WO2011074720A1 - 가스분무법을 이용한 금속복합분말의 제조방법 및 제조장치 - Google Patents
가스분무법을 이용한 금속복합분말의 제조방법 및 제조장치 Download PDFInfo
- Publication number
- WO2011074720A1 WO2011074720A1 PCT/KR2009/007544 KR2009007544W WO2011074720A1 WO 2011074720 A1 WO2011074720 A1 WO 2011074720A1 KR 2009007544 W KR2009007544 W KR 2009007544W WO 2011074720 A1 WO2011074720 A1 WO 2011074720A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- aluminum
- powder
- composite powder
- metal
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1042—Alloys containing non-metals starting from a melt by atomising
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F2009/0816—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying by casting with pressure or pulsating pressure on the metal bath
Definitions
- the present invention relates to a method and apparatus for producing a metal composite powder using a gas spraying method.
- a grinding method of pulverizing a solid metal a wet method through a chemical method such as precipitation, and a spraying method of melting a metal material and spraying using a spray nozzle are used.
- the spray method may be classified into a water spray method using a liquid such as water and a gas spray method using a gas, depending on the cooling medium used.
- a metal powder is prepared by injecting an inert gas such as argon or nitrogen at room temperature while flowing molten metal through an injection nozzle, and the particle size of the manufactured metal powder. Is formed to an average of about 100 ⁇ m.
- Metals have low melting points such as zinc (Zn), aluminum (Al), tin (Sn), and stainless steel, copper (Cu), iron (Fe), nickel (Ni), and cobalt (Co) depending on the melting temperature. It can be divided into a metal having a high melting point or a multi-element alloy and the like.
- the metal materials classified into various types as described above includes a reinforcing phase to improve the properties of the metal material.
- the metal material containing the reinforcing phase is mainly injected into the molten casting method. It is manufactured through.
- the metal material manufactured through the melt casting method as described above has a high risk of separation of the reinforcement phase along the interface, making it difficult to process the actual shape of the manufactured product.
- the matrix phase that is, the material and reinforcement phase of the low melting point
- a separate melt mixing process is added to mix high melting point materials.
- the molten cast metal material including the mixing process as described above, when the reinforcement phase and the matrix phase is mixed, the reinforcement phase is agglomerated to generate a non-uniform distribution, and thus the amount, size, shape, distribution, etc. of the reinforcement phase There is a problem that is difficult to control, there is also a problem that is difficult to control the size of the reinforcing phase-containing metal material.
- An object of the present invention is to provide a method for producing a metal composite powder using a gas spray method.
- Another object of the present invention is to provide an apparatus for producing a metal composite powder using a gas spraying method.
- the present invention comprises the steps of putting the base phase into the chamber; A reinforcing phase is provided in the chamber; Melting the introduced matrix phase to form a molten metal; Adding a strengthening phase to the molten metal; Stirring the molten metal to which the reinforcing phase is added to form a mixed molten metal; Spraying the mixed melt together with a gas to form a metal composite powder containing a reinforcing phase; And recovering the formed metal composite powder. It provides a method for producing a metal composite powder using a gas spraying method, characterized in that it comprises a.
- the upper chamber is provided with a crucible in which the known phase is injected and melted;
- An inlet means provided on the upper side of the crucible in the upper chamber to enable selective introduction of a reinforcing phase into the crucible;
- Stirring means for stirring the reinforcing phase introduced into the crucible through the feeding means and the melt formed by heating in the crucible;
- a spray nozzle for spraying a mixed molten metal formed by stirring the molten metal together with the strengthening phase through the stirring means together with a gas to generate a powder;
- a lower chamber which is a recovery chamber of the metal composite powder generated by the spray nozzle, provides an apparatus for manufacturing a metal composite powder using a gas spray method.
- the present invention is a step of preparing a molten metal by heating and melting an Al-Si-based alloy containing an aluminum ingot or a reinforcement phase and then adding and stirring a metal ingot, an alloy ingot or an aluminum-reinforced phase powder, or an aluminum-reinforced phase Preparing the molten metal by charging the powder at the bottom of the aluminum base material after Al-foiling, heating and stirring (step 1); And it provides a method for producing a metal composite powder using a gas spray method comprising the step (step 2) of preparing a metal composite powder by spraying the molten metal prepared in step 1 together with the gas.
- FIG. 1 is a schematic diagram showing an apparatus for producing a metal composite powder using a gas spraying method according to the present invention
- FIG. 2 is a flowchart showing a method for producing a metal composite powder using a gas spraying method according to the present invention
- FIG. 3 is a cross-sectional view showing a crystal structure of a metal composite powder prepared by the production method of the present invention
- EPMA Electron Probe Micro Analysis
- FIG. 6 is a graph showing the results of X-ray diffraction analysis of aluminum (Al) composite powder containing silicon carbide (SiC) prepared by the production method of the present invention
- FIG. 7 is a schematic view showing a method of adding aluminum-enhanced powder according to the present invention.
- FIG. 8 is a flow chart of mechanical milling according to the present invention
- FIG. 11 is a graph showing a scanning electron microscope (SEM) photograph (a) and an energy dispersive X-ray spectroscopy (EDS) point of an Al alloy ingot (b);
- EDS 12 is a photograph showing the results of analysis by energy dispersive X-ray spectroscopy (EDS) mapping of Al alloy ingots;
- FIG 17 is an optical microscope (OM) photograph showing the surface of the metal composite powder according to the melt temperature ((a): Al-Si-SiC-based casting material, (b): Example 1, (c): Comparative Example 1 , (d): comparative example 2);
- control panel 600 known phase
- FIG. 1 is a view schematically showing the structure of a metal composite powder manufacturing apparatus using a gas spray method according to an embodiment of the present invention.
- the metal composite powder manufacturing apparatus using the gas spray method according to an embodiment of the present invention is a known phase (600 in Figure 3) and the reinforcement phase (700 in Figure 3) of the metal composite powder to be prepared
- the upper chamber 100 is configured to be accommodated.
- the upper chamber 100 is provided with a crucible 120 and a heater 140 for melting the matrix phase 600, and the reinforcement phase 700 is accommodated above the crucible 120.
- Input means 500 is provided.
- the crucible 120 is formed so that the upper side is opened, the receiving area is narrowed from the upper side to the lower side is configured to be connected to the spray nozzle 300 to be described in detail below.
- a heater for heating the crucible 120 is provided on the outside of the crucible 120 to heat the base phase 600 accommodated therein together with the crucible 120.
- the feeding means 500 is configured to include a receiving portion 520 and the operation unit 540, the receiving portion 520 is formed in a substantially cylindrical shape to accommodate the reinforcement image 700 therein is one direction from the center of the body
- the rotating shaft is formed in a portion that is inclined, and is formed to be rotated about the rotating shaft.
- the reinforcing image 700 accommodated in the interior of the accommodating part 520 is inclined into the crucible 120 by tilting the accommodating part 520 in one direction by a user operation on one side of the body of the accommodating part 520.
- the operation unit 540 to be connected is connected.
- the operation unit 540 is one end is connected to the receiving unit 520, the other end is formed so as to be exposed to the outside of the upper chamber 100, when the user grips the other end exposed, the accommodation The part 520 rises along the direction in which the user grips the rotation axis, and the reinforcement image 700 accommodated therein is introduced into the crucible 120 along the slope.
- the base phase 600 is accommodated in the crucible 120 to be melted by being heated by the heater 140, and the reinforcement phase 700 is stirred in the molten metal formed as described above to be stirred. Part of the means 400 is received.
- the stirring means 400 is provided at one side of the upper chamber 100 to generate a rotational force, and is connected to a rotating shaft of the stirring motor 420, and inside the crucible 120. It is configured to include an impeller 440 that is accommodated and rotated so that the matrix phase 600 and the reinforcement phase 700 in a molten state are stirred.
- the stirring motor 420 is mounted so that the height can be adjusted using a cylinder or a separate motor, such that the position of the impeller 440 inside the crucible 120 Is to be variable so that the reinforcement phase 700 injected into the melt can be stirred smoothly with the melt.
- the matrix phase 600 is a metal having a relatively low melting point (Al, Cu, Fe, etc.) and alloys (AlSi, FeNi, etc.) are used
- the reinforcement phase 700 is a melting point of the matrix phase 600 is relatively High ceramics (SiC, TiC, Al 2 O 3 , SiO 2, etc.) and intermetallic compounds (Al 3 Zr, etc.) or organic or inorganic substances are used.
- the matrix phase 600 has a size in a range of 10 ⁇ m to 1000 ⁇ m
- the reinforcement phase 700 is formed to have a size that is relatively smaller than that of the matrix phase 600, and 1 nm to 100. It would be most desirable to have a size within the micrometer range.
- the reinforcement phase 700 is added to have a volume fraction within the range of 0.1 to 70 vol% relative to the molten matrix metal. This is because when the reinforcement phase 700 is 70% or more, the viscosity is increased, so that gas spraying is not performed smoothly.
- the spray nozzle 300 is connected to the lower end of the crucible 120, as described above, the mixed melt of the reinforcement phase 700 and the molten metal having a range of the size and fraction as described above with the high-pressure gas It is formed to be sprayed into the lower chamber 200, such a nozzle structure is already known in the art so a detailed description thereof will be omitted.
- the mixed melt sprayed by the spray nozzle 300 is converted into a powder form while being sprayed with a high pressure gas, and the converted metal composite powder is recovered into the lower chamber 200.
- the lower chamber 200 is connected to the spray nozzle 300 while supporting the upper chamber 100 at the lower side of the upper chamber 100 as shown. And it is collected and stored in the metal composite powder which is converted into a powder form while being sprayed with the gas at the end of the spray nozzle 300, although not shown in the drawing for the cyclone to the lower chamber 200 It is further provided.
- FIG. 2 is a flow chart showing a method for producing a metal composite powder using the gas spraying method according to the present invention.
- the step of inserting the matrix (reference numeral 600 in FIG. 3) into the upper chamber 100 is performed.
- the crucible 120 in which the base phase 600 is accommodated is provided in the upper chamber 100, and the base phase 600 is accommodated in the crucible 120.
- the step of accommodating the reinforcement image 700 in the input means 500 provided in the upper chamber 100 is performed as a separate process from the accommodating step of the base phase 600.
- the process of accommodating the base phase 600 in the crucible 120 and the process of accommodating the reinforcement phase 700 in the interior of the accommodating part 520, which is one component of the feeding means 500, are individually performed. It can be made regardless of the order. However, since the reinforcement phase 700 is introduced to reinforce the mechanical properties of the matrix phase 600, it may be desirable to accommodate the reinforced phase 700 in consideration of the characteristics to be reinforced after the reception of the matrix phase 600. .
- the step of melting the base phase 600 accommodated in the crucible 120 to form a molten metal is performed do.
- the base phase 600 is converted into a molten metal of about 900 ° C. by induction melting in the crucible 120 provided in the upper chamber 100.
