WO2011074533A1 - Single crystal pulling apparatus and single crystal pulling method - Google Patents

Single crystal pulling apparatus and single crystal pulling method Download PDF

Info

Publication number
WO2011074533A1
WO2011074533A1 PCT/JP2010/072373 JP2010072373W WO2011074533A1 WO 2011074533 A1 WO2011074533 A1 WO 2011074533A1 JP 2010072373 W JP2010072373 W JP 2010072373W WO 2011074533 A1 WO2011074533 A1 WO 2011074533A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
single crystal
raw material
convection control
melt
Prior art date
Application number
PCT/JP2010/072373
Other languages
French (fr)
Japanese (ja)
Inventor
智博 庄内
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2011074533A1 publication Critical patent/WO2011074533A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Definitions

  • the present invention relates to a single crystal pulling apparatus and a single crystal pulling method for growing a single crystal from a melt.
  • a single crystal of a target material is pulled from a raw material melt that is accommodated in a crucible and heated through the crucible.
  • a raw material is first filled in a crucible, and the raw material is melted by heating the crucible by a high-frequency heating method or a resistance heating method.
  • the seed crystal cut in a predetermined crystal orientation is brought into contact with the surface of the raw material melt, and the seed crystal is determined while rotating at a predetermined rotation speed.
  • a single crystal is grown by pulling at a high speed.
  • the temperature of the surface of the raw material melt (melt) is high on the crucible wall surface side, and the temperature is lowered as it approaches the center of the crucible. For this reason, the melt has a temperature gradient (temperature gradient) from the crucible wall surface side toward the center portion, and generates a flow (thermal convection).
  • an oxide single crystal has high viscosity and low thermal conductivity, and therefore has a large temperature gradient on the melt surface (crystal growth interface) on which the crystal grows. For this reason, defects and dislocations due to thermal stress were likely to occur in the grown single crystal. Therefore, it has been proposed to control thermal convection.
  • Patent Document 1 a plurality of plate members projecting in the radial direction are attached to the inner wall of the crucible to divide the crucible, and by controlling the movement in the circumferential direction by pressing the melt convection in the partition, A crucible for a crystal growth apparatus is described in which liquid convection is brought close to an axial object and generation of a vortex structure in the circumferential direction is prevented.
  • Patent Document 2 when a single crystal is grown by the Czochralski method, a cylindrical device having slits at the periphery is made, and the suppression efficiency of the melt surface flow is changed by the aperture ratio, and at the same time, the temperature is higher than that outside the cylinder.
  • a crystal growth method is described that adjusts the amount of a simple flow introduced into the cylinder.
  • a single crystal pulling apparatus to which the present invention is applied has a bottom portion and a wall portion rising from a peripheral edge of the bottom portion, a crucible containing a raw material melt, a raw material melt placed above the crucible and contained in the crucible Between the pulling member for pulling up the columnar single crystal, the inner wall of the crucible, and the single crystal pulled from the raw material melt, one end side is inserted into the raw material melt from the surface of the raw material melt, and the raw material melt And a convection control member that suppresses thermal convection on the surface.
  • the convection control member is cylindrical and is inserted so that the axis of the convection control member is perpendicular to the surface of the raw material melt, and the inner diameter D of the convection control member is For the inner diameter R and the diameter r of the single crystal to be pulled up, r ⁇ D ⁇ (R + r) / 2 It can be characterized by being.
  • the single crystal pulling apparatus may further include a coil that is wound around the outside of the crucible and induction-heats the crucible by supplying an alternating current.
  • the convection control member is provided with a cut on one end side immersed in the raw material melt to suppress induction heating due to the supply of alternating current, and the convection control member is provided with an AC on the other end side where no cut is provided. It can be characterized in that it is induction heated by supplying current.
  • the crucible contains alumina melt as a raw material melt, and the pulling member pulls up the columnar sapphire single crystal from the alumina melt stored in the crucible.
  • the convection control member can be characterized by being made of iridium, molybdenum, tungsten, or an alloy thereof.
  • the single crystal pulling method to which the present invention is applied is obtained by attaching a seed crystal of the single crystal to the raw material melt in the crucible and pulling the seed crystal while rotating it.
  • the convection control member is provided with a notch for suppressing induction heating by supplying an alternating current on one end portion side immersed in the raw material melt, so as to form a shoulder portion and a trunk portion.
  • the crucible and the other end portion where the notch of the convection control member is not provided may be characterized in that induction heating is performed by supplying an alternating current.
  • the crucible may contain an alumina melt as a raw material melt, and the single crystal may be a columnar sapphire single crystal.
  • thermal convection can be suppressed in single crystal pulling by the Czochralski (Cz) method, so that the temperature gradient at the crystal growth interface of the melt becomes loose, and the thermal strain of the grown single crystal is reduced. Can be suppressed.
  • FIG. 1 is a diagram for explaining an example of the configuration of a single crystal pulling apparatus 1 to which the present embodiment is applied.
  • This single crystal pulling apparatus 1 has a heating furnace 10 for growing a sapphire ingot 200 made of a sapphire single crystal as an example of a columnar single crystal.
  • the heating furnace 10 has a cylindrical outer shape, and includes a heat insulating container 11 in which a cylindrical space is formed.
  • the heat insulation container 11 is comprised by assembling the components which consist of a heat insulating material made from zirconia.
  • the heating furnace 10 further includes a chamber 14 that houses the heat insulating container 11 in an internal space.
  • the heating furnace 10 is formed to penetrate the side surface of the chamber 14, and the gas supply pipe 12 that supplies gas from the outside of the chamber 14 to the inside of the heat insulating container 11 through the chamber 14 is formed to penetrate the side surface of the chamber 14. And a gas discharge pipe 13 for discharging gas from the inside of the heat insulating container 11 to the outside through the chamber 14.
  • a crucible 20 that houses an alumina melt 300 as an example of a raw material melt obtained by melting aluminum oxide (Al 2 O 3 ) is disposed below the inside of the heat insulating container 11.
  • the crucible is made of, for example, iridium (Ir).
  • a crucible support base 15 having a disk-like outer shape is disposed below the inside of the heat insulating container 11 and below the bottom 21 (see FIG. 3) of the crucible 20.
  • This crucible support base 15 may be made of iridium like the crucible 20.
  • the crucible support base 15 is supported by the shaft 16 from the inner bottom surface of the heat insulating container 11.
  • the shaft 16 may also be made of iridium like the crucible 20 and the crucible support 15.
  • the crucible 20 is supported from the inner bottom surface of the heat insulating container 11 by the crucible support base 15 and the shaft 16.
  • a convection control plate 17 is provided as an example of a convection control member that suppresses convection.
  • the convection control plate 17 is configured, for example, in a cylindrical shape, and one end of the convection control plate 17 is perpendicular to the surface of the alumina melt 300 at a predetermined depth (Hm in FIG. 3 described later). Has been inserted.
  • the convection control plate 17 may be made of iridium like the crucible 20. Further, the convection control plate 17 is held so as not to contact either the sapphire ingot 200 or the crucible 20. The crucible 20 and the convection control plate 17 will be described in detail later.
  • the heating furnace 10 includes a metal heating coil 30 wound around a portion that is outside the side surface on the lower side of the heat insulating container 11 and inside the side surface on the lower side of the chamber 14.
  • the heating coil 30 is disposed so as to face the side surface of the crucible 20 with the heat insulating container 11 interposed therebetween.
  • the heating coil 30 is configured by, for example, a hollow copper tube.
  • the heating coil 30 is wound in a spiral shape and has a cylindrical shape when viewed as a whole. That is, the inner diameter on the upper side and the inner diameter on the lower side of the heating coil 30 are substantially the same. Thereby, the space formed in the inside by the wound heating coil 30 is cylindrical.
  • the central axis of the heating coil 30 passing through the columnar space is substantially perpendicular to the horizontal direction, that is, along the vertical direction.
  • the heating furnace 10 includes a lifting rod 40 as an example of a lifting member that extends downward from above through through holes provided in the upper surfaces of the heat insulating container 11 and the chamber 14, respectively.
  • the pulling rod 40 is attached so as to be able to move in the vertical direction and rotate around the axis.
  • a sealing material (not shown) is provided between the through hole provided in the chamber 14 and the lifting rod 40.
  • a holding member 41 for attaching and holding a seed crystal 210 (see FIG. 2 described later) serving as a base for growing the sapphire ingot 200 is attached to an end portion of the pulling bar 40 on the vertically lower side. Yes.
  • the heating furnace 10 includes a support rod 18 that extends downward from above through through holes provided in the upper surfaces of the heat insulating container 11 and the chamber 14, respectively.
  • the support bar 18 supports the convection control plate 17 and is attached so as to be movable in the vertical direction.
  • a seal material (not shown) is provided between the through hole provided in the chamber 14 and the support rod 18.
  • the single crystal pulling apparatus 1 includes a pulling drive unit 50 for pulling the pulling rod 40 vertically upward (in the direction of arrow A) and a rotation driving unit 60 for rotating the pulling rod 40 in the direction of arrow B.
  • the pulling drive unit 50 is composed of a motor or the like, and can adjust the pulling speed of the pulling bar 40 in the direction of arrow A.
  • the rotation driving unit 60 is also composed of a motor or the like so that the rotation speed of the lifting rod 40 in the direction of arrow B can be adjusted.
  • the single crystal pulling apparatus 1 includes a convection control plate driving unit 120 for pulling down the support bar 18 vertically downward (in the direction of arrow C).
  • the convection control plate driving unit 120 is constituted by a motor or the like, and can adjust the pulling-down speed of the support rod 18 in the arrow C direction.
  • the single crystal pulling apparatus 1 includes a gas supply unit 70 that supplies gas into the chamber 14 via the gas supply pipe 12.
  • the gas supply unit 70 can supply an inert gas such as nitrogen, for example.
  • the gas supply part 70 can also supply oxygen in addition to inert gas, such as nitrogen, as needed.
  • the gas supply unit 70 adjusts the concentration of oxygen in the mixed gas, for example, by changing the mixing ratio of oxygen and nitrogen, or adjusts the flow rate of the mixed gas supplied into the chamber 14. It is also possible to do.
  • the single crystal pulling apparatus 1 includes an exhaust unit 80 that exhausts gas from the inside of the chamber 14 via the gas exhaust pipe 13.
  • the exhaust unit 80 includes, for example, a vacuum pump or the like, and can decompress the chamber 14 and exhaust the gas supplied from the gas supply unit 70.
  • the single crystal pulling apparatus 1 includes a coil power supply 90 that supplies an alternating current to the heating coil 30.
  • the coil power supply 90 can set the presence / absence of supply of an alternating current to the heating coil 30 and the amount of current to be supplied, and further the frequency of the alternating current supplied to the heating coil 30.
  • the single crystal pulling apparatus 1 includes a weight detection unit 110 that detects the weight of the sapphire ingot 200 that grows on the lower side of the pulling bar 40 via the pulling bar 40.
  • the weight detection unit 110 includes, for example, a conventionally known load cell.
  • the single crystal pulling apparatus 1 includes a control unit 100 that controls the operations of the pulling drive unit 50, the rotation drive unit 60, the gas supply unit 70, the exhaust unit 80, the coil power supply 90, and the convection control plate drive unit 120 described above. ing. Further, the control unit 100 calculates the crystal diameter of the sapphire ingot 200 to be pulled up based on the weight signal output from the weight detection unit 110 and feeds it back to the coil power supply 90.
  • FIG. 2 shows an example of the configuration of a sapphire ingot 200 manufactured using the single crystal pulling apparatus 1 shown in FIG.
  • the sapphire ingot 200 includes a seed crystal 210 that serves as a base for growing the sapphire ingot 200, a shoulder 220 that extends under the seed crystal 210 and is integrated with the seed crystal 210, and a lower portion of the shoulder 220.
  • a straight body 230 that extends and is integrated with the shoulder 220 (it is a trunk, but is called a straight body because it is cylindrical), and a straight body 230 that extends below the straight body 230 and And an integrated tail 240.
  • the sapphire ingot 200 a single crystal of sapphire grows in the c-axis direction from the upper side, that is, from the seed crystal 210 side to the lower side, that is, from the tail part 240 side.
  • the sapphire ingot 200 may be called a sapphire single crystal or simply a single crystal.
  • the shoulder portion 220 has a shape in which the diameter gradually increases from the seed crystal 210 side toward the straight body portion 230 side.
  • the straight body portion 230 has such a shape that the diameters thereof are substantially the same from the upper side to the lower side.
  • the diameter r of the straight body 230 is set to a value slightly larger than the diameter of the desired sapphire single crystal wafer.
  • the diameter r of the straight body 230 is the diameter of the sapphire ingot 200, but is also referred to as a single crystal diameter here.
  • the tail part 240 has the shape which becomes convex shape from upper direction to the downward direction, when the diameter reduces gradually toward the downward direction from the upper part.
  • FIG. 2 shows an example in which the tail 240 has a convex shape protruding below the straight body 230. However, when manufacturing conditions are varied, a broken line in FIG. As shown, it may have a concave shape that is recessed below the straight body portion 230.
  • the reason why the sapphire ingot 200 having a crystal grown in the c-axis direction is manufactured is as follows.
  • a blue LED substrate material, a polarizer holding member of a liquid crystal projector, and the like are cut out from an ingot so that the plane ((0001) plane) perpendicular to the c-axis of the sapphire single crystal is the main plane.
  • the sapphire single crystal ingot grown in the c-axis direction for cutting out the wafer.
  • the sapphire ingot 200 in which the crystal is grown in the c-axis direction is manufactured in consideration of the convenience in the subsequent process.
  • the single crystal pulling apparatus 1 shown in FIG. 1 can pull not only the sapphire ingot 200 grown in the c-axis direction but also the sapphire ingot 200 grown in the a-axis direction, for example.
  • sapphire it is possible to pull up various oxide single crystals, and it is also possible to pull up single crystals other than oxides.
  • FIG. 3 is a diagram showing an example of the configuration of the crucible 20 and the convection control plate 17 shown in FIG. 3A is a perspective view, and FIG. 3B is a front view.
  • FIG. 3 (b) is a front view of the crucible 20 as viewed from the alumina melt 300. Below, the structure of the crucible 20 and the convection control board 17 is demonstrated, and the positional relationship of the crucible 20 (including the sapphire ingot 200) and the convection control board 17 is demonstrated.
  • the crucible 20 is made of iridium.
  • the crucible 20 has a shape that opens vertically upward.
  • the crucible 20 has a bottom portion 21 and a wall portion 22 that rises upward from the periphery of the bottom portion 21.
  • the bottom portion 21 has a circular shape and has a substantially uniform thickness (for example, about 2 mm to 7 mm) over the entire area. Further, the wall portion 22 has a cylindrical shape, and this also has a substantially uniform thickness (for example, about 2 mm to 7 mm) over the entire region.
  • the inner diameter R of the crucible 20 is determined by the diameter r of the sapphire ingot 200 to be grown. For example, in order to obtain a sapphire single crystal wafer having a diameter of about 150 mm (about 6 inches), the diameter r of the sapphire ingot 200 needs to be about 153 mm. An inner diameter R of the crucible 20 on which the sapphire ingot 200 is grown is about 223 mm.
  • the crucible 20 is not limited to iridium. It may be made of molybdenum or tungsten. In addition, it may be composed of an alloy of molybdenum and tungsten (Mo—W), and further containing other metal elements such as niobium and tantalum. Further, the crucible support 15 and the shaft 16 are not limited to iridium, as with the crucible 20.
  • the convection control plate 17 has a cylindrical shape with a diameter D and a height Hs, and is held by a support bar 18 (see FIG. 1).
  • the convection control plate 17 is inserted into the alumina melt 300 so that one end (lower end) side is a depth Hm (Hm ⁇ Hs) and the axis of the cylinder is perpendicular to the surface of the alumina melt 300.
  • the other end part (upper end part) side of the convection control board 17 is comprised so that a part of sapphire ingot 200 may be surrounded.
  • a notch (slit) 17 a is provided from one end portion along the side surface of the cylindrical convection control plate 17.
  • the length Hc of the notch 17a is set larger than the depth Hm inserted into the alumina melt 300 (Hm ⁇ Hc) and smaller than the height Hs of the convection control plate 17 (Hc ⁇ Hs). That is, the notch 17a starts from one end of the convection control plate 17 and ends in the middle of the side surface of the cylindrical convection control plate 17. The end point of the notch 17a is on the alumina melt 300.
  • the convection control plate 17 is not limited to iridium. It may be made of molybdenum or tungsten. In addition, it may be composed of an alloy of molybdenum and tungsten (Mo—W), and further containing other metal elements such as niobium and tantalum.
  • the crucible 20 is induction-heated by supplying an alternating current to the heating coil 30.
  • the convection control plate 17 may also be induction-heated depending on the material of the convection control plate 17 and the magnitude of the magnetic field generated by the heating coil 30.
  • the convection control plate 17 also becomes a heating element and changes the temperature of the alumina melt 300. Therefore, a notch 17a is provided in the convection control plate 17 so that a closed circuit is not formed with respect to the induced current generated in the convection control plate 17, and the convection control plate 17 is prevented from generating heat.
  • the induced current flows in the circumferential direction of the cylindrical convection control plate 17. Therefore, if a cut is made along the side surface direction of the convection control plate 17, a closed circuit is not configured for the induced current.
  • the length Hc of the notch 17a is made larger than the depth Hm inserted into the alumina melt 300.
  • the temperature gradient of the alumina melt 300 remains.
  • the length Hc of the notch 17a may be smaller than the depth Hm inserted into the alumina melt 300 (Hc ⁇ Hm), and the end point of the notch 17a may be within the alumina melt 300.
  • the notch 17a is not limited to the above shape as long as the induced current can hardly flow, and may be an opening that does not connect to the end of the convection control plate 17.
  • a plurality of cuts 17a may be provided.
  • the convection control plate 17 when the convection control plate 17 is not induction-heated, or when the temperature gradient at the crystal growth interface of the alumina melt 300 is within an allowable range even if the convection control plate 17 is induction-heated, the convection control plate 17. It is not necessary to provide the notch 17a.
  • the notch 17a is provided in the region I of the convection control plate 17 and not provided in the region II.
  • induction heating does not occur in the region I of the convection control plate 17 provided with the cuts 17a.
  • the region II of the convection control plate 17 where the notch 17a is not provided induction heating occurs and the convection control plate 17 is heated.
  • the region II of the convection control plate 17 surrounds the sapphire ingot 200 that is exposed from the surface of the alumina melt 300. Therefore, the region II of the convection control plate 17 that is induction-heated can keep the sapphire ingot 200 exposed. Thereby, it is possible to prevent the sapphire ingot 200 from being rapidly cooled and further suppress the occurrence of thermal distortion. That is, the region II of the convection control plate 17 can play a role as an after heater.
