WO2011074888A2 - 태양전지 후면 전극용 은 페이스트 조성물 - Google Patents

태양전지 후면 전극용 은 페이스트 조성물 Download PDF

Info

Publication number
WO2011074888A2
WO2011074888A2 PCT/KR2010/009013 KR2010009013W WO2011074888A2 WO 2011074888 A2 WO2011074888 A2 WO 2011074888A2 KR 2010009013 W KR2010009013 W KR 2010009013W WO 2011074888 A2 WO2011074888 A2 WO 2011074888A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
paste composition
weight
silver paste
mol
Prior art date
Application number
PCT/KR2010/009013
Other languages
English (en)
French (fr)
Other versions
WO2011074888A3 (ko
Inventor
이창모
최형섭
홍승권
임대성
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Priority to CN2010800533415A priority Critical patent/CN102652339A/zh
Priority claimed from KR1020100128828A external-priority patent/KR20110069724A/ko
Publication of WO2011074888A2 publication Critical patent/WO2011074888A2/ko
Publication of WO2011074888A3 publication Critical patent/WO2011074888A3/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a silver paste composition for a solar cell back electrode.
  • the present invention relates to the Korean Patent Application No. 10-2009-0125885 filed with the Korean Patent Office on December 17, 2009 and the Korean Patent Application No. 10-2010-0128828 filed to the Korean Patent Office on December 16, 2010. Claiming benefit, the entire contents of which are incorporated herein by reference.
  • the manufacturing method of a silicon crystalline solar cell is as follows.
  • an n-type impurity layer such as phosphorus (P) is formed on one surface of the P-type silicon substrate.
  • the P-type silicon substrate is preferably 180 to 220 ⁇ m thickness.
  • the n-type impurity layer preferably has a thickness of 0.2 to 0.6 ⁇ m.
  • an antireflection film is formed on the n-type impurity layer to reduce reflection loss of sunlight.
  • SiNx layer may be used as the anti-reflection film.
  • a front electrode is formed on the antireflection film.
  • a back electrode is formed on the P-type silicon on which the n-type impurity layer is not formed.
  • the electrode may be formed by applying an electroconductive paste by screen printing or the like, and drying it, followed by a two-step firing process of low temperature (about 600 ° C.) and high temperature (800-950 ° C.).
  • the conductive paste diffuses into the P-type silicon substrate during the firing process, thereby forming the conductive metal particle-Si alloy layer.
  • a BSF B ack S urface F ield
  • Carrier collection efficiency of generated carriers
  • Republic of Korea Patent Publication No. 10-2006-0108550 relates to a thick film conductive composition
  • a thick film conductive composition comprising metal particles, glass particles, organic vehicle having a size of 3 to 15 ⁇ m. Since the registered patent has a large size of the metal particles, the voids between the metal particles increase after firing, thereby increasing the resistance of the solar cell, thereby reducing efficiency.
  • Korean Patent Laid-Open Publication No. 10-2006-0108552 relates to an electrically conductive thick film composition comprising an electrically conductive metal particle, a Pb-free glass frit, and an organic medium.
  • the registered patent has a problem in that thermal stability such as crystallization occurs in the glass frit in the thermal process, and solder properties are not excellent.
  • An object of the present invention is to provide a silver paste composition for a solar cell back electrode that can improve the efficiency of the solar cell by reducing the resistance of the back electrode.
  • the present invention is to provide a silver paste composition for a solar cell back electrode that can improve the soldering characteristics when manufacturing a solar cell module.
  • the present invention (a) spherical or plate-like conductive silver powder having an average particle diameter (D50) of 0.3 to 1.5 ⁇ m; (b) Bi 2 O 3 -SiO 2 -Al 2 O 3 -B 2 O 3 -SrO-based glass frit; And (c) provides a silver paste composition for a solar cell back electrode comprising an organic vehicle.
  • the silver paste composition for solar cell back electrode of the present invention lowers the resistance of the back electrode, minimizes the impurity content, improves soldering properties, and improves the efficiency of the solar cell and the module.
  • the silver paste composition for solar cell back electrode of this invention contains (a) electroconductive silver powder, (b) glass frit, and (c) organic vehicle.
  • the (a) electrically conductive silver powder has a spherical or plate-shaped having an average particle diameter (D 50) is 0.3 to 1.5 ⁇ m contained in the paste composition.
  • the (a) conductive silver powder preferably has a maximum particle size (D MAX ) of 4.5 ⁇ m and a minimum particle size (D MIN ) of 0.1 ⁇ m. If the average particle diameter (D 50 ) and the minimum particle size (D MIN ) are less than the above-mentioned ranges, the specific surface area of the silver powder is widened, so that the paste viscosity is high. Due to the increased viscosity, the printability is poor and limited to increasing the content of silver powder.
  • the (a) conductive silver powder is preferably included in 65 to 75% by weight based on the total weight of the composition.
  • the printed silver wiring layer becomes thinner after firing, so that the back wiring resistance increases, and the soldering characteristics may decrease. If the above range is exceeded, the printing thickness becomes too thick, which may result in warpage of the silicon wafer.
  • a glass frit is a type Bi 2 O 3 -SiO 2 -Al 2 O 3 -B 2 O 3 -SrO contained in the paste composition.
  • the glass frit (b) is melted to impart adhesion between the silver wiring layer and the silicon wafer layer.
  • SrO included in the glass frit serves to control the transition temperature of the glass frit to alkaline earth metal. At this time, since SrO has a large size of the ion radius, problems of lowering thermal stability such as crystallization are suppressed. And SrO improves a solder characteristic. As a side effect, the efficiency of the solar cell is increased.
  • the glass frit is preferably included in an amount of 0.01 to 10% by weight, more preferably 0.5 to 7% by weight, and even more preferably 1 to 5% by weight, based on the total weight of the composition. .
  • the adhesion force with the P-type silicon substrate which is a substrate of the solar cell after the firing process, may be degraded. If it is included beyond the above range, the resistance may be increased and the efficiency of the solar cell may be reduced.
  • the composition ratio of the glass frit (b) is not particularly limited, but 20 to 30 mol% of Bi 2 O 3 , 25 to 35 mol% of SiO 2 , 5 to 15 mol% of Al 2 O 3 , 20 to 40 mol% of B 2 O 3, and SrO It is preferred to have a composition of 1 to 10 mol%.
  • the physical properties of the glass depend on a suitable ratio of the Si, B component, which is a mesh forming agent, and the Bi, Al component, which is a network intermediate oxide, and the Sr component, which is an alkali metal component. Therefore, it is preferable to use a frit having a composition within the above numerical limits.
