WO2011070464A2 - Système pour l'évaluation quantitative rapide et précise d'une lésion cérébrale traumatique - Google Patents

Système pour l'évaluation quantitative rapide et précise d'une lésion cérébrale traumatique Download PDF

Info

Publication number
WO2011070464A2
WO2011070464A2 PCT/IB2010/055246 IB2010055246W WO2011070464A2 WO 2011070464 A2 WO2011070464 A2 WO 2011070464A2 IB 2010055246 W IB2010055246 W IB 2010055246W WO 2011070464 A2 WO2011070464 A2 WO 2011070464A2
Authority
WO
WIPO (PCT)
Prior art keywords
interest
deformable model
anatomical structure
segmentation
polygons
Prior art date
Application number
PCT/IB2010/055246
Other languages
English (en)
Other versions
WO2011070464A3 (fr
Inventor
Lyubomir Georgiev Zagorchev
Elizabeth Anne Moore
Matthew A. Garlinghouse
Robert M. Roth
Thomas W. Mcallister
Reinhard Kneser
Dieter Geller
Jochen Peters
Juergen Weese
Yuechen Qian
Original Assignee
Koninklijke Philips Electronics N.V.
Philips Intellectual Property & Standards Gmbh
Trustees Of Dartmouth College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics N.V., Philips Intellectual Property & Standards Gmbh, Trustees Of Dartmouth College filed Critical Koninklijke Philips Electronics N.V.
Priority to EP10801697.3A priority Critical patent/EP2510500B1/fr
Priority to RU2012128871/08A priority patent/RU2565510C2/ru
Priority to BR112012013691A priority patent/BR112012013691A8/pt
Priority to CN201080055131.XA priority patent/CN102754125B/zh
Priority to US13/514,713 priority patent/US9256951B2/en
Priority to JP2012542644A priority patent/JP5736386B2/ja
Publication of WO2011070464A2 publication Critical patent/WO2011070464A2/fr
Publication of WO2011070464A3 publication Critical patent/WO2011070464A3/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/149Segmentation; Edge detection involving deformable models, e.g. active contour models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/24Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain

Definitions

  • Traumatic Brain Injury is one of the most common causes of long-term disability. Abnormality of several sub ⁇ cortical structures such as, for example, the corpus callosum, hippocampus, cerebellum, thalamus and caudate, have been associated with TBI. Thus, it is important to identify the neuropathology in individuals with TBI in 3D.
  • TBI Traumatic Brain Injury
  • a method for automatic segmentation performed by selecting a deformable model of an anatomical structure of interest imaged in a volumetric image, the deformable model formed of a plurality of polygons including vertices and edges, displaying the deformable model on a display, detecting a feature point of the anatomical structure of interest
  • a system having a processor selecting a deformable model of an anatomical structure of interest imaged in a volumetric image, the deformable model formed of a plurality of polygons including vertices and edges and a display displaying the deformable model, wherein the processor further detects a feature point of the anatomical structure of interest corresponding to each of the plurality of polygons to deform the deformable model by moving each of the vertices toward the corresponding feature points until the deformable model morphs to a boundary of the anatomical structure of interest, forming a segmentation of the anatomical structure of interest.
  • a computer-readable storage medium including a set of instructions executable by a processor.
  • the set of instructions operable to select a deformable model of an anatomical structure of interest imaged in a volumetric image, the deformable model formed of a plurality of polygons including vertices and edges, display the deformable member on a display, detect a feature point of the anatomical structure of interest corresponding to each of the plurality of polygons and adapt the deformable model by moving each of the vertices toward the corresponding feature points until the deformable model morphs to a boundary the anatomical structure of interest, forming a segmentation of the anatomical structure of interest.
  • FIG. 1 shows a schematic diagram of a system according to an exemplary embodiment.
  • FIG. 2 shows a flow diagram of a method according to an exemplary embodiment .
  • Fig. 3 shows a screenshot of a deformable brain model initialized in a volumetric image displayed on a GUI.
  • Fig. 4 shows a screenshot of the deformable brain model of Fig. 3 after it has been adapted to the volumetric image .
  • the exemplary embodiments may be further understood with reference to the following description and the appended drawings, wherein like elements are referred to with the same reference numerals.
  • the exemplary embodiments relate to a system and method for segmenting brain structures.
  • the exemplary embodiments generate a deformable model of the brain structure, which may be adapted to a
  • volumetric image such as an MRI .
  • MRI magnetic resonance imaging
  • system and method of the present invention may be used to segment any anatomical, 3-dimensional structure in a volumetric image such as, for example, an MRI and/or an ultrasound image.
  • a system 100 segments a 3D brain structure such as, for example, the corpus callosum, hippocampus, cerebellum, thalamus and caudate, of a volumetric image such as an MRI or an
  • the system 100 comprises a processor 102 that is capable of adapting a deformable model of the brain structure based on features of the structure in the image.
  • the deformable model is selected from a database of models stored in a memory 108.
  • a graphical user interface 104 is utilized to input user preferences to determine a volume of the brain structure, display a deformation of the brain structure, view a particular portion of the brain structure, etc.
  • Inputs associated with the graphical user interface are entered via, for example, a mouse, a touch display and/or a keyboard.
  • the segmentation of the brain structure, the volumetric image and user options of the graphical user interface 104 are displayed on a display 106.
  • the memory 108 may be any known type of computer-readable storage medium. It will be understood by those of skill in the art that the system 100 is, for example, a personal computer, a server or any other processing arrangement.
  • Fig. 2 shows a method 200 according to an exemplary embodiment, in which the system 100 segments a brain structure to identify deformations in the brain structure.
  • the method 200 includes selecting a deformable model of a brain structure of interest from a database of structure models stored in the memory 108, in a step 210.
  • the deformable model is automatically selected by the processor 102 by comparing features of the brain structure of interest in the volumetric image to the structure models in the database.
  • the deformable model is manually selected by the user browsing through the database to identify the deformable model that most closely resembles the brain structure of interest.
  • the database of structure models may include structure models from brain structure studies and/or segmentation results from previous patients.
  • the deformable model is displayed on the display 106, as shown in Fig. 3.
  • the deformable model is be displayed as a new image and/or displayed over the volumetric image.
  • the deformable model is formed of a surface mesh including a plurality of triangularly shaped polygons, each triangularly shaped polygon further including three vertices and edges. It will be understood by those of skill in the art, however, that the surface mesh may include polygons of other shapes.
  • the deformable model is positioned such that the vertices of the deformable model are positioned as closely as possible to a boundary of the structure of interest.
  • each of the triangular polygons is assigned an optimal boundary detection function.
  • the optimal boundary detection function detects feature points along a boundary of the
  • each of the triangular polygons is associated with a feature point, in a step 240.
  • the feature points may be associated with centers of each of the triangular polygons.
  • the feature point associated with each of the triangular polygons may be the feature point that is closest to the triangular polygon and/or corresponds to the triangular polygon in position.
  • each of the triangular polygons associated with a feature point is moved toward the associated feature point such that vertices of each of the triangular polygons are moved toward the boundary of the structure of interest, deforming the deformable model to adapt to the structure of the interest in the volumetric image.
  • the deformable model is deformed until a position of each of the triangular polygons corresponds to a position of the associated feature point and/or the vertices of the triangular polygon lie substantially along the boundary of the structure of interest, as shown in Fig. 4.
  • the deformable model has been adapted to the structure of interest such that the deformed deformable model represents a segmented structure of the structure of interest.
  • the user may enter a user input, in a step 260, regarding the segmented brain structure.
  • the user input may be entered via the
  • graphical user interface 104 electing a user option, which may be displayed on the graphical user interface 104.
  • the user may elect to enlarge and/or zoom into a particular portion of the displayed images, change a view of a particular image, determine parameters of interest (e.g., segmented structure volume, curvature at a point), identify a deformation in the segmented structure, etc.
  • Other options may include storing the segmented structure and/or the corresponding volumetric images in the database of deformable models or recalling previously stored segmented structures from the database for comparison purposes. It will be understood by those of skill in the art that the segmented structures and/or corresponding volumetric images may also be stored within patient files to facilitate analysis of structural atrophy in TBI patients.
  • the user may desire to determine the volume and/or curvature of the segmented structure to assess changes in the brain region.
  • Such parameters may be especially useful in linking a patient's past exposure to TBI to current sustained complaints, deficits and disability.
  • healthy brain structures are known to be symmetrical with respect to the mid- sagittal plane such that the left and right hemispheres of the brain are mirror images of one another.
  • a vertex in one hemisphere of the brain - in the left hemisphere, for example - should be mirrored in the other hemisphere - the right hemisphere.
  • TBI is a mostly asymmetrical disease.
  • deviations from mean vertex values represent variances that indicate a severity of deformation of brain structures of interest.
  • the user may therefore elect to view the deviations from mean vertex values of the segmented structure.
  • different deviations may be color-coded for easy visualization and interpretation of results .
  • a step 270 the processor 102 generates a response to the user input entered in the step 260. For example, if the user has requested the segmented structure volume, the processor 102 will calculate the volume and display the volume on the display 106. If the user has indicated the user would like to enlarge a particular portion of the volumetric image and/or segmented organ, the processor 102 will generate and display an enlarged view of the particular portion desired. In another example, if the user has indicated that the user would like to identify deformations in the segmented structure, the processor 102 will identify a mid-sagittal plane, identify deviations in mean vertex values between the left and right hemispheres and display the deformations on the display 106. As described above, the different deviations may be color-coded. The steps 260 - 270 may be repeated as desired, until the user has elected all desired options in regard to the segmented structure of the brain .