  • the convection control plate 17 is required not to be deformed even when inserted into the alumina melt 300. Therefore, the thickness of the convection control plate 17 is preferably 1 mm to 8 mm. If it is too thick, the cost of the convection control plate 17 itself is increased, which is not preferable. On the other hand, if the thickness is too thin, the strength of the convection control plate 17 is reduced, and the plate is easily broken.
  • the thickness is preferably 1 mm to 5 mm. More preferably, it is 1.5 mm to 3 mm.
  • the depth Hm for inserting the convection control plate 17 into the alumina melt 300 is selected from the range of 15 mm to 35 mm. If it is too shallow, it is not sufficient to loosen the temperature gradient generated by the thermal convection on the melt surface (crystal growth interface), and it becomes difficult to suppress the occurrence of defects and dislocations due to thermal strain. If it is too deep, the meandering of the convection passing through the lower end of the convection control plate 17 becomes large, convection is disturbed, and the temperature at the melt surface (crystal growth interface) may become unstable. Therefore, it is preferably 20 mm to 25 mm.
  • the length Hc of the notch 17a is preferably 20 mm to 40 mm.
  • the range of 25 mm to 35 mm is preferable.
  • the width of the notch 17a may be 2 mm to 10 mm as long as the induced current is less likely to flow. If it is too wide, it will not be sufficient to loosen the temperature gradient by thermal convection, and if it is too narrow, discharge will occur and induced current will flow. Therefore, it is preferably 3 mm to 5 mm.
  • the convection control plate 17 is inserted into the alumina melt 300 at a depth Hm between the wall portion 22 (inner wall) of the crucible 20 and the sapphire ingot 200.
  • the convection control board 17 is arrange
  • the inner diameter D of the convection control plate 17 is determined by the diameter r of the single crystal to be grown.
  • the inner diameter D of the convection control plate 17 preferably satisfies r ⁇ D ⁇ (R + r) / 2. That is, the convection control plate 17 is closer to the intermediate point with respect to the sapphire ingot 200 side or the inner side than the inner wall of the crucible 20.
  • the diameter r of the sapphire ingot 200 is about 153 mm.
  • the inner diameter R of the crucible 20 is about 223 mm. Then, the distance between the sapphire ingot 200 and the inner wall of the crucible 20 is 35 mm.
  • the inner diameter D of the convection control plate 17 is 183 mm, and the distance between the sapphire ingot 200 and the inside of the convection control plate 17 is 15 mm.
  • the inner diameter D of the convection control plate 17 is larger than the diameter r of the sapphire ingot 200, and is preferably a midpoint between the outer wall of the sapphire ingot 200 and the inner wall of the crucible 20 or a range set inside thereof.
  • r ⁇ D ⁇ (R + r) / 2 The height Hs of the convection control plate 17 may be set by the length of the portion of the sapphire ingot 200 that is intended to function as an after heater.
  • FIG. 4 is a diagram for explaining a temperature gradient on the surface of the alumina melt 300.
  • FIG. 4A is a diagram for explaining the thermal convection of the alumina melt 300 when this embodiment is applied
  • FIG. 4B is a diagram of the surface of the alumina melt 300 in FIG. 4A. It is a figure explaining a temperature gradient.
  • FIG. 4 (c) is a diagram for explaining the thermal convection of the alumina melt 300 when the present embodiment is not applied
  • FIG. 4 (d) is a diagram illustrating the alumina fusion in FIG. 4 (c).
  • FIGS. 4 (a) and 4 (c) show the temperature distribution of the liquid 300 surface.
  • 4A and 4C show a cross section of the crucible 20, the alumina melt 300, the sapphire ingot 200, and the convection control plate 17 cut along a plane including the pulling axis of the sapphire ingot 200.
  • FIG. 4 (b) and 4 (d) show the temperature (vertical axis) of the alumina melt 300 at the position (horizontal axis) in the crucible 20 in the cross section shown in FIGS. 4 (a) and 4 (c). Show.
  • the coil power supply 90 supplies a high-frequency alternating current (referred to as a high-frequency current in the following description) to the heating coil 30.
  • a high frequency current is supplied from the coil power supply 90 to the heating coil 30 to the heating coil 30.
  • the magnetic flux repeatedly generates and disappears around the heating coil 30.
  • a part of the magnetic flux generated in the heating coil 30 crosses the crucible 20 through the heat insulating container 11 in this way, a magnetic field is generated on the wall surface of the crucible 20 to prevent the change of the magnetic field.
  • an induced current is generated in the crucible 20 and the wall portion 22 of the crucible 20 generates heat. That is, the wall portion 22 of the crucible 20 is heated by the supply of alternating current to the heating coil 30.
  • the alumina melt 300 whose density has been lowered by heating rises at the portion of the alumina melt 300 that contacts the wall portion 22 of the crucible 20.
  • the alumina melt 300 tends to flow toward the center of the crucible 20 having a low temperature.
  • the convection control plate 17 since the convection control plate 17 is inserted into the surface of the alumina melt 300, the convection control plate 17 blocks the flow of the alumina melt 300.
  • the flow of the alumina melt 300 blocked by the convection control plate 17 moves toward the bottom of the crucible 20 along the convection control plate 17. However, after passing one end of the convection control plate 17, it goes up again toward the center of the crucible 20.
  • the convection control plate 17 blocks the thermal convection on the surface of the alumina melt 300 and deforms the flow of the alumina melt 300.
  • the convection control plate 17 blocks the flow of the surface flow from the wall portion 22 of the crucible 20 toward the center portion. Thereby, as shown in FIG.4 (b), the temperature gradient is eased in the crystal growth interface (area
  • the convection control plate 17 prevents the alumina melt 300 heated in the vicinity of the wall portion 22 of the crucible 20 from flowing directly into the crystal growth interface (G). Thereby, the thermal strain of the grown single crystal is small, and the occurrence of defects and dislocations is suppressed.
  • the convection control plate 17 is not used, so that the surface flow from the wall portion 22 of the crucible 20 toward the center portion directly generates the crystal growth interface (G ) Therefore, as shown in FIG. 4D, the temperature gradient at the crystal growth interface (G) becomes steep. For this reason, the center part of the sapphire ingot 200 is crystallized at a low temperature, and the peripheral part is crystallized at a high temperature. Therefore, since the peripheral portion tends to shrink with crystallization, a compressive stress is generated, and the central portion tends to stretch due to heat from the peripheral portion, thereby generating a tensile stress. As a result, residual stress is generated inside the crystal, and defects and dislocations are generated.
  • FIG. 5 is a flowchart for explaining an example of a procedure for manufacturing the sapphire ingot 200 shown in FIG. 2 using the single crystal pulling apparatus 1 shown in FIG.
  • a melting step is performed in which solid aluminum oxide filled in the crucible 20 in the chamber 14 is melted by heating (step 101).
  • a seeding step is performed in which temperature adjustment is performed in a state where the lower end portion of the seed crystal 210 is in contact with the aluminum oxide melt, that is, the alumina melt 300 (step 102).
  • a shoulder forming step of forming a shoulder 220 below the seed crystal 210 is performed by pulling up the seed crystal 210 in contact with the alumina melt 300 while rotating it (in the direction of arrow A in FIG. 1). (Step 103). Subsequently, a straight body portion that forms a straight body portion 230, which is a body portion, below the shoulder portion 220 by pulling upward through the seed crystal 210 while rotating the shoulder portion 220 (in the direction of arrow B in FIG. 1). A formation process is executed (step 104). In addition, since the straight body part forming process is a process of forming the body part, it is also referred to as a body part forming process.
  • the tail forming step of forming the tail 240 below the straight body 230 by pulling up and separating from the alumina melt 300 while rotating the straight body 230 through the seed crystal 210 and the shoulder 220. Is executed (step 105).
  • the cooling process which stops and cools the heating of the alumina melt 300 in the crucible 20 is executed (step 106), and after the obtained sapphire ingot 200 is cooled, it is taken out of the chamber 14 and a series of manufacturing is performed. Complete the process.
  • the sapphire ingot 200 thus obtained is first cut at the boundary between the shoulder 220 and the straight body 230 and at the boundary between the straight body 230 and the tail 240, and the straight body 230 is cut out. .
  • the cut out straight body portion 230 is further cut in a direction orthogonal to the longitudinal direction to form a sapphire single crystal wafer.
  • the main surface of the obtained wafer is the c-plane ((0001) plane).
  • the obtained wafer is used for manufacturing blue LEDs and polarizers.
  • FIG. 6 is a diagram for explaining the position of the convection control plate 17 in the shoulder portion forming step and the straight body portion forming step.
  • FIG. 6A shows the position of the convection control plate 17 in the shoulder forming step
  • FIGS. 6B and 6C show the position of the convection control plate 17 in the straight body forming step.
  • FIG. 6C shows a state where the growth of the straight body portion 230 has progressed more than the state shown in FIG.
  • a c-axis ( ⁇ 0001>) seed crystal 210 is prepared.
  • the seed crystal 210 is attached to the holding member 41 of the pulling rod 40 and set at a predetermined position.
  • the raw material of aluminum oxide, that is, the alumina raw material is filled in the crucible 20 and disposed on the crucible support 15, and then the heat insulating container 11 is assembled in the chamber 14.
  • the inside of the chamber 14 is decompressed using the exhaust unit 80 in a state where the gas supply from the gas supply unit 70 is not performed.
  • the gas supply unit 70 supplies a predetermined gas into the chamber 14 to bring the inside of the chamber 14 to normal pressure.
  • the gas supply unit 70 supplies a predetermined gas into the chamber 14. Note that the gas supplied in the melting step may be the same as or different from that in the preparation step.
  • the rotation driving unit 60 rotates the pulling rod 40 at the first rotation speed.
  • the coil power supply 90 supplies a high frequency current to the heating coil 30.
  • a high frequency current is supplied from the coil power supply 90 to the heating coil 30, the magnetic flux repeatedly generates and disappears around the heating coil 30.
  • a part of the magnetic flux generated in the heating coil 30 with the supply of the high frequency current crosses the convection control plate 17.
  • a magnetic field is generated in the region II where the notch 17a of the convection control plate 17 is not provided so as to prevent the change of the magnetic field, and as a result, an induced current is also generated in the region II in the convection control plate 17.
  • Joule heat proportional to the skin resistance of the region II in the convection control plate 17 is generated by the induced current, and the region II in the convection control plate 17 generates heat.
  • the alumina raw material that is, aluminum oxide is contained in the crucible 20. It melts to become an alumina melt 300.
  • one end portion of the convection control plate 17 is preferably installed at a depth Hm from the surface of the alumina melt 300 by the convection control plate driving unit 120. This is because the temperature gradient of the surface of the alumina melt 300 in the crucible 20 is set to the temperature gradient in the shoulder portion forming step and the straight body portion forming step.
  • the gas supply unit 70 supplies a predetermined gas into the chamber 14. Note that the gas supplied in the seeding step may be the same as or different from that in the melting step. Then, the pulling drive unit 50 lowers the pulling rod 40 to a position where the lower end of the seed crystal 210 attached to the holding member 41 comes into contact with the alumina melt 300 in the crucible 20 and stops it. In this state, the coil power supply 90 adjusts the current value of the high-frequency current supplied to the heating coil 30 based on the weight signal from the weight detection unit 110. Also at this time, it is preferable that one end of the convection control plate 17 is installed at a position having a depth Hm from the surface of the alumina melt 300.
  • the shoulder forming step the high frequency current supplied from the coil power supply 90 to the heating coil 30 is adjusted, and then held for a while until the temperature of the alumina melt 300 is stabilized, and then the lifting rod 40 is moved to the first rotational speed. Pull up at the first pulling speed while rotating.
  • the seed crystal 210 is pulled up while being rotated with its lower end immersed in the alumina melt 300, and a shoulder 220 that expands vertically downward is formed at the lower end of the seed crystal 210. It will be done. Note that the shoulder forming step is completed when the diameter of the shoulder 220 becomes about several mm larger than the desired diameter of the wafer.
  • the alumina melt 300 is consumed as the shoulder 220 grows, and the position of the surface of the alumina melt 300 gradually decreases.
  • one end of the convection control plate 17 is controlled by the convection control plate driving unit 120 so as to be maintained at a position of a depth Hm from the surface of the alumina melt 300 as shown in FIG. . That is, the convection control plate 17 is driven in the direction of arrow C following the change in the surface of the alumina melt 300. Thereby, the temperature gradient of the single crystal growth interface G is gently maintained.
  • the change in the position of the surface of the alumina melt 300 can be predicted based on the weight signal output from the weight detector 110.
  • the position of the surface of the alumina melt 300 can also be measured by a non-contact liquid level gauge using ultrasonic waves or the like.
  • the control unit 100 may set the pulling speed of the support rod 18 based on the position of the surface of the alumina melt 300 thus obtained.
  • the region II in the convection control plate 17 generates heat due to the supply of a high-frequency current to the heating coil 30. Therefore, the shoulder 220 that is pulled up from the alumina melt 300 and has a face is kept warm by heat radiation from the region II in the convection control plate 17. Thereby, the shoulder 220 is restrained from generating thermal distortion due to rapid cooling.
  • the gas supply unit 70 supplies a predetermined gas into the chamber 14.
  • the gas supplied in a straight body part formation process may be the same as a shoulder part formation process, and may differ.
  • the coil power supply 90 continues to supply a high frequency current to the heating coil 30 to heat the alumina melt 300 through the crucible 20.
  • the pulling drive unit 50 pulls the pulling rod 40 at the second pulling speed.
  • the second pulling speed may be the same as or different from the first pulling speed in the shoulder forming step.
  • the rotation drive unit 60 rotates the pulling rod 40 at the second rotation speed.
  • the second rotation speed may be the same speed as the first rotation speed in the shoulder forming step, or may be a different speed.
  • the shoulder 220 integrated with the seed crystal 210 is pulled up while being rotated while the lower end of the shoulder 220 is immersed in the alumina melt 300.
  • the trunk portion 230 is formed.
  • the diameter of the straight body 230 may be equal to or larger than the desired diameter of the wafer.
  • the alumina melt 300 is consumed as the straight body part 230 grows, and the position of the surface of the alumina melt 300 gradually decreases.
  • one end of the convection control plate 17 has a depth Hm from the surface of the alumina melt 300. It is controlled to be kept in position. That is, the convection control plate 17 is driven in the direction of arrow C following the change in the surface of the alumina melt 300. Thereby, the temperature gradient of the single crystal growth interface G is gently maintained. Further, the region II in the convection control plate 17 generates heat due to the supply of the high frequency current to the heating coil 30. Therefore, the straight body 230 immediately after being pulled up from the alumina melt 300 is kept warm by heat radiation from the region II in the convection control plate 17. As a result, the straight body portion 230 is restrained from generating thermal distortion due to rapid cooling.
  • the gas supply unit 70 supplies a predetermined gas into the chamber 14.
  • the gas supplied in the tail portion forming step may be the same as or different from that in the straight body portion forming step.
  • the coil power supply 90 continues to supply a high-frequency current to the heating coil 30 to heat the alumina melt 300 through the crucible 20.
  • the pulling drive unit 50 pulls the pulling rod 40 at the third pulling speed.
  • the third pulling speed may be the same as the first pulling speed in the shoulder forming process or the second pulling speed in the straight body forming process, or may be a speed different from these. Good.
  • the rotation drive unit 60 rotates the pulling rod 40 at the third rotation speed.
  • the third rotation speed may be the same as the first rotation speed in the shoulder forming process or the second rotation speed in the straight body forming process, or may be different from these. Also good.
  • the lower end of the tail 240 is kept in contact with the alumina melt 300. Then, at the end of the tail formation process after a predetermined time has elapsed, the pulling drive unit 50 increases the pulling speed of the pulling bar 40 and pulls the pulling bar 40 further upward, thereby lowering the lower end of the tail 240. Pull away from melt 300. Thereby, the sapphire ingot 200 shown in FIG. 2 is obtained.
  • the convection control plate 17 may be controlled so that one end thereof is inserted from the surface of the alumina melt 300 in the same manner as the shoulder forming process and the straight body forming process, and in the middle of the tail forming process. , It may be taken out from the surface of the alumina melt 300.
  • the gas supply unit 70 supplies a predetermined gas into the chamber 14.
  • the gas supplied in the cooling step may be the same as or different from the tail forming step.
  • the coil power supply 90 stops the supply of the high-frequency current to the heating coil 30 and stops the heating of the alumina melt 300 through the crucible 20.
  • the pulling drive unit 50 stops the pulling of the pulling rod 40 and the rotation driving unit 60 stops the rotation of the pulling rod 40. At this time, a small amount of aluminum oxide that did not form the sapphire ingot 200 remains as the alumina melt 300 in the crucible 20.
  • the alumina melt 300 in the crucible 20 with the stop of heating is gradually cooled and solidified in the crucible 20 after falling below the melting point of aluminum oxide to become aluminum oxide solid. Then, the sapphire ingot 200 is taken out from the chamber 14 with the chamber 14 sufficiently cooled.
  • the depth Hm at which one end of the convection control plate 17 is inserted into the alumina melt 300 is the same in the shoulder forming step and the straight body forming step, but thermal distortion is further suppressed. As is done, it may be variable.
  • the crucible 20 is heated by the high frequency induction heating method.
  • the resistance heating method of heating the crucible 20 by passing a current through a heater (resistor) provided around the crucible 20. Other methods may be used.
  • the convection control plate 17 may not be provided with the notch 17a for suppressing induction heating.
  • the convection control plate 17 blocks the flow (thermal convection) of the alumina melt 300 from the wall portion 22 of the crucible 20 toward the center on the surface of the alumina melt 300. Relax the temperature gradient at the growth interface. Thereby, the thermal strain of the grown single crystal is suppressed, and the generation of defects and dislocations in the single crystal can be suppressed.
  • SYMBOLS 1 Single crystal pulling apparatus, 10 ... Heating furnace, 11 ... Heat insulation container, 14 ... Chamber, 15 ... Crucible support stand, 16 ... Shaft, 17 ... Convection control board, 18 ... Support rod, 20 ... Crucible, 30 ... Heating coil , 40 ... Lifting rod, 41 ... Holding member, 50 ... Lifting drive unit, 60 ... Rotation drive unit, 70 ... Gas supply unit, 80 ... Exhaust unit, 90 ... Coil power source, 100 ... Control unit, 110 ... Weight detection unit, DESCRIPTION OF SYMBOLS 120 ... Convection control board drive part, 200 ... Sapphire ingot, 210 ... Seed crystal, 220 ... Shoulder part, 230 ... Straight trunk part, 240 ... Tail part, 300 ... Alumina melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Disclosed is a single crystal pulling apparatus (1) that is provided with a heat-insulating container (11), which has a heating furnace (10) for growing a sapphire ingot (200) composed of a columnar sapphire single crystal, and which has a columnar space formed therein. A crucible (20) that contains a raw material melt is disposed at the lower section in the heat-insulating container (11). Furthermore, the apparatus is provided with a convection control plate (17), which is disposed inside of the crucible (20) but outside of the sapphire ingot (200), and is held such that one end portion of the plate is dipped in an alumina melt (300), and which suppresses heat convection on the surface of the alumina melt (300). In the single crystal pulling wherein the Czochralski (Cz) method is employed, a thermal strain of the single crystal to be grown is suppressed by making the temperature gradient of the melt on a crystal growing interface gentle by suppressing thermal convection.