  • the softening point (Tg) of the glass frit used by this invention is 400-500 degreeC. If it is less than the above-described range, while the thermal expansion coefficient of the glass frit is relatively large, the phenomenon that the wafer is bent after the firing process during the solar cell manufacturing process may be increased. When it exceeds the above-mentioned range, the glass frit may not be sufficiently melted during the firing process, and thus adhesion may be degraded.
  • the organic vehicle included in the silver paste composition for solar cell back electrode of the present invention is preferably included in 20 to 34.9% by weight based on the total weight of the composition.
  • the viscosity may be too high and printability may be degraded.
  • powder content may fall and it may be difficult to ensure the thickness of a sufficient silver wiring layer.
  • the organic vehicle (c) is prepared by dissolving a polymer resin in an organic solvent, and may further include a thixotropic agent, a humectant, an additive, and the like, as necessary.
  • the polymer resin is preferably contained in an amount of 1 to 25% by weight, more preferably 5 to 25% by weight based on the total weight of the organic vehicle (c).
  • the printability and dispersion stability of the silver paste prepared with the composition of the present invention may be lowered. If the above range is exceeded, the paste may not be printed.
  • polymer resin examples include polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, ethyl cellulose, rosin, phenol resin or acrylic resin.
  • the solvent is a solvent having a breaking point in the range of about 150 to 300 °C to prevent the drying of the paste during the printing process and to control the fluidity.
  • the solvent is preferably included in the remaining amount so that the total weight of the organic vehicle (c) is 100% by weight.
  • the glycol ether series is tripropylene glycol methyl ether, dipropylene glycol n-propyl ether, dipropylene glycol n-butyl ether, tripropylene glycol n-butyl ether, propylene glycol phenyl ether, diethylene glycol Ethyl ether, diethylene glycol n-butyl ether, diethylene glycol hexyl ether, ethylene glycol hexyl ether, triethylene glycol methyl ether, triethylene glycol ethyl ether, triethylene glycol n-butyl ether, ethylene glycol phenyl ether, terpinol, Texanol® (brand name) or ethylene glycol etc. are mentioned.
  • the thixotropic agent and the wetting agent are preferably included in an amount of 5 wt% or less based on the total weight of the organic vehicle (c).
  • the thixotropic agent and the wetting agent are not particularly limited as long as they are generally used in this field. However, as the thixotropic agent THIXATROL @ ST of Elementis, the wetting agent may be used Silwet L-77, Silwet L-7500, Silwet L-7280, etc. of Momentive.
  • the additive is preferably included in an amount of 1 to 10% by weight, and more preferably in an amount of 1 to 5% by weight based on the total weight of the (c) organic vehicle.
  • the additives include those generally used in this field such as dispersants. Commercially available surfactants can be used as the dispersant, and these can be used alone or in combination of two or more thereof.
  • the surfactant examples include an ether type such as alkyl polyoxyethylene ether, alkylaryl polyoxyethylene ether, polyoxyethylene polyoxypropylene copolymer as nonionic surfactant; Ester ether types such as polyoxyethylene ether of glycerin ester, polyoxyethylene ether of sorbitan ester, and polyoxyethylene ether of sorbitol ester; Ester type such as polyethylene glycol fatty acid ester, glycerin ester, sorbitan ester, propylene glycol ester, sugar ester, alkyl polyglucoside; Nitrogen-containing types such as fatty acid alkanolamides, polyoxyethylene fatty acid amides, polyoxyethylene alkylamines, amine oxides; Examples of the polymeric surfactant include polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acid, polyacrylic acid-maleic acid copolymer, poly 12-hydroxystearic acid, and the like.
  • products commercially available as the surfactant include hypermer KD (manufactured by Uniqema), AKM 0531 (manufactured by Nippon Yuji Co., Ltd.), KP (manufactured by Shin-Etsu Chemical Co., Ltd.), and polyflow (POLYFLOW) Esha Chemical Co., Ltd., EFTOP (Tochem Products Co., Ltd.), Asahi guard, Suflon (above, Asahi Glass Co., Ltd.), SOLSPERSE (Geneneka Co., Ltd.) Manufacture), EFKA (made by EFKA Chemicals Co., Ltd.), PB 821 (made by Ajinomoto Co., Ltd.), BYK-184, BYK-185, BYK-2160, Anti-Terra U (made by BYK Corporation), etc. are mentioned.
  • hypermer KD manufactured by Uniqema
  • AKM 0531 manufactured by Nippon Yuji Co., Ltd.
  • the silver paste composition for a solar cell back electrode of the present invention lowers the resistance of the back electrode, minimizes the impurity content, and improves soldering properties to improve the efficiency of the solar cell and the module.
  • Tg transition point
  • Tdsp softening point
  • a surface texturing process was performed on a single crystal wafer having a size of 156 ⁇ 156 mm and a thickness of 200 ⁇ m to form a pyramid height of about 4 to 6 ⁇ m. Thereafter, SiN x was coated on the N-side of the wafer. Subsequently, a bus bar was printed and dried on the back surface of the wafer using the silver paste composition for solar cell back electrodes of Examples 1 to 3 and Comparative Examples 1 to 4. Thereafter, Dongwoo Fine Chem's aluminum electrode paste (trade name: AMP-BL122C) was applied and dried using a screen printing plate, and a finger line was printed and dried on the front SiNx side using silver paste. It was.
  • the silicon wafer passed through the above process was fired in an infrared continuous firing furnace so that the temperature of the firing region was 800 to 950 ° C. to manufacture a solar cell.
  • the firing process may be performed by simultaneous firing of the front and rear surfaces while passing the silicon wafer into the belt furnace.
  • the belt furnace includes a burn-out section at about 600 ° C. and a firing section at about 860 ° C., after burning off the organic material in the paste, the front and rear surfaces of silver or silver Melt aluminum to form an electrode.
  • the soldering characteristics of the solar cells were evaluated using ribbons of 96.5Sn / 3.5Ag coated copper and ribbons of 62Sn / 36Pb / 2Ag.
  • the soldering temperature for Pb-containing (62Sn / 36Pb / 2Ag) soldering was 230 ° C.
  • the soldering temperature for Pb-free (96.5Sn / 3.5Ag) soldering was 320 ° C.
  • the soldering time was 5-7 seconds.
  • the flux used was MF200.
  • Adhesive strength was obtained by pulling the ribbon at an angle of 90 ° to the surface of the cell. Adhesive strength of less than 200 g is low and values in the range of 200 g to 300 g are appropriate; A value of 300 to 400 g or more was evaluated as good as the adhesive strength, the results are shown in Table 3.
  • the manufacturing examples according to the present invention is 0.2 ⁇ 0.5% difference in efficiency than the comparative manufacturing example, it can be seen that the efficiency is excellent, the soldering characteristics are also excellent.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 (a) 평균입경(D50)이 0.3 내지 1.5㎛이고 구형 또는 판상형인 도전성 은 분말; (b) Bi2O3-SiO2-Al2O3-B2O3-SrO계 유리 프릿; 및 (c) 유기 비히클을 포함하는 것을 특징으로 하는 태양전지 후면 전극용 은 페이스트 조성물에 관한 것이다.

