JP3709893B2 - Catalyst composition for fluid catalytic cracking of heavy oil - Google Patents

Catalyst composition for fluid catalytic cracking of heavy oil Download PDF

Info

Publication number
JP3709893B2
JP3709893B2 JP23027794A JP23027794A JP3709893B2 JP 3709893 B2 JP3709893 B2 JP 3709893B2 JP 23027794 A JP23027794 A JP 23027794A JP 23027794 A JP23027794 A JP 23027794A JP 3709893 B2 JP3709893 B2 JP 3709893B2
Authority
JP
Japan
Prior art keywords
silica
catalyst composition
alumina
heavy oil
acid amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23027794A
Other languages
Japanese (ja)
Other versions
JPH0871417A (en
Inventor
雅人 芝崎
信雄 大竹
かおり 今▲よし▼
正 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen General Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen General Sekiyu KK filed Critical Tonen General Sekiyu KK
Priority to JP23027794A priority Critical patent/JP3709893B2/en
Publication of JPH0871417A publication Critical patent/JPH0871417A/en
Application granted granted Critical
Publication of JP3709893B2 publication Critical patent/JP3709893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、重質油の流動接触分解(FCC)用触媒組成物に関するものである。
【0002】
【従来の技術】
重質油の流動接触分解用触媒組成物(以下、単にFCC用触媒組成物とも言う)は、多孔性無機酸化物とゼオライトから構成されている。この場合、多孔性無機酸化物としては、例えば、シリカ−アルミナ、シリカ−ジルコニア、シリカ−マグネシア、シリカ−粘土、マグネシア−アルミナ等が用いられている。しかし、従来のFCC用触媒組成物の場合、酸量が多すぎること及び酸強度の分布が十分最適化されていないために、その使用に際し、触媒組成物表面に多量のコークが析出し、そのコーク析出のために触媒活性が比較的短時間で低下するという問題がある。
【0003】
【発明が解決しようとする課題】
本発明は、重質油の流動接触分解用触媒組成物において、使用に際してコーク析出の少なくかつ高い中間留分収率を与える触媒組成物を提供することをその課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。
即ち、本発明によれば、アルミナを核とし、その表面にシリカを付着結合させた構造を有するシリカ−アルミナであって、120〜200m2/gの比表面積及び0.40〜0.65mmolの全酸量を有し、全酸量中の強酸の割合が35〜70%であるシリカ−アルミナを触媒成分として含有することを特徴とする重質油の流動接触分解用触媒組成物が提供される。
【0005】
本発明において触媒成分として用いるシリカ−アルミナは、アルミナを核としその表面にシリカを付着結合させた構造を有する。そのシリカ(SiO2)含有量は、2〜90重量%、好ましくは5〜70重量%の範囲である。SiO2含有量が前記範囲より少ないと、触媒活性の低下が起こり、一方、SiO2含有量が前記範囲より大きくなると、固体酸の性質が実質上なくなってしまうため、触媒活性が低下する。
【0006】
