WO2011077721A1 - Additive for fluid catalytic cracking catalyst - Google Patents

Additive for fluid catalytic cracking catalyst Download PDF

Info

Publication number
WO2011077721A1
WO2011077721A1 PCT/JP2010/007443 JP2010007443W WO2011077721A1 WO 2011077721 A1 WO2011077721 A1 WO 2011077721A1 JP 2010007443 W JP2010007443 W JP 2010007443W WO 2011077721 A1 WO2011077721 A1 WO 2011077721A1
Authority
WO
WIPO (PCT)
Prior art keywords
additive
silica
alumina
mass
catalytic cracking
Prior art date
Application number
PCT/JP2010/007443
Other languages
French (fr)
Japanese (ja)
Inventor
重範 林
誠二郎 野中
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to AU2010334125A priority Critical patent/AU2010334125B2/en
Priority to KR1020127016362A priority patent/KR101351097B1/en
Priority to SG2012046355A priority patent/SG181882A1/en
Publication of WO2011077721A1 publication Critical patent/WO2011077721A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • B01J35/30
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides

Definitions

  • the present invention is used in a fluid catalytic cracking device (FCC device) by being added to a fluid catalytic cracking catalyst (FCC catalyst).
  • FCC catalyst fluid catalytic cracking catalyst
  • a heavy oil fraction (bottom) in a raw material oil is decomposed to obtain a light fraction.
  • the present invention relates to an additive for fluid catalytic cracking catalyst for obtaining (especially gasoline).
  • Patent Document 1 includes a granular mixture of silica-alumina, clay and silica, the silica content in the silica-alumina is 10 to 30% by weight, and the silicon content in the mixture is SiO 2.
  • An additive for fluid catalytic cracking catalyst, which is 10 to 60% by weight in terms of conversion, is disclosed.
  • Patent Document 2 includes particles composed of silica-alumina, clay and silica, the total silicon content of which is 10 to 60% by weight in terms of SiO 2 , a specific surface area of 30 to 80 m 2 / g, and 0
  • the total pore volume is from 14 to 0.45 ml / g
  • the pore volume having a pore radius of 60 mm or less is 0.05 ml / g or less
  • the total acid amount is from 0.02 to 0.065 mmol / g.
  • Additives for fluid catalytic cracking catalysts in the g range are disclosed.
  • Patent Document 3 includes a composite metal oxide, clay, and silica, has a specific surface area of 30 to 80 m 2 / g, a total pore volume of 0.14 to 0.45 ml / g, and a pore diameter of 60 to An additive for fluid catalytic cracking catalyst having a pore volume of 200 liters in the range of 45% or more of the total pore volume is disclosed.
  • Patent Document 4 includes a composite metal oxide, clay and silica, a specific surface area of 30 to 80 m 2 / g, a total acid amount of 0.02 to 0.08 mmol / g, and the total acid amount.
  • An additive catalyst for cracking heavy oil in which the ratio of the amount of strong acid to 10 to 50% is disclosed.
  • Patent Documents 1 to 4 have a silica content in silica-alumina of 10 to 30% by weight, a silica content in the mixture of 10 to 60% by weight, a specific surface area of 30 to 80 m 2 / g, total acid An amount of 0.02-0.08 mmol / g is disclosed.
  • the conventional additive has a certain effect on the decomposition of the heavy oil fraction, but it is necessary to further increase the decomposition efficiency of the heavy oil fraction.
  • the coke yield increases at the same time as the cracking of the heavy oil fraction proceeds, and the coke yield increases, As a result, the temperature in the catalyst regeneration tower in the FCC apparatus was raised, and the quality of the FCC catalyst was degraded due to the temperature rise and steam generation in coke combustion.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an additive for a fluid catalytic cracking catalyst capable of increasing the cracking efficiency of a heavy oil fraction and suppressing an increase in coke yield. To do.
  • the additive for fluid catalytic cracking catalyst according to the present invention that meets the above object is an additive for fluid catalytic cracking catalyst obtained by spray drying a mixed slurry containing a binder and alumina-silica, and has a specific surface area of 100 to 400 m 2 / g and the total solid acid amount is 0.10 mmol / g or more and less than 0.50 mmol / g.
  • the ratio of the strong acid amount to the total solid acid amount is preferably 20% or less.
  • the mixed slurry preferably contains porous silica or zeolite.
  • the proportion of alumina-silica in the mixed slurry is 20 mass% or more and less than 80 mass%.
  • the content of silica in the alumina-silica is preferably more than 0% by mass and less than 10% by mass.
  • the binder is preferably a silica compound or an aluminum compound.
  • the additive of the present invention has a specific surface area of 100 to 400 m 2 / g and a total solid acid amount of 0.10 to 0.50 mmol / g, the activity is higher than that of conventional additives.
  • HCO heavy fraction oil
  • the specific surface area of the additive and the total solid acid amount are higher than before, so that the contact area and the active point between the feedstock and the additive are increased, and as a result, the activity of the FCC catalyst is increased. It is understood that this is because the yield of HCO decreased.
  • additive for fluid catalytic cracking catalyst according to an embodiment of the present invention.
  • the additive for fluid catalytic cracking catalyst of the present invention decomposes a heavy oil fraction (bottom) in a feed oil particularly in a fluid catalytic cracking device (FCC device).
  • FCC device fluid catalytic cracking device
  • a light fraction it is used by adding to a fluid catalytic cracking catalyst composed of a porous inorganic oxide containing zeolite.
  • the additive of the present invention is obtained by spray-drying a mixed slurry containing a binder and alumina-silica under known conditions, and has a specific surface area measured by the BET method (JIS Z8830) of 100 to 400 m 2 / g, Preferably, it is 150 to 380 m 2 / g, more preferably 200 to 350 m 2 / g, and by the ammonia adsorption heat measurement method (refer to Japanese Patent No. 3784852.
  • the total solid acid amount to be measured (ammonia adsorption amount with an adsorption heat of 70 kJ / mol or more) is 0.10 mmol / g or more and less than 0.50 mmol / g, preferably 0.20 to 0.45 mmol / g, more Preferably, it is 0.25 to 0.40 mmol / g.
  • the specific surface area of the additive is less than 100 m 2 / g, the reaction field between the additive and the raw material oil decreases, so the decomposition efficiency of the heavy oil fraction (HCO) decreases, and when the additive exceeds 400 m 2 / g
  • the bulk density and strength of the agent deteriorate.
  • a silica compound or an aluminum compound can be used as a binder to be used.
  • the silica compound for example, water glass, silicic acid solution or the like can be used
  • the aluminum compound for example, basic aluminum chloride, boehmite alumina peptizing sol or the like can be used.
  • the alumina-silica pseudoboehmite gel or boehmite gel mixed with a silica compound or mixed and aged can be used.
  • the content of silica in the alumina-silica is more than 0% by mass and less than 10% by mass, preferably 1-9% by mass.
  • the specific surface area and the acid amount decrease.
  • the mixed slurry may contain clay mineral, porous silica, and zeolite. Examples of clay minerals include kaolin, montmorillonite, dolomite, and calcite. Examples of porous silica include wet silica and dry silica.
  • zeolite examples include ultra-stabilized Y zeolite (USY), HY, NH 4 -Y, RE-Y, RE-USY, ZSM-5, mordenite and the like.
  • the addition of porous silica or zeolite can adjust (increase) the specific surface area of the additive and contribute to the improvement of activity.
  • the proportion of alumina-silica in the mixed slurry is preferably 20% by mass or more and less than 80% by mass, more preferably 40 to 70% by mass.
  • the specific surface area of the additive and the solid acid amount can be controlled by the ratio of alumina-silica.
  • the proportion of alumina-silica in the mixed slurry is less than 20% by mass, the active component for decomposing the heavy oil fraction is insufficient, and it is difficult to effectively decompose the heavy oil fraction.
  • the amount is 80% by mass or more, the strength and bulk density of the additive are lowered, and when used as an additive for a fluid catalytic cracking catalyst, fluidity is deteriorated or pulverized, so that the fluid catalytic cracking apparatus is difficult to operate. There is a risk of becoming.
  • the concentration of the binder in the mixed slurry is about 10 to 15% by mass, and the solid content concentration in the mixed slurry is about 15 to 30% by mass.
  • the ratio of the amount of strong acid to the total solid acid amount of the additive is 20% or less, preferably 10% or less, more preferably 5% or less. .
  • the amount of the strong acid exceeds 20%, a hyperdecomposition reaction occurs and the coke yield tends to increase.
  • Example 1 Effect of solid acid amount >> [Example 1: Additive 1] 300 g of silica sol a containing 17.5% by weight of water glass as silica (SiO 2 ) adjusted to pH 1.6 with 25% by weight sulfuric acid aqueous solution (containing 10% by weight as silica, ie containing 30 g as silica) was added to 7690 g of boehmite slurry (containing 1000 g as alumina) containing 13.0% by mass as alumina (Al 2 O 3 ), and then adjusted to pH 10.5 with a 48% by mass sodium hydroxide aqueous solution. The mixture was further aged at 95 ° C.
  • alumina-silica slurry A containing 3% by mass of silica.
  • This alumina-silica slurry A was 14% by mass as the total concentration of alumina and silica.
  • a water glass having a silica concentration of 17.5% by mass (hereinafter also referred to as 17.5% by mass water glass) was adjusted to pH 1.6 with sulfuric acid, and a silica sol b having a silica concentration of 12.5% by mass was obtained. (An example of a binder made of a silica compound) was obtained.
  • alumina-silica slurry A (containing 200 g as alumina-silica) was adjusted to pH 4.0 with sulfuric acid, and 1600 g of silica sol b (containing 200 g as silica. The same applies hereinafter) was added thereto, and then 600 g of kaolin (dried) Mass, the same applies hereinafter) and uniformly mixed, followed by spray drying under the conditions of an inlet temperature of 460 ° C., an outlet temperature of 260 ° C.
  • Additive 1 having a diameter of 60 ⁇ m was obtained.
  • the composition of additive 1 is shown in Table 1. Furthermore, the specific surface area of Additive 1 was measured by the BET method, and the bulk density was measured by the UOP method 254-65 (the same applies to the following examples). Table 1 shows the properties of Additive 1.
  • the solid acid amount was measured as follows. First, 0.2 g of additive 1 was calcined at 500 ° C. for 1 hour, then heat-treated at 400 ° C. under reduced pressure (1 ⁇ 10 ⁇ 4 torr) for 4 hours, then adsorbed ammonia gas, and the heat of adsorption generated at that time was detected, and the total amount of solid acid was calculated. For the measurement, a “calorimeter” manufactured by Tokyo Riko Co., Ltd. was used.
  • the ammonia adsorption amount with an adsorption heat of 70 kJ / mol or more was defined as the total solid acid amount, and 110 kJ / mol or more was defined as the strong acid amount (also in the following examples) Measured in the same manner).
  • Table 1 shows the measurement results of the solid acid amount of Additive 1.
  • Example 2 Additive 2
  • alumina-silica slurry A containing 400 g as alumina-silica
  • pH 4.0 pH 4.0
  • silica sol b containing 200 g as silica
  • 400 g of kaolin was added and mixed uniformly.
  • Additive 2 having an average particle size of 60 ⁇ m was obtained by spray drying, followed by washing and desalting. Table 1 shows the composition and properties of additive 2.
  • Example 3 Additive 3
  • alumina-silica slurry A containing 700 g as alumina-silica
  • pH 4.0 pH 4.0
  • silica sol b containing 200 g as silica
  • 100 g of kaolin was added and mixed uniformly.
  • Additive 3 having an average particle size of 60 ⁇ m was obtained by spray drying, followed by washing and desalting. Table 1 shows the composition and properties of additive 3.
  • Additives 1 to 5 were used to evaluate the influence of activity due to the amount of solid acid of the additive.
  • the activity evaluation of the additive was performed using an ARCO pilot reactor. This apparatus is a circulating fluidized bed in which the catalyst circulates in the apparatus and alternately repeats the reaction and the catalyst regeneration, and imitates an FCC unit used on a commercial scale.
  • the FCC equilibrium catalyst and the additives 1 to 5 are mixed at a mass ratio of 90:10 (1.8 kg: 0.2 kg), respectively, and desulfurized atmospheric residual oil (DSAR) is used as a raw material oil.
  • DSAR desulfurized atmospheric residual oil
  • the temperature of the regeneration tower is set to 670 ° C.
  • the catalyst is adjusted to 5 g or 7 g with respect to 1 g of the raw oil in the apparatus, the catalytic cracking reaction is performed, and the product after the reaction
  • the product and residue (product solution) were analyzed.
  • the gas generated in the reaction tower is analyzed by gas chromatography manufactured by Shimadzu Corporation (Micro GC 3000A), and the yields of hydrogen and C1 to C4 are measured. Coke yield was calculated by analyzing CO 2 with an infrared absorption gas analyzer [CGT-7000] manufactured by Shimadzu Corporation.
  • the product liquid was analyzed by distillation gas chromatography (GC System HP6890) manufactured by Hewlett Packard, and the production amounts of gasoline fraction, light oil fraction (LCO) and heavy oil fraction (HCO) were measured.
  • Additives 1-5 were each treated at 810 ° C. for 12 hours under 100% steam conditions before the reaction.
  • Table 1 shows the evaluation results.
  • the conversion rate was expressed as a difference based on the measurement result when no additive was added.
  • the difference between the respective production amounts when the conversion rate is constant is shown on the basis of the production amount when no additive is added. did. The following examples were similarly evaluated.
  • Example 2 Influence of specific surface area >> [Example 4: Additive 6] 2860 g of alumina-silica slurry A (containing 400 g as alumina-silica) was adjusted to pH 4.0 with sulfuric acid, 1600 g of silica sol b (containing 200 g as silica) was added, and then 100 g of kaolin and 300 g of ultra-stabilized Y-type zeolite (dried) Mass, the same applies hereinafter), and uniformly mixed, then spray-dried, followed by washing and desalting to obtain additive 6 having an average particle size of 60 ⁇ m. Table 2 shows the composition and properties of additive 6.
  • Table 2 shows each evaluation result.
  • activity evaluation was not performed about the additive 7, since the bulk density is low and it is difficult to use it with an actual apparatus.
  • the specific surface area was 100 to 350 m 2 / g, and the reaction field with the heavy oil fraction was increased, so that the HCO yield was decreased and good results were obtained, but the specific surface area was 85 m 2 / g.
  • the HCO yield increases due to the small number of reaction fields, and at 410 m 2 / g, it is considered that the heavy oil fraction is efficiently decomposed due to the large number of reaction fields, but this is not practical due to the low bulk density. It was.
  • Example 3 Effect of silica content in alumina-silica >> [Example 5: Additive 8] After adding 500 g of silica sol a (ie, containing 50 g of silica) to 7690 g of boehmite slurry containing 13.0% by mass as alumina, the pH is adjusted to 10.5 with a 48% by mass sodium hydroxide aqueous solution, Further, aging was carried out at 95 ° C. for 1 hour to obtain an alumina-silica slurry B containing 5% by mass of silica. This alumina-silica slurry B was 15% by mass as the total concentration of alumina and silica.
  • alumina-silica slurry B (containing 700 g as alumina-silica) was adjusted to pH 4.0 with sulfuric acid, 1600 g of silica sol b (containing 200 g as silica) was added, and then 100 g of kaolin was added and mixed uniformly.
  • Additive 8 having an average particle size of 60 ⁇ m was obtained by spray drying, followed by washing and desalting. Table 3 shows the composition and properties of additive 8.
  • alumina-silica slurry C (containing 700 g as alumina-silica) was adjusted to pH 4.0 with sulfuric acid, 1600 g of silica sol b (containing 200 g as silica) was added, and then 100 g of kaolin was added and mixed uniformly.
  • the additive 10 having an average particle size of 60 ⁇ m was obtained by spray drying, followed by washing and desalting.
  • Table 3 shows the composition and properties of the additive 10. [Activity evaluation] Using additive 3, additive 8, additive 9, and additive 10, the influence of activity due to the silica content in the alumina-silica was evaluated. Table 3 shows each evaluation result.
  • Example 4 Effect of solid acid amount >> [Example 6: Additive 11] 500 g of kaolin is added to 858 g of a basic aluminum chloride solution b having an Al 2 O 3 concentration of 23.3 mass% (an example of a binder composed of an alumina compound, containing 200 g of alumina), and then adjusted to pH 5.0 with sulfuric acid. 2140 g of the alumina-silica slurry A (containing 300 g as alumina-silica) was added and mixed uniformly, followed by spray drying, followed by washing and desalting to obtain additive 11 having an average particle size of 60 ⁇ m. It was. Table 4 shows the composition and properties of the additive 11.
  • Example 7 Additive 12
  • Table 4 shows the composition and properties of the additive 12.
  • Example 8 Additive 13
  • 100 g of kaolin was added to 858 g of basic aluminum chloride solution b (containing 200 g as alumina), and then 5000 g of alumina-silica slurry A (containing 700 g as alumina-silica) adjusted to pH 4.0 with sulfuric acid was added uniformly. After mixing, spray drying was performed, followed by washing and desalting to obtain an additive 13 having an average particle size of 60 ⁇ m.
  • Table 4 shows the composition and properties of the additive 13.
  • Example 5 Influence of specific surface area >> [Example 9: Additive 16] 100 g of kaolin was added to 858 g of basic aluminum chloride solution b (containing 200 g as alumina), then 2860 g of alumina-silica slurry A (containing 400 g as alumina-silica) adjusted to pH 4.0 with sulfuric acid, ultra-stabilized Y type After adding 300 g of zeolite and mixing uniformly, it was spray-dried, followed by washing and desalting to obtain additive 16 having an average particle size of 60 ⁇ m. Table 5 shows the composition and properties of the additive 16.
  • the additive for fluid catalytic cracking catalyst of the present invention can effectively decompose the heavy oil fraction in the feedstock, suppress coke yield, and obtain gasoline and LCO in high yield. did it.
  • the additive is characterized by a high specific surface area and a low proportion of strong acid in the total solid acid.
  • the ratio of the strong acid is high, the reaction activity is high, but there is a problem that the coke yield is high because of the excessive decomposition reaction. Therefore, the ratio of strong acid in the total solid acid of the additive is suppressed, and the amount of solid acid per unit surface area is decreased by increasing the specific surface area. It is understood that it is because it can suppress.