Description

태양전지 후면 전극용 은 페이스트 조성물
본 발명은 태양전지 후면 전극용 은 페이스트 조성물에 관한 것이다.
본 발명은 2009년 12월 17일에 한국특허청에 제출된 한국특허출원 제10- 2009-0125885호와 2010년 12월 16일에 한국특허청에 제출된 한국특허출원 제10-2010-0128828호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
실리콘 결정형 태양전지의 제조방법은 하기와 같다.
우선, P형 실리콘 기판의 일면에 인(P) 등의 n형 불순물층을 형성한다. 이때, 상기 P형 실리콘 기판은 두께가 180 내지 220㎛인 것이 바람직하다. 그리고, 상기 n형 불순물층은 두께가 0.2 내지 0.6㎛인 것이 바람직하다.
이어서, 상기 n형 불순물층 상에 태양빛의 반사손실을 줄이기 위하여 반사방지막을 형성한다. 상기 반사방지막으로는 SiNx층을 이용할 수 있다.
이어서, 상기 반사방지막 상에 전면 전극을 형성한다. 그리고, 상기 n형 불순물층이 형성되지 않은 P형 실리콘 상에 후면 전극을 형성한다. 이때, 상기 전극은 전기전도성 페이스트를 스크린 인쇄 등에 의해 도포하고, 이를 건조한 후, 저온(약 600℃)과 고온(800-950℃)의 2단계 소성과정을 거쳐 형성될 수 있다. 일반적으로 이러한 소성과정에서 전기전도성 페이스트가 P형 실리콘 기판의 내부로 확산되면서 전기전도성 금속입자-Si 합금층이 형성된다. 그리고, 이러한 확산에 의해, 태양전지에서 생성되는 전자의 재결합을 방지하고 생성된 캐리어(Carrier)의 수집 효율을 향상시키는 BSF(Back Surface Field)가 형성된다. 여기서, BSF층의 두께 및 균일도에 따라 태양전지의 효율이 좌우되는데 두께가 얇아지면 태양전지의 효율이 저하되고, 두꺼워지면 효율이 상승된다.
한편, 상기 태양전지용 후면 전극에 대한 연구 및 개발이 진행되고 있다. 대표적인 예로는 하기 특허를 들 수 있다.
대한민국 공개특허 제10-2006-0108550호는 크기가 3 내지 15㎛인 금속 입자, 유리 입자, 유기 비히클을 포함하는 후막 전도성 조성물에 관한 것이다. 상기 등록특허는 금속 입자의 크기가 크기 때문에, 소성 후 금속 입자 사이의 공극이 커져 태양 전지 셀의 저항을 증가시켜 효율이 감소되는 단점이 있다.
그리고, 대한민국 공개특허 제10-2006-0108552호는 전기전도성 금속입자, Pb-무함유 유리 프릿, 유기 매질을 포함하는 전기전도성 후막 조성물에 관한 것이다. 하지만, 상기 등록특허는 열 공정에서 유리 프릿에 결정화가 발생하는 등의 열안정성에 문제가 발생하고, 땜납특성도 우수하지 못한 단점이 있다.
이와 같은 문제를 해결하고자, 새로운 태양전지 후면전극용 페이스트 조성물에 대한 개발이 절실하다.
본 발명의 목적은 후면 전극의 저항을 감소시켜 태양전지의 효율을 향상시킬 수 있는 태양전지 후면 전극용 은 페이스트 조성물을 제공하는 것이다.
또한, 본 발명은 태양전지 모듈 제조 시 납땜특성을 향상시킬 수 있는 태양전지 후면 전극용 은 페이스트 조성물을 제공하는 것이다.
본 발명은 (a) 평균입경(D50)이 0.3 내지 1.5㎛인 구형 또는 판상형 도전성 은 분말; (b) Bi2O3-SiO2-Al2O3-B2O3-SrO계 유리 프릿; 및 (c) 유기 비히클을 포함하는 것을 특징으로 하는 태양전지 후면 전극용 은 페이스트 조성물을 제공한다.
본 발명의 태양전지 후면전극용 은 페이스트 조성물은 후면 전극의 저항을 낮추고, 불순물 함유량을 최소화하여 납땜특성을 향상시켜 태양전지 및 모듈의 효율이 향상시킨다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명의 태양전지 후면 전극용 은 페이스트 조성물은 (a) 도전성 은 분말, (b) 유리 프릿 및 (c) 유기 비히클을 포함한다.