本発明で用いるシリカ−アルミナを製造するには、先ず、硫酸アルミニウム水溶液を作る。この水溶液中のアルミナ(Al23)濃度は、0.5〜10wt%、好ましくは1〜5wt%である。
次に、この硫酸アルミニウム水溶液に対し、アルカリを添加して水酸化アルミニウムを沈殿させ、水酸化アルミニウムの水スラリーを得る。アルカリとしては、水酸化アルカリ、特に水酸化アンモニウム(アンモニア水)の使用が好ましい。
前記のようにして得た水酸化アルミニウム水スラリーに、pH2〜12、好ましくは3〜10の範囲に調節した水ガラス水溶液を撹拌下で添加混合する。水ガラス中のシリカ(SiO2)濃度は、3〜12wt%、好ましくは8〜10wt%である。水ガラス水溶液は、このようなpH範囲に保持することにより、シリカゾル液となる。
前記のようにして得られる水酸化アルミニウム水スラリーとシリカゾル液との混合物は、これを水酸化アルカリ、好ましくは水酸化アンモニウムにより、そのpHを7〜10、好ましくは8〜9の範囲に調節し、温度20〜80℃、好ましくは50〜70℃で、0.5〜5時間、好ましくは2〜3時間熟成する。この熟成によりシリカゾルは水酸化アルミニウム粒子表面上でシリカゲルとなる。
次いで、この熟成後、固体粒子を液から分離し、水洗することによりSiO2−Al23ゲルを得る。このようにして得たSiO2−Al23ゲルはFCC用触媒組成物成分として用いる。また、このゲルは、80〜150℃、好ましくは100〜130℃の温度で乾燥して乾燥物粒子とすることができ、さらに、必要に応じて、500〜700℃で焼成し焼成粒子とすることができる。本発明の触媒組成物を調製する場合、このような乾燥物粒子や焼成粒子を原料として用いることもできる。
【0007】
本発明で用いるシリカ−アルミナは、100〜200m2/g、好ましくは120〜180m2/gの比表面積及び0.40〜0.65mmol/g、好ましくは、0.45〜0.60mmol/gの全酸量を有し、その全酸量中の強酸量の割合が35〜70%、好ましくは37〜65%の範囲にある。比表面積及び全酸量が増加すると、触媒活性も増加する傾向を示すが、一方、比表面積が増加すると、それに応じてコーク収率が増加する。本発明では、前記したように、比表面積及び全酸量を低く抑えるとともに、強酸量の割合を比較的高い範囲に保持する。
【0008】
本発明のシリカ−アルミナを含む触媒組成物において、そのシリカ−アルミナの比表面積及び全酸量が前記範囲を超えるようになると、重質油の分解において、コーク析出量が多くなるとともに、ナフサや中間留分の選択率も低下するようになる。一方、その比表面積が前記範囲よりも低くなると、この場合には、強酸量の割合を高くしてもその重質油の分解活性を高く保持することができなくなる。また、全酸量中の強酸の割合が前記範囲より低くなると、重質油分解活性が低くなり、一方、前記範囲を超えると、コーク析出量が多くなる等の問題を生じる。
【0009】
本発明で用いるシリカ−アルミナにおいて、その比表面積及び全酸量は、前記したその製造方法において、硫酸アルミニウム水溶液に水酸化アルカリを添加する速度を変化させることにより調節することができる。また、全酸量中の強酸の割合は、前記したその製造方法において、水酸化アルミニウム水スラリーにシリカゾル液を添加する速度やシリカゾル液のpH、混合後の熟成条件を変化させることにより調節することができる。
【0010】
本明細書でシリカ−アルミナに関して言う細孔特性、全酸量及び強酸量は、シリカ−アルミナゲルを500℃で焼成した焼成品についての値であり、これらの物性値は以下のようにして測定されたものである。
(比表面積)
試料0.2gを200℃、1×10-3トールの条件下に1時間保持した後、液体窒素温度(77K)にて窒素ガスの吸着を行い、その吸着量を用いて比表面積を求めた。その算出にはBET法を用いた。
(全細孔容積)
上記比表面積測定に続いて、液体窒素温度(77K)にて、窒素ガスを相対圧1.0まで吸着した後、窒素ガスの脱着を相対圧0.14まで行い、その脱着量から細孔容積を算出した。
(全酸量及び強酸量の測定)
試料1gを400℃、1×10-4トールの条件下に4時間保持した後、アンモニアガスを吸着させ、その際に発生する吸着熱を測定し、その吸着熱からアンモニア吸着量を測定し、その測定結果から全酸量及び強酸量を算出した。この場合、吸着熱が70kj/mol以上の酸量を全酸量とし、吸着熱が90kj/mol以上の酸量を強酸量とした。強酸の割合は、強酸量/全酸量×100(%)で示した。なお、本測定は、東京理工社製、「吸着熱測定装置」を用いて行った。
