WO2011069904A2 - Procédé et dispositifs pour la compensation des champs perturbateurs affectant les signaux de capteurs dans une direction assistée électrique - Google Patents

Procédé et dispositifs pour la compensation des champs perturbateurs affectant les signaux de capteurs dans une direction assistée électrique Download PDF

Info

Publication number
WO2011069904A2
WO2011069904A2 PCT/EP2010/068826 EP2010068826W WO2011069904A2 WO 2011069904 A2 WO2011069904 A2 WO 2011069904A2 EP 2010068826 W EP2010068826 W EP 2010068826W WO 2011069904 A2 WO2011069904 A2 WO 2011069904A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sinusoidal
sensor
compensation
sin2
Prior art date
Application number
PCT/EP2010/068826
Other languages
German (de)
English (en)
Other versions
WO2011069904A3 (fr
Inventor
Rainer Wöger
Rainer Biegert
Original Assignee
Zf Lenksysteme Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Lenksysteme Gmbh filed Critical Zf Lenksysteme Gmbh
Publication of WO2011069904A2 publication Critical patent/WO2011069904A2/fr
Publication of WO2011069904A3 publication Critical patent/WO2011069904A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2448Correction of gain, threshold, offset or phase control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the invention relates to a method for compensation field compensation according to the preamble of claim 1 and an operating according to the method electronic circuit which is connectable to a sensor arrangement for determining an absolute steering angle and / or torque. Furthermore, the invention relates to a control device and an electric power steering system, which are equipped with such a circuit.
  • the Hall sensors are assigned to a common and with respect to a rotation axis radially or frontally arranged magnetic field generator ring having a magnetic north pole and south pole existing pole pair.
  • each pole is provided with a half sinusoidal magnetization corresponding to a wavelength, wherein the field generator ring consists of a magnetizable material whose magnetization is artificially introduced.
  • the object of the invention is to propose a method and then working device for interfering field compensation.
  • an electronic circuit for r Störfeld compensation to be proposed or in a Sensoranord n ung to achieve a Störfeldkompensiertator determination of steering angles and / or torques in such a power steering system.
  • a compensation signal which is generated by adding two frequency-identical sinusoidal signals, these signals being derived from drive currents of an electric motor mounted in the electric power steering system.
  • two sinusoidal drive currents of a multi-phase induction motor are used. The selection of the two drive currents takes place as a function of which different phase positions the sinusoidal signals (input signals) should have, in order to generate them
  • Compensation signal (output signal) to achieve the desired phase position.
  • the association is preferably stored in a look-up table.
  • the invention thus utilizes the already existing drive currents of the electric motor to derive two sinusoidal, frequency-equal, but phase-different input signals, from which then by means of addition a compensation signal desired amplitude and phase angle is generated. Since the two input signals (two individual sinusoidal signals) are derived from drive currents which are shifted by a fixed phase, for example by 30 degrees, it is advantageous if the two sinusoidal signals are added in a factorized manner, thus providing a sum signal with one for the compensation to form the desired phase position. By further factoring, the amplitude of the sum signal is normalized to a desired amount. This factored
  • Sum signal forms the compensation signal, with which the disturbed sensor signal is applied, this is preferably done by the compensation signal is subtracted from the sensor signal to finally obtain a compensated sensor signal.
  • a compensation signal with predeterminable phase position and amplitude can be formed very effectively and with very little computational complexity.
  • an electronic circuit operating according to the method for connection to a sensor arrangement (sensor system), as well as a control unit equipped therewith for an electric power steering system.
  • an electric power steering system equipped therewith is proposed.
  • Fig. 1 shows the structure of an electric power steering system, in which a circuit according to the invention is installed;
  • Fig. 2 shows the structure of the circuit which is connected to a sensor and performs an interference field compensation to the sensor signal
  • Fig. 3 shows a flow chart for a method according to the invention, which executes the circuit for interference field compensation
  • Fig. 4 relates to a step of the method and illustrates an addition or superposition of two equal frequency sinusoidal signals to a sinusoidal sum signal
  • Fig. 5 refers to a further step of the method
  • Fig. 6 refers to a further step of the method
  • Fig. 7 relates to a further step of the method
  • Fig. 8 relates to a further step of the method
  • He and Fig. Power Steering 1 (also known as electric power steering) for a vehicle in which a rack 2 arranged in an axially displaceable manner is arranged in a steering housing.
  • a rack 2 arranged in an axially displaceable manner is arranged in a steering housing.
  • a pinion 3 meshes a, which is operatively connected to a steering shaft or steering column 4, via which the steering force applied by the driver is transmitted.
  • an electric motor EM is provided, which is controlled by means of an electronic control unit ECU and a downstream power unit PU.
  • the electric motor EM is, for example, a brushless DC motor (BLDC motor), which is designed as a DC-operated multi-phase AC motor (AC motor) and acts on the rack 2 via a pinion to assist the servo.
  • BLDC motor brushless DC motor
  • AC motor DC-operated multi-phase AC motor
  • a control unit SAN upstream of the control unit ECU is used, which, for. B.
  • magento-resistive sensors and / or Hall sensors may include, in particular, detect the rotor position of the electric motor and transmitted as a sensor signal HS to the control unit ECU or to an electrical circuit located therein ESK.
  • the sensor assembly is in proximity to the power lines through which the drive currents flow to the electric motor.
  • control signals CS are fed to the power stage PU upstream of the electric motor EM, which is also referred to herein as a ballast and contains controllable power semiconductors. These then generate e.g. three drive currents lu, Iv and Iw for the electric motor EM, so for each phase a sinusoidal drive current (see also Fig. 8).
  • the sensor signals HS should be as accurate as possible and undisturbed.
  • the invention is based on the recognition that the sensor signals coming from the sensor arrangement SAN or the sensors mounted therein (eg MR or Hall) can be severely disturbed. Investigations by the inventor have shown that, in particular, nth-order disturbances occur in the sensor signal HS, where n corresponds to the pole-pair number of the electric motor EM.
