WO2011072768A1 - Energietransformer mit elektroaktivem polymer - Google Patents

Energietransformer mit elektroaktivem polymer Download PDF

Info

Publication number
WO2011072768A1
WO2011072768A1 PCT/EP2010/006547 EP2010006547W WO2011072768A1 WO 2011072768 A1 WO2011072768 A1 WO 2011072768A1 EP 2010006547 W EP2010006547 W EP 2010006547W WO 2011072768 A1 WO2011072768 A1 WO 2011072768A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electroactive polymer
electrically conductive
energy transformer
grid
Prior art date
Application number
PCT/EP2010/006547
Other languages
English (en)
French (fr)
Inventor
Klaus Reymann
Thomas Grund
Metin Koyuncu
Karsten Glien
Sven-Robert Raisch
Herbert Schmidt
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP10778856A priority Critical patent/EP2513990A1/de
Publication of WO2011072768A1 publication Critical patent/WO2011072768A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1845Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/40Organic materials
    • F05B2280/4003Synthetic polymers, e.g. plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/181Circuits; Control arrangements or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to an energy transformer with electroactive polymer.
  • the electroactive polymer forms a polymer film.
  • the electroactive polymer film has an electrode and a counterelectrode of a mechanically flexible capacitor, which forms a variable capacitance due to the mechanical flexibility and the electroactive polymer.
  • a wave energy transformer wherein a floating body carries a connecting element which slides up and down with the swell and correspondingly generates electrical energy in a coil surrounding the connecting element.
  • US 2007/0257490 A1 discloses a system and a method for using an electroactive polymer transformer in order to convert mechanical energy originally contained in one or more waves into electrical energy.
  • the transformer has a marine device that converts the mechanical energy of a wave into mechanical energy, which is suitable as an input for an electroactive polymer transformer.
  • Float carries several containers in which moving masses synchronously with the
  • Such an electroactive polymer transformer has an electroactive polymer film, on the top side of which an electrode and on the underside of which a counterelectrode of a capacitor are arranged.
  • the capacitance of the capacitor, electrode, counter electrode, and interposed polymer film varies, so that electrical energy can be obtained from mechanical deformation of the polymer material in a suitable generator circuit. If the electroactive polymer is stretched by a mechanical energy transmission system due to the waves at low electric field strength, the electric field strength increases.
  • the wave energy transformer has at least one position sensor which detects the reversal positions of the expansion phase in the relaxation phase and vice versa and signals a position change to a corresponding control unit of the generator.
  • a disadvantage of the known wave energy transformers is their relatively complex and material-intensive structure, which requires a high cost of copper coils according to the device according to DE 60 2004 008 639 T2 to an up and down movement of a connecting element, which is in communication with a floating body in electrical To transform energy.
  • the wave energy transformers with an electroactive polymer transformer known from the document US 2007/0257490 A1 have known expensive foil-like structures for connecting a floating body to the electroactive polymer film via corresponding connecting elements in such a way that the mechanical energy of the swell is transmitted to the electroactive polymer material can, so that the electroactive polymer material is able to deliver electrical energy to a load or a rechargeable battery by means of a generator circuit.
  • a generator for converting mechanical energy into electrical energy in which at least two electrodes are disposed in a polymer in a manner such that a change in the electric field occurs in response to a deflection applied to a first portion of the polymer.
  • various structures and arrangements of the electrodes with respect to the electroactive polymer material are known, among which is proposed, inter alia, stacking of electroactive polymer film into a more effective variable capacitance capacitor.
  • a disadvantage of this capacitor is that it is produced by depositing electrode material on an electroactive polymer film with subsequent stacking of such electrode-providing films on each other in a conventional manner and thus on the one hand, a high space requirement for the electroactive capacitor is required and on the other hand, a large number of Manufacturing steps are to be provided for the production of such an electroactive capacitor.
  • the object of the invention is to provide an energy transformer, which has a simplified and cost-effective structure of the capacitor and in bending, bending and other motion-dependent deformations has an improved over the prior art efficiency.
  • an energy transformer with electroactive polymer is created.
  • the electroactive polymer forms a polymer film.
  • the electroactive polymer film has an electrode and a counterelectrode of a mechanically flexible capacitor, which forms a variable capacitance due to the mechanical flexibility and the electroactive polymer.
  • the electrode and the counter electrode each have a planar electrode grid made of conductive material. Multiple electrode grid of the electrode and counter electrode are alternately stacked one above the other and penetrated by the material of the electroactive polymer. Between each electrode and counter electrode is a layer of the electroactive polymer.
  • This capacitor with electroactive polymer has the advantage of a high flexibility due to the lattice-shaped electrodes, because through the grid structure, the electrodes, the curvatures, warping and strains of the flexible capacitor of an electroactive Polymer can follow better. Moreover, the production of such an electroactive polymer capacitor produced from a grid electrode stack is extremely cost-effective, since the capacitor is practically available in practice in a method step with the incorporation of the electroactive polymer in a prepared electrode grid stack.
  • the electrode grid consists of a grid-shaped perforated electrically conductive film.
