WO2011076052A1 - 一种亮度测量装置 - Google Patents

一种亮度测量装置 Download PDF

Info

Publication number
WO2011076052A1
WO2011076052A1 PCT/CN2010/079177 CN2010079177W WO2011076052A1 WO 2011076052 A1 WO2011076052 A1 WO 2011076052A1 CN 2010079177 W CN2010079177 W CN 2010079177W WO 2011076052 A1 WO2011076052 A1 WO 2011076052A1
Authority
WO
WIPO (PCT)
Prior art keywords
photodetector
lens
measuring device
brightness
aperture
Prior art date
Application number
PCT/CN2010/079177
Other languages
English (en)
French (fr)
Inventor
潘建根
Original Assignee
杭州远方光电信息股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN200920353426XU external-priority patent/CN201611279U/zh
Priority claimed from CN 200910215557 external-priority patent/CN101813517B/zh
Application filed by 杭州远方光电信息股份有限公司 filed Critical 杭州远方光电信息股份有限公司
Publication of WO2011076052A1 publication Critical patent/WO2011076052A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/029Multi-channel photometry

Definitions

  • the present invention relates to a measuring optical radiation measuring device, and more particularly to a brightness measuring device. ⁇ Background technique ⁇
  • Brightness or radiance refers to the light intensity (radiation intensity) of a light source in a certain direction per unit area, in cd/m 2 (W/m 2 / S r), which directly reflects the perception of light by the human eye. Display, lighting engineering and light source design have a wide range of applications. Therefore, convenient and accurate measurement of brightness (radiance) is very important.
  • the instrument for measuring brightness is a brightness meter.
  • the current brightness meter can be divided into a light-blocking calorimeter, a sight-point luminance meter, and an image brightness meter.
  • the light-shielding type brightness meter measures the brightness by the contact method, and the measured area is large, and the measurement has limitations and low precision. Both the sight-point luminance meter and the image luminance meter have an imaging lens that measures brightness by a non-contact method.
  • the image brightness meter has a two-dimensional CCD photosensitive element, and the spectral sensitivity of the CCD pixel is matched with the ⁇ ( ⁇ ) curve or other required spectral function by adding a color filter in front of the CCD photosensitive element, and is imaged once.
  • the spectral matching of image luminance meters is generally lower than that of high-precision color filter-type point-of-light luminance meters, and since the spectral sensitivity of each CCD pixel in a two-dimensional CCD is different, it is difficult to Different color filters are arranged in front of each CCD.
  • the existing image type luminance meter has a large spectral sensitivity mismatch inconsistency error, and the overall accuracy is affected.
  • the Chinese Patent Publication No. CN201219753Y discloses a brightness measuring device, which refers to measuring the average spectrum of the entire measured image with a spectrometer, for each of the image luminance meters. The measured values of the pixels are spectrally corrected, which in turn is expected to reduce the measurement error, but the spectrum measured by the spectrometer in this method cannot form a pair with each pixel point in the image luminance meter. It should be said that there will still be large inconsistency measurement errors objectively.
  • the illuminating spectrum of the measured light source is not uniform, then the purpose of reducing the measurement error can not be achieved, and it is very likely that the measurement error is further increased.
  • the narrow linear dynamic range of the two-dimensional CCD sensor will also bring errors to the measurement. Especially when the difference between the brightness of the calibration source and the brightness of the measurement target is large, this error will be more obvious.
  • the sight-point luminance meter In the classic sight-point luminance meter, it is possible to accurately aim and measure the brightness or radiance of a point by setting a small-hole field diaphragm in front of the detecting element. Depending on the detector element, the sight-point luminance meter can be further divided into a color filter type and a spectral type.
  • the US publication No. US2007/0272844A1 has a filter point type brightness in which both the color filter type and the spectral type are switched to each other. meter.
  • the existing aiming point luminance meter is impossible to realize the memory of information such as the scene around the measuring point, and it is even more impossible to measure and record the brightness distribution value of the surrounding scene in the form of image.
  • the present invention aims to provide a brightness measuring device with high degree of intelligence, convenient operation, accurate alignment, good repeatability and high measurement accuracy;
  • This brightness measuring device can not only display and record the brightness or spectral highlight of the target point.
  • Such a brightness measuring device is capable of displaying and recording image information or a brightness distribution image of the surroundings of the aimed point.
  • a brightness measuring device comprising a casing, a lens is arranged on the casing, the lens is aimed at the target to be measured, and the measured light beam emitted from the object to be measured enters the machine from the lens a first photodetector, a second photodetector, and a small aperture field stop, wherein the first photodetector is a single channel detector or a multichannel detector, The second photodetector is a multi-channel detector; the light beam emerging from the lens is divided into at least two paths, one of which passes through the aperture of the aperture field and is incident on the first photodetector, and the other of which is incident on the second photodetection
  • the first photodetector and the second photodetector are respectively located on the optical paths on both sides of the aperture stop of the aperture.
  • the object to be measured is imaged by the lens to the aperture field diaphragm and the second photodetector, and the beam from the object to be measured and passing through the aperture of the aperture is single-channel or multi-channel.
