明のDF法の例は,NF膜で濾過して濃縮した乳などに水分を加えた後に,さらにNF膜で濾過する方法である。 In the diafiltration (DF) method, water is added to milk that has been filtered and concentrated (retentate) to dilute it, and after the volume of the filtrate (retentate) is returned to the volume before filtration, filtration is performed. How to do it. An example of the DF method of the present invention is a method in which water is added to milk concentrated by filtration through an NF membrane and then filtered through an NF membrane.
 イオン交換樹脂(IE)法は,原料とイオン交換樹脂とを接触させることで,脱塩を行う方法である。イオン交換樹脂は,脱塩の目的で通常用いられる市販のアニオン交換樹脂とカチオン交換樹脂とを用いれば良い。イオン交換樹脂を用いた脱塩は,公知の操作や装置を用いて,公知の条件に従って行えば良い。 The ion exchange resin (IE) method is a method of desalting by bringing a raw material and an ion exchange resin into contact with each other. As the ion exchange resin, a commercially available anion exchange resin and cation exchange resin which are usually used for the purpose of desalting may be used. Desalination using an ion exchange resin may be performed according to known conditions using known operations and equipment.
 電気透析(ED)法は,溶液中のイオン性物質の電気泳動と,イオン交換膜が陽イオンと陰イオンを選択して透過させる性質を利用する分離技術である。電気透析(ED)法を用いた脱塩は,公知の操作や装置を用いて,公知の条件に従って行えば良い。 Electrodialysis (ED) is a separation technique that utilizes electrophoresis of ionic substances in a solution and the property that an ion exchange membrane selectively permeates cations and anions. Desalination using the electrodialysis (ED) method may be performed according to known conditions using known operations and devices.
 脱塩工程では,ナトリウム以外の塩を除去しても構わない。一方,脱塩工程では,カルシウム塩を損なわずに,ナトリウム塩又はカリウム塩を除去することが好ましい。脱塩工程を経た後のカルシウム塩の残存率は,80重量%以上が好ましく,90重量%以上がより好ましく,95重量%以上がさらに好ましい。 In the desalting step, salts other than sodium may be removed. On the other hand, in the desalting step, it is preferable to remove the sodium salt or potassium salt without damaging the calcium salt. The residual ratio of the calcium salt after the desalting step is preferably 80% by weight or more, more preferably 90% by weight or more, and further preferably 95% by weight or more.
 次に,図2のステップS110における脱塩処理が透析濾過(DF)である場合(第1態様)について詳細に説明する。 Next, the case where the desalting process in step S110 of FIG. 2 is diafiltration (DF) (first mode) will be described in detail.
 図4は,図2のステップS110における脱塩乳取得処理の一例の手順を詳細に示す工程図である。本態様では,生乳から脱塩乳(特には脱塩濃縮乳)を調製する場合について説明する。なお,上述したように,脱塩乳の原料は生乳に限られることはない。 FIG. 4 is a process diagram showing in detail the procedure of an example of the desalted milk acquisition process in step S110 of FIG. In this embodiment, a case where desalted milk (particularly desalted concentrated milk) is prepared from raw milk will be described. In addition, as above-mentioned, the raw material of desalted milk is not restricted to raw milk.
 図4において,まず,ステップS111では,脱塩乳の原料として,生乳を用意する。生乳の全固形分(TS)は,例えば,12.8重量%であり,その内訳は,3.8重量%の乳脂肪(FAT:milk fat)と,9.0重量%の無脂乳固形分(SNF)である。なお,原料乳として,粉乳(例えば,脱脂粉乳)の水溶液(還元乳)を用いても良いし,公知のアイスクリームミックスを用いても良い。 In FIG. 4, first, in step S111, raw milk is prepared as a raw material for desalted milk. The total solid content (TS) of raw milk is, for example, 12.8% by weight, and the breakdown is 3.8% by weight of milk fat (FAT: milk fat) and 9.0% by weight of non-fat milk solids. Minute (SNF). In addition, as raw material milk, the aqueous solution (reduced milk) of milk powder (for example, skim milk powder) may be used, and a well-known ice cream mix may be used.
 続くステップS112では,ナノ濾過法により,原料に対して,第1回目のナノ濾過(NF)処理を行う。ナノ濾過処理では,NF膜として,例えば,ダウケミカル製のNF膜(商品名「NF-3838/30-FF」)を用いる。 In subsequent step S112, the first nanofiltration (NF) treatment is performed on the raw material by the nanofiltration method. In the nanofiltration treatment, for example, an NF membrane manufactured by Dow Chemical (trade name “NF-3838 / 30-FF”) is used as the NF membrane.
 そして,このナノ濾過処理によって,原料から,保持液(リテンテート)と,透過液(パーミエート)とが得られることとなる。ここで,ダウケミカル製のNF膜を用いた場合において,第1回目のナノ濾過処理時における原料のクロスフロー法による単位時間当たりの流量が,例えば,14t/hであるときは,保持液と透過液とは,ほぼ同量(7t/h)を得ることができる。なお,使用するNF膜に対する浸透圧に応じて,保持液の量と透過液の量の比率は変わるが,通常,保持液には,原料の全固形分(TS)が1.5倍~2.5倍の範囲内(例えば,2.0倍)に濃縮される。 And by this nanofiltration treatment, a retentate (retentate) and a permeate (permeate) are obtained from the raw material. Here, when the NF membrane manufactured by Dow Chemical is used, when the flow rate per unit time of the raw material during the first nanofiltration treatment by the cross flow method is 14 t / h, for example, Almost the same amount (7 t / h) can be obtained with the permeate. Although the ratio of the amount of the retentate and the amount of the permeate varies depending on the osmotic pressure for the NF membrane to be used, the retentate usually has a total solid content (TS) of 1.5 to 2 times. Concentrate within 5X range (eg 2.0X).
 ナノ濾過法で得られた保持液(ナノ濾過濃縮乳)には,原料の全固形分(TS),つまり,乳脂肪(FAT)と,無脂乳固形分(SNF)とが濃縮されている。そして,ナノ濾過法で得られた透過液には,原料の水分の多くと,水溶性の成分の一部とが含まれている一方,原料乳の全固形分が,ほぼ含まれていないこととなる。ここで,ナノ濾過法で得られた透過液には,ナトリウム(Na),カリウム(K),塩素(Cl)などが含まれている。 In the retentate (nanofiltered concentrated milk) obtained by the nanofiltration method, the total solids (TS) of the raw material, that is, milk fat (FAT) and nonfat milk solids (SNF) are concentrated. . The permeate obtained by the nanofiltration method contains much of the raw material water and a part of the water-soluble components, but contains almost no total solid content of the raw material milk. It becomes. Here, the permeate obtained by the nanofiltration method contains sodium (Na), potassium (K), chlorine (Cl), and the like.
 そして,ステップS113では,ナノ濾過法で得られた透過液に対して,逆浸透(RO:reverse osmosis)処理を行い,透過液(以下,逆浸透膜透過液ともいう)を得る。なお,逆浸透処理の保持液は,本態様では使用しない。 In step S113, reverse osmosis (RO) treatment is performed on the permeate obtained by the nanofiltration method to obtain a permeate (hereinafter also referred to as reverse osmosis membrane permeate). Note that the reverse osmosis treatment retentate is not used in this embodiment.
 逆浸透処理は,例えば,1価のカチオンを捕捉する膜状のフィルタ(逆浸透膜)を用い,この逆浸透膜に対して,ステップS112のナノ濾過法で得られた透過液を投入し,逆浸透膜の上流側(ステップS112のナノ濾過法で得られた透過液の投入側)から圧力をかけることで行われる。なお,逆浸透処理の際に,逆浸透膜の上流側から圧力をかけることに代えて,逆浸透膜の下流側を減圧しても良い。逆浸透処理では,浸透圧以上の圧力を利用しているので,ステップS112のナノ濾過法で得られた透過液の大部分は,逆浸透膜を通過してRO透過液となる。なお,逆浸透膜の保持液(逆浸透膜を通過しなかった部分)には,1価のカチオンとして,ステップS112のナノ濾過法で得られた透過液に含まれていたナトリウムイオンやカリウムイオンなどが濃縮される。すなわち,ステップS112のナノ濾過法で得られた透過液に対して逆浸透処理を行うことも,脱塩処理の一例である。そこで,本明細書では,逆浸透膜透過液を脱塩水ともいうこととする。 The reverse osmosis treatment uses, for example, a membrane-like filter (reverse osmosis membrane) that captures monovalent cations, and the permeate obtained by the nanofiltration method in step S112 is input to this reverse osmosis membrane, This is performed by applying pressure from the upstream side of the reverse osmosis membrane (the permeate input side obtained by the nanofiltration method in step S112). In the reverse osmosis treatment, the downstream side of the reverse osmosis membrane may be decompressed instead of applying pressure from the upstream side of the reverse osmosis membrane. In the reverse osmosis treatment, since a pressure higher than the osmotic pressure is used, most of the permeate obtained by the nanofiltration method in step S112 passes through the reverse osmosis membrane and becomes the RO permeate. In the reverse osmosis membrane retentate (the portion that did not pass through the reverse osmosis membrane), sodium ions and potassium ions contained in the permeate obtained by the nanofiltration method in step S112 as monovalent cations. Etc. are concentrated. In other words, performing reverse osmosis treatment on the permeate obtained by the nanofiltration method in step S112 is an example of desalting treatment. Therefore, in this specification, the reverse osmosis membrane permeate is also referred to as demineralized water.
 続いて,ステップS114~S115では,希釈工程が行われる。具体的には,まず,ステップS114では,ステップS113で得られた脱塩水をステップS112で得られたナノ濾過濃縮乳に添加する(戻す)。これにより,混合液として脱塩乳が得られる。ここで,ステップS112のナノ濾過法で得られた透過液の量と,逆浸透膜透過液の量は,ほぼ同じであるため,脱塩乳の量は,ステップS111で用意した原料の量とほぼ同じである。そのため,この脱塩乳は,ナノ濾過濃縮乳とほぼ同量の全固形分(FATとSNF)を含むとともに,当該ナノ濾過濃縮乳とほぼ同量の灰分を含んでいる。言い換えると,この脱塩乳は,原料の全固形分が濃縮されながら,塩味のもととなるナトリウムやカリウムの一部が除去された脱塩濃縮乳である。 Subsequently, in steps S114 to S115, a dilution process is performed. Specifically, first, in step S114, the desalted water obtained in step S113 is added (returned) to the nanofiltration concentrated milk obtained in step S112. Thereby, desalted milk is obtained as a mixed solution. Here, since the amount of the permeate obtained by the nanofiltration method in step S112 and the amount of the reverse osmosis membrane permeate are substantially the same, the amount of desalted milk is equal to the amount of the raw material prepared in step S111. It is almost the same. Therefore, this desalted milk contains almost the same amount of total solids (FAT and SNF) as the nanofiltration concentrated milk, and almost the same amount of ash as the nanofiltration concentrated milk. In other words, this desalted milk is desalted concentrated milk from which all of the solid content of the raw material has been concentrated while removing a part of sodium and potassium that are the source of salty taste.
 また,ステップS115では,必要に応じて,脱塩乳に対して水を添加する(加水)。添加対象の水としては,蒸留水や水道水を使用することができるが,容易に入手可能である点及び後の段階で殺菌される点を考慮すれば,水道水を使用することが好ましい。なお,ナノ濾過濃縮乳又は逆浸透膜透過液に水を添加(加水)しても良い。このようにすることにより,脱塩乳の量を原料の量にそろえることができる。そして,脱塩乳の量を原料の量にそろえることで,製造ラインを流れる液量を一定にすることができる。なお,ステップS115の処理は行わなくても良い。 In step S115, water is added to the desalted milk as necessary (hydrolysis). As water to be added, distilled water or tap water can be used, but it is preferable to use tap water in consideration of the point that it can be easily obtained and sterilized at a later stage. In addition, you may add water to the nanofiltration concentrated milk or reverse osmosis membrane permeate (hydrolysis). By doing in this way, the amount of desalted milk can be aligned with the amount of raw material. And by adjusting the amount of desalted milk to the amount of raw material, the amount of liquid flowing through the production line can be made constant. Note that step S115 need not be performed.
 そして,ステップS116では,得られた脱塩乳に対して,ナノ濾過法により,第2回目のナノ濾過処理を行う。このナノ濾過処理では,保持液を得る。この保持液は,脱塩乳の全固形分をさらに濃縮したものであって,かつ脱塩乳をさらに脱塩した脱塩濃縮乳であるといえる。 In step S116, the obtained desalted milk is subjected to the second nanofiltration treatment by the nanofiltration method. In this nanofiltration treatment, a retentate is obtained. This retentate can be said to be a concentrated desalted milk obtained by further concentrating the total solid content of the desalted milk and further desalting the desalted milk.
 また,このナノ濾過法で得られた透過液には,脱塩乳中の水溶性の成分(特にはナトリウム及びカリウム)が含まれている。そのため,一方の保持液は,脱塩乳に比較して,塩味が少ない。本態様では,これを利用して,保持液に含まれるナトリウムの含有率がステップS111で用いた原料に含まれるナトリウムの含有率の35%~80%の範囲内(好ましくは40%~75%の範囲内,より好ましくは45%~70%の範囲内,さらに好ましくは50%~65%の範囲内)となるようにする。同様に,保持液では,カリウムの含有率も,原料乳のカリウムの含有率の35%~80%の範囲内(好ましくは40%~75%の範囲内,より好ましくは45%~70%の範囲内,さらに好ましくは50%~65%の範囲内)となるようにする。 Moreover, the permeate obtained by this nanofiltration method contains water-soluble components (especially sodium and potassium) in desalted milk. Therefore, one retentate is less salty than desalted milk. In this embodiment, using this, the sodium content in the retentate is within the range of 35% to 80% (preferably 40% to 75%) of the sodium content in the raw material used in step S111. In the range of 45% to 70%, more preferably in the range of 50% to 65%. Similarly, in the retentate, the potassium content is 35% to 80% (preferably within the range of 40% to 75%, more preferably 45% to 70%) of the potassium content of the raw milk. Within a range, more preferably within a range of 50% to 65%.
