WO2011069850A1 - Piézogénérateur protégé contre les surcharges - Google Patents

Piézogénérateur protégé contre les surcharges Download PDF

Info

Publication number
WO2011069850A1
WO2011069850A1 PCT/EP2010/068377 EP2010068377W WO2011069850A1 WO 2011069850 A1 WO2011069850 A1 WO 2011069850A1 EP 2010068377 W EP2010068377 W EP 2010068377W WO 2011069850 A1 WO2011069850 A1 WO 2011069850A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
mechanical
piezoelectric element
deformation
piezoelectric
Prior art date
Application number
PCT/EP2010/068377
Other languages
German (de)
English (en)
Inventor
Alexander Frey
Ingo KÜHNE
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2011069850A1 publication Critical patent/WO2011069850A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/041Means for supplying power to the signal- transmitting means on the wheel
    • B60C23/0411Piezoelectric generators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors

Definitions

  • the invention relates to a piezoelectric energy converter for converting mechanical ambient energy into electric energy by the action of an induced by the mechanical To ⁇ papiersenergy, variable mechanical pressure to a piezoelectric element so that it deformation of the piezoelectric element to a comparison occurs, and wherein is obtained by the deformation of the piezoelectric element electrical energy. Furthermore, the invention relates to a method for converting mechanical energy into electrical energy. Furthermore, the invention relates to a piezoelectric element.
  • the object of the present invention is to provide a piezoelectric energy converter in which, on the one hand, direct mechanical deformation energy is utilized and, on the other hand, the mechanical stress on the piezoelectric element used is limited.
  • the object is achieved by a piezoelectric energy converter for converting mechanical environmental energy into electrical energy by acting through the mechanical environmental energy, caused by a variable mechanical pressure on a piezoelectric element, so that there is a deformation of the piezoelectric element and wherein the deformation of the piezoelectric Elementes electrical energy is obtained, wherein the piezoelectric ele ⁇ ment is mounted on an elastic transducer element, and wherein the elastic transducer element, a conversion of the mechanical energy generated by the mechanical energy
  • the piezoelectric generator causes a defined deformation of the piezoelectric element.
  • the piezoelectric generator is thus protected in the overload ⁇ case from a destructive force.
  • the existing ambient energy is very effectively coupled into the piezoceramic (piezoelectric element), so that a lot of useful electrical energy can be generated.
  • the energy gained is made available to a consumer (eg decentralized actuators or sensors). This enables the self-sufficient operation of these decentralized systems, ie without cabling or battery operation. These systems can thus be operated in principle maintenance-free.
  • the energy converter according to the invention can be used in any dyna ⁇ mixed deformable environments.
  • the elastic conveyor belt at the reversal points of the elastic conveyor belt is deformed or in industrial automation (eg robots), where there are many moving parts that are protected, for example by mechanically deformable rubber sleeves.
  • industrial automation eg robots
  • a Reifenlatsch is usable as a mechanically deformable environment. This anyway present in an industrial environment mechanical deformation energy, which are also in defined and known directions of movement, can be "harvest" by the inventive energy converter.
  • the power converter is thus supplied with mechanical energy that provides an existing infrastruc ⁇ ture.
  • the piezoelectric member and the elastic transducer element can be applied directly to the deformable Conversely ⁇ environment (for example by adhesive bonding or by vulcanization).
  • the elastic converter element may be formed for example as a solid state transducer element (eg rubber or soft synthetic ⁇ material).
  • the wall - lerelement a lower modulus of elasticity (elastic modulus) than the piezoelectric element on.
  • the piezoelectric element consists of at least one piezoelectric layer and electrode layers.
  • the elec- denoden füren can consist of various metals or metal alloys. Examples of the electrode material are platinum, titanium and a platinum / titanium alloy. Also conceivable are non-metallic, electrically conductive materials.
  • the piezoelectric layer may also consist of a wide variety of materials. Examples include piezoelectric ceramic materials such as lead zirconate titanate (PZT), zinc oxide (ZnO) and aluminum nitride (A1N). Piezoelectric organic materials such as polyvinylidene difluoride (PVDF) or polytetrafluoroethylene (PTFE) are also conceivable.
  • PVDF polyvinylidene difluoride
  • PTFE polytetrafluoroethylene
  • Electrode layers can be applied to an optional carrier layer.
  • a periodic La ⁇ dung separation is generated between the electrodes through the piezoelectric effect.
  • the recoverable resulting flow of charge is then externally as electric energy Ener ⁇ available.
  • An electrical connection to the electrodes and a corresponding local wiring provide electrical power for consumers.
  • a first advantageous embodiment of the invention is that the mechanical ambient energy is provided by a primary deformation (eg bending or twisting) of a primary deformation body, on which the elas ⁇ tical transducer element is mounted, wherein the Wandlerele ⁇ ment is formed such that the mechanical load on the piezoelectric element is adjustable independently of the primary bending of the primary deformation body.
  • a primary deformation eg bending or twisting
  • a further advantageous embodiment of the invention is that by the elastic transducer element Entkopp ⁇ ment of the piezoelectric element takes place from the mechanical ambient energy.
  • the decoupling of the sensitive piezoceramic from the directly acting deformation energies of the mechanical environment protects the piezoceramic (piezoelectric element) from a destructive force by the environment.
  • the piezoelectric element has a multilayer ⁇ construction with MEMS layers.