  • This grid-shaped perforation can be achieved by means of appropriate etching techniques and / or with the aid of punching techniques in a film, wherein a flowable viscous electroactive polymer can penetrate through the grid openings in the stacked spaced lattice-shaped films and a layer sequence of at least one electrode , electroactive polymer and a counter electrode can form.
  • the electrode meshes comprise electrically conductive fabrics of metal fibers, carbon fibers and / or amorphous carbon fibers.
  • the energy transformer is particularly suitable as a wave energy transformer, since a cost-effective and stable construction of the transformer is particularly important in the water. Furthermore, it is provided that the variable capacitance of the electroactive polymer film capacitor of a stack of electrode gratings penetrated by the electroactive polymer interacts with a generator circuit, the generator circuit including a supply battery, an intermediate capacitor as a buffer and a control circuit. has unit. Depending on the waves, the control unit transmits charges to the intermediate capacitor or intermediate storage and can alternatively charge a charging battery and / or feed a load.
  • a method for producing an electroactive polymer film having an electrode and a counter electrode of a variable capacitance capacitor for a wave energy transformer comprises the following method steps.
  • a curable electroactive polymer is provided in a flowable viscous state. At the same time stacking of electrode gratings in several levels one above the other can already take place to form an electrode grid stack. Then, the curable electroactive polymer is applied in a flowable viscous state to the electrode grid stack and the electrode grid stack is penetrated with the curable electroactive polymer in a flowable viscous state so that subsequently only curing of the electroactive polymer under pressure and temperature to an electroactive polymer film having a plurality of embedded electrodes - NEN of electrode grids is required.
  • This method not only has the advantage that a highly flexible capacitor can be constructed with the grid electrodes, but also offers the possibility that such electroactive capacitors with variable capacitance and high flexibility can be produced inexpensively.
  • metal-conducting materials such as fine-grained particles of carbon powder or metal powder in such a density along a vorgegebnen grid structure that they do not lose their electrical contact with each other even when bending or buckling of the electroactive polymer.
  • FIG. 1 shows a schematic perspective partial view of a mechanically flexible capacitor for a wave energy transformer according to a first embodiment of the invention
  • FIG. 2 shows a schematic perspective partial view of a mechanically flexible capacitor for a wave energy transformer according to a second embodiment of the invention
  • FIG. 3 shows a schematic perspective partial view of a mechanically flexible capacitor for a wave energy transformer according to a third embodiment
  • FIG. 4 shows a schematic representation of a generator using one of the three embodiments shown for a wave energy transformer.
  • the mechanically flexible capacitor has a plurality of levels of grid electrodes, wherein an electrode 16 and a counter electrode 17 of the capacitor 6 are alternately embedded in a matrix of electroactive polymer 2.
  • the electrodes 16 and counter electrodes 17 are each constructed of cross struts 10 which extend within the planes. Due to the lattice-like structure of the stacked electrodes 16 and 17 with interposed layers 8 of electroactive polymer 2 penetrated between the electrode grids, it is possible for the electrode grid 7 of the electrode grid stack 11 to follow the strains, bulges and bends of the highly flexible electroactive polymer material 2 can.
  • FIG. 2 shows a schematic perspective partial view of a mechanically flexible capacitor 6 for a wave energy transformer of a second embodiment of the invention.
  • this wave energy transformers three levels 12, 13 and 14 of grid electrodes 7 are aligned such that an electroactive polymer 2 in a flowable viscous state can penetrate these three grid electrodes 7 and will penetrate and thus a flexible capacitor 6 based on electroactive Polymer 2 can form.
  • the grid electrodes are constructed as fibers 9 which run within the planes 12, 13, 14.
  • FIG. 3 shows a schematic perspective partial view of a mechanically flexible capacitor 6 for a wave energy transformer of a third embodiment of the invention.
  • a strongly perforated metal foil 15 is arranged so that the flowable viscous electroactive polymer material can penetrate the perforation of the metal foil 15 and thus create a positive connection to the electroactive polymer on the top and bottom of the perforated foil 15 can.
  • FIG 4 shows a schematic representation of a generator using one of the three embodiments shown for a wave energy transformer 1.
  • the wave energy transformer 1 is clamped at both ends 23 and 24 respectively in brackets 21 and 22 or fixed by screws 25 and is the forces of the waves 27 exposed by the movement of the shafts 19 are transmitted to the wave energy transformer 1 by means of a float 17 and a coupling member 18.
  • the electrodes 16 and 17 shown in the preceding figures it is possible to connect the wave energy transformer 1 with its electrode 16 and its counter electrode 17 via corresponding power lines 35 and 36 to a generator circuit 28.
  • the charge obtained in one cycle can be stored in a charging battery 32 via a DC / DC converter 41.
  • the generator circuit 28 is also connected to a frequency converter 40.
  • the frequency converter 40 transforms the low frequency of the wave 27 into a network frequency, for example, to supply a load 33 in a supply network.
  • a position sensor 39 which detects the variable positions of the slidably mounted end 24 and depending on the curvature of the flexible Capacitor 6 signals from a flat-wound electroactive polymer film, the individual phases such as relaxation phase and expansion phase to a control unit 31 which cooperates with the generator circuit 28 via a line 37.
  • a supply battery 29 provides the initial field strength to be applied to the wave energy transformer 1 of electroactive polymer with the electrodes 16 and 17.
  • Position sensor 39 Frequency converter DC / DC converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Secondary Cells (AREA)

