WO2011076115A1 - 数据传输方法、基站和数据传输系统 - Google Patents

数据传输方法、基站和数据传输系统 Download PDF

Info

Publication number
WO2011076115A1
WO2011076115A1 PCT/CN2010/080092 CN2010080092W WO2011076115A1 WO 2011076115 A1 WO2011076115 A1 WO 2011076115A1 CN 2010080092 W CN2010080092 W CN 2010080092W WO 2011076115 A1 WO2011076115 A1 WO 2011076115A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
ues
data
backhaul
wireless connection
Prior art date
Application number
PCT/CN2010/080092
Other languages
English (en)
French (fr)
Inventor
王江胜
赖志昌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011076115A1 publication Critical patent/WO2011076115A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/045Interfaces between hierarchically different network devices between access point and backbone network device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/105PBS [Private Base Station] network

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a data transmission method, a base station, and a data transmission system.
  • the transmission of data and control signaling between the transmission network and the device at the other end of the transmission network may be referred to as a backhaul.
  • the network resource that bears the backhaul is called a bearer network, and the bearer network may be divided into a cable. Bearer and radio bearer.
  • Wired bearer refers to the connection between the base station and the transport network through the ground access method. At this time, the relevant infrastructure equipment needs to be deployed.
  • the radio bearer means that the base station establishes a connection with the transmission network through a wireless method, such as a microwave. In this case, a special microwave device is required, and a Line Of Sight (LOS) is required.
  • a wireless method such as a microwave. In this case, a special microwave device is required, and a Line Of Sight (LOS) is required.
  • LOS Line Of Sight
  • the base station In order to achieve full coverage, the base station is distributed.
  • the base station When the base station is far away from the transmission network, if a direct connection between the base station and the transmission network is to be established, when the wired bearer is used, there is a problem that the cost of the infrastructure equipment is high, when the microwave bearer is used. There is a problem that microwave equipment is costly and it is difficult to implement LOS.
  • the embodiments of the present invention provide a data transmission method, a base station, and a data transmission system, which solve the problem that the application scenario existing in the prior art is limited.
  • the embodiment of the invention provides a data transmission method, including:
  • the base station and the at least two backhaul user equipments B-UE respectively establish a wireless connection, and the B-UE is a UE that is connected to the peer device of the base station by using a wired transmission network;
  • the base station transmits backhaul data to the at least two B-UEs through the established wireless connection, the backhaul data being data between the base station and the peer device.
  • An embodiment of the present invention provides a base station, including:
  • a module is configured to establish a wireless connection with the at least two backhaul user equipments B-UEs, where the B-UE is a UE that is connected to the peer device of the base station by using a wired transmission network;
  • a transmission module configured to transmit back data with the at least two B-UEs through the established wireless connection, where the backhaul data is data between the base station and the peer device.
  • An embodiment of the present invention provides a data transmission system, including: at least two backhaul user equipments B-UEs, and the foregoing base stations, where the base station establishes a wireless connection with at least two B-UEs respectively; at least two B- The peer device of the UE and the base station performs a wired connection through the wired transmission network; the base station transmits the backhaul data to the at least two B-UEs through the established wireless connection, and the return data is between the base station and the peer device. data.
  • the embodiment of the present invention can provide a backhaul path by multiple B-UEs by using multiple B-UEs as backhaul access points, thereby avoiding the problem of limited single-point transmission; By returning the access point, the application scenario limitation caused by the base station as the backhaul access point can be avoided.
  • DRAWINGS 1 is a schematic flow chart of a method according to a first embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method according to a second embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a first system corresponding to a second embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a second system corresponding to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a user plane protocol stack in an LTE system according to a second embodiment of the present invention
  • FIG. 6 is a schematic diagram of a signaling plane protocol stack in an LTE system according to a second embodiment of the present invention
  • a schematic diagram of a user plane protocol stack in a WCDM A system
  • FIG. 8 is a schematic flow chart of a method according to a third embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a first system corresponding to a third embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a second system corresponding to a third embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a base station according to a fourth embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a base station according to a fifth embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a system according to a sixth embodiment of the present invention.
  • Figure 14 is a schematic structural view of a system according to a seventh embodiment of the present invention. detailed description
  • FIG. 1 is a schematic flowchart of a method according to a first embodiment of the present invention, including:
  • Step 11 The base station establishes a wireless connection with at least two Backhaul-UEs (B-UEs), which are UEs that are wired to the peer device of the base station through a wired transmission network.
  • B-UEs Backhaul-UEs
  • the B-UE indicates a user equipment as a backhaul access point that is wiredly connected to the transmission network, and the B-UE can be wirelessly connected to the base station.
  • the following uses the UE to indicate that there is no wired connection with the transmission network, and the ordinary user equipment of the base station is accessed through the air interface.
  • the names of user equipment, base station control equipment, and base stations may be different, for example, in Global System for Mobile communications (Global System for Mobile communications, In the GSM system, the user equipment is a mobile station (MS), the base station is a base transceiver station (BTS), and the base station control equipment is a base station controller (BSC); In a Wideband Code Division Multiple Access (WCDMA) and a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system, the user equipment is a User Equipment (UE), and the base station is a NodeB.
  • GSM Global System for Mobile communications
  • the user equipment In the GSM system, the user equipment is a mobile station (MS), the base station is a base transceiver station (BTS), and the base station control equipment is a base station controller (BSC);
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • UE User Equipment
  • NodeB NodeB
  • the base station control device is a radio network controller (RNC); in a Long Term Evolution (LTE) system, the user equipment is a UE, the base station is an evolved base station (eNodeB), and the base station control device is a serving gateway (Servicing) Gateway, SGW) and Mobile Management Entity (MME).
  • RNC radio network controller
  • LTE Long Term Evolution
  • UE user equipment
  • eNodeB evolved base station
  • MME Mobile Management Entity
  • the wired connection between a certain B-UE and the transmission network may also be multiple, for example, using an Ethernet method (such as E1 mode), a Synchronous Digital Hierarchy (SDH) method, or a digital subscriber line (Digital Subscriber Line, xDSL).
  • an Ethernet method such as E1 mode
  • SDH Synchronous Digital Hierarchy
  • a digital subscriber line Digital Subscriber Line, xDSL
  • different B-UEs can adopt different wired connections. For example, one B-UE adopts an Ethernet mode, and another B-UE adopts an xDSL mode.
  • the base station can establish a radio connection with the B-UE by using the radio resource of the B-UE to access the transmission network through the B-UE.
  • the radio resources of the base station used by the B-UE may not be limited.
  • the B-UE may use a separate carrier frequency or share the carrier frequency with the UE; in a Code Division Multiple Access (CDMA) system, the B-UE may use a specific code group. It is also possible to share a code group with the UE.
  • CDMA Code Division Multiple Access
  • the multiple B-UEs may belong to the same system or belong to different systems. For example, multiple B-UEs may belong to the GSM system, or one belongs to the GSM system. The other belongs to the WCDMA system.
  • the base station can establish a wireless connection with the B-UE in the following manner: Mode 1: The base station sends a broadcast message to the at least two B-UEs, and when the at least two B-UEs actively access, connect with the active At least two incoming B-UEs establish a wireless connection.
  • This method is equivalent to the B-UE actively accessing the base station.
  • the broadcast message is a message sent by the base station to all B-UEs and UEs within the jurisdiction of the base station, where the broadcast message may carry the location information of the base station, and the B-UE that receives the broadcast message may request the base station according to the location information of the base station.
  • the base station can allocate the corresponding radio resource to the requested B-UE according to the network resource condition, and complete the access of the B-UE.
  • Manner 2 The base station sends a dedicated paging message to the at least two B-UEs, and after the passive access of the at least two B-UEs, establishes a wireless connection with at least two B-UEs that are passively accessed.
  • the dedicated paging message may carry the information of the B-UE to be paged and the location information of the base station, send a dedicated paging message to the B-UE to be paged, and determine the dedicated paging by the B-UE that receives the dedicated paging message.
  • the base station requests the base station according to the location information of the base station, and then the base station can allocate the corresponding radio resource to the requested B-UE according to the network resource condition, and complete the B-UE. Access.
  • Step 12 The base station transmits back data to the at least two B-UEs through the established wireless connection, where the backhaul data is data between the base station and the peer device.
  • the at least two B-UEs may be all B-UEs that are wired to the transport network, or may be part of all B-UEs that are wired to the transport network.
  • the active/standby mode can also be used. When the primary B-UE fails, the standby B-UE can continue to serve the base station. In all or part, in order to achieve distributed, at least two B-UEs need to establish wireless with the base station.
  • the base station may transmit data in the following manners: Mode 1: If the at least two B-UEs access the transmission network through a dedicated aggregation device, the base station transmits a corresponding backhaul of the user.
  • the data is divided into the same data group as the number of the at least two B-UEs, and each group of data corresponds to one B-UE, and each group of data is respectively sent to the corresponding B-UE through the established wireless connection.
  • This method is equivalent to multiple copies, that is, the exact same data is forwarded through different B-UEs to avoid data loss during transmission. In this way, it can be applied to scenarios with high QoS requirements.