  • the detector receives and measures the brightness thereof, or the partial beam passes through the multi-channel first photodetector on which the beam dispersed in the spectral order is incident through the collecting device and the optical dispersing device, and measures the brightness and spectral distribution of the portion of the beam.
  • Optical parameters The light beam received by the second photodetector does not pass through the aperture field field stop.
  • the second photodetector receives the reflected beam from the aperture stop field or from the lens and aperture field of view light. The outgoing beam of the splitter between the turns.
  • an area of the object to be measured which forms an optical imaging conjugate relationship with the aperture in the aperture stop of the aperture is referred to as an aiming point.
  • the first photodetector measures the brightness or spectral radiance of the aiming point by measuring the measured light passing through the small hole of the aperture stop of the aperture, and realizes the measurement function of the aiming type luminance meter.
  • the second photodetector is a multi-channel detector, which receives the light beam of the measured object in the entire field of view covered by the second photodetector, measures image information of the measured object, and obtains illumination information of the surrounding environment of the aiming point.
  • the illumination information of the surrounding environment of the aiming point can not only be displayed in real time, but also can be electronically recorded, so that the brightness measurement operation is simple.
  • the aiming point is positioned accurately, the measurement state is traceable, and the repeatability of multiple measurements is high.
  • the ⁇ ( ⁇ ) or ⁇ ( ⁇ ) curve correction filter is added in front of the second photodetector, and the brightness measuring device of the present invention can realize the function of the image type luminance meter, and measure the brightness distribution of the object to be measured.
  • the second photodetector and the first photodetector both measure the brightness of the aiming point, and the first photodetector has a higher measurement accuracy, the result of the first photodetector can be used to correct the second photodetector.
  • the absolute value of the obtained image brightness gives a more accurate absolute brightness distribution of the measured object. According to the CIE technical file, the brightness values of the visual, dark and intermediate visions can be calculated by calculation.
  • the aperture view field stop is a mirror with a small aperture
  • the first photodetector receives a light beam from the lens and passes through the aperture stop of the aperture
  • the second photodetector receives the lens from the aperture and is apertured. The beam reflected by the field diaphragm.
  • the first photodetector measures a small area of the light beam passing through the small hole in the object to be measured, that is, an optical parameter such as a brightness of the aiming point or a spectral spread; the mirror reflects the other light beam entering the lens to the second
  • the second photodetector since the beam of the aimed point passing through the aperture does not participate in the reflection, the second photodetector does not receive the beam of the aiming point, and in the image measured by the second photodetector, there is a
  • the black dot area which reflects the image of the aiming point, is the area measured by the first detector. Use this phenomenon to be precise Position the aiming point.
  • a first beam splitter is disposed in the optical path behind the lens, the first beam splitter receives the light beam from the lens, one beam of the first beam splitter is received by the second photodetector, and the other beam of the first beam splitter The pupil passing through the aperture field is received by the first photodetector.
  • the first beam splitter may be a beam splitting prism, a splitting cube prism or a plane mirror coated with a partially transmissive partial antireflection film, or the first beam splitter may also be a plane mirror that cuts in or cuts off the light path.
  • the aperture field stop and the second detector are typically at the optical image plane position of the lens for the object being measured, i.e., the two are optically conjugated.
  • both the first photodetector and the second photodetection measure the aiming point.
  • the second photodetector is preceded by a ⁇ ( ⁇ ) curve correction color filter
  • the measured absolute value of the second photodetector can be corrected by the brightness of the aiming point measured by the first photodetector.
  • the color filter for V' ( ⁇ ) curve correction is added to the second photodetector, the brightness values of the visual, dark, and intermediate visions can be calculated by the CIE technical file.
  • the above casing includes a light collecting device and an optical dispersing device, and the optical dispersing device receives a light beam passing through the aperture stop field of view through the light collecting device, that is, a light beam from the aiming point, wherein the first photodetector is multi-channel
  • the detector is a photodetection portion of the optical dispersion device.
  • the optical dispersion device of the present technology enables spectral measurement of the aiming point and calculates luminance and radiance values based on the spectral data without spectral mismatch errors.
  • the first photodetector described above is a one- or two-dimensional photodetector array such as a photo-electric charge coupler (CCD) or a photodiode array or a CMOS photo-electric array.
  • the second photodetector can also be provided before the second photodetector described above.
  • a primary optical image from the lens is imaged onto the second detector by a secondary optical imaging device.
  • the second photodetector in the present invention is a two-dimensional photodetector array, such as two-dimensional photoelectric Charge Coupler (CCD) or Photodiode Array or CMOS Photovoltaic Array.
  • CCD photoelectric Charge Coupler
  • CMOS Photovoltaic Array CMOS Photovoltaic Array