Abstract

L'invention concerne un système et un procédé de segmentation automatique, mis en œuvre par sélection d'un modèle déformable d'une structure anatomique d'intérêt dont une image volumétrique est produite, le modèle déformable étant formé d'une pluralité de polygones comprenant des sommets et des arêtes, affichage du modèle déformable sur un écran, détection d'un point caractéristique de la structure anatomique d'intérêt correspondant à chacun des polygones de la pluralité et adaptation du modèle déformable en déplaçant chaque sommet vers les points caractéristiques correspondants jusqu'à ce que le modèle déformable devienne par morphose une frontière de la structure anatomique d'intérêt, en formant une segmentation de la structure anatomique d'intérêt.
PCT/IB2010/055246 2009-12-10 2010-11-17 Système pour l'évaluation quantitative rapide et précise d'une lésion cérébrale traumatique WO2011070464A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10801697.3A EP2510500B1 (fr) 2009-12-10 2010-11-17 Système pour l'évaluation quantitative rapide et précise d'une lésion cérébrale traumatique
RU2012128871/08A RU2565510C2 (ru) 2009-12-10 2010-11-17 Система для быстрой и точной количественной оценки черепно-мозговой травмы
BR112012013691A BR112012013691A8 (pt) 2009-12-10 2010-11-17 Método para segmentação automática e sistema
CN201080055131.XA CN102754125B (zh) 2009-12-10 2010-11-17 用于创伤性脑损伤的快速精确定量评估的系统
US13/514,713 US9256951B2 (en) 2009-12-10 2010-11-17 System for rapid and accurate quantitative assessment of traumatic brain injury
JP2012542644A JP5736386B2 (ja) 2009-12-10 2010-11-17 外傷性脳損傷の迅速かつ正確な定量的評価システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28521609P 2009-12-10 2009-12-10
US61/285,216 2009-12-10

Publications (2)

Publication Number Publication Date
WO2011070464A2 true WO2011070464A2 (fr) 2011-06-16
WO2011070464A3 WO2011070464A3 (fr) 2011-08-04

Family

ID=44022012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/055246 WO2011070464A2 (fr) 2009-12-10 2010-11-17 Système pour l'évaluation quantitative rapide et précise d'une lésion cérébrale traumatique

Country Status (7)