Abstract

Die Erfindung betrifft einen Energietransformer (1) mit elektroaktivem Polymer (2). Das elektroaktive Polymer (2) bildet eine Polymerfolie (3). Die elektroaktive Polymerfolie (3) weist eine Elektrode (4) und eine Gegenelektrode (5) eines mechanisch flexiblen Kondensators (6) auf, der aufgrund der mechanischen Flexibilität und des elektroaktiven Polymers (2) eine variable Kapazität bildet. Die Elektrode (16) und die Gegenelektrode (17) weisen jeweils ein ebenes Elektrodengitter (7) aus leitfähigem Material auf. Mehrere Elektrodengitter (7) von Elektrode (16) und Gegenelektrode (17) sind abwechselnd übereinander beabstandet gestapelt und von dem Material des elektroaktiven Polymers (2) durchdrungen. Zwischen jeder Elektrode (16) und Gegenelektrode (17) ist eine Schicht (8) des elektroaktiven Polymers (2) vorhanden.

Description

Energietransformer mit elektroaktivem Polymer
Beschreibung
Die Erfindung betrifft einen Energietransformer mit elektroaktivem Polymer. Das elektroaktive Polymer bildet eine Polymerfolie. Die elektroaktive Polymerfolie weist eine Elektrode und eine Gegenelektrode eines mechanisch flexiblen Kondensators auf, der aufgrund der mechanischen Flexibilität und des elektroaktiven Polymers eine variable Kapazität bildet.
Aus der Druckschrift DE 60 2004 008 639 T2 ist ein Wellenenergietransformer bekannt, wobei ein Schwimmkörper ein Verbindungselement trägt, das mit dem Wellengang auf- und abgleitet und entsprechend elektrische Energie in einer das Verbindungselement umgebenden Spule erzeugt.
Aus der Druckschrift US 2007/0257490 A1 ist ein System und ein Verfahren zur Nutzung eines elektroaktiven Polymertransformers bekannt, um mechanische Energie, die ursprünglich in einem oder mehreren Wellen enthalten ist, in elektrische Energie zu wandeln. Dazu weist der Transformer ein maritimes Gerät auf, das die mechanische Energie einer Welle in mechanische Energie umwandelt, die als Eingang für einen elektroaktiven Polymertransformer geeignet ist.
Auch aus dieser Druckschrift ist ein Schwimmkörper bekannt, der teilweise mit unter Wasser angeordneten Massen verbunden ist oder direkt am Meeresboden verankert ist. Der
Schwimmkörper trägt mehrere Behälter, in denen bewegliche Massen synchron mit dem
Wellengang mechanische Bewegungen ausführen und damit mechanische Energie des Wellenganges in kinetische Energie transformieren, mit der ein elektroaktiver Polymertransformer zur Erzeugung von elektrischer Energie beaufschlagt wird. Ein derartiger elektroaktiver Polymertransformer hat eine elektroaktive Polymerfolie, auf deren Oberseite eine Elektrode und auf deren Unterseite eine Gegenelektrode eines Kondensators angeordnet sind. Bei einer Dehnung, einer Krümmung oder einer anderen Verformung des elektroaktiven Polymermaterials variiert die Kapazität des Kondensators aus Elektrode, Gegenelektrode und dazwischen angeordneter Polymerfolie, so dass aus mechanischer Verformung des Polymermaterials in einer geeigneten Generatorschaltung elektrische Energie gewonnen werden kann. Wird das elektroaktive Polymer bei nur geringer elektrischer Feldstärke durch ein mechanisches Energieübertragungssystem aufgrund des Wellenganges gedehnt, so erhöht sich die elektrische Feldstärke. Die erhöhte elektrische Feldstärke wird beibehalten, während sich die elektroaktive Polymerfolie entspannt, und kann elektrische Energie an einen Zwischenspeicher wie eine Zwischenkapazität oder eine Ladebatterie in der Entspannungsphase der Folie abgeben. Dazu weist der Wellenenergietransformer mindestens einen Positionssensor auf, der die Umkehrpositionen von Dehnungsphase in Entspannungsphase und umgekehrt er- fasst und eine Positionsänderung einem entsprechenden Steuergerät des Generators signalisiert. Ein Nachteil der bekannten Wellenenergietransformer ist ihr relativ komplexer und materialintensiver Aufbau, der gemäß der Vorrichtung nach DE 60 2004 008 639 T2 einen hohen Aufwand an Kupferspulen erfordert, um eine Auf- und Abwärtsbewegung eines Verbindungselements, das mit einem Schwimmkörper in Verbindung steht, in elektrische Energie zu transformieren. Bei den aus der Druckschrift US 2007/0257490 A1 bekannten Wellenener- gieübertrager mit einem elektroaktiven Polymertransformer sind aufwendige folienartige Aufbauten bekannt, um einen Schwimmkörper über entsprechende Verbindungselemente mit der elektroaktiven Polymerfolie derart zu verbinden, dass die mechanische Energie des Wellenganges auf das elektroaktive Polymermaterial übertragen werden kann, so dass das elektroaktive Polymermaterial in der Lage ist, mittels einer Generatorschaltung elektrische Energie an eine Last oder eine Ladebatterie abzugeben.