 言い換えると,ステップS116の処理を行うことで,保持液の脱塩率が20%~65%の範囲内(好ましくは25%~60%の範囲内,より好ましくは30%~55%の範囲内,さらに好ましくは35%~50%の範囲内)となるようにする。このようにすることで,製造されたアイスクリーム類の塩味を調整することができ,アイスクリーム類の風味が損なわれることを確実に防止することができる。ここで,脱塩率が上記範囲の上限を超えると,製造されるアイスクリーム類は,あっさりとした風味となるとともに,コクが弱くなる。一方,脱塩率が上記範囲の下限を下回ると,製造されるアイスクリーム類は,塩味のために,風味を損なうこととなる。 In other words, by performing the process of step S116, the desalination rate of the retentate is within the range of 20% to 65% (preferably within the range of 25% to 60%, more preferably within the range of 30% to 55%. , More preferably within the range of 35% to 50%). By doing in this way, the salty taste of manufactured ice cream can be adjusted, and it can prevent reliably that the flavor of ice cream is impaired. Here, when the desalination rate exceeds the upper limit of the above range, the manufactured ice cream has a light flavor and weakness. On the other hand, if the desalination rate is below the lower limit of the above range, the ice creams produced will have a salty taste that will impair the flavor.
 なお,この第2回目のナノ濾過処理で用いるNF膜(つまり浸透圧)を変更(又は適宜選択)することにより,脱塩率を上記範囲内となるように調整することが好ましい。これに代えて,保持液に対して,第3回目のナノ濾過処理を行うことで,脱塩率を上記範囲内となるように調整しても良い。このようにして,複数回にわたるナノ濾過(つまり,透析濾過)処理が完了する。 In addition, it is preferable to adjust the desalination rate to be within the above range by changing (or selecting appropriately) the NF membrane (that is, osmotic pressure) used in the second nanofiltration treatment. Instead, the desalination rate may be adjusted to be within the above range by performing the third nanofiltration treatment on the retentate. In this way, a plurality of nanofiltration (ie, diafiltration) processes are completed.
 さらに,ステップS117では,ステップS116で得られた脱塩濃縮乳からクリームを除去することで,脱塩濃縮脱脂乳を得る。クリームとは,原料乳(ここでは,脱塩濃縮乳)のうち,脂肪に富んだ部分をいう。クリームを除去するためには,例えば,脱塩濃縮乳を遠心分離機(セパレーター)にセットして遠心分離させ,分離したクリームを濾取すれば良い。このようにすることで,脱塩濃縮乳を低脂肪タイプのもの(以下,DF脱塩脱脂乳ともいう)に変更することができる。すなわち,脱塩濃縮乳に含まれる無脂乳固形分(SNF)の含有量(含有割合)を大きく低下させることなく,乳脂肪(FAT)の含有量(含有割合)を大きく低下させることができる。この結果,乳脂肪球の凝集(チャーニング)を起こりにくくすることができる。そして,チャーニングを起こりにくくすることにより,製造されるアイスクリーム類の品質に,ばらつきが生じることを防止することができる。 Furthermore, in step S117, desalted concentrated skim milk is obtained by removing the cream from the desalted concentrated milk obtained in step S116. Cream means the fat-rich portion of raw milk (here, desalted and concentrated milk). In order to remove the cream, for example, desalted and concentrated milk may be set in a centrifuge (separator) and centrifuged, and the separated cream may be collected by filtration. By doing in this way, desalted and concentrated milk can be changed to a low fat type (hereinafter also referred to as DF desalted skim milk). That is, the content (content ratio) of milk fat (FAT) can be greatly reduced without greatly reducing the content (content ratio) of non-fat milk solids (SNF) contained in the desalted and concentrated milk. . As a result, milk fat globule aggregation (churning) can be made difficult to occur. And it can prevent that variation arises in the quality of the ice cream manufactured by making it difficult to cause churning.
 その後,ステップS118では,ステップS117で得られたDF脱塩脱脂乳をさらに濃縮して,DF脱塩脱脂濃縮乳を得る。具体的には,DF脱塩脱脂乳の水分を蒸発させることで,DF脱塩脱脂濃縮乳を得る。この濃縮は,例えば,真空蒸発缶(エバポレータ)を用いて,減圧化でDF脱塩脱脂乳を加熱することで行うことが可能である。さらに,ステップS119では,必要に応じて,DF脱塩脱脂濃縮乳を公知の噴霧乾燥機を用いて,噴霧乾燥させることで,DF脱塩脱脂粉乳を得る。DF脱塩脱脂粉乳とすることで,容積(容量)を最小化することができ,保管(保存)しやすくすることができる。なお,ステップS118及びステップS119の一方又は双方を行わなくても良い。 Thereafter, in step S118, the DF demineralized skim milk obtained in step S117 is further concentrated to obtain DF demineralized degreased concentrated milk. Specifically, DF demineralized skim milk is evaporated to evaporate the moisture of the DF demineralized skim milk to obtain DF demineralized skim concentrated milk. This concentration can be performed, for example, by heating the DF desalted skim milk under reduced pressure using a vacuum evaporator (evaporator). Furthermore, in step S119, DF demineralized skim milk powder is obtained by spray-drying the DF demineralized degreased concentrated milk using a known spray dryer as necessary. By using DF desalted nonfat dry milk, the volume (capacity) can be minimized, and storage (preservation) can be facilitated. Note that one or both of step S118 and step S119 need not be performed.
 図4の処理によれば,原料に対して,複数回にわたってナノ濾過処理が行われる(ステップS112,S116)。また,逆浸透処理を行って,得られた逆浸透膜透過液を,原料から得られるナノ濾過濃縮乳に戻す(ステップS113~S114)。これらにより,脱塩率を調整した脱塩乳を得ることができる。また,逆浸透膜透過液をナノ濾過濃縮乳に戻す(ステップS114)ので,原料に含まれている成分を無駄なく有効に活用することができる。 According to the process of FIG. 4, the nanofiltration process is performed a plurality of times on the raw material (steps S112 and S116). Further, reverse osmosis treatment is performed, and the obtained reverse osmosis membrane permeate is returned to the nanofiltration concentrated milk obtained from the raw material (steps S113 to S114). By these, the desalted milk which adjusted the desalination rate can be obtained. Further, since the reverse osmosis membrane permeate is returned to the nanofiltration concentrated milk (step S114), the components contained in the raw material can be effectively used without waste.
 また,図4の処理によれば,脱塩乳からクリームが除去される(ステップS117)。これにより,低脂肪であっても無脂乳固形分(SNF)やタンパク質の含有割合が高い脱塩乳を,生乳などの原料から得ることができる。そして,本態様では,上述したように脱塩率が調整されているので,タンパク質の含有割合が高い脱塩乳を原料として,アイスクリーム類を製造しても,製造されたアイスクリーム類の塩味が高すぎることがない。また,このアイスクリーム類では,低脂肪であっても無脂乳固形分(SNF)やタンパク質の含有割合が高いので,乳風味を損なうことがない。ところで,乳脂肪の含有割合が高いアイスクリーム(プレミアムアイスクリーム)が市販されているが,本態様によるアイスクリーム類では,乳脂肪の含有割合が低いという点で,そのようなアイスクリームと差別化を図ることができる。 Moreover, according to the process of FIG. 4, a cream is removed from desalted milk (step S117). Thereby, even if it is low fat, the desalinated milk with high content of non-fat milk solid content (SNF) and protein can be obtained from raw materials, such as raw milk. And in this aspect, since the desalination rate is adjusted as mentioned above, even if ice cream is manufactured using desalted milk having a high protein content, the salty taste of the manufactured ice cream Is never too high. Moreover, in this ice cream, since the content rate of non-fat milk solid content (SNF) and protein is high even if it is low fat, a milk flavor is not impaired. By the way, ice cream with a high milk fat content (premium ice cream) is commercially available, but the ice cream according to this embodiment is differentiated from such ice cream in that the milk fat content is low. Can be achieved.
 次に,図2のステップS110における脱塩乳取得処理の第2の例(第2態様)について詳細に説明する。第2態様では,上述したような逆浸透処理を行わず,脱塩水に代えて水を,第1回目のナノ濾過で得られたナノ濾過濃縮液に添加する点で第1態様と相違するのみである。従って,詳細な処理については省略する。 Next, a second example (second aspect) of the desalted milk acquisition process in step S110 of FIG. 2 will be described in detail. The second aspect is different from the first aspect only in that the reverse osmosis treatment as described above is not performed and water is added to the nanofiltration concentrate obtained by the first nanofiltration instead of demineralized water. It is. Therefore, detailed processing is omitted.
 第2態様では,ナノ濾過処理が少なくとも2回にわたって行われる(つまり,上述した透析濾過(DF)処理が行われる)。1回のナノ濾過処理によって,原料乳に比べて脱塩乳のナトリウムの含有量(含有割合)が例えば,14%~24%の範囲内で低下する。従って,2回にわたってナノ濾過処理を行うと,原理的には,原料乳に比べて脱塩乳のナトリウムの含有量(含有割合)が例えば,26%~42%の範囲内で低下することとなる。すなわち,2回にわたってナノ濾過処理を行うことで,脱塩乳のナトリウムの残存率が例えば,58%~74%の範囲内となるので,脱塩率が上述した(20%~65%の)範囲内(好ましくは25%~60%の範囲内,より好ましくは30%~55%の範囲内,さらに好ましくは35%~50%の範囲内)となる可能性を高めることができる。これにより,製造されたアイスクリーム類の塩味を調整することができ,アイスクリーム類の風味が損なわれることを防止することができる。一方で,ナノ濾過処理を多数回にわたって行うと,脱塩率が上記範囲内から外れることとなる。従って,ナノ濾過処理の回数は最大でも,3~4回で十分である。ただし,工程の煩雑さ,脱塩の効率,製品の風味などの観点から,第2のナノ濾過処理工程で留めておくことが好ましい。なお,ナトリウムの含有量や脱塩率を比較するに際しては,全固形分(TS)の含有量(含有割合)が同じとなるように換算することが好ましい(後述の表4b参照)。 In the second embodiment, the nanofiltration treatment is performed at least twice (that is, the diafiltration (DF) treatment described above is performed). By the single nanofiltration treatment, the sodium content (content ratio) of the desalted milk is reduced within a range of, for example, 14% to 24% compared to the raw milk. Therefore, if the nanofiltration treatment is performed twice, in principle, the sodium content (content ratio) of the desalted milk will fall within a range of 26% to 42%, for example, compared to the raw milk. Become. That is, by performing the nanofiltration treatment twice, the residual rate of sodium in the desalted milk falls within the range of, for example, 58% to 74%, so that the desalting rate is as described above (20% to 65%). The possibility of being within the range (preferably within the range of 25% to 60%, more preferably within the range of 30% to 55%, and even more preferably within the range of 35% to 50%) can be increased. Thereby, the salty taste of manufactured ice cream can be adjusted, and it can prevent that the flavor of ice cream is impaired. On the other hand, if the nanofiltration treatment is performed many times, the desalination rate will be out of the above range. Therefore, the maximum number of nanofiltration treatments is 3 to 4 times. However, from the viewpoint of complexity of the process, desalting efficiency, product flavor, and the like, it is preferable to keep in the second nanofiltration treatment process. In addition, when comparing the sodium content and the desalting rate, it is preferable to convert the total solid content (TS) so that the content (content ratio) is the same (see Table 4b described later).
 次に,図2のステップS110における脱塩乳取得処理の第3の例(第3態様)について詳細に説明する。第3態様では,ナノ濾過処理に代えて,イオン交換樹脂(IE)法,又は電気透析(ED)法によって原料の濃縮及び脱塩を行う点で,第1態様や第2態様と相違するのみである。従って,詳細な処理については省略する。 Next, a third example (third aspect) of the desalted milk acquisition process in step S110 of FIG. 2 will be described in detail. The third mode is different from the first mode and the second mode only in that the raw material is concentrated and desalted by an ion exchange resin (IE) method or an electrodialysis (ED) method instead of the nanofiltration treatment. It is. Therefore, detailed processing is omitted.
 第3態様では,ナノ濾過処理を行うための設備がなくても,第1態様や第2態様と同等の効果を奏することができる。しかし,ナノ濾過処理を行うための設備は低コストであるため,第1態様や第2態様に従って脱塩乳を調製することが好ましい。なお,本発明では,原料乳の全固形分又は無脂乳固形分の濃縮及び脱塩を目的としているため,限外濾過処理(UF:ultrafiltration)や精密濾過処理(MF:microfiltration)を行わない。なお,本態様において,イオン交換樹脂(IE)法や電気透析(ED)法を複数回で実行しても良いし,複数回のうちの少なくとも1回をナノ濾過法で実行しても良い。 In the third aspect, even if there is no facility for performing the nanofiltration treatment, the same effect as the first aspect and the second aspect can be obtained. However, since the equipment for performing the nanofiltration treatment is low-cost, it is preferable to prepare the desalted milk according to the first aspect and the second aspect. In addition, in this invention, since it aims at the concentration and desalination of the total solid or non-fat milk solid content of raw material milk, an ultrafiltration process (UF: ultrafiltration) and a microfiltration process (MF: microfiltration) are not performed. . In this embodiment, the ion exchange resin (IE) method and the electrodialysis (ED) method may be executed a plurality of times, or at least one of the plurality of times may be executed by the nanofiltration method.
 本発明の第4態様では,上記第1態様~第3態様のうち,少なくとも2つの態様で得られた脱塩乳を互いに調合し,調合した脱塩乳を原料の一部又は全部としてアイスクリーム類を製造するものである。本態様によっても,対応する態様に応じた効果を奏することができる。 In the fourth aspect of the present invention, the desalted milk obtained in at least two of the first to third aspects is mixed with each other, and the prepared desalted milk is used as part or all of the raw material for ice cream. It is a kind of manufacturing. Also according to this aspect, the effect according to the corresponding aspect can be produced.