【0011】
本発明の触媒組成物は、従来公知のFCC用触媒組成物の製造工程において、前記で得たSiO2−Al23を添加することによって製造することができる。本発明で用いるSiO2−Al23の含有量は、全触媒組成物中、5〜80wt%、好ましくは10〜60wt%である。本発明の触媒組成物においては、他の成分として、従来公知のゼオライトを含む。ゼオライトとしては、従来公知の各種の結晶性シリケート、例えば、結晶性アルミノシリケート、骨格構造に金属を含有するアルミノメタロシリケート(例えば、結晶性アルミノガロシリケート等)等が用いられるが、特に、ホージヤサイトに属する合成Y型ゼオライト及び超安定Y型ゼオライトがよく、また、カチオンとして、水素及び/又は希土類金属を含有するものの使用が好ましい。このゼオライトは、全触媒組成物中0〜40wt%、好ましくは10〜30wt%である。本発明の触媒組成物は、必要に応じて、さらに、他の金属酸化物や粘土、例えば、シリカ、アルミナ、シリカ−アルミナ、シリカ−ジルコニア、マグネシア−アルミナ、カオリン等を適量含有することもできる。
【0012】
本発明の触媒組成物は、平均粒径が50〜70μm、好ましくは55〜65μmの粒子状で用いられる。また、その表面積は、通常、200〜400m2/g、好ましくは250〜350m2/gである。
【0013】
本発明の触媒組成物を用いて重質油を流動接触分解するには、流動化した触媒組成物に対し、重質油を接触させる。反応温度は、470〜550℃、好ましくは480〜520℃である。触媒組成物/油比は3〜6wt/wt、好ましくは4〜5wt/wtである。
【0014】
重質油としては、各種原油の他、それら原油の常圧蒸留残渣油、減圧蒸留残渣油を用いることができ、さらに、溶剤脱歴油、溶剤脱歴アスファルト、シェールオイル、タールサンドオイル、石炭液化油等を用いることができる。さらに、前記した重質油に対し、減圧軽油(沸点範囲:343℃〜600℃)等を混合したものを用いることができる。
【0015】
【発明の効果】
本発明の触媒組成物は、重質油に対して優れた分解活性を有し、本発明の触媒組成物の存在下で重質油の流動接触分解反応を行うことにより、ナフサや中間留分を高収率で得ることができる。
本発明の触媒組成物は、比表面積が低く、全酸量が少なく、強酸量の割合が低い特定のSiO2−Al23を触媒成分として含有するので、重質油の流動接触分解において、コークの析出量を著しく減少させることができ、これによって触媒寿命の延長が達成される。
【0016】
【実施例】
次に本発明を実施例によりさらに詳細に説明する。
【0017】
参考例1(SiO2−Al23の調製)
Al23濃度1.28wt%の硫酸アルミニウム水溶液(pH3.0)7000gに2規定の水酸化アンモニウム水溶液2400gを240分間で加えてpH8.2の水酸化アルミニウムを含有する水スラリーを得た。
一方、SiO2含有量が5.93wt%の水ガラス水溶液(pH12)169gを撹拌下、前記で得た水酸化アルミニウムの水スラリーに5分間で添加混合し、得られた混合物に2規定の水酸化アンモニウムを添加し、そのpHを8.2に調節した。
【0018】
次いで、このようにして得られた混合物を30℃で3時間熟成して、混合物中に含まれるシリカゾルをゲル化させ、水酸化アルミニウム粒子表面にシリカゲルが付着結合したゲルを得た。このゲルを液中から分離し、水洗し、ろ過し、シリカ−アルミナゲル(A)を得た。
【0019】
参考例2
参考例1において、水ガラス水溶液添加時間を1/15(20秒)とした以外は同様にして実験を行い、シリカ−アルミナゲルBを得た。
【0020】
参考例3
参考例1において、水ガラス水溶液添加時間を5倍(25分)とした以外は同様にして実験を行い、シリカ−アルミナゲルCを得た。
【0021】
比較参考例1
参考例1において、硫酸アルミニウム水溶液に対するアンモニア水溶液の添加時間を130分とし、さらにアルミナゲルに対する水ガラス水溶液の添加時間を240分とした以外は同様にして実験を行い、シリカ−アルミナゲルDを得た。
【0022】
比較参考例2
参考例1において、硫酸アルミニウム水溶液に対するアンモニア水溶液の添加時間を25分とした以外は同様にして実験を行い、シリカ−アルミナゲルEを得た。
前記のようにして得た各シリカ−アルミナゲルについて、120℃で12時間乾燥後、500℃で3時間焼成した後、その性状を調べた。その結果を表1に示す。
【0023】
【表1】