  • the following embodiments may also adopt the following wireless enhancement mode:
  • the base station sends the wireless backhaul data to the at least two B-UEs by using the directional antennas corresponding to the at least two B-UEs; and/or,
  • the base station performs radio pre-correction on the wireless backhaul data to be sent according to the air interface characteristic, and sends the wireless pre-corrected data to the at least two B-UEs respectively;
  • the base station receives, by using the directional antenna corresponding to the base station, the wireless backhaul data sent to the base station by using the at least two B-UEs respectively; and/or
  • the base station receives the wireless pre-corrected data of the wireless backhaul data to be sent by the at least two B-UEs according to the air interface characteristics, and the wireless pre-corrected data respectively sent to the base station.
  • FIG. 2 is a schematic flowchart of a method according to a second embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a first system corresponding to a second embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a first system corresponding to a second embodiment of the present invention
  • FIG. 4 is a second system corresponding to a second embodiment of the present invention; Schematic diagram of the structure.
  • two B-UEs and two UEs are taken as an example for description. Of course, the number of B-UEs and UEs may also be increased.
  • a base station such as an eNB, a NodeB, or a BTS (ie, an eNB/NodeB/BTS) is taken as an example.
  • the device at the other end of the transport network is a base station control device or other device, such as an RNC, MME, SGW, or BSC (ie, RNC/). MME/SGW/BSC); Figure 4 shows two base stations as an example.
  • one base station accesses the transmission network through the B-UE, and the other base station directly accesses the transmission network.
  • the device at the other end of the transmission network is a base station control device or other device. Of course, it may also be a base station (eNB/NodeB/BTS).
  • this embodiment includes:
  • Step 21 The base station is powered on.
  • Step 22 The B-UE establishes a wired connection with the transport network.
  • the B-UE can establish wired connections using various wired access technologies, and different B-UEs can adopt different wired access modes.
  • the B-UEs in the system may be B-UEs of the same system or B-UEs of different systems. For details, refer to the first embodiment, and details are not described herein.
  • Step 23 The base station establishes a wireless connection with the B-UE.
  • the base station can access the B-UE by using a broadcast message or a dedicated paging message.
  • a broadcast message or a dedicated paging message.
  • step 21-23 has no timing constraint relationship.
  • Step 24 The base station performs initial configuration.
  • the base station allocates bandwidth for each B-UE that establishes a wireless connection with the base station.
  • the base station establishes a connection with the transmission network. For the above behavior example, you can perform the following steps:
  • Step 25 The base station transmits data to the B-UE through a wireless connection.
  • the base station can transmit data to the B-UE by using different resource utilization manners, for example, multiple B-UEs.
  • the data transmitted by the base station is shared by the base station, or multiple B-UEs transmit the data sent by the same base station.
  • the plurality of B-UEs may be all B-UEs that are wired to the transmission network, or may be part of the B-UEs that are connected by the transmission network.
  • a directional antenna or a pre-correction method may be employed. For details, refer to the first embodiment, and details are not described herein.
  • Step 26 The B-UE forwards the data to the transport network through a wired connection.
  • the data can be transmitted over the transport network to devices at the other end of the transport network, e.g., base station control equipment and/or base stations.
  • devices at the other end of the transport network e.g., base station control equipment and/or base stations.
  • the B-UE can use different forwarding modes, for example, forwarding at layer 3, or forwarding at layer 2, or forwarding through the aggregation device.
  • forwarding at layer 3 or forwarding at layer 2, or forwarding through the aggregation device.
  • the device at the other end of the transmission network Take the device at the other end of the transmission network as the base station control device. For example, the following is as follows:
  • the B-UE forwards the data transmitted between the base station and the base station control device through the layer 3.
  • the B-UE can be understood as the gateway of the base station.
  • the B-UE receives the IP data packet sent by the base station, the source IP address in the packet header is the IP address of the base station, and the destination IP address is the IP address of the base station control device, and the B-UE does not receive the data packet.
  • the parsing process is performed to transparently forward the data packet to the base station control device, that is, for the base station, the B-UE is transparent.
  • the B-UE receives the IP data packet sent by the base station control device, the source IP address in the packet header is the IP address of the base station control device, and the destination IP address is the IP address of the base station, and the B-UE does not perform the data packet after receiving the data packet.
  • the parsing process transparently forwards the data packet to the base station, that is, the B-UE is transparent to the base station control device.
  • the uplink involved in the embodiment of the present invention refers to the path from the base station to the B-UE and then to the base station control device
  • the downlink refers to the path from the base station control device to the B-UE to the base station.
  • the B-UE forwards the data transmitted between the base station and the base station control device through layer 2.
  • the B-UE can be understood as an address resolution protocol (ARP) proxy of the base station.
  • ARP address resolution protocol
  • the base station sends an ARP request
  • the B-UE responds to the ARP request, and sends a Media Access Control (MAC) address of the B-UE to the base station by using an ARP response, so that the base station according to the B-UE
  • the MAC address is sent to the data frame.
  • ARP address resolution protocol
  • the B-UE receives the data frame sent by the base station, the source MAC address in the frame header is the MAC address of the base station, and the destination MAC address is the MAC address of the B-UE, and the B-UE receives the data frame and replaces the source MAC address with the B-
  • the MAC address of the UE is replaced with the MAC address of the base station control device, and then sent to the base station control device.
  • the B-UE still does not parse the data content. Therefore, in this mode, the B-UE is still transparent to the base station.
  • the base station control device sends an ARP request
  • the B-UE responds to the ARP request, and sends the MAC address of the B-UE to the base station control device by using the ARP response, so that the base station control device sends the data frame according to the MAC address of the B-UE.
  • the B-UE receives the data frame sent by the base station control device, the source MAC address in the frame header is the MAC address of the base station control device, the destination MAC address is the MAC address of the B-UE, and the B-UE receives the data frame and the source MAC address.
  • the MAC address of the B-UE is replaced, and the destination MAC address is replaced with the MAC address of the base station, and then sent to the base station. In this mode, the B-UE still does not parse the data content. Therefore, in this mode, the B-UE is still transparent to the base station control device.
  • the B-UE establishes a tunnel connection with the aggregation device, and forwards the data transmitted between the base station and the base station control device through the tunnel.
  • a dedicated aggregation device can be deployed in the system.
  • a tunnel between the B-UE and the aggregation device can be established by using a Layer 2 tunneling protocol or a Layer 3 tunneling protocol, for example, Layer 2 Tunneling Protocol (L2TP) or IP security (IPsec).
  • L2TP Layer 2 Tunneling Protocol
  • IPsec IP security
  • the base station sends the data to the B-UE, and the B-UE encapsulates the data by using a tunneling protocol, and then sends the encapsulated data to the aggregation device through the established tunnel.
  • the aggregation device performs decapsulation according to the tunnel protocol, and sends the decapsulated data to the base station control device. Due to the presence of the aggregation device, multiple B-UEs can simultaneously access one aggregation device, one The services of the UE may be carried on the channels of multiple B-UEs, and may provide services for a single UE exceeding the bandwidth of a single B-UE.
  • the base station control device receives the data transmitted by the base station, and completes the data transmission in the uplink direction.
  • the above method can also be used, but the opposite is true in the direction.
  • FIG. 5 is a schematic diagram of a user plane protocol stack in an LTE system according to a second embodiment of the present invention.
  • the network elements involved are from left to right: the UE accessing the base station through the wireless air interface, and the access network through the B-UE.
  • eNB base station
  • SGW/base station eNB serving gateway SGW/base station eNB
  • FIG. 6 is a schematic diagram of a signaling plane protocol stack in an LTE system according to a second embodiment of the present invention.
  • the network elements involved are from left to right: the base station (eNB) accessing the transmission network through the B-UE, as a backhaul B-UE of the access point and base station control equipment MME and/or base station e phoenix for signaling control at the other end of the transmission network
  • eNB base station
  • FIG. 7 is a schematic diagram of a user plane protocol stack in a WCDM A system according to a second embodiment of the present invention.
  • the network elements involved are from left to right: the UE accessing the base station through the wireless air interface, and accessing the transmission network through the B-UE Base station (NodeB), B-UE as a backhaul access point, and base station control equipment (RNC) at the other end of the transmission network.
  • NodeB B-UE Base station
  • RNC base station control equipment
  • the B-UE can have a corresponding protocol stack format, so that the backhaul between the base station and the peer device can be implemented by the B-UE.
  • the base station accesses the transmission network through the B-UE to implement communication between the base station and the transmission network, and the direct connection between the base station and the transmission network is not required, thereby saving network deployment cost; and the base station and the transmission network are not required to be implemented by using microwaves. Communication can avoid the direct path problem required when using microwaves.
  • multiple B-UEs are used to provide services, which can avoid single-point limitation, effectively utilize the bandwidth of a single B-UE or provide good QoS guarantee, and improve reliability.
  • the B-UE is used to access the base station to the transmission network.
  • the uplink of the backhaul path is the direction of the base station to the B-UE, and the downlink of the return path is the direction of the B-UE to the base station, and the normal air interface transmits.
  • the uplink is the direction from the UE to the base station, and the downlink is the direction from the base station to the UE. Therefore, the uplink and downlink of the communication path and the backhaul path of the normal UE and the base station are complementary, and the efficient use of the air interface resources is realized.
  • the air interface transmission capability can be improved, and the use of air interface resources can be reduced.