 以上で詳細に説明したように,本発明によれば,ナノ濾過処理や逆浸透処理などによって,原料乳の全固形分を濃縮するとともに脱塩を実現して,アイスクリーム類の冷凍下における保存性を高め,さらに,酵素によって,アイスクリーム類の甘味度を高めるとともに,適度な軟らかさを確保する。従って,本発明によれば,単純な製造工程で,かつ低コストでアイスクリーム類を製造することができる。また,本発明によれば,全固形分(特には無脂乳固形分やタンパク質)の含有割合が高く,脱塩率が高く,かつ,甘味度が高い脱塩乳を原料の1つとしたアイスクリームミックスが調製されるので,そのアイスクリームミックスを原料とすることで,軟らかく,甘味度が高く,かつ,風味の豊かなアイスクリーム類を製造することができる。このようにして製造されたアイスクリーム類は,冷凍保存時における氷結晶及び乳糖結晶の成長が抑制されているため,食感(舌触り)も良好であるとともに,アイスクリーム類の冷凍下における保存性にも優れており,また,適度に軟らかいため,サジの通りが良好であり,さらには,塩味が抑えられているため,風味が損なわれておらず,また,タンパク質に富んでいるため,乳風味が豊かである。 As described in detail above, according to the present invention, the total solid content of raw milk is concentrated and desalted by nanofiltration or reverse osmosis, and ice creams are stored under freezing. In addition to enhancing the sweetness, the enzyme enhances the sweetness of the ice cream and ensures moderate softness. Therefore, according to the present invention, ice creams can be manufactured with a simple manufacturing process and at low cost. In addition, according to the present invention, an ice cream made from desalted milk having a high total solid content (particularly non-fat milk solid content and protein), a high desalting rate, and a high sweetness as a raw material. Since the cream mix is prepared, by using the ice cream mix as a raw material, it is possible to produce ice creams that are soft, high in sweetness, and rich in flavor. The ice creams produced in this way have a good texture (tactile texture) because the growth of ice crystals and lactose crystals during frozen storage is suppressed, and the ice creams are preserved under freezing. In addition, it is reasonably soft, so the streets of Saji are good, and since the salty taste is suppressed, the flavor is not impaired, and because it is rich in protein, it is milky. The flavor is rich.
 従って,本発明によるアイスクリーム類の製造に際しては,過剰な糖分の添加をなくすことができるとともに,乳化剤や安定剤の添加もなくすことができる。なお,原料に乳化剤や安定剤を添加しても良いが,その場合にあっても,原料に対する乳化剤や安定剤の添加割合は従来の場合よりも低くて済む。さらには,アイスクリーム類の無脂乳固形分を高くして,乳風味を確保することで,乳脂肪を大幅に低減することができる。そのため,本発明によるアイスクリーム類の製造に際しては,従来の低脂肪アイスクリーム類を製造するときのように,乳脂肪の低減によって損なわれた乳風味を補填するために,フレーバー(香料)を添加する必要もなく,また,乳脂肪の代替物であるデキストリンや食物繊維を添加する必要もないし,添加するにしても従来の場合よりも少なくすることができる。 Therefore, in the production of the ice cream according to the present invention, it is possible to eliminate the addition of an excessive sugar content and the addition of an emulsifier and a stabilizer. Note that an emulsifier and a stabilizer may be added to the raw material, but even in that case, the ratio of the emulsifier and the stabilizer to the raw material may be lower than in the conventional case. Furthermore, milk fat can be significantly reduced by increasing the solid content of non-fat milk in ice creams to ensure a milk flavor. Therefore, in the production of ice creams according to the present invention, flavor (fragrance) is added to compensate for the milk flavor damaged by the reduction of milk fat, as in the production of conventional low fat ice creams. It is not necessary to add dextrin or dietary fiber, which is a substitute for milk fat, and even if it is added, it can be reduced compared to the conventional case.
 また,上述した発明によれば,アイスクリームミックスの組成を適宜変更することにより,さまざまな含有割合のアイスクリーム類を製造することができる。例えば,乳脂肪分(FAT)が0重量%~25重量%(好ましくは,0重量%~20重量%,より好ましくは,0重量%~18重量%,さらに好ましくは,0重量%~15重量%),無脂乳固形分(SNF)が5重量%~40重量%(好ましくは,7重量%~35重量%,より好ましくは,13重量%~30重量%,さらに好ましくは,15重量%~25重量%)のアイスクリーム類を製造することが可能である。製造されるアイスクリーム類の無脂乳固形分の上限が50重量%であっても良い。これに対して,従来では,無脂乳固形分の含有割合を高くすると,塩味が強まって,風味が損なわれたアイスクリーム類しか製造することができないため,無脂乳固形分の含有割合を5重量%~10重量%に抑える必要があった。本発明によれば,従来よりも無脂乳固形分の含有割合の高い(例えば,従来よりも2倍~5倍も高い)アイスクリーム類を製造することができる。本発明によるアイスクリーム類の例は,乳タンパク質を4重量%以上15重量%以下(好ましくは,4重量%以上13重量%以下,より好ましくは,4重量%以上11重量%以下),乳糖由来のブドウ糖を1重量%以上10重量%以下(好ましくは,1.5重量%以上9重量%以下,より好ましくは,2重量%以上8重量%以下)で含むアイスクリーム類である。このアイスクリーム類は,保存安定性に優れ,塩味が適切で,風味が豊かであり,適度な軟らかさを有し,サジ通りの良いアイスクリーム類である。 Moreover, according to the above-described invention, ice creams having various contents can be manufactured by appropriately changing the composition of the ice cream mix. For example, the milk fat content (FAT) is 0% to 25% by weight (preferably 0% to 20% by weight, more preferably 0% to 18% by weight, and still more preferably 0% to 15% by weight). %), Non-fat milk solids (SNF) 5 wt% to 40 wt% (preferably 7 wt% to 35 wt%, more preferably 13 wt% to 30 wt%, and even more preferably 15 wt% ˜25% by weight) ice creams can be produced. The upper limit of the nonfat milk solid content of the produced ice cream may be 50% by weight. On the other hand, conventionally, if the content ratio of non-fat milk solids is increased, only ice creams with a strong salty taste and impaired flavor can be produced. It was necessary to suppress the content to 5 to 10% by weight. According to the present invention, it is possible to produce ice creams having a higher content of non-fat milk solids than before (for example, 2 to 5 times higher than before). Examples of ice creams according to the present invention are milk protein derived from 4% to 15% by weight (preferably 4% to 13% by weight, more preferably 4% to 11% by weight), derived from lactose Of 1 to 10% by weight (preferably 1.5 to 9% by weight, more preferably 2 to 8% by weight). These ice creams are excellent in storage stability, suitable for salty taste, rich in flavor, have moderate softness, and have good softness.
 実施例1では,本発明の製造方法により目的を達成することができるか否かを確認するため,上記透析濾過(DF)法(上記の第2態様)に従って調製したDF脱塩脱脂粉乳を用いて製造したアイスクリームについて,風味や物性を検討した(製造例1,2,5)。具体的には,製造したアイスクリームに生じる氷結晶の寸法を測定し,測定値を比較することにより,氷結晶の成長性を評価した。また,製造したアイスクリームの硬さを測定することにより,軟らかさ(サジの通りの良好さ)を評価した。さらに,製造したアイスクリームの塩味や甘味や乳風味を評価した。さらに,実施例1では,ナノ濾過(NF)法を行わずに調製したアイスクリームミックスを用いて製造したアイスクリームについても,風味や物性を検討した(製造例3,4)。 In Example 1, in order to confirm whether or not the object can be achieved by the production method of the present invention, DF desalted skim milk powder prepared according to the diafiltration (DF) method (second aspect described above) was used. The flavor and physical properties of the ice cream produced in this way were examined (Production Examples 1, 2, and 5). Specifically, the growth of ice crystals was evaluated by measuring the size of ice crystals produced in the produced ice cream and comparing the measured values. Moreover, the softness (goodness of a saji) was evaluated by measuring the hardness of the produced ice cream. Furthermore, the saltiness, sweetness and milk flavor of the produced ice cream were evaluated. Furthermore, in Example 1, the flavor and physical properties of the ice cream produced using an ice cream mix prepared without performing the nanofiltration (NF) method were also examined (Production Examples 3 and 4).
 以下のようにして,DF脱塩脱脂粉乳を調製した。まず,脱脂乳(固形分濃度:約9重量%)をナノ濾過(NF)法により,固形分濃度が約20重量%となるまで濃縮するとともに脱塩して,NF濃縮脱脂乳を得た。この際,ナノ濾過(NF)膜として,NF-3838/30-FF(ダウケミカル製)を使用した。次に,NF濃縮脱脂乳へ加水することで,固形分濃度が約10重量%となるように希釈し,NF脱脂乳を得た。次に,NF脱脂乳をナノ濾過(NF)法により,固形分濃度が約20重量%となるまで濃縮するとともに脱塩し,DF脱塩濃縮脱脂乳を得た。この際にも,ナノ濾過(NF)膜として,NF-3838/30-FF(ダウケミカル製)を使用した。次に,DF脱塩濃縮脱脂乳を常法に従って,殺菌,真空蒸発濃縮,及び噴霧乾燥を行った。このようにして,DF脱塩脱脂粉乳を得た。得られたDF脱塩脱脂粉乳は,約1重量%の乳脂肪と,約95重量%の無脂乳固形分とを含んでいた。 DF desalted skim milk powder was prepared as follows. First, skim milk (solid content concentration: about 9% by weight) was concentrated by nanofiltration (NF) method until the solid content concentration became about 20% by weight and desalted to obtain NF concentrated skim milk. At this time, NF-3838 / 30-FF (manufactured by Dow Chemical) was used as a nanofiltration (NF) membrane. Next, NF skim milk was obtained by adding water to NF concentrated skim milk so that the solid concentration was about 10% by weight. Next, NF skim milk was concentrated and desalted by a nanofiltration (NF) method until the solid content concentration was about 20% by weight to obtain DF desalted concentrated skim milk. In this case, NF-3838 / 30-FF (manufactured by Dow Chemical) was used as the nanofiltration (NF) membrane. Next, DF desalted and concentrated skim milk was sterilized, concentrated by vacuum evaporation, and spray-dried according to conventional methods. In this way, DF desalted skim milk powder was obtained. The resulting DF desalted skim milk powder contained about 1% by weight milk fat and about 95% by weight nonfat milk solids.
(製造例1)
 約1重量%の乳脂肪と,約95重量%の無脂乳固形分とを含むDF脱塩脱脂粉乳を用いて,製造例1のアイスクリームを製造した。アイスクリームの製造に際し,DF脱塩脱脂粉乳に含まれる乳糖を,ラクターゼ(合同酒精株式会社製,商品名「GODO-YNL」)によって56%で分解した(つまり,乳糖分解率が56%)。
(Production Example 1)
The ice cream of Production Example 1 was produced using DF desalted skim milk powder containing about 1% by weight of milk fat and about 95% by weight of nonfat milk solids. During the production of ice cream, lactose contained in DF desalted skim milk powder was degraded at 56% by lactase (trade name “GODO-YNL”, manufactured by Godo Shusei Co., Ltd.) (that is, the lactose degradation rate was 56%).
(製造例2)
 製造例1と同じDF脱塩脱脂粉乳を用いて,製造例2のアイスクリームを製造例1と同じ条件下で製造した。アイスクリームの製造に際し,DF脱塩脱脂粉乳に含まれる乳糖を,ラクターゼによって84%で分解した(つまり,乳糖分解率が84%)。
(Production Example 2)
Using the same DF desalted skim milk powder as in Production Example 1, the ice cream of Production Example 2 was produced under the same conditions as in Production Example 1. During the production of ice cream, lactose contained in DF desalted skim milk powder was degraded by lactase at 84% (that is, lactose degradation rate was 84%).
(製造例3)
 15重量%の乳脂肪と,10重量%の無脂乳固形分とを含むアイスクリームミックスを用いて,製造例3のアイスクリームを製造例1と同じ条件下で製造した。ただし,このアイスクリームミックスは,ナノ濾過処理が施されていないものである。さらに,製造例3では,アイスクリームミックスには,ラクターゼを添加しなかったが,製造例1と同じ条件下とするため,乳糖分解工程では,同じ反応時間だけ保持した。製造例3のアイスクリームの乳糖分解率は0%であった。
(Production Example 3)
The ice cream of Production Example 3 was produced under the same conditions as in Production Example 1 using an ice cream mix containing 15% by weight of milk fat and 10% by weight of nonfat milk solids. However, this ice cream mix is not subjected to nanofiltration treatment. Furthermore, in Production Example 3, lactase was not added to the ice cream mix, but the same reaction time was maintained in the lactose decomposition step in order to achieve the same conditions as in Production Example 1. The lactose decomposition rate of the ice cream of Production Example 3 was 0%.
(製造例4)
 ラクターゼを添加した以外は,製造例3と同じアイスクリームミックスを用いて,製造例4のアイスクリームを製造例1と同じ条件下で製造した。アイスクリームミックスに含まれる乳糖は,ラクターゼによって85%で分解された(つまり,乳糖分解率が85%)。
(Production Example 4)
The ice cream of Production Example 4 was produced under the same conditions as in Production Example 1 using the same ice cream mix as in Production Example 3 except that lactase was added. Lactose contained in the ice cream mix was degraded by lactase at 85% (that is, lactose degradation rate was 85%).
(製造例5)
 アイスクリームミックスにラクターゼを添加しなかった点を除いては,製造例2と同じDF脱塩脱脂粉乳を用いて,製造例5のアイスクリームを製造例1と同じ条件下で製造した。製造例5のアイスクリームの乳糖分解率は0%であった。
(Production Example 5)
Except that lactase was not added to the ice cream mix, the ice cream of Production Example 5 was produced under the same conditions as in Production Example 1 using the same DF demineralized skim milk powder as in Production Example 2. The lactose decomposition rate of the ice cream of Production Example 5 was 0%.
 そして,上述した製造例1~3,5について測定した硬さの結果を表1及び図5に示す。なお,硬さの測定には,島津製作所製のレオメーター(商品名「EZ-test-100N」)を用い,設定した針入距離[mm]で測定された応力値[gf/mm2]を硬さの測定値とした。また,製造例1~5についての風味や物性の評価結果を表2に示す。 The results of hardness measured for Production Examples 1 to 3 and 5 described above are shown in Table 1 and FIG. For the hardness measurement, a rheometer (trade name “EZ-test-100N”) manufactured by Shimadzu Corporation was used, and the stress value [gf / mm 2 ] measured at the set penetration distance [mm] was calculated. The measured value of hardness was used. Table 2 shows the evaluation results of the flavors and physical properties of Production Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 なお,表2に示す氷結晶[μm]は,各製造例に係るアイスクリームを-8℃の冷凍下で1週間にわたって保存した後に計測された寸法であり,保存前の氷結晶の寸法は,いずれも30μmであった。 The ice crystals [μm] shown in Table 2 are the dimensions measured after storing the ice cream according to each production example for 1 week under freezing at −8 ° C. The dimensions of the ice crystals before storage are as follows: All were 30 micrometers.
 表1,表2及び図5から,乳糖分解率が高いほど,アイスクリームが軟らかい傾向にあることが分かった。従って,乳糖分解率を高くするほど,アイスクリーム類を軟らかくすることができることが分かった。 From Table 1, Table 2, and FIG. 5, it was found that the higher the lactose decomposition rate, the softer the ice cream. Therefore, it was found that ice creams can be softened as the lactose decomposition rate increases.