Abstract

Disclosed is an additive for a fluid catalytic cracking catalyst, which is capable of enhancing the cracking efficiency of a heavy oil fraction, while suppressing increase in the coke yield. Specifically disclosed is an additive for a fluid catalytic cracking catalyst, which is obtained by spray drying a mixed slurry that contains a binder and alumina-silica. The additive for a fluid catalytic cracking catalyst has a specific surface area of 100-400 m2/g and a total solid acid amount of 0.10 mmol/g or more but less than 0.50 mmol/g. It is preferable that the ratio of the strong acid amount relative to the total solid acid amount is 20% or less. It is also preferable that the ratio of the alumina-silica in the mixed slurry is 20% by mass or more but less than 80% by mass, and the silica content in the alumina-silica is more than 0% by mass but less than 10% by mass.

Description

流動接触分解触媒用添加剤Additive for fluid catalytic cracking catalyst
 本発明は、流動接触分解装置(FCC装置)において、流動接触分解触媒(FCC触媒)に添加して使用され、特に、原料油中の重質油留分(ボトム)を分解して軽質留分(特に、ガソリン)を得るための流動接触分解触媒用添加剤に関する。 The present invention is used in a fluid catalytic cracking device (FCC device) by being added to a fluid catalytic cracking catalyst (FCC catalyst). In particular, a heavy oil fraction (bottom) in a raw material oil is decomposed to obtain a light fraction. The present invention relates to an additive for fluid catalytic cracking catalyst for obtaining (especially gasoline).
 従来、流動接触分解触媒を用いて原料油を分解して軽質油を得ているが、原油の価格高騰により、より重質な原料油(重質油留分)も処理するようになっている。ここで、FCC触媒によって重質油留分(例えば、残油)を効率よく分解するために、FCC触媒に含まれるゼオライトやアルミナに代表される活性成分を増量している。しかしながら、FCC触媒中の活性成分の割合が増加すると、触媒の強度が低下するなどして物性が悪化するという問題があった。また、流動接触分解装置において、原料油中の重質油留分を分解して軽質留分を得るにあたり、重質油留分の分解が進むとコークが増加し、更に生成したコークが燃焼する際に、温度上昇及び水蒸気発生が起こり、FCC触媒の品質が劣化するという問題があった。このような問題を解決するためにFCC触媒の補助触媒(FCCアディティブ:FCC Additive)として以下のような添加剤が開発されている。 Conventionally, light oil is obtained by cracking feedstock using a fluid catalytic cracking catalyst, but due to the rising price of crude oil, heavier feedstock (heavy oil fraction) is also being processed. . Here, in order to efficiently decompose a heavy oil fraction (for example, residual oil) with the FCC catalyst, the amount of active components typified by zeolite and alumina contained in the FCC catalyst is increased. However, when the ratio of the active component in the FCC catalyst is increased, there is a problem that the physical properties are deteriorated, for example, the strength of the catalyst is lowered. Further, in the fluid catalytic cracking device, when the heavy oil fraction in the raw oil is decomposed to obtain the light fraction, the coke increases as the heavy oil fraction proceeds, and the generated coke burns. In this case, there is a problem that the temperature rises and water vapor is generated, and the quality of the FCC catalyst is deteriorated. In order to solve such problems, the following additives have been developed as an FCC catalyst auxiliary catalyst (FCC Additive).
 例えば、特許文献1には、シリカ-アルミナと粘土とシリカの粒状混合物からなり、シリカ-アルミナ中のシリカ含有量が10~30重量%であり、混合物中に含まれるケイ素の含有量がSiO換算で10~60重量%である流動接触分解触媒用添加剤が開示されている。
 また、特許文献2には、シリカ-アルミナと粘土とシリカからなり、全ケイ素の含有量がSiO換算で10~60重量%である粒子からなり、30~80m/gの比表面積及び0.14~0.45ml/gの全細孔容積を有するとともに、細孔半径60Å以下の細孔容積が0.05ml/g以下であり、更に、全酸量が0.02~0.065mmol/gの範囲にある流動接触分解触媒用添加剤が開示されている。
 特許文献3には、複合金属酸化物と粘土とシリカからなり、30~80m/gの比表面積及び0.14~0.45ml/gの全細孔容積を有するとともに、細孔直径60~200Åの細孔容積が全細孔容積の45%以上の範囲にある流動接触分解触媒用添加剤が開示されている。
 特許文献4には、複合金属酸化物、粘土及びシリカからなり、比表面積が30~80m/gであり、全酸量が0.02~0.08mmol/gであり、かつ該全酸量に対する強酸量の割合が10~50%である重質油分解用添加触媒が開示されている。
 特許文献1~4の添加剤は、シリカ-アルミナ中のシリカ含有量が10~30重量%、混合物中のシリカ含有量が10~60重量%、比表面積が30~80m/g、全酸量が0.02~0.08mmol/gからなるものが開示されている。
For example, Patent Document 1 includes a granular mixture of silica-alumina, clay and silica, the silica content in the silica-alumina is 10 to 30% by weight, and the silicon content in the mixture is SiO 2. An additive for fluid catalytic cracking catalyst, which is 10 to 60% by weight in terms of conversion, is disclosed.
Further, Patent Document 2 includes particles composed of silica-alumina, clay and silica, the total silicon content of which is 10 to 60% by weight in terms of SiO 2 , a specific surface area of 30 to 80 m 2 / g, and 0 The total pore volume is from 14 to 0.45 ml / g, the pore volume having a pore radius of 60 mm or less is 0.05 ml / g or less, and the total acid amount is from 0.02 to 0.065 mmol / g. Additives for fluid catalytic cracking catalysts in the g range are disclosed.
Patent Document 3 includes a composite metal oxide, clay, and silica, has a specific surface area of 30 to 80 m 2 / g, a total pore volume of 0.14 to 0.45 ml / g, and a pore diameter of 60 to An additive for fluid catalytic cracking catalyst having a pore volume of 200 liters in the range of 45% or more of the total pore volume is disclosed.
Patent Document 4 includes a composite metal oxide, clay and silica, a specific surface area of 30 to 80 m 2 / g, a total acid amount of 0.02 to 0.08 mmol / g, and the total acid amount. An additive catalyst for cracking heavy oil in which the ratio of the amount of strong acid to 10 to 50% is disclosed.
The additives of Patent Documents 1 to 4 have a silica content in silica-alumina of 10 to 30% by weight, a silica content in the mixture of 10 to 60% by weight, a specific surface area of 30 to 80 m 2 / g, total acid An amount of 0.02-0.08 mmol / g is disclosed.
特許第3479783号明細書Japanese Patent No. 3479783 特許第3467608号明細書Japanese Patent No. 3467608 特許第3643843号明細書Japanese Patent No. 3643843 特許第3920966号明細書Japanese Patent No. 3920966
 しかしながら、従来の添加剤は、重質油留分の分解にある程度の効果はあるが、重質油留分の分解効率を更に高めていく必要があった。ここで、これらの添加剤を用いて重質油留分を流動接触分解した場合、重質油留分の分解が進むと同時にコーク収率が増加し、そしてコーク収率が増加することにより、FCC装置における触媒再生塔内温度の上昇を引き起こし、コーク燃焼における温度上昇及び水蒸気発生に伴って、FCC触媒の品質劣化を招くことになった。
 本発明はかかる事情に鑑みてなされたもので、重質油留分の分解効率を上げ、なおかつコーク収率の増加を抑制することができる流動接触分解触媒用添加剤を提供することを目的とする。
However, the conventional additive has a certain effect on the decomposition of the heavy oil fraction, but it is necessary to further increase the decomposition efficiency of the heavy oil fraction. Here, when the heavy oil fraction is subjected to fluid catalytic cracking using these additives, the coke yield increases at the same time as the cracking of the heavy oil fraction proceeds, and the coke yield increases, As a result, the temperature in the catalyst regeneration tower in the FCC apparatus was raised, and the quality of the FCC catalyst was degraded due to the temperature rise and steam generation in coke combustion.
The present invention has been made in view of such circumstances, and an object thereof is to provide an additive for a fluid catalytic cracking catalyst capable of increasing the cracking efficiency of a heavy oil fraction and suppressing an increase in coke yield. To do.
 前記目的に沿う本発明に係る流動接触分解触媒用添加剤は、バインダー及びアルミナ-シリカを含む混合スラリーを噴霧乾燥することで得られる流動接触分解触媒用添加剤であって、比表面積が100~400m/gであり、かつ、全固体酸量が0.10mmol/g以上、0.50mmol/g未満である。
 本発明に係る流動接触分解触媒用添加剤において、前記全固体酸量に対する強酸量の割合が20%以下であるのが好ましい。
 本発明に係る流動接触分解触媒用添加剤において、前記混合スラリーは多孔性シリカ又はゼオライトを含むのが好ましい。
 本発明に係る流動接触分解触媒用添加剤において、前記混合スラリー中のアルミナ-シリカの割合が20質量%以上、80質量%未満であるのが好ましい。
 本発明に係る流動接触分解触媒用添加剤において、前記アルミナ-シリカ中のシリカの含有量が0質量%を超えて10質量%未満であるのが好ましい。
 本発明に係る流動接触分解触媒用添加剤において、前記バインダーがシリカ化合物又はアルミニウム化合物であるのが好ましい。
The additive for fluid catalytic cracking catalyst according to the present invention that meets the above object is an additive for fluid catalytic cracking catalyst obtained by spray drying a mixed slurry containing a binder and alumina-silica, and has a specific surface area of 100 to 400 m 2 / g and the total solid acid amount is 0.10 mmol / g or more and less than 0.50 mmol / g.
In the additive for fluid catalytic cracking catalyst according to the present invention, the ratio of the strong acid amount to the total solid acid amount is preferably 20% or less.
In the additive for fluid catalytic cracking catalyst according to the present invention, the mixed slurry preferably contains porous silica or zeolite.
In the additive for fluid catalytic cracking catalyst according to the present invention, it is preferable that the proportion of alumina-silica in the mixed slurry is 20 mass% or more and less than 80 mass%.
In the additive for fluid catalytic cracking catalyst according to the present invention, the content of silica in the alumina-silica is preferably more than 0% by mass and less than 10% by mass.