  • the X2 interface between the base station and the base station can be implemented through the B-UE and the transmission network.
  • the B-UE originally belonging to one system can be used as a backhaul node of another new system to realize reuse of the original system and save investment.
  • FIG. 8 is a schematic flowchart of a method according to a third embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a first system corresponding to a third embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of a second system corresponding to a third embodiment of the present invention.
  • two B-UEs and two UEs are taken as an example for description. Of course, the number of B-UEs and UEs may also be increased.
  • a base station such as an eNB, a NodeB, or a BTS (ie, an eNB/NodeB/BTS), is used as an example.
  • the device at the other end of the transport network is a base station control device or other device, such as an RNC, MME, SGW, or BSC (ie, RNC/). MME/SGW/BSC); FIG. 10 takes two base stations as an example.
  • one base station eNB/NodeB/BTS
  • eNB/NodeB/BTS accesses the transmission network through the B-UE
  • the other base station directly accesses the transmission network
  • the device at the other end of the transmission network is a base station control device or other device.
  • it may also be a base station (eNB/NodeB/BTS).
  • This embodiment adds a convergence device wired to the B-UE and the transmission network based on the second embodiment.
  • this embodiment includes:
  • Steps 81-85 Corresponding to steps 21-25.
  • Step 86 The B-UE establishes a tunnel with the dedicated aggregation device, and forwards the data sent by the base station to the dedicated aggregation device through the tunnel.
  • the B-UE can use the protocol to establish a tunnel, and then tunnel the data sent by the base station. After the protocol is encapsulated, it is sent to the encapsulated data through the tunnel.
  • the tunnel between the B-UE and the dedicated aggregation device may also be pre-established by the B-UE before receiving the data sent by the base station.
  • Step 87 The dedicated aggregation device performs a merge process on the data sent by each B-UE.
  • the dedicated aggregation device Since the dedicated aggregation device is connected to all B-UEs in the system, in the uplink, the dedicated aggregation device combines the data transmitted by the B-UE.
  • Step 88 The dedicated aggregation device forwards the combined data to the transmission network through a wired connection with the transmission network.
  • the data can be transmitted over the transport network to devices at the other end of the transport network, e.g., base station control equipment and/or base stations.
  • devices at the other end of the transport network e.g., base station control equipment and/or base stations.
  • the device at the other end of the transmission network receives the data transmitted by the base station, and completes the data transmission in the uplink direction.
  • the above method can also be adopted, but the direction is reversed, and the B-UE corresponding data needs to be allocated on the dedicated aggregation device instead of the uplink merge.
  • the related protocol stack in the second embodiment can also be used in this embodiment.
  • the load balancing is performed by the dedicated aggregation device in the downlink and the base station is completed in the uplink, and the sharing efficiency is relatively high.
  • the IP address of the base station can be represented only on the dedicated aggregation device, and the B-UE acts as a transmission path, and the IP address of the base station is not required to be configured, so that the IP address of the base station is avoided on each B-UE.
  • the services of a single normal UE may be carried on the path of multiple B-UEs, and may provide a single UE with services exceeding a single B-UE bandwidth.
  • FIG. 11 is a schematic structural diagram of a base station according to a fourth embodiment of the present invention, including an establishing module 111 and a transmitting module 112, where the establishing module 111 is configured to establish a wireless connection with at least two B-UEs, where the B-UE is a base station The peer device performs a wired connection to the UE through the wired transmission network; the transmission module 112 is configured to transmit the backhaul data to the at least two B-UEs through the established wireless connection, where The backhaul data is data between the base station and the peer device.
  • the establishing module 111 is configured to establish a wireless connection with at least two B-UEs, where the B-UE is a base station
  • the peer device performs a wired connection to the UE through the wired transmission network
  • the transmission module 112 is configured to transmit the backhaul data to the at least two B-UEs through the established wireless connection, where The backhaul data is data between the base station and the peer device.
  • the base station in this embodiment can reduce the cost by accessing the peer device of the base station through the B-UE. By providing services to the base station through multiple B-UEs, the problem of limited single-point transmission can be avoided.
  • FIG. 12 is a schematic structural diagram of a base station according to a fifth embodiment of the present invention, including an establishing module 121 and a transmitting module 122.
  • the establishing module 121 may include a first unit 1211 and/or a second unit 1212.
  • the first unit 1211 is configured to send a broadcast message to the at least two B-UEs, when the at least two B-UEs actively access And establishing, by the at least two B-UEs that are actively accessed, a wireless connection, where the second unit 1212 is configured to send a dedicated paging message to the at least two B-UEs, when the at least two B-UEs are passively connected. Thereafter, a wireless connection is established with at least two B-UEs that are passively accessed.
  • the transmission module 122 may include a third unit 1221 and/or a fourth unit 1222; the third unit 1221 is configured to adopt a directional antenna corresponding to the at least two B-UEs, to the at least two The B-UE sends the wireless backhaul data.
  • the fourth unit 1222 is configured to perform wireless pre-correction on the wireless backhaul data to be sent according to the air interface characteristic, and send the wireless pre-corrected data to the at least two B-UEs respectively.
  • the transmission module 122 may include a fifth unit 1223 and/or a sixth unit 1224.
  • the fifth unit 1223 is configured to receive, by the at least two B-UEs, a directional antenna corresponding to the base station, respectively.
  • the sixth unit 1224 is configured to receive, by the at least two B-UEs, wireless pre-correction of the wireless backhaul data to be sent according to the air interface characteristics, and the wireless pre-correction respectively sent to the base station After the data.
  • the transmission module 122 may include a seventh unit 1225, where the seventh unit 1225 is configured to divide the backhaul data corresponding to a user into the at least A data group with the same number of two B-UEs, each group of data corresponding to one B-UE, and each group of data is respectively sent to the corresponding B-UE through the established wireless connection.
  • the transmission module 122 may include an eighth unit 1226, where the eighth unit 1226 is configured to pass the backhaul data corresponding to a user to the The wireless connection of one of the two B-UEs is transmitted to the corresponding B-UE.
  • the base station in this embodiment can reduce the cost by accessing the peer device of the base station through the B-UE. By providing services to the base station through multiple B-UEs, the problem of limited single-point transmission can be avoided.
  • Figure 13 is a block diagram showing the structure of a system according to a sixth embodiment of the present invention, including a B-UE 131 and a base station 132. At least two B-UEs 131 are respectively connected to the peer device of the base station 132 through a wired transmission network. The base station 132 and the at least two B-UEs 131 are each wirelessly connected. The base station 132 transmits backhaul data to the at least two B-UEs 131 over the established wireless connection, the backhaul data being data between the base station and the peer device.
  • the base station 132 may be specifically the base station shown in FIG. 11 or FIG.
  • the user equipment that is, the UE 133
  • the UE 133 accesses the base station 132 in a normal manner.
  • the number of the base stations 132 may also be multiple.
  • the two base stations in FIG. 13 are taken as an example. It can be understood that more than three base stations may be included in the system.
  • the two base stations 132 are connected to the same B-UE. If the application is in the LTE system, the X2 interface between the two base stations can be implemented through the B-UE.
  • the base station accesses the peer device of the base station through the B-UE, and implements communication between the base station and the peer device of the base station, which can save the network deployment cost without deploying a direct wired connection between the base station and the peer device of the base station. It is not necessary to use microwave to realize the communication between the base station and the peer device of the base station, and the direct path problem required when using the microwave can be avoided.
  • multiple B-UEs are used to provide services, which can avoid single-point limitation, effectively utilize the bandwidth of a single B-UE or provide good QoS guarantee, and can improve reliability.
  • the B-UE is used to connect the base station to the peer device of the base station, so that the uplink of the normal UE is equivalent to the downlink of the backhaul path, so that the uplink and the downlink are complementary, and the air interface resource is effectively utilized.
  • the air interface transmission capability can be improved, and the use of air interface resources can be reduced. Since different base stations can access the same B-UE, they can pass the B-UE. Implement an X2 interface between the base station and the base station. Since the system to which the B-UE belongs can be different, the B-UE of one system can be used as a backhaul node of another new system to realize the reuse of the original system and save the input expenditure.
  • FIG. 14 is a schematic structural diagram of a system according to a seventh embodiment of the present invention, including a B-UE 141, a base station 142, and a dedicated aggregation device 143, and may also include a common user equipment, that is, a UE 144.
  • a dedicated aggregation device 143 is located between the at least two B-UEs 141 and the transport network, and is used for wired connection of the at least two B-UEs 141 to the transport network to implement wired connection of the peer device of the base station 142.
  • the wireless connection is indicated by a broken line
  • the wired connection is indicated by a solid line.
  • the dedicated aggregation device 143 In the uplink, the dedicated aggregation device 143 combines the data sent by the two or more B-UEs 141 and sends the data to the peer device of the base station. In the downlink, the dedicated aggregation device 143 allocates the data sent by the peer device of the base station and sends the data to the peer device. Different B-UEs. For the functions of the remaining devices, refer to the sixth embodiment, and details are not described herein again.
  • the load balancing is performed by the aggregation device on the downlink and the base station is completed on the uplink, and the sharing efficiency is relatively high.
  • the IP address of the base station can be represented only on the dedicated aggregation device, and the B-UE acts as a transmission path, and the IP address of the base station is not required to be configured on each B-UE.
  • the service of a single normal UE can be carried on the path of multiple B-UEs, and can provide a single UE with a service exceeding a single B-UE bandwidth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