Aus der Druckschrift EP 1 212 800 D1 ist darüber hinaus ein Generator zum Umwandeln von mechanischer Energie in elektrische Energie bekannt, bei dem wenigstens zwei Elektroden in einem Polymer in einer Weise angeordnet sind, dass eine Veränderung des elektrischen Feldes als Reaktion auf eine auf einem ersten Teil des Polymers aufgebrachte Auslenkung auftritt. Ferner sind unterschiedliche Aufbauten und Anordnungen der Elektroden in Bezug auf das elektroaktive Polymermaterial bekannt, wobei unter anderem ein Stapeln von elekt- roaktiver Polymerfolie zu einem effektiveren Kondensator mit variabler Kapazität vorgeschlagen wird. Ein Nachteil dieses Kondensators ist es jedoch, dass er durch Abscheiden von Elektrodenmaterial auf einer elektroaktiven Polymerfolie mit anschließender Stapelung derartiger mit Elektroden versehender Folien aufeinander in herkömmlicher Weise hergestellt wird und damit einerseits ein hoher Raumbedarf für den elektroaktiven Kondensator erforderlich ist und andererseits eine hohe Anzahl von Fertigungsschritten für die Herstellung eines derartigen elektroaktiven Kondensators vorzusehen sind.
Aufgabe der Erfindung ist es, einen Energietransformer zu schaffen, der eine vereinfachte und kostengünstige Struktur des Kondensators aufweist und bei Biege-, Krümmungs- und anderen bewegungsabhängigen Verformungen eine gegenüber dem Stand der Technik verbesserten Wirkungsgrad aufweist.
Diese Aufgabe wird mit dem Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
Erfindungsgemäß» wird ein Energietransformer mit elektroaktivem Polymer geschaffen. Das elektroaktive Polymer bildet eine Polymerfolie. Die elektroaktive Polymerfolie weist eine Elektrode und eine Gegenelektrode eines mechanisch flexiblen Kondensators auf, der aufgrund der mechanischen Flexibilität und des elektroaktiven Polymers eine variable Kapazität bildet. Die Elektrode und die Gegenelektrode weisen jeweils ein ebenes Elektrodengitter aus leitfähigem Material auf. Mehrere Elektrodengitter von Elektrode und Gegenelektrode sind abwechselnd übereinander beabstandet gestapelt und von dem Material des elektroaktivem Polymers durchdrungen. Zwischen jeder Elektrode und Gegenelektrode ist eine Schicht des elektroaktivem Polymers vorhanden.
Dieser Kondensator mit elektroaktiven Polymer hat aufgrund der gitterförmigen Elektroden den Vorteil einer hohen Flexibilität, da durch die Gitterstruktur die Elektroden den Krümmungen, Verwölbungen und Dehnungen des flexiblen Kondensators aus einem elektroaktiven Polymer besser folgen können. Außerdem gestaltet sich die Herstellung einer derartigen aus einem Gitterelektrodenstapel hergestellten elektroaktiven Polymerkondensators äußerst kostengünstig, da praktisch mit einem Verfahrensschritt mit dem Einbringen des elektroaktiven Polymers in einem vorbereiteten Elektrodengitterstapel der Kondensator praktisch zur Verfü- gung steht.
In eine bevorzugten Ausführungsform der Erfindung besteht das Elektrodengitter aus einer gitterförmigen perforierten elektrisch leitenden Folie. Diese gitterförmige Perforation kann mit Hilfe von entsprechenden Ätztechniken und/oder mit Hilfe von Stanztechniken in eine Folie erreicht werden, wobei durch die Gitteröffnungen in den übereinander im Abstand gestapelten gitterförmigen Folien ein fließfähiges viskoses elektroaktives Polymer die Gitterstrukturen durchdringen kann und eine Schichtfolge von mindestens einer Elektrode, elektroaktivem Polymer und einer Gegenelektrode bilden kann. In einer weiteren Ausführungsform der Erfindung ist es vorgesehen, das Elektrogitter aus Matten von elektrisch leitenden Kurzfasern herzustellen. Diese Kurzfasern können in der Matte beziehungsweise in dem Elektrodengitter einander auch noch kontaktieren, selbst wenn die elektroaktive Polymerfolie gedehnt oder gekrümmt wird.