  • the piezoelectric element may be based on MEMS technology (Micro Electro Mechanical Systems), designed both as a bending beam structure or as a piezo membrane. With this technology, a pie ⁇ zoelektrischer energy converter with very small lateral dimensions accessible. In addition, very thin
  • Layers are formed. This is how the layer thicknesses amount the electrode layers, for example, 0.1 ym to 0.5 ym.
  • the piezoelectric layer is a few ym thick, for example 1 ym to 10 ym.
  • the piezoelectric element has a very small mass and small dimensions and can be easily inserted into an existing environment infrastructure (eg conveyor belt, rubber sleeves) and integrate.
  • a further advantageous embodiment of the invention is that the piezoelectric element is formed as a bending beam structure or as a piezoelectric diaphragm, wherein the piezoelectric element has a carrier layer, which is formed by the elastic transducer element.
  • the Trä ⁇ carrier layer increases the stability of the piezoelectric Ele ⁇ mentes.
  • the use of the carrier layer as a transducer element allows a compact and integrative design.
  • a further advantageous embodiment of the invention is that an overload ⁇ protection for the piezoelectric element is effected by the elastic transducer element. Deformations in the environment that lead to overload situations
  • the object is further achieved by a method for converting mechanical energy into electrical energy using an energy converter, wherein the elastic wall ⁇ lerelement a conversion of mechanical energy generated by the mechanical environment ⁇ energy in a defined Ver ⁇ formation of the piezoelectric element causes.
  • the indirect te type of energy coupling of the mechanical ambient energy from the transducer element in the piezoelectric ele ⁇ ment has the advantage that a potential mechanical over ⁇ load around pelt überkop- with a suitable design of the transducer element directly on the piezoelectric element. Thus, a defect or destruction of the piezoceramic is avoided by overload.
  • the object is furthermore achieved by a piezoelectric element which is attached ⁇ placed on an elastic transducer element, wherein the elastic transducer element causes a transformation of the mechanical pressure generated by a mechanical ambient energy in a defined deformation of the piezoelekt ⁇ generic element, by the Deformation of pie ⁇ zoelektrischen element electrical energy is obtained, wherein the elastic transducer element, a decoupling of the piezoelectric element is carried out by a direct action of the mechanical ambient energy.
  • the piezoelectric element is protected from an overload by the environment.
  • the object is further achieved by a piezoelectric see energy converter for converting mechanical ambient energy into electrical energy by the action of an induced by the mechanical ambient energy ver Sba ⁇ Ren mechanical pressure on a piezoelectric element, so that there is a deformation of the piezoelectric element and wherein by the deformation of the piezoelectric
  • Elementes electrical energy is obtained, whereby the effect of unfavorable environmental forces on the piezoelectric element is prevented by the structural realization of the energy converter.
  • the piezoelectric element in the energy converter can be achieved by an encapsulated structure of the energy converter overload protection.
  • the piezoelectric element in the energy converter Withbet ⁇ tet or encapsulated.
  • the encapsulation can be done, for example, in a soft plastic or rubber.
  • the capsule material has a lower modulus of elasticity (elastic modulus) than the piezoelectric element.
  • it is mög ⁇ Lich the energy converter distributed in the environment to attach, for example by a punctual sticking to the inside of a tire. This also causes an overload protection.
  • the impression of certain external forces on the piezoelectric structure is prevented.
  • FIG. 2 shows a first application example for the use of the overload-protected piezoelectric generator according to the invention or of the piezoelectric element
  • FIG. 3 shows an exemplary exemplary embodiment of a pie ⁇ zoelektharis.
  • the idea underlying the invention is based on the Ver ⁇ use of a resilient member for converting the primary mechanical energy from the environment in a secondary me chanical ⁇ deformation. This comes on the one hand to Ent ⁇ coupling of the sensitive piezoceramic by acting directly deformation energy of the environment. On the other hand, the existing ambient energy is very effective coupled into the Piezoke- Ramik so much useful electrical ⁇ he can be generated.
  • FIG. 1 shows examples a) to i) for mechanical primary deformations PV1-PV9 and resulting deformations of the piezoceramic PE1-PE6. It shows the deformation of a piezoceramic PEl to PE6 in the unloaded case, in the load case and in the overload case.
  • the partial images a), d) and g) show a state without mechanical deformation
  • the partial images b), e) and h) represent a normal load
  • f) and i) represent an overload case
  • Overload situation can eg when driving a tire over a curb enter.
  • PV1 - PV9 zei ⁇ gen Examples of primary mechanical deformations from the environment (eg by bending a conveyor belt).
  • the piezoceramic PE1, PE2, PE3 is applied directly to an environment that the Primärver ⁇ deformations PV4, PV5 or PV6 effected.
  • the piezoceramic PE4, PE5, PE6 is not applied directly to the environment.
  • the piezo element (piezo ceramics) PE4 - PE6 is therefore not directly exposed to the mechanical deformations of the environment.
  • the piezoelectric element PE1 - PE3 is mounted directly on a primary deformation ⁇ body PV4 - PV6 and thus directly exposed to the primary deformation.
  • the example in subfigure f) shows that an overload can lead to the destruction of the piezoceramic PE3.
  • the elastic transducer element WE1-WE3 according to the invention provides for that the piezoceramic PE4 - PE6 is not directly exposed to primary deformation PV7 - PV9. This results in a decoupling of the sensitive piezoceramic PE4 - PE6 from the directly acting deformation energies PV7 - PV9.
  • the existing environment energy (through the primary deformation) is very effective in the piezoceramic PE4 - PE6 coupled so much useful electrical ⁇ he can be generated.