Country Link
US (1) US9256951B2 (fr)
EP (1) EP2510500B1 (fr)
JP (1) JP5736386B2 (fr)
CN (1) CN102754125B (fr)
BR (1) BR112012013691A8 (fr)
RU (1) RU2565510C2 (fr)
WO (1) WO2011070464A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139937A1 (fr) * 2014-03-21 2015-09-24 Koninklijke Philips N.V. Appareil et procédé de traitement d'image pour segmenter une région d'intérêt
JP2016524126A (ja) * 2013-03-28 2016-08-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. スキャン画像における非対称性を削減する方法及びシステム
WO2016169903A1 (fr) * 2015-04-23 2016-10-27 Koninklijke Philips N.V. Segmentation basée sur un modèle d'une structure anatomique
US11101025B2 (en) * 2017-12-01 2021-08-24 Siemens Healthcare Gmbh Providing a patient model of a patient

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012013691A8 (pt) * 2009-12-10 2017-11-07 Dartmouth College Método para segmentação automática e sistema
EP2522279A4 (fr) * 2010-01-07 2016-11-30 Hitachi Ltd Dispositif de diagnostic à image médicale, et procédé d'extraction et de traitement du contour d'une image médicale
CN104414680B (zh) * 2013-08-21 2017-06-13 深圳迈瑞生物医疗电子股份有限公司 一种三维超声成像方法及系统
CN106102585B (zh) 2015-02-16 2019-07-09 深圳迈瑞生物医疗电子股份有限公司 三维成像数据的显示处理方法和三维超声成像方法及系统
AU2017305228B2 (en) 2016-08-01 2022-06-30 Cordance Medical Inc. Ultrasound guided opening of blood-brain barrier
WO2018127499A1 (fr) 2017-01-06 2018-07-12 Koninklijke Philips N.V. Identification de malformation corticale
CN109620407B (zh) 2017-10-06 2024-02-06 皇家飞利浦有限公司 治疗轨迹引导系统
US11288803B2 (en) * 2017-10-09 2022-03-29 Koninklijke Philips N.V. Ablation result validation system
WO2019180120A1 (fr) 2018-03-21 2019-09-26 Koninklijke Philips N.V. Système de validation et d'augmentation de rapport de radiologie médicale
US20210004624A1 (en) 2018-03-21 2021-01-07 Koninklijke Philips N.V. Incidental finding augmentation system for medical radiology
CN112154515A (zh) 2018-03-21 2020-12-29 皇家飞利浦有限公司 神经检查系统
CN112534288A (zh) * 2018-07-30 2021-03-19 皇家飞利浦有限公司 功能性磁共振成像系统和方法
WO2020148247A2 (fr) 2019-01-14 2020-07-23 Koninklijke Philips N.V. Réduction à la baisse spécifique au compartiment d'une conductivité haute fréquence à une conductivité basse fréquence pour eeg
US11222467B2 (en) 2019-09-19 2022-01-11 Prevu3D Technologies Inc. Methods and systems for extracting data from virtual representation of three-dimensional visual scans