In the additive for fluid catalytic cracking catalyst according to the present invention, the binder is preferably a silica compound or an aluminum compound.
 本発明の添加剤は、比表面積が100~400m/gであり、かつ、全固体酸量が0.10~0.50mmol/gであるので、従来の添加剤と比較して、活性が増大し、重質留分(HCO:Heavy Cycle Oil)の収率が減少し、ガソリンの収率が増大し、コークの収率が同等となる。これは、添加剤の比表面積及び全固体酸量が従来よりも高くなったことで、原料油と添加剤との接触面積及び活性点が増加し、その結果、FCC触媒の活性が増大すると共に、HCOの収率が低下したためであると解される。また、全固体酸中の強酸の割合を20%以下と小さくすることで、過分解反応が抑えられ、ガソリン及びFCC分解軽油(LCO:Light Cycle Oil)の収率が増大し、更にコーク収率の増大が抑制されたと考えられる。 Since the additive of the present invention has a specific surface area of 100 to 400 m 2 / g and a total solid acid amount of 0.10 to 0.50 mmol / g, the activity is higher than that of conventional additives. Increase, decrease the yield of heavy fraction oil (HCO), increase the yield of gasoline, and the equivalent of coke. This is because the specific surface area of the additive and the total solid acid amount are higher than before, so that the contact area and the active point between the feedstock and the additive are increased, and as a result, the activity of the FCC catalyst is increased. It is understood that this is because the yield of HCO decreased. In addition, by reducing the ratio of strong acid in the total solid acid to 20% or less, the over cracking reaction is suppressed, the yield of gasoline and FCC cracked light oil (LCO) is increased, and the coke yield is further increased. It is thought that the increase in the number was suppressed.
 本発明の一実施の形態に係る流動接触分解触媒用添加剤について説明する。
 本発明の流動接触分解触媒用添加剤(以下、単に「添加剤」ともいう)は、流動接触分解装置(FCC装置)において、特に、原料油中の重質油留分(ボトム)を分解して軽質留分を得るために、ゼオライトを含む無機酸化物多孔体から構成される流動接触分解触媒に添加して使用されるものである。
 本発明の添加剤は、バインダー及びアルミナ-シリカを含む混合スラリーを、周知の条件で噴霧乾燥することで得られ、BET法(JIS Z8830)により測定される比表面積が100~400m/g、好ましくは150~380m/g、より好ましくは200~350m/gであり、かつ、アンモニア吸着熱測定法(特許第3784852号参照。実際には実施例1に記載した方法で測定した)により測定される全固体酸量(吸着熱が70kJ/mol以上のアンモニア吸着量)が0.10mmol/g以上、0.50mmol/g未満であり、好ましくは0.20~0.45mmol/g、より好ましくは0.25~0.40mmol/gである。
 ここで、添加剤の比表面積が100m/g未満では、添加剤と原料油の反応場が少なくなるので、重油留分(HCO)の分解効率が低下し、400m/gを超えると添加剤の嵩密度及び強度が悪化する。また、添加剤の固体酸量が0.10mmol/g未満の場合には、重油留分の分解効率が低下し、0.50mmol/g以上の場合には、重油留分が過分解されコーク収率が増加する。
 使用されるバインダーとしては、シリカ化合物又はアルミニウム化合物が使用できる。ここで、シリカ化合物としては、例えば、水ガラス、珪酸液等が使用でき、アルミニウム化合物としては、例えば、塩基性塩化アルミニウム、ベーマイトアルミナ解膠ゾル等が使用できる。
 アルミナ-シリカとしては、擬ベーマイトゲル又はベーマイトゲルに、シリカ化合物を混合又は混合熟成したものが使用できる。
 アルミナ-シリカ中のシリカの含有量は、0質量%を超え10質量%未満、好ましくは1~9質量%である。ここで、アルミナ-シリカ中のシリカの含有量が10質量%以上であると、比表面積及び酸量が低下する。
 混合スラリーには、粘土鉱物、多孔性シリカ、ゼオライトを含んでもよい。粘土鉱物としては、カオリン、モンモリロナイト、ドロマイト、カルサイト等があり、多孔性シリカとしては、湿式シリカ、乾式シリカ等があり、ゼオライトとしては、超安定化Y型ゼオライト(USY)、H-Y、NH-Y、RE-Y、RE-USY、ZSM-5、モルデナイト等がある。多孔性シリカ又はゼオライトの添加により、添加剤の比表面積を調整する(大きくする)ことができると共に、活性の向上に寄与する。
 混合スラリー中のアルミナ-シリカの割合は、好ましくは20質量%以上、80質量%未満、より好ましくは40~70質量%である。なお、アルミナ-シリカの割合により、添加剤の比表面積及び固体酸量を制御することができる。ここで、混合スラリー中のアルミナ-シリカの割合が20質量%未満では、重質油留分を分解するための活性成分が不足するため、重質油留分を効果的に分解するのが困難となり、80質量%以上では、添加剤の強度及び嵩密度が低下し、流動接触分解触媒用添加剤として使用した場合に流動性の悪化又は粉化が生じるため、流動接触分解装置の運転が困難となる虞がある。また、混合スラリー中のバインダーの濃度は、10~15質量%程度であり、混合スラリー中の固形分濃度は15~30質量%程度である。
 添加剤の全固体酸量に対する強酸量(アンモニア吸着熱測定法における吸着熱が110kJ/mol以上のアンモニア吸着量)の割合が20%以下、好ましくは10%以下、より好ましくは5%以下である。ここで、前記強酸量が20%を超える場合には、過分解反応が起こり、コーク収率が増加する傾向にある。
An additive for fluid catalytic cracking catalyst according to an embodiment of the present invention will be described.
The additive for fluid catalytic cracking catalyst of the present invention (hereinafter also simply referred to as “additive”) decomposes a heavy oil fraction (bottom) in a feed oil particularly in a fluid catalytic cracking device (FCC device). In order to obtain a light fraction, it is used by adding to a fluid catalytic cracking catalyst composed of a porous inorganic oxide containing zeolite.
The additive of the present invention is obtained by spray-drying a mixed slurry containing a binder and alumina-silica under known conditions, and has a specific surface area measured by the BET method (JIS Z8830) of 100 to 400 m 2 / g, Preferably, it is 150 to 380 m 2 / g, more preferably 200 to 350 m 2 / g, and by the ammonia adsorption heat measurement method (refer to Japanese Patent No. 3784852. Actually measured by the method described in Example 1) The total solid acid amount to be measured (ammonia adsorption amount with an adsorption heat of 70 kJ / mol or more) is 0.10 mmol / g or more and less than 0.50 mmol / g, preferably 0.20 to 0.45 mmol / g, more Preferably, it is 0.25 to 0.40 mmol / g.
Here, when the specific surface area of the additive is less than 100 m 2 / g, the reaction field between the additive and the raw material oil decreases, so the decomposition efficiency of the heavy oil fraction (HCO) decreases, and when the additive exceeds 400 m 2 / g The bulk density and strength of the agent deteriorate. When the solid acid content of the additive is less than 0.10 mmol / g, the decomposition efficiency of the heavy oil fraction is reduced. When the amount is 0.50 mmol / g or more, the heavy oil fraction is excessively decomposed and coke is collected. The rate increases.
As a binder to be used, a silica compound or an aluminum compound can be used. Here, as the silica compound, for example, water glass, silicic acid solution or the like can be used, and as the aluminum compound, for example, basic aluminum chloride, boehmite alumina peptizing sol or the like can be used.
As the alumina-silica, pseudoboehmite gel or boehmite gel mixed with a silica compound or mixed and aged can be used.
The content of silica in the alumina-silica is more than 0% by mass and less than 10% by mass, preferably 1-9% by mass. Here, when the content of silica in the alumina-silica is 10% by mass or more, the specific surface area and the acid amount decrease.
The mixed slurry may contain clay mineral, porous silica, and zeolite. Examples of clay minerals include kaolin, montmorillonite, dolomite, and calcite. Examples of porous silica include wet silica and dry silica. Examples of zeolite include ultra-stabilized Y zeolite (USY), HY, NH 4 -Y, RE-Y, RE-USY, ZSM-5, mordenite and the like. The addition of porous silica or zeolite can adjust (increase) the specific surface area of the additive and contribute to the improvement of activity.
The proportion of alumina-silica in the mixed slurry is preferably 20% by mass or more and less than 80% by mass, more preferably 40 to 70% by mass. The specific surface area of the additive and the solid acid amount can be controlled by the ratio of alumina-silica. Here, when the proportion of alumina-silica in the mixed slurry is less than 20% by mass, the active component for decomposing the heavy oil fraction is insufficient, and it is difficult to effectively decompose the heavy oil fraction. When the amount is 80% by mass or more, the strength and bulk density of the additive are lowered, and when used as an additive for a fluid catalytic cracking catalyst, fluidity is deteriorated or pulverized, so that the fluid catalytic cracking apparatus is difficult to operate. There is a risk of becoming. Further, the concentration of the binder in the mixed slurry is about 10 to 15% by mass, and the solid content concentration in the mixed slurry is about 15 to 30% by mass.
The ratio of the amount of strong acid to the total solid acid amount of the additive (ammonia adsorption amount with an adsorption heat of 110 kJ / mol or more in the ammonia adsorption heat measurement method) is 20% or less, preferably 10% or less, more preferably 5% or less. . Here, when the amount of the strong acid exceeds 20%, a hyperdecomposition reaction occurs and the coke yield tends to increase.
 以下に実施例、比較例を挙げて本発明を説明するが、本発明はこれによって何らの限定を受けるものではない。 Hereinafter, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to these examples.
《試験例1:固体酸量の影響》
[実施例1:添加剤1]
 シリカ(SiO)として17.5質量%の水ガラスを25質量%の硫酸水溶液でpH1.6に調整して作製したシリカゾルa300g(シリカとして10質量%含有する。すなわち、シリカとして30g含有する)を、アルミナ(Al)として13.0質量%含有するベーマイトスラリー7690g(アルミナとして、1000g含有する)に添加した後、48質量%の水酸化ナトリウム水溶液でpH10.5となるように調整し、更に95℃で1時間熟成して、シリカを3質量%含有したアルミナ-シリカスラリーAを得た。このアルミナ-シリカスラリーAは、アルミナ及びシリカの合計の濃度として14質量%であった。
 また、シリカ濃度が17.5質量%である水ガラス(以下、17.5質量%の水ガラスともいう)を硫酸でpH1.6に調整して、シリカ濃度が12.5質量%のシリカゾルb(シリカ化合物からなるバインダーの一例)を得た。
 アルミナ-シリカスラリーA1430g(アルミナ-シリカとして、200g含有する)を硫酸でpH4.0に調整した後、これにシリカゾルb1600g(シリカとして、200g含有する。以下同様)を添加し、次いでカオリン600g(乾燥質量。以下同様)を添加して均一に混合した後、入口温度460℃、出口温度260℃、及び、滞留時間20分間の条件で噴霧乾燥(以下の実施例についても同様である)し、続いて洗浄(触媒乾燥基準で20質量%の硫酸アンモニウムを添加してアルカリ除去後、15%アンモニア水で硫酸を除去した。以下の実施例についても同様である)を行い脱塩することにより、平均粒径60μmの添加剤1を得た。添加剤1の組成を表1に示す。更に、添加剤1の比表面積をBET法により測定し、嵩密度をUOP法254-65により測定した(以下の実施例についても同様である)。表1に添加剤1の性状を示す。