  • a color filter may be disposed on the optical path between the lens and the second photodetector to make the relative spectral sensitivity of each pixel of the second photodetector and the ⁇ ( ⁇ ) curve, the V' ( ⁇ ) curve or other
  • the required spectral function is fitted to achieve brightness or radiance measurement.
  • the combination of the lens and the second detector has an image luminance meter function in addition to the camera function, and is capable of measuring the target point. The brightness of each point around it, that is, the image brightness or brightness distribution image.
  • a second beam splitter is disposed on a subsequent optical path of the aperture stop field, and a beam of the second beam splitter is received by the first multi-channel photodetector.
  • the other outgoing light of the second beam splitter is received by a single or multi-channel third photodetector.
  • the second beam splitter may be a cube prism composed of two right-angle prisms and plated with a semi-transparent film on the surface where the two prisms are bonded, or a plane mirror coated with a semi-transparent film, or a bifurcated fiber. .
  • a color filter is typically placed in front of the single or multi-channel third photodetector described above to provide a relative spectral sensitivity of the third photodetector to a ⁇ ( ⁇ ) curve or a color tristimulus value curve or other specific desired spectral function. Fit, measure the corresponding brightness or other specific optical quantity.
  • the single-channel detector described above can be a silicon photocell or a photomultiplier tube. In combination with the first photodetector, the linear dynamic range of the detector can be broadened to improve the accuracy of the brightness measurement of the target point.
  • a pupil assembly and an optical dispersion device are typically provided in front of the first photodetector described above for measuring the spectral distribution of the beam passing through the aperture stop.
  • the aperture field field stop described in the brightness measuring device of the present invention is a pupil having a circular hole or a square hole or a polygonal hole or a complicated graphic hole at a position of the image plane of the target to be measured, which can be small by a switching mechanism.
  • the hole is cut into the light path as needed for the target to be measured.
  • a microprocessor and an electronic memory device are disposed in the casing, and the first photodetector and the second photodetector are electrically connected to the microprocessor.
  • an image display unit is disposed on the casing, and the image display unit is electrically connected to the microprocessor.
  • the image display unit can display the entire image of the target to be measured and the position of the target point, and can also display the measured brightness and spectral radiance values, as well as the spectral distribution. Measurement results, including images, can be recorded and saved in an electronic memory device.
  • the first photodetector of the brightness measuring device of the present invention realizes the measurement of the brightness or radiance or spectral radiance of the aiming point
  • the second photodetector realizes the illuminating information of the surrounding environment of the aiming point, or the brightness distribution of the image, Or measurement of brightness image, easy to operate, recordable, repeatability, measurement accuracy! 3 ⁇ 4 °
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • Figure 2 is a schematic structural view of Embodiment 2 of the present invention.
  • Figure 3 is a schematic structural view of Embodiment 3 of the present invention.
  • Figure 4 is a schematic view showing the structure of Embodiment 4 of the present invention.
  • 1, 2, 3, and 4 are schematic structural views of an exemplary embodiment of the present invention.
  • the brightness measuring device of the present invention comprises a casing 1 on which a lens 2 is disposed, and a light beam to be measured of the object 20 to be measured enters the casing 1 from the lens 2.
  • a first beam splitter 6 is disposed behind the lens 2, and the first beam splitter 6 is a cube prism 6 composed of two right-angle prisms and a semi-transparent film is plated on the surface where the two prisms are bonded.
  • the prism 6 has two light exits 6-1, 6-2.
  • the first photodetector 4 is a single-channel silicon photocell, and in front of the first photodetector 4 there is further provided a color filter 19 for matching the relative spectral sensitivity of the first photodetector 4 to a ⁇ ( ⁇ ) curve.
  • the light emitted from the second light exit port 6-2 is received by the second photodetector 5, the second photodetector 5 is a two-dimensional CCD area array, and the second photodetector is also disposed in front of the second photodetector 5
  • the relative spectral sensitivity of the cells of the device 5 is matched to the color filter 8 by the ⁇ ( ⁇ ) curve.
  • the first photodetector 4 has a better spectral matching than the second photodetector 5.
  • a microprocessor 16 is disposed in the casing, and both the first photodetector 4 and the second photodetector 5 are electrically connected to the microprocessor 16, and the microprocessor 16 is electrically connected to the upper computer 14.
  • the lens 2 images the light emitted by the object 20 to be measured to the position where the second photodetector 5 and the aperture field stop 3 are located, and the second detector 5 and the aperture field stop 3 are located on the optical imaging conjugate plane. . Due to the small-field field of view limitation of the small-hole field of view, the light energy of only a small area 20-1 (ie, the aiming point) of the measured object passes through the small hole of the small-field field stop 3 A photodetector 4 receives and measures its brightness. The second photodetector 5 measures the overall image information and luminance distribution of the object 20 to be measured including the aiming point in the field of view through the lens 3.
  • the measurement results of the first photodetector 4 and the second photodetector 5 are transmitted to the upper computer 14 through the microprocessor 16.