In einer weiteren Ausführungsform der Erfindung ist es vorgesehen, dass die Elektrodengitter elektrisch leitende Gewebe aufweisen aus Metallfasern, Kohlefasern und/oder amorphen Kohlefasern. Durch das Verweben dieser elektrisch leitenden Fasern zu einer gitterförmigen Elektrode beziehungsweise Gegenelektrode kann ebenfalls gewährleistet werden, dass die Dehnung des elektrisch aktiven Polymers beim Einsatz in einem Energietransformer nicht durch die Elektrodenstruktur behindert wird.
Besonders geeignet ist der Energietransformer als Wellenenergietransformer, da im Wasser ein kostengünstiger und stabiler Aufbau des Transformers besonders wichtig ist. Weiterhin ist es vorgesehen, dass die variable Kapazität des Kondensators mit elektroaktiver Polymerfolie aus einem von dem elektroaktiven Polymer durchdrungenen Stapel aus Elektrodengittern mit einer Generatorschaltung zusammenwirkt, wobei die Generatorschaltung eine Versorgungsbatterie, einen Zwischenkondensator als Zwischenspeicher und eine Steu- ereinheit aufweist. Die Steuereinheit überträgt abhängig vom Wellengang Ladungen auf den Zwischenkondensator beziehungsweise Zwischenspeicher und kann alternativ eine Ladebatterie aufladen und/oder eine Last speisen. Ein Verfahren zur Herstellung einer elektroaktive Polymerfolie mit einer Elektrode und einer Gegenelektrode eines Kondensators mit variabler Kapazität für einen Wellenenergie- transformer weist die folgenden Verfahrenschritte auf. Zunächst wird ein aushärtbarer elekt- roaktiver Polymer in fließfähigem viskosem Zustand bereitgestellt. Parallel kann bereits ein Stapeln von Elektrodengittern in mehreren Ebenen übereinander zu einem Elektrodengitter- Stapel erfolgen. Dann wird das aushärtbare elektroaktive Polymer in fließfähigem viskosem Zustand auf den Elektrodengitterstapel aufgebracht und der Elektrodengitterstapel mit dem aushärtbaren elektroaktiven Polymer in fließfähigem viskosen Zustand wird durchdrungen, so dass anschließend lediglich ein Aushärten des elektroaktiven Polymers unter Druck und Temperatur zu einer elektroaktiven Polymerfolie mit mehreren eingelagerten Elektrodenebe- nen aus Elektrodengittern erforderlich ist.
Dieses Verfahren hat nicht nur den Vorteil, dass ein hochflexibler Kondensator mit den Gitterelektroden aufgebaut werden kann, sondern bietet auch die Möglichkeit, dass derartige elektroaktive Kondensatoren mit variabler Kapazität und hoher Flexibilität preisgünstig her- gestellt werden können. Dazu werden als Elektrodengitter auch metallisch leitende Materialien eingesetzt wie beispielsweise feinkörnige Partikel aus Kohlenstoffpulver oder Metallpulver in einer derartigen Dichte einer entlang einer vorgegebnen Gitterstruktur, dass sie sich selbst bei einem Krümmen oder Verwölben des elektroaktiven Polymers ihren elektrischen Kontakt untereinander nicht verlieren.
Darüber hinaus ist es vorgesehen, dass als Elektrodengitter ein elektrisch leitendes Gewebe oder eine elektrisch leitende Matte aus Metallfasern, Kohlefasern oder amorphen Kohlefasern eingesetzt wird. Die Erfindung wird nun anhand der beigefügten Figuren näher erläutert. Figur 1 zeigt eine schematische perspektivische Teilansicht eines mechanisch flexiblen Kondensators für einen Wellenenergietransformer gemäß einer ersten Ausführungsform der Erfindung; Figur 2 zeigt eine schematische perspektivische Teilansicht eines mechanisch flexiblen Kondensators für einen Wellenenergietransformer gemäß einer zweiten Ausführungsform der Erfindung;
Figur 3 zeigt eine schematische perspektivische Teilansicht eines mechanisch flexib- len Kondensators für einen Wellenenergietransformer gemäß einer dritten
Ausführungsform der Erfindung;
Figur 4 zeigt eine schematische Darstellung eines Generators unter Einsatz eines der drei gezeigten Ausführungsformen für einen Wellenenergietransformer.
Figur 1 zeigt eine schematische perspektivische Teilansicht eines mechanisch flexiblen Kondensators 6 für einen Wellenenergietransformer gemäß einer ersten Ausführungsform der Erfindung. Dazu weist der mechanisch flexible Kondensator mehrere Ebenen von Gitterelektroden auf, wobei abwechselnd eine Elektrode 16 und eine Gegenelektrode 17 des Kondensators 6 in einer Matrix aus elektroaktiven Polymer 2 eingebettet sind. Die Elektroden 16 und Gegenelektroden 17 sind jeweils aus Querstreben 10 aufgebaut, die innerhalb der Ebenen verlaufen. Aufgrund der gitterförmigen Struktur der aufeinander gestapelten Elektroden 16 und 17 mit dazwischen angeordneten Schichten 8 aus zwischen den Elektrodengittern eingedrungenem elektroaktiven Polymer 2 ist es möglich, dass das Elektrodengitter 7 des Elekt- rodengitterstapels 1 1 den Dehnungen, Wölbungen und Biegungen des hochflexiblen elektroaktiven Polymermaterials 2 folgen kann.