Figure 0003709893
【0024】
実施例1(触媒組成物の調製)
SiO2含有量が8.5wt%の水ガラス水溶液(pH:12)1176gに2規定の硫酸を添加して、そのpHを3に調節してシリカゾル液を得た。
次に、このシリカゾル液1450gに、カオリン100g、前記参考例1〜3及び比較参考例1〜2で得たSiO2−Al23ゲルA〜Eを乾燥重量換算で300g添加し、均一に分散させた後、噴霧乾燥し、前記SiO2−Al23ゲルA〜Eに対応する平均粒径60μmの添加触媒A〜Eを得た。これらの触媒A〜Eの成分組成を示すと、カオリン20wt%、シリカ20wt%及びSiO2−Al2360wt%であった。
【0025】
実施例2(重質油の分解)
実施例1で得た各触媒組成物の性能試験を行うために、マイクロアクティビティテスト(MAT)装置を用い、同一原料油、同一条件下で流動接触分解反応を行った。その結果を表2に示す。
前記原料重質油としては、脱流VGOを用いた。また、試験に先立ち、触媒は650℃で1時間焼成した後、760℃で16時間100%スチーム雰囲気で処理した。
前記試験における流動接触分解条件は以下の通りであった。
(1)反応温度:520℃
(2)反応圧力:常圧
(3)触媒/油比:2.5〜4.5wt/wt
(4)接触時間:32hr-1
【0026】
なお、表2に示した転化率、ナフサ収率、コーク収率及びナフサ選択率は、以下の式で定義されるものである。
(1)転化率(wt%)=(A−B)/A×100
A:原料油の重量
B:生成油中の沸点221℃以上の留分の重量
(2)ナフサ収率(wt%)=C/A×100
C:生成油中のナフサ(沸点範囲:C5〜221℃)の重量
(3)コーク収率(wt%)=D/A×100
D:触媒組成物に析出したコーク重量
(4)ナフサ選択率
(ナフサ収率)/(転化率)×100%
【0027】
【表2】
Figure 0003709893
[0001]
[Industrial application fields]
The present invention relates to a catalyst composition for fluid catalytic cracking (FCC) of heavy oil.
[0002]
[Prior art]
A catalyst composition for fluid catalytic cracking of heavy oil (hereinafter also simply referred to as an FCC catalyst composition) is composed of a porous inorganic oxide and zeolite. In this case, for example, silica-alumina, silica-zirconia, silica-magnesia, silica-clay, magnesia-alumina and the like are used as the porous inorganic oxide. However, in the case of the conventional FCC catalyst composition, since the amount of acid is too much and the distribution of acid strength is not sufficiently optimized, a large amount of coke is deposited on the surface of the catalyst composition when used. There is a problem in that the catalytic activity decreases in a relatively short time due to coke deposition.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a catalyst composition for fluid catalytic cracking of heavy oil that gives a high middle distillate yield with little coke precipitation during use.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, according to the present invention, silica-alumina having a structure in which alumina is used as a nucleus and silica is bonded and bonded to the surface thereof, which has a specific surface area of 120 to 200 m 2 / g and 0.40 to 0.65 mmol. There is provided a catalyst composition for fluid catalytic cracking of heavy oil, comprising silica-alumina having a total acid amount and a ratio of strong acid in the total acid amount of 35 to 70% as a catalyst component. The
[0005]
Silica-alumina used as a catalyst component in the present invention has a structure in which alumina is used as a nucleus and silica is adhered and bonded to the surface thereof. The silica (SiO 2 ) content is in the range of 2 to 90% by weight, preferably 5 to 70% by weight. When the SiO 2 content is less than the above range, the catalytic activity is lowered. On the other hand, when the SiO 2 content is larger than the above range, the properties of the solid acid are substantially lost, and thus the catalytic activity is lowered.
[0006]
In order to produce the silica-alumina used in the present invention, first, an aqueous aluminum sulfate solution is prepared. The concentration of alumina (Al 2 O 3 ) in this aqueous solution is 0.5 to 10 wt%, preferably 1 to 5 wt%.
Next, an alkali is added to the aluminum sulfate aqueous solution to precipitate aluminum hydroxide, thereby obtaining an aqueous slurry of aluminum hydroxide. As the alkali, it is preferable to use alkali hydroxide, particularly ammonium hydroxide (ammonia water).
A water glass aqueous solution adjusted to a pH of 2 to 12, preferably 3 to 10, is added and mixed with stirring to the aluminum hydroxide aqueous slurry obtained as described above. The silica (SiO 2 ) concentration in the water glass is 3 to 12 wt%, preferably 8 to 10 wt%. The water glass aqueous solution becomes a silica sol solution by maintaining such a pH range.
The mixture of the aluminum hydroxide aqueous slurry and the silica sol solution obtained as described above is adjusted to a pH of 7 to 10, preferably 8 to 9, with an alkali hydroxide, preferably ammonium hydroxide. Aging is performed at a temperature of 20 to 80 ° C., preferably 50 to 70 ° C., for 0.5 to 5 hours, preferably for 2 to 3 hours. By this aging, the silica sol becomes silica gel on the surface of the aluminum hydroxide particles.
Next, after this aging, the solid particles are separated from the liquid and washed with water to obtain a SiO 2 —Al 2 O 3 gel. The SiO 2 —Al 2 O 3 gel thus obtained is used as a catalyst composition component for FCC. Moreover, this gel can be dried at a temperature of 80 to 150 ° C., preferably 100 to 130 ° C. to obtain dried particles, and if necessary, calcined at 500 to 700 ° C. to obtain calcined particles. be able to. When preparing the catalyst composition of the present invention, such dried product particles and calcined particles can also be used as raw materials.
[0007]
Silica used in the present invention - alumina, 100~200m 2 / g, preferably a specific surface area of 120~180m 2 / g and 0.40~0.65mmol / g, preferably, 0.45~0.60mmol / g The ratio of the strong acid amount in the total acid amount is 35 to 70%, preferably 37 to 65%. Increasing the specific surface area and the total acid amount tends to increase the catalytic activity, while increasing the specific surface area increases the coke yield accordingly. In the present invention, as described above, the specific surface area and the total acid amount are kept low, and the ratio of the strong acid amount is kept in a relatively high range.