  • the brightness value of the aiming point 20-1 measured by the first photodetector 4 and the brightness image of the object 20 to be measured measured by the second photodetector 5 are both displayed and recorded by the host computer 14.
  • the upper computer 14 compares the brightness of the aiming point 20-1 measured by the first photodetector 4 with the brightness of the aiming point 20-1 in the image brightness distribution measured by the second photodetector by software, and obtains an absolute amount correction value.
  • the absolute value correction value is used to correct the measured values of the respective pixels of the second photodetector, so as to obtain a more accurate absolute value of the brightness distribution of the measured object at each point.
  • the embodiment includes a housing 1, the measured light beam of the target 20 to be measured from the lens 2 Entering the outer casing 1, a mirror-type small-hole field diaphragm 3 is disposed on the optical path behind the lens 2, and the small-field field diaphragm 3 is a mirror with a small hole 3-1, a small hole 3-1 and The aiming point 20-1 on the target 20 to be measured is an optical imaging conjugate relationship.
  • the measured beam from the aiming point 20-1 is received by the light collecting device 7 through the lens, through the small hole 3-1, and the light received by the light collecting device 7 is coupled to a fast spectroradiometer 10, fast spectral radiation
  • the photodetecting element of the meter 10 is the first photodetector 4, and the first photodetector 4 is a one-dimensional CCD.
  • the measured beam of the measured object other than the aiming point is reflected by the reflecting surface 2-3 of the aperture stop field stop 3, and is imaged onto the second photodetector 5 via a secondary optical imaging device 9,
  • the two photodetectors 5 are a two-dimensional CCD array.
  • a liquid crystal display 17 is further mounted on the outer casing 1 of the brightness measuring device.
  • the brightness measuring device housing 1 is further provided with a microprocessor 16 and an electronic memory device 18, the first photodetector 4 and the second photodetector. 5.
  • the liquid crystal display 17 and the electronic memory device 18 are both electrically connected to the microprocessor 16, and the measurement data of the first photodetector 4 and the second photodetector 5 are processed by the microprocessor 16 and displayed through the liquid crystal display 17. And recorded and saved by the electronic memory device 18.
  • the lens 2 is aligned with the object 20 to be measured, and the measurement result of the second photodetector 5 is displayed on the display screen 17, that is, the object 20 to be measured is observed, and the lens 2 is adjusted to the small hole.
  • the distance of the field stop 3 makes the image of the object 20 to be measured displayed in the liquid crystal display 17 clearest, and at this time, the object 20 to be measured having a black dot is displayed on the display screen 17.
  • the position of the brightness measuring device or the object to be measured is further adjusted so that the black spot observed on the display screen 17 is the point of the desired aiming measurement, that is, the aiming point 20-1.
  • the microprocessor 16 controls the electronic memory device 18 to record the image measured by the second detector 5 at this time.
  • the display screen 17 is switched to an interface displaying the measurement result of the fast spectroradiometer 10, and the microprocessor 16 calculates the spectral power distribution, brightness, and radiance of the aiming point 20-1 based on the measurement data of the first photodetector 4.
  • Light color parameters such as color coordinates, These are displayed in display screen 17 and are recorded by control electronic memory device 18.
  • this embodiment is similar to the structure of Embodiment 2, but a second beam splitter 11 is disposed between the aperture stop field stop 3 and the light collecting device, and the second beam splitter is half.
  • a transflective cube 11 that receives a beam of light passing through the aperture 3-1 of the aperture stop 3, i.e., a beam from the aiming point 20-1, and splits the beam into two beams, a portion of which is still illuminated by the light collecting device 7 receiving, entering the fast spectrum radiometer 10, another portion being provided with a third photodetector 12 having a color filter 13 in front, the third photodetector 12 being a single-channel silicon photo cell, the color filter 13 enabling a silicon photo cell
  • the relative spectral sensitivity SC ⁇ and ⁇ ( ⁇ ) curves of the incident light are matched.
  • a color filter 8 is also provided in front of the second photodetector 5, so that the relative spectral sensitivity of the respective pixels of the second photodetector 5 is also
  • the method of using the brightness measuring device of this embodiment is similar to that of Embodiment 2, except that when measuring the brightness value of the aiming point 20-1, the brightness of the third photodetector 12 measured by the silicon photo cell can be obtained in this embodiment.
  • the brightness, radiance, spectral radiance and chromaticity parameters of the aiming point can also be calculated according to the measurement result of the fast spectroradiometer 10, and the measurement results of the silicon photocell and the fast spectroradiometer 10 can also be combined to obtain More accurate brightness values over a large span.
  • the second photodetector 5 in this embodiment not only reflects the overall image condition of the object to be measured, but also can measure the image brightness and brightness distribution of the object to be measured other than the target point.
  • the structure of this embodiment is similar to that of Embodiment 3, but in this embodiment, there is no built-in microprocessor 16 and electronic memory device 18, and the first photodetector 4 and the second photoelectricity in the brightness measuring device. Both the detector 5 and the silicon photocell 12 are connected to the upper computer 14, and the brightness is achieved by the upper computer. Alignment display and recording of the measuring device and measurement and recording of the aiming point light color parameters such as brightness and radiance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