본 발명의 태양전지 후면 전극용 은 페이스트 조성물에 포함되는 (a) 도전성 은 분말은 평균입경(D50)이 0.3 내지 1.5㎛인 구형 또는 판상형이다. 그리고, 상기 (a) 도전성 은 분말은 최대입경(DMAX)이 4.5㎛이고, 최소입경(DMIN)이 0.1㎛인 것이 바람직하다. 평균입경(D50)과 최소입경(DMIN)이 상술한 범위 미만이면, 은 분말의 비표면적이 넓어지므로 페이스트 점도가 높아진다. 높아진 점도로 인해, 인쇄성이 떨어지고 은 분말의 함량을 높이는데 제한을 받게 된다. 평균입경(D50)과 최대입경(DMAX)이 상술한 범위를 초과하면, 페이스트 내 은 입자의 치밀도가 떨어져 소성공정 후, 배선 내 공극이 다량 발생하게 되어 배선의 저항이 상승하게 된다.
상기 (a) 도전성 은 분말은 조성물 총 중량에 대하여, 65 내지 75 중량%로 포함되는 것이 바람직하다. 상술한 범위 미만으로 포함되면, 소성 후 인쇄된 은 배선 층이 얇아져 후면 배선 저항이 증가하고, 납땜특성이 저하될 수 있다. 상술한 범위를 초과하면, 인쇄두께가 너무 두꺼워지므로 실리콘 웨이퍼의 휨을 초래할 수 있다.
본 발명의 태양전지 후면 전극용 은 페이스트 조성물에 포함되는 (b) 유리 프릿은 Bi2O3-SiO2-Al2O3-B2O3-SrO계이다. 상기 (b) 유리 프릿은 용융되어 은 배선 층과 실리콘 웨이퍼 층 사이에서 밀착성을 부여한다.
상기 (b) 유리 프릿에 포함되는 SrO은 알칼리 토금속으로 유리 프릿의 전이온도를 조절하는 역할을 한다. 이때, SrO는 이온 반경의 크기가 크므로, 결정화 등의 열안정성 저하 문제를 억제한다. 그리고, SrO로 인해 땜납특성이 좋아진다. 그리고, 부수적인 효과로 태양전지의 효율이 상승된다.
상기 (b) 유리 프릿은 조성물 총 중량에 대하여 0.01 내지 10중량%로 포함되는 것이 바람직하고, 0.5 내지 7 중량%로 포함되는 것이 보다 바람직하고, 1 내지 5 중량%로 포함되는 것이 보다 더 바람직하다. 상술한 범위 미만으로 포함되면, 소성 공정 후 은 배선이 태양전지의 기재인 P형 실리콘 기판과의 부착력이 떨어질 수 있다. 상술한 범위를 초과하여 포함되면, 저항이 높아져 태양전지의 효율이 떨어질 수 있다.
상기 (b) 유리 프릿의 조성비는 특별히 한정되는 것은 아니지만, Bi2O3 20 내지 30mol%, SiO2 25 내지 35mol%, Al2O3 5 내지 15mol%, B2O3 20 내지 40mol% 및 SrO 1 내지 10mol%의 조성을 갖는 것이 바람직하다. 망목 (網目) 형성제인 Si, B 성분과 망목 중간 산화물인 Bi, Al성분 그리고 알칼리 금속 성분인 Sr성분의 적합한 비율에 의해 유리의 물성이 좌우된다. 따라서 상기 수치한정 이내의 조성을 갖는 프릿을 사용하는 것이 바람직하다.
또한, 본 발명에서 사용되는 유리 프릿은 연화점(Tg)이 400 내지 500℃인 것이 바람직하다. 상술한 범위 미만이면, 유리 프릿의 열팽창계수가 상대적으로 커지면서, 태양전지 제조 공정 중 소성공정을 거친 후 웨이퍼가 휘어지는 현상이 증가될 수 있다. 상술한 범위를 초과하면, 소성과정에서 유리 프릿이 충분히 용융되지 않아 밀착성이 저하될 수 있다.
본 발명의 태양전지 후면 전극용 은 페이스트 조성물에 포함되는 (c) 유기 비히클은 조성물 총 중량에 대하여, 20 내지 34.9 중량%로 포함되는 것이 바람직하다. 상술한 범위 미만으로 포함되면, 점도가 너무 높아져 인쇄성이 떨어질 수 있다. 상술한 범위를 초과하면, 분말 함유량이 떨어져 충분한 은 배선 층의 두께를 확보하기 어려울 수 있다.
상기 (c) 유기 비히클은 유기용매에 고분자 수지를 녹여서 제조하며, 필요에 따라, 요변성제, 습윤제, 첨가제 등을 더 포함할 수 있다.
상기 고분자 수지는 상기 (c) 유기 비히클 총 중량에 대하여 1 내지 25 중량%로 포함되는 것이 바람직하고, 5 내지 25 중량%로 포함되는 것이 보다 바람직하다. 상술한 범위 미만으로 포함되면, 본 발명의 조성물로 제조된 은 페이스트의 인쇄성 및 분산 안정성이 저하될 수 있다. 상술한 범위를 초과하면, 페이스트가 인쇄되지 않을 수 있다.
상기 고분자 수지의 예로는 폴리비닐피롤리돈, 폴리비닐알코올, 폴리에틸렌글리콜, 에틸셀룰로오스, 로진, 페놀 수지 또는 아크릴 수지 등을 들 수 있다.
상기 용매는 인쇄공정 중 페이스트의 건조를 막고 유동성을 조절할 수 있도록 약 150 내지 300℃ 범위의 끊는점을 갖는 용매가 적합하다. 상기 용매는 상기 (c) 유기 비히클의 총 중량이 100중량%가 되도록 잔량 포함되는 것이 바람직하다.