数据传输方法、 基站和数据传输系统
本申请要求于 2009 年 12 月 25 日提交中国专利局、 申请号为 200910265514.9、 发明名称为"数据传输方法、 基站和数据传输系统"的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信技术, 特别涉及一种数据传输方法、 基站和数据 传输系统。
背景技术
基站通过传输网与传输网另一端的设备(例如基站控制设备)之间的 数据及控制信令的传输可以称为回传, 承担回传的网络资源称为承载网, 承载网可以分为有线承载和无线承载。
有线承载是指通过地面接入方式实现基站与传输网之间连接, 此时需 要部署相关的基建设备。 无线承载是指基站通过无线方式, 例如微波与传 输网建立连接, 此时需要专门的微波设备, 并且需要直达路径 ( Line Of Sight, LOS )。
为了达到全面覆盖, 基站是分布建设的, 当基站远离传输网时, 如果 要建立基站与传输网之间直接的连接, 当采用有线承载时存在基建设备成 本较高的问题, 当釆用微波承载时存在微波设备成本较高且难以实现 LOS 的问题。
现有技术中存在一种通过基站进行回传的方案。 该方案中, 将与传输 网存在有线连接的基站作为回传接入点, 另一个需要与传输网建立连接的 基站利用自身的无线资源与该回传接入点建立无线连接, 通过该回传接入 点建立与传输网的回传路径。 现有技术至少存在如下问题: 由于基站不能任意应用在家庭或者企业 中, 将基站作为回传接入点会使应用场景受限。 发明内容
本发明实施例是提供一种数据传输方法、 基站和数据传输系统, 解决 现有技术中存在的应用场景受限的问题。
本发明实施例提供了一种数据传输方法, 包括:
基站与至少两个回传用户设备 B-UE分别建立无线连接,所述 B-UE为 与基站的对端设备通过有线传输网进行有线连接的 UE;
基站通过建立的无线连接与所述至少两个 B-UE传输回传数据,所述回 传数据为所述基站和所述对端设备之间的数据。
本发明实施例提供了一种基站, 包括:
建立模块,用于与至少两个回传用户设备 B-UE分别建立无线连接,所 述 B-UE为与基站的对端设备通过有线传输网进行有线连接的 UE;
传输模块,用于通过建立的无线连接与所述至少两个 B-UE传输回传数 据, 所述回传数据为所述基站和所述对端设备之间的数据。
本发明实施例提供了一种数据传输系统, 包括: 至少两个回传用户设 备 B-UE, 以及前述的基站, 其中, 基站与至少两个 B-UE分别建立无线连 接; 至少两个 B-UE与基站的对端设备通过有线传输网进行有线连接;基站 通过建立的无线连接与该至少两个 B-UE传输回传数据,回传数据为所述基 站和所述对端设备之间的数据。
由上述技术方案可知, 本发明实施例通过将多个 B-UE作为回传接入 点, 由多个 B-UE提供回传通路, 可以避免单点传输受限的问题; 通过将用 户设备作为回传接入点, 可以避免将基站作为回传接入点造成的应用场景 受限问题。 附图说明 图 1为本发明第一实施例的方法流程示意图;
图 2为本发明第二实施例的方法流程示意图;
图 3为本发明第二实施例对应的第一系统的结构示意图;
图 4为本发明第二实施例对应的第二系统的结构示意图;
图 5为本发明第二实施例在 LTE系统中的用户面协议栈的示意图; 图 6为本发明第二实施例在 LTE系统中的信令面协议栈的示意图; 图 7 为本发明第二实施例在 WCDM A 系统中的用户面协议栈的示意 图;
图 8为本发明第三实施例的方法流程示意图;
图 9为本发明第三实施例对应的第一系统的结构示意图;
图 10为本发明第三实施例对应的第二系统的结构示意图;
图 11为本发明第四实施例的基站的结构示意图;
图 12为本发明第五实施例的基站的结构示意图;
图 13为本发明第六实施例的系统的结构示意图;
图 14为本发明第七实施例的系统的结构示意图。 具体实施方式
图 1为本发明第一实施例的方法流程示意图, 包括:
步骤 11 : 基站与至少两个回传用户设备(Backhaul-UE, 简称 B-UE ) 分别建立无线连接,该 B-UE为与基站的对端设备通过有线传输网进行有线 连接的 UE。
以下用 B-UE表示与传输网有线连接的作为回传接入点的用户设备,同 时该 B-UE可以与基站无线连接。以下用 UE表示与传输网不存在有线连接, 通过空口接入基站的普通用户设备。
其中, 在不同的系统中, 用户设备、 基站控制设备、 基站的名称可能 有所不同,例如,在全球移动通信( Global System for Mobile communications , GSM ) 系统中, 用户设备为移动台 (Mobile Station, MS ), 基站为基站收 发信台( Base Transceiver Station, BTS ),基站控制设备为基站控制器( Base Station Controller, BSC );在宽带码分多址( Wideband Code Division Multiple Access, WCDMA )和时分同步码分多址 ( Time Division Synchronous Code Division Multiple Access, TD-SCDMA )系统中, 用户设备为用户设备 ( User Equipment, UE ), 基站为 NodeB, 基站控制设备为无线网络控制器( Radio Network Controller, RNC ); 在长期演进( Long Term Evolution, LTE ) 系统 中, 用户设备为 UE, 基站为演进基站 (eNodeB ), 基站控制设备为服务网 关( Servicing Gateway, SGW )及移动管理实体 ( Mobile Management Entity, MME )。
其中, 某一 B-UE与传输网的有线连接的方式也可能为多种, 例如, 采 用以太网方式(比如 E1方式)、同步数字体系( Synchronous Digital Hierarchy, SDH )方式或者数字用户线路( Digital Subscriber Line, xDSL )方式。 并且, 不同的 B-UE可以采用不同的有线连接方式, 例如, 一个 B-UE采用以太网 方式, 另一个 B-UE采用 xDSL方式。
其中, 由于基站自身存在无线资源, 因此, 基站可以釆用自身的无线 资源与 B-UE建立空口的无线连接, 以通过 B-UE接入传输网。
B-UE使用的基站的无线资源可以不作限定。 例如, 在 GSM系统中, B-UE 可以使用单独的载频, 也可以与 UE 共享载频; 在码分多址 (Code Division Multiple Access , CDMA ) 系统中, B-UE可以使用特定码组, 也可 以与 UE共享码组。 当系统中的 B-UE为多个时, 这多个 B-UE可以属于相 同的系统, 也可以属于不同的系统, 例如, 可以是多个 B-UE同属于 GSM 系统, 或者一个属于 GSM系统, 另一个属于 WCDMA系统。