Description

単結晶引き上げ装置および単結晶引き上げ方法Single crystal pulling apparatus and single crystal pulling method
 本発明は、融液から単結晶を引き上げて成長させる単結晶引き上げ装置および単結晶引き上げ方法に関する。 The present invention relates to a single crystal pulling apparatus and a single crystal pulling method for growing a single crystal from a melt.
 チョクラルスキー法(Cz法)を用いた単結晶引き上げ装置では、るつぼ内に収容され、るつぼを介して加熱される原料融液から、目的とする材料の単結晶の引き上げを行っている。
 Cz法により単結晶を製造するには、例えば、まずるつぼに原料を充填し、高周波加熱法や抵抗加熱法によりるつぼを加熱し原料を溶解する。原料が溶解して原料融液となったところで、予め定められた結晶方位に切り出された種結晶を原料融液表面に接触させ、種結晶を予め定められた回転速度で回転させながら予め定められた速度で引き上げることで単結晶を成長させる。
In a single crystal pulling apparatus using the Czochralski method (Cz method), a single crystal of a target material is pulled from a raw material melt that is accommodated in a crucible and heated through the crucible.
In order to produce a single crystal by the Cz method, for example, a raw material is first filled in a crucible, and the raw material is melted by heating the crucible by a high-frequency heating method or a resistance heating method. When the raw material is melted to become a raw material melt, the seed crystal cut in a predetermined crystal orientation is brought into contact with the surface of the raw material melt, and the seed crystal is determined while rotating at a predetermined rotation speed. A single crystal is grown by pulling at a high speed.
 このとき、原料融液はるつぼを介して加熱されるため、原料融液(融液)の表面はるつぼ壁面側で温度が高く、るつぼ中央部に近づくに従い温度が低くなる。このため、融液はるつぼ壁面側から中央部に向かって温度の勾配(温度勾配)を有するとともに、流れ(熱対流)を生じる。
 特に、酸化物単結晶は、粘性が高く、熱伝導率が低いため、結晶が成長する融液表面(結晶成長界面)の温度勾配が大きい。このため、成長させた単結晶に熱応力による欠陥や転位が発生しやすかった。
 そこで、熱対流を制御することが提案されている。
At this time, since the raw material melt is heated through the crucible, the temperature of the surface of the raw material melt (melt) is high on the crucible wall surface side, and the temperature is lowered as it approaches the center of the crucible. For this reason, the melt has a temperature gradient (temperature gradient) from the crucible wall surface side toward the center portion, and generates a flow (thermal convection).
In particular, an oxide single crystal has high viscosity and low thermal conductivity, and therefore has a large temperature gradient on the melt surface (crystal growth interface) on which the crystal grows. For this reason, defects and dislocations due to thermal stress were likely to occur in the grown single crystal.
Therefore, it has been proposed to control thermal convection.
 特許文献1には、坩堝の内壁に半径方向に突出する板部材を複数枚取り付けて坩堝内を区切り、融液対流をこの区切り部内に押さえることによって周方向への動きを規制することにより、融液対流を軸対象に近づけ、かつ周方向への渦構造の発生を防止した結晶育成装置用坩堝が記載されている。
 特許文献2には、チョクラルスキー法によって単結晶を育成するに際し、スリットを周縁に設けた円筒器具をつくり、開口率によって融液表面流れの抑制効率を変化させ、併せて円筒外部のより高温な流れの円筒内側への導入量を調整する結晶育成法が記載されている。
In Patent Document 1, a plurality of plate members projecting in the radial direction are attached to the inner wall of the crucible to divide the crucible, and by controlling the movement in the circumferential direction by pressing the melt convection in the partition, A crucible for a crystal growth apparatus is described in which liquid convection is brought close to an axial object and generation of a vortex structure in the circumferential direction is prevented.
In Patent Document 2, when a single crystal is grown by the Czochralski method, a cylindrical device having slits at the periphery is made, and the suppression efficiency of the melt surface flow is changed by the aperture ratio, and at the same time, the temperature is higher than that outside the cylinder. A crystal growth method is described that adjusts the amount of a simple flow introduced into the cylinder.
特開平6-211593号公報Japanese Patent Laid-Open No. 6-211593 特開平5-105579号公報JP-A-5-105579
 ところで、Cz法による単結晶の育成においては、融液表面(結晶成長界面)の熱対流によって生じる温度勾配を緩くすることが、熱歪みによる欠陥や転位の発生の抑制に有効である。
 これには、融液表面における熱対流を抑制することが有効である。しかし、特許文献1では、るつぼの周方向に発生する渦構造を抑えているが、熱対流をそのまま残している。一方、特許文献2では、融液をスリットを介して対流させているため、熱対流を抑制し得ていない。
 本発明は、チョクラルスキー(Cz)法による単結晶引き上げにおいて、熱対流を抑制することにより、融液の結晶成長界面における温度勾配を緩くして、成長させる単結晶の熱歪みを抑制することを目的とする。
By the way, in the growth of a single crystal by the Cz method, it is effective to suppress the generation of defects and dislocations due to thermal strain by relaxing the temperature gradient generated by the thermal convection on the melt surface (crystal growth interface).
For this purpose, it is effective to suppress thermal convection on the melt surface. However, in Patent Document 1, the vortex structure generated in the circumferential direction of the crucible is suppressed, but the thermal convection is left as it is. On the other hand, in patent document 2, since the melt is convected through the slit, thermal convection cannot be suppressed.
The present invention suppresses thermal distortion of a single crystal to be grown by relaxing the temperature gradient at the crystal growth interface of the melt by suppressing thermal convection in single crystal pulling by the Czochralski (Cz) method. With the goal.
 本発明が適用される単結晶引き上げ装置は、底部および底部の周縁から立ち上がる壁部を有し、原料融液を収容するるつぼと、るつぼの上方に配置され、るつぼに収容される原料融液から柱状の単結晶を引き上げる引き上げ部材と、るつぼの内壁と、原料融液から引き上げられる単結晶との間にあって、一端部側を原料融液の表面から原料融液中に挿入し、原料融液の表面における熱対流を抑制する対流制御部材とを備えている。
 このような単結晶引き上げ装置において、対流制御部材は、円筒状であって、原料融液の表面に対流制御部材の軸が垂直になるように挿入され、対流制御部材の内径Dが、るつぼの内径Rと引き上げられる単結晶の直径rに対し、
     r < D ≦ (R+r)/2
であることを特徴とすることができる。
 また、単結晶引き上げ装置は、るつぼの外側に巻き回され、交流電流の供給によってるつぼを誘導加熱するコイルをさらに備えることを特徴とすることができる。
 さらに、対流制御部材は、原料融液に浸漬される一端部側に、交流電流の供給による誘導加熱を抑制する切り込みが設けられ、対流制御部材は、切り込みが設けられていない他端部側が交流電流の供給によって誘導加熱されることを特徴とすることができる。
A single crystal pulling apparatus to which the present invention is applied has a bottom portion and a wall portion rising from a peripheral edge of the bottom portion, a crucible containing a raw material melt, a raw material melt placed above the crucible and contained in the crucible Between the pulling member for pulling up the columnar single crystal, the inner wall of the crucible, and the single crystal pulled from the raw material melt, one end side is inserted into the raw material melt from the surface of the raw material melt, and the raw material melt And a convection control member that suppresses thermal convection on the surface.
In such a single crystal pulling apparatus, the convection control member is cylindrical and is inserted so that the axis of the convection control member is perpendicular to the surface of the raw material melt, and the inner diameter D of the convection control member is For the inner diameter R and the diameter r of the single crystal to be pulled up,
r <D ≦ (R + r) / 2
It can be characterized by being.
The single crystal pulling apparatus may further include a coil that is wound around the outside of the crucible and induction-heats the crucible by supplying an alternating current.
Further, the convection control member is provided with a cut on one end side immersed in the raw material melt to suppress induction heating due to the supply of alternating current, and the convection control member is provided with an AC on the other end side where no cut is provided. It can be characterized in that it is induction heated by supplying current.
 そして、るつぼは、原料融液としてアルミナ融液を収容し、引き上げ部材は、るつぼに収容されたアルミナ融液から柱状のサファイア単結晶を引き上げることを特徴とすることができる。
 そしてまた、対流制御部材は、イリジウム、モリブデン、タングステンあるいはこれらの合金から構成されていることを特徴とすることができる。
The crucible contains alumina melt as a raw material melt, and the pulling member pulls up the columnar sapphire single crystal from the alumina melt stored in the crucible.
In addition, the convection control member can be characterized by being made of iridium, molybdenum, tungsten, or an alloy thereof.
 また、他の観点から捉えると、本発明が適用される単結晶の引き上げ方法は、るつぼ中の原料融液に単結晶の種結晶を付着させ、種結晶を回転させながら引き上げることにより、種結晶の下方に向かって広がる肩部を形成する肩部形成工程と、原料融液に付着させた肩部を回転させながら引き上げることにより、肩部の下方に胴部を形成する胴部形成工程とを含み、肩部形成工程および胴部形成工程において、るつぼの内壁と、肩部あるいは胴部との間に設けられ、原料融液の表面での熱対流を制御する対流制御部材を、対流制御部材の一端部側が予め定められた深さにおいて原料融液に挿入されているように制御する。
 このような単結晶の引き上げ方法において、対流制御部材は、原料融液に浸漬される一端部側に、交流電流の供給による誘導加熱を抑制する切り込みが設けられ、肩部形成工程および胴部形成工程において、るつぼおよび対流制御部材の切り込みが設けられていない他端部側が交流電流の供給によって誘導加熱されることを特徴とすることができる。
 さらに、るつぼは、原料融液としてアルミナ融液を収容し、単結晶は、柱状のサファイア単結晶であることを特徴とすることができる。
From another point of view, the single crystal pulling method to which the present invention is applied is obtained by attaching a seed crystal of the single crystal to the raw material melt in the crucible and pulling the seed crystal while rotating it. A shoulder forming step for forming a shoulder portion extending downward, and a trunk forming step for forming the trunk portion below the shoulder portion by pulling up the shoulder portion attached to the raw material melt while rotating. A convection control member, which is provided between the inner wall of the crucible and the shoulder portion or the trunk portion, and controls the thermal convection on the surface of the raw material melt in the shoulder formation step and the trunk formation step. Control is performed so that one end of the material is inserted into the raw material melt at a predetermined depth.
In such a single crystal pulling method, the convection control member is provided with a notch for suppressing induction heating by supplying an alternating current on one end portion side immersed in the raw material melt, so as to form a shoulder portion and a trunk portion. In the process, the crucible and the other end portion where the notch of the convection control member is not provided may be characterized in that induction heating is performed by supplying an alternating current.
Further, the crucible may contain an alumina melt as a raw material melt, and the single crystal may be a columnar sapphire single crystal.
 本発明によれば、チョクラルスキー(Cz)法による単結晶引き上げにおいて、熱対流を抑制することができるので、融液の結晶成長界面における温度勾配が緩くなり、成長させた単結晶の熱歪みが抑制できる。 According to the present invention, thermal convection can be suppressed in single crystal pulling by the Czochralski (Cz) method, so that the temperature gradient at the crystal growth interface of the melt becomes loose, and the thermal strain of the grown single crystal is reduced. Can be suppressed.
本実施の形態における単結晶引き上げ装置の構成の一例を説明するための図である。It is a figure for demonstrating an example of a structure of the single crystal pulling apparatus in this Embodiment. 単結晶引き上げ装置を用いて製造されるサファイアインゴットの構成の一例を示す図である。It is a figure which shows an example of a structure of the sapphire ingot manufactured using a single crystal pulling apparatus. るつぼおよび対流制御板の構成の一例を示す図である。It is a figure which shows an example of a structure of a crucible and a convection control board. アルミナ融液表面の温度勾配を説明するための図である。It is a figure for demonstrating the temperature gradient of the alumina melt surface. 単結晶引き上げ装置を用いてサファイアインゴットを製造する手順の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the procedure which manufactures a sapphire ingot using a single crystal pulling apparatus. 肩部形成工程および直胴部形成工程における対流制御板の位置を説明する図である。It is a figure explaining the position of the convection control board in a shoulder part formation process and a straight body part formation process.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
(単結晶引き上げ装置1)
 図1は、本実施の形態が適用される単結晶引き上げ装置1の構成の一例を説明するための図である。
 この単結晶引き上げ装置1は、柱状の単結晶の一例としてのサファイア単結晶からなるサファイアインゴット200を成長させるための加熱炉10を有している。この加熱炉10は、円柱状の外形を有し、その内部には円柱状の空間が形成された断熱容器11を備えている。そして、断熱容器11は、ジルコニア製の断熱材からなる部品を組み立てることで構成されている。また、加熱炉10は、内部の空間に断熱容器11を収容するチャンバ14をさらに備えている。さらに、加熱炉10は、チャンバ14の側面に貫通形成され、チャンバ14の外部からチャンバ14を介して断熱容器11の内部にガスを供給するガス供給管12と、同じくチャンバ14の側面に貫通形成され、断熱容器11の内部からチャンバ14を介して外部にガスを排出するガス排出管13とを備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
(Single crystal pulling device 1)
FIG. 1 is a diagram for explaining an example of the configuration of a single crystal pulling apparatus 1 to which the present embodiment is applied.
This single crystal pulling apparatus 1 has a heating furnace 10 for growing a sapphire ingot 200 made of a sapphire single crystal as an example of a columnar single crystal. The heating furnace 10 has a cylindrical outer shape, and includes a heat insulating container 11 in which a cylindrical space is formed. And the heat insulation container 11 is comprised by assembling the components which consist of a heat insulating material made from zirconia. The heating furnace 10 further includes a chamber 14 that houses the heat insulating container 11 in an internal space. Furthermore, the heating furnace 10 is formed to penetrate the side surface of the chamber 14, and the gas supply pipe 12 that supplies gas from the outside of the chamber 14 to the inside of the heat insulating container 11 through the chamber 14 is formed to penetrate the side surface of the chamber 14. And a gas discharge pipe 13 for discharging gas from the inside of the heat insulating container 11 to the outside through the chamber 14.
 断熱容器11の内側下方には、酸化アルミニウム(Al)を溶融してなる原料融液の一例としてのアルミナ融液300を収容するるつぼ20が配置されている。るつぼは、例えばイリジウム(Ir)製である。
 また、断熱容器11の内側下方且つるつぼ20の底部21(図3参照)の下には、円板状の外形を有するるつぼ支持台15が配置されている。このるつぼ支持台15は、るつぼ20と同様にイリジウム製であってよい。そして、このるつぼ支持台15は、断熱容器11の内側底面からシャフト16によって支持されている。このシャフト16も、るつぼ20およびるつぼ支持台15と同様にイリジウム製であってよい。このように、るつぼ20はるつぼ支持台15およびシャフト16によって、断熱容器11の内側底面から支持されている。
A crucible 20 that houses an alumina melt 300 as an example of a raw material melt obtained by melting aluminum oxide (Al 2 O 3 ) is disposed below the inside of the heat insulating container 11. The crucible is made of, for example, iridium (Ir).
Further, a crucible support base 15 having a disk-like outer shape is disposed below the inside of the heat insulating container 11 and below the bottom 21 (see FIG. 3) of the crucible 20. This crucible support base 15 may be made of iridium like the crucible 20. The crucible support base 15 is supported by the shaft 16 from the inner bottom surface of the heat insulating container 11. The shaft 16 may also be made of iridium like the crucible 20 and the crucible support 15. Thus, the crucible 20 is supported from the inner bottom surface of the heat insulating container 11 by the crucible support base 15 and the shaft 16.
 さらに、るつぼ20の内側且つサファイアインゴット200の外側、すなわちるつぼ20の内壁とサファイアインゴット200との間にあって、一端部がアルミナ融液300に挿入されるように保持され、アルミナ融液300の表面の対流を抑制する対流制御部材の一例としての対流制御板17を備えている。
 対流制御板17は、例えば、円筒状に構成され、一端部がアルミナ融液300の表面に対して、予め定められた深さ(後述する図3におけるHm)において、円筒の軸が垂直になるように挿入されている。対流制御板17は、るつぼ20と同様にイリジウム製であってよい。
 また、対流制御板17は、サファイアインゴット200およびるつぼ20のいずれにも接触しないように保持されている。
 なお、るつぼ20および対流制御板17については、後に詳述する。