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920319A (en) * 1994-10-27 1999-07-06 Wake Forest University Automatic analysis in virtual endoscopy
JP3111024B2 (ja) 1995-07-19 2000-11-20 キヤノン株式会社 カラーフィルタの製造装置及び製造方法及び表示装置の製造方法及び表示装置を備えた装置の製造方法
US6483506B1 (en) * 2000-07-20 2002-11-19 Sony Corporation System and method for generating computer animated graphical images of a vascular structure attached to an anatomical structure
US7538764B2 (en) * 2001-01-05 2009-05-26 Interuniversitair Micro-Elektronica Centrum (Imec) System and method to obtain surface structures of multi-dimensional objects, and to represent those surface structures for animation, transmission and display
FI1383572T4 (fi) * 2001-05-04 2023-10-09 Laitteisto ja menetelmät transkraniaalisen magneettistimulaation tuottamiseksi
US20030036083A1 (en) 2001-07-19 2003-02-20 Jose Tamez-Pena System and method for quantifying tissue structures and their change over time
US20030160786A1 (en) * 2002-02-28 2003-08-28 Johnson Richard K. Automatic determination of borders of body structures
RU2291488C9 (ru) * 2002-06-24 2007-04-20 Ренат Анатольевич Красноперов Способ стереологического исследования структурной организации объектов
US8050469B2 (en) 2002-07-19 2011-11-01 Koninklijke Philips Electronics Automated measurement of objects using deformable models
JP4558645B2 (ja) * 2003-04-04 2010-10-06 株式会社日立メディコ 画像表示方法及び装置
EP1638459A2 (fr) * 2003-06-11 2006-03-29 Case Western Reserve University Conception assistee par ordinateur d'implants du squelette
DE10357203B4 (de) 2003-12-08 2018-09-20 Siemens Healthcare Gmbh Verfahren und Steuereinrichtung zum Betrieb eines Magnetresonanztomographie-Geräts sowie Magnetresonanztomographie-Gerät
US8280482B2 (en) 2004-04-19 2012-10-02 New York University Method and apparatus for evaluating regional changes in three-dimensional tomographic images
US7426318B2 (en) * 2004-06-30 2008-09-16 Accuray, Inc. Motion field generation for non-rigid image registration
US7231076B2 (en) * 2004-06-30 2007-06-12 Accuray, Inc. ROI selection in image registration
CN1814323B (zh) * 2005-01-31 2010-05-12 重庆海扶(Hifu)技术有限公司 一种聚焦超声波治疗系统
KR100680232B1 (ko) 2005-04-20 2007-02-08 이화여자대학교 산학협력단 뇌질환의 진단보조를 위한 뇌 해마 분석 방법 및 그 방법이수록되어 컴퓨터로 읽을 수 있는 기록매체
US20060277466A1 (en) * 2005-05-13 2006-12-07 Anderson Thomas G Bimodal user interaction with a simulated object
US7680312B2 (en) 2005-07-13 2010-03-16 Siemens Medical Solutions Usa, Inc. Method for knowledge based image segmentation using shape models
WO2007057845A1 (fr) 2005-11-18 2007-05-24 Koninklijke Philips Electronics N.V. Procede de delimitation de structures predeterminees dans des images en 3d
WO2007084456A2 (fr) * 2006-01-13 2007-07-26 Vanderbilt University Systeme et procedes de stimulation du cerveau profond pour patients post-operatoires
US20090220136A1 (en) * 2006-02-03 2009-09-03 University Of Florida Research Foundation Image Guidance System for Deep Brain Stimulation
WO2008152555A2 (fr) 2007-06-12 2008-12-18 Koninklijke Philips Electronics N.V. Segmentation de données d'image guidée par l'anatomie
US8135189B2 (en) * 2007-10-03 2012-03-13 Siemens Medical Solutions Usa, Inc. System and method for organ segmentation using surface patch classification in 2D and 3D images
JP2011504115A (ja) * 2007-10-18 2011-02-03 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル 1つの画像データからの解剖学的構造を含む対象物のモデルの領域を、診断的又は治療的介入に用いられる画像にマッピングするための方法、そのシステム及びコンピューター読み取り可能な媒体
WO2009065079A2 (fr) 2007-11-14 2009-05-22 The Regents Of The University Of California Alignement longitudinal de l'anatomie en imagerie par résonance magnétique
US20090128553A1 (en) * 2007-11-15 2009-05-21 The Board Of Trustees Of The University Of Illinois Imaging of anatomical structures
US8160345B2 (en) * 2008-04-30 2012-04-17 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
JP5562598B2 (ja) * 2008-10-24 2014-07-30 株式会社東芝 画像表示装置、画像表示方法および磁気共鳴イメージング装置
JP5859431B2 (ja) * 2009-06-08 2016-02-10 エムアールアイ・インターヴェンションズ,インコーポレイテッド 準リアルタイムで可撓性体内装置を追跡し、動的視覚化を生成することができるmri誘導介入システム
BR112012013691A8 (pt) * 2009-12-10 2017-11-07 Dartmouth College Método para segmentação automática e sistema