  • the material for the transducer element WE1 - WE3 is eg rubber or a soft plastic with a lower modulus of elasticity than the piezoelectric element (piezoceramic) PE1 - PE6.
  • Corresponding elastomers are also suitable as transducer element WE1-WE3.
  • the thickness of the transducer element WE1 - WE3 may vary depending on the application and environmental condition. Sensible thicknesses: some ym to 100 ym, a typical value is 30 ym.
  • the mechanical stress of the piezoceramic PE1 - PE6 can be adjusted independently of the primary bending PV1 - PV9.
  • the sensitive piezoceramic PE1 - PE6 is the di ⁇ rectly applied deformation energy PV1 - decoupled PV9.
  • Figure 2 shows a first application example of the USAGE ⁇ dung of the overload-protected Piezogenera- tors according to the invention or of the piezoelectric element in a mechanically deformable environment.
  • Figure 2 shows a tire R from the side with tire rattle RL on a road F, for example for the use of the energy converter according to the invention or of the piezoelectric element according to the invention.
  • the on the elastic transducer element (1; HS1 - WE3) being ⁇ brought piezoelectric element ( Figure 1; PE1 - PE6) is on the inside of the vehicle tire R (for example, on the inner side of the tread) so attached (eg, by gluing or Vulka ⁇ ) that deformation of the tire pad (tire pad) results in deformation of the piezoelectric element ( Figure 1; PE1 - PE6).
  • the entry or exit into the tire lash causes a desired mechanical deformation
  • the elastic transducer element (1; HS1 - WE3) limits the deformation of the piezoelectric element, thus providing an overload protection for the piezoelectric Ele ⁇ ment.
  • the energy necessary for the operation of the tire sensor system can thus be provided by the tire itself.
  • the tire sensor system can thus be operated in an energy-autonomous manner.
  • the energy converter according to the invention can be used in any dyna ⁇ mixed deformable environments. For example, in conveyor belts, at the reversal points of the elastic conveyor belt is deformed or in industrial automation (eg robots), where there are many moving parts that are protected, for example by mechanically deformable rubber sleeves.
  • the elastic transducer element (1; HS1 - WE3) provides a conversion of the primary mechanical ambient energy into a secondary mechanical deformation and thus for a Ent ⁇ coupling the sensitive piezo-ceramic of the direct acting deformation energy of the environment. This ensures protection in the event of overload.
  • the described type of energy conversion of mechanical energy into electrical energy can be used wherever mechanical deformation energy is present, the as mechanical pressure on a piezoelectric element can be brought on ⁇ . Due to the mechanical pressure, the piezoelectric element undergoes a mechanical deformation. The piezoelectric effect generates a periodic charge separation between the electrodes. The generated charge is then available as electrical energy.
  • Such Si ⁇ situations can be found for example in industrial automation, for example during bending or extension of robotic arms or during the deflection of conveyor belts.
  • These already existing mechanical deformation energies which are also present in defined and known directions of movement, can be "harvested" for the energy converter according to the invention, thus supplying the energy converter with mechanical deformation energy which provides an already existing infrastructure.
  • FIG. 3 shows an exemplary embodiment of a piezoelectric element PE7.
  • the example of Figure 3 shows the piezo element PE7 as a multilayer rectangular or substantially rectangular plate.
  • the piezo element PE7 can in principle also take other forms (e.g.
  • the piezoelectric element has a layer PE7 ⁇ follows from ESI electrode layer, the piezoelectric layer PES and other electrode layer on ES2.
  • ESI electrospray
  • ES2 electrospray layer
  • the electrode mate rial of the electrode layers ⁇ ESI, ES2 can be made of various metals or metal alloys. Examples of the electrode material are platinum, titanium and a platinum / titanium alloy. Also conceivable are non-metallic, electrically conductive materials.
  • the piezoelectric layer PES may also be made under ⁇ Kunststofflichsten materials.
  • Examples include piezoelectric ceramic materials such as lead zirconate titanate (PZT), zinc oxide (ZnO) and aluminum nitride (A1N).
  • piezo Electrical organic materials such as polyvinylidene difluoride (PVDF) or polytetrafluoroethylene (PTFE) are also conceivable.
  • a carrier layer TS may be present. The Trä ⁇ carrier layer TS increases the stability of the piezoelectric element PE7.
  • the piezoelectric element PE7 especially the MEMS (Micro Electro Mechanical Sys tems ⁇ ) technology is suitable for the realization of the piezoelectric element PE7.
  • MEMS Micro Electro Mechanical Sys tems ⁇
  • a piezoelekt ⁇ -driven energy converter with very small lateral dimensions is accessible.
  • very thin layers can be formed.
  • the layer thicknesses of the electrode layers ESI, ES2 are 0.1 .mu.m to 0.5 .mu.m.
  • the pie ⁇ zoelektharide layer PES is a few ym thick, for example 1 ym to 10 ym.
  • the piezoelectric element is designed as a thin piezoelectric membrane.
  • Element PE has a very low mass. It can be a support layer TS provided, for example a carrier layer ⁇ TS of silicon, polysilicon, silicon dioxide (Si0 2) or silicon nitride (S13N 4). Layer has a layer thickness of the support TS is in the range of 1 ym to 100 ym ⁇ be selected.
  • a miniaturized trained energy converter increases the range of possible application and réellekei ⁇ th, especially in decentralized applications that require a self-sufficient and maintenance-free as possible energy supply.
  • the elastic transducer element provides for a conversion of the primary mechanical deformation energy into a secondary mechanical deformation and thus for a decoupling of the sensitive piezoceramic from the directly acting deformation energies of the environment. This ensures protection in the event of overload.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