  • an electronic circuit ESK is used in the control unit ECU, which will be described in more detail below.
  • the invention is also based on the knowledge that the required compensation signal KS can be generated by superposition of two sinusoidal signals, for which purpose it is possible to make use of the already existing sinusoidal signals with which the electric motor is energized, that is to say that the already existing drive currents can be used.
  • FIG. 2 shows the structure of an arrangement comprising a sensor or sensor array SAN and an associated electronic circuit ESK for the interference field compensation of sensor signals generated by the sensor.
  • ESK electronic circuit
  • the sensor SAN is arranged on the rotor shaft of the electric motor and has a magneto-resistive sensor and two Hall sensors, which are each offset by 90 degrees.
  • a field sensor ring is arranged radially or frontally, which has a pole pair with a magnetic north pole and a magnetic south pole. This may be e.g. to act a magnetized disc (magnetic tablet).
  • FIG. 3 shows a flow diagram for a method for interference field compensation, according to which the circuit ECU operates or is designed.
  • two of the drive currents in this case Iu and Iv, are fed into the circuit ESK, each of which represents a sine signal sin1 or sin2. This is done in step 1 10 of the method 100 (see Fig. 3).
  • the use of own sine generators can therefore be dispensed with.
  • the sinusoidal signals derived from the drive currents Iu and Iv have the same frequency f0, but have different phase angles (see also FIG. In the consideration of the fourth order of a three-phase system shown here, the sin ussignals u m obtained from the drive currents are each shifted 30 degrees to each other. If e.g.
  • the signals lu and Iv it can be generated by the circuit ESK a compensation signal KS whose phase angle is between 0 and 30 degrees (range 1 in Fig. 8). If the phase position of KS or HS 'are in the range between 30 and 60 degrees, the signals Iv and Iw should be supplied to the circuit ESK, etc .. In order to obtain the desired phase position for the compensation signal KS, so is a selection of made two drive currents, which are assigned to the corresponding area (see Fig. 8), ie whose zero crossings are at the beginning or at the end of the respective range. The table TAB is used for this. Depending on the area in which the desired phase angle (reference angle of HS 'or KS) should lie, the two matching drive currents are selected on the basis of this assignment table TAB, and consequently the two matching sinusoidal signals sin1 and sin2 are provided.
  • the superimposition of two frequency-identical sinusoidal signals (sin1 and sin2) carried out by the circuit ESK to a resulting sinusoidal signal (compensation signal KS) is illustrated.
  • the signal sin1 has the phase position zero and the signal sin2 is leading and, for example, around -60 Degrees shifted. Addition of both signals results in a sum signal sin1 + sin2 which also corresponds to a sinusoidal signal which has the same frequency but whose amplitude and phase position result from the superimposition of the two signals sin1 and sin2.
  • the amplitude can be greater than any single amplitude.
  • the phase position in turn, can assume any value between the phase positions of the individual signals, that is to say between -60 and 0 degrees in the example shown.
  • the amplitudes of the input signals sin1 and sin2 are normalized to the value one. Due to the superimposition, a phase angle of -30 degrees results for the sum signal sin1 + sin2. If the input signals (individual signals) sin1 and sin2 are each multiplied by a pre-factor F1 or F2 and then added together, the following applies to the phase position of the resulting sum signal:
  • the factorization is realized in the circuit ESK by corresponding multipliers M1 and M2, respectively (see Fig. 2 and step 120 in Fig. 3)
  • the amplitude can be calculated using the following formula:
  • FIG. 7 shows these relationships using the example of a function value to be calculated.
  • the signal can be normalized such that its amplitude has the value one for all shifts.
  • the inverse value 1 / A corresponds to the normalization factor F3.
  • Compensation signal KS is then subtracted from the noisy sensor signal HS, resulting in the suppressed sensor signal HS 'results (see Fig.2 and step 150 in Figure 3).
  • the phase angle can be limited by subtracting all multiples of 90 degrees to a range of 0 to 90 degrees.
  • FIG. 8 and the table TAB below illustrate this.
  • the corresponding Phase currents used for signal generation see also TAB in Fig. 2 and step 1 10 in Fig. 3).
  • the signal to be generated need only be shifted in a range of 0 to 30 degrees.
  • an arbitrarily shifted sinusoidal signal having the same order as that of the generated sinusoidal signals sin1 and sin2 can be generated, wherein the amplitude can be normalized to one.
  • the relationship between the amplitude of the phase current and the amplitude of the interference signal must be determined. This can e.g. metrologically or by means of a simulation. The relationship between phase current and noise amplitude is determined by the
  • a compensation signal KS be generated essentially by a factorized addition of two sinusoidal signals sin1 and sin2. It is exploited that the addition of phase-shifted sine signals with the same frequency, again give a sinusoidal signal with this frequency. If the signals sin1 and sin2 are multiplied by factors before addition, here with F1 or F2, then the phase position of the resulting sine signal (at the output of the adder A1) can be shifted. If this sinusoidal signal is then multiplied by a factor F3, the result is a sinusoidal compensation signal KS with a predefinable phase position and with a normalized amplitude that has been optimized for the interference field.
  • circuit ESK shown in FIG. 2 three multiplication stages and two adder stages are shown by way of example.
  • the realization may e.g. be implemented by an application-specific integrated circuit (ASIC), which is integrated approximately in the control unit ECU for the engine of an electric steering.
  • ASIC application-specific integrated circuit
  • the invention may also be implemented by means of a programmed microcontroller or the like.
  • This sum signal is then multiplied by a factor F3, which corresponds to both the amplitude normalization and adaptation to the interference field, in order finally to obtain a sinusoidal compensation signal KS with a predefinable phase position and with normalized and optimized to the interference field amplitude.
  • the compensation signal KS is then disturbed by the
  • N S north or south pole (field ring)
  • ECU control unit with:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