Furthermore, the inner side of the crucible 20 and the outer side of the sapphire ingot 200, that is, between the inner wall of the crucible 20 and the sapphire ingot 200, one end is held so as to be inserted into the alumina melt 300. A convection control plate 17 is provided as an example of a convection control member that suppresses convection.
The convection control plate 17 is configured, for example, in a cylindrical shape, and one end of the convection control plate 17 is perpendicular to the surface of the alumina melt 300 at a predetermined depth (Hm in FIG. 3 described later). Has been inserted. The convection control plate 17 may be made of iridium like the crucible 20.
Further, the convection control plate 17 is held so as not to contact either the sapphire ingot 200 or the crucible 20.
The crucible 20 and the convection control plate 17 will be described in detail later.
 さらに、加熱炉10は、断熱容器11の下部側の側面外側であってチャンバ14の下部側の側面内側となる部位に巻き回された金属製の加熱コイル30を備えている。この加熱コイル30は、断熱容器11を介してるつぼ20の側面と対向するように配置されている。
 加熱コイル30は、例えば中空状の銅管によって構成されている。また、加熱コイル30は螺旋状に巻き回されており、全体としてみたときに円筒状の形状を有している。すなわち、加熱コイル30の上部側の内径と下部側の内径とがほぼ同一になっている。これにより、巻き回された加熱コイル30によってその内部に形成される空間が円柱状となっている。また、円柱状の空間を通る加熱コイル30の中心軸は、水平方向に対しほぼ垂直すなわち鉛直方向に沿うようになっている。
Furthermore, the heating furnace 10 includes a metal heating coil 30 wound around a portion that is outside the side surface on the lower side of the heat insulating container 11 and inside the side surface on the lower side of the chamber 14. The heating coil 30 is disposed so as to face the side surface of the crucible 20 with the heat insulating container 11 interposed therebetween.
The heating coil 30 is configured by, for example, a hollow copper tube. The heating coil 30 is wound in a spiral shape and has a cylindrical shape when viewed as a whole. That is, the inner diameter on the upper side and the inner diameter on the lower side of the heating coil 30 are substantially the same. Thereby, the space formed in the inside by the wound heating coil 30 is cylindrical. The central axis of the heating coil 30 passing through the columnar space is substantially perpendicular to the horizontal direction, that is, along the vertical direction.
 さらにまた、加熱炉10は、断熱容器11、チャンバ14それぞれの上面に設けられた貫通孔を介して上方から下方に伸びる引き上げ部材の一例としての引き上げ棒40を備えている。この引き上げ棒40は、鉛直方向への移動および軸を中心とする回転が可能となるように取り付けられている。なお、チャンバ14に設けられた貫通孔と引き上げ棒40との間には、不図示のシール材が設けられている。そして、引き上げ棒40の鉛直下方側の端部には、サファイアインゴット200を成長させるための基となる種結晶210(後述する図2参照)を装着、保持させるための保持部材41が取り付けられている。 Furthermore, the heating furnace 10 includes a lifting rod 40 as an example of a lifting member that extends downward from above through through holes provided in the upper surfaces of the heat insulating container 11 and the chamber 14, respectively. The pulling rod 40 is attached so as to be able to move in the vertical direction and rotate around the axis. A sealing material (not shown) is provided between the through hole provided in the chamber 14 and the lifting rod 40. A holding member 41 for attaching and holding a seed crystal 210 (see FIG. 2 described later) serving as a base for growing the sapphire ingot 200 is attached to an end portion of the pulling bar 40 on the vertically lower side. Yes.
 そして、加熱炉10は、断熱容器11、チャンバ14それぞれの上面に設けられた貫通孔を介して上方から下方に伸びる支持棒18を備えている。この支持棒18は、対流制御板17を支持し、鉛直方向への移動が可能となるように取り付けられている。なお、チャンバ14に設けられた貫通孔と支持棒18との間には、不図示のシール材が設けられている。 The heating furnace 10 includes a support rod 18 that extends downward from above through through holes provided in the upper surfaces of the heat insulating container 11 and the chamber 14, respectively. The support bar 18 supports the convection control plate 17 and is attached so as to be movable in the vertical direction. A seal material (not shown) is provided between the through hole provided in the chamber 14 and the support rod 18.
 また、単結晶引き上げ装置1は、引き上げ棒40を鉛直上方(矢印A方向)に引き上げるための引き上げ駆動部50および引き上げ棒40を矢印B方向へ回転させるための回転駆動部60を備えている。ここで、引き上げ駆動部50はモータ等で構成されており、引き上げ棒40の矢印A方向への引き上げ速度を調整できるようになっている。また、回転駆動部60もモータ等で構成されており、引き上げ棒40の矢印B方向への回転速度を調整できるようになっている。
 さらに、単結晶引き上げ装置1は、支持棒18を鉛直下方(矢印C方向)に引き下げるための対流制御板駆動部120を備えている。対流制御板駆動部120はモータ等で構成されており、支持棒18の矢印C方向への引き下げ速度を調整できるようになっている。
The single crystal pulling apparatus 1 includes a pulling drive unit 50 for pulling the pulling rod 40 vertically upward (in the direction of arrow A) and a rotation driving unit 60 for rotating the pulling rod 40 in the direction of arrow B. Here, the pulling drive unit 50 is composed of a motor or the like, and can adjust the pulling speed of the pulling bar 40 in the direction of arrow A. The rotation driving unit 60 is also composed of a motor or the like so that the rotation speed of the lifting rod 40 in the direction of arrow B can be adjusted.
Further, the single crystal pulling apparatus 1 includes a convection control plate driving unit 120 for pulling down the support bar 18 vertically downward (in the direction of arrow C). The convection control plate driving unit 120 is constituted by a motor or the like, and can adjust the pulling-down speed of the support rod 18 in the arrow C direction.
 そして、単結晶引き上げ装置1は、ガス供給管12を介してチャンバ14の内部にガスを供給するガス供給部70を備えている。本実施の形態において、ガス供給部70は、例えば窒素等の不活性ガスを供給することができる。また、ガス供給部70は、必要に応じて、窒素等の不活性ガスに加えて酸素を供給することもできる。そして、ガス供給部70は、例えば酸素と窒素との混合比を可変することで混合ガス中の酸素の濃度を調整したり、あるいは、チャンバ14の内部に供給する混合ガスの流量を調整したりすることも可能となっている。 The single crystal pulling apparatus 1 includes a gas supply unit 70 that supplies gas into the chamber 14 via the gas supply pipe 12. In the present embodiment, the gas supply unit 70 can supply an inert gas such as nitrogen, for example. Moreover, the gas supply part 70 can also supply oxygen in addition to inert gas, such as nitrogen, as needed. The gas supply unit 70 adjusts the concentration of oxygen in the mixed gas, for example, by changing the mixing ratio of oxygen and nitrogen, or adjusts the flow rate of the mixed gas supplied into the chamber 14. It is also possible to do.
 一方、単結晶引き上げ装置1は、ガス排出管13を介してチャンバ14の内部からガスを排出する排気部80を備えている。排気部80は例えば真空ポンプ等を備えており、チャンバ14内の減圧や、ガス供給部70から供給されたガスの排気をすることが可能となっている。 On the other hand, the single crystal pulling apparatus 1 includes an exhaust unit 80 that exhausts gas from the inside of the chamber 14 via the gas exhaust pipe 13. The exhaust unit 80 includes, for example, a vacuum pump or the like, and can decompress the chamber 14 and exhaust the gas supplied from the gas supply unit 70.
 さらにまた、単結晶引き上げ装置1は、加熱コイル30に交流電流を供給するコイル電源90を備えている。コイル電源90は、加熱コイル30への交流電流の供給の有無および供給する電流量、さらには加熱コイル30に供給する交流電流の周波数を設定できるようになっている。 Furthermore, the single crystal pulling apparatus 1 includes a coil power supply 90 that supplies an alternating current to the heating coil 30. The coil power supply 90 can set the presence / absence of supply of an alternating current to the heating coil 30 and the amount of current to be supplied, and further the frequency of the alternating current supplied to the heating coil 30.
 また、単結晶引き上げ装置1は、引き上げ棒40を介して引き上げ棒40の下部側に成長するサファイアインゴット200の重量を検出する重量検出部110を備えている。この重量検出部110は、例えば従来公知のロードセル等を含んで構成される。 Also, the single crystal pulling apparatus 1 includes a weight detection unit 110 that detects the weight of the sapphire ingot 200 that grows on the lower side of the pulling bar 40 via the pulling bar 40. The weight detection unit 110 includes, for example, a conventionally known load cell.
 そして、単結晶引き上げ装置1は、上述した引き上げ駆動部50、回転駆動部60、ガス供給部70、排気部80、コイル電源90および対流制御板駆動部120の動作を制御する制御部100を備えている。また、制御部100は、重量検出部110から出力される重量信号に基づき、引き上げられるサファイアインゴット200の結晶直径の計算を行い、コイル電源90にフィードバックする。 The single crystal pulling apparatus 1 includes a control unit 100 that controls the operations of the pulling drive unit 50, the rotation drive unit 60, the gas supply unit 70, the exhaust unit 80, the coil power supply 90, and the convection control plate drive unit 120 described above. ing. Further, the control unit 100 calculates the crystal diameter of the sapphire ingot 200 to be pulled up based on the weight signal output from the weight detection unit 110 and feeds it back to the coil power supply 90.
(サファイアインゴット200)
 図2は、図1に示す単結晶引き上げ装置1を用いて製造されるサファイアインゴット200の構成の一例を示している。
 このサファイアインゴット200は、サファイアインゴット200を成長させるための基となる種結晶210と、種結晶210の下部に延在しこの種結晶210と一体化した肩部220と、肩部220の下部に延在し肩部220と一体化した直胴部230(胴部であるが、円筒状であるので直胴部と呼ぶ。)と、直胴部230の下部に延在し直胴部230と一体化した尾部240とを備えている。そして、このサファイアインゴット200においては、上方すなわち種結晶210側から下方すなわち尾部240側に向けてc軸方向にサファイアの単結晶が成長している。ここでは、サファイアインゴット200をサファイアの単結晶または単に単結晶と呼ぶことがある。
(Sapphire Ingot 200)
FIG. 2 shows an example of the configuration of a sapphire ingot 200 manufactured using the single crystal pulling apparatus 1 shown in FIG.
The sapphire ingot 200 includes a seed crystal 210 that serves as a base for growing the sapphire ingot 200, a shoulder 220 that extends under the seed crystal 210 and is integrated with the seed crystal 210, and a lower portion of the shoulder 220. A straight body 230 that extends and is integrated with the shoulder 220 (it is a trunk, but is called a straight body because it is cylindrical), and a straight body 230 that extends below the straight body 230 and And an integrated tail 240. In the sapphire ingot 200, a single crystal of sapphire grows in the c-axis direction from the upper side, that is, from the seed crystal 210 side to the lower side, that is, from the tail part 240 side. Here, the sapphire ingot 200 may be called a sapphire single crystal or simply a single crystal.
 ここで、肩部220は、種結晶210側から直胴部230側に向けて、徐々にその直径が拡大していく形状を有している。また、直胴部230は、上方から下方に向けてその直径がほぼ同じとなるような形状を有している。なお、直胴部230の直径rは、所望するサファイア単結晶のウエハの直径よりもわずかに大きな値に設定される。なお、直胴部230の直径rはサファイアインゴット200の直径であるが、ここでは単結晶の直径とも呼ぶ。
 そして、尾部240は、上方から下方に向けて徐々にその直径が縮小していくことにより、上方から下方に向けて凸状となる形状を有している。なお、図2には、尾部240が直胴部230の下方に突出する凸状の形状を有している例を示しているが、製造条件を異ならせた場合には、図2に破線で示すように直胴部230の下方において窪む凹状の形状を有していることもある。
Here, the shoulder portion 220 has a shape in which the diameter gradually increases from the seed crystal 210 side toward the straight body portion 230 side. Further, the straight body portion 230 has such a shape that the diameters thereof are substantially the same from the upper side to the lower side. The diameter r of the straight body 230 is set to a value slightly larger than the diameter of the desired sapphire single crystal wafer. The diameter r of the straight body 230 is the diameter of the sapphire ingot 200, but is also referred to as a single crystal diameter here.
And the tail part 240 has the shape which becomes convex shape from upper direction to the downward direction, when the diameter reduces gradually toward the downward direction from the upper part. FIG. 2 shows an example in which the tail 240 has a convex shape protruding below the straight body 230. However, when manufacturing conditions are varied, a broken line in FIG. As shown, it may have a concave shape that is recessed below the straight body portion 230.
 なお、本実施の形態において、c軸方向に結晶成長させたサファイアインゴット200を製造しているのは、次の理由による。
 一般的に、青色LEDの基板材料や液晶プロジェクタの偏光子の保持部材等では、サファイア単結晶のc軸に垂直な面((0001)面)が主面となるように、インゴットから切り出されたウエハが用いられることが多い。したがって、歩留まりの観点からすれば、c軸方向に結晶成長させたサファイア単結晶のインゴットをウエハの切り出しに用いることが好ましい。このため、本実施の形態では、このような後工程での利便性を考慮し、c軸方向に結晶成長させたサファイアインゴット200の製造を行っている。
In the present embodiment, the reason why the sapphire ingot 200 having a crystal grown in the c-axis direction is manufactured is as follows.
In general, a blue LED substrate material, a polarizer holding member of a liquid crystal projector, and the like are cut out from an ingot so that the plane ((0001) plane) perpendicular to the c-axis of the sapphire single crystal is the main plane. Often wafers are used. Therefore, from the viewpoint of yield, it is preferable to use a sapphire single crystal ingot grown in the c-axis direction for cutting out the wafer. For this reason, in the present embodiment, the sapphire ingot 200 in which the crystal is grown in the c-axis direction is manufactured in consideration of the convenience in the subsequent process.
 ただし、図1に示す単結晶引き上げ装置1は、c軸方向に結晶成長させたサファイアインゴット200だけでなく、例えばa軸方向に結晶成長させたサファイアインゴット200を引き上げることも可能である。また、サファイアに限らず、各種の酸化物単結晶を引き上げることも可能であり、さらには酸化物以外の単結晶を引き上げることも可能である。 However, the single crystal pulling apparatus 1 shown in FIG. 1 can pull not only the sapphire ingot 200 grown in the c-axis direction but also the sapphire ingot 200 grown in the a-axis direction, for example. In addition to sapphire, it is possible to pull up various oxide single crystals, and it is also possible to pull up single crystals other than oxides.
(るつぼ20および対流制御板17)
 図3は、図1に示するつぼ20および対流制御板17の構成の一例を示す図である。図3(a)は斜視図、図3(b)は正面図である。これらの図では、るつぼ20、アルミナ融液300、サファイアインゴット200、対流制御板17のみを示し、るつぼ20および対流制御板17の構成の理解が容易になるようにしている。なお、図3(b)は、るつぼ20を切り開いてアルミナ融液300から見た正面図である。
 以下では、るつぼ20および対流制御板17の構成を説明し、るつぼ20(サファイアインゴット200を含む)と対流制御板17との位置関係を説明する。
(Crucible 20 and convection control plate 17)
FIG. 3 is a diagram showing an example of the configuration of the crucible 20 and the convection control plate 17 shown in FIG. 3A is a perspective view, and FIG. 3B is a front view. In these drawings, only the crucible 20, the alumina melt 300, the sapphire ingot 200, and the convection control plate 17 are shown, so that the structure of the crucible 20 and the convection control plate 17 can be easily understood. FIG. 3 (b) is a front view of the crucible 20 as viewed from the alumina melt 300.
Below, the structure of the crucible 20 and the convection control board 17 is demonstrated, and the positional relationship of the crucible 20 (including the sapphire ingot 200) and the convection control board 17 is demonstrated.
<るつぼ20>
 最初に、るつぼ20の構成について説明する。
 本実施の形態では、るつぼ20はイリジウムによって構成されている。るつぼ20は、鉛直上方に向かって開口する形状を有している。このるつぼ20は、底部21と、底部21の周縁から上方に立ち上がる壁部22とを有している。
<Crucible 20>
First, the configuration of the crucible 20 will be described.
In the present embodiment, the crucible 20 is made of iridium. The crucible 20 has a shape that opens vertically upward. The crucible 20 has a bottom portion 21 and a wall portion 22 that rises upward from the periphery of the bottom portion 21.
 底部21は円形状を有しており、全域にわたってほぼ均一な厚さ(例えば2mm~7mm程度)となっている。また、壁部22は円筒形状を有しており、こちらも全域にわたってほぼ均一な厚さ(例えば2mm~7mm程度)となっている。
 なお、るつぼ20の内径Rは、成長させようとするサファイアインゴット200の直径rで決まる。例えば、約150mm(約6インチ)径のサファイア単結晶のウエハを得ようとする場合、サファイアインゴット200の直径rは153mm程度が必要となる。このサファイアインゴット200を成長させるるつぼ20の内径Rは、約223mmである。
The bottom portion 21 has a circular shape and has a substantially uniform thickness (for example, about 2 mm to 7 mm) over the entire area. Further, the wall portion 22 has a cylindrical shape, and this also has a substantially uniform thickness (for example, about 2 mm to 7 mm) over the entire region.