상기 용매는 특별히 한정하지 않으나, 글리콜 에테르 계열로 트리프로필렌글리콜 메틸에테르, 디프로필렌글리콜 n-프로필에테르, 디프로필렌글리콜 n-부틸에테르, 트리프로필렌글리콜 n-부틸에테르, 프로필렌글리콜 페닐에테르, 디에틸렌글리콜 에틸에테르, 디에틸렌글리콜 n-부틸에테르, 디에틸렌글리콜 헥실에테르, 에틸렌글리콜 헥실에테르, 트리에틸렌글리콜 메틸에테르, 트리에틸렌글리콜 에틸에테르, 트리에틸렌글리콜 n-부틸에테르, 에틸렌글리콜 페닐에테르, 터피놀, Texanol®(상품명) 또는 에틸렌글리콜 등을 들 수 있다.
상기 요변성제와 습윤제는 상기 (c) 유기 비히클 총 중량에 대하여, 5 중량% 이하로 포함되는 것이 바람직하다. 상기 요변성제와 습윤제는 이 분야에서 일반적으로 사용되는 것이라면, 특별히 한정하지 않는다. 하지만, 상기 요변성제로는 Elementis 사의 THIXATROL@ST, 상기 습윤제는 Momentive사의 Silwet L-77, Silwet L-7500, Silwet L-7280 등이 사용될 수 있다.
상기 첨가제는 상기 (c) 유기 비히클 총 중량에 대하여, 1 내지 10 중량%로 포함되는 것이 바람직하고, 1 내지 5 중량%로 포함되는 것이 보다 바람직하다. 상기 첨가제로는 분산제 등 이 분야에서 일반적으로 사용되는 것을 들 수 있다. 상기 분산제로는 시판되는 계면 활성제를 이용할 수 있고, 이들은 각각 단독으로 또는 2종 이상을 조합하여 사용할 수 있다. 상기 계면 활성제의 예로는 비이온성 계면활성제로서 알킬 폴리옥시에틸렌에테르, 알킬아릴 폴리옥시에틸렌에테르, 폴리옥시에틸렌 폴리옥시프로필렌 공중합체와 같은 에테르형; 글리세린에스테르의 폴리옥시에틸렌에테르, 솔비탄 에스테르의 폴리옥시에틸렌에테르, 솔비톨 에스테르의 폴리옥시에틸렌에테르 같은 에스테르에테르형; 폴리에틸렌글리콜지방산에스테르, 글리세린에스테르, 솔비탄에스테르, 프로필렌글리콜에스테르, 슈가에스테르, 알킬폴리글루코시드 같은 에스테르형; 지방산알카놀아미드, 폴리옥시에틸렌지방산아미드, 폴리옥시에틸렌알킬아민, 아민 옥사이드 같은 함질소형이 있으며; 고분자계 계면활성제로서 폴리비닐알콜, 폴리비닐피롤리돈, 폴리아크릴산, 폴리아크릴산-말레인산 공중합체, 폴리 12-히드록시스테아린산 등을 들 수 있다.
또한, 상기 계면활성제로 시판되는 상품으로는 하이퍼머(hypermer) KD(Uniqema 제조), AKM 0531(일본유지㈜ 제조), KP(신에쯔 가가꾸 고교㈜ 제조), 폴리플로우 (POLYFLOW)(교에이샤 가가꾸㈜ 제조), 에프톱(EFTOP)(토켐 프로덕츠사 제조), 아사히가드(Asahi guard), 서플론(Surflon)(이상, 아사히 글라스㈜ 제조), 솔스퍼스(SOLSPERSE)(제네까㈜ 제조), EFKA(EFKA 케미칼스사 제조), PB 821(아지노모또㈜ 제조), BYK-184, BYK-185, BYK-2160, Anti-Terra U(BYK사 제조) 등을 들 수 있다.
본 발명의 태양전지 후면전극용 은 페이스트 조성물은 후면 전극의 저항을 낮추고, 불순물 함유량을 최소화하여 납땜특성을 향상시켜 태양전지 및 모듈의 효율이 향상시킨다.
이하에서, 실시예, 제조예 및 시험예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나, 본 발명의 범위가 하기의 실시예, 제조예 및 시험예에 의하여 한정되는 것은 아니다.
실시예1 내지 실시예3, 비교예1 내지 비교예4: 태양전지 후면 전극용 은 페이스트 조성물의 제조
하기 표 1에 기재된 구성요소를 하기 표 1에 기재된 함량으로 혼합하였다. 그 후, 자전 및 공전을 동시에 수행하는 믹서를 이용하여 1,000rpm에서 3분간 교반하여 태양전지 후면 전극용 은 페이스트 조성물의 제조하였다.
한편, 유리 프릿의 조성 및 Tg(전이점), 열팽창계수, Tdsp(연화점)은 표 2에 기재되어 있다.
표 1
은 분말 알루미늄 분말 유리프릿 유기 비히클
평균입경(D50) 중량% 평균입경(D50) 중량% 프릿1 프릿2 C-1 C-2 총합
중량% 중량% 중량% 중량% 중량%
실시예1 0.5㎛ 70 - - 4.5 - 21 4.5 25.5