<< Test Example 1: Effect of solid acid amount >>
[Example 1: Additive 1]
300 g of silica sol a containing 17.5% by weight of water glass as silica (SiO 2 ) adjusted to pH 1.6 with 25% by weight sulfuric acid aqueous solution (containing 10% by weight as silica, ie containing 30 g as silica) Was added to 7690 g of boehmite slurry (containing 1000 g as alumina) containing 13.0% by mass as alumina (Al 2 O 3 ), and then adjusted to pH 10.5 with a 48% by mass sodium hydroxide aqueous solution. The mixture was further aged at 95 ° C. for 1 hour to obtain an alumina-silica slurry A containing 3% by mass of silica. This alumina-silica slurry A was 14% by mass as the total concentration of alumina and silica.
Further, a water glass having a silica concentration of 17.5% by mass (hereinafter also referred to as 17.5% by mass water glass) was adjusted to pH 1.6 with sulfuric acid, and a silica sol b having a silica concentration of 12.5% by mass was obtained. (An example of a binder made of a silica compound) was obtained.
1430 g of alumina-silica slurry A (containing 200 g as alumina-silica) was adjusted to pH 4.0 with sulfuric acid, and 1600 g of silica sol b (containing 200 g as silica. The same applies hereinafter) was added thereto, and then 600 g of kaolin (dried) Mass, the same applies hereinafter) and uniformly mixed, followed by spray drying under the conditions of an inlet temperature of 460 ° C., an outlet temperature of 260 ° C. and a residence time of 20 minutes (the same applies to the following examples), and then By washing (adding 20% by mass of ammonium sulfate on the basis of catalyst drying and removing the alkali, the sulfuric acid was removed with 15% aqueous ammonia. The same applies to the following examples) and desalting to obtain an average particle size. Additive 1 having a diameter of 60 μm was obtained. The composition of additive 1 is shown in Table 1. Furthermore, the specific surface area of Additive 1 was measured by the BET method, and the bulk density was measured by the UOP method 254-65 (the same applies to the following examples). Table 1 shows the properties of Additive 1.
(固体酸量の測定方法)
 得られた添加剤1について以下のように固体酸量の測定を行った。まず、0.2gの添加剤1を500℃で1時間焼成し、次いで減圧下(1×10-4torr)400℃で4時間熱処理した後、アンモニアガスを吸着させ、その時に発生する吸着熱を検出し、全固体酸量を算出した。測定には、東京理工社製「カロリーメーター」を使用し、吸着熱が70kJ/mol以上のアンモニア吸着量を全固体酸量とし、110kJ/mol以上を強酸量とした(以下の実施例においても同様に測定した)。表1に添加剤1の固体酸量の測定結果を示す。
(Measurement method of solid acid content)
About the obtained additive 1, the solid acid amount was measured as follows. First, 0.2 g of additive 1 was calcined at 500 ° C. for 1 hour, then heat-treated at 400 ° C. under reduced pressure (1 × 10 −4 torr) for 4 hours, then adsorbed ammonia gas, and the heat of adsorption generated at that time Was detected, and the total amount of solid acid was calculated. For the measurement, a “calorimeter” manufactured by Tokyo Riko Co., Ltd. was used. The ammonia adsorption amount with an adsorption heat of 70 kJ / mol or more was defined as the total solid acid amount, and 110 kJ / mol or more was defined as the strong acid amount (also in the following examples) Measured in the same manner). Table 1 shows the measurement results of the solid acid amount of Additive 1.
[実施例2:添加剤2]
 アルミナ-シリカスラリーA2860g(アルミナ-シリカとして、400g含有する)を硫酸でpH4.0に調整し、シリカゾルb1600g(シリカとして200g含有する)を添加し、次いでカオリン400gを添加し、均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤2を得た。表1に添加剤2の組成及び性状を示す。
[実施例3:添加剤3]
 アルミナ-シリカスラリーA5000g(アルミナ-シリカとして、700g含有する)を硫酸でpH4.0に調整し、シリカゾルb1600g(シリカとして200g含有する)を添加し、次いでカオリン100gを添加し、均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤3を得た。表1に添加剤3の組成及び性状を示す。
[比較例1:添加剤4]
 アルミナ-シリカスラリーA1070g(アルミナ-シリカとして、150g含有する)を硫酸でpH4.0に調整し、シリカゾルb1600g(シリカとして200g含有する)を添加し、次いでカオリン650gを添加し、均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤4を得た。表1に添加剤4の組成及び性状を示す。
[比較例2:添加剤5]
 アルミナ-シリカスラリーA5710g(アルミナ-シリカとして、800g含有する)を硫酸でpH4.0に調整し、前記シリカゾルb1600g(シリカとして200g含有する)を添加し、均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤5を得た。表1に添加剤5の組成及び性状を示す。
[Example 2: Additive 2]
After 2860 g of alumina-silica slurry A (containing 400 g as alumina-silica) was adjusted to pH 4.0 with sulfuric acid, 1600 g of silica sol b (containing 200 g as silica) was added, and then 400 g of kaolin was added and mixed uniformly. Additive 2 having an average particle size of 60 μm was obtained by spray drying, followed by washing and desalting. Table 1 shows the composition and properties of additive 2.
[Example 3: Additive 3]
After 5000 g of alumina-silica slurry A (containing 700 g as alumina-silica) was adjusted to pH 4.0 with sulfuric acid, 1600 g of silica sol b (containing 200 g as silica) was added, and then 100 g of kaolin was added and mixed uniformly. Additive 3 having an average particle size of 60 μm was obtained by spray drying, followed by washing and desalting. Table 1 shows the composition and properties of additive 3.
[Comparative Example 1: Additive 4]
After 1070 g of alumina-silica slurry A (containing 150 g as alumina-silica) was adjusted to pH 4.0 with sulfuric acid, 1600 g of silica sol b (containing 200 g as silica) was added, and then 650 g of kaolin was added and mixed uniformly. The additive 4 having an average particle size of 60 μm was obtained by spray drying, followed by washing and desalting. Table 1 shows the composition and properties of additive 4.
[Comparative Example 2: Additive 5]
Alumina-silica slurry A 5710 g (containing 800 g as alumina-silica) was adjusted to pH 4.0 with sulfuric acid, 1600 g of silica sol b (containing 200 g as silica) was added, mixed uniformly, spray-dried, and subsequently The additive 5 having an average particle diameter of 60 μm was obtained by washing and desalting. Table 1 shows the composition and properties of additive 5.
[活性評価]
 添加剤1~5を用いて、添加剤の固体酸量による活性の影響について評価した。
 添加剤の活性評価は、ARCO社製パイロット反応装置を用いて行った。この装置は触媒が装置内を循環しながら反応と触媒再生を交互に繰返す循環式流動床であり、商業規模で使用されるFCCユニットを模したものである。FCC平衡触媒と添加剤1~5とをそれぞれ質量比が90:10(1.8kg:0.2kg)となるように混合し、原料油として脱硫常圧残油(DSAR)を用い、反応塔の温度を520℃に、再生塔の温度を670℃に設定し、装置中で原料油1gに対して触媒が5g又は7gとなるように調整して、接触分解反応を行い、反応後の生成物及び残留物(生成液)を分析した。ここで、反応塔にて生成したガスを株式会社島津製作所製ガスクロマトグラフィー〔Micro GC 3000A〕で分析し、水素及びC1~C4までの収率を測定すると共に、再生塔にて生成したCO及びCOを島津製作所製赤外線吸収式ガス分析装置〔CGT-7000〕で分析してコーク収率を計算した。更に、生成液をHewlett Packard社製蒸留ガスクロマトグラフィー〔GC System HP6890〕により分析し、ガソリン留分、軽油留分(LCO)、重油留分(HCO)の生成量を測定した。添加剤1~5は、反応前に100%スチーム条件下において、810℃で12時間それぞれ処理した。表1にそれぞれの評価結果を示す。なお、評価結果において、転化率は、添加剤を入れていない場合の測定結果を基準とし、その差を表記した。また、ガソリン、LCO、HCO、及び、コークの評価結果については、前記転化率を一定とした時のそれぞれの生成量を、添加剤を入れていない場合の生成量を基準として、その差を表記した。以下の実施例についても同様に評価を行った。
 表1より、固体酸量が0.1~0.4mmol/gでは、固体酸量が増えるに従って、重質油留分の分解効率が向上し、HCO留分が減少し、良好な結果が得られたが、固体酸量が0.08mmol/gでは、重質油留分の分解効率が低いため、HCO留分が多くなり、また、固体酸量が0.5mmol/gでは、重質油留分の分解効率が向上してHCO留分は減少したが、コークの生成量が増加した。
[Activity evaluation]
Additives 1 to 5 were used to evaluate the influence of activity due to the amount of solid acid of the additive.
The activity evaluation of the additive was performed using an ARCO pilot reactor. This apparatus is a circulating fluidized bed in which the catalyst circulates in the apparatus and alternately repeats the reaction and the catalyst regeneration, and imitates an FCC unit used on a commercial scale. The FCC equilibrium catalyst and the additives 1 to 5 are mixed at a mass ratio of 90:10 (1.8 kg: 0.2 kg), respectively, and desulfurized atmospheric residual oil (DSAR) is used as a raw material oil. Is set to 520 ° C., the temperature of the regeneration tower is set to 670 ° C., the catalyst is adjusted to 5 g or 7 g with respect to 1 g of the raw oil in the apparatus, the catalytic cracking reaction is performed, and the product after the reaction The product and residue (product solution) were analyzed. Here, the gas generated in the reaction tower is analyzed by gas chromatography manufactured by Shimadzu Corporation (Micro GC 3000A), and the yields of hydrogen and C1 to C4 are measured. Coke yield was calculated by analyzing CO 2 with an infrared absorption gas analyzer [CGT-7000] manufactured by Shimadzu Corporation. Furthermore, the product liquid was analyzed by distillation gas chromatography (GC System HP6890) manufactured by Hewlett Packard, and the production amounts of gasoline fraction, light oil fraction (LCO) and heavy oil fraction (HCO) were measured. Additives 1-5 were each treated at 810 ° C. for 12 hours under 100% steam conditions before the reaction. Table 1 shows the evaluation results. In the evaluation results, the conversion rate was expressed as a difference based on the measurement result when no additive was added. Regarding the evaluation results of gasoline, LCO, HCO, and coke, the difference between the respective production amounts when the conversion rate is constant is shown on the basis of the production amount when no additive is added. did. The following examples were similarly evaluated.