具体地, 基站都可以采用如下的方式与 B-UE建立无线连接: 方式一: 基站向该至少两个 B-UE发送广播消息, 当该至少两个 B-UE 主动接入后, 与主动接入的至少两个 B-UE分别建立无线连接。 这种方式相当于 B-UE主动接入基站。广播消息是基站发送给该基站管 辖内的所有 B-UE及 UE的消息, 该广播消息中可以携带基站的位置信息, 接收到广播消息的 B-UE可以根据该基站的位置信息向该基站请求接入,之 后, 基站可以根据网络资源情况分配相应的无线资源给请求的 B-UE, 完成 B-UE的接入。
方式二: 基站向该至少两个 B-UE发送专用寻呼消息, 当该至少两个 B-UE被动接入后, 与被动接入的至少两个 B-UE分别建立无线连接。
这种方式相当于 B-UE被动接入基站。专用寻呼消息中可以携带待寻呼 的 B-UE的信息及基站的位置信息, 向待寻呼的 B-UE发送专用寻呼消息, 接收到专用寻呼消息的 B-UE确定专用寻呼消息中携带的 B-UE的信息与自 身信息一致时, 根据基站的位置信息向基站请求接入, 之后, 基站可以根 据网络资源情况分配相应的无线资源给请求的 B-UE, 完成 B-UE的接入。
步骤 12: 基站通过建立的无线连接与该至少两个 B-UE传输回传数据, 该回传数据为该基站和该对端设备之间的数据。
其中, 该至少两个的 B-UE可以是所有与传输网有线连接的 B-UE, 也 可以是所有与传输网有线连接的 B-UE中的一部分。 另外,还可以釆用主备 方式, 当主 B-UE出现故障时, 可以采用备 B-UE继续为基站服务。 而不论 是全部还是部分,为了实现分布式,都需要至少两个 B-UE与基站建立无线。
不论是否釆用主备方式, 基站可以釆用如下几种方式传输数据: 方式一, 若该至少两个 B-UE通过专用汇聚设备接入该传输网,该基站 将一个用户所对应的回传数据划分为与该至少两个 B-UE 的个数相同的数 据组, 每组数据对应一个 B-UE, 分别将各組数据通过建立的无线连接发送 到对应的 B-UE。
这种方式相当于多个 B-UE共同分担传输数据的任务,因为数据由多个 B-UE分担, 因此, 当数据的带宽超出单个 B-UE带宽的时候, 仍然可以保 证对该数据的服务。 这种方式, 可以应用在对带宽利用率要求高的场景。 方式二, 若该至少两个 B-UE直接接入该传输网, 该基站将一个用户所 对应的回传数据通过与该至少两个 B-UE中的一个 B-UE的无线连接,发送 到相应的 B-UE。
这种方式相当于多份拷贝的方式, 即完全相同的数据通过不同的 B-UE 进行转发以避免数据在传输过程中丟失。 这种方式, 可以应用在对 QoS要 求高的场景。
为了增强基站与 B-UE之间的信号质量,本实施例还可以采用如下的无 线增强方式:
对于上行回传数据:
方式一,基站采用与该至少两个 B-UE对应的定向天线, 向该至少两个 B-UE发送无线回传数据; 和 /或,
方式二, 基站根据空口特性对待发送的无线回传数据进行无线预校正, 向该至少两个 B-UE分别发送无线预校正后的数据;
对于下行回传数据:
方式一, 基站接收该至少两个 B-UE 分别采用与该基站对应的定向天 线、 分别向该基站发送的无线回传数据; 和 /或,
方式二,基站接收该至少两个 B-UE分别根据空口特性对待发送的无线 回传数据进行无线预校正、 向该基站分别发送的无线预校正后的数据。
本实施例通过建立与传输网有线连接的 B-UE的无线连接,可以实现在 无需部署基站与传输网之间的有线连接的情况下, 实现无线回传。 通过多 个 B-UE为基站提供回传通路,可以避免单点传输受限的问题。通过将用户 设备作为回传接入点, 可以避免将基站作为回传接入点时的应用场景受限 问题。 图 2为本发明第二实施例的方法流程示意图, 图 3为本发明第二实施 例对应的第一系统的结构示意图, 图 4 为本发明第二实施例对应的第二系 统的结构示意图。 图 3、 4中以两个 B-UE及两个 UE为例进行说明, 当然, B-UE及 UE的个数还可以增加。 图 3中以一个基站, 例如 eNB、 NodeB或 者 BTS (即 eNB/NodeB/BTS ) 为例, 传输网另一端的设备为基站控制设备 或其他设备,例如 RNC、 MME、 SGW或者 BSC(即 RNC/MME/SGW/BSC ); 图 4中以两个基站为例,在图 4中,一个基站( eNB/NodeB/BTS )通过 B-UE 接入传输网, 另一个基站直接接入传输网, 即传输网另一端的设备为基站 控制设备或其他设备, 当然, 也可以是基站(eNB/NodeB/BTS )。 通过 B-UE 和传输网, 不仅可以实现基站与基站控制设备之间的通信, 还可以实现基 站间的通信。
参见图 2, 本实施例包括:
步骤 21 : 基站上电启动。
启动时, 可以配置一些出厂配置的初始值, 例如, IP地址等。
步骤 22: B-UE与传输网建立有线连接。
B-UE可以采用各种有线接入技术建立有线连接, 及不同的 B-UE可以 采用不同的有线接入方式。 且系统中的 B-UE可以是同一个系统的 B-UE, 也可以是不同系统的 B-UE。 具体可参见第一实施例, 不再赘述。
步骤 23: 基站与 B-UE建立无线连接。
基站可以采用广播消息或专用寻呼消息接入 B-UE, 具体可以参见第一 实施例, 不再赘述。
可以理解的是, 步骤 21-23无时序限制关系。
步骤 24: 基站进行初始配置。
例如, 基站为每个与基站建立无线连接的 B-UE分配带宽。
通过 B-UE及对应的无线连接和有线连接, 基站与传输网建立了连接。 以上行为例, 可以执行如下步骤:
步骤 25: 基站通过无线连接向 B-UE发送数据。
基站可以釆用不同的资源利用方式向 B-UE发送数据,例如,多个 B-UE 共同分担基站发送的数据,或者,多个 B-UE都传输相同的基站发送的数据。 而且, 不论是共同分担数据还是传输相同的数据,该多个 B-UE可以是全部 的与传输网有线连接的 B-UE, 也可以是传输网有线连接的 B-UE中的一部 分。 当然, 还可以采用主备方式。 并且, 为了增强数据传输的质量, 可以 采用定向天线或者预校正的方式。 具体可参见第一实施例, 不再赘述。
步骤 26: B-UE通过有线连接将该数据转发给传输网。
之后, 通过传输网可以将数据发送给传输网另一端的设备, 例如, 基 站控制设备和 /或基站。
B-UE可以釆用不同的转发方式, 例如, 在层 3进行转发, 或者, 在层 2进行转发, 或者通过汇聚设备转发。 以传输网另一端的设备为基站控制设 备为例, 举例如下:
方式一, B-UE通过层 3转发该基站和该基站控制设备之间传输的数据。 这种方式下, B-UE可以理解为基站的网关。
具体地, 在上行, B-UE接收基站发送的 IP数据包, 包头中的源 IP地 址为基站的 IP地址, 目的 IP地址为基站控制设备的 IP地址, B-UE接收到 该数据包后不进行解析处理, 透明地将该数据包转发给基站控制设备, 即 对于基站来讲, B-UE是透明的。
在下行, B-UE接收基站控制设备发送的 IP数据包, 包头中的源 IP地 址为基站控制设备的 IP地址, 目的 IP地址为基站的 IP地址, B-UE接收到 该数据包后不进行解析处理, 透明地将该数据包转发给基站, 即对于基站 控制设备来讲, B-UE是透明的。