 また,表2において製造例3,4のアイスクリームと製造例2のアイスクリームとを比較すると,製造例3,4のアイスクリームの方が,製造例2のアイスクリームよりも氷結晶の寸法が大きい傾向にあることが分かった。ここで,製造例2のアイスクリームでは,製造例4のアイスクリームの乳糖分解率とほぼ同じであり,製造例2,4のアイスクリームで組成を比較すると,製造例2のアイスクリームでは,無脂乳固形分が多い。従って,無脂乳固形分を多くすることで,冷凍条件下で保存したときに,氷結晶の寸法が大きくなることを抑制できることが分かった。つまり,製造例2のアイスクリームは,冷凍下での保存安定性に優れていることが分かった。 Further, in Table 2, when the ice creams of Production Examples 3 and 4 and the ice cream of Production Example 2 are compared, the ice cream of Production Examples 3 and 4 has a larger ice crystal size than the ice cream of Production Example 2. It turned out to be a big tendency. Here, in the ice cream of Production Example 2, the lactose decomposition rate of the ice cream of Production Example 4 is almost the same, and the composition of the ice creams of Production Examples 2 and 4 is compared. There is much fat solid content. Therefore, it was found that by increasing the solid content of non-fat milk, it is possible to suppress the increase in the size of ice crystals when stored under freezing conditions. That is, it was found that the ice cream of Production Example 2 was excellent in storage stability under freezing.
 また,表2から分かるように,製造例3,4のアイスクリームで風味を比較すると,双方で塩味は同じ程度であり,製造例4のアイスクリームで甘味を豊かに感じられた。また,製造例5のアイスクリームでは,製造例3,4のアイスクリームと比較すると,乳風味が豊かに感じられた。これは,製造例5のアイスクリームでは,アイスクリームミックスとして,DF脱塩脱脂粉乳を使用し,無脂乳固形分が高かったためであると考えられた。さらに,製造例1,2のアイスクリームでは,製造例5のアイスクリームと比較すると,乳風味が同等であり,より豊かに甘味を感じられた。さらに,製造例1,2のアイスクリームで甘味を比較すると,製造例2のアイスクリームでは,より豊かに甘味を感じられた。これらのように,より豊かに甘味を感じられた理由は,製造例1,2のアイスクリームでは,乳糖分解率が高いためであると考えられた。 Also, as can be seen from Table 2, when the flavors of the ice creams of Production Examples 3 and 4 were compared, the saltiness was the same in both cases, and the ice cream of Production Example 4 felt rich in sweetness. Moreover, in the ice cream of the manufacture example 5, compared with the ice cream of the manufacture examples 3 and 4, the milk flavor was felt richly. This was considered to be because in the ice cream of Production Example 5, DF desalted skim milk powder was used as the ice cream mix, and the non-fat milk solid content was high. Furthermore, in the ice creams of Production Examples 1 and 2, compared with the ice cream of Production Example 5, the milk flavor was the same, and the sweetness was felt richer. Furthermore, when the sweetness was compared between the ice creams of Production Examples 1 and 2, the ice cream of Production Example 2 felt a richer sweetness. The reason why the sweetness was felt more abundantly was thought to be due to the high lactose decomposition rate in the ice creams of Production Examples 1 and 2.
 表2において,軟らかさ(硬さ)を比較すると,製造例3と製造例5とでは同じ程度であった。すなわち,サジの通り易さは同程度であった。また,製造例1,2と製造例5とを比較すると,製造例1,2のアイスクリームは,製造例5のアイスクリームよりも軟らかく,また,製造例2のアイスクリームは,製造例1のアイスクリームよりも,さらに軟らかいことが分かった。従って,乳糖分解率が高いほど,製造されるアイスクリーム類は軟らかく,サジの通りが良好であることが分かった。これは,製造例1,2のように乳糖分解率を高めることにより,乳糖の含有量が少なくなるに伴って単糖が生成された結果,凍結点が降下したためであると考えられた。さらに,製造例1,2のアイスクリームは,乳糖結晶の生成が抑制されているため,食感も優れていた。 In Table 2, when the softness (hardness) was compared, it was almost the same in Production Example 3 and Production Example 5. In other words, the ease of passing Saji was about the same. Further, comparing Production Examples 1 and 2 with Production Example 5, the ice creams of Production Examples 1 and 2 are softer than the ice cream of Production Example 5, and the ice cream of Production Example 2 is the same as that of Production Example 1. It turned out to be softer than ice cream. Therefore, it was found that the higher the lactose decomposition rate, the softer the ice creams produced, the better the sagittal street. This was thought to be because the freezing point decreased as a result of the production of monosaccharides as the lactose content decreased by increasing the lactose decomposition rate as in Production Examples 1 and 2. Further, the ice creams of Production Examples 1 and 2 were excellent in texture because the production of lactose crystals was suppressed.
 なお,乳脂肪分が12~15重量%,無脂乳固形分が13~20重量%となるように,NF脱塩脱脂濃縮乳,DF脱塩脱脂濃縮乳,NF脱塩全脂濃縮乳,DF脱塩全脂濃縮乳,NFクリーム,及びDFクリームを混合したアイスクリームミックスを複数種類で製造し,それぞれ乳糖分解し,アイスクリームを製造した。これらは,いずれも製造例3と比較して,塩味が同程度又は丁度良い程度に調整された状態にありながら,甘味や乳風味が豊かに感じられた。 NF desalted and defatted concentrated milk, DF desalted and defatted concentrated milk, and NF desalted whole fat and concentrated milk so that the milk fat content is 12 to 15% by weight and the nonfat milk solid content is 13 to 20% by weight. DF desalted whole fat concentrated milk, NF cream, and ice cream mix mixed with DF cream were produced in plural types, and each was subjected to lactose decomposition to produce ice cream. As for these, compared with the manufacture example 3, although the saltiness was in the state adjusted to the grade which is comparable or just good, sweetness and milk flavor were felt richly.
 以上のことから,製造例1,2のように,アイスクリームミックスとして,DF脱塩脱脂粉乳を用いて,無脂乳固形分を高めることで,アイスクリームの塩味を抑えて,乳風味を豊かにすることができるとともに,乳糖分解率を高めることで,アイスクリームの甘味を高めて,さらに,サジ通りの良い,適度な軟らかさを確保することができることが分かった。また,製造例1,2のように,安定剤や乳化剤を使用しなくとも,無脂乳固形分(つまり,タンパク質)の含有割合を高くすることにより,また,乳糖分解率を高めることにより,冷凍下での保存安定性に優れたアイスクリームを製造することができることが分かった。 From the above, as in Production Examples 1 and 2, using DF desalted skimmed milk powder as an ice cream mix, increasing the non-fat milk solid content, suppressing the salty taste of ice cream and enriching milk flavor It was found that by increasing the lactose decomposition rate, the sweetness of the ice cream can be increased, and further, the softness that is good as a saji can be secured. In addition, as in Production Examples 1 and 2, without using stabilizers and emulsifiers, by increasing the content of non-fat milk solids (ie, protein), and by increasing the lactose decomposition rate, It was found that an ice cream having excellent storage stability under freezing can be produced.
 実施例2では,脱塩による成分の変化を確認するため,まず,上記第1態様に従って脱塩濃縮乳を製造し,得られた脱塩濃縮乳(製造例6)の組成とその配合割合を調べた。そこで,図6に,第1態様に従った脱塩濃縮乳の調製手順を模式的に示す。図6に示すステップ番号Sは,図4に示したステップ番号Sに対応している。 In Example 2, in order to confirm the change in the components due to desalting, first, desalted concentrated milk was produced according to the first aspect, and the composition of the obtained desalted concentrated milk (Production Example 6) and the blending ratio thereof were determined. Examined. FIG. 6 schematically shows the procedure for preparing the desalted concentrated milk according to the first embodiment. The step number S shown in FIG. 6 corresponds to the step number S shown in FIG.
 まず,ナノ濾過(NF)法により生乳を約2.0倍に濃縮した。これにより,ナノ濾過したナノ濾過濃縮乳(NF濃縮乳)を得た(製造例7)。逆浸透(RO)によりナノ濾過法により得られた透過液を処理し,逆浸透膜透過液(脱塩水)を調製した。この逆浸透膜透過液及び水をナノ濾過濃縮乳に添加し,元の生乳と等重量とし,脱塩乳を得た。この脱塩乳をナノ濾過(NF)処理し,約2.0倍に濃縮した。このようにして,透析濾過した脱塩乳(DF脱塩濃縮乳)を得た。このDF脱塩濃縮乳を遠心分離機(セパレーター)により,DFクリームとDF脱脂濃縮乳とに分離した。これにより,製造例6のDF脱塩脱脂濃縮乳を得た。なお,DF脱塩脱脂濃縮乳を真空蒸発缶(エバポレーター)により濃縮することで,保管(保存)性に優れたDF脱塩脱脂粉乳が得られることも確認した。 First, raw milk was concentrated about 2.0 times by a nanofiltration (NF) method. Thus, nanofiltered concentrated milk (NF concentrated milk) obtained by nanofiltration was obtained (Production Example 7). The permeate obtained by the nanofiltration method was processed by reverse osmosis (RO) to prepare a reverse osmosis membrane permeate (demineralized water). The reverse osmosis membrane permeate and water were added to the nanofiltration concentrated milk to obtain the same weight as the original raw milk to obtain desalted milk. The desalted milk was subjected to nanofiltration (NF) treatment and concentrated to about 2.0 times. In this manner, diafiltered desalted milk (DF desalted concentrated milk) was obtained. This DF desalted concentrated milk was separated into DF cream and DF defatted concentrated milk by a centrifuge (separator). Thereby, DF desalted and defatted concentrated milk of Production Example 6 was obtained. It was also confirmed that DF demineralized skim milk can be obtained by concentrating DF demineralized degreased concentrated milk with a vacuum evaporator (evaporator), and having excellent storage (preservation) properties.
 そして,得られたDF脱塩脱脂濃縮乳について組成とその配合割合を調べた。また,製造例6の製造段階で得られるナノ濾過濃縮乳(製造例7)と,ナノ濾過及び逆浸透膜処理を行わずに脱脂濃縮処理した脱脂濃縮乳(製造例8)についても組成とその含有割合を調べた。 Then, the composition and the blending ratio of the obtained DF desalted and defatted concentrated milk were examined. In addition, the composition of nanofiltration concentrated milk (Production Example 7) obtained in the production stage of Production Example 6 and defatted concentrated milk (Production Example 8) that was defatted and concentrated without performing nanofiltration and reverse osmosis membrane treatment The content ratio was examined.
 表3に,各組成を調べた結果を示すとともに,表4(表4a,表4b)に,各組成の含有割合を調べた結果を示す。 Table 3 shows the results of examining each composition, and Table 4 (Tables 4a and 4b) shows the results of examining the content ratio of each composition.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4bから分かるように,製造例6の脱塩乳は,ナトリウムの含有率が上述した35%~80%の範囲内にあり,製造例7,8の脱塩乳は,75%よりも多いことが分かった。従って,上記第1態様に従って原料を濃縮するとともに脱塩処理を行うことで,脱塩率を調整できることが実証された。また,原料に対して,ナノ濾過処理や逆浸透膜処理を行っても,カルシウムの残存率が大きく変動しないこと(具体的には,残存率で90%を確保できること)が分かった。 As can be seen from Table 4b, the desalted milk of Production Example 6 has a sodium content in the range of 35% to 80% described above, and the desalted milk of Production Examples 7 and 8 is more than 75%. I understood that. Therefore, it was demonstrated that the desalination rate can be adjusted by concentrating the raw materials and performing the desalting treatment according to the first aspect. In addition, it was found that the residual rate of calcium does not fluctuate greatly even if the nanofiltration treatment or reverse osmosis membrane treatment is applied to the raw material (specifically, 90% can be secured in the residual rate).
 なお,製造例6において,生乳に替えて脱脂乳を用いても同様の結果を得ることができた。脱脂乳を用いて脱塩乳を得る場合,遠心分離機により,クリームと脱脂濃縮乳とに分離する工程を,脱塩工程の事前に設ければ良い。 In Production Example 6, similar results could be obtained even when skim milk was used instead of raw milk. When obtaining desalted milk using skim milk, a step of separating the cream and the skim concentrated milk by a centrifuge may be provided in advance of the desalting process.
 実施例3では,上記第1態様で得られたDF脱塩脱脂濃縮乳と,上記第2態様で得られた脱塩脱脂粉乳とを混合し,その混合物を材料として,乳脂肪と無脂乳固形分の配合比が互いに異なる複数のアイスクリーム(製造例9~15)を製造した。また,上記第1態様で得られたDF脱塩脱脂濃縮乳と,上記第2態様で得られた脱塩脱脂粉乳の双方を用いないでアイスクリーム(製造例16)を製造した。 In Example 3, the DF desalted and defatted concentrated milk obtained in the first aspect and the desalted and defatted powdered milk obtained in the second aspect are mixed, and the mixture is used as a material for milk fat and nonfat milk. A plurality of ice creams (Production Examples 9 to 15) having different solid content ratios were produced. Moreover, ice cream (Manufacturing Example 16) was manufactured without using both the DF desalted and defatted concentrated milk obtained in the first aspect and the desalted and defatted powdered milk obtained in the second aspect.
 製造例9~16の原料の配合比を表5及び表6に示す。また,表5及び表6には,製造したアイスクリームの各組成の含有割合も示されている。 Tables 5 and 6 show the mixing ratio of the raw materials of Production Examples 9 to 16. Tables 5 and 6 also show the content ratio of each composition of the produced ice cream.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5及び表6から分かるように,本発明によれば,さまざまな配合比でアイスクリームを製造することができることが分かった。また,製造例9~15のアイスクリームは,第1態様に従って調製したDF脱塩脱脂濃縮乳(透析濾過と乳糖分解した脱塩脱脂濃縮乳)と,第2態様に従って調製した脱塩脱脂粉乳(透析濾過した脱塩脱脂粉乳)とを含んでいるため,原料に添加する砂糖(ショ糖)の量を製造例16に比べて少なくしても,十分に甘味度が高いことが分かった。 As can be seen from Tables 5 and 6, it was found that according to the present invention, ice creams can be produced with various blending ratios. In addition, the ice creams of Production Examples 9 to 15 were prepared by DF desalted and defatted concentrated milk prepared according to the first embodiment (diafiltration and lactose-degraded desalted and defatted concentrated milk) and desalted and defatted powdered milk prepared according to the second embodiment ( Therefore, even if the amount of sugar (sucrose) added to the raw material is smaller than that in Production Example 16, the sweetness is sufficiently high.
 本発明は,食品産業において用いられうる。 The present invention can be used in the food industry.