一种亮度测量装置
【技术领域】
本发明涉及一种测量光辐射测量装置, 尤其涉及一种亮度测量装置。 【背景技术】
亮度或者辐亮度是指单位面积的光源在某一方向的光强(辐射强度), 单位为 cd/m2 (W/m2/Sr), 它直接反应人眼对光的感知, 在平板显示、照明工 程和光源设计等领域有着十分广泛的应用。 因此亮度 (辐亮度) 的方便、 准确测量十分重要。 测量亮度的仪器为亮度计, 目前的亮度计可分为遮光 筒式亮度计、 瞄点式亮度计和图像式亮度计。 遮光筒式亮度计采用接触法 测量亮度, 被测量面积较大, 测量具有局限性且精度较低。 瞄点式亮度计 和图像式亮度计都具有成像镜头, 通过非接触法测量亮度。
图像式亮度计中具有二维 CCD感光元件, 通过在 CCD感光元件前加滤 色片使 CCD像元的光谱灵敏度与 ν (λ )曲线或其它所要求的光谱函数相拟 合, 经过一次成像得到平面内各点的亮度或辐亮度。 然而, 图像式亮度计 的光谱匹配程度普遍低于高精度的滤色片式瞄点式亮度计, 而且由于二维 CCD中的每一个 CCD像元的光谱灵敏度都有所区别,而很难在每个 CCD前设 置不同的滤色片, 因此现有的图像式亮度计由于存在较大的光谱灵敏度失 匹配不一致性误差, 总体精度受到一定影响。 在评价光源对人体视网膜的 危害程度的应用中, 公告号为 CN201219753Y的中国专利公开了一种亮度测 量装置, 其中提到用光谱仪测量整个被测图像的平均光谱, 对图像亮度计 中的每个像元的测量值进行光谱修正, 进而希望以此降低测量误差, 但这 种方法中的光谱仪所测得的光谱不能与图像亮度计中的每个像元点形成对 应关系, 客观上仍会存在较大的不一致性测量误差, 假如被测光源的发光 光谱不均匀, 那么, 非但不能实现降低测量误差的目的, 很有可能还进一 歩加大了测量误差。 除此之外, 二维 CCD感光元件线性动态范围较窄也会 对测量带来误差, 特别是定标光源的亮度与测量目标亮度之间的差距较大 时, 这种误差会更加明显。
经典的瞄点式亮度计中通过在探测元件前设置小孔视场光阑, 能够精 确瞄准并测量某一点的亮度或辐亮度。 根据探测元件的不同, 瞄点式亮度 计又可以分为滤色片式和光谱式, 此外, 美国公开号了 US2007/0272844A1 一种滤色片式和光谱式二者相互切换的瞄点式亮度计。 现有的这些瞄点式 亮度计的共同原理是, 为了瞄准所测量的点, 经过镜头的光被分为两部分, 探测器中仅接收来自瞄准点的光束, 而瞄准点周围环境的光会最终进入目 视系统, 由人眼来进行观察。 现有的这些瞄点式亮度计都有以下共同的缺 陷: 在测量中, 由人眼通过目镜观察周围环境并调整亮度计的位置以瞄准 需被测量的点。 这种测量方式一方面操作不方便, 测量时, 人眼需要不停 地在目镜和测量数据显示屏二者之间不断切换; 另一方面, 对被测量点的 判断和选择完全是依靠人眼实现, 容易引入人为因素, 从而影响亮度的测 量。 现有的瞄点式亮度计根本不可能实现对于测量点周围景象等信息的的 记忆, 更不可能用图像形式测量和记录周围景象的亮度分布值。
【发明内容】
为了克服现有技术的上述缺陷, 本发明旨在提供一种智能化程度高、 操作方便、 对准精确、 重复性好、 测量精度高的亮度测量装置;
这种亮度测量装置不仅可以显示和记录被瞄准点的亮度或光谱辐亮 度;
这种亮度测量装置且能显示和记录被瞄准点周围环境的图像信息或亮 度分布图像。
本发明的亮度测量装置是通过以下技术方案实现的: 一种亮度测量装 置, 包括机壳, 在机壳上设置镜头, 镜头瞄准被测目标, 从被测目标发出 的被测量光束从镜头进入机壳内; 其特征在于机壳内包括第一光电探测器、 第二光电探测器和小孔视场光阑, 所述第一光电探测器是单通道探测器或 者多通道探测器, 所述第二光电探测器是多通道探测器; 从镜头出射的光 束被至少分为两路, 其中一路穿过小孔视场光阑入射到第一光电探测器上, 另一路光束入射到第二光电探测器上, 第一光电探测器和第二光电探测器 分别位于小孔视场光阑两边的光路上。 更为具体地讲, 被测目标通过镜头 成像于小孔视场光阑和第二光电探测器, 来自被测目标且穿过小孔视场光 阑的光束被单通道或多通道的第一光电探测器接收并测量其亮度, 或者该 部分光束经过采集装置和光学色散装置把依光谱次序色散好的光束入射到 的多通道的第一光电探测器上, 测量该部分光束的亮度和光谱分布等光学 参数。 第二光电探测器所接收的光束不穿过小孔视场光阑, 一般情况下, 第二光电探测器接收来自小孔视场光阑的反射光束或来自设在镜头和小孔 视场光阑间的分光器的出射光束。
为了便于说明, 在本发明中, 被测目标中与所述的小孔视场光阑中的 小孔形成光学成像共轭关系的区域称为瞄准点。 第一光电探测器通过测量 穿过小孔视场光阑的小孔的被测光, 测量出瞄准点的亮度或光谱辐亮度, 实现瞄点式亮度计的测量功能。 第二光电探测器为多通道探测器, 它接收被测目标在第二光电探测器 可覆盖的整个视场内的光束, 测量被测目标的图像信息, 可得到瞄准点的 周围环境的发光信息, 它实现了现有瞄点式亮度计中只能通过目镜和人眼 观察才能实现的功能, 瞄准点的周围环境的发光信息不仅能够实时显示, 还能够被电子记录, 使得亮度测量操作简便, 瞄准点定位精确, 测量状态 的可追溯性强, 多次测量重复性高。
在第二光电探测器前加 ν (λ )或^ (λ )曲线校正用滤光片, 本发明的 亮度测量装置即可实现图像式亮度计的功能, 测量被测目标的亮度分布。 当第二光电探测器和第一光电探测器均测量瞄准点的亮度, 且第一光电探 测器具有较高的测量精度时, 可用第一光电探测器的结果来校正第二光电 探测器所测得的图像亮度的绝对值, 得到更为精确的被测目标的绝对亮度 分布。 且可以根据 CIE技术文件, 通过计算得到明视觉、 暗视觉和中间视 觉的亮度值。