The inner diameter R of the crucible 20 is determined by the diameter r of the sapphire ingot 200 to be grown. For example, in order to obtain a sapphire single crystal wafer having a diameter of about 150 mm (about 6 inches), the diameter r of the sapphire ingot 200 needs to be about 153 mm. An inner diameter R of the crucible 20 on which the sapphire ingot 200 is grown is about 223 mm.
 るつぼ20は、イリジウム製に限らない。モリブデン製またはタングステン製であってもよい。この他に、モリブデンとタングステンとの合金(Mo-W)、さらにはニオブ、タンタルなど他の金属元素を含有するものから構成されてもよい。
 さらに、るつぼ支持台15およびシャフト16も、るつぼ20と同様に、イリジウム製に限らない。
The crucible 20 is not limited to iridium. It may be made of molybdenum or tungsten. In addition, it may be composed of an alloy of molybdenum and tungsten (Mo—W), and further containing other metal elements such as niobium and tantalum.
Further, the crucible support 15 and the shaft 16 are not limited to iridium, as with the crucible 20.
<対流制御板17>
 まず、対流制御板17の構成を説明する。
 対流制御板17は直径D、高さHsの円筒状であって、支持棒18(図1参照)により保持されている。
 対流制御板17は、一端部(下端部)側が深さHm(Hm<Hs)において、円筒の軸がアルミナ融液300の表面に対して垂直になるようにアルミナ融液300に挿入されている。そして、対流制御板17の他端部(上端部)側は、サファイアインゴット200の一部を包囲するように構成されている。
<Convection control plate 17>
First, the configuration of the convection control plate 17 will be described.
The convection control plate 17 has a cylindrical shape with a diameter D and a height Hs, and is held by a support bar 18 (see FIG. 1).
The convection control plate 17 is inserted into the alumina melt 300 so that one end (lower end) side is a depth Hm (Hm <Hs) and the axis of the cylinder is perpendicular to the surface of the alumina melt 300. . And the other end part (upper end part) side of the convection control board 17 is comprised so that a part of sapphire ingot 200 may be surrounded.
 さらに、対流制御板17の下端部側の領域Iにおいて、一端部から円筒状の対流制御板17側面に沿った切り込み(スリット)17aが設けられている。切り込み17aの長さHcは、アルミナ融液300に挿入した深さHmより大きく(Hm<Hc)、且つ対流制御板17の高さHsより小さく(Hc<Hs)設定されている。すなわち、切り込み17aは、対流制御板17の一端部を始点とし、円筒状の対流制御板17側面の途中を終点としている。そして、切り込み17aの終点は、アルミナ融液300上に出ている。そして、対流制御板17の上端部側の領域IIにおいては、切り込み17aを設けていない。
 対流制御板17は、イリジウム製に限らない。モリブデン製またはタングステン製であってもよい。この他に、モリブデンとタングステンとの合金(Mo-W)、さらにはニオブ、タンタルなど他の金属元素を含有するものから構成されてもよい。
Further, in a region I on the lower end side of the convection control plate 17, a notch (slit) 17 a is provided from one end portion along the side surface of the cylindrical convection control plate 17. The length Hc of the notch 17a is set larger than the depth Hm inserted into the alumina melt 300 (Hm <Hc) and smaller than the height Hs of the convection control plate 17 (Hc <Hs). That is, the notch 17a starts from one end of the convection control plate 17 and ends in the middle of the side surface of the cylindrical convection control plate 17. The end point of the notch 17a is on the alumina melt 300. And in the area | region II of the upper end part side of the convection control board 17, the notch | incision 17a is not provided.
The convection control plate 17 is not limited to iridium. It may be made of molybdenum or tungsten. In addition, it may be composed of an alloy of molybdenum and tungsten (Mo—W), and further containing other metal elements such as niobium and tantalum.
 ここで、切り込み17aを設ける理由を説明する。
 本実施の形態では、るつぼ20は、加熱コイル30への交流電流の供給により、誘導加熱される。
 このとき、対流制御板17も、対流制御板17の材質や加熱コイル30の発生する磁界の大きさによっては、誘導加熱されることがありうる。すると、るつぼ20に加え、対流制御板17も発熱体となって、アルミナ融液300の温度を変化させてしまう。そこで、対流制御板17に切り込み17aを設け、対流制御板17に発生する誘導電流に対して閉回路が構成されないようにし、対流制御板17が発熱するのを抑制している。
 本実施の形態では、誘導電流は、円筒状の対流制御板17の円周方向に流れる。よって、対流制御板17の側面方向に沿って切り込みを入れれば、誘導電流に対して閉回路が構成されない。
Here, the reason why the cuts 17a are provided will be described.
In the present embodiment, the crucible 20 is induction-heated by supplying an alternating current to the heating coil 30.
At this time, the convection control plate 17 may also be induction-heated depending on the material of the convection control plate 17 and the magnitude of the magnetic field generated by the heating coil 30. Then, in addition to the crucible 20, the convection control plate 17 also becomes a heating element and changes the temperature of the alumina melt 300. Therefore, a notch 17a is provided in the convection control plate 17 so that a closed circuit is not formed with respect to the induced current generated in the convection control plate 17, and the convection control plate 17 is prevented from generating heat.
In the present embodiment, the induced current flows in the circumferential direction of the cylindrical convection control plate 17. Therefore, if a cut is made along the side surface direction of the convection control plate 17, a closed circuit is not configured for the induced current.
 なお、本実施の形態では、切り込み17aの長さHcをアルミナ融液300に挿入した深さHmより大きくしたが、対流制御板17が誘導加熱されても、アルミナ融液300の温度の勾配が許容できる範囲にあればよく、切り込みの17aの長さHcをアルミナ融液300に挿入した深さHmより小さく(Hc<Hm)し、切り込み17aの終点がアルミナ融液300内にあってもよい。
 また、切り込み17aは、誘導電流が流れにくくできればよく、上記形状に限らず、対流制御板17の端部につながらない開口であってもよい。また、切り込み17aは複数設けられてもよい。
 逆に、対流制御板17が誘導加熱されない場合、または、対流制御板17が誘導加熱されてもアルミナ融液300の結晶成長界面における温度勾配が許容できる範囲にある場合には、対流制御板17に切り込み17aを設けなくともよい。
In the present embodiment, the length Hc of the notch 17a is made larger than the depth Hm inserted into the alumina melt 300. However, even if the convection control plate 17 is induction-heated, the temperature gradient of the alumina melt 300 remains. As long as it is within an allowable range, the length Hc of the notch 17a may be smaller than the depth Hm inserted into the alumina melt 300 (Hc <Hm), and the end point of the notch 17a may be within the alumina melt 300. .
Further, the notch 17a is not limited to the above shape as long as the induced current can hardly flow, and may be an opening that does not connect to the end of the convection control plate 17. A plurality of cuts 17a may be provided.
On the contrary, when the convection control plate 17 is not induction-heated, or when the temperature gradient at the crystal growth interface of the alumina melt 300 is within an allowable range even if the convection control plate 17 is induction-heated, the convection control plate 17. It is not necessary to provide the notch 17a.
 次に、切り込み17aを対流制御板17の領域Iに設け、領域IIに設けない理由を説明する。
 上述したように、切り込み17aを設けた対流制御板17の領域Iでは、誘導加熱が生じない。しかし、切り込み17aを設けない対流制御板17の領域IIにおいては、誘導加熱が生じ、対流制御板17が加熱される。対流制御板17の領域IIは、アルミナ融液300表面から顔を出したサファイアインゴット200を取り巻いている。よって、誘導加熱された対流制御板17の領域IIは、顔を出したサファイアインゴット200を保温することができる。これにより、サファイアインゴット200が急冷されることを防止し、熱歪みの発生をさらに抑制することができる。すなわち、対流制御板17の領域IIは、アフターヒータとしての役割を担なうことができる。
Next, the reason why the notch 17a is provided in the region I of the convection control plate 17 and not provided in the region II will be described.
As described above, induction heating does not occur in the region I of the convection control plate 17 provided with the cuts 17a. However, in the region II of the convection control plate 17 where the notch 17a is not provided, induction heating occurs and the convection control plate 17 is heated. The region II of the convection control plate 17 surrounds the sapphire ingot 200 that is exposed from the surface of the alumina melt 300. Therefore, the region II of the convection control plate 17 that is induction-heated can keep the sapphire ingot 200 exposed. Thereby, it is possible to prevent the sapphire ingot 200 from being rapidly cooled and further suppress the occurrence of thermal distortion. That is, the region II of the convection control plate 17 can play a role as an after heater.
 対流制御板17はアルミナ融液300に挿入しても変形しないことが求められる。そこで、対流制御板17の厚さは、1mm~8mmがよい。厚すぎると、対流制御板17自体のコストアップとなり好ましくない。また薄すぎると、対流制御板17としての強度低下を招き、壊れやすくなる。好ましくは1mm~5mmがよい。さらに好ましくは、1.5mm~3mmがよい。
 アルミナ融液300に対流制御板17を約20mmの深さで挿入すると、表面の流れが小さくなる。よって、対流制御板17をアルミナ融液300に挿入する深さHmは、15mm~35mmの範囲から選ばれる。浅すぎると、融液表面(結晶成長界面)の熱対流によって生じる温度勾配を緩くすることが十分でなくなり、熱歪みによる欠陥や転位の発生を抑制することが難しくなる。深すぎると、対流制御板17の下端を通過する対流の蛇行が大きくなり、対流が乱れ、融液表面(結晶成長界面)における温度が不安定になる可能性がある。したがって、好ましくは20mm~25mmである。
 切り込み17aの長さHcは20mm~40mmがよい。長さHcがこれよりも長すぎても短すぎても、上記で説明したように、対流制御板17による誘導加熱の効果に影響する。したがって、好ましくは25mm~35mmの範囲がよい。
 さらに、切り込み17aの幅は、誘導電流が流れにくくできればよく、2mm~10mmがよい。広すぎると、熱対流によって温度勾配を緩くすることが十分でなくなり、狭すぎると放電が生じて誘導電流がながれてしまう。したがって、好ましくは3mm~5mmである。
The convection control plate 17 is required not to be deformed even when inserted into the alumina melt 300. Therefore, the thickness of the convection control plate 17 is preferably 1 mm to 8 mm. If it is too thick, the cost of the convection control plate 17 itself is increased, which is not preferable. On the other hand, if the thickness is too thin, the strength of the convection control plate 17 is reduced, and the plate is easily broken. The thickness is preferably 1 mm to 5 mm. More preferably, it is 1.5 mm to 3 mm.
When the convection control plate 17 is inserted into the alumina melt 300 at a depth of about 20 mm, the surface flow becomes small. Therefore, the depth Hm for inserting the convection control plate 17 into the alumina melt 300 is selected from the range of 15 mm to 35 mm. If it is too shallow, it is not sufficient to loosen the temperature gradient generated by the thermal convection on the melt surface (crystal growth interface), and it becomes difficult to suppress the occurrence of defects and dislocations due to thermal strain. If it is too deep, the meandering of the convection passing through the lower end of the convection control plate 17 becomes large, convection is disturbed, and the temperature at the melt surface (crystal growth interface) may become unstable. Therefore, it is preferably 20 mm to 25 mm.
The length Hc of the notch 17a is preferably 20 mm to 40 mm. Whether the length Hc is too long or too short affects the effect of induction heating by the convection control plate 17 as described above. Therefore, the range of 25 mm to 35 mm is preferable.
Further, the width of the notch 17a may be 2 mm to 10 mm as long as the induced current is less likely to flow. If it is too wide, it will not be sufficient to loosen the temperature gradient by thermal convection, and if it is too narrow, discharge will occur and induced current will flow. Therefore, it is preferably 3 mm to 5 mm.
<るつぼ20と対流制御板17との位置関係>
 続いて、るつぼ20(サファイアインゴット200を含む)と対流制御板17との位置関係を説明する。
 対流制御板17は、るつぼ20の壁部22(内壁)とサファイアインゴット200との間において、深さHmでアルミナ融液300中に挿入されている。そして、対流制御板17は、るつぼ20およびサファイアインゴット200のいずれにも接触しないように配置されている。
 対流制御板17の内径Dは、成長させようとする単結晶の直径rで決まる。そして、対流制御板17の内径Dは、r < D ≦(R+r)/2を満たすことが好ましい。すなわち、対流制御板17は、るつぼ20の内壁よりサファイアインゴット200側との中間点またはその内側に寄っていることになる。
 例えば、前述したように、約150mm(6インチ)径のサファイアのウエハを得ようとする場合、サファイアインゴット200の直径rとしては153mm程度である。そして、るつぼ20の内径Rは約223mmである。すると、サファイアインゴット200とるつぼ20の内壁との距離は35mmとなる。よって、対流制御板17の内径Dを183mmとし、サファイアインゴット200と対流制御板17の内側との距離を15mmとすること等が考えられる。対流制御板17とるつぼ20の内壁との距離が小さい場合、るつぼ20からの輻射により対流制御板17の温度が上昇し、新たな対流発生源となる可能性がある。このようなことから、対流制御板17の内径Dは、サファイアインゴット200の直径rよりも大きく、サファイアインゴット200の外壁からるつぼ20の内壁との中間点またはその内側に設定される範囲が好ましく、例えば、r < D ≦(R+r)/2を満たすことが好ましい。
 対流制御板17の高さHsは、アフターヒータとしての機能を働かせようとするサファイアインゴット200の部分の長さで設定すればよい。
<Positional relationship between crucible 20 and convection control plate 17>
Next, the positional relationship between the crucible 20 (including the sapphire ingot 200) and the convection control plate 17 will be described.
The convection control plate 17 is inserted into the alumina melt 300 at a depth Hm between the wall portion 22 (inner wall) of the crucible 20 and the sapphire ingot 200. And the convection control board 17 is arrange | positioned so that neither the crucible 20 nor the sapphire ingot 200 may contact.
The inner diameter D of the convection control plate 17 is determined by the diameter r of the single crystal to be grown. The inner diameter D of the convection control plate 17 preferably satisfies r <D ≦ (R + r) / 2. That is, the convection control plate 17 is closer to the intermediate point with respect to the sapphire ingot 200 side or the inner side than the inner wall of the crucible 20.
For example, as described above, when obtaining a sapphire wafer having a diameter of about 150 mm (6 inches), the diameter r of the sapphire ingot 200 is about 153 mm. The inner diameter R of the crucible 20 is about 223 mm. Then, the distance between the sapphire ingot 200 and the inner wall of the crucible 20 is 35 mm. Therefore, it can be considered that the inner diameter D of the convection control plate 17 is 183 mm, and the distance between the sapphire ingot 200 and the inside of the convection control plate 17 is 15 mm. When the distance between the convection control plate 17 and the inner wall of the crucible 20 is small, there is a possibility that the temperature of the convection control plate 17 rises due to radiation from the crucible 20 and becomes a new convection generation source. For this reason, the inner diameter D of the convection control plate 17 is larger than the diameter r of the sapphire ingot 200, and is preferably a midpoint between the outer wall of the sapphire ingot 200 and the inner wall of the crucible 20 or a range set inside thereof. For example, it is preferable that r <D ≦ (R + r) / 2.
The height Hs of the convection control plate 17 may be set by the length of the portion of the sapphire ingot 200 that is intended to function as an after heater.
(アルミナ融液300表面の温度分布)
 次に、本実施の形態におけるアルミナ融液300の温度勾配について説明する。
 図4は、アルミナ融液300表面の温度勾配を説明するための図である。図4(a)は、本実施の形態を適用した場合における、アルミナ融液300の熱対流を説明する図であり、図4(b)は、図4(a)におけるアルミナ融液300表面の温度勾配を説明する図である。これに対し、図4(c)は、本実施の形態を適用しない場合における、アルミナ融液300の熱対流を説明する図であり、図4(d)は、図4(c)におけるアルミナ融液300表面の温度分布を説明する図である。図4(a)および(c)は、るつぼ20、アルミナ融液300、サファイアインゴット200、対流制御板17をサファイアインゴット200の引き上げ軸を含む面で切断した断面を示している。そして、図4(b)および(d)は、図4(a)および(c)に示した断面におけるるつぼ20内の位置(横軸)での、アルミナ融液300の温度(縦軸)を示している。
(Temperature distribution on the surface of the alumina melt 300)
Next, the temperature gradient of the alumina melt 300 in the present embodiment will be described.
FIG. 4 is a diagram for explaining a temperature gradient on the surface of the alumina melt 300. FIG. 4A is a diagram for explaining the thermal convection of the alumina melt 300 when this embodiment is applied, and FIG. 4B is a diagram of the surface of the alumina melt 300 in FIG. 4A. It is a figure explaining a temperature gradient. On the other hand, FIG. 4 (c) is a diagram for explaining the thermal convection of the alumina melt 300 when the present embodiment is not applied, and FIG. 4 (d) is a diagram illustrating the alumina fusion in FIG. 4 (c). It is a figure explaining the temperature distribution of the liquid 300 surface. 4A and 4C show a cross section of the crucible 20, the alumina melt 300, the sapphire ingot 200, and the convection control plate 17 cut along a plane including the pulling axis of the sapphire ingot 200. FIG. 4 (b) and 4 (d) show the temperature (vertical axis) of the alumina melt 300 at the position (horizontal axis) in the crucible 20 in the cross section shown in FIGS. 4 (a) and 4 (c). Show.