L'invention concerne un piézogénérateur protégé contre les surcharges, avec un élément convertisseur solide destiné à coupler et convertir une énergie de déformation (par exemple une énergie mécanique provenant de l'environnement) en énergie électrique par l'action d'une pression mécanique variable causée par l'énergie de déformation sur un élément piézoélectrique (PE1-PE7) (piézocéramique), si bien qu'il se produit une déformation de l'élément piézoélectrique (PE1-PE7) dans une direction définie de l'espace. La déformation de l'élément piézoélectrique (PE1-PE7) produit de l'énergie électrique. L'élément piézoélectrique (PE1-PE7) est disposé sur un élément convertisseur élastique (WE1-WE3) (par exemple un élément convertisseur solide). L'élément convertisseur élastique (WE1-WE3) réalise une conversion de la pression mécanique produite par l'énergie mécanique de l'environnement en une déformation définie de l'élément piézoélectrique (PE1-PE7). L'élément convertisseur élastique (WE1-WE3) assure une conversion de l'énergie mécanique primaire de déformation en une déformation mécanique secondaire et donc un découplage entre la piézocéramique sensible et l'action directe des énergies de déformation de l'environnement. Cela assure une protection en cas de surcharge.
PCT/EP2010/068377 2009-12-07 2010-11-29 Piézogénérateur protégé contre les surcharges WO2011069850A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009057278.3 2009-12-07
DE102009057278 2009-12-07
DE102010019725.4 2010-05-07
DE102010019725A DE102010019725A1 (de) 2009-12-07 2010-05-07 Überlast geschützter Piezogenerator