值得说明的是, 本发明实施例中涉及的上行是指从基站到 B-UE、 再到 基站控制设备的路径, 下行是指从基站控制设备到 B-UE再到基站的路径。
方式二, B-UE通过层 2转发该基站和该基站控制设备之间传输的数据。 这种方式下, B-UE可以理解为基站的地址解析协议( Address Resolution Protocol, ARP ) 代理。 具体地, 在上行, 基站发送 ARP请求, B-UE响应该 ARP请求, 并将 B-UE的媒体接入控制 (Media Access Control, MAC )地址通过 ARP响应 发送给基站, 以便基站根据 B-UE的 MAC地址发送数据帧。 B-UE接收基 站发送的数据帧, 帧头中的源 MAC地址为基站的 MAC地址, 目的 MAC 地址为 B-UE的 MAC地址, B-UE接收到该数据帧将源 MAC地址更换为 B-UE的 MAC地址, 目的 MAC地址更换为基站控制设备的 MAC地址, 之后发送给基站控制设备。由于此种方式下 B-UE仍旧不对数据内容进行解 析, 因此, 该方式下, 对于基站来讲, B-UE依然是透明的。
在下行, 基站控制设备发送 ARP请求, B-UE响应该 ARP请求, 并将 B-UE的 MAC地址通过 ARP响应发送给基站控制设备,以便基站控制设备 根据 B-UE的 MAC地址发送数据帧。 B-UE接收基站控制设备发送的数据 帧, 帧头中的源 MAC地址为基站控制设备的 MAC地址, 目的 MAC地址 为 B-UE的 MAC地址, B-UE接收到该数据帧将源 MAC地址更换为 B-UE 的 MAC地址, 目的 MAC地址更换为基站的 MAC地址,之后发送给基站。 由于此种方式下 B-UE仍旧不对数据内容进行解析, 因此, 该方式下, 对于 基站控制设备来讲, B-UE依然是透明的。
方式三, B-UE与汇聚设备建立隧道连接, 通过隧道转发该基站和该基 站控制设备之间传输的数据。
该方式下, 在系统中可以部署一个专用汇聚设备。 可以釆用二层隧道 协议或者三层隧道协议, 例如, 层 2隧道协议(Layer 2 Tunneling Protocol, L2TP )或者 IP安全协议( IP security, IPsec ), 建立 B-UE与汇聚设备之间 的隧道。
具体地, 在上行, 基站将数据发送给 B-UE, B-UE采用隧道协议, 将 该数据进行封装, 之后, 通过建立的隧道将封装后的数据发送给汇聚设备。 汇聚设备再根据隧道协议进行解封装, 将解封装后的数据发送给基站控制 设备。 由于存在汇聚设备, 多个 B-UE 可以同时接入一个汇聚设备, 一个 UE的业务可以承载在多个 B-UE的通道上, 可以为单个 UE提供超过单个 B-UE的带宽的服务。
至此, 基站控制设备接收到了基站发送的数据, 完成了上行方向的数 据发送。 对于下行, 同样可以采用上述的方式, 只是在方向上是相反的。
图 5为本发明第二实施例在 LTE系统中的用户面协议栈的示意图, 涉 及的网元从左至右依次为: 通过无线空口接入基站的 UE、 通过 B-UE接入 传输网的基站 ( eNB )、 作为回传接入点的 B-UE及传输网另一端的用于数 据控制的基站对端设备(比如服务网关 SGW/基站 eNB )。
图 6为本发明第二实施例在 LTE系统中的信令面协议栈的示意图, 涉 及的网元从左至右依次为: 通过 B-UE接入传输网的基站 (eNB )、 作为回 传接入点的 B-UE及传输网另一端的用于信令控制的基站控制设备 MME和 /或基站 e鳳
图 7 为本发明第二实施例在 WCDM A 系统中的用户面协议栈的示意 图, 涉及的网元从左至右依次为: 通过无线空口接入基站的 UE、通过 B-UE 接入传输网的基站 ( NodeB )、 作为回传接入点的 B-UE及传输网另一端的 基站控制设备(RNC )。
从图 5-7可以看出, 在不同的系统中, B-UE可以具有相应的协议栈格 式, 从而可以通过 B-UE实现基站与对端设备之间的回传。
本发明实施例中基站通过 B-UE接入传输网,实现基站与传输网之间的 通信, 可以无需部署基站与传输网直接的有线连接, 节省网络部署成本; 无需采用微波实现基站与传输网的通信, 可以避免采用微波时需要的直达 路径问题。
本实施例采用多个 B-UE提供服务,可以避免单点受限问题,有效利用 单个 B-UE的带宽或者提供良好的 QoS保证, 提高可靠性。
本实施例采用 B-UE将基站接入传输网,由于回传路径的上行是基站到 B-UE的方向, 回传路径的下行是 B-UE到基站的方向, 而普通空口传输的 上行是 UE到基站的方向, 下行是基站到 UE的方向, 因此, 普通 UE与基 站的通信路径和回传路径的上行和下行互补, 实现空口资源的高效利用。
本实施例通过采用无线增强技术, 可以提高空口传输能力, 减少空 口资源的使用。 在 LTE 系统中, 当一个基站通过 B-UE接入另一个基站 直接接入的传输网后, 可以通过 B-UE 及传输网实现基站与基站之间的 X2接口。
由于 B-UE所属的系统可以不同,因此可以用原属于一种系统的 B-UE 作为另一种新的系统的回传节点, 实现对原有系统的重利用, 节省投入开 支。
图 8为本发明第三实施例的方法流程示意图, 图 9为本发明第三实施 例对应的第一系统的结构示意图, 图 10为本发明第三实施例对应的第二系 统的结构示意图。 图 9、 10中以两个 B-UE及两个 UE为例进行说明, 当然, B-UE及 UE的个数还可以增加。 图 9中以一个基站, 例如 eNB、 NodeB或 者 BTS (即 eNB/NodeB/BTS ) 为例, 传输网另一端的设备为基站控制设备 或其他设备,例如 RNC、 MME、 SGW或者 BSC(即 RNC/MME/SGW/BSC ); 图 10中以两个基站为例, 在图 10中, 一个基站 (eNB/NodeB/BTS )通过 B-UE接入传输网, 另一个基站直接接入传输网, 即传输网另一端的设备为 基站控制设备或其他设备, 当然, 也可能是基站(eNB/NodeB/BTS )。 通过 B-UE和传输网, 不仅可以实现基站与基站控制设备之间的通信, 还可以实 现基站间的通信。
本实施例在第二实施例的基础上增加一个与 B-UE 及传输网有线连接 的汇聚设备。 参见图 8, 本实施例包括:
步骤 81-85: 与步骤 21-25对应相同。
步骤 86: B-UE建立与专用汇聚设备之间的隧道, 并通过该隧道转发基 站发送的数据至专用汇聚设备。
B-UE可以釆用协议建立隧道, 之后, 釆用对基站发送的数据进行隧道 协议封装后, 通过该隧道发送给封装后的数据。
可以理解的是, B-UE与专用汇聚设备之间的隧道也可以是 B-UE在接 收到基站发送的数据之前预先建立的。
步骤 87: 专用汇聚设备对各 B-UE发送的数据进行合并处理。
由于专用汇聚设备与系统中的所有 B-UE连接, 因此在上行, 专用汇聚 设备是将 B-UE发送的数据进行合并处理。
步骤 88: 专用汇聚设备通过与传输网的有线连接, 转发该合并后的数 据给传输网。
之后, 通过传输网可以将数据发送给传输网另一端的设备, 例如, 基 站控制设备和 /或基站。