L'invention concerne un procédé et des dispositifs l'utilisant, en particulier un circuit (ESK) qui produit un signal de compensation (KS) par une addition factorisée de deux signaux sinusoïdaux (sin1, sin2). On exploite ainsi le fait que, sur les directions assistées électriques, on dispose déjà de courants sinusoïdaux d'entraînement (Iu, Iv, Iw) et que l'addition de signaux sinusoïdaux déphasés de même fréquence donne à nouveau un signal sinusoïdal de même fréquence. Les signaux (sin1, sin2) sont multipliés avant l'addition par des facteurs (F1, F2), ce qui décale la phase du signal sinusoïdal résultant ou du signal total à la sortie de l'additionneur (A1). Ce signal total est ensuite multiplié par un facteur (F3) qui correspond aussi bien à la normalisation d'amplitude qu'à l'adaptation au champ perturbateur, pour obtenir enfin un signal de compensation sinusoïdal (KS) de phase prédéterminée et d'amplitude normalisée et optimisée pour le champ perturbateur. Le signal de compensation (KS) est ensuite soustrait du signal de capteur (HS) perturbé.
PCT/EP2010/068826 2009-12-08 2010-12-03 Procédé et dispositifs pour la compensation des champs perturbateurs affectant les signaux de capteurs dans une direction assistée électrique WO2011069904A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009047633.4 2009-12-08
DE102009047633.4A DE102009047633B4 (de) 2009-12-08 2009-12-08 Verfahren und Vorrichtungen zur Störfeldkompensation von Sensorsignalen in einer elektrischen Hilfskraftlenkung