[0008]
In the catalyst composition containing silica-alumina of the present invention, when the specific surface area and total acid amount of the silica-alumina exceed the above ranges, the amount of coke deposited in the decomposition of heavy oil increases, and naphtha and The selectivity of middle distillate also decreases. On the other hand, if the specific surface area is lower than the above range, in this case, even if the ratio of the strong acid amount is increased, the decomposition activity of the heavy oil cannot be kept high. Moreover, if the ratio of the strong acid in the total acid amount is lower than the above range, the heavy oil decomposition activity becomes low. On the other hand, if it exceeds the above range, problems such as an increase in the amount of coke precipitation occur.
[0009]
In the silica-alumina used in the present invention, the specific surface area and the total acid amount can be adjusted by changing the rate at which the alkali hydroxide is added to the aluminum sulfate aqueous solution in the production method described above. Further, the ratio of the strong acid in the total acid amount should be adjusted by changing the rate at which the silica sol solution is added to the aluminum hydroxide aqueous slurry, the pH of the silica sol solution, and the aging conditions after mixing in the production method described above. Can do.
[0010]
The pore characteristics, total acid amount, and strong acid amount referred to in this specification for silica-alumina are values for a fired product obtained by firing silica-alumina gel at 500 ° C., and these physical property values are measured as follows. It has been done.
(Specific surface area)
After holding 0.2 g of a sample at 200 ° C. and 1 × 10 −3 Torr for 1 hour, nitrogen gas was adsorbed at a liquid nitrogen temperature (77 K), and the specific surface area was obtained using the adsorbed amount. . The BET method was used for the calculation.
(Total pore volume)
Following the measurement of the specific surface area, nitrogen gas was adsorbed to a relative pressure of 1.0 at a liquid nitrogen temperature (77K), and then desorption of the nitrogen gas was performed to a relative pressure of 0.14. Was calculated.
(Measurement of total acid amount and strong acid amount)
After holding 1 g of a sample at 400 ° C. and 1 × 10 −4 Torr for 4 hours, ammonia gas is adsorbed, the heat of adsorption generated at that time is measured, and the amount of ammonia adsorbed is measured from the heat of adsorption, The total acid amount and the strong acid amount were calculated from the measurement results. In this case, the acid amount with an adsorption heat of 70 kj / mol or more was defined as the total acid amount, and the acid amount with an adsorption heat of 90 kj / mol or greater was defined as the strong acid amount. The ratio of strong acid was expressed as strong acid amount / total acid amount × 100 (%). In addition, this measurement was performed using Tokyo Riko Co., Ltd. "adsorption heat measuring apparatus".
[0011]
The catalyst composition of the present invention can be produced by adding the SiO 2 —Al 2 O 3 obtained above in the production process of a conventionally known FCC catalyst composition. The content of SiO 2 —Al 2 O 3 used in the present invention is 5 to 80 wt%, preferably 10 to 60 wt% in the total catalyst composition. In the catalyst composition of the present invention, a conventionally known zeolite is included as another component. As the zeolite, various conventionally known crystalline silicates such as crystalline aluminosilicates, aluminometallosilicates containing a metal in the skeleton structure (for example, crystalline aluminogallosilicates, etc.), etc. are used. Synthetic Y-type zeolite and ultra-stable Y-type zeolite belong to it, and those containing hydrogen and / or rare earth metals as cations are preferred. This zeolite is 0 to 40 wt%, preferably 10 to 30 wt% in the total catalyst composition. The catalyst composition of the present invention may further contain an appropriate amount of other metal oxides and clays, for example, silica, alumina, silica-alumina, silica-zirconia, magnesia-alumina, kaolin and the like, if necessary. .
[0012]
The catalyst composition of the present invention is used in the form of particles having an average particle size of 50 to 70 μm, preferably 55 to 65 μm. Moreover, the surface area is 200-400 m < 2 > / g normally, Preferably it is 250-350 m < 2 > / g.
[0013]
For fluid catalytic cracking of heavy oil using the catalyst composition of the present invention, heavy oil is brought into contact with the fluidized catalyst composition. The reaction temperature is 470 to 550 ° C, preferably 480 to 520 ° C. The catalyst composition / oil ratio is 3-6 wt / wt, preferably 4-5 wt / wt.
[0014]