From Table 1, when the amount of solid acid is 0.1 to 0.4 mmol / g, as the amount of solid acid increases, the decomposition efficiency of heavy oil fraction improves, the HCO fraction decreases, and good results are obtained. However, when the solid acid amount is 0.08 mmol / g, the decomposition efficiency of the heavy oil fraction is low, so the HCO fraction is increased. When the solid acid amount is 0.5 mmol / g, the heavy oil fraction is heavy. Although the decomposition efficiency of the fraction was improved and the HCO fraction was reduced, the amount of coke produced was increased.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
《試験例2:比表面積の影響》
[実施例4:添加剤6]
 アルミナ-シリカスラリーA2860g(アルミナ-シリカとして400g含有する)を硫酸でpH4.0に調整し、シリカゾルb1600g(シリカとして200g含有する)を添加し、次いでカオリン100g、超安定化Y型ゼオライト300g(乾燥質量。以下同様)を添加し、均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤6を得た。表2に添加剤6の組成及び性状を示す。
[比較例3:添加剤7]
 アルミナ-シリカスラリーA1430g(アルミナ-シリカとして200g含有する)を硫酸でpH4.0に調整し、シリカゾルb1600g(シリカとして200g含有する)を添加し、次いでカオリン100g、超安定化Y型ゼオライト500gを添加し、均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤7を得た。表2に添加剤7の組成及び性状を示す。
[活性評価]
 添加剤1、添加剤3、添加剤4、添加剤6、添加剤7を用いて、比表面積による活性の影響について評価した。表2にそれぞれの評価結果を示す。なお、添加剤7については、嵩密度が低く実装置での使用が困難であるため、活性評価は行わなかった。
 表2より、比表面積が100~350m/gで重質油留分との反応場が増えることによりHCO収率が低下して良好な結果が得られたが、比表面積が85m/gでは、反応場が少ないためHCO収率が多くなり、410m/gでは、反応場が多く重質油留分を効率的に分解されると考えられるが、嵩密度が低いため実用的ではなかった。
<< Test Example 2: Influence of specific surface area >>
[Example 4: Additive 6]
2860 g of alumina-silica slurry A (containing 400 g as alumina-silica) was adjusted to pH 4.0 with sulfuric acid, 1600 g of silica sol b (containing 200 g as silica) was added, and then 100 g of kaolin and 300 g of ultra-stabilized Y-type zeolite (dried) Mass, the same applies hereinafter), and uniformly mixed, then spray-dried, followed by washing and desalting to obtain additive 6 having an average particle size of 60 μm. Table 2 shows the composition and properties of additive 6.
[Comparative Example 3: Additive 7]
Alumina-silica slurry A 1430 g (containing 200 g as alumina-silica) was adjusted to pH 4.0 with sulfuric acid, 1600 g of silica sol b (containing 200 g as silica) was added, and then 100 g of kaolin and 500 g of ultra-stabilized Y-type zeolite were added. Then, after uniformly mixing, spray drying, followed by washing and desalting, an additive 7 having an average particle size of 60 μm was obtained. Table 2 shows the composition and properties of additive 7.
[Activity evaluation]
Using Additive 1, Additive 3, Additive 4, Additive 6, and Additive 7, the effect of activity due to specific surface area was evaluated. Table 2 shows each evaluation result. In addition, activity evaluation was not performed about the additive 7, since the bulk density is low and it is difficult to use it with an actual apparatus.
From Table 2, the specific surface area was 100 to 350 m 2 / g, and the reaction field with the heavy oil fraction was increased, so that the HCO yield was decreased and good results were obtained, but the specific surface area was 85 m 2 / g. In this case, the HCO yield increases due to the small number of reaction fields, and at 410 m 2 / g, it is considered that the heavy oil fraction is efficiently decomposed due to the large number of reaction fields, but this is not practical due to the low bulk density. It was.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
《試験例3:アルミナ-シリカ中のシリカ含有量の影響》
[実施例5:添加剤8]
 アルミナとして13.0質量%含有するベーマイトスラリー7690gに、シリカゾルa500g(すなわち、シリカとして、50g含有する)を添加した後、48質量%の水酸化ナトリウム水溶液でpH10.5となるように調整し、更に95℃で1時間熟成して、シリカを5質量%含有したアルミナ-シリカスラリーBを得た。このアルミナ-シリカスラリーBは、アルミナ及びシリカの合計の濃度として15質量%であった。
 アルミナ-シリカスラリーB4670g(アルミナ-シリカとして、700g含有する)を硫酸でpH4.0に調整し、シリカゾルb1600g(シリカとして200g含有する)を添加し、次いでカオリン100gを添加し、均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤8を得た。表3に添加剤8の組成及び性状を示す。
[比較例4:添加剤9]
 アルミナとして13.0質量%含有するベーマイトスラリー5385g(アルミナとして、700g含有する)を硫酸でpH4.0に調整し、シリカゾルb1600g(シリカとして200g含有する)を添加し、次いでカオリン100gを添加し、均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤9を得た。表3に添加剤9の組成及び性状をに示す。
[比較例5:添加剤10]
 アルミナとして13.0質量%含有するベーマイトスラリー7690gに、17.5%の水ガラスを硫酸でpH1.6に調整され、シリカゾルa1200g(すなわち、シリカとして、120g含有する)を添加した後、48質量%の水酸化ナトリウム水溶液でpH10.5となるように調整し、更に95℃で1時間熟成して、シリカを11質量%含有したアルミナ-シリカスラリーCを得た。このアルミナ-シリカスラリーCは、アルミナ及びシリカの合計の濃度として15質量%であった。
 アルミナ-シリカスラリーC4670g(アルミナ-シリカとして、700g含有する)を硫酸でpH4.0に調整し、シリカゾルb1600g(シリカとして200g含有する)を添加し、次いでカオリン100gを添加し、均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤10を得た。表3に添加剤10の組成及び性状を示す。
[活性評価]
 添加剤3、添加剤8、添加剤9、添加剤10を用いて、アルミナ-シリカ中のシリカ含有量による活性の影響について評価した。表3にそれぞれの評価結果を示す。
 表3より、アルミナ-シリカ中のシリカ含有量が増加することでHCO収率が減少し、良好な結果となったが、シリカ含有量が0質量%では、固体酸量が少ないためHCO収率の低下が小さく、シリカ含有量が11質量%では、コーク収率が増加した。
<< Test Example 3: Effect of silica content in alumina-silica >>
[Example 5: Additive 8]
After adding 500 g of silica sol a (ie, containing 50 g of silica) to 7690 g of boehmite slurry containing 13.0% by mass as alumina, the pH is adjusted to 10.5 with a 48% by mass sodium hydroxide aqueous solution, Further, aging was carried out at 95 ° C. for 1 hour to obtain an alumina-silica slurry B containing 5% by mass of silica. This alumina-silica slurry B was 15% by mass as the total concentration of alumina and silica.
After 4670 g of alumina-silica slurry B (containing 700 g as alumina-silica) was adjusted to pH 4.0 with sulfuric acid, 1600 g of silica sol b (containing 200 g as silica) was added, and then 100 g of kaolin was added and mixed uniformly. Additive 8 having an average particle size of 60 μm was obtained by spray drying, followed by washing and desalting. Table 3 shows the composition and properties of additive 8.
[Comparative Example 4: Additive 9]
Boehmite slurry containing 13.0% by mass as alumina (containing 700 g as alumina) was adjusted to pH 4.0 with sulfuric acid, 1600 g of silica sol b (containing 200 g as silica) was added, and then 100 g of kaolin was added, After uniform mixing, spray drying was performed, followed by washing and desalting to obtain Additive 9 having an average particle size of 60 μm. Table 3 shows the composition and properties of additive 9.
[Comparative Example 5: Additive 10]
After adding 17.5% water glass to 71.6 g of boehmite slurry containing 13.0% by mass as alumina and adjusting the pH to 1.6 with sulfuric acid, and adding 1200 g of silica sol a (that is, containing 120 g of silica), 48 mass The pH was adjusted to 10.5 with an aqueous sodium hydroxide solution and further aged at 95 ° C. for 1 hour to obtain an alumina-silica slurry C containing 11% by mass of silica. This alumina-silica slurry C was 15% by mass as the total concentration of alumina and silica.
After 4670 g of alumina-silica slurry C (containing 700 g as alumina-silica) was adjusted to pH 4.0 with sulfuric acid, 1600 g of silica sol b (containing 200 g as silica) was added, and then 100 g of kaolin was added and mixed uniformly. The additive 10 having an average particle size of 60 μm was obtained by spray drying, followed by washing and desalting. Table 3 shows the composition and properties of the additive 10.
[Activity evaluation]
Using additive 3, additive 8, additive 9, and additive 10, the influence of activity due to the silica content in the alumina-silica was evaluated. Table 3 shows each evaluation result.
From Table 3, the increase in the silica content in the alumina-silica resulted in a decrease in the HCO yield and good results. However, when the silica content was 0% by mass, the solid acid amount was small, so the HCO yield was low. When the silica content was 11% by mass, the coke yield increased.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
《試験例4:固体酸量の影響》
[実施例6:添加剤11]