Publications (1)

Publication Number Publication Date
WO2011069850A1 true WO2011069850A1 (fr) 2011-06-16

Family

ID=43972486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/068377 WO2011069850A1 (fr) 2009-12-07 2010-11-29 Piézogénérateur protégé contre les surcharges

Country Status (2)

Country Link
DE (1) DE102010019725A1 (fr)
WO (1) WO2011069850A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012101847A1 (de) 2012-03-06 2013-09-12 Contitech Transportbandsysteme Gmbh Piezoelektrischer Sensor
DE102012101848A1 (de) 2012-03-06 2013-09-12 Contitech Transportbandsysteme Gmbh Piezoelektrischer Energiewandler
DE102015224778A1 (de) * 2015-12-10 2017-06-14 Bayerische Motoren Werke Aktiengesellschaft Druckbolzen einer Presse sowie Presse mit Druckbolzen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013104618U1 (de) 2013-10-14 2015-01-16 Nicolas Fischer Fahrzeugrad mit integriertem Piezoelement bzw. Piezogenerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1614552A1 (fr) * 2004-07-09 2006-01-11 Société de Technologie Michelin Pontet pour supporter des transducteurs électromécaniques dans un pneumatique
WO2007099160A1 (fr) * 2006-03-02 2007-09-07 Continental Teves Ag & Co. Ohg Module de pneu à transducteur piézoélectrique
DE102007010779A1 (de) * 2006-03-02 2007-09-20 Continental Teves Ag & Co. Ohg Reifenmodul mit piezoelektrischem Wandler
DE102007010782A1 (de) * 2006-03-02 2008-02-14 Continental Teves Ag & Co. Ohg Reifenmodul mit piezoelektrischem Wandler
WO2010067620A1 (fr) * 2008-12-12 2010-06-17 株式会社村田製作所 Générateur piézoélectrique
WO2010119716A1 (fr) * 2009-04-15 2010-10-21 株式会社村田製作所 Générateur piézoélectrique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1614552A1 (fr) * 2004-07-09 2006-01-11 Société de Technologie Michelin Pontet pour supporter des transducteurs électromécaniques dans un pneumatique
WO2007099160A1 (fr) * 2006-03-02 2007-09-07 Continental Teves Ag & Co. Ohg Module de pneu à transducteur piézoélectrique
DE102007010779A1 (de) * 2006-03-02 2007-09-20 Continental Teves Ag & Co. Ohg Reifenmodul mit piezoelektrischem Wandler
DE102007010782A1 (de) * 2006-03-02 2008-02-14 Continental Teves Ag & Co. Ohg Reifenmodul mit piezoelektrischem Wandler
WO2010067620A1 (fr) * 2008-12-12 2010-06-17 株式会社村田製作所 Générateur piézoélectrique
WO2010119716A1 (fr) * 2009-04-15 2010-10-21 株式会社村田製作所 Générateur piézoélectrique