- the step of introducing the reinforcement phase 700 is performed in the molten metal formed by melting the matrix phase 600.
- the reinforcement image 700 is provided inside the receiving portion 520 connected to the operation unit 540 so that the user can operate from the outside as described above, the user checks the state of the base phase 600 and melts. If it is confirmed that the conversion, using the operation unit 540 it is possible to put the reinforcement phase 700 in the molten metal.
- the reinforcement phase 700 introduced as described above maintains its characteristics in a state in which the reinforcement phase 700 is injected into the matrix phase 600 melted with a material having a higher melting point than that of the matrix phase 600.
- the stirring motor 420 of one component of the stirring means 400 rotates to rotate the impeller 440 connected thereto at high speed.
- the reinforcement phase 700 is evenly spread inside the molten metal by the impeller 440 rotating at a high speed to form a mixed molten metal.
- the step of forming a metal composite powder by spraying the mixed melt with a high-pressure gas using a spray nozzle (300).
- the metal composite powder produced as described above is recovered and accommodated in the lower chamber 200 in a state in which the reinforcement phase 700 is contained in the base phase 600.
- FIG 3 is a cross-sectional view schematically showing the crystalline structure of the metal composite powder produced by the present invention.
- the metal composite powder prepared by the method for producing a metal composite powder using the gas spraying method according to the present invention contains the reinforcement phase 700 in the interior of the base phase 600 and thus the interior of the base phase 600. In the interface of the reinforcement phase 700 and the known phase 600 is formed. Therefore, the reinforcement phase 700 is prevented from being aggregated and unevenly distributed to one side of the matrix phase 600.
- Figure 4 is a photograph showing the microstructure of the aluminum (Al) composite powder containing silicon carbide (SiC) prepared by the present invention
- Figure 5 is the aluminum containing silicon carbide (SiC) prepared by the present invention
- Al is an electron microscopic analysis (Electron Probe Micro Analysis: EPMA) of the composite powder
- Figure 6 is a X-ray diffraction analysis of the aluminum (Al) composite powder containing silicon carbide (SiC) prepared by the present invention The figure shown.
- the metal composite powder shown in these drawings is formed by a method for producing a metal composite powder using a gas spraying method according to the present invention, and a metal composite powder manufacturing apparatus therefor, and includes aluminum carbide (SiC), which is a kind of ceramic, Al) Composite powder.
- SiC aluminum carbide
- the aluminum carbide (Al) composite powder containing silicon carbide (SiC) becomes aluminum (Al) at about 900 ° C. in the crucible 120 of the upper chamber 100 through induction melting as described above. Silicon carbide (SiC) of vol.% is accommodated in the accommodating part 520 and then directly injected into the aluminum (Al) molten metal.
- the molten aluminum (Al) is added to the silicon carbide (SiC) molten metal while moving the stirring means 400 to about 500 RPM to form a mixed molten metal by stirring.
- an aluminum (Al) composite powder containing silicon carbide (SiC) having a size of about 150 ⁇ m is formed, and the aluminum (Al) composite powder containing the silicon carbide (SiC) is described above. It is recovered and accommodated in the chamber 200.
- Al-Si-based alloys containing aluminum ingots or reinforcement phases are heated and melted, followed by addition and stirring of metal ingots, alloy ingots or aluminum-enhanced phase powders, or aluminum-enhanced powders to Al-foils. Charging to the bottom of the aluminum base material after the ring (foiling), heating and stirring to prepare a molten metal (step 1); And
- It provides a method for producing a metal composite powder using a gas spray method comprising the step (step 2) of preparing a metal composite powder by spraying the molten metal prepared in step 1 together with the gas.
- step 1 is a metal ingot, alloy ingot or aluminum-enhanced powder after the aluminum ingot or the Al-Si alloy containing the reinforcement phase is heated and melted.
- a step of preparing a molten metal by adding and stirring, or a step of preparing the molten metal by heating and stirring the aluminum-enhanced powder into the bottom of the aluminum base material after Al-foiling see FIG. 7).
- the reinforcement phase of step 1 may be SiC, AlN and TiC.
- the metal ingot of step 1 may be aluminum (Al), tin (Sn) and copper (Cu), and the like
- the alloy ingot of step 1 is an aluminum-silicon (Al-Si) alloy, aluminum-copper ( Al-Cu) alloy, aluminum-iron (Al-Fe) alloy, etc. can be used.
- the aluminum-enhanced powder of step 1 may be prepared by mechanical milling after mixing aluminum and the enhanced powder.
- the mechanical milling may be performed for about 30 minutes to manufacture a plate using a low-energy ball mill and a stainless steel ball, which is a horizontal mill, and for about 5 hours to manufacture a spherical powder.
- RPM and milling time can be controlled by high energy milling method.
- the mechanical milling results in a uniform distribution of the reinforcing phase in the aluminum matrix (see FIG. 8).
- the aluminum-enhanced powder is prepared in a plate-like or spherical shape having a size of 10-5000 ⁇ m, and the particle size of the reinforced phase present in the aluminum powder is in the range of 0.001-50 ⁇ m.
- the aluminum-enhanced powder of step 1 is preferably added at a temperature at which the crystal structure produced in the aluminum-enhanced powder is maintained.
- the molten metal of step 1 is preferably present in the reinforcement phase 0.1-70% by volume. If the reinforcement phase is less than 0.1% by volume, there is a problem that the tensile strength and abrasion resistance may not be improved, and when the reinforcement phase is more than 70% by volume, the viscosity of the molten metal is increased so that the metal composite powder may not be manufactured by gas spraying. .
- the step 1 may further include the step of raising the molten metal temperature to the range of 700-800 °C for 5-30 minutes.
- the viscosity of the melt is lowered, so that the gas spraying is performed smoothly, the reinforcement phase can be prevented from segregating and decomposing.
- the step of preparing a metal composite powder by spraying the molten metal prepared in step 1 together with the gas is performed.
- the gas of the step 2 is preferably used a mixed gas consisting of a volume fraction of nitrogen and oxygen 7 ⁇ 9: 3 ⁇ 1.
- the spraying of the step 2 is preferably carried out at a pressure of 5-100 bar. If the spraying is performed at less than 5 bar, there is a problem that the size of the prepared metal composite powder is increased and the particle size distribution is widened. If the spraying is performed at a thickness of more than 100 bar, the powder is manufactured in the form of flakes. There is a decreasing problem.
- the present invention is prepared by heating and melting an aluminum ingot or an Al-Si alloy containing a reinforcement phase, followed by adding and stirring a metal ingot, an alloy ingot or an aluminum-reinforced phase powder to prepare a molten metal and then spraying it with a gas. It provides a metal composite powder.
- the method for producing a metal composite powder using the gas spraying method according to the present invention can produce a large amount of the metal composite powder in which the reinforcing phase is distributed in the intra-granular structure on the metal matrix by using the gas spraying method, and the uniformity of the reinforcing phase Since the distribution improves the tensile strength and wear resistance of the metal, it can be usefully used for the production of metal composite powder.
- the present invention comprises an upper chamber in which a crucible in which an Al-Si-based alloy including an aluminum ingot or a reinforcement phase is added and melted is provided;
- An inlet means disposed above the crucible in the upper chamber and configured to selectively inject a metal ingot, an alloy ingot or an aluminum-enhanced powder into the crucible;
- Stirring means for agitating the metal ingot, alloy ingot or aluminum-enhanced powder and the molten metal formed inside the crucible through the feeding means;
- It provides a metal composite powder manufacturing apparatus using a gas spray method comprising a; a lower chamber which is a recovery chamber of the metal composite powder produced by the spray nozzle.
- the stirring means of the apparatus for manufacturing a metal composite powder using the gas spraying method according to the present invention comprises a stirring motor provided on the outside of the upper chamber, and an impeller connected to the stirring motor inside the crucible to rotate.
- the feeding means may include an accommodating part in which the metal ingot, an alloy ingot or an aluminum-enhanced powder is accommodated, and the metal ingot, an alloy ingot or an aluminum-enhanced powder is introduced into the crucible by operating the accommodating part. It can be configured to include an operation unit to make.
- Al-Si-SiC system Al base contains 20% by volume of SiC, 8 to 9% by weight of Si, up to 0.2% by weight of Fe, up to 0.2% by weight of Cu, 0.45 to 0.65% by weight of Mg, 1 kg of alloy ingot was charged into the crucible inside the upper chamber of the gas atomizer, and then induction heating to about 580 ° C. to melt the base metal to prepare the molten metal and stirred it. After that, the molten metal temperature was rapidly increased to 10 minutes at 750 ° C.
- Al-Si-SiC system Al base contains 20% by volume of SiC, 8 to 9% by weight of Si, up to 0.2% by weight of Fe, up to 0.2% by weight of Cu, 0.45 to 0.65% by weight of Mg, Except that ingot containing Ti up to 0.2% by weight, 500g of alloy ingot) purchased from MC21, and the same volume of pure Al ingot was added for the control of fraction of SiC, and then melted at 660 ° C. In the same manner as in Example 1, a metal composite powder was prepared.
- the mechanical milling was performed for about 30 minutes to prepare a plate using a low-energy ball mill (ZoZ GmbH, Smoloyer) and a stainless steel ball, which are horizontal mills, and a spherical powder was prepared. The milling was carried out for about 5 hours. After the Al-TiC powder was manufactured by the mechanical milling, the aluminum ingot was melted, the Al-TiC powder prepared above was added and stirred, and the molten metal temperature was rapidly increased to 750 ° C. within 10 minutes.
- a low-energy ball mill ZoZ GmbH, Smovier
- a metal composite powder was prepared in the same manner as in Example 1, except that the molten metal temperature was rapidly increased to 850 ° C. within 15 minutes.
- a metal composite powder was prepared in the same manner as in Example 1, except that the molten metal temperature was rapidly increased to 950 ° C. within 15 minutes.
- Al-Si-SiC system Al base contains 20% by volume of SiC, 8 to 9% by weight of Si, up to 0.2% by weight of Fe, up to 0.2% by weight of Cu, 0.45 to 0.65% by weight of Mg, Ti was prepared by heating an ingot, which is contained in a maximum of 0.2% by weight, of an ingot, obtained from MC21), by heating the alloy at 750 ° C. in a vacuum, and then cooling the alloy.
- Figure 9 shows the aluminum surface
- (b) shows the surface of the TiC powder
- (c) shows the surface of the Al-TiC composite powder prepared by the mechanical activation method.
- Aluminum and powdered powders were prepared by mechanical milling, and aluminum-powdered powders were melted together with aluminum ingots to prepare a molten metal, followed by stirring and solidifying at high speed to prepare an Al alloy ingot containing 2% by weight of TiC powder. , Photographed. An Al alloy ingot containing 2 wt% of the TiC powder is shown in FIG. 10.
- FIG. 11 it can be seen that the TiC powder is distributed in the Al matrix intra-granular (see FIG. 11 (a)), and it can be seen that Al, Ti, and C are composed of the main component. (See FIG. 11B).