Claims (11)

  1.  無脂乳固形分を5重量%以上50重量%以下で含む原料を脱塩処理するための脱塩工程と,
     前記の脱塩工程を経た原料に,乳糖を分解する酵素を添加するための酵素添加工程と,
     前記の酵素添加工程において添加された酵素が前記の脱塩工程を経た原料に含まれる乳糖を分解する乳糖分解工程と,
     前記の乳糖分解工程を経た原料を冷却する冷却工程と,
     を含む
     アイスクリーム類の製造方法。
     
    A desalting step for desalting a raw material containing non-fat milk solids in an amount of 5 wt% to 50 wt%;
    An enzyme addition step for adding an enzyme that decomposes lactose to the raw material that has undergone the desalting step;
    A lactose decomposition step in which the enzyme added in the enzyme addition step decomposes lactose contained in the raw material that has undergone the desalting step;
    A cooling step for cooling the raw material that has undergone the lactose decomposition step;
    A method for producing ice cream.
  2.  前記冷却工程は,
     前記の脱塩工程,酵素添加工程,及び乳糖分解工程を経て調製されたアイスクリームミックスを冷却する工程であり,
     前記アイスクリームミックスは,
      無脂乳固形分を5重量%以上40重量%以下で含み,乳脂肪分を含まないか,乳脂肪分を25重量%以下で含む,
     請求項1に記載のアイスクリーム類の製造方法。
     