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012101847A1 (de) 2012-03-06 2013-09-12 Contitech Transportbandsysteme Gmbh Piezoelektrischer Sensor
WO2013131692A1 (fr) 2012-03-06 2013-09-12 Contitech Transportbandsysteme Gmbh Détecteur piezo-electrique
DE102012101848A1 (de) 2012-03-06 2013-09-12 Contitech Transportbandsysteme Gmbh Piezoelektrischer Energiewandler
WO2013131704A1 (fr) 2012-03-06 2013-09-12 Contitech Transportbandsysteme Gmbh Convertisseur d'énergie piézoélectrique
DE102015224778A1 (de) * 2015-12-10 2017-06-14 Bayerische Motoren Werke Aktiengesellschaft Druckbolzen einer Presse sowie Presse mit Druckbolzen
DE102015224778B4 (de) * 2015-12-10 2021-03-11 Bayerische Motoren Werke Aktiengesellschaft Druckbolzen einer Presse sowie Presse mit Druckbolzen

Also Published As

Publication number Publication date
DE102010019725A1 (de) 2011-06-09

Similar Documents

Publication Publication Date Title
WO2011069851A1 (fr) Système de production d'énergie miniaturisé
WO2012108192A1 (fr) Élément de génération d'électricité de type à changement de capacité
US6911764B2 (en) Energy efficient electroactive polymers and electroactive polymer devices
US6664718B2 (en) Monolithic electroactive polymers
US8110964B2 (en) Energy harvesting device
AU2010201578B2 (en) Electroactive polymer pre-strain
EP2107974B1 (fr) Dispositif de production d'énergie pour module de détection de bandage de véhicule
US8283840B2 (en) High-efficiency compact miniaturized energy harvesting and storage device
US6888291B2 (en) Electrical system for electrostrictive bimorph actuator
WO2011069850A1 (fr) Piézogénérateur protégé contre les surcharges
WO2014111327A1 (fr) Procédé de production d'un convertisseur électromécanique multicouche
DE102010040243A1 (de) Piezobasierter Generator mit mechanischem Energiespeicher und direktmechanischer Breitbandanregung
DE102007041920A1 (de) Piezoelektrischer Mikroenergiewandler zur Energiegewinnung in Reifen, insbesondere Autoreifen
DE102013009715A1 (de) Einrichtung zur Gewinnung elektrischer Energie
WO2011072770A1 (fr) Générateur à polymères électroactifs destiné à convertir de l'énergie mécanique en énergie électrique
WO2009030572A1 (fr) Convertisseur d'énergie piézoélectrique à membrane double
DE102010040238B4 (de) Hochintegriertes piezoelektrisches Energieversorgungsmodul
DE102010040220B4 (de) Vorrichtung zur gepulsten direktmechanischen Anregung eines Piozobalkengenerators
DE102009043218A1 (de) Piezoelektrischer Energiewandler zum Umwandeln von mechanischer Energie in elektrische Energie mit erhöhter Effizienz der Umwandlung, Verfahren zum Umwandeln von mechanischer Energie in elektrische Energie und Verwendung des Verfahrens
WO2011069818A1 (fr) Convertisseur piézoélectrique d'énergie avec protection contre la surcharge
DE102010019738A1 (de) Passives Element zur Strömungserzeugung in mechanisch verformbaren Umgebungen
AT503306A4 (de) Ferroisches bauelement
WO2011012365A1 (fr) Convertisseur d’énergie piézoélectrique permettant de convertir l’énergie mécanique en énergie électrique à l’aide de variations de pression, procédé permettant de convertir l’énergie mécanique en énergie électrique par utilisation dudit convertisseur d’énergie et utilisation dudit procédé
Shah et al. Design and simulation of piezoelectric MEMS cantilever
US11713240B2 (en) Cellular array electrostatic actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10787727

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10787727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10787727

Country of ref document: EP

Kind code of ref document: A1