至此, 传输网另一端的设备, 例如基站控制设备, 接收到了基站发送 的数据, 完成了上行方向的数据发送。 对于下行, 同样可以采用上述的方 式, 只是在方向上是相反的, 并且, 在专用汇聚设备上需要将各 B-UE对应 数据进行分配, 替代上行的合并。
本实施例中同样可以采用第二实施例中的相关协议栈, 协议栈的结构 可以参见第二实施例, 不再赘述。
本实施例在第二实施例的基础上, 由于采用了专用汇聚设备, 负荷 分担在下行由专用汇聚设备完成, 在上行由基站完成, 分担效率比较高。 可以只在专用汇聚设备上代理基站的 IP地址, B-UE作为传输通路, 无需 代理基站的 IP地址, 避免在每个 B-UE上配置基站的 IP地址。 单个普通 UE的业务可以承载在多个 B-UE的通路上, 可以为单个 UE提供超过单 个 B-UE带宽的服务。
图 11为本发明第四实施例的基站的结构示意图, 包括建立模块 111和 传输模块 112, 其中, 建立模块 111用于与至少两个 B-UE分别建立无线连 接, 该 B-UE为与基站的对端设备通过有线传输网进行有线连接的 UE; 传 输模块 112用于通过建立的无线连接与该至少两个 B-UE传输回传数据,该 回传数据为该基站和该对端设备之间的数据。
本实施例的基站通过 B-UE接入基站的对端设备, 可以降低成本。通过 多个 B-UE为基站提供服务, 可以避免单点传输受限的问题。
图 12为本发明第五实施例的基站的结构示意图,包括建立模块 121和传 输模块 122。
其中, 该建立模块 121可以包括第一单元 1211和 /或第二单元 1212; 该第一单元 1211 用于向该至少两个 B-UE发送广播消息, 当该至少两个 B-UE主动接入后, 与主动接入的至少两个 B-UE分别建立无线连接; 该第 二单元 1212 用于向该至少两个 B-UE发送专用寻呼消息, 当该至少两个 B-UE被动接入后, 与被动接入的至少两个 B-UE分别建立无线连接。
对于上行回传数据,该传输模块 122可以包括第三单元 1221和 /或第四 单元 1222;该第三单元 1221用于采用与该至少两个 B-UE对应的定向天线, 向该至少两个 B-UE发送无线回传数据; 该第四单元 1222用于根据空口特 性对待发送的无线回传数据进行无线预校正,向该至少两个 B-UE分别发送 无线预校正后的数据。
对于下行回传数据,该传输模块 122可以包括第五单元 1223和 /或第六 单元 1224; 该第五单元 1223用于接收该至少两个 B-UE分别采用与该基站 对应的定向天线, 分别向该基站发送的无线回传数据; 该第六单元 1224用 于接收该至少两个 B-UE 分别根据空口特性对待发送的无线回传数据进行 无线预校正, 向该基站分别发送的无线预校正后的数据。
若该至少两个 B-UE通过专用汇聚设备接入该传输网, 该传输模块 122 可以包括第七单元 1225,该第七单元 1225用于将一个用户所对应的回传数 据划分为与该至少两个 B-UE 的个数相同的数据组, 每组数据对应一个 B-UE, 分别将各组数据通过建立的无线连接发送到对应的 B-UE。
若该至少两个 B-UE直接接入该传输网,该传输模块 122可以包括第八 单元 1226,该第八单元 1226用于将一个用户所对应的回传数据通过与该至 少两个 B-UE中的一个 B-UE的无线连接, 发送到相应的 B-UE。
本实施例的基站通过 B-UE接入基站的对端设备, 可以降低成本。通过 多个 B-UE为基站提供服务, 可以避免单点传输受限的问题。
图 13为本发明第六实施例的系统的结构示意图, 包括 B-UE 131和基 站 132。 B-UE 131至少为两个, 分别与该基站 132的对端设备通过有线传 输网进行有线连接。 基站 132和至少两个 B-UE 131分别无线连接。 该基站 132通过建立的无线连接与该至少两个 B-UE 131传输回传数据, 该回传数 据为该基站和该对端设备之间的数据。
具体的建立有线连接、 无线连接及数据转发的方法可以参见上述的方 法实施例, 不再赘述。
其中, 基站 132可以具体为图 11或图 12所示的基站。
本实施例中, 还可以包括普通的用户设备, 即 UE 133, UE 133通过正常 的方式接入基站 132。 基站 132也可以为多个, 图 13中以两个基站为例, 可 以理解的是, 系统中还可以包括三个以上的基站。 两个基站 132连接同一个 B-UE, 如果应用在 LTE系统中, 则通过 B-UE可以实现两个基站之间的 X2 接口。
本实施例中基站通过 B-UE接入基站的对端设备,实现基站与基站的对 端设备之间的通信, 可以无需部署基站与基站的对端设备直接的有线连接, 节省网络部署成本; 无需釆用微波实现基站与基站的对端设备的通信, 可 以避免采用微波时需要的直达路径问题。
本实施例采用多个 B-UE提供服务,可以避免单点受限问题,有效利用 单个 B-UE的带宽或者提供良好的 QoS保证, 并且可以提高可靠性。 本实 施例采用 B-UE将基站接入基站的对端设备,使得普通 UE的上行相当于回 传路径的下行, 使上行和下行互补, 实现空口资源的高效利用。
本实施例通过采用无线增强技术, 可以提高空口传输能力, 减少空口 资源的使用。 由于不同的基站可以接入同一个 B-UE, 因此可以通过 B-UE 实现基站与基站之间的 X2接口。 由于 B-UE所属的系统可以不同, 因此可 以用一种系统的 B-UE作为另一种新的系统的回传节点,实现对原有系统的 重利用, 节省投入开支。
图 14为本发明第七实施例的系统的结构示意图, 包括 B-UE 141、基站 142, 还包括专用汇聚设备 143, 还可以包括普通的用户设备, 即 UE 144。 专用汇聚设备 143位于该至少两个 B-UE 141与该传输网之间, 用于将该至 少两个 B-UE 141有线接入该传输网, 以实现该基站 142的对端设备的有线 连接。 图 14中用虚线表示无线连接, 用实线表示有线连接。 在上行, 专用 汇聚设备 143将两个以上的 B-UE 141发送的数据合并后发送给基站的对端 设备, 在下行, 专用汇聚设备 143 将基站的对端设备发送的数据进行分配 后发送给不同的 B-UE。 其余设备的功能可以参见第六实施例, 不再赘述。
本实施例在第六实施例的基础上, 由于采用了专用汇聚设备, 负荷分 担在下行由汇聚设备完成, 在上行由基站完成, 分担效率比较高。 可以只 在专用汇聚设备上代理基站的 IP地址, B-UE作为传输通路, 无需代理基 站的 IP地址, 避免在每个 B-UE上配置基站的 IP地址。 单个普通 UE的业 务可以承载在多个 B-UE的通路上, 可以为单个 UE提供超过单个 B-UE带 宽的服务。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM、 磁碟或者光盘等各种可以存储程序 代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非对其 进行限制, 尽管参照较佳实施例对本发明进行了详细的说明, 本领域的普 通技术人员应当理解: 其依然可以对本发明的技术方案进行修改或者等同 替换, 而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技 术方案的范围。