本发明还可以根据以下技术方案进一步限定和完善:
上述的小孔视场光阑为带小孔的反射镜, 第一光电探测器接收来自镜 头并从小孔视场光阑中穿过的光束, 第二光电探测器接收来自镜头并被小 孔视场光阑反射的光束。 在本方案中, 第一光电探测器测量被测目标中光 束通过小孔的很小区域, 即瞄准点的亮度或光谱辐分布等光学参数; 反射 镜将进入镜头的其它光束反射到的第二光电探测器上, 由于穿过小孔的被 瞄准点的光束没有参与反射, 第二光电探测器接收不到瞄准点的光束, 在 第二光电探测器所测量的图像中, 会呈现出有一个黑色点区域, 该区域即 反映瞄准点的像, 是第一探测器所测量的区域。 利用这一现象能够精确地 定位瞄准点位置。
或者在上述镜头后的光路中设置第一分光器, 第一分光器接收来自镜 头的光束, 第一分光器的一束出射光被第二光电探测器接收, 第一分光器 的另一束光束穿过小孔视场光阑被第一光电探测器接收。 所述的第一分光 器可以是分光棱镜, 分光立方棱镜或镀有部分透射部分反反射膜的平面镜, 或者所述的第一分光器也可以是切入或切离光路的平面反射镜。 在此方式 中小孔视场光阑和第二探测器通常均处于镜头对于被测目标的光学像面位 置上, 即两者是光学共轭关系。 本方案中, 第一光电探测器和第二光电探 测都测量到了瞄准点。 当第二光电探测器前加 ν (λ )曲线校正用滤色片时, 可用第一光电探测器测得的瞄准点的亮度校正第二光电探测器的测量绝对 值。当第二光电探测器前加 V' (λ )曲线校正用滤色片时, 可以根据 CIE技 术文件, 通过计算得到明视觉、 暗视觉和中间视觉的亮度值。
上述的机壳中包括光采集装置和光学色散装置, 光学色散装置通过光 采集装置接收穿过小孔视场光阑的光束即来自瞄准点的光束, 所述的第一 光电探测器为多通道探测器, 且为光学色散装置的光电探测部分。 本技术 方案的光学色散装置能够实现对瞄准点的光谱测量, 并根据光谱数据计算 出亮度和辐亮度值, 且不存在光谱失匹配误差。 上述的第一光电探测器是 一维或二维光电探测器阵列, 如光电电荷耦合器 (CCD)或者光电二极管阵列 或 CMOS光电阵列。
上述的第二光电探测器之前也可以设置二次光学成像装置。 通过二次 光学成像装置把来自镜头的一次光学图像成像到第二探测器上。
本发明中的第二光电探测器是一种二维光电探测器阵列, 如二维光电 电荷耦合器 (CCD)或者光电二极管阵列或 CMOS光电阵列。
上述的镜头到第二光电探测器之间的光路上可设置滤色片, 使第二光 电探测器各个像元的相对光谱灵敏度度与 ν (λ )曲线、 V' (λ )曲线或其它 所要求的光谱函数相拟合, 以实现亮度或辐亮度测量功能。 例如, 当第二 探测器的像元相对光谱灵敏度与 ν (λ )曲线相匹配时,镜头和第二探测器的 组合除了作相机功能之外还具备图像式亮度计功能, 能够测量被瞄准点周 围的各点亮度, 即图像亮度或亮度分布图像。
上述的第一光电探测器是多通道探测器时, 在小孔视场光阑的后续光 路上设置第二分光器, 第二分光器的一束出射光被第一多通道光电探测器 接收, 第二分光器的另一束出射光被一个单通道或多通道的第三光电探测 器接收。 这个第二分光器可以是由两块直角棱镜组成且在两块棱镜相粘接 的面上镀半透半反膜的立方棱镜, 或者是镀半透半反膜的平面镜, 或者是 分叉光纤。通常在上述的单通道或多通道的第三光电探测器前设置滤色片, 使第三光电探测器的相对光谱灵敏度与 ν (λ )曲线或颜色三刺激值曲线或 其它特定要求的光谱函数相拟合, 测量对应的亮度或其它特定光学量值。 上述的单通道探测器可以为硅光电池或者光电倍增管, 与第一光电探测器 相结合能够拓宽探测器线性动态范围, 提高被瞄准点的亮度测量的精度。 通常在上述的第一光电探测器前设置光釆集装置和光学色散装置, 用于测 量穿过小孔视场光阑的光束的光谱分布。
本发明的亮度测量装置中所述的小孔视场光阑是设有圆孔或者方孔或 者多边形孔或者复杂图形孔的位于被测目标像面位置的光阑, 通过切换机 构可以把这些小孔按被测目标中被瞄准点的需要切入光路之中。 上述机壳中设置有微处理器和电子记忆装置, 所述的第一光电探测器 和第二光电探测器与微处理器电连接。 并在机壳上设置图像显示单元, 图 像显示单元与微处理器电连接。 图像显示单元能够显示被测目标整个图像 和被瞄准点所在的位置, 也可显示测得的亮度和光谱辐亮度值, 以及光谱 分布。 包括图像在内的测量结果可以在电子记忆装置中记录保存。
综上所述, 本发明亮度测量装置的第一光电探测器实现瞄点亮度或辐 亮度或光谱辐亮度的测量, 第二光电探测器实现瞄准点的周围环境的发光 信息, 或图像亮度分布, 或亮度图像的测量, 操作方便, 可记录, 重复性 局, 测量精度! ¾ °
【附图说明】
附图 1为本发明的实施例 1的结构示意图;
附图 2为本发明的实施例 2的结构示意图;
附图 3为本发明的实施例 3的结构示意图;
附图 4为本发明的实施例 4的结构示意图。
【具体实施方式】
如图 1, 2, 3, 4为本发明的典型实施例结构示意图。
实施例 1 :