 まず、図4(a)において、本実施の形態を適用した場合におけるアルミナ融液300の熱対流を説明する。
 本実施の形態では、コイル電源90が加熱コイル30に高周波の交流電流(以下の説明では高周波電流と呼ぶ)を供給する。コイル電源90から加熱コイル30に高周波電流が供給されると、加熱コイル30の周囲において磁束が生成・消滅を繰り返す。
 このようにして加熱コイル30で生じた磁束の一部が、断熱容器11を介してるつぼ20を横切ると、るつぼ20の壁面にはその磁界の変化をさまたげるような磁界が発生する。この結果、るつぼ20内には誘導電流が発生し、るつぼ20の壁部22が発熱する。すなわち、加熱コイル30への交流電流の供給により、るつぼ20の壁部22が加熱される。
First, in FIG. 4A, thermal convection of the alumina melt 300 when the present embodiment is applied will be described.
In the present embodiment, the coil power supply 90 supplies a high-frequency alternating current (referred to as a high-frequency current in the following description) to the heating coil 30. When a high frequency current is supplied from the coil power supply 90 to the heating coil 30, the magnetic flux repeatedly generates and disappears around the heating coil 30.
When a part of the magnetic flux generated in the heating coil 30 crosses the crucible 20 through the heat insulating container 11 in this way, a magnetic field is generated on the wall surface of the crucible 20 to prevent the change of the magnetic field. As a result, an induced current is generated in the crucible 20 and the wall portion 22 of the crucible 20 generates heat. That is, the wall portion 22 of the crucible 20 is heated by the supply of alternating current to the heating coil 30.
 すると、アルミナ融液300のるつぼ20の壁部22に接触する部分で、加熱されて密度が低下したアルミナ融液300が上昇する。そして、アルミナ融液300は、温度の低いるつぼ20の中央部に向かって流れようとする。しかし、本実施の形態では、対流制御板17がアルミナ融液300の表面に挿入されているので、対流制御板17がアルミナ融液300の流れを遮ることになる。
 対流制御板17で遮られたアルミナ融液300の流れは、対流制御板17に沿って、るつぼ20の底に向かう。しかし、対流制御板17の一端部を過ぎたところで、るつぼ20の中央部に向かうとともに再び上昇する。その後、るつぼ20の中央部に向かう。
 そして、アルミナ融液300は、るつぼ20の中央部において、るつぼ20の底部21に向かう流れとなる。その後、るつぼ20の底部を壁部22に向かう流れとなる。
 このように、対流制御板17は、アルミナ融液300の表面において、熱対流を遮り、アルミナ融液300の流れを変形させている。
As a result, the alumina melt 300 whose density has been lowered by heating rises at the portion of the alumina melt 300 that contacts the wall portion 22 of the crucible 20. The alumina melt 300 tends to flow toward the center of the crucible 20 having a low temperature. However, in this embodiment, since the convection control plate 17 is inserted into the surface of the alumina melt 300, the convection control plate 17 blocks the flow of the alumina melt 300.
The flow of the alumina melt 300 blocked by the convection control plate 17 moves toward the bottom of the crucible 20 along the convection control plate 17. However, after passing one end of the convection control plate 17, it goes up again toward the center of the crucible 20. Then, head to the center of the crucible 20.
The alumina melt 300 flows toward the bottom 21 of the crucible 20 at the center of the crucible 20. Thereafter, the bottom of the crucible 20 flows toward the wall 22.
As described above, the convection control plate 17 blocks the thermal convection on the surface of the alumina melt 300 and deforms the flow of the alumina melt 300.
 以上説明したように、本実施の形態では、対流制御板17により、るつぼ20の壁部22から中央部に向かう表面流の流れが遮られる。これにより、図4(b)に示すように、アルミナ融液300とサファイアインゴット200との境界である結晶成長界面(図4中Gで示す領域)における温度の勾配が緩和される。すなわち、対流制御板17は、るつぼ20の壁部22近傍で加熱されたアルミナ融液300が、結晶成長界面(G)に直接流れ込むのを妨げている。これにより、成長させた単結晶の熱歪みが小さく、欠陥や転位が発生するのを抑制している。 As described above, in the present embodiment, the convection control plate 17 blocks the flow of the surface flow from the wall portion 22 of the crucible 20 toward the center portion. Thereby, as shown in FIG.4 (b), the temperature gradient is eased in the crystal growth interface (area | region shown by G in FIG. 4) which is a boundary of the alumina melt 300 and the sapphire ingot 200. FIG. That is, the convection control plate 17 prevents the alumina melt 300 heated in the vicinity of the wall portion 22 of the crucible 20 from flowing directly into the crystal growth interface (G). Thereby, the thermal strain of the grown single crystal is small, and the occurrence of defects and dislocations is suppressed.
 これに対し、図4(c)に示す本実施の形態を適用しない場合では、対流制御板17を用いないため、るつぼ20の壁部22から中央部に向かう表面流が直接結晶成長界面(G)に流れ込む。よって、図4(d)に示すように、結晶成長界面(G)における温度の勾配が急激になってしまう。このため、サファイアインゴット200の中心部は、低い温度で結晶化し、周辺部は高い温度で結晶化することになる。よって、周辺部は結晶化に伴って縮もうとするため、圧縮応力が生じ、中央部は周辺部からの熱で伸びようとして、引っ張り応力を生じる。これにより、結晶内部に残留応力ができ、欠陥や転位を生じてしまう。 On the other hand, in the case where the present embodiment shown in FIG. 4C is not applied, the convection control plate 17 is not used, so that the surface flow from the wall portion 22 of the crucible 20 toward the center portion directly generates the crystal growth interface (G ) Therefore, as shown in FIG. 4D, the temperature gradient at the crystal growth interface (G) becomes steep. For this reason, the center part of the sapphire ingot 200 is crystallized at a low temperature, and the peripheral part is crystallized at a high temperature. Therefore, since the peripheral portion tends to shrink with crystallization, a compressive stress is generated, and the central portion tends to stretch due to heat from the peripheral portion, thereby generating a tensile stress. As a result, residual stress is generated inside the crystal, and defects and dislocations are generated.
(サファイアインゴット200の製造方法)
 図5は、図1に示す単結晶引き上げ装置1を用いて、図2に示すサファイアインゴット200を製造する手順の一例を説明するためのフローチャートである。
 サファイアインゴット200の製造にあたっては、まず、チャンバ14内のるつぼ20内に充填された固体の酸化アルミニウムを加熱によって溶融する溶融工程を実行する(ステップ101)。
 次に、酸化アルミニウムの融液すなわちアルミナ融液300に種結晶210の下端部を接触させた状態で温度調整を行う種付け工程を実行する(ステップ102)。
 次いで、アルミナ融液300に接触させた種結晶210を回転させながら上方(図1の矢印A方向)に引き上げることにより、種結晶210の下方に肩部220を形成する肩部形成工程を実行する(ステップ103)。
 引き続いて、種結晶210を介して肩部220を回転(図1の矢印B方向)させながら上方に引き上げることにより、肩部220の下方に胴部である直胴部230を形成する直胴部形成工程を実行する(ステップ104)。なお、直胴部形成工程は胴部を形成する工程であるので胴部形成工程とも表記する。
 さらに引き続いて、種結晶210および肩部220を介して直胴部230を回転させながら上方に引き上げてアルミナ融液300から引き離すことにより、直胴部230の下方に尾部240を形成する尾部形成工程を実行する(ステップ105)。
 そして、るつぼ20内のアルミナ融液300の加熱を停止して冷却する冷却工程を実行し(ステップ106)、得られたサファイアインゴット200が冷却された後にチャンバ14の外部に取り出して、一連の製造工程を完了する。
(Method for producing sapphire ingot 200)
FIG. 5 is a flowchart for explaining an example of a procedure for manufacturing the sapphire ingot 200 shown in FIG. 2 using the single crystal pulling apparatus 1 shown in FIG.
In manufacturing the sapphire ingot 200, first, a melting step is performed in which solid aluminum oxide filled in the crucible 20 in the chamber 14 is melted by heating (step 101).
Next, a seeding step is performed in which temperature adjustment is performed in a state where the lower end portion of the seed crystal 210 is in contact with the aluminum oxide melt, that is, the alumina melt 300 (step 102).
Next, a shoulder forming step of forming a shoulder 220 below the seed crystal 210 is performed by pulling up the seed crystal 210 in contact with the alumina melt 300 while rotating it (in the direction of arrow A in FIG. 1). (Step 103).
Subsequently, a straight body portion that forms a straight body portion 230, which is a body portion, below the shoulder portion 220 by pulling upward through the seed crystal 210 while rotating the shoulder portion 220 (in the direction of arrow B in FIG. 1). A formation process is executed (step 104). In addition, since the straight body part forming process is a process of forming the body part, it is also referred to as a body part forming process.
Further, the tail forming step of forming the tail 240 below the straight body 230 by pulling up and separating from the alumina melt 300 while rotating the straight body 230 through the seed crystal 210 and the shoulder 220. Is executed (step 105).
And the cooling process which stops and cools the heating of the alumina melt 300 in the crucible 20 is executed (step 106), and after the obtained sapphire ingot 200 is cooled, it is taken out of the chamber 14 and a series of manufacturing is performed. Complete the process.
 なお、このようにして得られたサファイアインゴット200は、まず、肩部220と直胴部230との境界および直胴部230と尾部240との境界においてそれぞれ切断され、直胴部230が切り出される。次に、切り出された直胴部230は、さらに、長手方向に直交する方向に切断され、サファイア単結晶のウエハとなる。このとき、本実施の形態のサファイアインゴット200はc軸方向に結晶成長していることから、得られるウエハの主面はc面((0001)面)となる。そして、得られたウエハは、青色LEDや偏光子の製造等に用いられる。 The sapphire ingot 200 thus obtained is first cut at the boundary between the shoulder 220 and the straight body 230 and at the boundary between the straight body 230 and the tail 240, and the straight body 230 is cut out. . Next, the cut out straight body portion 230 is further cut in a direction orthogonal to the longitudinal direction to form a sapphire single crystal wafer. At this time, since the sapphire ingot 200 of the present embodiment is crystal-grown in the c-axis direction, the main surface of the obtained wafer is the c-plane ((0001) plane). The obtained wafer is used for manufacturing blue LEDs and polarizers.
 また、図6は、肩部形成工程および直胴部形成工程における対流制御板17の位置を説明する図である。図6(a)は、肩部形成工程における対流制御板17の位置を示し、図6(b)および(c)は、直胴部形成工程における対流制御板17の位置を示している。そして、図6(c)は、図6(b)に示した状態より、より直胴部230の成長が進んだ状態を示している。 FIG. 6 is a diagram for explaining the position of the convection control plate 17 in the shoulder portion forming step and the straight body portion forming step. FIG. 6A shows the position of the convection control plate 17 in the shoulder forming step, and FIGS. 6B and 6C show the position of the convection control plate 17 in the straight body forming step. FIG. 6C shows a state where the growth of the straight body portion 230 has progressed more than the state shown in FIG.
 では、上述した図5に示す各工程について、図6を参照しつつ具体的に説明を行う。ただし、ここでは、ステップ101の溶融工程の前に実行される準備工程から順を追って説明を行う。 Now, each step shown in FIG. 5 described above will be specifically described with reference to FIG. However, here, the description will be made in order from the preparation step executed before the melting step of Step 101.
<準備工程>
 準備工程では、まず、c軸(<0001>)の種結晶210を用意する。次に、引き上げ棒40の保持部材41に種結晶210を取り付け、所定の位置にセットする。続いて、るつぼ20内に酸化アルミニウムの原材料すなわちアルミナ原料を充填し、るつぼ支持台15上に配置した後、チャンバ14内に断熱容器11を組み立てる。
 そして、ガス供給部70からのガス供給を行わない状態で、排気部80を用いてチャンバ14内を減圧する。その後、ガス供給部70がチャンバ14内に所定のガスを供給し、チャンバ14の内部を常圧にする。
<Preparation process>
In the preparation step, first, a c-axis (<0001>) seed crystal 210 is prepared. Next, the seed crystal 210 is attached to the holding member 41 of the pulling rod 40 and set at a predetermined position. Subsequently, the raw material of aluminum oxide, that is, the alumina raw material is filled in the crucible 20 and disposed on the crucible support 15, and then the heat insulating container 11 is assembled in the chamber 14.
Then, the inside of the chamber 14 is decompressed using the exhaust unit 80 in a state where the gas supply from the gas supply unit 70 is not performed. Thereafter, the gas supply unit 70 supplies a predetermined gas into the chamber 14 to bring the inside of the chamber 14 to normal pressure.
<溶融工程>
 溶融工程では、ガス供給部70が所定のガスをチャンバ14内に供給する。なお、溶融工程において供給するガスは、準備工程と同じものであってもよいし異なるものであってもよい。このとき、回転駆動部60は、引き上げ棒40を第1の回転速度で回転させる。
<Melting process>
In the melting step, the gas supply unit 70 supplies a predetermined gas into the chamber 14. Note that the gas supplied in the melting step may be the same as or different from that in the preparation step. At this time, the rotation driving unit 60 rotates the pulling rod 40 at the first rotation speed.
 また、コイル電源90が加熱コイル30に高周波電流を供給する。コイル電源90から加熱コイル30に高周波電流が供給されると、加熱コイル30の周囲において磁束が生成・消滅を繰り返す。 Further, the coil power supply 90 supplies a high frequency current to the heating coil 30. When a high frequency current is supplied from the coil power supply 90 to the heating coil 30, the magnetic flux repeatedly generates and disappears around the heating coil 30.
 このようにして加熱コイル30で生じた磁束の一部が、断熱容器11を介してるつぼ20を横切ると、るつぼ20の壁面にはその磁界の変化をさまたげるような磁界が発生し、結果としてるつぼ20内には誘導電流が発生する。そして、るつぼ20の壁部22には、誘導電流(J)によってるつぼ20の表皮抵抗(Z)に比例したジュール熱(W=IZ)が発生し、るつぼ20の壁部22が発熱する。 When a part of the magnetic flux generated in the heating coil 30 crosses the crucible 20 through the heat insulating container 11 in this way, a magnetic field is generated on the wall surface of the crucible 20 to prevent the change of the magnetic field, and as a result, the crucible. An induced current is generated in 20. Then, Joule heat (W = I 2 Z) proportional to the skin resistance (Z) of the crucible 20 is generated on the wall portion 22 of the crucible 20 by the induced current (J), and the wall portion 22 of the crucible 20 generates heat. .
 また、高周波電流の供給に伴って加熱コイル30で生じた磁束の一部は、対流制御板17を横切る。これに伴い、対流制御板17の切り込み17aを設けていない領域IIにはその磁界の変化をさまたげるような磁界が発生し、結果として対流制御板17内の領域IIにも誘導電流が発生する。そして、対流制御板17内の領域IIには、誘導電流によって対流制御板17内の領域IIの表皮抵抗に比例したジュール熱が発生し、対流制御板17内の領域IIが発熱する。 Further, a part of the magnetic flux generated in the heating coil 30 with the supply of the high frequency current crosses the convection control plate 17. Along with this, a magnetic field is generated in the region II where the notch 17a of the convection control plate 17 is not provided so as to prevent the change of the magnetic field, and as a result, an induced current is also generated in the region II in the convection control plate 17. In the region II in the convection control plate 17, Joule heat proportional to the skin resistance of the region II in the convection control plate 17 is generated by the induced current, and the region II in the convection control plate 17 generates heat.
 このようにして、壁部22が加熱され、これに伴ってるつぼ20内に収容される酸化アルミニウムがその融点(2054℃)を超えて加熱されると、るつぼ20内においてアルミナ原料すなわち酸化アルミニウムが溶融し、アルミナ融液300となる。
 このとき、対流制御板17の一端部は、対流制御板駆動部120によって、アルミナ融液300の表面から深さHmの位置に設置されているのが好ましい。るつぼ20内のアルミナ融液300の表面の温度勾配を肩部形成工程、直胴部形成工程における温度勾配に設定するためである。
In this way, when the wall portion 22 is heated and the aluminum oxide accommodated in the crucible 20 is heated beyond its melting point (2054 ° C.), the alumina raw material, that is, aluminum oxide is contained in the crucible 20. It melts to become an alumina melt 300.
At this time, one end portion of the convection control plate 17 is preferably installed at a depth Hm from the surface of the alumina melt 300 by the convection control plate driving unit 120. This is because the temperature gradient of the surface of the alumina melt 300 in the crucible 20 is set to the temperature gradient in the shoulder portion forming step and the straight body portion forming step.