 Al濃度が23.3質量%の塩基性塩化アルミニウム溶液b858g(アルミナ化合物からなるバインダーの一例。アルミナとして、200g含有する)に、カオリン500gを添加し、次いで硫酸でpH5.0に調整したアルミナ-シリカスラリーA2140g(アルミナ-シリカとして、300g含有する)を添加し均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤11を得た。表4に添加剤11の組成及び性状を示す。
[実施例7:添加剤12]
 塩基性塩化アルミニウム溶液b858g(アルミナとして200g含有する)に、カオリン300gを添加し、次いで硫酸でpH4.5に調整したアルミナ-シリカスラリーA3570g(アルミナ-シリカとして、500g含有する)を添加し均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤12を得た。表4に添加剤12の組成及び性状を示す。
[実施例8:添加剤13]
 塩基性塩化アルミニウム溶液b858g(アルミナとして200g含有する)に、カオリン100gを添加し、次いで硫酸でpH4.0に調整したアルミナ-シリカスラリーA5000g(アルミナ-シリカとして、700g含有する)を添加し均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤13を得た。表4に添加剤13の組成及び性状を示す。
[比較例6:添加剤14]
 塩基性塩化アルミニウム溶液b858g(アルミナとして200g含有する)に、カオリン600gを添加し、次いで硫酸でpH4.0に調整したアルミナ-シリカスラリーA1430g(アルミナ-シリカとして、200g含有する)を添加し均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤14を得た。表4に添加剤14の組成及び性状を示す。
[比較例7:添加剤15]
 塩基性塩化アルミニウム溶液b858g(アルミナとして200g含有する)に、硫酸でpH4.0に調整したアルミナ-シリカスラリーA5710g(アルミナ-シリカとして、800g含有する)を均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤15を得た。表4に添加剤15の組成及び性状を示す。
[活性評価]
 添加剤11~15を用いて、添加剤の固体酸量による活性の影響について評価した。表4にそれぞれの評価結果を示す。
 表4より、アルミナゾルバインダーの場合もシリカゾルバインダーと同様に、固体酸量が0.1~0.4mmol/gでは、固体酸量が増えるに従って、重質油留分の分解効率が向上し、HCO留分が減少し、良好な結果が得られたが、固体酸量が0.07mmol/gでは、重質油留分の分解効率が向上し、HCO留分が多くなり、固体酸量が0.5mmol/gでは、コークの生成量が増加した。
<< Test Example 4: Effect of solid acid amount >>
[Example 6: Additive 11]
500 g of kaolin is added to 858 g of a basic aluminum chloride solution b having an Al 2 O 3 concentration of 23.3 mass% (an example of a binder composed of an alumina compound, containing 200 g of alumina), and then adjusted to pH 5.0 with sulfuric acid. 2140 g of the alumina-silica slurry A (containing 300 g as alumina-silica) was added and mixed uniformly, followed by spray drying, followed by washing and desalting to obtain additive 11 having an average particle size of 60 μm. It was. Table 4 shows the composition and properties of the additive 11.
[Example 7: Additive 12]
To 858 g of basic aluminum chloride solution b (containing 200 g as alumina), add 300 g of kaolin, and then add 3570 g of alumina-silica slurry A (containing 500 g as alumina-silica) adjusted to pH 4.5 with sulfuric acid. After mixing, spray drying was performed, followed by washing and desalting to obtain Additive 12 having an average particle size of 60 μm. Table 4 shows the composition and properties of the additive 12.
[Example 8: Additive 13]
100 g of kaolin was added to 858 g of basic aluminum chloride solution b (containing 200 g as alumina), and then 5000 g of alumina-silica slurry A (containing 700 g as alumina-silica) adjusted to pH 4.0 with sulfuric acid was added uniformly. After mixing, spray drying was performed, followed by washing and desalting to obtain an additive 13 having an average particle size of 60 μm. Table 4 shows the composition and properties of the additive 13.
[Comparative Example 6: Additive 14]
To 858 g of basic aluminum chloride solution b (containing 200 g as alumina), 600 g of kaolin was added, and then 1430 g of alumina-silica slurry A (containing 200 g as alumina-silica) adjusted to pH 4.0 with sulfuric acid was added uniformly. After mixing, spray drying was performed, followed by washing and desalting to obtain an additive 14 having an average particle size of 60 μm. Table 4 shows the composition and properties of the additive 14.
[Comparative Example 7: Additive 15]
To 858 g of basic aluminum chloride solution b (containing 200 g as alumina), 5710 g of alumina-silica slurry A (containing 800 g as alumina-silica) adjusted to pH 4.0 with sulfuric acid was uniformly mixed, followed by spray drying. By washing and desalting, an additive 15 having an average particle size of 60 μm was obtained. Table 4 shows the composition and properties of the additive 15.
[Activity evaluation]
Additives 11 to 15 were used to evaluate the effect of activity on the amount of solid acid of the additive. Table 4 shows the evaluation results.
From Table 4, as in the case of the silica sol binder, in the case of the alumina sol binder, when the solid acid amount is 0.1 to 0.4 mmol / g, the decomposition efficiency of the heavy oil fraction improves as the solid acid amount increases, and the HCO The fraction was reduced and good results were obtained. When the solid acid amount was 0.07 mmol / g, the decomposition efficiency of the heavy oil fraction was improved, the HCO fraction was increased, and the solid acid amount was 0. At 0.5 mmol / g, the amount of coke produced increased.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
《試験例5:比表面積の影響》
[実施例9:添加剤16]
 塩基性塩化アルミニウム溶液b858g(アルミナとして200g含有する)に、カオリン100gを添加し、次いで硫酸でpH4.0に調整したアルミナ-シリカスラリーA2860g(アルミナ-シリカとして400g含有する)、超安定化Y型ゼオライト300gを添加して均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤16を得た。表5に添加剤16の組成及び性状を示す。
[比較例8:添加剤17]
 塩基性塩化アルミニウム溶液b858g(アルミナとして200g含有する)に、カオリン100gを添加し、次いで硫酸でpH4.0に調整したアルミナ-シリカスラリーA1430g(アルミナ-シリカとして200g含有する)、超安定化Y型ゼオライト500gを添加して均一に混合した後、噴霧乾燥し、続いて洗浄を行い脱塩することにより、平均粒径60μmの添加剤17を得た。表5に添加剤17の組成及び性状を示す。
[活性評価]
 添加剤11、添加剤13、添加剤14、添加剤16、添加剤17を用いて、比表面積による活性の影響について評価した。表5にそれぞれの評価結果を示す。なお、添加剤17については、嵩密度が低く実装置での使用が困難であるため、活性評価は行わなかった。
 表5より、比表面積が100~350m/gで重質油留分との反応場が増えることによりHCO収率が低下して良好な結果が得られたが、比表面積が90m/gでは、反応場が少ないためHCO収率が多くなり、410m/gでは、反応場が多く重質油留分を効率的に分解されると考えられるが、嵩密度が低いため実用的ではなかった。
<< Test Example 5: Influence of specific surface area >>
[Example 9: Additive 16]
100 g of kaolin was added to 858 g of basic aluminum chloride solution b (containing 200 g as alumina), then 2860 g of alumina-silica slurry A (containing 400 g as alumina-silica) adjusted to pH 4.0 with sulfuric acid, ultra-stabilized Y type After adding 300 g of zeolite and mixing uniformly, it was spray-dried, followed by washing and desalting to obtain additive 16 having an average particle size of 60 μm. Table 5 shows the composition and properties of the additive 16.
[Comparative Example 8: Additive 17]
100 g of kaolin was added to 858 g of basic aluminum chloride solution b (containing 200 g as alumina), and then 1430 g of alumina-silica slurry A (containing 200 g as alumina-silica) adjusted to pH 4.0 with sulfuric acid, ultra-stabilized Y-type After adding 500 g of zeolite and mixing uniformly, spray drying was performed, followed by washing and desalting to obtain Additive 17 having an average particle size of 60 μm. Table 5 shows the composition and properties of the additive 17.
[Activity evaluation]
Using additive 11, additive 13, additive 14, additive 16, and additive 17, the influence of activity due to specific surface area was evaluated. Table 5 shows each evaluation result. In addition, about the additive 17, since the bulk density was low and it was difficult to use it with an actual apparatus, activity evaluation was not performed.
From Table 5, the specific surface area was 100 to 350 m 2 / g, and the reaction field with the heavy oil fraction increased, so that the HCO yield was reduced and good results were obtained. However, the specific surface area was 90 m 2 / g. In this case, the HCO yield increases due to the small number of reaction fields, and at 410 m 2 / g, it is considered that the heavy oil fraction is efficiently decomposed due to the large number of reaction fields, but this is not practical due to the low bulk density. It was.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上のように、本発明の流動接触分解触媒用添加剤は、原料油中の重油留分を効果的に分解し、かつ、コーク収率を抑え、ガソリン及びLCOを高収率で得ることができた。該添加剤は、比表面積が高く、全固体酸中の強酸の割合が低いことが特徴である。一般に強酸の割合が高いと反応活性は高くなるが、過分解反応が進むためコーク収率が高くなるという問題点がある。そのため、該添加剤の全固体酸中に占める強酸の割合を抑制し、更に比表面積を高くすることで単位表面積当りの固体酸量が低下することにより原料油の過分解によるコーク収率の増加を抑制させることができるためであると解される。 As described above, the additive for fluid catalytic cracking catalyst of the present invention can effectively decompose the heavy oil fraction in the feedstock, suppress coke yield, and obtain gasoline and LCO in high yield. did it. The additive is characterized by a high specific surface area and a low proportion of strong acid in the total solid acid. In general, when the ratio of the strong acid is high, the reaction activity is high, but there is a problem that the coke yield is high because of the excessive decomposition reaction. Therefore, the ratio of strong acid in the total solid acid of the additive is suppressed, and the amount of solid acid per unit surface area is decreased by increasing the specific surface area. It is understood that it is because it can suppress.