Claims

权利要求
1、 一种数据传输方法, 其特征在于, 包括:
基站与至少两个回传用户设备 B-UE分别建立无线连接,所述 B-UE为 与基站的对端设备通过有线传输网进行有线连接的 UE;
基站通过建立的无线连接与所述至少两个 B-UE传输回传数据,所述回 传数据为所述基站和所述对端设备之间的数据。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述基站与至少两个 B-UE分别建立无线连接包括:
基站向所述至少两个 B-UE发送广播消息, 当所述至少两个 B-UE主动 接入后, 与主动接入的至少两个 B-UE分别建立无线连接;
或者,
基站向所述至少两个 B-UE发送专用寻呼消息, 当所述至少两个 B-UE 被动接入后, 与被动接入的至少两个 B-UE分別建立无线连接。
3、 根据权利要求 2所述的方法, 其特征在于, 所述基站通过建立的无 线连接与所述至少两个 B-UE传输回传数据, 包括:
对于上行回传数据, 基站采用与所述至少两个 B-UE对应的定向天线, 向所述至少两个 B-UE发送回传数据; 和 /或, 基站根据空口特性对待发送 的回传数据进行无线预校正,向所述至少两个 B-UE分别发送无线预校正后 的数据;
或者,
对于下行回传数据,基站接收所述至少两个 B-UE分别釆用与所述基站 对应的定向天线, 分别向所述基站发送的回传数据; 和 /或, 基站接收所述 至少两个 B-UE分别根据空口特性对待发送的回传数据进行无线预校正,向 所述基站分别发送的无线预校正后的数据。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于,
若所述至少两个 B-UE通过专用汇聚设备接入所述传输网,所述基站通 过建立的无线连接与所述至少两个 B-UE传输回传数据, 包括:
所述基站将一个用户所对应的回传数据划分为与所述至少两个 B-UE 的个数相同的数据组, 每组数据对应一个 B-UE, 分别将各组数据通过建立 的无线连接发送到对应的 B-UE; 和 /或
若所述至少两个 B-UE直接接入所述传输网,所述基站通过建立的无线 连接与所述至少两个 B-UE传输回传数据, 包括:
所述基站将一个用户所对应的回传数据通过与所述至少两个 B-UE 中 的一个 B-UE的无线连接, 发送到相应的 B-UE。
5、 根据权利要求 4所述的方法, 其特征在于,
若所述至少两个 B-UE通过专用汇聚设备接入所述传输网,所述方法还 包括:
所述至少两个 B-UE与所述专用汇聚设备建立隧道连接,通过所述隧道 及所述专用汇聚设备, 将所述回传数据发送到所述对端设备; 和 /或,
若所述至少两个 B-UE直接接入所述传输网, 所述方法还包括: 所述至少两个 B-UE作为所述基站的地址解析协议 ARP代理或者作为 所述基站的网关, 将所述回传数据发送到所述对端设备。
6、 一种基站, 其特征在于, 包括:
建立模块,用于与至少两个回传用户设备 B-UE分别建立无线连接,所 述 B-UE为与基站的对端设备通过有线传输网进行有线连接的 UE;
传输模块,用于通过建立的无线连接与所述至少两个 B-UE传输回传数 据, 所述回传数据为所述基站和所述对端设备之间的数据。
7、 根据权利要求 6所述的基站, 其特征在于, 所述建立模块包括: 第一单元,用于向所述至少两个 B-UE发送广播消息, 当所述至少两个
B-UE主动接入后 , 与主动接入的至少两个 B-UE分别建立无线连接;
和 /或,
第二单元,用于向所述至少两个 B-UE发送专用寻呼消息, 当所述至少 两个 B-UE被动接入后, 与被动接入的至少两个 B-UE分别建立无线连接。
8、 根据权利要求 7所述的基站, 其特征在于,
对于上行回传数据, 所述传输模块包括:
第三单元,用于采用与所述至少两个 B-UE对应的定向天线, 向所述至 少两个 B-UE发送回传数据; 和 /或,
第四单元, 用于根据空口特性对待发送的回传数据进行无线预校正, 向所述至少两个 B-UE分别发送无线预校正后的数据;
或者,
对于下行回传数据, 所述传输模块包括:
第五单元,用于接收所述至少两个 B-UE分别釆用与所述基站对应的定 向天线, 分别向所述基站发送的回传数据; 和 /或,
第六单元,用于接收所述至少两个 B-UE分别根据空口特性对待发送的 回传数据进行无线预校正, 向所述基站分别发送的无线预校正后的数据。
9、 根据权利要求 6至 8任一项所述的基站, 其特征在于,
若所述至少两个 B-UE通过专用汇聚设备接入所述传输网,所述传输模 块包括:
第七单元, 用于将一个用户所对应的回传数据划分为与所述至少两个 B-UE的个数相同的数据组, 每组数据对应一个 B-UE, 分别将各组数据通 过建立的无线连接发送到对应的 B-UE; 和 /或
若所述至少两个 B-UE直接接入所述传输网, 所述传输模块包括: 第八单元, 用于将一个用户所对应的回传数据通过与所述至少两个 B-UE中的一个 B-UE的无线连接, 发送到相应的 B-UE。
10、 一种数据传输系统, 其特征在于, 包括: 至少两个回传用户设备 B-UE, 以及如权利要求 6-9任一项所述的基站,
其中, 所述基站与所述至少两个 B-UE分别建立无线连接;
所述至少两个 B-UE 与所述基站的对端设备通过有线传输网进行有线 连接;
所述基站通过建立的无线连接与所述至少两个 B-UE传输回传数据,所 述回传数据为所述基站和所述对端设备之间的数据。
11、 根据权利要求 10所述的系统, 其特征在于,
所述至少两个 B-UE用于: 作为所述基站的地址解析协议 ARP代理或 者作为所述基站的网关, 将所述回传数据发送到所述对端设备。
12、 根据权利要求 10所述的系统, 其特征在于, 还包括:
专用汇聚设备,位于所述至少两个 B-UE与所述传输网之间, 用于将所 述至少两个 B-UE有线接入所述传输网;
所述至少两个 B-UE用于: 与所述专用汇聚设备建立隧道连接,通过所 述隧道及所述专用汇聚设备, 将所述回传数据发送到所述对端设备。
PCT/CN2010/080092 2009-12-25 2010-12-22 数据传输方法、基站和数据传输系统 WO2011076115A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910265514.9 2009-12-25
CN 200910265514 CN101742695B (zh) 2009-12-25 2009-12-25 数据传输方法、基站和数据传输系统

Publications (1)

Publication Number Publication Date
WO2011076115A1 true WO2011076115A1 (zh) 2011-06-30

Family

ID=42465373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080092 WO2011076115A1 (zh) 2009-12-25 2010-12-22 数据传输方法、基站和数据传输系统

Country Status (2)

Country Link
CN (1) CN101742695B (zh)
WO (1) WO2011076115A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742695B (zh) * 2009-12-25 2013-01-09 华为技术有限公司 数据传输方法、基站和数据传输系统
WO2016029446A1 (zh) * 2014-08-29 2016-03-03 华为技术有限公司 WiFi回传方法、基站和数据中心
CN110351024B (zh) * 2018-04-04 2021-06-15 华为技术有限公司 数据传输方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964521A (zh) * 2005-11-11 2007-05-16 上海贝尔阿尔卡特股份有限公司 一种在无线通信网络中的无线自回传方法及装置
CN1998254A (zh) * 2004-06-09 2007-07-11 瓦努股份有限公司 降低蜂窝回传的成本
CN101014173A (zh) * 2006-12-31 2007-08-08 姜宏伟 一种传送通信基站监控数据的方法及系统
CN101335715A (zh) * 2008-07-21 2008-12-31 华为技术有限公司 无线自回传的方法、装置和系统
EP2111072A2 (en) * 2008-03-21 2009-10-21 Fujitsu Ltd. Communication apparatus and method for controlling communication apparatus
CN101742695A (zh) * 2009-12-25 2010-06-16 华为技术有限公司 数据传输方法、基站和数据传输系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1998254A (zh) * 2004-06-09 2007-07-11 瓦努股份有限公司 降低蜂窝回传的成本
CN1964521A (zh) * 2005-11-11 2007-05-16 上海贝尔阿尔卡特股份有限公司 一种在无线通信网络中的无线自回传方法及装置
CN101014173A (zh) * 2006-12-31 2007-08-08 姜宏伟 一种传送通信基站监控数据的方法及系统
EP2111072A2 (en) * 2008-03-21 2009-10-21 Fujitsu Ltd. Communication apparatus and method for controlling communication apparatus
CN101335715A (zh) * 2008-07-21 2008-12-31 华为技术有限公司 无线自回传的方法、装置和系统
CN101742695A (zh) * 2009-12-25 2010-06-16 华为技术有限公司 数据传输方法、基站和数据传输系统

Also Published As

Publication number Publication date
CN101742695B (zh) 2013-01-09
CN101742695A (zh) 2010-06-16

Similar Documents

Publication Publication Date Title
EP2519043B1 (en) Methods, apparatuses and computer program for providing source connection identifier for a requested connection
US9883441B2 (en) Method and apparatus to route packet flows over two transport radios
US10548024B2 (en) Cloud communication center system and method for processing data in a cloud communication system
EP2427002B1 (en) Method, device and system for transmitting relay data
US10616931B2 (en) Optimized user equipment supporting relay communication, and related method
EP2744260B1 (en) Data transmission method and device
WO2011012049A1 (zh) 自回传方法、装置及系统
US20120008554A1 (en) Local pdn access method in wireless communication system
JP7147883B2 (ja) gNB-CU-UPにおける完全性保護のハンドリング
US10595354B1 (en) Communicating with a wireless device via at least two access nodes
WO2018127018A1 (zh) 多链接通信方法、设备和终端
US20220217505A1 (en) Message transmission method and apparatus
WO2021062803A1 (zh) 一种数据包传输方法及装置
WO2011076115A1 (zh) 数据传输方法、基站和数据传输系统
WO2024031289A1 (zh) 网络节点的通信方法、移动节点的通信方法、移动节点和宿主设备
WO2022151298A1 (zh) 群组迁移方法、装置和系统
EP4021072A1 (en) Data processing method, apparatus, and system
WO2022205485A1 (zh) 信息收发方法以及装置
EP4319271A1 (en) Method for sending and receiving information, method for sending data, and apparatus
CN111510929A (zh) Iab网络中进行lcid扩展的方法及装置
WO2024065289A1 (en) Method and apparatus for iab node integration
US20230308975A1 (en) Group migration method and apparatus and system
RU2803196C1 (ru) Способ передачи пакета данных и устройство
WO2023130260A1 (zh) Rrc消息的配置方法、装置和系统
WO2024016143A1 (zh) 一种计算协作方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10838678

Country of ref document: EP

Kind code of ref document: A1