As heavy oil, in addition to various crude oils, atmospheric distillation residue oils and vacuum distillation residue oils of these crude oils can be used. Furthermore, solvent history oil, solvent history asphalt, shale oil, tar sand oil, coal A liquefied oil etc. can be used. Furthermore, what mixed the vacuum gas oil (boiling range: 343 degreeC-600 degreeC) etc. with respect to the above-mentioned heavy oil can be used.
[0015]
【The invention's effect】
The catalyst composition of the present invention has an excellent cracking activity with respect to heavy oil. By conducting fluid catalytic cracking reaction of heavy oil in the presence of the catalyst composition of the present invention, naphtha and middle distillate are obtained. Can be obtained in high yield.
The catalyst composition of the present invention contains a specific SiO 2 -Al 2 O 3 having a low specific surface area, a small total acid amount, and a low ratio of strong acid as a catalyst component. The amount of coke deposited can be significantly reduced, thereby extending the catalyst life.
[0016]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0017]
Reference Example 1 (Preparation of SiO 2 —Al 2 O 3 )
2400 g of 2N ammonium hydroxide aqueous solution was added to 7000 g of aluminum sulfate aqueous solution (pH 3.0) having an Al 2 O 3 concentration of 1.28 wt% over 240 minutes to obtain a water slurry containing aluminum hydroxide having a pH of 8.2.
On the other hand, 169 g of a water glass aqueous solution (pH 12) having a SiO 2 content of 5.93 wt% was added to and mixed with the aqueous slurry of aluminum hydroxide obtained above for 5 minutes with stirring, and 2N water was added to the resulting mixture. Ammonium oxide was added and the pH was adjusted to 8.2.
[0018]
Next, the mixture thus obtained was aged at 30 ° C. for 3 hours to gel the silica sol contained in the mixture, thereby obtaining a gel in which silica gel was adhered and bonded to the surfaces of the aluminum hydroxide particles. This gel was separated from the liquid, washed with water, and filtered to obtain a silica-alumina gel (A).
[0019]
Reference example 2
A silica-alumina gel B was obtained in the same manner as in Reference Example 1 except that the water glass aqueous solution addition time was 1/15 (20 seconds).
[0020]
Reference example 3
A silica-alumina gel C was obtained in the same manner as in Reference Example 1 except that the water glass aqueous solution addition time was 5 times (25 minutes).
[0021]
Comparative Reference Example 1
In Reference Example 1, an experiment was performed in the same manner except that the addition time of the aqueous ammonia solution relative to the aqueous aluminum sulfate solution was 130 minutes, and further the addition time of the aqueous water glass solution relative to the alumina gel was 240 minutes. It was.
[0022]
Comparative Reference Example 2
A silica-alumina gel E was obtained in the same manner as in Reference Example 1 except that the addition time of the aqueous ammonia solution to the aqueous aluminum sulfate solution was 25 minutes.
Each silica-alumina gel obtained as described above was dried at 120 ° C. for 12 hours and then calcined at 500 ° C. for 3 hours, and then its properties were examined. The results are shown in Table 1.
[0023]
[Table 1]
Figure 0003709893
[0024]
Example 1 (Preparation of catalyst composition)
2N sulfuric acid was added to 1176 g of a water glass aqueous solution (pH: 12) having a SiO 2 content of 8.5 wt%, and the pH was adjusted to 3 to obtain a silica sol solution.
Next, 100 g of kaolin, 300 g of the SiO 2 -Al 2 O 3 gels A to E obtained in Reference Examples 1 to 3 and Comparative Reference Examples 1 to 2 were added to 1450 g of this silica sol solution in terms of dry weight, and uniformly After the dispersion, spray drying was performed to obtain added catalysts A to E having an average particle size of 60 μm corresponding to the SiO 2 —Al 2 O 3 gels A to E. The component compositions of these catalysts A to E were kaolin 20 wt%, silica 20 wt% and SiO 2 —Al 2 O 3 60 wt%.
[0025]
Example 2 (Decomposition of heavy oil)
In order to perform a performance test of each catalyst composition obtained in Example 1, a fluid catalytic cracking reaction was performed under the same feedstock and the same conditions using a microactivity test (MAT) apparatus. The results are shown in Table 2.
As the raw material heavy oil, degassed VGO was used. Prior to the test, the catalyst was calcined at 650 ° C. for 1 hour and then treated at 760 ° C. for 16 hours in a 100% steam atmosphere.
The fluid catalytic cracking conditions in the test were as follows.
(1) Reaction temperature: 520 ° C
(2) Reaction pressure: normal pressure (3) Catalyst / oil ratio: 2.5-4.5 wt / wt
(4) Contact time: 32 hr −1
[0026]
The conversion rate, naphtha yield, coke yield, and naphtha selectivity shown in Table 2 are defined by the following equations.
(1) Conversion (wt%) = (A−B) / A × 100
A: Weight of raw material oil B: Weight of a fraction having a boiling point of 221 ° C. or higher in the product oil (2) Naphtha yield (wt%) = C / A × 100
C: Weight of naphtha (boiling range: C 5 to 221 ° C.) in the product oil (3) Coke yield (wt%) = D / A × 100
D: Coke weight deposited on catalyst composition (4) naphtha selectivity (naphtha yield) / (conversion rate) × 100%
[0027]
[Table 2]
Figure 0003709893