Publications (2)

Publication Number Publication Date
WO2011069904A2 true WO2011069904A2 (fr) 2011-06-16
WO2011069904A3 WO2011069904A3 (fr) 2011-10-13

Family

ID=43972002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/068826 WO2011069904A2 (fr) 2009-12-08 2010-12-03 Procédé et dispositifs pour la compensation des champs perturbateurs affectant les signaux de capteurs dans une direction assistée électrique

Country Status (2)

Country Link
DE (1) DE102009047633B4 (fr)
WO (1) WO2011069904A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012016287A1 (de) 2012-08-16 2014-02-20 Volkswagen Ag Verfahren zum Bestimmen einer Drehposition einer Welle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2991712B1 (fr) 2012-06-06 2014-07-04 Faurecia Sys Echappement Dispositif de generation d'ammoniac
DE102015117504A1 (de) 2015-10-15 2017-04-20 Robert Bosch Automotive Steering Gmbh Verfahren zum Betreiben eines Lenksystems eines Kraftfahrzeugs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818799C2 (de) 1997-12-20 1999-12-23 Daimler Chrysler Ag Verfahren und Vorrichtung zum Messen von Winkeln
DE102007011675A1 (de) 2006-12-22 2008-06-26 Zf Lenksysteme Gmbh Lenkwinkel- und Drehmomentsensor in einer Hilfskraftlenkung eines Kraftfahrzeugs

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646496A (en) * 1994-11-08 1997-07-08 Dana Corporation Apparatus and method for generating digital position signals for a rotatable shaft
JP3630410B2 (ja) * 2001-05-22 2005-03-16 三菱電機株式会社 位置検出装置および異常検出装置
US7382295B2 (en) * 2003-11-04 2008-06-03 Nsk Ltd. Control unit for electric power steering apparatus
DE102004045934B4 (de) * 2004-09-22 2008-01-31 Siemens Ag Sensoreinrichtung
US7579799B2 (en) * 2006-01-17 2009-08-25 Raytheon Company System and method for determining angular position and controlling rotor orientation
DE102007040912A1 (de) * 2007-08-30 2009-03-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Aufbereitung eines eine fahrdynamische Kenngröße wiedergebenden zeitlichen Signalverlaufs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818799C2 (de) 1997-12-20 1999-12-23 Daimler Chrysler Ag Verfahren und Vorrichtung zum Messen von Winkeln
DE102007011675A1 (de) 2006-12-22 2008-06-26 Zf Lenksysteme Gmbh Lenkwinkel- und Drehmomentsensor in einer Hilfskraftlenkung eines Kraftfahrzeugs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012016287A1 (de) 2012-08-16 2014-02-20 Volkswagen Ag Verfahren zum Bestimmen einer Drehposition einer Welle