<種付け工程>
 種付け工程では、ガス供給部70が、所定のガスをチャンバ14内に供給する。なお、種付け工程において供給するガスは、溶融工程と同じものであってもよいし異なるものであってもよい。
 そして、引き上げ駆動部50は、保持部材41に取り付けられた種結晶210の下端が、るつぼ20内のアルミナ融液300と接触する位置まで引き上げ棒40を下降させて停止させる。その状態で、コイル電源90は、重量検出部110からの重量信号をもとに加熱コイル30に供給する高周波電流の電流値を調節する。
 このときも、対流制御板17の一端部は、アルミナ融液300の表面から深さHmの位置に設置されているのが好ましい。
<Seeding process>
In the seeding step, the gas supply unit 70 supplies a predetermined gas into the chamber 14. Note that the gas supplied in the seeding step may be the same as or different from that in the melting step.
Then, the pulling drive unit 50 lowers the pulling rod 40 to a position where the lower end of the seed crystal 210 attached to the holding member 41 comes into contact with the alumina melt 300 in the crucible 20 and stops it. In this state, the coil power supply 90 adjusts the current value of the high-frequency current supplied to the heating coil 30 based on the weight signal from the weight detection unit 110.
Also at this time, it is preferable that one end of the convection control plate 17 is installed at a position having a depth Hm from the surface of the alumina melt 300.
<肩部形成工程>
 肩部形成工程では、コイル電源90が加熱コイル30に供給する高周波電流を調節したのち、アルミナ融液300の温度が安定するまでしばらくの間保持し、その後、引き上げ棒40を第1の回転速度で回転させながら第1の引き上げ速度にて引き上げる。
<Shoulder formation process>
In the shoulder forming step, the high frequency current supplied from the coil power supply 90 to the heating coil 30 is adjusted, and then held for a while until the temperature of the alumina melt 300 is stabilized, and then the lifting rod 40 is moved to the first rotational speed. Pull up at the first pulling speed while rotating.
 すると、種結晶210は、その下端部がアルミナ融液300に浸った状態で回転されつつ引き上げられることになり、種結晶210の下端には、鉛直下方に向かって拡開する肩部220が形成されていく。
 なお、肩部220の直径が所望とするウエハの直径よりも数mm程度大きくなった時点で、肩部形成工程を完了する。
Then, the seed crystal 210 is pulled up while being rotated with its lower end immersed in the alumina melt 300, and a shoulder 220 that expands vertically downward is formed at the lower end of the seed crystal 210. It will be done.
Note that the shoulder forming step is completed when the diameter of the shoulder 220 becomes about several mm larger than the desired diameter of the wafer.
 肩部形成工程では、肩部220の成長に伴ってアルミナ融液300が消費され、アルミナ融液300の表面の位置が、徐々に下がっていく。しかし、対流制御板17の一端部は、図6(a)に示すように、対流制御板駆動部120によって、アルミナ融液300の表面から深さHmの位置に維持されるように制御される。すなわち、対流制御板17は、アルミナ融液300の表面の変化に追従して、矢印C方向に駆動されていく。これにより、単結晶成長界面Gの温度の勾配を緩やかに維持している。
 なお、アルミナ融液300の表面の位置の変化は、重量検出部110から出力される重量信号に基づき、予測することができる。また、アルミナ融液300の表面の位置は、超音波などを利用した非接触の液面計によって測定することもできる。制御部100は、このようにして求められたアルミナ融液300の表面の位置に基づいて、支持棒18の引き下げ速度を設定すればよい。
In the shoulder forming process, the alumina melt 300 is consumed as the shoulder 220 grows, and the position of the surface of the alumina melt 300 gradually decreases. However, one end of the convection control plate 17 is controlled by the convection control plate driving unit 120 so as to be maintained at a position of a depth Hm from the surface of the alumina melt 300 as shown in FIG. . That is, the convection control plate 17 is driven in the direction of arrow C following the change in the surface of the alumina melt 300. Thereby, the temperature gradient of the single crystal growth interface G is gently maintained.
The change in the position of the surface of the alumina melt 300 can be predicted based on the weight signal output from the weight detector 110. Moreover, the position of the surface of the alumina melt 300 can also be measured by a non-contact liquid level gauge using ultrasonic waves or the like. The control unit 100 may set the pulling speed of the support rod 18 based on the position of the surface of the alumina melt 300 thus obtained.
 また、対流制御板17内の領域IIは、加熱コイル30への高周波電流の供給によって発熱している。よって、アルミナ融液300から引き上げられ顔を出した肩部220は、対流制御板17内の領域IIからの熱放射により保温される。これにより、肩部220は、急速に冷却されることによる熱歪みの発生が抑制される。 Further, the region II in the convection control plate 17 generates heat due to the supply of a high-frequency current to the heating coil 30. Therefore, the shoulder 220 that is pulled up from the alumina melt 300 and has a face is kept warm by heat radiation from the region II in the convection control plate 17. Thereby, the shoulder 220 is restrained from generating thermal distortion due to rapid cooling.
<直胴部形成工程>
 直胴部形成工程では、ガス供給部70が所定のガスをチャンバ14内に供給する。なお、直胴部形成工程において供給するガスは、肩部形成工程と同じものであってもよいし異なるものであってもよい。
 また、コイル電源90は、引き続き加熱コイル30に高周波電流の供給を行い、るつぼ20を介してアルミナ融液300を加熱する。
 さらに、引き上げ駆動部50は、引き上げ棒40を第2の引き上げ速度にて引き上げる。ここで第2の引き上げ速度は、肩部形成工程における第1の引き上げ速度と同じ速度であってもよいし、異なる速度であってもよい。
 さらにまた、回転駆動部60は、引き上げ棒40を第2の回転速度で回転させる。ここで、第2の回転速度は、肩部形成工程における第1の回転速度と同じ速度であってもよいし、異なる速度であってもよい。
<Straight body part formation process>
In the straight body forming step, the gas supply unit 70 supplies a predetermined gas into the chamber 14. In addition, the gas supplied in a straight body part formation process may be the same as a shoulder part formation process, and may differ.
The coil power supply 90 continues to supply a high frequency current to the heating coil 30 to heat the alumina melt 300 through the crucible 20.
Further, the pulling drive unit 50 pulls the pulling rod 40 at the second pulling speed. Here, the second pulling speed may be the same as or different from the first pulling speed in the shoulder forming step.
Furthermore, the rotation drive unit 60 rotates the pulling rod 40 at the second rotation speed. Here, the second rotation speed may be the same speed as the first rotation speed in the shoulder forming step, or may be a different speed.
 種結晶210と一体化した肩部220は、その下端部がアルミナ融液300に浸った状態で回転されつつ引き上げられることになるため、肩部220の下端部には、好ましくは円柱状の直胴部230が形成されていく。直胴部230の直径は、所望とするウエハの直径以上であればよい。 The shoulder 220 integrated with the seed crystal 210 is pulled up while being rotated while the lower end of the shoulder 220 is immersed in the alumina melt 300. The trunk portion 230 is formed. The diameter of the straight body 230 may be equal to or larger than the desired diameter of the wafer.
 直胴部形成工程でも、直胴部230の成長に伴ってアルミナ融液300が消費され、アルミナ融液300の表面の位置が、徐々に下がっていく。しかし、図6(b)および(c)に示すように、アルミナ融液300の表面の位置が変化しても、対流制御板17の一端部は、アルミナ融液300の表面から深さHmの位置に維持されるように制御されている。すなわち、対流制御板17は、アルミナ融液300の表面の変化に追従して、矢印C方向に駆動されていく。これにより、単結晶成長界面Gの温度の勾配を緩やかに維持している。
 また、対流制御板17内の領域IIは、加熱コイル30への高周波電流の供給によって発熱している。よって、アルミナ融液300からの引き上げ直後の直胴部230は、対流制御板17内の領域IIからの熱放射により保温される。これにより、直胴部230は、急速に冷却されることによる熱歪みの発生が抑制される。
Also in the straight body part forming step, the alumina melt 300 is consumed as the straight body part 230 grows, and the position of the surface of the alumina melt 300 gradually decreases. However, as shown in FIGS. 6B and 6C, even if the position of the surface of the alumina melt 300 changes, one end of the convection control plate 17 has a depth Hm from the surface of the alumina melt 300. It is controlled to be kept in position. That is, the convection control plate 17 is driven in the direction of arrow C following the change in the surface of the alumina melt 300. Thereby, the temperature gradient of the single crystal growth interface G is gently maintained.
Further, the region II in the convection control plate 17 generates heat due to the supply of the high frequency current to the heating coil 30. Therefore, the straight body 230 immediately after being pulled up from the alumina melt 300 is kept warm by heat radiation from the region II in the convection control plate 17. As a result, the straight body portion 230 is restrained from generating thermal distortion due to rapid cooling.
<尾部形成工程>
 尾部形成工程では、ガス供給部70が所定のガスをチャンバ14内に供給する。なお、尾部形成工程において供給するガスは、直胴部形成工程と同じものであってもよいし異なるものであってもよい。
 また、コイル電源90は、引き続き加熱コイル30に高周波電流の供給を行い、るつぼ20を介したアルミナ融液300を加熱する。
 さらに、引き上げ駆動部50は、引き上げ棒40を第3の引き上げ速度にて引き上げる。ここで第3の引き上げ速度は、肩部形成工程における第1の引き上げ速度あるいは直胴部形成工程における第2の引き上げ速度と同じ速度であってもよいし、これらとは異なる速度であってもよい。
 さらにまた、回転駆動部60は、引き上げ棒40を第3の回転速度で回転させる。ここで、第3の回転速度は、肩部形成工程における第1の回転速度あるいは直胴部形成工程における第2の回転速度と同じ速度であってもよいし、これらとは異なる速度であってもよい。
 なお、尾部形成工程の序盤において、尾部240の下端は、アルミナ融液300と接触した状態を維持する。
 そして、所定の時間が経過した尾部形成工程の終盤において、引き上げ駆動部50は、引き上げ棒40の引き上げ速度を増速させて引き上げ棒40をさらに上方に引き上げさせることにより、尾部240の下端をアルミナ融液300から引き離す。これにより、図2に示すサファイアインゴット200が得られる。
 尾部形成工程では、アルミナ融液300表面(結晶成長界面)の温度勾配が単結晶の欠陥、転位に及ぼす影響が少ない。よって、対流制御板17は、肩部形成工程および直胴部形成工程と同様に、その一端部がアルミナ融液300の表面から挿入されているように制御されてもよく、尾部形成工程の途上において、アルミナ融液300の表面から取り出してもよい。
<Tail formation process>
In the tail forming step, the gas supply unit 70 supplies a predetermined gas into the chamber 14. Note that the gas supplied in the tail portion forming step may be the same as or different from that in the straight body portion forming step.
The coil power supply 90 continues to supply a high-frequency current to the heating coil 30 to heat the alumina melt 300 through the crucible 20.
Further, the pulling drive unit 50 pulls the pulling rod 40 at the third pulling speed. Here, the third pulling speed may be the same as the first pulling speed in the shoulder forming process or the second pulling speed in the straight body forming process, or may be a speed different from these. Good.
Furthermore, the rotation drive unit 60 rotates the pulling rod 40 at the third rotation speed. Here, the third rotation speed may be the same as the first rotation speed in the shoulder forming process or the second rotation speed in the straight body forming process, or may be different from these. Also good.
In the early stage of the tail formation process, the lower end of the tail 240 is kept in contact with the alumina melt 300.
Then, at the end of the tail formation process after a predetermined time has elapsed, the pulling drive unit 50 increases the pulling speed of the pulling bar 40 and pulls the pulling bar 40 further upward, thereby lowering the lower end of the tail 240. Pull away from melt 300. Thereby, the sapphire ingot 200 shown in FIG. 2 is obtained.
In the tail formation step, the temperature gradient on the surface of the alumina melt 300 (crystal growth interface) has little effect on single crystal defects and dislocations. Therefore, the convection control plate 17 may be controlled so that one end thereof is inserted from the surface of the alumina melt 300 in the same manner as the shoulder forming process and the straight body forming process, and in the middle of the tail forming process. , It may be taken out from the surface of the alumina melt 300.
<冷却工程>
 冷却工程では、ガス供給部70が所定のガスをチャンバ14内に供給する。なお、冷却工程において供給するガスは、尾部形成工程と同じものであってもよいし異なるものであってもよい。
 また、コイル電源90は、加熱コイル30への高周波電流の供給を停止し、るつぼ20を介したアルミナ融液300の加熱を中止する。
 さらに、引き上げ駆動部50は引き上げ棒40の引き上げを停止させ、回転駆動部60は引き上げ棒40の回転を停止させる。
 このとき、るつぼ20内には、サファイアインゴット200を形成しなかった酸化アルミニウムがアルミナ融液300として少量残存している。このため、加熱の停止に伴ってるつぼ20中のアルミナ融液300は徐々に冷却され、酸化アルミニウムの融点を下回った後にるつぼ20中で固化し、酸化アルミニウムの固体となる。
 そして、チャンバ14内が十分に冷却された状態で、チャンバ14内からサファイアインゴット200が取り出される。
<Cooling process>
In the cooling process, the gas supply unit 70 supplies a predetermined gas into the chamber 14. Note that the gas supplied in the cooling step may be the same as or different from the tail forming step.
Further, the coil power supply 90 stops the supply of the high-frequency current to the heating coil 30 and stops the heating of the alumina melt 300 through the crucible 20.
Further, the pulling drive unit 50 stops the pulling of the pulling rod 40 and the rotation driving unit 60 stops the rotation of the pulling rod 40.
At this time, a small amount of aluminum oxide that did not form the sapphire ingot 200 remains as the alumina melt 300 in the crucible 20. For this reason, the alumina melt 300 in the crucible 20 with the stop of heating is gradually cooled and solidified in the crucible 20 after falling below the melting point of aluminum oxide to become aluminum oxide solid.
Then, the sapphire ingot 200 is taken out from the chamber 14 with the chamber 14 sufficiently cooled.
 なお、本実施の形態では、肩部形成工程および直胴部形成工程において、対流制御板17の一端部がアルミナ融液300に挿入される深さHmを同じとしたが、熱歪みがより抑制されるように、可変としてもよい。
 また、本実施の形態では、るつぼ20の加熱は、高周波誘導加熱法で行ったが、るつぼ20の周囲に設けたヒータ(抵抗体)に電流を流すことで、るつぼ20を加熱する抵抗加熱法などの他の方法で行ってもよい。抵抗加熱法では、対流制御板17に誘導加熱を抑制するための切り込み17aを設けなくてもよい。
In the present embodiment, the depth Hm at which one end of the convection control plate 17 is inserted into the alumina melt 300 is the same in the shoulder forming step and the straight body forming step, but thermal distortion is further suppressed. As is done, it may be variable.
In the present embodiment, the crucible 20 is heated by the high frequency induction heating method. However, the resistance heating method of heating the crucible 20 by passing a current through a heater (resistor) provided around the crucible 20. Other methods may be used. In the resistance heating method, the convection control plate 17 may not be provided with the notch 17a for suppressing induction heating.
 以上説明したように、本実施の形態では、対流制御板17により、アルミナ融液300表面において、るつぼ20の壁部22から中央部に向かうアルミナ融液300の流れ(熱対流)を遮り、結晶成長界面における温度勾配を緩やかにする。これにより、成長させた単結晶の熱歪みが抑制され、単結晶における欠陥や転位の発生を抑制することができる。 As described above, in the present embodiment, the convection control plate 17 blocks the flow (thermal convection) of the alumina melt 300 from the wall portion 22 of the crucible 20 toward the center on the surface of the alumina melt 300. Relax the temperature gradient at the growth interface. Thereby, the thermal strain of the grown single crystal is suppressed, and the generation of defects and dislocations in the single crystal can be suppressed.
1…単結晶引き上げ装置、10…加熱炉、11…断熱容器、14…チャンバ、15…るつぼ支持台、16…シャフト、17…対流制御板、18…支持棒、20…るつぼ、30…加熱コイル、40…引き上げ棒、41…保持部材、50…引き上げ駆動部、60…回転駆動部、70…ガス供給部、80…排気部、90…コイル電源、100…制御部、110…重量検出部、120…対流制御板駆動部、200…サファイアインゴット、210…種結晶、220…肩部、230…直胴部、240…尾部、300…アルミナ融液 DESCRIPTION OF SYMBOLS 1 ... Single crystal pulling apparatus, 10 ... Heating furnace, 11 ... Heat insulation container, 14 ... Chamber, 15 ... Crucible support stand, 16 ... Shaft, 17 ... Convection control board, 18 ... Support rod, 20 ... Crucible, 30 ... Heating coil , 40 ... Lifting rod, 41 ... Holding member, 50 ... Lifting drive unit, 60 ... Rotation drive unit, 70 ... Gas supply unit, 80 ... Exhaust unit, 90 ... Coil power source, 100 ... Control unit, 110 ... Weight detection unit, DESCRIPTION OF SYMBOLS 120 ... Convection control board drive part, 200 ... Sapphire ingot, 210 ... Seed crystal, 220 ... Shoulder part, 230 ... Straight trunk part, 240 ... Tail part, 300 ... Alumina melt