- Aluminum-enhanced powder is prepared by mechanical milling and then aluminum-enriched powder is melted together with aluminum ingot to prepare a molten metal, followed by stirring and solidifying at high speed to disperse the energy of Al-TiC alloy ingot.
- EDS type X-ray spectroscopy
- Al, Ti, and C are composed of main components, and a small amount of Si is contained.
- the metal composite powder according to the present invention can be seen that the SiC is distributed in the intra-granular structure in the Al matrix.
- An optical microscope (OM, NIKON, EPIPHOT) was used to analyze the surface of the metal composite powder prepared by varying the SiC fraction in the Al matrix by the manufacturing method according to the present invention, and the results are shown in FIG. 14.
- Figure 14 shows a metal composite powder containing 20% by volume of SiC, (b) shows a metal composite powder containing 30% by volume of SiC.
- FIG. 15A shows a metal composite powder having a SiC of 17 ⁇ m
- (b) shows a metal composite powder having a SiC of 12 ⁇ m
- (c) shows a metal composite powder having a SiC of 6.5 ⁇ m
- (d) represents a metal composite powder having a SiC size of about 1 ⁇ m by heating a metal composite powder having a SiC of 12 ⁇ m at 750 ° C. in a vacuum, holding for 30 minutes, and then cooling.
- FIG. 16 shows Example 3 prepared by including an Al ingot in an Al-Si-SiC-based ingot, and (b) shows Al-Si-Cu-Fe-Mg- in an Al-Si-SiC-based ingot.
- Example 2 including an Mn-based ingot is shown.
- Figure 17 (a) is a photograph showing the Al-Si-SiC-based casting material
- Figure 17 (b) shows the first embodiment
- Figure 17 (c) and (d) is Comparative Examples 1 and 2 Respectively, and as shown in FIG. 17, the melting temperature of Example 1 is 750 ° C., which is a temperature suitable for preparing a metal composite powder.
- Comparative Examples 1 and 2 the viscosity of the molten metal becomes low and the melting time becomes long. It can be seen that SiC segregates and decomposes.
- Example 1 (FIG. 18B) according to the present invention has improved wettability of Al-SiC and uniformity of SiC than Comparative Example 3 (FIG. 18A). It can be seen that it is distributed and exhibits an intra-granular distribution.
- An extrusion material was manufactured from the metal composite powder of Example 1 prepared by the method of the present invention, and the tensile strength of the heat treatment method was analyzed. The results are shown in FIG. 19 and Table 1 below.
- Al-Si-SiC-based metal composite powder prepared in the same manner as in Example 1 was produced by canless extrusion at about 470 °C and heat-treated the extrusion material at 350 °C 30 minutes to remove the extrusion stress It was.
- the extruded material was heat-treated at 540 ° C. for 8 hours, followed by water cooling, followed by cooling at 170 ° C. for 4 hours, and then cooled to perform T-6 heat treatment.
- the cast material values were quoted from the test results after T-6 treatment at MC21.
- the maximum tensile strength is about 23% than the cast (as-casted), and the Young's strength is about It can be seen that 31% and elongation are improved by 40%.
- the specific wear rate was 2189 10 -15 m3 / Nm when T-6 was heat treated to a specimen prepared by squeeze casting at a pressure of 50 MPa, and SiC was The specific wear rate was 1395 m 3 / Nm when the T-6 heat treatment was performed by molten forging, including 20% by volume, and the specific wear rate was obtained when the specimen prepared by extruding the metal composite powder of Example 1 according to the present invention. This was 594 m 3 / Nm, and the specific wear rate was 1931 m 3 / Nm when the heat-treated specimen prepared by extruding the metal composite powder of Example 1 according to the present invention. Therefore, the specimen prepared by extruding the metal composite powder of Example 1 according to the present invention can be seen that the specific wear rate is greatly improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
본 발명은 가스분무법을 이용한 금속복합분말의 제조방법 및 제조장치에 관한 것으로, 더욱 상세하게는 기지상이 챔버에 투입되는 단계; 강화상이 챔버 내에 구비되는 단계; 투입된 기지상이 용융되어 용탕이 형성되는 단계; 상기 용탕에 강화상이 첨가되는 단계; 강화상이 첨가된 용탕이 교반되어 혼합용탕을 형성하는 단계; 상기 혼합용탕을 가스와 함께 분무하여 강화상이 함유된 금속복합분말이 형성되는 단계; 및 형성된 금속복합분말이 회수되는 단계;가 포함되어 이루어지는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조방법, 기지상이 투입되어 용융되는 도가니가 내부에 구비되는 상챔버; 상기 상챔버 내부에서 상기 도가니의 상측에 구비되며, 상기 도가니 내부로 강화상의 선택적인 투입을 가능하도록 하는 투입수단; 상기 투입수단을 통해 상기 도가니 내부로 투입된 강화상과 상기 도가니 내부에서 가열되어 형성된 용탕을 교반시키는 교반수단; 상기 교반수단을 통해 상기 강화상과 함께 용탕이 교반되어 형성된 혼합용탕을 가스와 함께 분무하여 분말을 생성시키는 분무노즐; 및 상기 분무노즐에 의해 생성된 금속복합분말의 회수공간인 하챔버;를 포함하여 구성되는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조장치 및 알루미늄 잉곳 또는 강화상이 포함된 Al-Si계 합금을 가열하여 용융시킨 후 금속 잉곳, 합금 잉곳 또는 알루미늄-강화상 분말을 첨가하고 교반하여 용탕을 제조하는 단계, 또는 알루미늄-강화상 분말을 Al-포일링(foiling) 후 알루미늄 모재 하단에 장입시켜 가열하고 교반하여 용탕을 제조하는 단계(단계 1); 및 상기 단계 1에서 제조된 용탕을 가스와 함께 분무하여 금속복합분말을 제조하는 단계(단계 2)를 포함하는 가스분무법을 이용한 금속복합분말의 제조방법에 관한 것이다.
Description
본 발명은 가스분무법을 이용한 금속복합분말의 제조방법 및 제조장치에 관한 것이다.
일반적으로 금속분말을 제조하는 방법으로는 고체금속을 분쇄하는 분쇄법과, 석출과 같은 화학적 방법을 통한 습식법, 그리고 금속소재를 용융시킨 뒤 분사노즐을 이용하여 분무하는 분무법 등이 사용된다.
이 중에서, 상기 분무법은 사용하는 냉각매체에 따라 물과 같은 액체를 사용하는 수분사법과, 가스를 사용하는 가스분무법으로 구분할 수 있다.
종래 가스분무법(Gas Atomization)에 의한 금속분말제조 방법은 일반적으로 용융금속을 분사노즐을 통하여 흘려주면서 상온의 아르곤 또는 질소와 같은 불활성 가스를 분사하여 금속분말을 제조하며, 제조된 금속분말의 입자크기가 평균 100㎛ 정도로 형성된다.
금속은 용융온도에 따라 아연(Zn), 알루미늄(Al), 주석(Sn) 등과 같이 낮은 융점을 갖는 소재와 스테인레스강, 구리(Cu), 철(Fe), 니켈(Ni), 코발트(Co) 등과 같이 높은 융점을 갖는 금속 또는 다원계 합금 등으로 구분할 수 있다.
한편, 상기와 같이 다양한 종류로 구분되는 금속소재들은 강화상(Reinforcing phase)이 포함되어 금속소재의 특성을 향상시키게 되며, 이와 같이 강화상을 함유한 금속소재는 주로 강화상을 투입한 뒤 용융주조법을 통하여 제조된다.
그러나, 상기와 같이 용융주조법을 통하여 제조된 금속소재는 계면을 따라 강화상이 분리될 우려가 높아 제조된 제품의 실형상 가공이 어려우며, 기지상(Matrix phase) 즉, 낮은 용융점의 소재와 강화상 즉, 높은 용융점의 소재를 혼합하는 별도의 용융 혼합과정이 추가된다.
또한, 상기와 같은 혼합과정을 포함하여 용융주조된 금속소재는 강화상과 기지상이 혼합될 때, 상기 강화상이 응집되어 불균일 분포가 발생하게 되며, 이로 인하여 강화상의 양이나 크기, 형상, 분포 등의 제어가 어려운 문제점이 있으며, 강화상 함유 금속소재의 크기 또한 조절하기 어려운 문제점이 있다.
본 발명의 목적은 가스분무법을 이용한 금속복합분말의 제조방법을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 가스분무법을 이용한 금속복합분말의 제조장치를 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은 기지상이 챔버에 투입되는 단계; 강화상이 챔버 내에 구비되는 단계; 투입된 기지상이 용융되어 용탕이 형성되는 단계; 상기 용탕에 강화상이 첨가되는 단계; 강화상이 첨가된 용탕이 교반되어 혼합용탕을 형성하는 단계; 상기 혼합용탕을 가스와 함께 분무하여 강화상이 함유된 금속복합분말이 형성되는 단계; 및 형성된 금속복합분말이 회수되는 단계;가 포함되어 이루어지는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조방법을 제공한다.
또한, 본 발명은 기지상이 투입되어 용융되는 도가니가 내부에 구비되는 상챔버; 상기 상챔버 내부에서 상기 도가니의 상측에 구비되며, 상기 도가니 내부로 강화상의 선택적인 투입을 가능하도록 하는 투입수단; 상기 투입수단을 통해 상기 도가니 내부로 투입된 강화상과 상기 도가니 내부에서 가열되어 형성된 용탕을 교반시키는 교반수단; 상기 교반수단을 통해 상기 강화상과 함께 용탕이 교반되어 형성된 혼합용탕을 가스와 함께 분무하여 분말을 생성시키는 분무노즐; 및 상기 분무노즐에 의해 생성된 금속복합분말의 회수공간인 하챔버;를 포함하여 구성되는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조장치를 제공한다.
나아가, 본 발명은 알루미늄 잉곳 또는 강화상이 포함된 Al-Si계 합금을 가열하여 용융시킨 후 금속 잉곳, 합금 잉곳 또는 알루미늄-강화상 분말을 첨가하고 교반하여 용탕을 제조하는 단계, 또는 알루미늄-강화상 분말을 Al-포일링(foiling) 후 알루미늄 모재 하단에 장입시켜 가열하고 교반하여 용탕을 제조하는 단계(단계 1); 및 상기 단계 1에서 제조된 용탕을 가스와 함께 분무하여 금속복합분말을 제조하는 단계(단계 2)를 포함하는 가스분무법을 이용한 금속복합분말의 제조방법을 제공한다.
상기와 같은 특징을 가지는 본 발명에 의하면, 특성이 제어된 강화상을 함유하는 분말야금용 금속복합분말을 대량으로 생산할 수 있는 이점이 있다.
그리고, 상기와 같이 생성된 금속복합분말을 이용하여 분말야금 공정을 수행함으로써 기계적 특성이 향상된 제품을 생산할 수 있는 이점이 있다.
도 1은 본 발명에 따른 가스분무법을 이용한 금속복합분말의 제조장치를 나타낸 모식도이고;
도 2는 본 발명에 따른 가스분무법을 이용한 금속복합분말의 제조방법을 나타낸 순서도이고;
도 3은 본 발명의 제조방법으로 제조된 금속복합분말의 결정구조를 나타낸 단면도이고;
도 4는 본 발명의 제조방법으로 제조된 실리콘 카바이드(SiC)를 함유한 알루미늄(Al) 복합분말의 미세조직 및 이를 부분확대한 사진이고;
도 5는 본 발명의 제조방법으로 제조된 실리콘 카바이드(SiC)를 함유한 알루미늄(Al) 복합분말의 전자현미분석(Electron Probe Micro Analysis: EPMA) 사진이고;
도 6은 본 발명의 제조방법으로 제조된 실리콘 카바이드(SiC)를 함유한 알루미늄(Al) 복합분말의 X-선 회절분석 결과를 나타낸 그래프이고;
도 7은 본 발명에 따른 알루미늄-강화상 분말의 투입방법을 나타낸 모식도이고;
도 8은 본 발명에 따른 기계적 밀링의 흐름도이고((A): 원료물질(a: Al, b: 강화상), (B): 기계적 활성화(c: 지속적인 냉간압접과 파괴로 Al 내부에 강화상 균일분포), (C): 최종물질(Al 내부에 강화상이 균일분포된 판상(d)과 구형(e) Al-강화상 분말 입자));
도 9는 Al, TiC 및 본 발명에 따른 기계적 활성화법으로 제조된 Al-TiC 분말의 주사전자현미경(SEM) 사진이고((a): Al, (b): TiC, (c): Al-TiC);
도 10은 TiC 분말이 2 중량% 함유된 Al 합금 잉곳 사진이고;
도 11은 Al 합금 잉곳의 주사전자현미경(SEM) 사진(a) 및 에너지 분산형 X-선 분광기(EDS) 포인트로 분석한 결과(b)를 나타낸 그래프이고;
도 12는 Al 합금 잉곳의 에너지 분산형 X-선 분광기(EDS) 맵핑으로 분석한 결과를 나타낸 사진이고;
도 13은 본 발명에 따른 금속복합분말의 성분을 나타낸 전계방사형 주사전자현미경 결과이고;
도 14는 본 발명에 따른 제조방법으로 Al 기지내 SiC 분율을 달리하여 제조된 금속복합분말의 표면을 나타낸 광학현미경(OM) 사진이고((a): 20 부피% SiC, (b): 30 부피% SiC);
도 15는 본 발명에 따른 제조방법으로 Al 기지내 SiC 크기를 달리하여 제조된 금속복합분말의 표면을 나타낸 광학현미경(OM) 사진이고((a): 17 ㎛, (b): 12 ㎛, (c): 6.5 ㎛, (d): 1 ㎛);
도 16은 본 발명에 따른 실시예 2 및 3에서 제조된 금속복합분말의 표면을 나타낸 광학현미경(OM) 사진이고((a): 실시예 3, (b): 실시예 2);
도 17은 용탕온도에 따른 금속복합분말의 표면을 나타낸 광학현미경(OM) 사진이고((a): Al-Si-SiC계 주조재, (b): 실시예 1, (c): 비교예 1, (d): 비교예 2);
도 18은 가스분무법으로 제조된 분말 시편과 용해주조한 시편의 표면을 나타낸 광학현미경(OM) 사진이고((a): 비교예 3, (b): 실시예 1);
도 19는 본 발명의 제조방법으로 제조된 실시예 1의 금속복합분말로 압출재를 제조하여 열처리방법에 따른 인장강도를 나타낸 그래프이고; 및
도 20은 제조방법에 따른 시편의 내마모성을 나타낸 그래프이다.
<도면의 주요부분에 대한 부호의 설명>
1: 교반용 막대 2: 도가니
3: 알루미늄 모재 4: 알루미늄-강화상 분말
100: 상챔버 120: 도가니
140: 히터 200: 하챔버
300: 분무노즐 400: 교반수단
420: 교반모터 440: 임펠러
500: 투입수단 520: 수용부
540: 조작부 600: 기지상
700: 강화상
도 1에는 본 발명에 의한 일실시 예인 가스분무법을 이용한 금속복합분말 제조장치의 구조가 개략적으로 도시된 도면이 있다.
도시된 바에 의하면, 본 발명에 의한 일실시 예인 가스분무법을 이용한 금속복합분말 제조장치는 제조하고자 하는 금속복합분말의 기지상(도 3에서 도면부호 600)과 강화상(도 3에서 도면부호 700)이 상챔버(100) 내부에 수용될 수 있도록 구성된다.
상세하게, 상기 상챔버(100) 내부에는 상기 기지상(600)을 용융시키기 위한 도가니(120)와 히터(140)가 구비되고, 상기 도가니(120)의 상측으로 상기 강화상(700)이 수용되는 투입수단(500)이 구비된다.
상기 도가니(120)는 상방이 개구되도록 형성되며, 상부에서 하부로 갈수록 수용면적이 좁아지도록 형성되어 하단에는 아래에서 상세히 설명할 분무노즐(300)이 연결되도록 구성된다.
그리고, 상기 도가니(120)의 외측에는 상기 도가니(120)를 가열하기 위한 히터가 구비되어, 내부에 수용되는 기지상(600)을 도가니(120)와 함께 가열한다.
상기 투입수단(500)은 수용부(520)와 조작부(540)를 포함하여 구성되며, 대략 원통 형상으로 형성되어 내부에 상기 강화상(700)이 수용되는 수용부(520)는 몸체 중심에서 일방향으로 치우진 부분에 회전축이 형성되어, 상기 회전축을 중심으로 회동할 수 있도록 형성된다.
그리고, 상기 수용부(520)의 몸체 일측에는 사용자 조작에 의해 상기 수용부(520)를 일방향으로 기울여 상기 수용부(520)의 내부에 수용된 강화상(700)이 상기 도가니(120) 내부로 투입될 수 있도록 하는 조작부(540)가 연결된다.
즉, 상기 조작부(540)는 일단이 상기 수용부(520)와 연결되고, 타단이 상기 상챔버(100)의 외측으로 노출되도록 형성되어, 사용자가 노출된 타단을 파지하여 잡아당기게 되면, 상기 수용부(520)가 회전축을 중심으로 사용자가 파지하는 방향을 따라 상승하게 되어, 내부에 수용된 강화상(700)이 경사를 따라 상기 도가니(120) 내부로 투입된다.
물론, 모터와 조작스위치 등을 구비하여 사용자가 조작스위치를 조작하면 상기 수용부(520)가 상기 모터의 작동에 의해 일방향으로 기울어지도록 구성하는 것도 가능할 것이다.
한편, 상기 도가니(120) 내부에는 상기 기지상(600)이 수용되어 상기 히터(140)에 의해 가열됨으로써 용탕이 되고, 상기와 같이 형성된 용탕에 상기 강화상(700)이 투입되어 교반될 수 있도록 교반수단(400)의 일부가 수용된다.
상세하게, 상기 교반수단(400)은 상기 상챔버(100) 일측에 구비되어 회전력을 생성하는 교반모터(420)와, 상기 교반모터(420)의 회전축과 연결되며, 상기 도가니(120) 내부에 수용되어 용탕 즉, 용융 상태의 기지상(600)과 상기 강화상(700)이 교반되도록 회전하는 임펠러(440)를 포함하여 구성된다.
그리고, 도면에 상세하게 도시되지는 않았지만 상기 교반모터(420)는 실린더나 별도의 모터 등을 이용해 높낮이가 조절될 수 있도록 장착되며, 이로 인해 상기 도가니(120) 내부에서 상기 임펠러(440)의 위치가 가변 가능하게 되어 상기 용탕에 투입된 강화상(700)이 상기 용탕과 원활하게 교반될 수 있도록 한다.
한편, 상기 기지상(600)은 용융점이 상대적으로 낮은 금속(Al, Cu, Fe 등) 및 합금(AlSi, FeNi 등)이 사용되고, 상기 강화상(700)은 용융점이 상기 기지상(600) 보다 상대적으로 높은 세라믹(SiC, TiC, Al2O3, SiO2 등)과 금속간 화함물(Al3Zr 등) 또는 유무기물이 하나 이상 포함되어 사용된다.
그리고, 상기 기지상(600)은 그 크기가 10㎛ 내지 1000㎛ 범위를 가지고, 상기 강화상(700)은 그 크기가 상대적으로 상기 기지상(600) 보다 작은 크기를 가지도록 형성되며, 1㎚ 내지 100㎛ 범위 이내의 크기를 가지는 것이 가장 바람직할 것이다.
이는 상기 강화상(700)이 기지상(600)의 크기 보다 클 경우 기지상(600)의 특성을 향상시키기 위한 강화상(700)의 역할 수행이 되지 않기 때문이다.
상기 강화상(700)은 부피 분율이 상기 용융되는 기지금속 대비 0.1 내지 70 vol% 이내의 범위를 가지도록 투입된다. 이는 상기 강화상(700)이 70% 이상일 경우 점도가 높아져 가스분무가 원활하게 이루어지지 않기 때문이다.
한편, 상기 분무노즐(300)은 전술한 바와 같이 상기 도가니(120)의 하단에 연결되어 상기와 같은 크기 및 분율의 범위를 가지는 강화상(700)과 용탕의 혼합용탕이 고압의 가스와 함께 상기 하챔버(200) 내부로 분무 될 수 있도록 형성되며, 이와 같은 노즐구조는 이미 공지된 기술이므로 상세한 설명은 생략하기로 한다.
상기와 같이 분무노즐(300)에 의해 분무되는 혼합용탕은 고압의 가스와 함께 분사되면서 분말 형태로 변환되고, 이와 같이 변환된 금속복합분말은 상기 하챔버(200) 내부로 회수된다.
즉, 상기 하챔버(200)는 도시된 바와 같이 상기 상챔버(100)의 하측에서 상기 상챔버(100)를 지지하면서 상기 분무노즐(300)과 연결된다. 그리고 상기 분무노즐(300)의 단부에서 가스와 함께 분사되면서 분말형태로 변환되는 금속복합분말을 포집하여 저장하게 되며, 도면에 도시되지는 않았지만 이를 위해 싸이클론이 상기 하챔버(200)의 하측으로 더 구비된다.
이하에서는 첨부된 도면을 참조하여 상기와 같은 금속복합분말 제조장치를 이용하여 가스분무법을 이용한 금속복합분말의 제조방법에 대하여 상세히 설명한다.
도 2에는 본 발명에 의한 가스분무법을 이용한 금속복합분말의 제조방법을 도시한 순서도가 도시되어 있다.
도면에 도시된 바와 같이 본 발명에 의한 가스분무법을 이용한 금속복합분말의 제조방법에서는 우선, 상기 상챔버(100) 내부에 상기 기지상(도 3에서 도면부호 600)이 투입되는 단계가 수행된다.
즉, 전술한 바와 같이 상기 상챔버(100) 내부에는 상기 기지상(600)이 수용되는 도가니(120)가 구비되고, 상기 도가니(120) 내부에 상기 기지상(600)이 수용된다.
그리고, 상기 상챔버(100) 내부에 구비되는 투입수단(500)에 상기 강화상(700)이 수용되는 단계가 상기 기지상(600)의 수용단계와는 별도 과정으로 수행된다.
즉, 상기 기지상(600)이 상기 도가니(120) 내부에 수용되는 단계와 상기 강화상(700)이 상기 투입수단(500)의 일구성인 수용부(520)의 내부에 수용되는 과정은 각각 개별적으로 이루어지므로 순서와는 무관하게 이루어질 수 있다. 그러나, 상기 기지상(600)의 기계적 특성을 보강하기 위하여 상기 강화상(700)이 투입되므로 상기 기지상(600)의 수용 이후 보강할 특성을 고려하여 상기 강화상(700)을 수용하는 것이 바람직할 것이다.
한편, 상기와 같이 상챔버(100) 내부에 기지상(600)과 강화상(700)의 수용이 완료되면, 상기 도가니(120) 내부에 수용된 기지상(600)이 용융되어 용탕을 형성하는 단계가 수행된다.
상기 용탕이 형성되는 단계에서는, 상기 상챔버(100)의 내부에 구비되는 도가니(120)에서 유도용해에 의해 약 900 ℃의 용탕으로 상기 기지상(600)이 변환된다.
그리고, 상기 기지상(600)이 용융되어 형성된 용탕에는 상기 강화상(700)이 투입되는 단계가 수행된다.
이때, 상기 강화상(700)은 전술한 바와 같이 사용자가 외부에서 조작가능하도록 조작부(540)와 연결된 수용부(520) 내부에 구비되므로, 사용자는 상기 기지상(600)의 상태를 확인하고 용탕으로 변환되었음이 확인되면, 상기 조작부(540)를 이용하여 강화상(700)을 상기 용탕에 투입하는 것이 가능하게 된다.
상기와 같이 투입되는 강화상(700)은 전술한 바와 같이 상기 기지상(600) 보다 용융점이 높은 재질로 용융된 기지상(600)내부에 투입된 상태에서 그 특성을 유지하게 된다.
그리고, 상기 강화상(700)이 용탕 즉, 용융된 기지상(600)에 투입되면, 상기 교반수단(400)의 일구성인 교반모터(420)가 회전하여 이와 연결된 임펠러(440)를 고속으로 회전시키게 되고, 이와 같이 고속회전하는 임펠러(440)에 의해 상기 강화상(700)이 용탕 내부에서 고르게 퍼지게 되어 혼합용탕이 된다.
한편, 상기와 같이 혼합용탕이 형성되면, 상기 혼합용탕을 분무노즐(300)을 이용해 고압의 가스와 함께 분무함으로써 금속복합분말을 형성하는 단계가 수행된다.
그리고, 상기와 같이 생성되는 금속복합분말은 상기 기지상(600)에 상기 강화상(700)이 함유된 상태로 상기 하챔버(200) 내부에서 회수되어 수용된다.
이하에서는 상기와 같이 제조되는 금속복합분말에 대하여 첨부된 도면을 참조하여 보다 상세히 살펴본다.
도 3에는 본 발명에 의해 제조된 금속복합 분말의 결정질 구조를 개략적으로 보인 단면도가 도시되어 있다.
도면에 도시된 바와 같이 본 발명에 의한 가스분무법을 이용한 금속복합분말의 제조방법에 의해 제조된 금속복합분말은 기지상(600)의 내부에 상기 강화상(700)이 함유되어 기지상(600)의 내부에서 상기 강화상(700)과 기지상(600)의 계면이 형성된다. 따라서, 상기 강화상(700)이 응집되어 상기 기지상(600) 일측으로 불균일하게 분포되는 것이 방지된다.
이하에서는 실시 예를 통해 이를 보다 구체적으로 살펴본다.
도 4는 본 발명에 의해 제조된 실리콘 카바이드(SiC)를 함유한 알루미늄(Al) 복합분말의 미세조직을 보인 사진이고, 도 5는 본 발명에 의해 제조된 실리콘 카바이드(SiC)를 함유한 알루미늄(Al) 복합분말의 전자현미분석(Electron Probe Micro Analysis : EPMA) 사진이며, 도 6은 본 발명에 의해 제조된 실리콘 카바이드(SiC)를 함유한 알루미늄(Al) 복합분말의 X-선 회절분석 결과를 보인 도면이다.
이들 도면에 도시된 금속복합분말은 본 발명에 의한 가스분무법을 이용한 금속복합분말 제조방법 및 이를 위한 금속복합분말 제조장치에 의해 형성된 것으로, 세라믹의 한 종류인 실리콘 카바이드(SiC)가 함유된 알루미늄(Al) 복합분말이다.
상기 실리콘 카바이드(SiC)가 함유된 알루미늄(Al) 복합분말은 전술한 바와 같이 유도용해를 통하여 상기 상챔버(100)의 도가니(120)에서 약 900 ℃의 알루미늄(Al) 용탕이 되고, 약 2 vol.%의 실리콘 카바이드(SiC)가 상기 수용부(520)의 내부에 수용되어 있다가 상기 알루미늄(Al) 용탕에 직접 투입된다.
그리고, 상기 교반수단(400)을 상하로 이동시키면서 상기 실리콘 카바이드(SiC)가 투입된 알루미늄(Al) 용탕을 약 500 RPM으로 회전시켜 교반시킴으로써 혼합용탕을 형성한다.
상기와 같이 형성된 실리콘 카바이드(SiC)와 알루미늄(Al)의 혼합용탕을 직경 2 ㎜ 분무노즐(300)을 통해 흘려보내고, 이와 함께 약 20 bar의 혼합가스(질소:산소=8:2)를 상기 분무노즐(300) 끝단으로 분사함으로써 약 150 ㎛ 크기의 실리콘 카바이드(SiC)가 함유된 알루미늄(Al) 복합분말이 형성되고, 상기 실리콘 카바이드(SiC)가 함유된 알루미늄(Al) 복합분말은 상기 하챔버(200) 내부에서 회수되어 수용된다.
상기 과정을 통해 형성된 실리콘 카바이드(SiC)가 함유된 알루미늄(Al) 복합분말의 현미경 사진과 전자현미분석 결과와 X-선 회절 분석 결과를 통해, 기지상(600)인 알루미늄(Al) 속에 강화상(700)인 실리콘 카바이드(SiC)가 함유된 상태가 확인된다.
또한, 본 발명은
알루미늄 잉곳 또는 강화상이 포함된 Al-Si계 합금을 가열하여 용융시킨 후 금속 잉곳, 합금 잉곳 또는 알루미늄-강화상 분말을 첨가하고 교반하여 용탕을 제조하는 단계, 또는 알루미늄-강화상 분말을 Al-포일링(foiling) 후 알루미늄 모재 하단에 장입시켜 가열하고 교반하여 용탕을 제조하는 단계(단계 1); 및
상기 단계 1에서 제조된 용탕을 가스와 함께 분무하여 금속복합분말을 제조하는 단계(단계 2)를 포함하는 가스분무법을 이용한 금속복합분말의 제조방법을 제공한다.
이하, 본 발명에 따른 가스분무법을 이용한 금속복합분말의 제조방법을 단계별로 상세히 설명한다.
본 발명에 따른 가스분무법을 이용한 금속복합분말의 제조방법에 있어서, 단계 1은 알루미늄 잉곳 또는 강화상이 포함된 Al-Si계 합금을 가열하여 용융시킨 후 금속 잉곳, 합금 잉곳 또는 알루미늄-강화상 분말을 첨가하고 교반하여 용탕을 제조하는 단계, 또는 알루미늄-강화상 분말을 Al-포일링(foiling) 후 알루미늄 모재 하단에 장입시켜 가열하고 교반하여 용탕을 제조하는 단계이다(도 7 참조).
이때, 상기 단계 1의 강화상은 SiC, AlN 및 TiC 등을 사용할 수 있다.
또한, 상기 단계 1의 금속 잉곳은 알루미늄(Al), 주석(Sn) 및 구리(Cu) 등을 사용할 수 있고, 상기 단계 1의 합금 잉곳은 알루미늄-규소(Al-Si) 합금, 알루미늄-구리(Al-Cu) 합금 및 알루미늄-철(Al-Fe) 합금 등을 사용할 수 있다.
나아가, 상기 단계 1의 알루미늄-강화상 분말은 알루미늄과 강화상 분말을 혼합한 후 기계적 밀링으로 제조할 수 있다. 상기 기계적 밀링은 수평밀인 저에너지 볼밀과 스테인리스 볼을 사용하여 판상으로 제조하기 위해서는 약 30 분 동안 밀링을 수행하고, 구형분말을 제조하기 위해서는 약 5 시간 동안 밀링을 수행할 수 있으며, 제어너지 밀링법과 고에너지 밀링법에 따라 RPM 및 밀링시간을 조절할 수 있다. 상기 기계적 밀링으로 강화상이 알루미늄 기지내에 균일하게 분포하게 된다(도 8 참조).
또한, 상기 알루미늄-강화상 분말은 10 - 5000 ㎛ 크기의 판상 또는 구형의 형상으로 제조되며, 알루미늄 분말 내부에 존재하는 강화상의 입자크기는 0.001 - 50 ㎛ 범위이다.
나아가, 상기 단계 1의 알루미늄-강화상 분말은 알루미늄-강화상 분말에 생성된 결정구조가 유지되는 온도에서 첨가하는 것이 바람직하다.
나아가, 상기 단계 1의 용탕은 강화상이 0.1 - 70 부피%로 존재하는 것이 바람직하다. 만약, 상기 강화상이 0.1 부피% 미만인 경우에는 인장강도 및 내마모성이 향상되지 못하는 문제가 있고, 70 부피%를 초과하는 경우에는 용탕의 점성이 증가하여 가스분무법으로 금속복합분말을 제조하지 못하는 문제가 있다.
또한, 상기 단계 1은 추가적으로 용탕 온도를 700 - 800 ℃ 범위까지 5 - 30 분 동안 상승시키는 단계를 더 포함할 수 있다. 상기 공정을 수행함으로써 용탕의 점성이 낮아져 가스분무가 원활하게 수행되게 하되, 강화상이 편석되고 분해되는 것을 방지할 수 있다.
다음으로, 본 발명에 따른 가스분무법을 이용한 금속복합분말의 제조방법에 있어서, 상기 단계 1에서 제조된 용탕을 가스와 함께 분무하여 금속복합분말을 제조하는 단계이다.
이때, 상기 단계 2의 가스는 질소와 산소가 7~9:3~1의 부피분율로 이루어진 혼합가스를 사용하는 것이 바람직하다.
또한, 상기 단계 2의 분무는 5 - 100 bar 압력으로 수행되는 것이 바람직하다. 만약, 상기 분무가 5 bar 미만에서 수행되는 경우에는 제조된 금속복합분말의 크기가 증가하고 입경분포가 넓어지는 문제가 있고, 100 bar를 초과하는 경우에는 박편(flake) 형태로 제조되어 분말제조효율이 감소하는 문제가 있다.
나아가, 본 발명은 알루미늄 잉곳 또는 강화상이 포함된 Al-Si계 합금을 가열하여 용융시킨 후 금속 잉곳, 합금 잉곳 또는 알루미늄-강화상 분말을 첨가하고 교반하여 용탕을 제조한 후 가스와 함께 분무하여 제조되는 금속복합분말을 제공한다.
따라서, 본 발명에 따른 가스분무법을 이용한 금속복합분말의 제조방법은 가스분무법을 이용하여 금속 기지상에 강화상이 입내(intra-granular) 구조로 분포하는 금속복합분말을 대량으로 생산할 수 있고, 강화상의 균일분포로 금속의 인장강도 및 내마모성을 향상시키므로, 금속복합분말 제조에 유용하게 이용할 수 있다.
또한, 본 발명은 알루미늄 잉곳 또는 강화상이 포함된 Al-Si계 합금이 투입되어 용융되는 도가니가 내부에 구비되는 상챔버;
상기 상챔버 내부에서 상기 도가니의 상측에 구비되며, 상기 도가니 내부로 금속 잉곳, 합금 잉곳 또는 알루미늄-강화상 분말의 선택적인 투입을 가능하도록 하는 투입수단;
상기 투입수단을 통해 상기 도가니 내부로 투입된 금속 잉곳, 합금 잉곳 또는 알루미늄-강화상 분말과 상기 도가니 내부에서 가열되어 형성된 용탕을 교반시키는 교반수단;
상기 교반수단을 통해 상기 금속 잉곳, 합금 잉곳 또는 알루미늄-강화상 분말과 함께 교반되어 형성된 용탕을 가스와 함께 분무하여 분말을 생성시키는 분무노즐; 및
상기 분무노즐에 의해 생성된 금속복합분말의 회수공간인 하챔버;를 포함하여 구성되는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말 제조장치를 제공한다.
또한, 본 발명에 따른 가스분무법을 이용한 금속복합분말의 제조장치의 상기 교반수단은 상기 상챔버 외측에 구비되는 교반모터와, 상기 도가니 내부에서 상기 교반모터와 연결되어 회전하는 임펠러를 포함하여 구성될 수 있고, 상기 투입수단은, 상기 금속 잉곳, 합금 잉곳 또는 알루미늄-강화상 분말이 수용되는 수용부와, 상기 수용부를 작동시켜 상기 도가니 내부로 상기 금속 잉곳, 합금 잉곳 또는 알루미늄-강화상 분말이 투입되도록 하는 조작부를 포함하여 구성될 수 있다.
이하, 본 발명을 하기의 실시예에 의해 더욱 상세히 설명한다. 단, 하기의 실시예는 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 제한되는 것은 아니다.
<실시예 1>
Al-Si-SiC계(Al 기지에 SiC가 20 부피%로 함유되어 있고, Si는 8 - 9 중량%, Fe는 최대 0.2 중량%, Cu는 최대 0.2 중량%, Mg는 0.45 - 0.65 중량%, Ti는 최대 0.2 중량% 함유되어 있는 잉곳, MC21사로부터 구입) 합금 잉곳 1 ㎏을 가스아토마이저 상챔버 내부의 도가니에 장입한 후 약 580 ℃까지 유도가열하여 모재를 용융시켜 용탕을 제조하여 교반한 후 용탕온도를 750 ℃까지 10 분 이내에 급상승시켰다. 상기 혼합용탕을 직경이 3 ㎜인 노즐을 통해 분출시키면서 질소와 산소가 8:2의 부피분율로 이루어진 혼합가스를 사용하여 20 bar 압력으로 용탕에 분사시켜 금속복합분말을 제조하였다.
<실시예 2>
Al-Si-SiC계(Al 기지에 SiC가 20 부피%로 함유되어 있고, Si는 8 - 9 중량%, Fe는 최대 0.2 중량%, Cu는 최대 0.2 중량%, Mg는 0.45 - 0.65 중량%, Ti는 최대 0.2 중량% 함유되어 있는 잉곳, MC21사로부터 구입) 합금과 Al-Si-Cu-Fe-Mg-Mn계(Al:Si:Cu:Fe:Mg:Mn=69.5:20:3.5:5.5:1.2:0.5 무게비) 합금 잉곳을 용탕에 첨가하여 융용시키고 교반한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 금속복합분말을 제조하였다.
<실시예 3>
Al-Si-SiC계(Al 기지에 SiC가 20 부피%로 함유되어 있고, Si는 8 - 9 중량%, Fe는 최대 0.2 중량%, Cu는 최대 0.2 중량%, Mg는 0.45 - 0.65 중량%, Ti는 최대 0.2 중량% 함유되어 있는 잉곳, MC21사로부터 구입) 합금 잉곳을 500 g 사용하고, SiC의 분율제어를 위해 동일 부피의 순수한 Al 잉곳을 첨가한 후 660 ℃에서 용융시킨 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 금속복합분말을 제조하였다.
<실시예 4>
알루미늄 금속과 TiC 분말을 혼합한 후 상기 기계적 밀링은 수평밀인 저에너지 볼밀(독일, ZoZ GmbH, Smoloyer)과 스테인리스 볼을 사용하여 판상으로 제조하기 위해서는 약 30 분 동안 밀링을 수행하고, 구형분말을 제조하기 위해서는 약 5 시간 동안 밀링을 수행하였다. 상기 기계적 밀링으로 Al-TiC 분말을 제조한 후 알루미늄 잉곳을 용융시켜 상기에서 제조된 Al-TiC 분말을 투입하고 교반한 후 용탕온도를 750 ℃까지 10 분 이내에 급상승시켰다. 상기 혼합용탕을 직경이 3 ㎜인 노즐을 통해 분출시키면서 질소와 산소가 8:2의 부피분율로 이루어진 혼합가스를 사용하여 20 bar 압력으로 용탕에 분사시켜 금속복합분말을 제조하였다.
<비교예 1>
용탕온도를 850 ℃까지 15 분 이내에 급상승시킨 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 금속복합분말을 제조하였다.
<비교예 2>
용탕온도를 950 ℃까지 15 분 이내에 급상승시킨 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 금속복합분말을 제조하였다.
<비교예 3>
Al-Si-SiC계(Al 기지에 SiC가 20 부피%로 함유되어 있고, Si는 8 - 9 중량%, Fe는 최대 0.2 중량%, Cu는 최대 0.2 중량%, Mg는 0.45 - 0.65 중량%, Ti는 최대 0.2 중량% 함유되어 있는 잉곳, MC21사로부터 구입) 합금을 진공에서 750 ℃로 가열시켜 용탕을 제조한 후 냉각시켜 시편을 제조하였다.
분석
1. Al, TiC 분말 및 기계적 활성화법으로 제조된 Al-TiC 복합분말의 표면 분석
Al, TiC 분말 및 기계적 활성화법으로 제조된 Al-TiC 분말의 표면을 분석하기 위해, 주사전자현미경(SEM, JEOL, 6500F)으로 분석하고, 그 결과를 도 9에 나타내었다.
도 9를 참조하면, 도 9의 (a)는 알루미늄 표면을을 나타내고, (b)는 TiC 분말의 표면을 나타내며, (c)는 기계적 활성화법으로 제조된 Al-TiC 복합분말의 표면을 나타낸다.
2. TiC 분말이 2 중량% 함유된 Al 합금 잉곳
알루미늄과 강화상 분말을 기계적 밀링으로 알루미늄-강화상 분말을 제조한 후 알루미늄 잉곳과 함께 용융시켜 용탕을 제조한 후 고속으로 교반하고 응고시켜 TiC 분말이 2 중량%가 함유된 Al 합금 잉곳을 제조하고, 사진 촬영하였다. 상기 TiC 분말이 2 중량% 함유된 Al 합금 잉곳을 도 10에 도시하였다.
3. TiC 분말이 포함된 Al 합금 잉곳의 표면 및 성분 분석
알루미늄과 강화상 분말을 기계적 밀링으로 알루미늄-강화상 분말을 제조한 후 알루미늄 잉곳과 함께 용융시켜 용탕을 제조한 후 고속으로 교반하고 응고시켜 제조된 Al-TiC 합금 잉곳의 표면 및 성분을 알아보기 위해 주사전자현미경(SEM) 및 에너지 분산형 X-선 분광기(EDS) 포인트로 분석하고, 그 결과를 도 11에 나타내었다.
도 11에 나타난 바와 같이, TiC 분말이 Al 기지 입내(intra-granular)에 분포되어 있는 것을 알 수 있고(도 11의(a) 참조), Al, Ti 및 C가 주성분으로 구성되어 있는 것을 알 수 있다(도 11의 (b) 참조).
4. TiC 분말이 포함된 Al 합금 잉곳의 성분 분석
알루미늄과 강화상 분말을 기계적 밀링으로 알루미늄-강화상 분말을 제조한 후 알루미늄 잉곳과 함께 용융시켜 용탕을 제조한 후 고속으로 교반하고 응고시켜 제조된 Al-TiC 합금 잉곳의 성분을 알아보기 위해 에너지 분산형 X-선 분광기(EDS) 맵핑으로 분석하고, 그 결과를 도 12에 나타내었다.
도 12에 나타난 바와 같이, Al, Ti, C가 주성분으로 구성되어 있는 것을 알 수 있고, 소량의 Si가 포함되어 있는 것을 알 수 있다.
5. 가스분무법을 이용한 금속복합분말의 성분 분석
본 발명에 따른 금속복합분말의 성분을 알아보기 위해 전계방사형 주사전자현미경(SEM-EDS, HITACHI, S-4200)으로 분석하고, 그 결과를 도 13에 나타내었다.
도 13에 나타난 바와 같이, 본 발명에 따른 금속복합분말은 Al 기지내에 SiC가 입내(intra-granular) 구조로 분포하고 있음을 알 수 있다.
6. SiC 분율에 따른 금속복합분말의 표면 분석
본 발명에 따른 제조방법으로 Al 기지내 SiC 분율을 달리하여 제조된 금속복합분말의 표면을 분석하기 위해 광학현미경(OM, NIKON, EPIPHOT)으로 분석하고, 그 결과를 도 14에 나타내었다.
도 14의 (a)는 SiC를 20 부피% 포함한 금속복합분말을 나타내며, (b)는 SiC를 30 부피%로 포함한 금속복합분말을 나타낸다.
7. SiC 크기에 따른 금속복합분말의 표면 분석
본 발명에 따른 제조방법으로 Al 기지내 SiC 크기를 달리하여 제조된 금속복합분말의 표면을 분석하기 위해 광학현미경(OM)으로 분석하고, 그 결과를 도 15에 나타내었다.
도 15의 (a)는 SiC가 17 ㎛인 금속복합분말을 나타내며, (b)는 SiC가 12 ㎛인 금속복합분말을 나타내고, (c)는 SiC가 6.5 ㎛인 금속복합분말을 나타낸다. 또한, (d)는 SiC가 12 ㎛인 금속복합분말을 진공에서 750 ℃로 가열시키고 30 분 동안 유지한 후 냉각시켜 SiC의 크기가 약 1 ㎛인 금속복합분말을 나타낸다.
8. Al 합금 첨가에 따른 금속복합분말의 표면 분석
본 발명에 따른 실시예 2 및 3에서 제조된 금속복합분말의 표면을 분석하기 위해 광학현미경(OM)으로 분석하고, 그 결과를 도 16에 나타내었다.
도 16의 (a)는 Al-Si-SiC계 잉곳에 Al 잉곳을 포함하여 제조된 실시예 3을 나타내며, (b)는 Al-Si-SiC계 잉곳에 Al-Si-Cu-Fe-Mg-Mn계 잉곳을 포함하여 제조된 실시예 2를 나타낸다.
<실험예 1> 용탕온도에 따른 금속복합분말의 표면 분석
용탕온도에 따른 금속복합분말의 표면을 분석하기 위해 광학현미경(OM)으로 분석하고, 그 결과를 도 17에 나타내었다.
도 17의 (a)는 Al-Si-SiC계 주조재를 나타낸 사진이고, 도 17의 (b)는 상기 실시예 1을 나타내며, 도 17의 (c) 및 (d)는 비교예 1 및 2를 각각 나타내고, 도 17에 나타난 바와 같이, 상기 실시예 1의 용탕온도인 750 ℃가 금속복합분말을 제조하는 데 적합한 온도이며, 비교예 1 및 2에서는 용탕의 점성이 낮아지고 용융시간이 길어지므로 SiC가 편석되고 분해되는 것을 알 수 있다.
<실험예 2> 가스분무법으로 제조된 분말 시편과 용해주조한 시편의 표면 분석
가스분무법으로 제조된 분말 시편과 용해주조한 시편의 표면을 분석하기 위해 광학현미경으로 분석하고, 그 결과를 도 18에 나타내었다.
도 18에 나타난 바와 같이, 본 발명에 따른 실시예 1(도 18의 (b))은 비교예 3(도 18의 (a)) 보다 Al-SiC의 젖음성(wettability)이 향상되고 SiC가 균일하게 분포되며 입내(intra-granular) 분포를 나타내는 것을 알 수 있다.
<실험예 3> 금속복합분말로 제조된 압출재 열처리방법에 따른 인장강도 분석
본 발명의 제조방법으로 제조된 실시예 1의 금속복합분말로 압출재를 제조하여 열처리방법에 따른 인장강도를 분석하고, 그 결과를 도 19 및 하기 표 1에 나타내었다.
표 1
예 | 최대인장강도(MPa) | 영강도(MPa) | 연신율(%) |
T-6 heat-treated | 382 | 334 | 7 |
압출재(as-extruded) | 209 | 133 | 15 |
열처리(annealed) | 188 | 114 | 18 |
주조물(as-casted) | 310 | 255 | 5 |
상기 실시예 1과 같은 방법으로 제조된 Al-Si-SiC계 금속복합분말을 약 470 ℃에서 캔리스(canless)압출로 압출재를 제조한 뒤 압출응력을 제거하기 위해 압출재를 350 ℃에서 30 분간 열처리하였다. 또한, 석출경화를 통한 기계적 특성을 향상시키기 위하여 압출재를 540 ℃에서 8 시간 열처리한 후 수냉 처리하고 이어서 170 ℃에서 4 시간 동안 열처리한 후 냉각하여 T-6 열처리를 수행하였다. 주조재의 수치는 MC21사에서 T-6 처리를 거친 후 시험한 결과를 인용하였다.
도 19 및 상기 표 1에 나타난 바와 같이, 본 발명의 제조방법에 따른 금속복합분말을 T-6 열처리하여 제조된 압출재의 경우 주조물(as-casted)보다 최대인장강도는 약 23%, 영강도은 약 31% 및 연신율은 40% 향상된 것을 알 수 있다.
<실험예 4> 제조방법에 따른 시편의 내마모성 분석
제조방법에 따른 시편의 내마모성을 분석하고, 그 결과를 도 20에 나타내었다.
도 20에 나타난 바와 같이, 50 MPa의 압력에서 용탕단조법(squeeze casting)으로 제조된 시편을 T-6 열처리한 경우에는 비마모율(specific wear rate)이 2189 10-15 ㎥/Nm이었으며, SiC가 20 부피%로 포함하여 용탕단조법으로 제조하여 T-6 열처리한 경우에는 비마모율이 1395 ㎥/Nm이었고, 본 발명에 따른 실시예 1의 금속복합분말을 압출하여 제조된 시편의 경우에는 비마모율이 594 ㎥/Nm이었으며, 본 발명에 따른 실시예 1의 금속복합분말을 압출하여 제조된 시편을 열처리한 경우에는 비마모율이 1931 ㎥/Nm로 나타났다. 따라서, 본 발명에 따른 실시예 1의 금속복합분말을 압출하여 제조된 시편은 비마모율이 크게 향상된 것을 알 수 있다.
Claims (21)
- 기지상이 챔버에 투입되는 단계;강화상이 챔버 내에 구비되는 단계;투입된 기지상이 용융되어 용탕이 형성되는 단계;상기 용탕에 강화상이 첨가되는 단계;강화상이 첨가된 용탕이 교반되어 혼합용탕을 형성하는 단계;상기 혼합용탕을 가스와 함께 분무하여 강화상이 함유된 금속복합분말이 형성되는 단계; 및형성된 금속복합분말이 회수되는 단계;가 포함되어 이루어지는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말 제조방법.
- 제1항에 있어서, 상기 강화상은,상기 기지상보다 높은 용융점을 가지는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말 제조방법.
- 제1항에 있어서, 상기 강화상은,세라믹과 금속간 화합물과 유무기물 중 하나 이상을 포함하여 구성되는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말 제조방법.
- 제1항에 있어서, 상기 강화상은상기 기지상보다 작은 크기를 가지는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말 제조방법.
- 제1항에 있어서, 상기 강화상의 분율은,상기 기지상 대비 0.1 내지 70 vol.%인 것을 특징으로 하는 가스분무법을 이용한 금속복합분말 제조방법.
- 기지상이 투입되어 용융되는 도가니가 내부에 구비되는 상챔버;상기 상챔버 내부에서 상기 도가니의 상측에 구비되며, 상기 도가니 내부로 강화상의 선택적인 투입을 가능하도록 하는 투입수단;상기 투입수단을 통해 상기 도가니 내부로 투입된 강화상과 상기 도가니 내부에서 가열되어 형성된 용탕을 교반시키는 교반수단;상기 교반수단을 통해 상기 강화상과 함께 용탕이 교반되어 형성된 혼합용탕을 가스와 함께 분무하여 분말을 생성시키는 분무노즐; 및상기 분무노즐에 의해 생성된 금속복합분말의 회수공간인 하챔버;를 포함하여 구성되는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말 제조장치.
- 제6항에 있어서, 상기 교반수단은상기 상챔버 외측에 구비되는 교반모터와,상기 도가니 내부에서 상기 교반모터와 연결되어 회전하는 임펠러를 포함하여 구성되는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말 제조장치.
- 제6항에 있어서, 상기 투입수단은,상기 강화상이 수용되는 수용부와,상기 수용부를 작동시켜 상기 도가니 내부로 상기 강화상이 투입되도록 하는 조작부를 포함하여 구성되는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말 제조장치.
- 알루미늄 잉곳 또는 강화상이 포함된 Al-Si계 합금을 가열하여 용융시킨 후 금속 잉곳, 합금 잉곳 또는 알루미늄-강화상 분말을 첨가하고 교반하여 용탕을 제조하는 단계, 또는 알루미늄-강화상 분말을 Al-포일링(foiling) 후 알루미늄 모재 하단에 장입시켜 가열하고 교반하여 용탕을 제조하는 단계(단계 1); 및상기 단계 1에서 제조된 용탕을 가스와 함께 분무하여 금속복합분말을 제조하는 단계(단계 2)를 포함하는 가스분무법을 이용한 금속복합분말의 제조방법.
- 제9항에 있어서, 상기 단계 1의 강화상은 SiC, AlN 또는 TiC인 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조방법.
- 제9항에 있어서, 상기 단계 1의 금속 잉곳은 알루미늄(Al), 주석(Sn) 또는 구리(Cu)인 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조방법.
- 제9항에 있어서, 상기 단계 1의 합금 잉곳은 알루미늄-규소(Al-Si) 합금, 알루미늄-구리(Al-Cu) 합금 또는 알루미늄-철(Al-Fe) 합금인 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조방법.
- 제9항에 있어서, 상기 단계 1의 알루미늄-강화상 분말은 알루미늄과 강화상 분말을 혼합한 후 기계적 밀링으로 제조하는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조방법.
- 제13항에 있어서, 상기 알루미늄-강화상 분말은 10 - 5000 ㎛ 크기의 판상 또는 구형인 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조방법.
- 제13항에 있어서, 상기 알루미늄-강화상 분말내 강화상 입자의 크기는 0.001 - 50 ㎛ 범위인 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조방법.
- 제9항에 있어서, 상기 단계 1의 알루미늄-강화상 분말은 알루미늄-강화상 분말에 생성된 결정구조가 유지되는 온도에서 첨가하는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조방법.
- 제9항에 있어서, 상기 단계 1의 용탕은 강화상이 0.1 - 70 부피%로 존재하는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조방법.
- 제9항에 있어서, 상기 단계 1은 추가적으로 용탕 온도를 700 - 800 ℃ 범위까지 5 - 30 분 동안 상승시키는 단계를 더 포함하는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조방법.
- 제9항에 있어서, 상기 단계 2의 가스는 질소와 산소가 7~9:3~1의 부피분율로 이루어진 혼합가스인 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조방법.
- 제9항에 있어서, 상기 단계 2의 분무는 5 - 100 bar 압력으로 수행되는 것을 특징으로 하는 가스분무법을 이용한 금속복합분말의 제조방법.
- 알루미늄 잉곳 또는 강화상이 포함된 Al-Si계 합금을 가열하여 용융시킨 후 금속 잉곳, 합금 잉곳 또는 알루미늄-강화상 분말을 첨가하고 교반하여 용탕을 제조한 후 가스와 함께 분무하여 제조되는 금속복합분말.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980162973.2A CN102712044B (zh) | 2009-12-15 | 2009-12-16 | 使用气体喷雾方法生产金属复合粉末的生产方法 |
EP09852329.3A EP2514542B1 (en) | 2009-12-15 | 2009-12-16 | Production method and production device for a composite metal powder using the gas spraying method |
US13/378,756 US9267190B2 (en) | 2009-12-15 | 2009-12-16 | Production method and production device for a composite metal powder using the gas spraying method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2009-0124690 | 2009-12-15 | ||
KR1020090124690A KR101143888B1 (ko) | 2009-12-15 | 2009-12-15 | 기계적 활성화법을 이용한 금속복합분말의 제조방법 및 이에 따라 제조되는 금속복합분말 |
KR1020090124694A KR101143887B1 (ko) | 2009-12-15 | 2009-12-15 | 가스분무법을 이용한 금속복합분말의 제조방법 및 이에 따라 제조되는 금속복합분말 |
KR10-2009-0124694 | 2009-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011074720A1 true WO2011074720A1 (ko) | 2011-06-23 |
Family
ID=44167466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/007544 WO2011074720A1 (ko) | 2009-12-15 | 2009-12-16 | 가스분무법을 이용한 금속복합분말의 제조방법 및 제조장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9267190B2 (ko) |
EP (1) | EP2514542B1 (ko) |
CN (1) | CN102712044B (ko) |
WO (1) | WO2011074720A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170010934A (ko) | 2015-07-20 | 2017-02-02 | 한국기계연구원 | 리튬 합금의 제조방법 및 이를 통해 제조된 리튬 합금 |
CN110340371A (zh) * | 2019-08-06 | 2019-10-18 | 上海交通大学 | 一种颗粒增强钛基复合材料增材制造用粉末的制备方法 |
CN115821093A (zh) * | 2022-11-25 | 2023-03-21 | 上海交通大学 | 多层次纳米颗粒增强的高强韧钛基复合材料的制备方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2529129C1 (ru) * | 2013-06-13 | 2014-09-27 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт чёрной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") | Способ получения железного порошка |
CN104439260B (zh) * | 2014-11-28 | 2016-06-29 | 鞍钢实业微细铝粉有限公司 | 一种双喷嘴雾化复合粉体的制造方法 |
CN104972133B (zh) * | 2015-07-18 | 2017-01-25 | 山东理工大学 | 一种电火花工具电极用Cu基SiC复合微粉的制备方法 |
CN105680014B (zh) * | 2016-01-27 | 2019-02-01 | 柳州豪祥特科技有限公司 | 一种锡铜合金粉末的制备方法 |
CN109957684B (zh) * | 2017-12-25 | 2021-02-02 | 有研工程技术研究院有限公司 | 一种汽车零部件用高强耐热铝合金材料的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05247505A (ja) * | 1992-03-02 | 1993-09-24 | Sumitomo Metal Ind Ltd | 複合金属粉末の製造方法 |
JPH05247504A (ja) * | 1992-03-02 | 1993-09-24 | Sumitomo Metal Ind Ltd | 複合金属粉末の製造方法 |
JPH05331505A (ja) * | 1992-06-01 | 1993-12-14 | Kobe Steel Ltd | 複合金属粉末の製造方法 |
JP2004502037A (ja) * | 2000-07-07 | 2004-01-22 | トリボフェント フェルファーレンセントビックルンク ゲゼルシャフト ミット ベシュレンクテル ハフツング | 金属溶湯のアトマイズ方法および装置 |
KR100446680B1 (ko) * | 2000-12-22 | 2004-09-01 | 재단법인 포항산업과학연구원 | 내마모 내열 알루미늄 합금 제조방법 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3428022A1 (de) * | 1984-07-30 | 1986-01-30 | Hermann C. Starck Berlin, 1000 Berlin | Verfahren zur herstellung von verbundpulver durch zerstaeuben einer metallschmelze |
JPS6199606A (ja) * | 1984-10-22 | 1986-05-17 | Hitachi Ltd | 複合粉末の製造方法 |
GB8622949D0 (en) * | 1986-09-24 | 1986-10-29 | Alcan Int Ltd | Alloy composites |
JPH04301011A (ja) * | 1991-03-29 | 1992-10-23 | Topy Ind Ltd | 金属粉末製造装置 |
JPH05209201A (ja) * | 1991-08-22 | 1993-08-20 | Toyo Alum Kk | アルミニウム基複合粉末 |
JPH10219312A (ja) | 1997-02-10 | 1998-08-18 | Toyota Motor Corp | 炭化チタン分散強化アルミニウム基粉末、その製造方法および炭化チタン分散強化アルミニウム基複合材料 |
CN1137273C (zh) * | 2000-07-27 | 2004-02-04 | 钢铁研究总院 | 陶瓷相弥散强化合金及颗粒增强金属基复合材料制备方法 |
CN1165632C (zh) * | 2001-08-09 | 2004-09-08 | 华南理工大学 | 过共晶铝硅合金粉末冶金材料及其制备方法 |
CN1240864C (zh) * | 2003-09-18 | 2006-02-08 | 上海交通大学 | 准晶颗粒增强铝基复合材料的制备工艺 |
US20050156353A1 (en) * | 2004-01-15 | 2005-07-21 | Watts Michael P. | Method to improve the flow rate of imprinting material |
KR20100113828A (ko) | 2009-04-14 | 2010-10-22 | 부산대학교 산학협력단 | 가스분무공정을 이용한 금속복합분말의 제조장치 |
KR20100113816A (ko) | 2009-04-14 | 2010-10-22 | 부산대학교 산학협력단 | 가스분무공정을 이용한 금속복합분말의 제조방법 |
KR101113758B1 (ko) | 2009-05-12 | 2012-02-21 | 공주대학교 산학협력단 | 탄소나노튜브(cnt) 분말을 이용한 금속기지 복합분말의 제조방법 |
-
2009
- 2009-12-16 US US13/378,756 patent/US9267190B2/en active Active
- 2009-12-16 WO PCT/KR2009/007544 patent/WO2011074720A1/ko active Application Filing
- 2009-12-16 CN CN200980162973.2A patent/CN102712044B/zh active Active
- 2009-12-16 EP EP09852329.3A patent/EP2514542B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05247505A (ja) * | 1992-03-02 | 1993-09-24 | Sumitomo Metal Ind Ltd | 複合金属粉末の製造方法 |
JPH05247504A (ja) * | 1992-03-02 | 1993-09-24 | Sumitomo Metal Ind Ltd | 複合金属粉末の製造方法 |
JPH05331505A (ja) * | 1992-06-01 | 1993-12-14 | Kobe Steel Ltd | 複合金属粉末の製造方法 |
JP2004502037A (ja) * | 2000-07-07 | 2004-01-22 | トリボフェント フェルファーレンセントビックルンク ゲゼルシャフト ミット ベシュレンクテル ハフツング | 金属溶湯のアトマイズ方法および装置 |
KR100446680B1 (ko) * | 2000-12-22 | 2004-09-01 | 재단법인 포항산업과학연구원 | 내마모 내열 알루미늄 합금 제조방법 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170010934A (ko) | 2015-07-20 | 2017-02-02 | 한국기계연구원 | 리튬 합금의 제조방법 및 이를 통해 제조된 리튬 합금 |
CN110340371A (zh) * | 2019-08-06 | 2019-10-18 | 上海交通大学 | 一种颗粒增强钛基复合材料增材制造用粉末的制备方法 |
CN110340371B (zh) * | 2019-08-06 | 2021-08-06 | 上海交通大学 | 一种颗粒增强钛基复合材料增材制造用粉末的制备方法 |
CN115821093A (zh) * | 2022-11-25 | 2023-03-21 | 上海交通大学 | 多层次纳米颗粒增强的高强韧钛基复合材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2514542A1 (en) | 2012-10-24 |
US9267190B2 (en) | 2016-02-23 |
US20120244034A1 (en) | 2012-09-27 |
CN102712044A (zh) | 2012-10-03 |
CN102712044B (zh) | 2016-04-20 |
EP2514542A4 (en) | 2014-10-01 |
EP2514542B1 (en) | 2016-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011074720A1 (ko) | 가스분무법을 이용한 금속복합분말의 제조방법 및 제조장치 | |
EP0295008B1 (en) | Aluminium alloy composites | |
AU633028B2 (en) | Heat treatment for aluminum-lithium based metal matrix composites | |
WO2011122786A2 (en) | Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof | |
WO2020013632A1 (ko) | 철계 합금분말, 이를 이용한 성형품 | |
WO2016104879A1 (ko) | 프레스성형시 내파우더링성이 우수한 hpf 성형부재 및 이의 제조방법 | |
WO2011062447A2 (ko) | 알루미늄 합금 및 이의 제조 방법 | |
WO2016104880A1 (ko) | 내박리성이 우수한 hpf 성형부재 및 그 제조방법 | |
WO2012169847A2 (ko) | 화합물 분말 제조장치, 이를 이용한 철-붕소 화합물 분말의 제조방법, 붕소합금 혼합분말과 그의 제조방법, 분말결합체와 그의 제조방법, 및 강관과 그 제조방법 | |
WO2011062448A2 (ko) | 알루미늄 합금 및 이의 제조 방법 | |
CN109022948A (zh) | 具有高温耐磨性的SiC颗粒增强铝基复合材料及其制备方法 | |
WO2017099478A1 (ko) | 미세조직 제어 및 석출 경화 제어가 가능한 3d 프린팅을 이용한 금속소재의 입체 조형방법 | |
WO2019103539A1 (ko) | 고온 특성이 우수한 3d 프린팅용 타이타늄-알루미늄계 합금 및 이의 제조방법 | |
CN101314829A (zh) | 有效利用稀土元素Y强化Mg-Zn-Y-Zr系镁合金及制备方法 | |
CN111440974B (zh) | 一种高强度铝合金及其制造方法 | |
WO2021230392A1 (ko) | 고엔트로피 합금 및 이의 제조 방법 | |
WO2012128506A2 (ko) | 알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료 | |
WO2012053813A2 (ko) | 내산화성, 내부식성 또는 내피로성이 개선된 알루미늄 합금 및 상기 알루미늄 합금을 이용하여 제조한 다이캐스팅재 및 압출재 | |
CN112828250A (zh) | 制备细小晶粒、偏析程度低的合金铸造装置和方法 | |
WO2017200361A2 (ko) | 무연 솔더 합금 조성물 및 이의 제조방법 | |
CN111500908A (zh) | 一种超高强、超细晶TiB2增强Al-Zn-Mg-Cu复合材料及制备 | |
CN110004332B (zh) | Al3Sc-Al3Zr/Al复合材料孕育剂 | |
JP2796917B2 (ja) | 耐食耐摩耗性等にすぐれた非鉄金属溶湯部材用複合焼結合金 | |
CA1282267C (en) | Aluminium alloy suitable for rapid quenching from a melt supersaturatedwith alloy components | |
CN113278831B (zh) | 一种废杂铝制备再生adc12铝合金的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980162973.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09852329 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13378756 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009852329 Country of ref document: EP |