In Figur 2 wird eine schematische perspektivische Teilansicht eines mechanisch flexiblen Kondensators 6 für einen Wellenenergietransformer einer zweiten Ausführungsform der Er- findung gezeigt. Von diesem Wellenenergietransformer sind drei Ebenen 12, 13 und 14 aus Gitterelektroden 7 derart übereinander ausgerichtet, dass ein elektroaktives Polymer 2 in einem fließfähigen viskosen Zustand diese drei Gitterelektroden 7 durchdringen kann und durchdringen wird und damit einen flexiblen Kondensator 6 auf der Basis von elektroaktivem Polymer 2 bilden kann. Die Gitterelektroden sind als Fasern 9 aufgebaut, die innerhalb der Ebenen 12, 13, 14 verlaufen.
Figur 3 zeigt eine schematische perspektivische Teilansicht eines mechanisch flexiblen Kon- densators 6 für einen Wellenenergietransformer einer dritten Ausführungsform der Erfindung. Diesmal ist zwischen zwei Schichten aus elektroaktiven Polymer 2 eine stark perforierte Metallfolie 15 angeordnet, so dass das fließfähige viskose elektroaktive Polymermaterial die Perforation der Metallfolie 15 durchdringen kann und damit eine formschlüssige Verbindung zu dem elektroaktiven Polymer auf der Oberseite und der Unterseite der perforierten Folie 15 schaffen kann.
Figur 4 zeigt eine schematische Darstellung eines Generators unter Einsatz eines der drei gezeigten Ausführungsformen für einen Wellenenergietransformer 1. Dazu ist der Wellenenergietransformer 1 an seinen beiden Enden 23 und 24 jeweils in Halterungen 21 und 22 eingespannt oder über Schrauben 25 fixiert und wird den Kräften des Wellenganges 27 ausgesetzt, indem mittels eines Schwimmkörpers 17 und eines Kopplungselements 18 die Bewegung der Wellen 19 auf den Wellenenergietransformer 1 übertragen werden.
Durch die Anordnung der in den vorhergehenden Figuren gezeigten Elektroden 16 und 17 ist es möglich, den Wellenenergietransformer 1 mit seiner Elektrode 16 und seiner Gegenelektrode 17 über entsprechende Stromleitungen 35 und 36 mit einer Generatorschaltung 28 zu verbinden. Die in einem Zyklus gewonnene Ladung kann über einen DC/DC-Wandler 41 in einer Ladebatterie 32 gespeichert werden. Außerdem ist es möglich über eine Leitung 34 von der Generatorschaltung 28 aus, einen Kondensator als Zwischenspeicher 30 mit den gewonnenen Ladungen aufzuladen.
Ferner ist die Generatorschaltung 28 auch mit einem Frequenzumformer 40 verbunden. Der Frequenzumformer 40 transformiert die niedrige Frequenz des Wellenganges 27 in eine Netzfrequenz, um beispielsweise einer Last 33 in einem Versorgungsnetz zu versorgen. Um derartige elektrische Ladungen mit Hilfe des Wellenenergietransformers 1 zu gewinnen, ist es notwendig, die einzelnen Phasen wie Entlastungsphase und Dehnungsphase des Wellenenergietransformers 1 mit einem Positionssensor 39 zu verbinden, der die variablen Positionen des verschieblich gelagerten Endes 24 erfasst und je nach Krümmung des flexiblen Kondensators 6 aus einer flachgewickelten elektroaktiven Polymerfolie die einzelnen Phasen wie Entspannungsphase und Dehnungsphase an eine Steuereinheit 31 signalisiert, die mit der Generatorschaltung 28 über eine Leitung 37 zusammenwirkt. Eine Versorgungsbatterie 29 sorgt für die Anfangsfeldstärke, die an den Wellenenergietransformer 1 aus elektroaktiven Polymer mit den Elektroden 16 und 17 zu legen ist.
Bezuqszeichenliste
1 Wellenenergietransformer
2 elektroaktives Polymer
3 elektroaktive Polymerfolie
4 Elektrode
5 Gegenelektrode
6 Kondensator
7 Elektrodengitter
8 Schicht
9 Faser
10 elektrisch leitende Folie
11 Elektrodengitterstapel
12 Ebene
13 Ebene
14 Ebene
15 Metallfolie
16 Elektrode
17 Gegenelektrode
18 Kopplungselement
19 Welle
20 Schwimmkörper
21 Halterung
22 Halterung
23 Ende
24 Ende
27 Wellengang
28 Generatorschaltung
29 Versorgungsbatterie
30 Zwischenkondensator oder Zwischenspeicher
31 Steuereinheit
32 Ladebatterie
33 Last Leitung
Stromleitung Stromleitung Leitung
Positionssensor 39 Frequenzumformer DC/DC-Wandler