Claims (9)


  1.  底部および底部の周縁から立ち上がる壁部を有し、原料融液を収容するるつぼと、

     前記るつぼの上方に配置され、当該るつぼに収容される前記原料融液から柱状の単結晶を引き上げる引き上げ部材と、

     前記るつぼの内壁と、前記原料融液から引き上げられる前記単結晶との間にあって、一端部側を当該原料融液の表面から当該原料融液中に挿入し、当該原料融液の表面における熱対流を抑制する対流制御部材と
    を備えることを特徴とする単結晶引き上げ装置。

    A crucible having a bottom portion and a wall portion rising from the periphery of the bottom portion and containing a raw material melt;

    A lifting member that is disposed above the crucible and pulls up the columnar single crystal from the raw material melt contained in the crucible;

    Between the inner wall of the crucible and the single crystal pulled up from the raw material melt, one end side is inserted into the raw material melt from the surface of the raw material melt, and heat convection on the surface of the raw material melt A single crystal pulling apparatus comprising: a convection control member that suppresses stagnation.

  2.  前記対流制御部材は、円筒状であって、前記原料融液の表面に当該対流制御部材の軸が垂直になるように挿入され、

     前記対流制御部材の内径Dが、前記るつぼの内径Rと引き上げられる前記単結晶の直径rに対し、

         r < D ≦ (R+r)/2
    であることを特徴とする請求項1に記載の単結晶引き上げ装置。

    The convection control member is cylindrical and is inserted so that the axis of the convection control member is perpendicular to the surface of the raw material melt.

    The inner diameter D of the convection control member is smaller than the inner diameter R of the crucible and the diameter r of the single crystal to be pulled up.

    r <D ≦ (R + r) / 2
    The single crystal pulling apparatus according to claim 1, wherein:

  3.  前記るつぼの外側に巻き回され、交流電流の供給によって当該るつぼを誘導加熱するコイルをさらに備えることを特徴とする請求項1または2に記載の単結晶引き上げ装置。

    The single crystal pulling apparatus according to claim 1, further comprising a coil wound around the crucible and induction-heating the crucible by supplying an alternating current.

  4.  前記対流制御部材は、前記原料融液に浸漬される一端部側に、交流電流の供給による誘導加熱を抑制する切り込みが設けられ、

     前記対流制御部材は、前記切り込みが設けられていない他端部側が交流電流の供給によって誘導加熱されることを特徴とする請求項1ないし3のいずれか1項に記載の単結晶引き上げ装置。

    The convection control member is provided with a notch for suppressing induction heating due to supply of alternating current on one end side immersed in the raw material melt,

    The single crystal pulling apparatus according to any one of claims 1 to 3, wherein the convection control member is induction-heated by supplying an alternating current at the other end portion where the notch is not provided.

  5.  前記るつぼは、前記原料融液としてアルミナ融液を収容し、

     前記引き上げ部材は、前記るつぼに収容された前記アルミナ融液から柱状のサファイア単結晶を引き上げることを特徴とする請求項1ないし4のいずれか1項に記載の単結晶引き上げ装置。

    The crucible contains an alumina melt as the raw material melt,

    5. The single crystal pulling apparatus according to claim 1, wherein the pulling member pulls a columnar sapphire single crystal from the alumina melt accommodated in the crucible.

  6.  前記対流制御部材は、イリジウム、モリブデン、タングステンあるいはこれらの合金から構成されていることを特徴とする請求項1ないし5のいずれか1項に記載の単結晶引き上げ装置。

    The single crystal pulling apparatus according to any one of claims 1 to 5, wherein the convection control member is made of iridium, molybdenum, tungsten, or an alloy thereof.

  7.  るつぼ中の原料融液に単結晶の種結晶を付着させ、前記種結晶を回転させながら引き上げることにより、当該種結晶の下方に向かって広がる肩部を形成する肩部形成工程と、

     前記原料融液に付着させた前記肩部を回転させながら引き上げることにより、当該肩部の下方に胴部を形成する胴部形成工程と
    を含み、

     前記肩部形成工程および前記胴部形成工程において、前記るつぼの内壁と、前記肩部あるいは前記胴部との間に設けられ、前記原料融液の表面での熱対流を制御する対流制御部材を、当該対流制御部材の一端部側が予め定められた深さにおいて当該原料融液に挿入されているように制御することを特徴とする単結晶の引き上げ方法。

    A shoulder forming step of attaching a seed crystal of a single crystal to a raw material melt in a crucible, and forming a shoulder extending downward of the seed crystal by pulling up the seed crystal while rotating;

    Including a body part forming step of forming a body part below the shoulder part by pulling up the shoulder part attached to the raw material melt while rotating,

    A convection control member that is provided between the inner wall of the crucible and the shoulder or the trunk in the shoulder formation step and the trunk formation step, and controls thermal convection on the surface of the raw material melt; And a method of pulling a single crystal, wherein the one end side of the convection control member is controlled to be inserted into the raw material melt at a predetermined depth.

  8.  前記対流制御部材は、前記原料融液に浸漬される一端部側に、交流電流の供給による誘導加熱を抑制する切り込みが設けられ、

     前記肩部形成工程および前記胴部形成工程において、前記るつぼおよび前記対流制御部材の前記切り込みが設けられていない他端部側が交流電流の供給によって誘導加熱されることを特徴とする請求項7に記載の単結晶の引き上げ方法。

    The convection control member is provided with a notch for suppressing induction heating due to supply of alternating current on one end side immersed in the raw material melt,

    In the shoulder forming step and the trunk forming step, the other end portion of the crucible and the convection control member where the notch is not provided is induction-heated by supplying an alternating current. The method for pulling a single crystal as described.

  9.  前記るつぼは、前記原料融液としてアルミナ融液を収容し、

     前記単結晶は、柱状のサファイア単結晶であることを特徴とする請求項7または8に記載の単結晶引き上げ方法。

    The crucible contains an alumina melt as the raw material melt,

    The single crystal pulling method according to claim 7, wherein the single crystal is a columnar sapphire single crystal.
PCT/JP2010/072373 2009-12-17 2010-12-13 Single crystal pulling apparatus and single crystal pulling method WO2011074533A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009286157A JP2011126738A (en) 2009-12-17 2009-12-17 Apparatus for pulling single crystal, and method for pulling single crystal
JP2009-286157 2009-12-17

Publications (1)

Publication Number Publication Date
WO2011074533A1 true WO2011074533A1 (en) 2011-06-23

Family

ID=44167285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072373 WO2011074533A1 (en) 2009-12-17 2010-12-13 Single crystal pulling apparatus and single crystal pulling method

Country Status (3)

Country Link
JP (1) JP2011126738A (en)
TW (1) TW201129730A (en)
WO (1) WO2011074533A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103422162A (en) * 2013-09-03 2013-12-04 无锡鼎晶光电科技有限公司 Single crystal furnace thermal field structure for square sapphire generation
WO2014073163A1 (en) * 2012-11-06 2014-05-15 信越半導体株式会社 Single-crystal manufacturing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732971A (en) * 2012-07-16 2012-10-17 登封市蓝天石化光伏电力装备有限公司 Heating device for crystal growing furnace and corundum single crystal growing furnace
WO2014034081A1 (en) 2012-08-26 2014-03-06 国立大学法人名古屋大学 Crystal production device, production method for sic single crystals, and sic single crystal
KR101472351B1 (en) * 2013-03-20 2014-12-12 주식회사 엘지실트론 Method for interpreting a growing of sapphire single crystal and method for growing sapphire single crystal
JP6167966B2 (en) * 2014-03-28 2017-07-26 住友金属鉱山株式会社 Solder ball manufacturing method and manufacturing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60373U (en) * 1983-06-17 1985-01-05 日本電気株式会社 Single crystal pulling device
JPH07187880A (en) * 1993-12-27 1995-07-25 Shin Etsu Chem Co Ltd Production of oxide single crystal
JP2008007353A (en) * 2006-06-28 2008-01-17 Sumitomo Metal Mining Co Ltd Apparatus for growing sapphire single crystal and growing method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60373U (en) * 1983-06-17 1985-01-05 日本電気株式会社 Single crystal pulling device
JPH07187880A (en) * 1993-12-27 1995-07-25 Shin Etsu Chem Co Ltd Production of oxide single crystal
JP2008007353A (en) * 2006-06-28 2008-01-17 Sumitomo Metal Mining Co Ltd Apparatus for growing sapphire single crystal and growing method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073163A1 (en) * 2012-11-06 2014-05-15 信越半導体株式会社 Single-crystal manufacturing device
JP2014091670A (en) * 2012-11-06 2014-05-19 Shin Etsu Handotai Co Ltd Manufacturing apparatus of single crystal
CN103422162A (en) * 2013-09-03 2013-12-04 无锡鼎晶光电科技有限公司 Single crystal furnace thermal field structure for square sapphire generation

Also Published As

Publication number Publication date
JP2011126738A (en) 2011-06-30
TW201129730A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
WO2011074533A1 (en) Single crystal pulling apparatus and single crystal pulling method
US6093913A (en) Electrical heater for crystal growth apparatus with upper sections producing increased heating power compared to lower sections
WO2011062092A1 (en) Single crystal pulling apparatus
WO2010071142A1 (en) Process for producing single-crystal sapphire
WO2006054610A1 (en) Apparatus for crystal production
KR20180120076A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL AND PRODUCTION DEVICE
WO2010073945A1 (en) Process for producing single-crystal sapphire
JP5240191B2 (en) Silicon single crystal pulling device
KR20120130125A (en) Single crystal producing apparatus, single crystal producing method and single crystal
JP5131170B2 (en) Upper heater for single crystal production, single crystal production apparatus and single crystal production method
JP2011006314A (en) Single crystal pulling device
JP2013006758A (en) Apparatus and method for producing single crystal and single crystal
CN105463571A (en) Method for producing SiC single crystal
KR101381326B1 (en) Method for producing semiconductor wafers composed of silicon
JP2010173929A (en) Sapphire single crystal pulling apparatus, crucible for producing sapphire single crystal, and method for producing sapphire single crystal
JP2002047093A (en) Silicon single crystal pulling-up apparatus
JP2004123510A (en) Apparatus for manufacturing single crystal and method for manufacturing the same
WO2011108417A1 (en) Method for manufacturing sapphire single crystal, apparatus for pulling sapphire single crystal, and sapphire single crystal
JP6958854B2 (en) Manufacturing method of magnetostrictive material
JP2010189242A (en) Method for producing sapphire single crystal and apparatus for pulling sapphire single crystal
JP2011032104A (en) Sapphire single crystal and method for producing sapphire single crystal
JP2011037643A (en) Single crystal pulling apparatus, method for producing single crystal and single crystal
JP2008019128A (en) Apparatus for producing single crystal, method for producing single crystal, and single crystal
JPH09235174A (en) Production unit for single crystal and production thereof
JP2011046558A (en) Method for producing sapphire single crystal and apparatus for pulling sapphire single crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837559

Country of ref document: EP

Kind code of ref document: A1