실시예2 1.0㎛ 70 - - 4.5 - 21 4.5 25.5
실시예3 1.5㎛ 70 - - 4.5 - 21 4.5 25.5
비교예1 3㎛ 70 - - 4.5 - 21 4.5 25.5
비교예2 0.1㎛ 70 - - 4.5 - 21 4.5 25.5
비교예3 1.0㎛ 67.5 4.5㎛ 2.5 4.5 - 21 4.5 25.5
비교예4 1.0㎛ 70 - - - 4.5 21 4.5 25.5
c-1: 디에틸렌 글리콜 모노부틸 에테르
c-2: 에틸셀룰로오스
표 2
Bi2O3(mol%) SiO2(mol%) Al2O3(mol%) B2O3(mol%) SrO(mol%) Tg(℃) 열팽창계수(10-7/℃) Tdsp(℃)
프릿1 26 32 6.5 30.0 5.5 453 77 507
프릿2 28.5 34 6.5 31.0 0 462 77 515
제조예1 내지 제조예3, 비교제조예1 내지 비교제조예4: 태양전지의 제조
크기가 156Ⅹ156㎜이고, 두께가 200㎛인 단결정 웨이퍼에 표면 텍스쳐링 공정을 수행하여 피라미드 높이가 약 4 내지 6㎛가 되도록 형성시켰다. 그 후, 웨이퍼의 N-측 상에 SiNx를 코팅하였다. 이어서, 웨이퍼의 후면에 실시예1 내지 실시예3, 비교예1 내지 비교예4의 태양전지 후면 전극용 은 페이스트 조성물을 이용하여 버스 바(Bus Bar)를 인쇄하고 건조시켰다. 그 후, 동우화인켐㈜사 알루미늄 전극 페이스트(상품명: AMP-BL122C)를 스크린 인쇄판을 이용하여 도포하고 건조시키고, 전면 SiNx측 상에 은-페이스트를 이용하여 핑거 라인(Finger Line)을 인쇄하고 건조하였다. 상기 과정을 거친 실리콘 웨이퍼를 적외선 연속 소성로에서 소성영역의 온도가 800~950℃가 되도록 하여 소성하여 태양전지를 제조하였다. 여기서, 소성공정은 상기 실리콘 웨이퍼를 벨트 로(Belt Furnace) 내로 통과시키면서 전후면 동시 소성으로 수행될 수도 있다. 이때, 벨트 로(Belt Furnace)는 약 600℃의 번-아웃(Burn-out) 구간과 860℃ 부근의 파이어링(Firing) 구간을 포함하며, 페이스트 내 유기물을 태워 없앤 후, 전후면 은 또는 은/알루미늄을 용융시켜서 전극이 형성되게 한다.
한편, 버스 바를 형성할 때 사용한 실시예1 내지 실시예3, 비교예1 내지 비교예4의 태양전지 후면 전극용 은 페이스트 조성물에 따라, 제조예1 내지 제조예3, 비교제조예1 내지 비교제조예4라 태양전지를 명명하였다.
시험예: 태양전지의 특성 평가
<태양전지 효율 평가>
핏테크(FitTech)사의 태양전지 성능 평가 장치인 SCM-1000을 이용하여 평가하고, 그 결과를 하기 표 3에 나타내었다.
<휘어짐 평가>
휘어짐을 평가하고, 그 결과를 하기 표 3에 나타내었다. 휘어짐에 대한 척도는 다음과 같다.
양호: 1㎜ 미만, NG: 1 ㎜ 초과
<전지 납땜 특성 평가>
구리에 96.5Sn/3.5Ag조성이 코팅된 재질의 리본과 62Sn/36Pb/2Ag의 조성으로 코팅된 2가지 재질의 리본을 이용하여 태양전지들의 납땜 특성을 평가하였다. Pb-함유(62Sn/36Pb/2Ag) 납땜을 위한 납땜 온도는 230℃이었고, Pb무함유(96.5Sn/ 3.5Ag) 납땜을 위한 납땜온도는 320℃이었고, 납땜 시간은 5 내지 7초였다. 사용된 플럭스는 MF200이었다.
그리고, 납땜 특성은 접착 강도로 평가된다. 접착 강도는 전지의 표면에 대해 90°의 각도로 리본을 잡아당겨 얻었다. 200g 미만의 접착 강도는 낮고, 200g 내지 300g 범위의 값은 적절하며; 300 내지 400g 또는 그보다 큰 값은 양호한 것으로 접착강도를 평가하였고, 결과를 표 3에 나타내었다.
표 3
제조예1 제조예2 제조예3 비교제조예1 비교제조예2 비교제조예3 비교제조예4
태양전지 효율(%) 17.5 17.6 17.5 17.3 17.1 17.1 17.4
휘어짐 양호 양호 양호 양호 NG 양호 양호
납땜특성(g) 62Sn/36Pb/2Ag 564 523 635 453 374 321 380
96.5Sn/ 3.5Ag 379 321 346 286 223 199 293
표 3을 참조하면, 본 발명의 따른 제조예들이 비교제조예보다 효율이 0.2~0.5% 차이가 나므로, 효율이 우수하고, 납땜 특성도 우수함을 알 수 있다.