    The cooling step includes
    Cooling the ice cream mix prepared through the desalting step, the enzyme addition step, and the lactose decomposition step,
    The ice cream mix
    Contains non-fat milk solids at 5% to 40% by weight and no milk fat or contains milk fat at 25% by weight,
    The manufacturing method of the ice cream of Claim 1.
  3.  前記の脱塩工程は,
      原料に含まれるナトリウムの残存率を35%以上80%以下とする工程である,
     請求項1に記載のアイスクリーム類の製造方法。
     
    The desalting step is
    It is a step of setting the residual rate of sodium contained in the raw material to 35% to 80%.
    The manufacturing method of the ice cream of Claim 1.
  4.  前記の脱塩工程は,
      脱脂乳を含む原料をナノ濾過法により濃縮し,ナノ濾過濃縮脱脂乳を得る第1のナノ濾過処理工程と,
      前記の第1のナノ濾過処理工程で得られたナノ濾過濃縮脱脂乳を希釈し,ナノ濾過脱脂乳を得る希釈工程と,
      前記の希釈工程で得られたナノ濾過脱脂乳をナノ濾過法により濃縮し,脱塩脱脂乳を得る第2のナノ濾過処理工程と,
     を含む,
     請求項1に記載のアイスクリーム類の製造方法。
     