如图 1所示,本发明的亮度测量装置包括外壳 1,外壳 1上设置有镜头 2,被测目标 20的被测量光束从镜头 2进入外壳 1。在镜头 2后设置有第一 分光器 6,所述第一分光器 6是由两块直角棱镜组成且在两块棱镜相粘接的 面上镀半透半反膜的立方棱镜 6, 该立方棱镜 6具有两个出光口 6— 1, 6 - 2。 从第一出光口 6— 1 出射的光穿过小孔视场光阑 3被第一光电探测器 4 所接收, 第一光电探测器 4是单通道的硅光电池, 在第一光电探测器 4前 还设置有将第一光电探测器 4 的相对光谱灵敏度匹配为 ν (λ )曲线滤色片 19。 从第二出光口 6— 2出射的光被第二光电探测器 5接收, 第二光电探测 器 5是二维的 CCD面阵, 在第二光电探测器 5前也设置有将第二光电探测 器 5的像元的相对光谱灵敏度与 ν (λ )曲线为相匹配的滤色片 8。第一光电 探测器 4 的光谱匹配程度优于第二光电探测器 5。 在机壳内设置微处理器 16, 第一光电探测器 4和第二光电探测器 5都与微处理器 16电连接, 微处 理器 16与上位机 14电连接。镜头 2将被测目标 20发出的光成像到第二光 电探测器 5和小孔视场光阑 3所在的位置,第二探测器 5和小孔视场光阑 3 位于光学成像共轭面上。 由于小孔视场光闹 3 的小孔视场限制作用, 被测 目标中仅有很小区域 20— 1 (即瞄准点)的光能穿过小孔视场光阑 3的小孔 被第一光电探测器 4接收和测量其亮度。 第二光电探测器 5通过镜头 3测 量其视场范围内包括瞄准点在内的被测目标 20 的整体图像信息和亮度分 布。第一光电探测器 4和第二光电探测器 5的测量结果通过微处理器 16传 递到上位机 14。 第一光电探测器 4测量的瞄准点 20— 1的亮度值和第二光 电探测器 5测量的被测目标 20的亮度图像都通过上位机 14显示和记录。 上位机 14通过软件将第一光电探测器 4测得的瞄准点 20— 1的亮度与第二 光电探测器测量的图像亮度分布中瞄准点 20— 1 的亮度相比, 得到绝对量 校正值, 并用该绝对量校正值校正第二光电探测器的各个像元的测量值, 得到更为精确的被测目标在各点的亮度分布绝对值。
实施例 2 :
如图 2所示, 实施例包括外壳 1, 被测目标 20的被测量光束从镜头 2 进入外壳 1, 在镜头 2后的光路上设置了一个反射镜式小孔视场光阑 3, 该 小孔视场光阑 3为带小孔 3— 1的反射镜, 小孔 3— 1和被测目标 20上的瞄 准点 20— 1为光学成像共轭关系。来自瞄准点 20— 1的被测光束经过镜头、 穿过小孔 3— 1被光采集装置 7所接收, 被光采集装置 7所接收的光被耦合 到一个快速光谱辐射计 10,快速光谱辐射计 10的光电探测元件为第一光电 探测器 4, 第一光电探测器 4为一个一维 CCD。 除瞄准点以外的其它被测目 标的被测光束被小孔视场光阑 3的反射面 3— 2所反射, 并经一个二次光学 成像装置 9成像到第二光电探测器 5上,第二光电探测器 5为一个二维 CCD 阵列。 在亮度测量装置的外壳 1上还安装有一个液晶显示屏 17, 亮度测量 装置外壳 1内还设置有微处理器 16和电子记忆装置 18,所述第一光电探测 器 4、 第二光电探测器 5、 液晶显示屏 17和电子记忆装置 18均与微处理器 16电连接,由微处理器 16处理第一光电探测器 4和第二光电探测器 5的测 量数据, 通过液晶显示屏 17显示出来, 并由电子记忆装置 18记录保存。
在使用本亮度测量装置时,镜头 2对准被测目标 20, 并在显示屏 17中 显示第二光电探测器 5的测量结果, 即它所观察被测目标 20, 调节镜头 2 到小孔视场光阑 3的距离, 使液晶显示屏 17中显示的被测目标 20的图像 最为清晰,此时在显示屏 17中显示具有黑点的被测目标 20。进一步调节亮 度测量装置或被测目标的位置, 使在显示屏 17上观测到的黑点为所需瞄准 测量的点, 即瞄准点 20— 1。微处理器 16控制电子记忆装置 18记录此时第 二探测器 5所测得的图像。 并将显示屏 17切换到显示快速光谱辐射计 10 测量结果的界面, 微处理器 16将根据第一光电探测器 4的测量数据计算出 瞄准点 20— 1 的的光谱功率分布、 亮度、 辐亮度和色坐标等光色参数, 在 显示屏 17中显示出来, 并由控制电子记忆装置 18记录这些量值。
实施例 3:
如图 3所示, 本实施例与实施例 2的结构相似, 但在小孔视场光阑 3 与光采集装置 Ί之间设置了一个第二分光器 11, 所述第二分光器是半透半 反立方棱镜 11,它接收穿过小孔视场光阑 3的小孔 3— 1的光束即来自瞄准 点 20— 1的光束, 并将该光束分成两束, 一部分仍然被光采集装置 7接收, 进入快速光谱辐射计 10,另一部分被前面设有滤色片 13的第三光电探测器 12, 第三光电探测器 12是单通道的硅光电池, 所述滤色片 13使硅光电池 对入射光的相对光谱灵敏度 S C\ 与 ν (λ )曲线相匹配。 同时, 在第二光 电探测器 5前也设置有滤色片 8,该滤光片 8使得第二光电探测器 5的各个 像元的相对光谱灵敏度也与 ν (λ )曲线相匹配。
本实施例的亮度测量装置的使用方法与实施例 2相似, 不同的是, 在 测量瞄准点 20— 1的亮度值时, 本实施例既可以得到第三光电探测器 12由 硅光电池测量的亮度, 也可根据快速光谱辐射计 10的测量结果计算出瞄准 点的亮度、 辐亮度、 光谱辐亮度和色度参数等, 还可以将硅光电池和快速 光谱辐射计 10二者测量结果相结合, 得到在大跨度范围内更为精确的亮度 值。 本实施例中的第二光电探测器 5不仅反映被测目标的总体图像情况, 还能够测量除被瞄准点之外被测目标的图像亮度和亮度分布。
实施例 4:
如图 4所示, 本实施例的结构与实施例 3相似, 但在本实施例中没有 内置微处理器 16和电子记忆装置 18,亮度测量装置中的第一光电探测器 4、 第二光电探测器 5和硅光电池 12都连接到上位机 14,由上位机实现该亮度 测量装置的对准显示和记录以及亮度、 辐亮度等瞄准点光色参数的测量和 记录。