Claims (1)

アルミナを核とし、その表面にシリカを付着結合させた構造を有するシリカ−アルミナであって、100〜200m2/gの比表面積及び0.40〜0.65mmolの全酸量を有し、全酸量中の強酸の割合が35〜70%であるシリカ−アルミナを触媒成分として含有することを特徴とする重質油の流動接触分解用触媒組成物。Silica-alumina having a structure in which alumina is a core and silica is bonded and bonded to the surface thereof, having a specific surface area of 100 to 200 m 2 / g and a total acid amount of 0.40 to 0.65 mmol, A catalyst composition for fluid catalytic cracking of heavy oil, comprising as a catalyst component silica-alumina having a proportion of strong acid in the acid amount of 35 to 70%.
JP23027794A 1994-08-31 1994-08-31 Catalyst composition for fluid catalytic cracking of heavy oil Expired - Fee Related JP3709893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23027794A JP3709893B2 (en) 1994-08-31 1994-08-31 Catalyst composition for fluid catalytic cracking of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23027794A JP3709893B2 (en) 1994-08-31 1994-08-31 Catalyst composition for fluid catalytic cracking of heavy oil

Publications (2)

Publication Number Publication Date
JPH0871417A JPH0871417A (en) 1996-03-19
JP3709893B2 true JP3709893B2 (en) 2005-10-26