Claims (6)

  1.  バインダー及びアルミナ-シリカを含む混合スラリーを噴霧乾燥することで得られる流動接触分解触媒用添加剤であって、
    比表面積が100~400m/gであり、かつ、全固体酸量が0.10mmol/g以上、0.50mmol/g未満であることを特徴とする流動接触分解触媒用添加剤。
    An additive for fluid catalytic cracking catalyst obtained by spray drying a mixed slurry containing a binder and alumina-silica,
    An additive for fluid catalytic cracking catalyst having a specific surface area of 100 to 400 m 2 / g and a total solid acid amount of 0.10 mmol / g or more and less than 0.50 mmol / g.
  2.  前記全固体酸量に対する強酸量の割合が20%以下であることを特徴とする請求項1記載の流動接触分解触媒用添加剤。 The additive for a fluid catalytic cracking catalyst according to claim 1, wherein the ratio of the strong acid amount to the total solid acid amount is 20% or less.
  3.  前記混合スラリーは、多孔性シリカ又はゼオライトを含むことを特徴とする請求項1に記載の流動接触分解触媒用添加剤。 The fluidized catalytic cracking catalyst additive according to claim 1, wherein the mixed slurry contains porous silica or zeolite.
  4.  前記混合スラリー中のアルミナ-シリカの割合が20質量%以上、80質量%未満であることを特徴とする請求項1に記載の流動接触分解触媒用添加剤。 The additive for fluid catalytic cracking catalyst according to claim 1, wherein the ratio of alumina-silica in the mixed slurry is 20% by mass or more and less than 80% by mass.
  5.  アルミナ-シリカ中のシリカの含有量が0質量%を超え10質量%未満であることを特徴とする請求項1に記載の流動接触分解触媒用添加剤。 The additive for fluid catalytic cracking catalyst according to claim 1, wherein the content of silica in the alumina-silica is more than 0% by mass and less than 10% by mass.
  6.  前記バインダーが、シリカ化合物又はアルミニウム化合物であることを特徴とする請求項1に記載の流動接触分解触媒用添加剤。 The additive for a fluid catalytic cracking catalyst according to claim 1, wherein the binder is a silica compound or an aluminum compound.
PCT/JP2010/007443 2009-12-25 2010-12-22 Additive for fluid catalytic cracking catalyst WO2011077721A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2010334125A AU2010334125B2 (en) 2009-12-25 2010-12-22 Additive for fluid catalytic cracking catalyst
KR1020127016362A KR101351097B1 (en) 2009-12-25 2010-12-22 Additive for fluid catalytic cracking catalyst
SG2012046355A SG181882A1 (en) 2009-12-25 2010-12-22 Additive for fluid catalytic cracking catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-295563 2009-12-25
JP2009295563 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011077721A1 true WO2011077721A1 (en) 2011-06-30