Claims

权 利 要 求
1. 一种亮度测量装置, 包括机壳(1), 在机壳(1)上设置镜头 (2), 被测目标 (20)的被测量光束从镜头 (2)进入机壳(1)内,其特征在于在机壳(1)内设 有第一光电探测器 (4)、第二光电探测器 (5)和小孔视场光阑(3),所述的 第一光电探测器 (4)是单通道探测器或者多通道探测器,所述的第二光电 探测器 (5)是多通道探测器, 从镜头 (2)出射的光束被至少分为两路, 其 中一路穿过小孔视场光阑(3)入射到第一光电探测器 (4)上, 另一路光束 入射到第二光电探测器 (5)上, 所述的第一光电探测器 (4)和第二光电探 测器 (5)分别位于小孔视场光阑(3)两边的光路上。
2. 根据权利要求 1所述的亮度测量装置, 其特征在于所述的小孔视场光阑 (3)为带小孔的反射镜,第一光电探测器 (4)接收来自镜头 (2)并从小孔视 场光阑(3)中穿过的光束,第二光电探测器 (5)接收来自镜头 (2)并被小孔 视场光阑 (3)反射的光束。
3. 根据权利要求 1所述的亮度测量装置, 其特征在于在镜头(2 )与小孔视 场光阑 (3)之间的光路中设置第一分光器 (6), 来自镜头(2 )的经过第一 分光器 (6)的一路光束被第二光电探测器 (5)接收, 来自镜头(2 )的经过 第一分光器 (6)的另一路光束穿过小孔视场光阑(3)被第一光电探测器 (4) 接收。
4. 根据权利要求 1或 2或 3所述的亮度测量装置, 其特征在于所述的第一 光电探测器 (4)是一维或者二维多通道探测器, 在机壳(1)中包括光采集 装置 (7)和光学色散装置(10), 光学色散装置(10)通过光采集装置 (7)接 收穿过所述的小孔视场光阑(3)的光束, 所述的第一光电探测器 (4)为光 学色散装置(10)的光电探测部分。
5. 根据权利要求 1或 2或 3所述的亮度测量装置, 其特征在于在所述的第 二光电探测器 (5)前设置光学成像装置 (9)。
6. 根据权利要求 1或 2或 3所述的亮度测量装置, 其特征在于在所述的镜 头 (2)到所述的第二光电探测器 (5)之间的光路上设置滤色片 (8)。
7. 根据权利要求 4所述的亮度测量装置, 其特征在于在所述的小孔视场光 阑 (3)的后续光路上设置有第二分光器(11),第二分光器 (11)的其中一束 出射光被第一光电探测器 (4)接收,第二分光器(11)的另一束出射光被一 个单通道或多通道的第三光电探测器(12)接收。
8. 根据权利要求 7所述的亮度测量装置, 其特征在于在所述的第三光电探 测器(12)前的光路上设置有滤色片(13)。
9. 根据权利要求 7所述的亮度测量装置,其特征在于所述的第二分光器(11) 是由两块棱镜组成, 棱镜的粘接面上镀有半透半反膜; 或者所述的第二 分光器(11)是镀半透半反膜的平面镜; 或者所述的第二分光器(11)是分 叉光纤。
10. 根据权利要求 1或 2或 3所述的亮度测量装置, 其特征在于在所述 的机壳(1)内设有微处理器(16), 在所述的机壳(1)上设置图像显示单元 (17)。
PCT/CN2010/079177 2009-12-23 2010-11-26 一种亮度测量装置 WO2011076052A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200920353426XU CN201611279U (zh) 2009-12-23 2009-12-23 一种亮度测量装置
CN200920353426.X 2009-12-23
CN200910215557.6 2009-12-23
CN 200910215557 CN101813517B (zh) 2009-12-23 2009-12-23 一种亮度测量装置

Publications (1)

Publication Number Publication Date
WO2011076052A1 true WO2011076052A1 (zh) 2011-06-30

Family

ID=44194945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079177 WO2011076052A1 (zh) 2009-12-23 2010-11-26 一种亮度测量装置

Country Status (1)

Country Link
WO (1) WO2011076052A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279507A (en) * 1979-08-27 1981-07-21 Kollmorgen Corporation Spatial scanning means for a photometer
JPS59228127A (ja) * 1983-06-10 1984-12-21 Matsushita Electric Ind Co Ltd 視感輝度計測装置
CN1658014A (zh) * 2005-01-12 2005-08-24 苏州信达光电科技有限公司 光学成像系统会聚光路中的无光程差分光装置
US20070272844A1 (en) * 2006-05-25 2007-11-29 Photo Research, Inc. Apparatus with multiple light detectors and methods of use and manufacture
CN101813517A (zh) * 2009-12-23 2010-08-25 杭州远方光电信息有限公司 一种亮度测量装置
CN201611279U (zh) * 2009-12-23 2010-10-20 杭州远方光电信息有限公司 一种亮度测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279507A (en) * 1979-08-27 1981-07-21 Kollmorgen Corporation Spatial scanning means for a photometer
JPS59228127A (ja) * 1983-06-10 1984-12-21 Matsushita Electric Ind Co Ltd 視感輝度計測装置
CN1658014A (zh) * 2005-01-12 2005-08-24 苏州信达光电科技有限公司 光学成像系统会聚光路中的无光程差分光装置
US20070272844A1 (en) * 2006-05-25 2007-11-29 Photo Research, Inc. Apparatus with multiple light detectors and methods of use and manufacture
CN101813517A (zh) * 2009-12-23 2010-08-25 杭州远方光电信息有限公司 一种亮度测量装置
CN201611279U (zh) * 2009-12-23 2010-10-20 杭州远方光电信息有限公司 一种亮度测量装置

Similar Documents

Publication Publication Date Title
WO2010003362A1 (zh) 亮度测量装置
CN101813517B (zh) 一种亮度测量装置
US9766125B2 (en) Spectroscopic camera
US10972721B2 (en) Apparatus and method for multi configuration near eye display performance characterization
CN101813520B (zh) 一种二维光谱测量装置
US20130229646A1 (en) Component analyzer
CN101978247A (zh) 光电检测器和测量光的方法
CN201611279U (zh) 一种亮度测量装置
CN201780164U (zh) 一种二维光谱测量装置
KR20100053621A (ko) 색분포 측정용 광학계, 색분포 측정 장치, 및 색분포 측정 방법
CN101922968B (zh) 一种距离误差自动校正亮度计
TWI290220B (en) An optical sensing system and a color analyzer with the optical sensing system
CN201352150Y (zh) 一种测光装置
JP2009300257A (ja) 測定用光学系
CN108318134B (zh) 一种亮度测量装置
CN101799324A (zh) 一种亮度计
WO2011076052A1 (zh) 一种亮度测量装置
KR20190048918A (ko) 분광복사 및 색채휘도 동시 측정 장치 및 측정 방법
JP5378359B2 (ja) 測光装置
CN217901020U (zh) 一种基于分光镜的自动对焦推扫式高光谱成像仪
CN201748974U (zh) 一种距离误差自动校正亮度计
CN102175313A (zh) 一种成像亮度计
JP6277208B2 (ja) 光学測定装置
JPH0735610A (ja) 自己較正型電力計
JP7342022B2 (ja) 物体の角度放射とスペクトル放射を同時に測定できるようにする光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10838615

Country of ref document: EP

Kind code of ref document: A1