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524126A (ja) * 2013-03-28 2016-08-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. スキャン画像における非対称性を削減する方法及びシステム
JP2019088906A (ja) * 2013-03-28 2019-06-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 非対称性削減方法
WO2015139937A1 (fr) * 2014-03-21 2015-09-24 Koninklijke Philips N.V. Appareil et procédé de traitement d'image pour segmenter une région d'intérêt
JP2017507754A (ja) * 2014-03-21 2017-03-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 関心領域を区分化するための画像処理機器及び方法
US10043270B2 (en) 2014-03-21 2018-08-07 Koninklijke Philips N.V. Image processing apparatus and method for segmenting a region of interest
WO2016169903A1 (fr) * 2015-04-23 2016-10-27 Koninklijke Philips N.V. Segmentation basée sur un modèle d'une structure anatomique
CN107567638A (zh) * 2015-04-23 2018-01-09 皇家飞利浦有限公司 对解剖结构的基于模型的分割
US20180137626A1 (en) * 2015-04-23 2018-05-17 Koninklijke Philips N.V. Model-based segmentation of an anatomical structure
JP2018512956A (ja) * 2015-04-23 2018-05-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 解剖学的構造のモデルベースのセグメント化
RU2721078C2 (ru) * 2015-04-23 2020-05-15 Конинклейке Филипс Н.В. Сегментация анатомической структуры на основе модели
CN107567638B (zh) * 2015-04-23 2021-10-15 皇家飞利浦有限公司 对解剖结构的基于模型的分割
US11101025B2 (en) * 2017-12-01 2021-08-24 Siemens Healthcare Gmbh Providing a patient model of a patient

Also Published As

Publication number Publication date
CN102754125A (zh) 2012-10-24
WO2011070464A3 (fr) 2011-08-04
CN102754125B (zh) 2016-05-25
BR112012013691A8 (pt) 2017-11-07
BR112012013691A2 (pt) 2017-10-10
JP5736386B2 (ja) 2015-06-17
RU2565510C2 (ru) 2015-10-20
EP2510500A2 (fr) 2012-10-17
US9256951B2 (en) 2016-02-09
EP2510500B1 (fr) 2017-08-02
RU2012128871A (ru) 2014-01-20
JP2013513409A (ja) 2013-04-22
US20120327075A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
US9256951B2 (en) System for rapid and accurate quantitative assessment of traumatic brain injury
US10460204B2 (en) Method and system for improved hemodynamic computation in coronary arteries
US9826896B2 (en) Image processing apparatus, image processing method, and storage medium
CN102245082B (zh) 图像处理装置、其控制方法和图像处理系统
JP2013066632A (ja) 医用画像処理装置、医用画像処理方法、プログラム
EP3025303B1 (fr) Segmentation de données d'images à partir de plusieurs modalités
EP3657435A1 (fr) Appareil permettant d'identifier des régions dans une image du cerveau
US20160019706A1 (en) Image processing apparatus, image processing method, and storage medium
JP5833578B2 (ja) 神経精神医学障害に関する規範的なデータセット
JPWO2016159379A1 (ja) 血管形状構築装置、その方法及びコンピュータソフトウエアプログラム
Hameeteman et al. Carotid wall volume quantification from magnetic resonance images using deformable model fitting and learning-based correction of systematic errors
JP2007312837A (ja) 領域抽出装置、領域抽出方法およびプログラム
JP4910478B2 (ja) モデリング装置、モデリング方法およびプログラム
US20160306023A1 (en) System for measuring cortical thickness from mr scan information
JP2017189394A (ja) 情報処理装置および情報処理システム
Martínez-Mera et al. Automatic characterization of thoracic aortic aneurysms from CT images
KR20180097037A (ko) 관상동맥의 시작점을 자동으로 추출하기 위한 방법 및 그 장치
JP2010525858A (ja) 対称な解剖学的構造の自動表示
Zhao et al. Quantitative analysis of two-phase 3D+ time aortic MR images
JP2021030048A (ja) 経路決定方法、医用画像処理装置、モデル学習方法及びモデル学習装置
JP2021086260A (ja) 画像処理装置、画像処理方法、及びプログラム
CN116802684A (zh) 分段形状确定
JP2021086263A (ja) 画像処理装置、画像処理方法、及びプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055131.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10801697

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010801697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010801697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012542644

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13514713

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5139/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012128871

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012013691

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012013691

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120606