Claims (6)

  1. (a) 평균입경(D50)이 0.3 내지 1.5㎛이고 구형 또는 판상형인 도전성 은 분말;
    (b) Bi2O3-SiO2-Al2O3-B2O3-SrO계 유리 프릿; 및
    (c) 유기 비히클을 포함하는 것을 특징으로 하는 태양전지 후면 전극용 은 페이스트 조성물.
  2. 청구항 1에 있어서,
    조성물 총 중량에 대하여,
    상기 (a) 도전성 은 분말 65 내지 75 중량%;
    상기 (b) Bi2O3-SiO2-Al2O3-B2O3-SrO계 유리 프릿 0.1 내지 10 중량%; 및
    상기 (c) 유기 비히클 20 내지 34.9 중량%을 포함하는 것을 특징으로 하는 태양전지 후면 전극용 은 페이스트 조성물.
  3. 청구항 1에 있어서,
    상기 (a) 도전성 은 분말은 최대입경(DMAX)이 4.5㎛이고, 최소입경(DMIN)이 0.1㎛인 것을 특징으로 하는 태양전지 후면 전극용 은 페이스트 조성물.
  4. 청구항 1에 있어서,
    상기 (b) Bi2O3-SiO2-Al2O3-B2O3-SrO계 유리 프릿의 조성비는 Bi2O3 20 내지 30mol%, SiO2 25 내지 35mol%, Al2O3 5 내지 15mol%, B2O3 20 내지 40mol%, 및 SrO 1 내지 10mol%인 것을 특징으로 하는 태양전지 후면 전극용 은 페이스트 조성물.
  5. 청구항 1에 있어서,
    상기 (c) 유기 비히클은,
    상기 (c) 유기 비히클의 총 중량에 대하여, 고분자 수지 1 내지 25 중량% 및 용매 잔량을 포함하는 것을 특징으로 하는 태양전지 후면 전극용 은 페이스트 조성물.
  6. 청구항 1에 있어서,
    알루미늄 분말을 포함하지 않는 것을 특징으로 하는 태양전지 후면 전극용 은 페이스트 조성물.
PCT/KR2010/009013 2009-12-17 2010-12-16 태양전지 후면 전극용 은 페이스트 조성물 WO2011074888A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800533415A CN102652339A (zh) 2009-12-17 2010-12-16 太阳能电池背面电极用银浆组成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20090125885 2009-12-17
KR10-2009-0125885 2009-12-17
KR10-2010-0128828 2010-12-16
KR1020100128828A KR20110069724A (ko) 2009-12-17 2010-12-16 태양전지 후면 전극용 은 페이스트 조성물

Publications (2)