Family

ID=44195274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007443 WO2011077721A1 (en) 2009-12-25 2010-12-22 Additive for fluid catalytic cracking catalyst

Country Status (8)

Country Link
JP (1) JP5679178B2 (en)
KR (1) KR101351097B1 (en)
AU (1) AU2010334125B2 (en)
MY (1) MY159976A (en)
SA (1) SA110320053B1 (en)
SG (1) SG181882A1 (en)
TW (1) TWI502061B (en)
WO (1) WO2011077721A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147933A (en) * 2009-12-25 2011-08-04 Jgc Catalysts & Chemicals Ltd Additive for fluid catalytic cracking catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183609A (en) * 1995-12-27 1997-07-15 Tonen Corp Silica-alumina conjugated oxide
JPH11561A (en) * 1997-06-13 1999-01-06 Tonen Corp Additive catalyst for catalytic cracking of heavy oil
JP2003230837A (en) * 1998-06-24 2003-08-19 Cosmo Oil Co Ltd Catalyst for hydrogenation treatment of light oil and method for hydrogenation treatment of light oil
JP2008207076A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Fluid catalytic cracking catalyst, its producing method and method for producing low-sulfur catalytically cracked gasoline

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3479783B2 (en) * 1993-12-29 2003-12-15 東燃ゼネラル石油株式会社 Additive for fluid catalytic cracking catalyst of heavy oil
JPH0827039A (en) * 1994-07-20 1996-01-30 Japan Energy Corp Production of aromatic hydrocarbon and its catalyst
JP3467608B2 (en) * 1994-08-31 2003-11-17 東燃ゼネラル石油株式会社 Additive for fluid catalytic cracking catalyst of heavy oil
JP3709893B2 (en) * 1994-08-31 2005-10-26 東燃ゼネラル石油株式会社 Catalyst composition for fluid catalytic cracking of heavy oil
JP3643843B2 (en) * 1995-10-17 2005-04-27 東燃ゼネラル石油株式会社 Additive for fluid catalytic cracking catalyst of heavy oil
JPH09108577A (en) * 1995-10-17 1997-04-28 Tonen Corp Catalyst composition for fluid catalyst cracking of heavy oil
JPH09285728A (en) * 1996-04-23 1997-11-04 Tonen Corp Additive for heavy oil cracking and catalyst for fluid catalytic cracking of heavy oil
JP3920966B2 (en) * 1997-06-06 2007-05-30 東燃ゼネラル石油株式会社 Additive catalyst for heavy oil cracking
JP3476658B2 (en) * 1997-07-30 2003-12-10 触媒化成工業株式会社 Catalyst composition for fluid catalytic cracking of hydrocarbons
JPH11300208A (en) * 1998-04-21 1999-11-02 Idemitsu Kosan Co Ltd Catalytically cracking catalyst
TWI502061B (en) * 2009-12-25 2015-10-01 Jgc Catalysts & Chemicals Ltd Additive for fluid catalytic cracking catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183609A (en) * 1995-12-27 1997-07-15 Tonen Corp Silica-alumina conjugated oxide
JPH11561A (en) * 1997-06-13 1999-01-06 Tonen Corp Additive catalyst for catalytic cracking of heavy oil
JP2003230837A (en) * 1998-06-24 2003-08-19 Cosmo Oil Co Ltd Catalyst for hydrogenation treatment of light oil and method for hydrogenation treatment of light oil
JP2008207076A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Fluid catalytic cracking catalyst, its producing method and method for producing low-sulfur catalytically cracked gasoline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147933A (en) * 2009-12-25 2011-08-04 Jgc Catalysts & Chemicals Ltd Additive for fluid catalytic cracking catalyst

Also Published As

Publication number Publication date
JP5679178B2 (en) 2015-03-04
AU2010334125B2 (en) 2013-10-03
TW201130962A (en) 2011-09-16
AU2010334125A1 (en) 2012-06-14
KR20120085335A (en) 2012-07-31
MY159976A (en) 2017-02-15
SA110320053B1 (en) 2014-05-08
SG181882A1 (en) 2012-08-30
KR101351097B1 (en) 2014-01-14
JP2011147933A (en) 2011-08-04
TWI502061B (en) 2015-10-01

Similar Documents

Publication Publication Date Title
KR102574535B1 (en) Systems and methods for cracking hydrocarbon streams such as crude oil using catalysts comprising zeolite mixtures
KR101318000B1 (en) Gasoline sulfur reduction catalyst for fluid catalytic cracking process
JPH11300208A (en) Catalytically cracking catalyst
US9415380B2 (en) Method for manufacturing catalytic cracking catalyst for hydrocarbon oil
JP6074559B2 (en) Catalyst for enhancing propylene in fluid catalytic cracking.
RU2672919C2 (en) Zsm-5 additive activity enhancement by improved zeolite and phosphorus interaction
JP2022527909A (en) Catalytic cracking catalyst and its preparation method
EP2907570B1 (en) Catalyst for catalytic cracking of hydrocarbon oil and use of the catalyst for catalytic cracking of hydrocarbon oil
KR100893954B1 (en) Zeolite based catalyst of ultra-high kinetic conversion activity
JP5679178B2 (en) Additive for fluid catalytic cracking catalyst
JP4394992B2 (en) Catalyst composition for increasing gasoline octane number and / or lower olefin and fluid catalytic cracking process of hydrocarbons using the same
JP2020032352A (en) Fluid contact cracking catalyst for hydrocarbon oil
JP5283745B2 (en) Process for producing desulfurization catalyst for catalytic cracking gasoline
JP4773420B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP6564875B2 (en) Additive for fluid catalytic cracking catalyst for production of lower olefin and method for producing the same
JP7208125B2 (en) Additive for fluid catalytic cracking catalyst, method for producing additive for fluid catalytic cracking catalyst, and catalyst composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838959

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010334125

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010334125

Country of ref document: AU

Date of ref document: 20101222

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127016362

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201003133

Country of ref document: TH

Ref document number: 5657/DELNP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10838959

Country of ref document: EP

Kind code of ref document: A1