Also Published As

Publication number Publication date
WO2011069904A3 (fr) 2011-10-13
DE102009047633B4 (de) 2020-10-08
DE102009047633A1 (de) 2011-06-09

Similar Documents

Publication Publication Date Title
EP3296701B1 (fr) Dispositif de détection destiné à déterminer la position du rotor d'une machine électrique et organe de commande pour un moteur électrique
DE102017100762B4 (de) Winkelgeber-phasenausgleich
DE102011055000A1 (de) Drehwinkelerfassungseinrichtung und elektrische Lenkhilfevorrichtung, welche dieselbe verwendet
EP2332249B1 (fr) Détermination de l'angle de rotor d'une machine synchrone à l'arrêt à l'aide d' impulsions de test itératives
DE102019115787B3 (de) Verfahren zur Ermittlung des Winkels des Rotors eines Elektromotors, Steuergerät sowie Fahrzeug
WO2019001811A1 (fr) Système de détection pour déterminer au moins une propriété de rotation d'un élément en rotation
DE112016002224T5 (de) Leistungsumsetzungsvorrichtung und Motorantriebseinrichtung
DE102015117763A1 (de) Vorrichtung und Verfahren zur Bestimmung eines Drehwinkels eines Rotors
DE102017119668A1 (de) Winkelsensor und Winkelsensorsystem
DE102010023333A1 (de) Drehwinkeldetektionsvorrichtung, elektrische Drehmaschinenausrüstung und elektrische Servolenkungsausrüstung
DE102015218855A1 (de) Signalgeber mit verbesserter Ermittlung des Winkelsignals
DE102016203273A1 (de) Verfahren und Anordnung zur Überwachung eines Rotorpositionssensors einer PSM-Maschine
DE102007036202B4 (de) Prüf- und Simulationsschaltung für Magnetfeldsensoren
EP3729634B1 (fr) Procédé de détermination de la position d'un rotor d'une machine triphaseé, sans l'utilisation d'un encodeur, et dispositif de régulation d'un moteur triphasé sans l'utilisation d'un encodeur
EP2211148A2 (fr) Procédé et dispositif de détermination d'une position angulaire au moyen d'un résolveur
WO2011069904A2 (fr) Procédé et dispositifs pour la compensation des champs perturbateurs affectant les signaux de capteurs dans une direction assistée électrique
DE102018211179A1 (de) Resolver und Motor
EP3833936B1 (fr) Système capteur pour déterminer au moins une caractéristique de rotation d'un élément rotatif
WO2017148625A1 (fr) Procédé et dispositif de diagnostic de position de rotor dans un entraînement à moteur électrique
EP2548301B1 (fr) Procédé et dispositif pour déterminer la fréquence de glissement et pour régler un moteur asynchrone
DE102016122105A1 (de) Verfahren zur Verringerung von Gleichlaufschwankungen eines Permanentmagneterregten Elektromotors
EP1901421A1 (fr) Méthode de détermination de la position du rotor d'une machine électrique tournante
DE102018210816A1 (de) Sensorvorrichtung für eine elektrische Maschine, Verfahren zum Betreiben einer Sensorvorrichtung
DE102012016287A1 (de) Verfahren zum Bestimmen einer Drehposition einer Welle
DE102016206768A1 (de) Bürstenloser Gleichstrommotor und Verfahren zur Bereitstellung eines Winkelsignals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10798985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10798985

Country of ref document: EP

Kind code of ref document: A2