Publication Number Publication Date
WO2011074888A2 true WO2011074888A2 (ko) 2011-06-23
WO2011074888A3 WO2011074888A3 (ko) 2011-10-27

Family

ID=44167876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009013 WO2011074888A2 (ko) 2009-12-17 2010-12-16 태양전지 후면 전극용 은 페이스트 조성물

Country Status (1)

Country Link
WO (1) WO2011074888A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2496166C1 (ru) * 2012-02-02 2013-10-20 Закрытое акционерное общество "Монокристалл" (ЗАО "Монокристалл") Токопроводящая серебряная паста для тыльного электрода солнечного элемента
CN104246908A (zh) * 2012-03-23 2014-12-24 株式会社昌星 太阳能电池用电极糊组合物
CN113990958A (zh) * 2021-10-21 2022-01-28 海宁正泰新能源科技有限公司 一种N型TopCon电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798258B1 (ko) * 2005-10-11 2008-01-24 이 아이 듀폰 디 네모아 앤드 캄파니 알루미늄 후막 조성물(들), 전극(들), 반도체 장치(들) 및이들의 제조 방법
KR100837994B1 (ko) * 2005-04-14 2008-06-13 이 아이 듀폰 디 네모아 앤드 캄파니 전도성 조성물 및 반도체 소자의 제조에 사용하는 방법
KR20080099406A (ko) * 2007-05-09 2008-11-13 주식회사 동진쎄미켐 태양전지 전극 형성용 페이스트

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837994B1 (ko) * 2005-04-14 2008-06-13 이 아이 듀폰 디 네모아 앤드 캄파니 전도성 조성물 및 반도체 소자의 제조에 사용하는 방법
KR100798258B1 (ko) * 2005-10-11 2008-01-24 이 아이 듀폰 디 네모아 앤드 캄파니 알루미늄 후막 조성물(들), 전극(들), 반도체 장치(들) 및이들의 제조 방법
KR20080099406A (ko) * 2007-05-09 2008-11-13 주식회사 동진쎄미켐 태양전지 전극 형성용 페이스트

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2496166C1 (ru) * 2012-02-02 2013-10-20 Закрытое акционерное общество "Монокристалл" (ЗАО "Монокристалл") Токопроводящая серебряная паста для тыльного электрода солнечного элемента
CN104246908A (zh) * 2012-03-23 2014-12-24 株式会社昌星 太阳能电池用电极糊组合物
CN113990958A (zh) * 2021-10-21 2022-01-28 海宁正泰新能源科技有限公司 一种N型TopCon电池及其制备方法

Also Published As

Publication number Publication date
WO2011074888A3 (ko) 2011-10-27

Similar Documents

Publication Publication Date Title
KR20110069724A (ko) 태양전지 후면 전극용 은 페이스트 조성물
CN103314414B (zh) 导电性糊剂及使用了该导电性糊剂的太阳能电池元件
WO2012067327A1 (en) Back contact composition for solar cell
WO2013085112A1 (ko) 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극
KR20110040083A (ko) 태양전지의 후면 전극용 알루미늄 페이스트
WO2011074888A2 (ko) 태양전지 후면 전극용 은 페이스트 조성물
KR101848009B1 (ko) 은 페이스트 조성물 및 이를 이용한 전극
KR20110025614A (ko) 태양전지의 후면 전극용 알루미늄 페이스트
WO2012148021A1 (ko) 실리콘 태양전지의 저 휨 고특성 구현용 알루미늄 페이스트 조성물
KR20110121427A (ko) 태양전지 후면 전극용 은 페이스트 조성물
KR20110121428A (ko) 태양전지 후면 전극용 은 페이스트 조성물
KR20140074415A (ko) 태양전지 후면 전극의 제조 방법 및 이를 이용한 태양전지 소자
WO2017074150A1 (ko) 태양전지용 전극 페이스트 및 이를 사용하여 제조된 태양전지
JP2013089481A (ja) ペースト組成物
WO2017074151A1 (ko) 태양전지용 전극 페이스트 조성물 및 이를 사용하여 제조된 태양전지
KR20110051451A (ko) 신규한 유리 조성물, 상기 유리 조성물로 제조되는 글라스 프릿, 및 상기 글라스 프릿을 포함하는 태양전지의 후면 전극용 알루미늄 페이스트
KR20120002257A (ko) 태양전지 후면 전극용 알루미늄 페이스트 조성물
WO2013058418A1 (ko) 태양전지 후면 전극용 은 페이스트 조성물 (2)
KR20150057457A (ko) 알루미늄 페이스트 조성물 및 이를 이용한 태양전지 소자
WO2018080095A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2012086972A2 (ko) 알루미늄 페이스트 조성물 및 이를 이용한 태양전지 소자
WO2012086971A2 (ko) 알루미늄 페이스트 조성물 및 이를 이용한 태양전지 소자
KR101711149B1 (ko) 알루미늄 페이스트 조성물 및 이를 이용한 태양전지 소자
WO2013058417A1 (ko) 태양전지 후면 전극용 은 페이스트 조성물 (1)
WO2021137570A1 (ko) 태양전지 전극용 도전성 페이스트 조성물 및 이를 사용하여 제조된 전극을 포함하는 태양전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053341.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837884

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837884

Country of ref document: EP

Kind code of ref document: A2