Claims

Patentansprüche
1. Energietransformer mit elektroaktivem Polymer (2), wobei das Polymer (2) eine elekt- roaktive Polymerfolie (3) bildet, die eine Elektrode (4) und eine Gegenelektrode (5) eines mechanisch flexiblen Kondensators (6) aufweist, der aufgrund seiner mechanischen Flexibilität und des elektroaktiven Polymers (2) eine variable Kapazität bildet, dadurch gekennzeichnet, dass
die Elektrode (4) und die Gegenelektrode (5) jeweils ein ebenes Elektrodengitter (7) aus leitfähigem Material aufweisen, und wobei mehrere Elektrodengitter (7) von Elektrode (4) und Gegenelektrode (5) abwechselnd übereinander beabstandet gestapelt sind und von dem Material des elektroaktivem Polymers (2) durchdrungen sind und zwischen jeder Elektrode (4) und Gegenelektrode (5) eine Schicht (8) des elektroaktivem Polymers (2) vorhanden ist.
2. Energietransformer nach Anspruch 1,
dadurch gekennzeichnet,
dass die Elektrodengitter (7) eine gitterförmig perforierte elektrisch leitende Folie (10) aufweisen.
3. Energietransformer nach Anspruch 1 oder Anspruch 2,
dadurch gekennzeichnet,
dass die Elektrodengitter (7) Matten aus elektrisch leitenden Fasern (9) aufweisen.
4. Energietransformer nach Anspruch 1 oder Anspruch 2,
dadurch gekennzeichnet,
dass die Elektrodengitter (7) elektrisch leitende Gewebe aufweisen.
5. Energietransformer nach Anspruch 4,
dadurch gekennzeichnet,
dass das Gewebe Metallfasern (9) aufweist.
6. Energietransformer nach Anspruch 4,
dadurch gekennzeichnet, dass die Elektrodengitter (7) ein elektrisch leitendes Gewebe aus Kohlefasern aufweisen.
Energietransformer nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass die Elektrodengitter (7) ein elektrisch leitendes Gewebe aus amorphen Kohlefasern aufweisen.
Energietransformer nach Anspruch 1 oder Anspruch 2,
dadurch gekennzeichnet,
dass die Elektrodengitter (7) elektrisch leitende Matten aus elektrisch leitenden Kurzfasern aufweisen.
Energietransformer nach Anspruch 1 oder Anspruch 2,
dadurch gekennzeichnet,
dass die Elektrodengitter (7) elektrisch leitende Matten aus Metallfasem aufweisen.
0. Energietransformer nach Anspruch 1 oder Anspruch 2,
dadurch gekennzeichnet,
dass die Elektrodengitter (7) elektrisch leitende Matten aus Kohlefasern aufweisen.
1. Energietransformer nach Anspruch 1 oder Anspruch 2,
dadurch gekennzeichnet,
dass die Elektrodengitter (7) elektrisch leitende Matten aus amorphen Kohlefasern aufweisen.
2. Energietransformer nach einem der Ansprüche 1 bis 11 ,
dadurch gekennzeichnet,
dass die variable Kapazität des Kondensators (6) mit elektroaktiver Polymerfolie (3) aus einem von dem elektroaktiven Polymer (2) durchdrungenen Stapel aus Elektrodengittern (7) mit einer Generatorschaltung (28) zusammenwirkt, wobei die Generatorschaltung (28) eine Versorgungsbatterie (29), einen Zwischenkondensator (30) und eine Steuereinheit (31) aufweist, und wobei die Steuereinheit (31) abhängig vom Wellengang (27) Ladungen auf den Zwischenkondensator (30) überträgt und eine Ladebatterie (32) auflädt und/oder eine Last (33) speist.
3. Verfahren zur Herstellung einer elektroaktive Polymerfolie (2) mit einer Elektrode (4) und einer Gegenelektrode (5) eines Kondensators (6) mit variabler Kapazität für einen Energietransformer (1), das folgende Verfahrenschritte aufweist:
Bereitstellen eines aushärtbaren elektroaktiven Polymers (2) in fließfähigem viskosem Zustand;
Stapeln von Elektrodengittern (7) in mehreren Ebenen übereinander zu einem Elektrodengitterstapel (11);
Aufbringen des aushärtbaren elektroaktiven Polymers (2) in fließfähigem viskosem Zustand auf den Elektrodengitterstapel (11);
Durchdringen des Elektrodengitterstapels (11) mit dem aushärtbaren elektroaktiven Polymer (2) in fließfähigem viskosen Zustand;
Aushärten des elektroaktiven Polymers (2) unter Druck und Temperatur zu einer elektroaktiven Polymerfolie (3) mit mehreren eingelagerten Elektrodenebenen aus Elektrodengittern (7).
4. Verfahren nach Anspruch 13,
dadurch gekennzeichnet,
dass als Elektrodengitter (7) ein metallisch leitendes Material eingesetzt wird.
5. Verfahren nach Anspruch 13 oder Anspruch 14,
dadurch gekennzeichnet,
dass als Elektrodengitter (7) ein elektrisch leitendes Gewebe aus Metallfasern, Kohlefasern oder amorphen Kohlefasern eingesetzt wird.
PCT/EP2010/006547 2009-12-18 2010-10-27 Energietransformer mit elektroaktivem polymer WO2011072768A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10778856A EP2513990A1 (de) 2009-12-18 2010-10-27 Energietransformer mit elektroaktivem polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009059024A DE102009059024A1 (de) 2009-12-18 2009-12-18 Energietransformer mit elektroaktivem Polymer
DE102009059024.2 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011072768A1 true WO2011072768A1 (de) 2011-06-23

Family

ID=43638656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/006547 WO2011072768A1 (de) 2009-12-18 2010-10-27 Energietransformer mit elektroaktivem polymer

Country Status (3)