    The desalting step is
    A first nanofiltration treatment step of concentrating a raw material containing skim milk by a nanofiltration method to obtain a nanofiltration concentrated skim milk;
    Diluting the nanofiltration concentrated skim milk obtained in the first nanofiltration treatment step to obtain a nanofiltration skim milk; and
    A second nanofiltration treatment step of concentrating the nanofiltration skim milk obtained in the dilution step by a nanofiltration method to obtain desalted skimmilk;
    including,
    The manufacturing method of the ice cream of Claim 1.
  5.  前記の脱塩工程は,
      脱脂乳を含む原料をナノ濾過法により濃縮し,ナノ濾過濃縮脱脂乳を得る第1のナノ濾過処理工程と,
      前記の第1のナノ濾過処理工程で得られた透過液に逆浸透処理を行い,逆浸透膜透過液を得る逆浸透処理工程と,
      前記の第1のナノ濾過処理工程で得られたナノ濾過濃縮脱脂乳と,前記の逆浸透膜透過液と,水分とを加え,脱塩乳を得る脱塩乳取得工程と,
      前記の脱塩乳取得工程で得られた脱塩乳をナノ濾過法により濃縮し,脱塩脱脂乳を得る第2のナノ濾過処理工程と,
     を含む,
     請求項1に記載のアイスクリーム類の製造方法。
     