Family

ID=16905287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23027794A Expired - Fee Related JP3709893B2 (en) 1994-08-31 1994-08-31 Catalyst composition for fluid catalytic cracking of heavy oil

Country Status (1)

Country Link
JP (1) JP3709893B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI502061B (en) * 2009-12-25 2015-10-01 Jgc Catalysts & Chemicals Ltd Additive for fluid catalytic cracking catalysts
DE112021007314T5 (en) 2021-03-19 2024-01-04 Jgc Catalysts And Chemicals Ltd. Silica-alumina powder, process for producing silica-alumina powder, catalyst for fluid catalytic cracking and process for producing the same

Also Published As

Publication number Publication date
JPH0871417A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
CA2240608C (en) Catalyst for cracking heavy oil
JP2554706B2 (en) Method for catalytic cracking of feedstock containing high levels of nitrogen
US4308129A (en) Octane improvement cracking catalyst
US4283309A (en) Hydrocarbon conversion catalyst
JP3920966B2 (en) Additive catalyst for heavy oil cracking
CA1080199A (en) Hydrocarbon conversion catalyst and process utilizing the same
KR100893954B1 (en) Zeolite based catalyst of ultra-high kinetic conversion activity
US3364151A (en) Catalyst containing silica-alumina and finely divided caf2, mgf2, srf2, alf3 or inf3
JPS60193543A (en) Manufacture of catalyst composition for catalytically cracking hydrocarbon
JP3709893B2 (en) Catalyst composition for fluid catalytic cracking of heavy oil
GB2084892A (en) Hydrocarbon conversion zeolite- containing catalysts and processes utilizing the same
JPS6128376B2 (en)
JP3949336B2 (en) Process for producing catalyst composition for catalytic cracking of hydrocarbons
JPH06198174A (en) Solid acid material and catalytic composition for fluidized bed catalytic cracking containing the same
JP3479783B2 (en) Additive for fluid catalytic cracking catalyst of heavy oil
JP3467608B2 (en) Additive for fluid catalytic cracking catalyst of heavy oil
JPH11156197A (en) Cracking catalyst for hydrocarbon oil
US4894143A (en) Catalytic cracking process employing an aluminum silicon spinel-mullite-gamma alumia containing catalyst
JPH09285728A (en) Additive for heavy oil cracking and catalyst for fluid catalytic cracking of heavy oil
JP3643843B2 (en) Additive for fluid catalytic cracking catalyst of heavy oil
JPH1085603A (en) Catalyst composition for catalytic cracking of hydrocarbon oil and method for catalytically cracking hydrocarbon oil with the same
JP3363010B2 (en) Method for producing catalyst composition for catalytic cracking of hydrocarbons
JP3476658B2 (en) Catalyst composition for fluid catalytic cracking of hydrocarbons
JPH06198170A (en) Catalytic composition for fluidized bed catalytic cracking of heavy oil and fluidized bed catalytic cracking method of heavy oil using the catalyst
JPH1133406A (en) Catalyst for cracking hydrocarbon oil

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20001006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20010821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees