WO2022203205A1 - 금속 원자 및 탄소 원자 간 비화학양론상 구조를 갖는 금속-탄소 복합재 및 이의 제조 방법 - Google Patents

금속 원자 및 탄소 원자 간 비화학양론상 구조를 갖는 금속-탄소 복합재 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022203205A1
WO2022203205A1 PCT/KR2022/002266 KR2022002266W WO2022203205A1 WO 2022203205 A1 WO2022203205 A1 WO 2022203205A1 KR 2022002266 W KR2022002266 W KR 2022002266W WO 2022203205 A1 WO2022203205 A1 WO 2022203205A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
carbon
composite
carbon composite
nano
Prior art date
Application number
PCT/KR2022/002266
Other languages
English (en)
French (fr)
Inventor
최현주
손한솔
남승진
정차희
한주연
Original Assignee
국민대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210097649A external-priority patent/KR20220133732A/ko
Application filed by 국민대학교 산학협력단 filed Critical 국민대학교 산학협력단
Publication of WO2022203205A1 publication Critical patent/WO2022203205A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/10Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ

Definitions

  • the present invention relates to a metal-carbon composite having a non-stoichiometric structure between metal atoms and carbon atoms, and a method for manufacturing the same, and more particularly, to a supersaturated metal-carbon (M-C) phase as a non-stoichiometric bonding phase in a metal matrix.
  • M-C supersaturated metal-carbon
  • carbon materials are known as one of the key components that change the properties of metals.
  • an iron-carbon (Fe-C) alloy having various strengths can be manufactured according to the amount of carbon and a manufacturing method.
  • anionic elements such as carbon have very low solubility in metals other than iron, so it is technically difficult to manufacture them in the form of alloys with light metals such as aluminum.
  • Korean Patent No. 10-1755988 discloses a method of manufacturing a nano-carbon-reinforced aluminum composite by coating nano-carbon with a ceramic or metal, agglomeration into ceramic powder, and then adding it to molten aluminum and casting.
  • the process is complicated because it is necessary to coat the nano-carbon by electroplating before casting the molten metal and agglomerate it by ball milling, and the hardness is up to 140HB, which is 40% higher than the hardness of the base material (100HB). It stopped.
  • the conventional aluminum-nano-carbon composite technology has a limit in improving the mechanical strength, and in order to overcome this limit, the low wettability of the base metal and the nano-carbon material is overcome, and carbon and aluminum decomposed in a high-temperature process It was necessary to solve the problem of carbide formation by the reaction of
  • the inventors of the present invention form a non-stoichiometric phase structure between a metal atom and a carbon atom by forming an intermediate phase that does not form a carbide after over-solidification of carbon in a metal matrix-nano-carbon composite, thereby forming a bond It was discovered that a composite material having a diversified shape can be manufactured, and the present invention has been completed.
  • Another object of the present invention is to provide an ultra-high strength metal-carbon composite having a non-stoichiometric structure between metal atoms and carbon atoms.
  • Another object of the present invention is to provide a component of a transport device comprising the metal-carbon composite material.
  • the present invention comprises the steps of first pulverizing a nano-carbon material to form a pulverized nano-carbon; forming a mixed powder by adding a metal powder to the nano-carbon pulverized material and performing secondary pulverization; thirdly pulverizing the mixed powder to form a composite powder; sintering the composite powder to form a sintered body; And comprising the step of heat-treating the sintered body at a temperature of 400 °C or more and less than 650 °C, it provides a method of manufacturing a metal-carbon composite.
  • the base metal of the metal-carbon composite material is aluminum (Al), magnesium (Mg), titanium (Ti), copper (Cu), iron (Fe), gold (Au), silver (Ag), manganese ( Mn), tin (Sn), zinc (Zn), and may include at least one selected from the group consisting of alloys thereof.
  • the nano-carbon material is fullerene, single-walled carbon nanotube (SWCNT), double-walled carbon nanotube (DWCNT), multi-wall carbon nanotube (multi-walled carbon nanotube) -walled carbon nanotube, MWCNT), graphene, graphene oxide (GO), reduced graphene oxide (rGO), graphite, graphite nanoplatelets (GNP) ), nano diamond and carbon black may include at least one selected from the group consisting of.
  • the first to third grinding are each independently, planetary milling, attrition milling, spex milling, vibration milling, shaker milling (shaker) milling) or jet milling.
  • the primary grinding may be performed at a rotation speed of 100 to 300 rpm.
  • the primary grinding is performed in a manner of repeating a cycle of grinding for 10 to 30 minutes, and pausing for 60 to 80 minutes 5 to 10 times, a method for producing a metal-carbon composite.
  • At least one step of the primary grinding and the tertiary grinding is stearic acid (CH 3 (CH 2 ) 16 COOH, stearic acid), sodium chloride (NaCl), potassium chloride (KCl), sodium sulfate (Na 2 SO 4 ) , hexane, heptane, octane, oxalic acid ((COOH) 2 H 2 O, oxalic acid), methanol, ethanol, isopropyl alcohol, acetone Group consisting of (acetone), toluene, Nopcowax-22 DSP (C 2 H 2 -2 (C 18 H 36 ON), ethylenebisdistearamide), trichlorotrifluoroethane and organosilicon compound It may be carried out in the presence of one or more additives selected from.
  • the additive may be used in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the nano-carbon material.
  • the weight ratio of the nano-carbon material to the metal powder is preferably 1:100 to 10:100.
  • the secondary grinding may be performed at a rotation speed of 100 to 300 rpm.
  • the tertiary grinding may be performed at a rotation speed of 300 to 1,000 rpm.
  • the third grinding may be performed for 6 to 36 hours.
  • 0.1 to 5 parts by weight of the additive may be used based on 100 parts by weight of the nano-carbon material.
  • the manufacturing method of the present invention may further include, after the third grinding step, heating the composite powder in a vacuum oven at 400 to 550° C. for 10 to 30 minutes to remove the remaining additives.
  • the sintering may be performed by rolling or extrusion.
  • the sintering may be performed at 400 to 500 °C conditions.
  • the heat treatment may be performed for 1 to 72 hours.
  • the present invention also provides a metal-carbon composite including a bonding phase in which carbon atoms are interstitial by solid dissolution in interstitial sites of a metal lattice of a metal matrix.
  • the ratio of the bonding structure invading the interstitial position of the metal lattice among the total bonding structure of the carbon atoms may be 17% or more.
  • the present invention also provides a component of a transport device comprising the metal-carbon composite material.
  • the metal-carbon produced Composites can exhibit ultra-high strength properties. Therefore, when the present invention is applied to lightweight metal, it is possible to manufacture a high-strength lightweight material having excellent tensile strength and significantly improved hardness of the lightweight metal, so that it is possible to reduce the weight of transportation equipment, thereby effectively reducing fuel efficiency, and in the aerospace industry, etc. It can be applied in various fields.
  • FIG. 1 shows a schematic diagram of a metal-carbon composite in which a stoichiometric structure and a non-stoichiometric structure are formed between a metal atom and a carbon atom.
  • Figure 2 schematically shows a method of manufacturing a metal-carbon composite material according to an embodiment of the present invention.
  • FIG 3 shows the results of observing changes in the microstructure by SEM and TEM in the manufacturing process of the Al-C composite material according to an embodiment of the present invention.
  • FIG. 4 is a stress-strain diagram of an Al-C composite according to an embodiment of the present invention.
  • FIG. 6 shows a Raman spectrum of an Al-C composite according to an embodiment of the present invention.
  • FIG 10 shows the strength change according to the volume fraction of the supersaturated Al-C phase in the Al-C composite according to an embodiment of the present invention.
  • the present invention relates to a metal-carbon composite comprising a structure in which carbon atoms are complexed in a non-stoichiometric state in a metal lattice.
  • the metal-carbon composite material of the present invention may exhibit significantly superior mechanical properties compared to the conventional metal matrix-nano-carbon dispersion material.
  • FIG. 1 shows a schematic diagram of a metal-carbon composite in which stoichiometric and non-stoichiometric structures are formed between metal atoms and carbon atoms.
  • Figure 2 schematically shows a metal-carbon composite manufacturing method according to an embodiment of the present invention.
  • the metal-carbon composite of the present invention can be manufactured by a powder method of pulverization, sintering and heat treatment, and the pulverization process is performed by dividing it into three steps.
  • the primary and secondary grinding can be performed in the same apparatus, the primary and secondary grinding are shown together without distinguishing them in FIG. 2 .
  • the metal-carbon composite of the present invention can be prepared by the following steps:
  • the base metal of the metal-carbon composite material is aluminum (Al), magnesium (Mg), titanium (Ti), copper (Cu), iron (Fe), gold (Au), silver (Ag), manganese (Mn) ), tin (Sn), zinc (Zn), and may include at least one selected from the group consisting of alloys thereof.
  • the nano-carbon material is a material for reinforcing the strength of metal, and in the case of a metal-carbon composite using a conventional nano-carbon material, it is difficult to uniformly disperse the nano-carbon. There was a limit to the improvement of mechanical strength.
  • a three-step pulverization process is used to improve the dispersibility of the nano-carbon material and the metal, and the bonding phase between the nano-carbon and the metal uniformly dispersed in the metal is changed through the heat treatment of the composite to increase the strength of the composite. It is characterized by a significant improvement.
  • the nano-carbon material used for manufacturing the metal-carbon composite material is fullerene, single-walled carbon nanotube (SWCNT), double-walled carbon nanotube (DWCNT), Multi-walled carbon nanotube (MWCNT), graphene, graphene oxide (GO), reduced graphene oxide (rGO), graphite, graphite nano It may include at least one selected from the group consisting of graphite nanoplatelets (GNP), nano diamond and carbon black.
  • the smaller the radius of curvature of the nano-carbon material the higher the chemical energy, and the advantage of easy low-temperature decomposition.
  • a high temperature condition of 600°C or higher is required to decompose carbon atoms from the material. Under such high temperature conditions, thermal energy exceeding the carbide formation energy is supplied. There is a limit to the improvement of mechanical strength.
  • fullerene having a small particle radius is meant to include not only C 60 in the form of a buckyball, but also C 28 , C 32 , C 50 , C 72 , C 76 , C 84 , and the like.
  • the primary grinding is a process of preparing a finer powder by applying a shear force and/or impact force to the nano-carbon material.
  • the nano-carbon material exists in a form that interacts by the Van der Waals force, so it is difficult to uniformly disperse it in the metal.
  • the dispersibility can be improved by weakening the interaction between the nano-carbon materials through the primary grinding process.
  • the primary milling uses planetary milling, attrition milling, spex milling, vibratory milling, shaker milling, or jet milling. and it is preferable to use planetary milling.
  • the primary grinding may be performed under the condition that the number of rotations is 100 to 300 rpm, preferably 150 to 250 rpm.
  • the rotation speed of the primary grinding process is too low, the nano-carbon material is not sufficiently pulverized, and when it is too high, the structure of the nano-carbon material may be destroyed.
  • the primary grinding may be performed by repeating a cycle of grinding for 10 to 30 minutes and pausing for 60 to 80 minutes 5 to 10 times in order to maintain the process temperature.
  • the primary grinding is preferably performed in the presence of an additive for weakening the bonding of the nano-carbon material.
  • the additive includes stearic acid (CH 3 (CH 2 ) 16 COOH, stearic acid), sodium chloride (NaCl), potassium chloride (KCl), sodium sulfate (Na 2 SO 4 ), hexane, heptane, octane ( octane), oxalic acid ((COOH) 2 H 2 O, oxalic acid), methanol, ethanol, isopropyl alcohol, acetone, toluene, Nopcowax-22 DSP (C 2 H 2 -2 (C 18 H 36 ON), ethylenebisdistearamide), trichlorotrifluoroethane, organosilicon compound, etc., additives that can prevent over-bonding between the ball and the container powder It can be used, and it is particularly preferable to use stearic acid.
  • the nano-carbon material When the nano-carbon material is pulverized in the presence of the additive, cold welding generated during pulverization of the nano-carbon material can be prevented, and van der Waals bonds can be weakened. Therefore, since the dispersibility of the nano-carbon material is improved in a subsequent process by the primary grinding, a composite material having excellent mechanical properties can be manufactured.
  • the additive may be used in an amount of 0.1 to 5 parts by weight, preferably 0.5 to 4 parts by weight, more preferably 1 to 3 parts by weight based on 100 parts by weight of the nano-carbon material. If the amount of the additive is too small, the effect of weakening the van der Waals bond cannot be sufficiently exerted. If the amount of the additive is too large, the powder becomes excessively fine, or it is difficult to remove before the subsequent sintering step, which prevents the powder integration. There may be problems that make it difficult to form.
  • a base metal powder is added to the pulverized material of nano-carbon and secondary pulverization is performed.
  • the secondary pulverization is a step for preparing a mixed powder by mixing and pulverizing the pulverized nano-carbon material and the base metal powder.
  • the secondary pulverization by pre-mixing the pulverized nano-carbon material and the matrix metal powder through the secondary pulverization before forming the composite powder, their dispersibility was further improved in the subsequent high-energy process to form an ultra-high strength composite material.
  • the nano-carbon material may be mixed in an amount of 1 to 10 parts by weight, preferably 2 to 5 parts by weight, more preferably 3 to 4 parts by weight, based on 100 parts by weight of the metal powder. If the amount of the nano-carbon material to be mixed is too small, the mechanical property strengthening effect due to the introduction of the reinforcing material is difficult to appear, and if the amount of the nano-carbon material is too large, the ductility or electrical properties of the metal composite may be deteriorated.
  • the grinding method and process conditions of the secondary grinding may be performed under conditions corresponding to the conditions of the primary grinding.
  • the secondary milling uses planetary milling, attrition milling, spex milling, vibratory milling, shaker milling or jet milling. and it is preferable to use planetary milling.
  • the secondary grinding may be performed under the condition that the number of rotations is 100 to 300 rpm, preferably 150 to 250 rpm, and 5 cycles of grinding for 10 to 30 minutes to maintain the process temperature, and pausing for 60 to 80 minutes It can be carried out in a manner of repeating times to 10 times.
  • the mixed powder is thirdly grinded to prepare a composite powder.
  • the tertiary pulverization is a process for embedding a fine nano-carbon material in a metal powder in a homogeneous state.
  • the tertiary grinding may be performed for 6 to 36 hours at a higher rotational speed than the primary and secondary grinding.
  • the third grinding may be performed at a rotation speed of 300 to 1,000 rpm, preferably 400 to 700 rpm. If the rotation speed of the tertiary grinding is low, it is difficult for the nano-carbon material to be firmly embedded in the metal powder.
  • the tertiary grinding uses attrition milling, planetary milling, spex milling, vibratory milling, shaker milling or jet milling. and it is preferable to use attribution milling for high-energy grinding.
  • agglomeration of the powder can be prevented by adding an additive to the mixed powder in the tertiary grinding process and grinding.
  • the additive the same kind as the material described as the additive in the primary grinding may be used.
  • By pulverizing the composite powder in the presence of the additive it is possible to prevent aggregation of the composite powder of metal and nano-carbon.
  • the additive may be used in an amount of 0.1 to 5 parts by weight, preferably 0.5 to 3 parts by weight, more preferably 0.7 to 2 parts by weight based on 100 parts by weight of the composite powder.
  • the amount of the additive is too small, it is difficult to effectively prevent agglomeration of the powder, and when the amount of the additive is too large, it may act as an impurity of the composite material.
  • a process of removing the remaining additives may be performed.
  • the additive may be removed by heating the composite powder at 400 to 550° C. for 10 to 30 minutes in a vacuum oven.
  • the composite powder is sintered to prepare a sintered body.
  • the sintering process is for integrating the powder by applying energy, and may be performed by rolling or extrusion.
  • the rolling may be performed at a reduction ratio of 8 to 15%, preferably 10 to 13%, and the extrusion may be performed at 250 to 300 bar, preferably 260 to 280 bar conditions.
  • the sintering process may be performed by hot rolling the composite powder at 400 to 500°C. If the temperature of hot rolling is higher than this, carbides are formed during the rolling process, so it may be difficult to obtain a composite material having excellent mechanical properties.
  • the sintered body is a form in which the nano-carbon material is dispersed in a metal matrix, and a trace amount of a carbide phase that may be formed during hot rolling and a supersaturated M-C phase due to intrusion of carbon atoms may be mixed.
  • the volume of the nano-carbon material is 1 to 10% by volume, preferably 2 to 8% by volume, more preferably 3 to 7% by volume, most preferably 4 to 6% by volume based on the total volume of the sintered body can be
  • the heat treatment process may be performed at a temperature of 400 °C or higher and less than 650 °C, preferably at a temperature of 450 to 620 °C, more preferably at a temperature of 470 to 610 °C. If the temperature of the heat treatment process is too low, the nano-carbon material is not decomposed and it is difficult to form a supersaturated M-C phase.
  • the heat treatment process may be performed for 1 to 72 hours. If the heat treatment time is long, a problem in which the supersaturated M-C phase is transformed into a carbide may occur. However, when the temperature of the heat treatment process is within an appropriate range, the supersaturated M-C phase may be stably maintained even if the heat treatment is performed for a long time. Accordingly, the heat treatment process may be performed at a temperature of 470° C. or higher and lower than 550° C. for 6 hours or more, preferably for 24 hours or more. Alternatively, it may be carried out at a temperature of 550 to 610° C. for 12 hours or less, preferably 6 to 12 hours.
  • the present invention provides a metal-carbon composite material having excellent mechanical strength.
  • the metal-carbon composite material of the present invention is manufactured using a matrix metal powder and a nano-carbon material, and has a structure in which carbon atoms are solid-dissolved in a metal matrix.
  • it is characterized in that it includes a bonding phase in which carbon atoms are substituted with metal atoms as well as interstitial sites of the metal lattice.
  • the metal-carbon composite material of the present invention includes a supersaturated metal-carbon (M-C) phase that is a non-stoichiometric phase in a metal matrix.
  • M-C supersaturated metal-carbon
  • the supersaturated M-C phase refers to a bonding phase formed by over-dissolving carbon in an atomic unit formed by decomposition of a nano-carbon material in a metal lattice, and is a concept distinct from the M-C bonding phase of a metal carbide.
  • the supersaturated M-C phase which is a non-stoichiometric phase, in the metal, according to the present invention can be formed to achieve excellent mechanical strength.
  • the lattice of the metal may be deformed by the super-dissolved carbon to increase the lattice parameter.
  • the lattice parameter of the supersaturated M-C phase may have a value greater than or equal to 3% greater than the lattice parameter of the M-M phase of the monolithic metal.
  • the ratio of the bonding structure invading into the interstitial positions of the metal lattice among the total bonding structure of the carbon atoms may be 17% or more.
  • the atomic fraction of the M-C supersaturated phase may be 17% or more, preferably 19% or more, which is a sintered body
  • the atomic fraction of the M-C supersaturated phase may be increased by 10% or more, preferably by 20% or more, preferably by 30% or more.
  • the atomic fraction may be measured based on the area ratio of each bonding phase in the XPS data of the metal-carbon composite.
  • the metal-carbon composite material of the present invention may exhibit ultra-high strength mechanical properties by including diversified bond forms formed by metal bonds, dispersed nano-carbons, and supersaturated M-C phases.
  • the metal-carbon composite material of the present invention may exhibit a tensile strength of 500 MPa or more, preferably 700 MPa or more.
  • the metal-carbon composite material of the present invention may have a Vickers hardness of 200 Hv or more, preferably 220 Hv or more, more preferably 240 Hv or more. Specifically, in the embodiment of the present invention, compared with the Vickers hardness (26Hv) of pure aluminum, it was confirmed that the heat treatment composite of the present invention has a hardness that is increased up to about 10 times.
  • the non-stoichiometric metal-carbon composite material including the metal-carbon bond of the present invention exhibits ultra-high strength mechanical properties with very high tensile strength and hardness. Therefore, when the present invention is applied to a lightweight metal, a lightweight material with significantly improved mechanical strength can be manufactured.
  • the present invention provides a component of a transport device comprising the metal-carbon composite material.
  • the transport device may be a concept including a car, a ship, a train, an aircraft, a rocket, a tank, and the like, and the parts include a body, a bearing, a wheel, a disk, a motor, a battery pack, a fuel tank, etc. of the transport device.
  • the parts include a body, a bearing, a wheel, a disk, a motor, a battery pack, a fuel tank, etc. of the transport device.
  • the metal-carbon composite material according to the present invention When the metal-carbon composite material according to the present invention is applied to parts of a transport device, fuel efficiency can be effectively reduced according to the weight reduction of the transport device, and environmental pollution problems caused by fuel consumption can be solved.
  • the composite material of the present invention when the composite material of the present invention is applied to parts of an electric vehicle, an electric vehicle having excellent battery efficiency can be manufactured. In addition, it can be effectively used as a component of a device requiring high strength and lightness, such as military or aerospace materials.
  • Pure Al powder and fullerene (C 60 ) were subjected to three-step ball milling to prepare a composite powder, followed by hot rolling and heat treatment to prepare an Al-C composite.
  • fullerene (purity 99.5%, SES Research Co., USA) was ball milled with a planetary mill grinder (Pulverisette 5, Frisch, Germany). Specifically, 2.5 g of fullerene and a stainless steel ball (1,200 g) having a diameter of 5 mm were placed in a stainless steel chamber, and 1 wt% of stearic acid (CH 3 (CH 2 ) 16 COOH, Sigma Aldrich Korea Co, Ltd, Korea) was added. It was added to the chamber and ground. Eight cycles of milling were performed at 200 rpm, and milling was performed for 15 minutes in each cycle, and then paused for 75 minutes before proceeding to the next cycle.
  • a planetary mill grinder Pulverisette 5, Frisch, Germany
  • the Al-fullerene composite powder was solidified by hot rolling. Specifically, the composite powder was put into a copper tube (diameter 60 mm, height 150 mm) sealed on one side and sealed, and then hot rolling was performed at a reduction ratio of 12% and 480 ° C until the sample thickness reached 1.23 mm.
  • the change of the microstructure was observed during the manufacturing process of the Al-C nanocomposite of Preparation Example 1 and is shown in FIG. 3 .
  • the upper row of images (a to c from the left) shows a scanning electron microscope (SEM) image
  • the lower row of images (d to f from the left) shows a transmission electron microscope (TEM) image.
  • JEM 7610F (JEOL, Japan) was used for SEM
  • Technai G2 F20 FEI, USA
  • (a) in the SEM image shows the pulverized fullerene.
  • the van der Waals bond between the fullerenes is weakened by stearic acid, and the fullerene aggregate is decomposed into small particles due to the impact energy of the ball.
  • (b) is an image of the Al/fullerene mixed powder, and it can be seen that the pulverized fullerene is mixed with the Al powder.
  • (c) is an image of the Al/fullerene composite powder, and it can be seen that the hard fullerene is combined in the soft Al powder during the attrition milling process.
  • (d) is an image of a rolled Al-fullerene sintered compact, that is, as-rolled. Referring to the part indicated by an arrow, it can be seen that the fullerene is well dispersed in the Al matrix.
  • (e) and (f) show the state after heat treatment at 500° C. for 12 hours, nano-sized Al 4 C 3 (e) and supersaturated Al-C phase (f) by carbon atoms decomposed by heat treatment formed can be seen.
  • the Fast Fourier Transform (FFT) patterns inserted in (e) and (f) are the results obtained in the area indicated by the white rectangle.
  • the supersaturated Al-C phase was formed from the mixed moiré pattern generated by the two lattices.
  • the Al-C phase may be formed by inserting thermally decomposed C atoms into the gap of the Al matrix, and when the Al-C phase is formed, the strength is improved due to the distortion of the Al lattice.
  • Al and C atoms tend to form compounds (ie, Al carbides) instead of solid solutions at high temperatures, but in the present invention, meta-stable supersaturation under conditions where C atoms are insufficient to form carbides. It was found that a solid solution comprising an Al-C phase was formed. As confirmed in the above experimental example, the dispersed fullerenes have a small size and high chemical potential, so they can be easily decomposed at a relatively low temperature, and the decomposed carbon atoms cannot form carbides at low temperatures and can occupy gaps in the Al lattice.
  • the Al-C composite material has significantly improved tensile strength compared to Al to which a carbon material is not added.
  • a supersaturated Al-C phase was formed and the strength and ductility were improved compared to the sample without heat treatment (ie, 0 h).
  • the heat treatment temperature was changed to 450, 500, 600 and 650 ° C., respectively, and heat treatment was performed under conditions of 0, 6 and 72 hours to prepare a sample.
  • the structure was analyzed through X-ray diffraction (CN2310, Rigaku, Japan) with Cu Ka radiation, and the results are shown in FIG. 5 .
  • the heat treatment temperature was changed to 450, 500, 600 and 650 ° C., respectively, and heat treatment was performed under conditions of 0, 6 and 72 hours to prepare a sample.
  • Raman spectroscopy (LabRam Aramis, Horiba Jobin Yvon Co. Ltd., France) was performed to observe the molecular structure change and carbide formation of fullerene during heat treatment, and a Raman spectrum graph of each sample is shown in FIG. 6 .
  • D band and G band related to defects and disorder of carbon and fullerene at about 1,340 and 1,600 cm ⁇ 1 , respectively, can be confirmed.
  • the composite material heat-treated at 600 or 650 °C showed a clear peak of Al 4 C 3 at 850 cm -1 , and it was confirmed that it caused significant damage to the molecular structure of fullerene.
  • the heat treatment temperature was changed to 450, 500, 600 and 650 ° C., respectively, and heat treatment was performed under conditions of 0, 6 and 72 hours to prepare a sample.
  • X-ray photoelectron spectroscopy (K-alpha, Thermo, USA) was performed to quantify the fraction of Al matrix, C 60 , Al 4 C 3 and supersaturated Al-C phase, and the C1s region XPS spectrum of each sample is shown in FIG. 7 . It was.
  • the volume fraction was calculated from the results using physical parameters such as density and molar mass of each phase, and is shown in FIG. 8 . At this time, it was calculated under the condition that the carbon source of carbide and supersaturated Al-C phase is provided only by fullerene.
  • the heat treatment temperature was changed to 450, 500, 600 and 650° C., respectively, and the change in Vickers hardness was measured while changing the heat treatment time, and is shown in FIG. 9 .
  • Vickers hardness change was measured by applying a load of 300 g using a micro Vickers hardness tester (HM 211, Mitutoyo, Japan).
  • the initial Vickers hardness of the composite material was 182.72 Hv, while in the composite material heat treated at 450 and 500 ° C. for 6 hours, fullerene was decomposed and Al-C phase was formed, and the hardness was significantly increased to 252.12 and 248.10 Hv, respectively. did. In addition, when heated for 72 hours, the hardness gradually increased to 256.92 and 255.98 Hv, respectively.
  • the hardness increased to 238.56 Hv after heat treatment for 6 hours, but decreased to 215.02 Hv after 72 hours.
  • the hardness decreased as the heat treatment time increased.
  • heat treatment at a temperature of 450 to 600 ° C. is preferable in terms of hardness when heat treatment is performed for 6 hours or less, and heat treatment at a temperature of 500 ° C. or less is preferable when heat treatment is performed for a long time longer than that.
  • Al-C specimens can be classified into the following four groups, each of which contains different microstructure phases and corresponding atomic bonds depending on the heat treatment temperature.
  • as-rolled Al-C composites are mainly composed of Al-Al metal bonds in Al matrix and C-C covalent bonds in fullerenes.
  • the specimens annealed at 500 °C show a dominant fraction of the supersaturated Al-C phase. Specifically, the molecular structure of fullerene is partially broken, so that the C-C bond peak of fullerene appears wider and lower, and a supersaturated Al-C phase is additionally formed to improve mechanical strength. In particular, it was confirmed that the Al-C composite specimen exhibited the maximum Vickers hardness at 500 °C for 72 hours.
  • the maximum hardness of the heat-treated composite was about 255.98 Hv, which was 40.1% higher than the Vickers hardness (182.72 Hv) of the as-rolled composite.
  • the strength change according to the volume fraction of the supersaturated Al-C phase is shown in FIG. 10 .
  • the contribution of the supersaturated Al-C phase to the yield strength of the Al-C composite was calculated.
  • fullerene, carbide, and supersaturated Al-C phase Reinforcing contributions are calculated as 9, 2 and 851 GPa/vol.%, respectively.
  • the covalent bond of fullerene or the ionic bond of carbide is much stronger than the metal bond that may exist on Al-C, in the composite of the present invention, the supersaturated Al-C phase showed the highest reinforcing effect on hardness.
  • carbon atoms which are well dispersed on an atomic scale, i) greatly change the atomic distance of metal atoms, or ii) change the metal bonding property to an ionic bonding property to form an intermetallic metal It is interpreted as being able to change the properties of the bond.
  • the distorted lattice structure of the Al-C phase interferes with dislocation movement, thereby improving the strength of the Al-C composite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

본 발명은 금속 원자 및 탄소 원자 간 비화학양론상 구조를 갖는 금속 매트릭스-나노 탄소 복합재 및 이의 제조 방법에 관한 것이다. 본 발명에 따르면, 금속 매트릭스 내에서 나노 탄소 재료가 분해되어 형성된 탄소 원자가 금속 격자에 침입하거나 치환된 형태로 고용되어, 비화학양론상의 과포화 금속-탄소 결합상을 형성하고 탄화물의 형성은 억제되도록 조절함으로써, 제조된 금속-탄소 복합재가 초고강도 특성을 나타낼 수 있다. 따라서, 본 발명을 경량 금속에 적용하면 경량 금속의 인장 강도, 경도 등의 기계적 물성이 현저히 향상된 고강도 경량 소재를 제조할 수 있다.

Description

금속 원자 및 탄소 원자 간 비화학양론상 구조를 갖는 금속-탄소 복합재 및 이의 제조 방법
본 발명은 금속 원자 및 탄소 원자 간 비화학양론상 구조를 갖는 금속-탄소 복합재 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 금속 매트릭스 내에 비화학양론 결합상인 과포화 금속-탄소(M-C) 상을 포함하여 초고강도의 기계적 물성을 갖는 금속-탄소 복합재 및 이의 제조 방법에 관한 것이다.
최근 탄소 배출 저감, 연비 향상 등 환경적 규제가 심화되어 이동수단의 경량화가 요구됨에 따라, 기존의 철 소재를 알루미늄과 같은 경량 금속 소재로 대체하는 기술이 개발되고 있다. 알루미늄은 철의 중량의 1/3 정도로 가볍기 때문에 철 대신 알루미늄을 이용하게 될 경우 연비가 절감되어 경제적 이점을 누릴 수 있을 뿐만 아니라, 연료의 과다 사용에 따른 환경 오염 문제를 해결할 수 있다.
그러나 순수한 알루미늄은 강도가 높지 않아, 자동차, 항공 분야 등 다양한 산업에 적용하기 위해서는 인장 강도, 경도 등의 기계적 특성을 보완하기 위한 기술 개발이 필요하였다.
금속의 기계적 특성을 보완하기 위한 방안과 관련하여, 탄소 소재는 금속의 성질을 변화시키는 핵심 성분 중 하나로 알려져 있다. 예를 들어, 탄소를 액상의 철에 용해시켜 합금을 제조하면 탄소의 양, 제조 방법 등에 따라 다양한 강도를 갖는 철-탄소(Fe-C) 합금을 제조할 수 있다. 그러나 탄소와 같은 음이온계 원소들은 철 이외의 다른 금속에서는 용해도가 매우 낮아, 알루미늄과 같은 경량금속과 합금 형태로 제조하기에는 기술적 어려움이 있었다.
이에 대한 대안으로서, 알루미늄과 같은 금속에서 탄소를 보강재 형태로 사용하여 금속의 기계적 특성을 향상시키는 연구들이 진행되었다. 일 예로서, 논문 Rashad et al., Progress in Natural Science: Materials International, Volume 24, Issue 2, April 2014, 101-108에서는 알루미늄과 그래핀의 복합 분말을 600℃에서 고온 소결하고 470℃에서 압출시켜 알루미늄-그래핀 복합재를 제조하고 기계적 물성을 측정한 결과를 기재하고 있다. 그런데 상기 논문에 따른 복합재는 비커스 경도가 85Hv, 인장 강도가 280MPa 정도로, 기대하는 수준의 물성에 도달하기 어려웠다.
또한, 대한민국 등록특허공보 제10-1755988호에서는 나노카본을 세라믹 또는 금속으로 코팅하고 세라믹 분말로 응집시킨 후, 알루미늄 용탕에 첨가하여 주조함으로써 나노카본 강화 알루미늄 복합재를 제조하는 방법을 기재하고 있다. 그러나, 상기 기술에 따르면 용탕 주조 전 전해도금법으로 나노카본을 코팅하고 볼 밀링으로 응집시키는 단계가 필요하므로 공정이 복잡하고, 경도가 최대 140HB 정도로 기지재의 경도(100HB)에 비해 40% 증가된 정도에 그쳤다.
이와 같이, 종래의 알루미늄-나노 탄소 복합재 기술은 기계적 강도 향상에 한계가 있었으며, 이러한 한계를 뛰어넘기 위해서는 기지 금속과 나노 탄소 소재의 낮은 습윤성(wettability)을 극복하고, 고온 공정에서 분해된 탄소와 알루미늄의 반응으로 탄화물이 형성되는 문제를 해결하는 것이 필요하였다.
이러한 상황에서, 본 발명의 발명자들은 금속 매트릭스-나노 탄소 복합재에서 탄소 과고용 후 탄화물을 형성하지 않는 중간상을 형성함으로써 금속 원자 및 탄소 원자 간에 비화학양론(non-stoichiometric) 상 구조를 형성하여, 결합 형태가 다변화된 초고강도의 복합재를 제조할 수 있음을 발견하고, 본 발명을 완성하였다.
본 발명의 목적은 초고강도의 기계적 물성을 갖는 금속-탄소 복합재를 제조하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 금속 원자 및 탄소 원자 간 비화학양론상 구조를 갖는 초고강도의 금속-탄소 복합재를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 금속-탄소 복합재를 포함하는 운송기기의 부품을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 나노 탄소 재료를 1차 분쇄하여 나노 탄소 분쇄물을 형성하는 단계; 상기 나노 탄소 분쇄물에 금속 분말을 첨가하고 2차 분쇄하여 혼합 분말을 형성하는 단계; 상기 혼합 분말을 3차 분쇄하여 복합 분말을 형성하는 단계; 상기 복합 분말을 소결시켜 소결체를 형성하는 단계; 및 상기 소결체를 400℃ 이상 650℃ 미만의 온도에서 열처리하는 단계를 포함하는, 금속-탄소 복합재의 제조방법을 제공한다.
본 발명에서, 상기 금속-탄소 복합재의 기지 금속은 알루미늄(Al), 마그네슘(Mg), 티타늄(Ti), 구리(Cu), 철(Fe), 금(Au), 은(Ag), 망간(Mn), 주석(Sn), 아연(Zn) 및 이들의 합금으로 구성된 군에서 선택되는 1종 이상을 포함할 수 있다.
본 발명에서, 상기 나노 탄소 재료는 풀러렌(fullerene), 단일벽 탄소나노튜브(single-walled carbon nanotube, SWCNT), 이중벽 탄소나노튜브(double-walled carbon nanotube, DWCNT), 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWCNT), 그래핀(graphene), 그래핀 옥사이드(graphene oxide, GO), 환원 그래핀 옥사이드(reduced graphene oxide, rGO), 그래파이트(graphite), 그래파이트 나노판상체(graphite nanoplatelets, GNP), 나노 다이아몬드(nano diamond) 및 카본 블랙(carbon black)으로 구성된 군에서 선택되는 1종 이상을 포함할 수 있다.
본 발명에서, 상기 1차 내지 3차 분쇄는 각각 독립적으로, 유성 밀링(planetary milling), 어트리션 밀링(attrition milling), 스펙스 밀링(spex milling), 진동 밀링(vibratory milling), 쉐이커 밀링(shaker milling) 또는 제트 밀링(jet milling)에 의해 수행될 수 있다.
본 발명에서, 상기 1차 분쇄는 100 내지 300rpm의 회전수로 수행될 수 있다.
본 발명에서, 상기 1차 분쇄는 10 내지 30분 동안 분쇄하고, 60 내지 80분 동안 일시 중지하는 사이클을 5회 내지 10회 반복하는 방식으로 수행되는, 금속-탄소 복합재의 제조방법.
본 발명에서, 상기 1차 분쇄 및 3차 분쇄 중 하나 이상의 단계는 스테아르산(CH3(CH2)16COOH, stearic acid), 염화나트륨(NaCl), 염화칼륨(KCl), 황산나트륨(Na2SO4), 헥산(hexane), 헵탄(heptane), 옥탄(octane), 옥살산((COOH)2·H2O, oxalic acid), 메탄올(methanol), 에탄올(ethanol), 이소프로필 알코올(isopropyl alcohol), 아세톤(acetone), 톨루엔(toluene), Nopcowax-22 DSP (C2H2-2(C18H36ON), ethylenebisdistearamide), 트리클로로트리플루오로에탄(trichlorotrifluoroethane) 및 유기 실리콘 화합물(organosilicon compound)로 구성된 군에서 선택되는 1종 이상의 첨가제의 존재 하에서 수행될 수 있다.
본 발명의 1차 분쇄 단계에서 상기 첨가제는 나노 탄소 재료 100중량부에 대하여 0.1 내지 5중량부 사용될 수 있다.
본 발명의 2차 분쇄 단계에서, 나노 탄소 재료와 금속 분말의 중량비는 1:100 내지 10:100인 것이 바람직하다.
본 발명에서, 상기 2차 분쇄는 100 내지 300rpm의 회전수로 수행될 수 있다.
본 발명에서, 상기 3차 분쇄는 300 내지 1,000rpm의 회전수로 수행될 수 있다.
본 발명에서, 상기 3차 분쇄는 6 내지 36시간 동안 수행될 수 있다.
본 발명의 3차 분쇄 단계에서, 상기 첨가제가 나노 탄소 재료 100중량부에 대하여 0.1 내지 5중량부 사용될 수 있다.
본 발명의 제조방법은 상기 3차 분쇄 단계 이후, 복합 분말을 진공 오븐에서 400 내지 550℃에서 10 내지 30분 동안 가열하여 잔류하는 첨가제를 제거하는 단계를 더 포함할 수 있다.
본 발명에서, 상기 소결은 압연 또는 압출에 의해 수행될 수 있다.
본 발명에서, 상기 소결은 400 내지 500℃ 조건에서 수행될 수 있다.
본 발명에서, 상기 열처리는 1 내지 72시간 동안 수행될 수 있다.
본 발명은 또한, 금속 매트릭스의 금속 격자의 격자 간 위치(interstitial site)에 탄소 원자가 고용(solid dissolution)되어 침입된 형태의 결합상을 포함하는, 금속 탄소 복합재를 제공한다.
본 발명에서, 상기 탄소 원자의 전체 결합 구조 중 금속 격자의 격자 간 위치에 침입된 형태의 결합 구조의 비율은 17% 이상일 수 있다.
본 발명은 또한, 상기 금속-탄소 복합재를 포함하는 운송기기의 부품을 제공한다.
본 발명에 따르면, 금속 매트릭스 내에서 나노 탄소 재료가 분해되어 형성된 탄소 원자가 금속 격자 내에 과고용되어 비화학양론상 금속-탄소 결합상을 형성하고 탄화물의 형성은 억제되도록 조절함으로써, 제조된 금속-탄소 복합재가 초고강도 특성을 나타낼 수 있다. 따라서, 본 발명을 경량 금속에 적용하면 경량 금속의 인장 강도가 우수하면서 경도가 현저히 향상된 고강도 경량 소재를 제조할 수 있으므로, 운송기기의 경량화가 가능하여 연비를 효과적으로 절감할 수 있고, 항공 우주 산업 등 다양한 분야에 적용할 수 있다.
도 1은 금속 원자 및 탄소 원자 간에 화학양론상 구조 및 비화학양론상 구조가 형성된 금속-탄소 복합재의 개략도를 나타낸 것이다.
도 2는 본 발명의 일 실시 형태에 따른 금속-탄소 복합재의 제조 방법을 개략적으로 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 Al-C 복합재 제조 과정에서 미세 구조의 변화를 SEM 및 TEM으로 관찰한 결과를 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 Al-C 복합재의 응력-변형률 선도를 나타낸 것이다.
도 5는 본 발명의 일 실시예에 따른 Al-C 복합재의 X선 회절 분석 결과를 나타낸 것이다.
도 6은 본 발명의 일 실시예에 따른 Al-C 복합재의 라만 스펙트럼을 나타낸 것이다.
도 7은 본 발명의 일 실시예에 따른 Al-C 복합재의 C1s 영역 XPS 스펙트럼을 나타낸 것이다.
도 8은 본 발명의 일 실시예에 따른 Al-C 복합재에서 각 결합상의 부피 분율을 계산하여 나타낸 것이다.
도 9는 본 발명의 일 실시예에 따른 Al-C 복합재의 비커스 경도 측정 결과를 나타낸 것이다.
도 10은 본 발명의 일 실시예에 따른 Al-C 복합재에서 과포화 Al-C 상의 부피 분율에 따른 강도 변화를 나타낸 것이다.
이하, 본 발명의 구체적인 구현 형태에 대해서 보다 상세히 설명한다. 다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 금속 격자 내에 탄소 원자가 비화학양론 상태로 복합된 구조를 포함하는, 금속-탄소 복합재에 관한 것이다.
금속의 기계적 강도를 향상시키기 위하여 나노 탄소 재료를 보강재로 도입하는 경우, 나노 탄소 재료와 금속 매트릭스의 낮은 습윤성(wettability)으로 인하여 기대하는 강화 효과에 도달할 수 없었고, 고온 공정에서 나노 탄소 재료에서 분해된 탄소 원자와 금속의 반응으로 탄화물(carbide)이 형성되는 문제가 있었다.
본 발명에 따르면, 나노 탄소 재료로부터 열분해된 탄소가 금속 격자의 격자 간 위치(interstitial site)에 침입하여 고용(solid dissolution)됨으로써 금속(M)-탄소(C) 원자 간의 비화학양론상(즉, 과포화 M-C 상)을 형성하여, 탄화물의 형성을 방해할 수 있다. 상기 과포화 M-C 상은 금속 매트릭스에서 왜곡된 격자 구조를 갖는 나노 스케일 도메인으로 작용하여, 전위(dislocation) 이동을 저해하고 금속 결합의 탄성 결합 특성을 변경시킨다. 이에 따라, 본 발명의 금속-탄소 복합재는 종래의 금속 매트릭스-나노 탄소의 분산재에 비하여 현저히 우수한 기계적 특성을 나타낼 수 있다.
도 1은 금속 원자 및 탄소 원자 간에 화학양론상 구조 및 비화학양론상 구조가 형성된 금속-탄소 복합재의 개략도를 나타낸다. 기지 금속 내에 나노 탄소 물질이 혼재하는 상태에서 충분한 열역학적 환경이 제공될 경우 기지 금속 원자와 나노 탄소의 탄소 원자가 탄화물을 형성하여 화학양론상 구조(Al4C3)를 갖게 된다. 반면, 동일한 구조에 대하여 화학양론상을 형성하기 어려운 환경이 제공되는 경우, 예를 들어 탄화물 형성 에너지 이하의 온도에서 열처리할 경우, 화학양론상 구조를 형성하는데 실패하여 결합 형태가 변화되고, 탄소 원자가 금속 격자 내에 침입하여 화학양론에 맞지 않는 과고용된 구조를 형성할 수 있다.
도 2는 본 발명의 일 실시 형태에 따른 금속-탄소 복합재 제조 방법을 개략적으로 나타낸 것이다. 도 2에 나타낸 바와 같이, 본 발명의 금속-탄소 복합재는 분쇄, 소결 및 열처리의 분말 공법으로 제조할 수 있으며, 분쇄 공정을 3단계로 나누어 수행한다. 다만, 1차 및 2차 분쇄는 동일한 장치 내에서 수행될 수 있기 때문에, 도 2에서는 1차 및 2차 분쇄를 구별하지 않고 함께 나타내었다.
본 발명의 금속-탄소 복합재는 다음의 단계에 의해 제조될 수 있다:
나노 탄소 재료를 1차 분쇄하여 나노 탄소 분쇄물을 형성하는 단계;
나노 탄소 분쇄물에 금속 분말을 첨가하고 2차 분쇄하여 혼합 분말을 형성하는 단계;
상기 혼합 분말을 3차 분쇄하여 복합 분말을 형성하는 단계;
상기 복합 분말을 소결시켜 소결체를 형성하는 단계; 및
상기 소결체를 열처리하는 단계.
본 발명에서, 금속-탄소 복합재의 기지 금속은 알루미늄(Al), 마그네슘(Mg), 티타늄(Ti), 구리(Cu), 철(Fe), 금(Au), 은(Ag), 망간(Mn), 주석(Sn), 아연(Zn) 및 이들의 합금으로 구성된 군에서 선택되는 1종 이상을 포함할 수 있다.
본 발명에서, 상기 나노 탄소 재료는 금속의 강도를 보강하기 위한 물질로, 기존에 나노 탄소 재료를 이용한 금속-탄소 복합재의 경우 나노 탄소의 균일한 분산이 어렵고, 열처리하는 경우 탄화물이 형성되어 금속의 기계적 강도 향상에 한계가 있었다.
본 발명에서는, 나노 탄소 재료와 금속의 분산성을 향상시키기 위하여 3단계 분쇄 공정을 이용하고, 복합재의 열처리를 통해 금속에 균일하게 분산된 나노 탄소와 금속 간의 결합상을 변화시켜, 복합재의 강도를 현저히 향상시키는 것을 특징으로 한다.
본 발명에서, 금속-탄소 복합재 제조에 사용되는 나노 탄소 재료는 풀러렌(fullerene), 단일벽 탄소나노튜브(single-walled carbon nanotube, SWCNT), 이중벽 탄소나노튜브(double-walled carbon nanotube, DWCNT), 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWCNT), 그래핀(graphene), 그래핀 옥사이드(graphene oxide, GO), 환원 그래핀 옥사이드(reduced graphene oxide, rGO), 그래파이트(graphite), 그래파이트 나노판상체(graphite nanoplatelets, GNP), 나노 다이아몬드(nano diamond) 및 카본 블랙(carbon black)으로 구성된 군에서 선택되는 1종 이상을 포함할 수 있다.
바람직하게, 상기 나노 탄소 재료의 곡률 반경이 작을수록 화학적 에너지가 높고, 저온 분해가 용이하다는 이점이 있다. 입자 반경이 큰 경우 물질로부터 탄소 원자를 분해시키기 위하여 600℃ 이상의 고온 조건이 필요한데, 이와 같은 고온 조건에서는 탄화물 형성 에너지를 넘는 열 에너지가 공급되기 때문에 분해된 탄소가 금속과 탄화물을 형성하게 되므로 복합재의 기계적 강도 향상에 한계가 있다. 이러한 측면에서, 나노 탄소 재료로서 입자 반경이 작은 풀러렌을 사용하는 것이 바람직하다. 본 발명에서, 풀러렌은 버키볼 형태의 C60 뿐만 아니라 C28, C32, C50, C72, C76, C84 등을 포함하는 의미이다.
본 발명에서, 상기 1차 분쇄는 나노 탄소 재료에 전단력 및/또는 충격력을 가하여 더욱 미세한 분말을 제조하는 공정이다. 나노 탄소 재료는 반데르발스(Van der Waals) 힘에 의해 상호작용하는 형태로 존재하여, 금속에 균일하게 분산시키기 어려운 문제가 있다. 본 발명에서는, 상기 1차 분쇄 공정을 통하여 나노 탄소 재료 간의 상호작용을 약화시켜 분산성을 개선할 수 있다.
상기 1차 분쇄는 유성 밀링(planetary milling), 어트리션 밀링(attrition milling), 스펙스 밀링(spex milling), 진동 밀링(vibratory milling), 쉐이커 밀링(shaker milling) 또는 제트 밀링(jet milling)을 이용하여 수행될 수 있으며, 유성 밀링을 사용하는 것이 바람직하다.
상기 1차 분쇄는 회전수가 100 내지 300rpm, 바람직하게는 150 내지 250rpm인 조건에서 수행될 수 있다. 1차 분쇄 공정의 회전수가 너무 낮은 경우에는 나노 탄소 재료가 충분히 분쇄되지 않고, 너무 높은 경우에는 나노 탄소 재료의 구조가 파괴될 수 있다.
상기 1차 분쇄는, 공정 온도를 유지하기 위하여 10 내지 30분 동안 분쇄하고, 60 내지 80분 동안 일시 중지하는 사이클을 5회 내지 10회 반복하는 방식으로 수행될 수 있다.
상기 1차 분쇄는, 나노 탄소 재료의 결합을 약화시키기 위한 첨가제의 존재 하에 수행되는 것이 바람직하다. 상기 첨가제로는 스테아르산(CH3(CH2)16COOH, stearic acid), 염화나트륨(NaCl), 염화칼륨(KCl), 황산나트륨(Na2SO4), 헥산(hexane), 헵탄(heptane), 옥탄(octane), 옥살산((COOH)2·H2O, oxalic acid), 메탄올(methanol), 에탄올(ethanol), 이소프로필 알코올(isopropyl alcohol), 아세톤(acetone), 톨루엔(toluene), Nopcowax-22 DSP (C2H2-2(C18H36ON), ethylenebisdistearamide), 트리클로로트리플루오로에탄(trichlorotrifluoroethane), 유기 실리콘 화합물(organosilicon compound) 등, 볼과 용기 분말 간의 과접합을 방지할 수 있는 첨가제를 사용할 수 있으며, 특히 스테아르산을 사용하는 것이 바람직하다. 상기 첨가제의 존재 하에서 나노 탄소 재료를 분쇄하는 경우, 나노 탄소 재료의 분쇄 중 발생하는 냉접을 방지할 수 있을 뿐만 아니라, 반데르발스 결합을 약화시킬 수 있다. 따라서, 1차 분쇄에 의해 후속 공정에서 나노 탄소 재료의 분산성이 향상되므로, 기계적 물성이 우수한 복합재를 제조할 수 있다.
본 발명에서, 상기 첨가제는 나노 탄소 재료 100중량부에 대하여 0.1 내지 5중량부, 바람직하게는 0.5 내지 4중량부, 더 바람직하게는 1 내지 3중량부 사용할 수 있다. 첨가제의 사용량이 너무 적으면 반데르발스 결합을 약화시키는 효과를 충분히 발휘할 수 없고, 너무 많으면 분말이 과도하게 미세해지거나, 후속 소결 단계 이전에 제거가 어려워 분말의 일체화를 방해하기 때문에 양질의 벌크 소재를 형성하기 어려운 문제가 발생할 수 있다.
상기 1차 분쇄가 완료되면, 나노 탄소의 분쇄물에 기지 금속 분말을 첨가하고 2차 분쇄를 수행한다.
상기 2차 분쇄는 분쇄된 나노 탄소 재료와 기지 금속 분말을 혼합 분쇄하여 혼합 분말을 제조하기 위한 단계이다. 본 발명에서는 분쇄된 나노 탄소 재료와 기지 금속 분말을 복합 분말을 형성하기 전에, 상기 2차 분쇄를 통해 사전 혼합함으로써 후속 고에너지 공정에서 이들의 분산성을 더욱 향상시켜 초고강도의 복합재를 형성하였다.
상기 2차 분쇄 단계에서, 상기 나노 탄소 재료는 금속 분말 100 중량부 대비 1 내지 10 중량부, 바람직하게는 2 내지 5 중량부, 더 바람직하게는 3 내지 4 중량부의 양으로 혼합될 수 있다. 혼합되는 나노 탄소 재료의 양이 너무 적으면 강화재 도입으로 인한 기계적 물성 강화 효과가 나타나기 어렵고, 나노 탄소 재료의 양이 너무 많으면 금속 복합재의 연성이나 전기적 특성이 저하될 수 있다.
상기 2차 분쇄의 분쇄 방법 및 공정 조건은 상기 1차 분쇄의 조건과 대응되는 조건 하에서 수행될 수 있다.
상기 2차 분쇄는 유성 밀링(planetary milling), 어트리션 밀링(attrition milling), 스펙스 밀링(spex milling), 진동 밀링(vibratory milling), 쉐이커 밀링(shaker milling) 또는 제트 밀링(jet milling)을 이용하여 수행될 수 있으며, 유성 밀링을 사용하는 것이 바람직하다.
상기 2차 분쇄는 회전수가 100 내지 300rpm, 바람직하게는 150 내지 250rpm인 조건에서 수행될 수 있으며, 공정 온도를 유지하기 위하여 10 내지 30분 동안 분쇄하고, 60 내지 80분 동안 일시 중지하는 사이클을 5회 내지 10회 반복하는 방식으로 수행될 수 있다.
상기 2차 분쇄가 완료되면, 혼합 분말을 3차 분쇄하여 복합 분말을 제조한다.
상기 3차 분쇄는 금속 분말에 미세한 나노 탄소 재료를 균질한 상태로 매립시키기 위한 공정이다.
상기 3차 분쇄는 1차 및 2차 분쇄에 비해 높은 회전수 조건에서 6 내지 36시간 동안 수행될 수 있다. 바람직하게, 상기 3차 분쇄는 300 내지 1,000rpm, 바람직하게는 400 내지 700rpm의 회전수로 수행될 수 있다. 3차 분쇄의 회전수가 낮으면 나노 탄소 재료가 금속 분말에 단단하게 매립되기 어렵고, 회전수가 너무 높으면 분쇄 단계에서 분자 구조가 변형되어 원하는 상의 복합재를 얻지 못하는 문제가 나타날 수 있다.
상기 3차 분쇄는 어트리션 밀링(attrition milling), 유성 밀링(planetary milling), 스펙스 밀링(spex milling), 진동 밀링(vibratory milling), 쉐이커 밀링(shaker milling) 또는 제트 밀링(jet milling)을 이용하여 수행될 수 있으며, 고에너지 분쇄를 위하여 어트리션 밀링을 사용하는 것이 바람직하다.
본 발명에서, 상기 3차 분쇄 공정에서 혼합 분말에 첨가제를 첨가하여 분쇄함으로써 분말이 응집하는 것을 방지할 수 있다. 상기 첨가제로는 1차 분쇄에서 첨가제로 기재한 물질과 동일한 종류를 사용할 수 있다. 상기 첨가제의 존재 하에서 복합 분말을 분쇄함으로써, 금속과 나노 탄소의 복합 분말이 뭉치는 것을 방지할 수 있다.
본 발명에서, 상기 첨가제는 복합 분말 100중량부에 대하여 0.1 내지 5중량부, 바람직하게는 0.5 내지 3중량부, 더 바람직하게는 0.7 내지 2중량부 사용할 수 있다. 상기 첨가제의 사용량이 너무 적은 경우에는 분말의 응집을 효과적으로 방지하기 어렵고, 너무 많은 경우에는 복합재의 불순물로 작용할 가능성이 있다.
복합 분말을 수득한 후, 잔류하는 첨가제를 제거하는 공정을 수행할 수 있다. 예를 들어, 복합 분말을 진공 오븐에서 400 내지 550℃에서 10 내지 30분 동안 가열하여 첨가제를 제거할 수 있다.
다음으로, 상기 복합 분말을 소결시켜 소결체를 제조한다.
상기 소결 공정은 분말에 에너지를 가하여 일체화시키기 위한 것으로, 압연(rolling) 또는 압출(extrusion)에 의해 수행될 수 있다. 상기 압연은 압하율 8 내지 15%, 바람직하게는 10 내지 13% 조건에서 수행될 수 있으며, 압출은 250 내지 300bar, 바람직하게는 260 내지 280bar 조건에서 수행될 수 있다.
바람직하게, 상기 소결 공정은 복합 분말을 400 내지 500℃ 조건에서 열간 압연함으로써 수행될 수 있다. 열간 압연의 온도가 이보다 높으면 압연 과정에서 탄화물이 형성되어 기계적 물성이 우수한 복합재를 얻기 어려울 수 있다.
상기 소결을 통해 금속-나노 탄소가 복합된 형태의 소결체를 얻을 수 있다. 상기 소결체는 금속 매트릭스 내에 나노 탄소 재료가 분산되어 있는 형태로, 열간 압연 시 형성될 수 있는 탄화물상과 탄소 원자의 침입에 의한 과포화 M-C 상이 미량 혼재할 수도 있다. 상기 소결체에서, 나노 탄소 재료의 체적은 소결체 전체 부피를 기준으로 1 내지 10부피%, 바람직하게는 2 내지 8부피%, 더 바람직하게는 3 내지 7부피%, 가장 바람직하게는 4 내지 6부피%일 수 있다.
본 발명에서, 상기 소결체를 열처리함으로써 나노 탄소를 분해시켜 과포화 M-C 상 형성을 유도하여, 기계적 물성이 현저히 향상된 복합재를 제조할 수 있다.
상기 열처리 공정은 400℃ 이상 650℃ 미만의 온도에서 수행될 수 있으며, 바람직하게는 450 내지 620℃, 더 바람직하게는 470 내지 610℃의 온도에서 수행될 수 있다. 열처리 공정의 온도가 너무 낮으면 나노 탄소 재료가 분해되지 않아 과포화 M-C 상이 형성되기 어렵고, 열처리 공정의 온도가 너무 높으면 금속과 탄소가 탄화물(carbide)을 형성하므로 복합재의 기계적 강도 향상에 한계가 있다.
상기 열처리 공정은 1 내지 72시간 동안 수행될 수 있다. 열처리 시간이 길어지면 과포화 M-C 상이 탄화물로 변형되는 문제가 발생할 수 있다. 다만, 열처리 공정의 온도가 적정 범위 내인 경우 열처리를 길게 수행하여도 과포화 M-C 상이 안정적으로 유지될 수 있다. 이에 따라, 상기 열처리 공정은 470℃ 이상 550℃ 미만의 온도에서 6시간 이상, 바람직하게는 24시간 이상 수행될 수 있다. 또는, 550 내지 610℃의 온도에서 12시간 이하, 바람직하게는 6 내지 12시간 수행될 수 있다.
본 발명의 3단계 분쇄 및 소결 후 열처리 공정을 이용하면, 과포화 M-C 상의 분율이 높아 매우 높은 경도와 인장 강도를 갖는 초고강도 금속-탄소 복합재를 제조할 수 있으며, 특히 경도가 현저하게 향상된 금속-탄소 복합재를 제조할 수 있다.
이에 따라, 본 발명은 우수한 기계적 강도를 갖는 금속-탄소 복합재를 제공한다.
본 발명의 금속-탄소 복합재는 기지 금속 분말과 나노 탄소 재료를 이용하여 제조된 것으로서, 금속 매트릭스에 탄소 원자가 고용(solid dissolution)된 구조를 갖는다. 특히, 본 발명에 따르면 탄소 원자가 금속 원자와 치환된 형태 뿐만 아니라, 금속 격자의 격자 간 위치(interstitial site)에 침입된 형태의 결합상을 포함하는 것을 특징으로 한다.
이에 따라, 본 발명의 금속-탄소 복합재는 금속 매트릭스 내에 비화학양론상인 과포화 금속-탄소(M-C) 상을 포함한다. 상기 과포화 M-C 상이란, 나노 탄소 물질이 분해되어 형성된 원자 단위의 탄소가 금속 격자 내에 과고용되어 형성된 결합상을 의미하는 것으로, 금속 탄화물의 M-C 결합상과 구별되는 개념이다.
종래의 금속-탄소 복합재에서 나노 탄소가 고용 한도 내의 고용체로 존재하거나 금속과 화학양론상의 결합을 형성했던 것과 달리, 본 발명에 따르면 금속 내에 과고용된 탄소가 원자 단위로 비화학양론 상인 과포화 M-C 상을 형성하여 우수한 기계적 강도를 달성할 수 있다.
상기 과포화 M-C 상에서, 과고용된 탄소에 의해 금속의 격자가 변형되어 격자 매개변수가 증가할 수 있다. 과포화 M-C 상의 격자 매개변수는, 모놀리식 금속의 M-M 상의 격자 매개변수에 비해 3% 이상 큰 값을 가질 수 있다.
본 발명의 금속-탄소 복합재에서, 상기 탄소 원자의 전체 결합 구조 중 금속 격자의 격자 간 위치에 침입된 형태의 결합 구조의 비율이 17% 이상일 수 있다.
구체적으로, 나노 탄소의 C-C 결합상, 탄화물의 M-C 결합상 및 M-C 과포화상의 전체 원자 분율을 100%로 하였을 때, M-C 과포화상의 원자 분율은 17% 이상, 바람직하게는 19% 이상일 수 있으며, 이는 소결체에 비해 M-C 과포화상의 원자 분율이 10% 이상, 바람직하게는 20% 이상, 바람직하게는 30% 이상 증가된 것일 수 있다. 상기 원자 분율은 금속-탄소 복합재의 XPS 데이터에서 각 결합상의 면적 비율을 기반으로 측정될 수 있다.
본 발명의 금속-탄소 복합재는 금속 결합, 분산된 나노 탄소 및 과포화 M-C 상에 의해 형성된 다변화된 결합 형태를 포함함으로써, 초고강도의 기계적 물성을 나타낼 수 있다.
구체적으로, 본 발명의 금속-탄소 복합재는 500MPa 이상, 바람직하게는 700MPa 이상의 인장 강도를 나타낼 수 있다.
또한, 본 발명의 금속-탄소 복합재는 200Hv 이상, 바람직하게는 220Hv 이상, 더 바람직하게는 240Hv 이상의 비커스 경도(Vickers hardness)를 가질 수 있다. 구체적으로, 본 발명의 실시예에서는 순수 알루미늄의 비커스 경도(26Hv)와 비교하여, 본 발명의 열처리 복합재는 최대 약 10배 상승된 경도를 갖는 것을 확인하였다.
이와 같이, 본 발명의 비화학양론상 금속-탄소 결합을 포함하는 금속-탄소 복합재는 인장 강도 및 경도가 매우 높은 초고강도의 기계적 물성을 나타낸다. 따라서, 본 발명을 경량 금속에 적용하면 기계적 강도가 현저히 향상된 경량 소재를 제조할 수 있다.
이에 따라, 본 발명은 상기 금속-탄소 복합재를 포함하는 운송기기의 부품을 제공한다.
상기 운송기기는 자동차, 선박, 열차, 항공기, 로켓, 탱크 등을 포함하는 개념일 수 있으며, 상기 부품은 운송기기의 몸체, 베어링, 휠, 디스크, 모터, 배터리 팩, 연료 탱크 등을 포함하는 개념일 수 있다.
본 발명에 따른 금속-탄소 복합재를 운송기기의 부품에 적용하면, 운송기기의 경량화에 따라 연비를 효과적으로 절감할 수 있으며 연료 소비에 따른 환경 오염 문제를 해결할 수 있다. 또한, 전기차의 부품에 본 발명의 복합재를 적용하는 경우 배터리의 효율이 우수한 전기차를 제조할 수 있다. 뿐만 아니라, 군수용이나 우주 항공 재료 등 고강도 경량성이 요구되는 기기의 부품으로 효과적으로 사용될 수 있다.
실시예
이하 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 단, 이들 실시예는 본 발명을 예시적으로 설명하기 위하여 일부 실험방법과 구성을 나타낸 것으로, 본 발명의 범위가 이러한 실시예에 제한되는 것은 아니다.
제조예 1: 비화학양론상 금속-탄소 복합재 제조
순수 Al 분말 및 풀러렌(C60)을 3단계 볼 밀링(ball milling)하여 복합 분말을 제조하고, 열간 압연(hot rolling) 후 열처리하여 Al-C 복합재를 제조하였다.
먼저, 풀러렌(순도 99.5%, SES Research Co., USA)을 유성 밀 분쇄기(Pulverisette 5, Frisch, Germany)로 볼 밀링하였다. 구체적으로, 풀러렌 2.5g과 직경 5mm의 스테인리스강 볼(1,200g)을 스테인리스강 챔버에 넣고, 1중량%의 스테아르산(CH3(CH2)16COOH, Sigma Aldrich Korea Co, Ltd, Korea)을 챔버에 첨가하여 분쇄하였다. 200rpm에서 8사이클 밀링을 수행하였으며, 각 사이클에서 15분 동안 밀링하고, 그 후 75분 동안 일시 중지하였다가 다음 사이클을 진행하였다.
다음으로, 분쇄된 풀러렌에 순수 Al 분말(순도 99.5%, 창성(주), Korea) 77.5g을 첨가하였다. 이전 단계와 동일한 조건에서, 유성 밀링을 통해 풀러렌을 Al 분말과 혼합하였다.
그 후, 어트리션 밀(KMC-1BV, KMC Co. Ltd., Korea)을 이용한 고에너지 볼 밀링을 통해, 풀러렌이 분산된 Al 복합 분말을 제조하였다. 구체적으로, 볼 대 분말(ball-to-power) 비율을 15:1로 하여 혼합 분말과 스테인리스강 볼을 스테인리스강 챔버에 넣고, 1중량%의 스테아르산을 챔버에 첨가하였다. 볼 밀링 시 내부 온도 상승을 방지하기 위해 챔버 벽 주위에 냉각수를 순환시켰다. 이어서, 아르곤 분위기에서 24시간 동안 500rpm에서 어트리션 밀링을 수행하였다. 어트리션 밀링으로 얻은 복합 분말을 500℃ 진공 오븐에서 20분간 가열하여 스테아르산을 제거하였다.
상기 3단계 볼 밀 공정을 통하여, Al-풀러렌 복합 분말을 얻었다.
다음으로, 열간 압연으로 Al-풀러렌 복합 분말을 고화시켰다. 구체적으로, 복합 분말을 일면이 밀봉된 구리 관(직경 60mm, 높이 150mm)에 넣고 밀봉한 다음, 샘플 두께가 1.23mm에 도달할 때까지 압하율 12%, 480℃ 조건에서 열간 압연을 수행하였다.
구리 관을 제거한 후, 500℃에서 복합재를 열처리하는 공정을 수행하였다.
상기 제조 방법의 각 단계 및 공정 조건을 아래 표 1에 나타내었다.
순서 공 정 재 료 조 건
1 풀러렌 분쇄
(유성 볼 밀링)
C60
스테아르산(1 wt.%) 스테인리스강 볼(분말의 15배 질량)
200RPM 15min(milling)/75min(pause)
8cycle
2 사전 혼합 분말 제조
(유성 볼 밀링)
1에서 제조한 분쇄 C60
Al 분말 추가
200RPM
15min(milling)/75min(pause)
8cycle
3 복합 분말 제조
(어트리션 볼 밀링)
2에서 제조한 Al/C60 분말, 스테아르산(1 wt.%) 500RPM
Ar 분위기에서 24h
4 스테아르산 제거 3에서 제조한 Al/C60 분말 500℃
진공에서 20min
5 압연재 제조
(열간 압연)
4에서 제조한 최종 분말 480℃
압하율 12%
두께 ~1.23mm
6 열처리 5에서 제조한 압연재 500℃
실험예 1: Al-C 복합재 제조 공정에서의 미세 구조 변화 관찰
제조예 1의 Al-C 나노복합재 제조 과정에서 미세 구조의 변화를 관찰하여 도 3에 나타내었다. 도 3에서, 윗줄의 이미지(좌측부터 a 내지 c)는 주사전자현미경(SEM) 이미지를 나타낸 것이고, 아랫줄의 이미지(좌측부터 d 내지 f)는 투과전자현미경(TEM) 이미지를 나타낸 것이다. SEM으로는 JEM 7610F(JEOL, Japan)를 이용하였고, TEM으로는 Technai G2 F20(FEI, USA)을 이용하였다.
구체적으로, 상기 SEM 이미지에서 (a)는 분쇄된 풀러렌을 나타낸 것으로, 풀러렌의 유성 밀링 중 풀러렌 간의 반데르발스 결합이 스테아르산에 의해 약화되고, 풀러렌 응집체가 볼의 충격 에너지로 인하여 작은 입자로 분해된 상태이다. (b)는 Al/풀러렌의 혼합 분말에 대한 이미지로, 분쇄된 풀러렌이 Al 분말과 혼합된 상태를 확인할 수 있다. (c)는 Al/풀러렌의 복합 분말에 대한 이미지로, 어트리션 밀링 과정에서 단단한 풀러렌이 연질의 Al 분말 내에 결합된 것을 확인할 수 있다.
상기 TEM 이미지에서 (d)는 압연된 Al-풀러렌 소결체, 즉 압연 상태(as-rolled)의 이미지로서, 화살표로 표시한 부분을 참고하면, 풀러렌이 Al 매트릭스에 잘 분산되어 있는 것을 확인할 수 있다.
(e) 및 (f)는 500℃에서 12시간 열처리한 후의 상태를 나타낸 것으로, 열처리에 의해 분해된 탄소 원자에 의해 나노 크기의 Al4C3(e) 및 과포화 Al-C 상(f)이 형성된 것을 확인할 수 있다. (e) 및 (f)에 삽입된 고속 푸리에 변환(Fast Fourier Transform, FFT) 패턴은 흰색 사각형으로 표시한 영역에서 얻은 결과이다.
(f)를 참고하면, 두 격자에 의해 생성된 혼합 모아레 무늬로부터 과포화 Al-C 상이 형성되었음을 관찰할 수 있다. Al-C 상은 열적으로 분해된 C 원자가 Al 매트릭스의 틈새로 삽입되어 형성될 수 있으며, Al-C 상이 형성되면 Al 격자의 뒤틀림에 의해 강도가 향상되는 효과가 나타나게 된다. 대조적으로, Al4C3는 육각형 구조(R-3m 공간군)를 갖는 화합물로서, a=0.3335nm 및 c=0.8542nm의 셀 파라미터를 갖는다. 이에 따라, 과포화 Al-C 상이 Al4C3 상과 구별되는 것을 확인할 수 있다.
이와 같이, 일반적으로 Al 및 C 원자는 고온에서 고용체 대신 화합물(즉, Al 탄화물)을 형성하는 경향이 있지만, 본 발명에서는 C 원자가 탄화물을 형성하기에 불충분한 조건에서 준안정(meta-stable) 과포화 Al-C 상을 포함하는 고용체가 형성되는 것을 발견하였다. 상기 실험예에서 확인한 바와 같이, 분산된 풀러렌은 크기가 작고 화학적 포텐셜이 높아, 상대적으로 저온에서 쉽게 분해될 수 있으면서 분해된 탄소 원자가 저온에서 탄화물을 형성하지 못하고 Al 격자의 틈새를 차지할 수 있다.
실험예 2: Al-C 복합재의 인장 강도 측정
제조예 1의 방법을 바탕으로, C60의 함유량을 각각 0, 2, 3 및 5부피%로 다르게 하고 0, 12 및 24시간 조건에서 열처리를 진행하여 샘플을 제조하였다. 이에 대해 응력-변형률 선도를 얻어 도 4에 나타내었다.
도 4를 참고하면, Al-C 복합재는 탄소 재료를 첨가하지 않은 Al에 비해 인장 강도가 현저히 향상된 것을 확인할 수 있다. 또한, Al-C 복합재에 열처리를 수행하는 경우 과포화 Al-C 상이 형성되면서 열처리를 하지 않은 샘플(즉, 0h)에 비하여 강도와 연성이 향상되는 결과가 나타났다.
이에 따라, Al에 C60이 분산됨에 따라 강도가 증가하고, 열처리에 의해 과포화 Al-C 상이 형성되어 기계적 강도가 더욱 향상되는 것을 확인할 수 있었다.
실험예 3: Al-C 복합재의 X선 회절(XRD) 패턴 분석
제조예 1의 방법에 따르되, 열처리 온도를 각각 450, 500, 600 및 650℃로 다르게 하고, 0, 6 및 72시간 조건에서 열처리를 진행하여 샘플을 제조하였다. 각 샘플에 대하여, Cu Ka 방사선으로 X선 회절(CN2310, Rigaku, Japan)을 통해 구조를 분석하고 그 결과를 도 5에 나타내었다.
도 5를 참고하면, 450 또는 500℃에서 복합재를 열처리한 경우 열처리 시간에 관계없이 Al4C3에 해당하는 피크는 보이지 않고, Al에 해당하는 피크만이 확인되었다.
그러나, 600 또는 650℃에서 6시간 열처리한 경우 Al4C3 상의 피크가 명확하게 확인되었다. 이에 따라, 상기 조건에서는 풀러렌의 탄소가 금속 매트릭스와 반응하여 탄화물을 형성하는 것을 확인할 수 있었다.
실험예 4: Al-C 복합재의 라만 스펙트럼 분석
제조예 1의 방법에 따르되, 열처리 온도를 각각 450, 500, 600 및 650℃로 다르게 하고, 0, 6 및 72시간 조건에서 열처리를 진행하여 샘플을 제조하였다. 열처리 중 풀러렌의 분자 구조 변화 및 탄화물 형성 관찰을 위하여 라만 분광법(LabRam Aramis, Horiba Jobin Yvon Co. Ltd., France)을 수행하고, 각 샘플의 라만 스펙트럼 그래프를 도 6에 나타내었다.
도 6을 참조하면, 열처리하지 않은 샘플은 각각 약 1,340 및 1,600cm-1에서 탄소 및 풀러렌의 결함 및 무질서와 관련된 D 밴드 및 G 밴드를 확인할 수 있다.
450℃에서 열처리한 경우 복합재에 Al4C3 피크가 존재하였지만, 500℃에서 열처리된 복합재는 풀러렌 분자 구조의 부분적인 파괴를 나타낼 뿐 Al4C3의 피크를 나타내지는 않았다.
600 또는 650℃에서 열처리된 복합재는 850 cm-1에서 명확한 Al4C3의 피크를 나타내었으며, 풀러렌의 분자 구조에 상당한 손상을 유발하는 것을 확인하였다.
실험예 5: Al-C 복합재의 XPS 스펙트럼 분석
제조예 1의 방법에 따르되, 열처리 온도를 각각 450, 500, 600 및 650℃로 다르게 하고, 0, 6 및 72시간 조건에서 열처리를 진행하여 샘플을 제조하였다. Al 매트릭스, C60, Al4C3 및 과포화 Al-C 상의 분율을 정량화하기 위하여 X선 광전자 분광법(K-alpha, Thermo, USA)을 수행하여, 각 샘플의 C1s 영역 XPS 스펙트럼을 도 7에 나타내었다.
도 7을 참고하면, XPS 스펙트럼에는 외래 탄소(adventitious carbon)의 C-C (~ 284.2 eV), 풀러렌의 C-C (~ 285.4 eV), Al4C3의 Al-C (~ 282.0 eV), 및 Al-C 상의 Al-C (~ 283.2 eV)의 피크를 확인할 수 있다.
XPS 스펙트럼 결과를 이용하여 C60, Al4C3 및 과포화 Al-C 상의 각 영역 분율(area fraction)을 계산하여, 아래 표 2에 나타내었다.
Area fraction [%]
as rolled 450℃ 500℃ 600℃ 650℃
6h 72h 6h 72h 6h 72h 6h 72h
C60 26.92 21.58 20.20 17.97 15.89 13.52 11.64 7.85 3.21
Al4C3 58.04 60.92 62.11 61.78 64.28 64.38 69.07 74.63 80.54
Al-C 15.04 17.50 17.69 20.25 19.82 22.10 19.30 17.53 16.25
상기 영역 분율은 각 상에 존재하는 탄소 원자의 원자비 합에 상응하므로, 상기 결과로부터 각 상의 밀도, 몰질량과 같은 물리적 파라미터를 이용하여 부피 분율을 계산하여 도 8에 나타내었다. 이 때, 카바이드와 과포화 Al-C 상의 탄소 공급원은 풀러렌에 의해서만 제공된다는 조건 하에 계산되었다.
결과적으로, 도 8을 참조하면, 열처리를 수행하지 않은 샘플(as-rolled)의 경우 부피 분율의 측정값과 설계값이 상이하였는데, 이러한 차이는 480℃의 열간 압연 공정에서 형성되는 Al4C3 및 Al-C 상과 몰질량의 큰 차이에 기인한 것으로 해석된다.
다양한 온도 조건에서 6시간 열처리한 후 C60 분율이 감소하고 Al4C3 및 Al-C 상의 부피 분율이 증가하는 경향을 확인하였다. 특히, 450 및 500℃에서 6시간 열처리한 샘플의 경우 72시간 조건에서와 Al-C 상의 분율이 유사하였다. 이를 통해, 과포화 Al-C 상이 500℃ 이하에서 열적으로 안정한 것을 알 수 있었다. 또한 450℃보다 500℃ 조건에서 과포화 Al-C 상의 분율이 더욱 높은 것을 확인하였다.
한편, 600℃에서 열처리한 경우, 6시간 조건에서는 과포화 Al-C 상의 분율이 높았으나, 72시간 동안 열처리한 결과 과포화 Al-C 상의 분율이 감소하는 반면 Al4C3의 분율이 크게 증가하는 결과가 나타났다. 이에 따라, Al-C 상은 600℃에서는 6시간 이하에서 열처리하는 것이 유리하고, 더 긴 시간동안 열처리하면 탄화물(카바이드)로 변형되며, 650℃에서는 Al4C3의 분율이 매우 높은 결과를 확인할 수 있었다.
실험예 6: Al-C 복합재의 비커스 경도 분석
제조예 1의 방법에 따르되, 열처리 온도를 각각 450, 500, 600 및 650℃로 다르게 하고, 열처리 시간을 변화시키면서 비커스 경도 변화를 측정하여 도 9에 나타내었다. 비커스 경도 변화는 마이크로 비커스 경도계(HM 211, Mitutoyo, Japan)를 이용하여 300g의 하중을 가하여 측정하였다.
도 9를 참고하면, 복합재의 초기 비커스 경도는 182.72Hv인 반면, 450 및 500℃에서 6시간 열처리한 복합재에서는 풀러렌이 분해되고 Al-C 상이 형성되어 경도가 각각 252.12 및 248.10Hv로 크게 증가한 것을 확인하였다. 또한, 72시간 동안 가열하면 경도가 각각 256.92 및 255.98Hv로 점차적으로 증가하였다.
한편, 600℃에서 열처리된 샘플의 경우 6시간 열처리 후 경도가 238.56Hv로 증가하는 반면, 72시간 후에는 215.02Hv로 감소하는 결과가 나타났다. 또한, 650℃ 열처리된 샘플의 경우 열처리 시간이 증가함에 따라 경도가 감소하였다.
이에 따라, 6시간 이하로 열처리하는 경우 450 내지 600℃의 온도에서 열처리하는 것이 경도 측면에서 바람직하고, 그 이상 장시간 열처리하는 경우 500℃ 이하의 온도에서 열처리하는 것이 바람직함을 확인하였다.
실험예 7: Al-C 복합재에서 과포화 Al-C 상의 기여도 분석
실험예 6의 결과에 따르면, as-rolled 복합재의 경우 결정립 미세화에 의한 강화로 인해 경도가 순수 Al의 경도(26Hv)보다 현저히 높은 것을 확인할 수 있었다.
결정립 크기 효과를 제외하고, as-rolled Al-C 복합재를 열처리한 후 소성 거동 향상에 대한 C60, Al4C3 및 과포화 Al-C 상의 기여를 분석하였다.
Al-C 시편을 다음 4개 그룹으로 분류할 수 있으며, 각각은 열처리 온도에 따라 서로 다른 미세 구조 상과 해당 원자 결합을 포함한다.
첫째, as-rolled Al-C 복합재는 주로 Al 매트릭스의 Al-Al 금속 결합과 풀러렌의 C-C 공유 결합으로 구성된 복합재이다.
둘째로, 450℃에서 열처리된 Al-C 복합재는 과포화 Al-C 상의 증가가 시작된 반면 Al-C60 복합상이 여전히 지배적이었다.
셋째, 500℃에서 열처리된 시편은 과포화 Al-C 상의 지배적인 분율을 나타낸다. 구체적으로, 풀러렌의 분자 구조가 부분적으로 파괴되어 풀러렌의 C-C 결합 피크가 더 넓고 낮게 나타나며, 과포화 Al-C 상이 추가 형성되어 기계적 강도가 향상된다. 특히 500℃에서 72시간 열처리한 Al-C 복합재 시편에서 최대 비커스 경도를 나타내는 것을 확인하였다.
마지막으로 XRD, Raman, XPS를 통해 관찰된 바와 같이 650℃에서 열처리된 시편은 Al4C3 상의 형성이 우세하고 대부분의 풀러렌이 사라지는 결과가 나타났다.
종합하면, 열처리 복합재의 최대 경도는 약 255.98Hv로, as-rolled 복합재의 비커스 경도(182.72Hv)보다 40.1% 더 큰 결과를 나타냈다.
구체적으로, C60, Al4C3 및 과포화 Al-C 상의 기여도를 확인하기 위하여, 과포화 Al-C 상의 부피 분율에 따른 강도 변화를 도 10에 나타내었다.
Al-C 복합재의 항복 강도(yield strength)에 대한 과포화 Al-C 상의 기여도를 계산하였다. Al-C 복합재의 강도와 비커스 경도의 관계를 σ=3.3·Hv로 하고, Al, fullerene, Al4C3의 강도를 0.35, 30, 10GPa로 계산한 결과, 풀러렌, 탄화물 및 과포화 Al-C 상의 강화 기여는 각각 9, 2 및 851GPa/vol.%로 계산된다.
풀러렌의 공유 결합이나 탄화물의 이온 결합이 Al-C 상에 존재할 수 있는 금속 결합보다 훨씬 강함에도 불구하고, 본 발명의 복합재에서는 과포화 Al-C 상이 경도에 가장 높은 강화 효과를 나타내었다.
이에 따라, 본 발명에 따른 금속-탄소 복합재는 원자 규모로 잘 분산되어 있는 탄소 원자가 i) 금속 원자의 원자 거리를 크게 변경하거나, 또는 ii) 금속 결합 특성을 이온 결합 특성으로 변화시켜 금속 원자간 금속 결합의 특성을 변화시킬 수 있는 것으로 해석된다. 또한, 본 발명의 실험 결과를 통해 Al-C 상의 왜곡된 격자 구조가 전위 이동을 방해하여 Al-C 복합재의 강도를 향상시키는 것을 확인할 수 있다.
이상 본 발명의 일부 구현 형태에 대해서 설명하였으나, 본 발명은 상술한 바와 같은 구현형태에 대해서만 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위 내에서 수정 및 변형하여 실시할 수 있으며, 그러한 수정 및 변형이 가해진 형태 또한 본 발명의 기술적 사상에 속하는 것으로 이해되어야 한다.

Claims (20)

  1. 나노 탄소 재료를 1차 분쇄하여 나노 탄소 분쇄물을 형성하는 단계;
    상기 나노 탄소 분쇄물에 금속 분말을 첨가하고 2차 분쇄하여 혼합 분말을 형성하는 단계;
    상기 혼합 분말을 3차 분쇄하여 복합 분말을 형성하는 단계;
    상기 복합 분말을 소결시켜 소결체를 형성하는 단계; 및
    상기 소결체를 400℃ 이상 650℃ 미만의 온도에서 열처리하는 단계
    를 포함하는, 금속-탄소 복합재의 제조방법.
  2. 제 1 항에 있어서,
    상기 금속-탄소 복합재의 기지 금속이 알루미늄(Al), 마그네슘(Mg), 티타늄(Ti), 구리(Cu), 철(Fe), 금(Au), 은(Ag), 망간(Mn), 주석(Sn), 아연(Zn) 및 이들의 합금으로 구성된 군에서 선택되는 1종 이상을 포함하는, 금속-탄소 복합재의 제조방법.
  3. 제 1 항에 있어서,
    상기 나노 탄소 재료가 풀러렌(fullerene), 단일벽 탄소나노튜브(single-walled carbon nanotube, SWCNT), 이중벽 탄소나노튜브(double-walled carbon nanotube, DWCNT), 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWCNT), 그래핀(graphene), 그래핀 옥사이드(graphene oxide, GO), 환원 그래핀 옥사이드(reduced graphene oxide, rGO), 그래파이트(graphite), 그래파이트 나노판상체(graphite nanoplatelets, GNP), 나노 다이아몬드(nano diamond) 및 카본 블랙(carbon black)으로 구성된 군에서 선택되는 1종 이상을 포함하는, 금속-탄소 복합재의 제조방법.
  4. 제 1 항에 있어서,
    상기 1차 내지 3차 분쇄가 각각 독립적으로, 유성 밀링(planetary milling), 어트리션 밀링(attrition milling), 스펙스 밀링(spex milling), 진동 밀링(vibratory milling), 쉐이커 밀링(shaker milling) 또는 제트 밀링(jet milling)에 의해 수행되는, 금속-탄소 복합재의 제조방법.
  5. 제 1 항에 있어서,
    상기 1차 분쇄가 100 내지 300rpm의 회전수로 수행되는, 금속-탄소 복합재의 제조방법.
  6. 제 1 항에 있어서,
    상기 1차 분쇄가 10 내지 30분 동안 분쇄하고, 60 내지 80분 동안 일시 중지하는 사이클을 5회 내지 10회 반복하는 방식으로 수행되는, 금속-탄소 복합재의 제조방법.
  7. 제 1 항에 있어서,
    상기 1차 분쇄 및 3차 분쇄 중 하나 이상의 단계가 스테아르산(CH3(CH2)16COOH, stearic acid), 염화나트륨(NaCl), 염화칼륨(KCl), 황산나트륨(Na2SO4), 헥산(hexane), 헵탄(heptane), 옥탄(octane), 옥살산((COOH)2·H2O, oxalic acid), 메탄올(methanol), 에탄올(ethanol), 이소프로필 알코올(isopropyl alcohol), 아세톤(acetone), 톨루엔(toluene), Nopcowax-22 DSP (C2H2-2(C18H36ON), ethylenebisdistearamide), 트리클로로트리플루오로에탄(trichlorotrifluoroethane) 및 유기 실리콘 화합물(organosilicon compound)로 구성된 군에서 선택되는 1종 이상의 첨가제의 존재 하에서 수행되는, 금속-탄소 복합재의 제조방법.
  8. 제 7 항에 있어서,
    상기 1차 분쇄 단계에서, 상기 첨가제가 나노 탄소 재료 100중량부에 대하여 0.1 내지 5중량부 사용되는, 금속-탄소 복합재의 제조방법.
  9. 제 1 항에 있어서,
    상기 2차 분쇄 단계에서, 나노 탄소 재료와 금속 분말의 중량비가 1:100 내지 10:100인, 금속-탄소 복합재의 제조방법.
  10. 제 1 항에 있어서,
    상기 2차 분쇄가 100 내지 300rpm의 회전수로 수행되는, 금속-탄소 복합재의 제조방법.
  11. 제 1 항에 있어서,
    상기 3차 분쇄가 300 내지 1,000rpm의 회전수로 수행되는, 금속-탄소 복합재의 제조방법.
  12. 제 1 항에 있어서,
    상기 3차 분쇄가 6 내지 36시간 동안 수행되는, 금속-탄소 복합재의 제조방법.
  13. 제 7 항에 있어서,
    3차 분쇄 단계에서, 상기 첨가제가 나노 탄소 재료 100중량부에 대하여 0.1 내지 5중량부 사용되는, 금속-탄소 복합재의 제조방법.
  14. 제 7 항에 있어서,
    상기 3차 분쇄 단계 이후, 복합 분말을 진공 오븐에서 400 내지 550℃에서 10 내지 30분 동안 가열하여 잔류하는 첨가제를 제거하는 단계를 더 포함하는, 금속-탄소 복합재의 제조방법.
  15. 제 1 항에 있어서,
    상기 소결이 압연 또는 압출에 의해 수행되는, 금속-탄소 복합재의 제조방법.
  16. 제 1 항에 있어서,
    상기 소결이 400 내지 500℃ 조건에서 수행되는, 금속-탄소 복합재의 제조방법.
  17. 제 1 항에 있어서,
    상기 열처리가 1 내지 72시간 동안 수행되는, 금속-탄소 복합재의 제조방법.
  18. 금속 매트릭스의 금속 격자의 격자 간 위치(interstitial site)에 탄소 원자가 고용(solid dissolution)되어 침입된 형태의 결합상을 포함하는, 금속-탄소 복합재.
  19. 제 18 항에 있어서,
    상기 탄소 원자의 전체 결합 구조 중 금속 격자의 격자 간 위치에 침입된 형태의 결합 구조의 비율이 17% 이상인, 금속-탄소 복합재.
  20. 제 18 항 또는 제 19 항의 금속-탄소 복합재를 포함하는 운송기기의 부품.
PCT/KR2022/002266 2021-03-25 2022-02-16 금속 원자 및 탄소 원자 간 비화학양론상 구조를 갖는 금속-탄소 복합재 및 이의 제조 방법 WO2022203205A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0038500 2021-03-25
KR20210038500 2021-03-25
KR10-2021-0097649 2021-07-26
KR1020210097649A KR20220133732A (ko) 2021-03-25 2021-07-26 금속 원자 및 탄소 원자 간 비화학양론상 구조를 갖는 금속-탄소 복합재 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2022203205A1 true WO2022203205A1 (ko) 2022-09-29

Family

ID=83397565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002266 WO2022203205A1 (ko) 2021-03-25 2022-02-16 금속 원자 및 탄소 원자 간 비화학양론상 구조를 갖는 금속-탄소 복합재 및 이의 제조 방법

Country Status (1)

Country Link
WO (1) WO2022203205A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248453B1 (en) * 1999-12-22 2001-06-19 United Technologies Corporation High strength aluminum alloy
JP2008001975A (ja) * 2006-06-20 2008-01-10 Tohoku Univ ナノ結晶fcc合金
KR20110065288A (ko) * 2009-12-09 2011-06-15 연세대학교 산학협력단 금속기지 복합재 및 그 제조 방법
JP2012153944A (ja) * 2011-01-26 2012-08-16 Shinko Electric Ind Co Ltd 金属複合材料の製造方法、金属複合材料、放熱部品の製造方法及び放熱部品
KR20180071843A (ko) * 2016-12-20 2018-06-28 국민대학교산학협력단 송전선용 복합선재 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248453B1 (en) * 1999-12-22 2001-06-19 United Technologies Corporation High strength aluminum alloy
JP2008001975A (ja) * 2006-06-20 2008-01-10 Tohoku Univ ナノ結晶fcc合金
KR20110065288A (ko) * 2009-12-09 2011-06-15 연세대학교 산학협력단 금속기지 복합재 및 그 제조 방법
JP2012153944A (ja) * 2011-01-26 2012-08-16 Shinko Electric Ind Co Ltd 金属複合材料の製造方法、金属複合材料、放熱部品の製造方法及び放熱部品
KR20180071843A (ko) * 2016-12-20 2018-06-28 국민대학교산학협력단 송전선용 복합선재 및 이의 제조방법

Similar Documents

Publication Publication Date Title
Wang et al. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process
Duan et al. Effect of CNTs content on the microstructures and properties of CNTs/Cu composite by microwave sintering
Munir et al. Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites
Lu et al. High-performance Ti composites reinforced with in-situ TiC derived from pyrolysis of polycarbosilane
Song et al. Rapid in situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of microsized Fe and SiC
Rashad et al. Effect of alumina and silicon carbide hybrid reinforcements on tensile, compressive and microhardness behavior of Mg–3Al–1Zn alloy
Akbarpour et al. Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles
Sun et al. Rapid in-situ reaction synthesis of novel TiC and carbon nanotubes reinforced titanium matrix composites
Hou et al. Significantly enhancing the strength+ ductility combination of Mg-9Al alloy using multi-walled carbon nanotubes
WO2010090479A2 (ko) 탄소나노튜브를 이용하여 제조된 나노입자 및 그 제조 방법
Nie et al. Effect of extrusion temperature on microstructure and mechanical properties of a low-alloying and ultra-high strength Mg–Zn–Ca–Mn matrix composite containing trace TiC nanoparticles
Zheng et al. High-content graphene nanoplatelet reinforced aluminum composites produced by ball milling and hot extrusion
Xi et al. In-situ synthesis of aluminum matrix nanocomposites by selective laser melting of carbon nanotubes modified Al-Mg-Sc-Zr alloys
Ďurišinová et al. Effect of mechanical milling on nanocrystalline grain stability and properties of Cu–Al2O3 composite prepared by thermo-chemical technique and hot extrusion
Sun et al. Fabrication and characterization of few-layer graphene oxide reinforced magnesium matrix composites
Jia Influence of SiC particulate size on the microstructural evolution and mechanical properties of Al–6Ti–6Nb matrix composites
Bao et al. Optimized strength and conductivity of multi-scale copper alloy/metallic glass composites tuned by a one-step spark plasma sintering (SPS) process
Zhou et al. Controlled interfacial reactions and superior mechanical properties of high energy ball milled/spark plasma sintered Ti–6Al–4V–graphene composite
Yu et al. Effects of A-site atoms in Ti2AlC and Ti3SiC2 MAX phases reinforced Mg composites: interfacial structure and mechanical properties
Xie et al. TiB2-and Fe2P with nanotwins-reinforced Cu-based immiscible composites fabricated by selective laser melting: Formation mechanism and wear behavior
WO2012128506A2 (ko) 알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료
Zheng et al. Ultra-high strength GNP/2024Al composite via thermomechanical treatment
WO2022203205A1 (ko) 금속 원자 및 탄소 원자 간 비화학양론상 구조를 갖는 금속-탄소 복합재 및 이의 제조 방법
Wan et al. Superior tensile properties of graphene/Al composites assisted by in-situ alumina nanoparticles
US5454999A (en) Composite silicide/silicon carbide mechanical alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775907

Country of ref document: EP

Kind code of ref document: A1