Country Link
EP (1) EP2513990A1 (de)
DE (1) DE102009059024A1 (de)
WO (1) WO2011072768A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157783A (zh) * 2013-05-14 2014-11-19 罗伯特·博世有限公司 用于能量变换器的混合膜
EP3291316A1 (de) * 2016-08-29 2018-03-07 The Boeing Company Aktoranordnungen, mechanische anordnungen mit den aktoranordnungen und verfahren zu deren herstellung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011080149A1 (de) 2011-07-29 2013-01-31 Robert Bosch Gmbh Kondensator mit druckabhängiger Kapazität und elektrische Maschine mit einem solchen Kondensator
DE102013205485A1 (de) 2012-04-27 2013-10-31 Magna Powertrain Ag & Co. Kg Antrieb mit eletroaktiven Polymeren
DE102013207207A1 (de) 2013-04-22 2014-11-06 Robert Bosch Gmbh Herstellung eines EAP-Stapels mittels Kaltgasspritzen
DE102013207213A1 (de) 2013-04-22 2014-11-06 Robert Bosch Gmbh Herstellung eines EAP-Stapels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410210A (en) * 1992-07-08 1995-04-25 Kureha Kagaku Kogyo Kabushiki Kaisha Piezoelectric device and process for production thereof
EP1212800A1 (de) 1999-07-20 2002-06-12 Sri International Verbesserte elektroaktive polymere
US20070257490A1 (en) 2006-05-05 2007-11-08 Sri International Wave powered generation using electroactive polymers
DE602004008639T2 (de) 2003-07-18 2008-06-12 Trident Energy Ltd. Verfahren zum betrieb eines selbstschützenden wellenenergieumwandlers
WO2010020242A2 (de) * 2008-08-20 2010-02-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aktorelement sowie seine verwendung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410210A (en) * 1992-07-08 1995-04-25 Kureha Kagaku Kogyo Kabushiki Kaisha Piezoelectric device and process for production thereof
EP1212800A1 (de) 1999-07-20 2002-06-12 Sri International Verbesserte elektroaktive polymere
DE602004008639T2 (de) 2003-07-18 2008-06-12 Trident Energy Ltd. Verfahren zum betrieb eines selbstschützenden wellenenergieumwandlers
US20070257490A1 (en) 2006-05-05 2007-11-08 Sri International Wave powered generation using electroactive polymers
WO2010020242A2 (de) * 2008-08-20 2010-02-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aktorelement sowie seine verwendung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157783A (zh) * 2013-05-14 2014-11-19 罗伯特·博世有限公司 用于能量变换器的混合膜
EP3291316A1 (de) * 2016-08-29 2018-03-07 The Boeing Company Aktoranordnungen, mechanische anordnungen mit den aktoranordnungen und verfahren zu deren herstellung
US10658565B2 (en) 2016-08-29 2020-05-19 The Boeing Company Actuator assemblies, mechanical assemblies including the actuator assemblies, and methods of fabricating the same
US11871673B2 (en) 2016-08-29 2024-01-09 The Boeing Company Methods of fabricating actuator assemblies

Also Published As

Publication number Publication date
DE102009059024A1 (de) 2011-06-22
EP2513990A1 (de) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2011072768A1 (de) Energietransformer mit elektroaktivem polymer
DE10153770A1 (de) Gestapelte piezoelektrische Vorrichtung und Verfahren zu deren Herstellung
DE102011080120A1 (de) Flexible Struktur zur Erzeugung elektrischer Energie aus Wellenbewegungen
EP2521193A1 (de) Elektromechanische Wandlereinrichtung
DE102011086256A1 (de) Wellenenergiewandler mit elektroaktiven Polymeren
EP2513991B1 (de) Elektroaktiver polymergenerator zur wandlung von mechanischer energie in elektrische energie
DE102013208791B4 (de) Hybridfolie für einen Energietransformer mit Verfahren zur Herstellung
WO2017129305A1 (de) Verbindersystem, batteriemodul, verfahren zum ausbilden eines abgriffes und betriebsvorrichtung
DE102010016499A1 (de) Flächige Piezogeneratormodule und Verfahren zu ihrer Herstellung
DE112015001881T5 (de) Photoelektrische Stromerzeugungsvorrichtung
EP2729902A1 (de) Tragbarer datenträger mit antenne
DE102017128016A1 (de) Batteriekern für ein Sandwichbauteil
DE202010001783U1 (de) Noppenelement
WO2011072769A1 (de) Generator zum wandeln von mechanischer energie in elektrische energie
DE102009011084A1 (de) Stationäre Energiegewinnungsanlage mit einer Einrichtung zur Dämpfung mechanischer Schwingungen
DE102018216835A1 (de) Batteriemodul und Kraftfahrzeug
DE102010018875A1 (de) Piezogenerator mit verschiedenen Piezoelementen und elektronische Schaltung
DE102009054035A1 (de) Energietransformer mit elektroaktivem Polymerfolienkörper
DE102021120046A1 (de) Piezoelektrische energiegewinnungsvorrichtung und verfahren
DE102012021621A1 (de) Vorrichtung und Verfahren zur Wandlung von Wellenenergie in elektrische Energie
EP2852988B1 (de) Generatoren aus elektroaktiven polymeren (eap) in differenzanordnung
EP3257090A1 (de) Piezoelektrischer generator, taster, funkmodul und verfahren zur herstellung eines piezoelektrischen generators
DE102017118310A1 (de) Elektrochemische Speichervorrichtung und als elektrochemische Speichervorrichtung ausgebildetes Faserverbundbauteil sowie Verfahren zu deren Herstellung
DE102020111570A1 (de) Verfahren zum Herstellen einer Traktionsbatterie für ein Kraftfahrzeug sowie entsprechende Herstellungsvorrichtung
EP3401154A1 (de) Fahrzeugseitige ladevorrichtung für induktives laden

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10778856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010778856

Country of ref document: EP