    The desalting step is
    A first nanofiltration treatment step of concentrating a raw material containing skim milk by a nanofiltration method to obtain a nanofiltration concentrated skim milk;
    A reverse osmosis treatment step of performing a reverse osmosis treatment on the permeate obtained in the first nanofiltration treatment step to obtain a reverse osmosis membrane permeate,
    Adding the nanofiltration concentrated skim milk obtained in the first nanofiltration treatment step, the reverse osmosis membrane permeate, and moisture to obtain desalted milk; and
    A second nanofiltration treatment step of concentrating the desalted milk obtained in the desalted milk obtaining step by a nanofiltration method to obtain desalted skim milk;
    including,
    The manufacturing method of the ice cream of Claim 1.
  6.  前記の脱塩工程は,
      原料をナノ濾過法により濃縮し,ナノ濾過濃縮乳を得る第1のナノ濾過処理工程と,
      前記の第1のナノ濾過工程において,得られた透過液に逆浸透処理を行い,逆浸透膜透過液を得る逆透過処理工程と,
      前記のナノ濾過濃縮乳と,前記の逆浸透膜透過液と,水分とを加え,脱塩乳を得る脱塩乳取得工程と,
      前記の脱塩乳取得工程で得られた脱塩乳をナノ濾過法により濃縮し,脱塩脱脂乳を得る第2のナノ濾過処理工程と,
     を含む,
     請求項1に記載のアイスクリーム類の製造方法。
     
    The desalting step is
    A first nanofiltration treatment step of concentrating the raw material by a nanofiltration method to obtain a nanofiltration concentrated milk;
    In the first nanofiltration step, reverse osmosis treatment is performed on the obtained permeate to obtain a reverse osmosis membrane permeate,
    Adding the nanofiltration concentrated milk, the reverse osmosis membrane permeate, and water to obtain a desalted milk;
    A second nanofiltration treatment step of concentrating the desalted milk obtained in the desalted milk obtaining step by a nanofiltration method to obtain desalted skim milk;
    including,
    The manufacturing method of the ice cream of Claim 1.
  7.  前記の酵素添加工程で添加される酵素は,
     ラクターゼであり,
     前記の脱塩工程を経た原料を100重量%とすると,0.01重量%以上0.1重量%以下で添加される,
     請求項1に記載のアイスクリーム類の製造方法。
     
    The enzyme added in the enzyme addition step is
    Lactase,
    When the raw material that has undergone the desalting step is 100% by weight, it is added at 0.01% by weight or more and 0.1% by weight or less.
    The manufacturing method of the ice cream of Claim 1.
  8.  前記の乳糖分解工程は,
      前記の脱塩工程を経た原料に含まれる乳糖を30%以上100%以下で分解する工程である,
     請求項1に記載のアイスクリーム類の製造方法。
     
    The lactose decomposition process is as follows:
    It is a step of decomposing lactose contained in the raw material that has undergone the desalting step at 30% to 100%.
    The manufacturing method of the ice cream of Claim 1.
  9.  前記の乳糖分解工程は,
      前記の脱塩工程を経た原料を,0℃以上20℃以下の温度に,2時間以上で保持する工程を含む,
     請求項1に記載のアイスクリーム類の製造方法。
     
    The lactose decomposition process is as follows:
    Including the step of holding the raw material that has undergone the desalting step at a temperature of 0 ° C. or more and 20 ° C. or less for 2 hours or more,
    The manufacturing method of the ice cream of Claim 1.
  10.  請求項1~9のいずれかに記載のアイスクリーム類の製造方法により製造されたアイスクリーム類。
     
    An ice cream produced by the method for producing an ice cream according to any one of claims 1 to 9.
  11.  乳タンパク質を4重量%以上15重量%以下,
     乳糖由来のブドウ糖を1重量%以上10重量%以下で含む,
     請求項10に記載のアイスクリーム類。
    4% to 15% by weight of milk protein,
    Containing 1% to 10% by weight of lactose-derived glucose,
    The ice cream according to claim 10.
PCT/JP2010/007476 2009-12-25 2010-12-24 Ice creams and method for producing same WO2011077739A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080052305.7A CN102711507B (en) 2009-12-25 2010-12-24 Ice cream cold drink and manufacture method thereof
JP2011547317A JP5848611B2 (en) 2009-12-25 2010-12-24 Manufacturing method of ice cream
HK13100034.3A HK1172797A1 (en) 2009-12-25 2013-01-02 Ice creams and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009293869 2009-12-25
JP2009-293869 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011077739A1 true WO2011077739A1 (en) 2011-06-30

Family

ID=44195292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007476 WO2011077739A1 (en) 2009-12-25 2010-12-24 Ice creams and method for producing same

Country Status (5)

Country Link
JP (2) JP5848611B2 (en)
CN (2) CN102711507B (en)
HK (2) HK1222299A1 (en)
TW (1) TWI574627B (en)
WO (1) WO2011077739A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3590346A1 (en) * 2018-07-03 2020-01-08 DMK Deutsches Milchkontor GmbH Dairy prodcuts with increased sweetness

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106173176B (en) * 2015-05-04 2019-09-06 内蒙古蒙牛乳业(集团)股份有限公司 A kind of Low lactose milk ice cream and preparation method thereof
JP6989253B2 (en) * 2016-11-07 2022-01-05 株式会社明治 Rich fermented milk and its manufacturing method
WO2023182501A1 (en) * 2022-03-25 2023-09-28 株式会社明治 Whey processed food product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218340A (en) * 1990-01-16 1992-08-07 Campina Melkunie Bv Making of ice-cream product
JPH0767542A (en) * 1993-08-31 1995-03-14 Yukisato:Kk Frozen dessert and its production
JP2004180580A (en) * 2002-12-03 2004-07-02 Morinaga Milk Ind Co Ltd Method for promoting desalting of milk
JP2007060901A (en) * 2005-08-29 2007-03-15 Meiji Milk Prod Co Ltd Milk raw material excellent in flavor/physical property and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623850A (en) * 1979-08-06 1981-03-06 Daiei Yakuhin Kogyo Kk Preparation of frozen food
JPH04179440A (en) * 1990-07-27 1992-06-26 Meiji Milk Prod Co Ltd Dairy product having low sodium content and its preparation
JP3318526B2 (en) * 1998-03-30 2002-08-26 雪印乳業株式会社 Ice cream and method for producing the same
JP2001275575A (en) * 2000-03-31 2001-10-09 Snow Brand Milk Prod Co Ltd Method for producing ice cream
JP2004129579A (en) * 2002-10-10 2004-04-30 Morinaga Milk Ind Co Ltd Method for producing whey prepared by lactose degradation and desalinization
CN100444739C (en) * 2003-04-29 2008-12-24 深圳市海川实业股份有限公司 Ice cream power containing anti lactose intolerant factor
CA2661839A1 (en) * 2006-09-05 2008-03-13 Mcneil Nutritionals, Llc Lactase-containing comestibles and related methods
US20080138486A1 (en) * 2006-12-11 2008-06-12 Stan Jones Particulate frozen food product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218340A (en) * 1990-01-16 1992-08-07 Campina Melkunie Bv Making of ice-cream product
JPH0767542A (en) * 1993-08-31 1995-03-14 Yukisato:Kk Frozen dessert and its production
JP2004180580A (en) * 2002-12-03 2004-07-02 Morinaga Milk Ind Co Ltd Method for promoting desalting of milk
JP2007060901A (en) * 2005-08-29 2007-03-15 Meiji Milk Prod Co Ltd Milk raw material excellent in flavor/physical property and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3590346A1 (en) * 2018-07-03 2020-01-08 DMK Deutsches Milchkontor GmbH Dairy prodcuts with increased sweetness

Also Published As

Publication number Publication date
CN105767445B (en) 2020-08-28
CN102711507B (en) 2016-04-13
JPWO2011077739A1 (en) 2013-05-02
CN102711507A (en) 2012-10-03
TW201130424A (en) 2011-09-16
JP5848611B2 (en) 2016-01-27
HK1172797A1 (en) 2013-05-03
JP2016063822A (en) 2016-04-28
HK1222299A1 (en) 2017-06-30
TWI574627B (en) 2017-03-21
CN105767445A (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP6932815B2 (en) Dairy formulation and its manufacturing method
JP5027286B2 (en) Process for producing lactose-free dairy products
WO2012121131A1 (en) Fermented milk with improved flavor and method for producing same
JP2016063822A (en) Ice creams
CN112423596B (en) Production and separation of milk fractions using forward osmosis
JP2000300183A (en) Concentrated whey protein and its production
US20190223461A1 (en) Production and Separation of Milk Fractions with Electrochemical Treatment
WO2019212704A1 (en) Production and separation of milk fractions with diafiltration
WO2012176721A1 (en) Fresh cream having rich body taste and method for producing same
RU2719786C2 (en) Modification of mineral composition of milk
JP6568819B2 (en) Method for producing fermented milk
WO2022015868A1 (en) Production and separation of milk fractions with electrodialysis
EP4081042B1 (en) Production and separation of milk fractions with a final nanofiltration step
JP5081883B2 (en) Method for producing calcium-reinforced whey-containing composition
JP2016189762A (en) Method for producing fresh cream
CA3206972A1 (en) Dairy creamer with a low carbohydrate content

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052305.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547317

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 5144/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10838977

Country of ref document: EP

Kind code of ref document: A1