WO2011069541A1 - Procédé de production de matériaux structuraux organométalliques à base d'oxyde par intégration d'oxyde avec contrôle de la teneur en eau - Google Patents

Procédé de production de matériaux structuraux organométalliques à base d'oxyde par intégration d'oxyde avec contrôle de la teneur en eau Download PDF

Info

Publication number
WO2011069541A1
WO2011069541A1 PCT/EP2009/066732 EP2009066732W WO2011069541A1 WO 2011069541 A1 WO2011069541 A1 WO 2011069541A1 EP 2009066732 W EP2009066732 W EP 2009066732W WO 2011069541 A1 WO2011069541 A1 WO 2011069541A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
acid
water
metal
oxide
Prior art date
Application number
PCT/EP2009/066732
Other languages
German (de)
English (en)
Inventor
Steffen Hausdorf
Florian Mertens
Felix Baitalow
Jürgen Seidel
Original Assignee
Technische Universität Bergakademie Freiberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Bergakademie Freiberg filed Critical Technische Universität Bergakademie Freiberg
Priority to PCT/EP2009/066732 priority Critical patent/WO2011069541A1/fr
Publication of WO2011069541A1 publication Critical patent/WO2011069541A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages

Definitions

  • OMOF compounds are built in a regular grid, which has a defined pore size distribution. The high specific pore volume and the associated large equivalent surface make these compounds excellent materials for gas storage, for chemical engineering catalysis or as separation material eg in gas or liquid chromatography.
  • Metal-organic framework material hereinafter referred to as MOF (metal organic framework) represents a series of porous, crystalline organic-inorganic hybrid materials in general.
  • MOF metal organic framework
  • the compounds described in this invention are MOFs which bridge M 4 O type nodes via linker molecules.
  • these frameworks are referred to as OMOF or oxide-based metal-organic frameworks.
  • OMOF defined 's OMOF can' s include non-linear, non-aromatic, optionally also inorganic anions as linking elements (Left), the link with the M 4 0 node can also be made with donor atoms other than oxygen.
  • FIG. 1 shows a general scheme for setting up an OMOF.
  • the node In the middle, the node is shown, which is the same in both structures.
  • the nodes of type M 4 0 are bridged by linker molecules.
  • the left structure represents a detail of the grid of a IRMOF's with M 4 0 (C0 2) 6-SBU and general linear linker is the right structure is a section of the crystal lattice of a OMOF 's represent the not for the IRMOF' s.
  • MIP 5-methylisophthalate
  • the density of the OMOF materials reaches unusually low values for solid, ordered materials, eg 0.57 g / cm 3 for MOF-5.
  • the gravimetric storage capacity is thereby maximized, which in particular allows the mobile application as a fuel storage.
  • OMOFs can also be used both as support material for catalysts and as catalytically active material (for example for copolymerization of CO 2 with alkoxides to polycarbonates).
  • IRMOFs are mainly produced by the so-called Ivo thermal method disclosed in DE600213579T2.
  • a zinc nitrate in the form of one of its hydrates is dissolved with a linear, ditopic carboxylic acid in DEF and the resulting IRMOF crystallized at elevated temperatures.
  • Recent studies by Mertens et al. (Mertens et al., J. Phys. Chem. A 2008, 112, 7567-7576) showed that an oxide source such as nitrate is imperative.
  • this method is based on the slow hydrolytic decomposition of the solvent DEF, which leads to the deprotonation of the carboxylic acid used by liberation of diethylamine.
  • the central oxidation of the zinc oxide cluster is formed by the decomposition of the zinc nitrate hydrate, which also serves as a zinc source.
  • the zinc nitrate hydrate must be used in excess since it is necessary as a pH buffer throughout the entire reaction period.
  • a problem of this method is the interpenetration of one or more IRMOF lattices during manufacture, especially when using large linkers such as Yaghi exemplified by IRMOF-8, IRMOF-10, IRMOF-12 and IRMOF-14 should lead to large pore sizes.
  • Yaghi et al. encounter this problem through a Reaction at very high dilutions (Yaghi et al, Science 2002, 295, 469-472 and DE600213579T2).
  • Variants of the "solvothermal" synthesis are the acceleration of the reaction by microwaves (L. Huang et al .: Microporous and Mesoporous Materials, 2003, 58, 105-114) and the crystallization from an analogously prepared solution at room temperature after thermal pretreatment (RA Fischer et al, J. Am. Chem. Soc, 2005, 127, 13744-13745).
  • Another method describes the slow inward diffusion of an organic base into a solution of zinc nitrate with linear, ditopic carboxylate (O.M. Yaghi et al., Nature 2004, 427, 523).
  • the DEF solvent which is almost exclusively used for the thermal method, is currently not produced on an industrial scale and can therefore only be obtained at prices usual for fine chemicals.
  • the solvent consumption and due to high dilution poor space-time yield (specific product performance) thus represent the most important cost factors for a corresponding process.
  • the invention has for its object to develop a process for the production of oxide-based metal-organic frameworks (OMOF), which is the economically and ecologically acceptable production of large amounts OMOF with improved space-time yield and high quality characterized by a maximum specific equivalent surface area allowed.
  • OMOF oxide-based metal-organic frameworks
  • the object is achieved in that a compound MB X where x ⁇ 1, where M is a metal cation and the anion B is the acid radical of an acid having at least four donor atoms, suspended in a nonaqueous liquid and reacted with an oxide source, wherein the reaction is carried out under control of the water content, so that the water content during the entire reaction does not exceed a maximum value of 0.8 mol / 1.
  • M is a metal cation which is present in the oxidation state +2 selected from all subgroup elements of Sc to Zn, from Y to Cd, from La to Hg or a main group metal selected from Be, Mg, Ca, Sr, Ba, Ra, In, Tl, Sn, Pb or Bi, more preferably selected from the group of subgroup elements, which may be present under the selected reaction conditions in the oxidation state +2, selected from Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au or Hg, especially Zn, Cd or Hg.
  • a main group metal selected from Be, Mg, Ca, Sr, Ba, Ra, In, Tl, Sn, Pb or Bi, more preferably selected from the group of subgroup elements, which may be present under the selected reaction conditions in the oxidation state +2, selected from Ti, V, Cr,
  • the anion B is the radical of an aromatic di- or tricarboxylic acid, especially terephthalic acid, isophthalic acid, benzene tricarboxylic acid, benzene tribenzoic acid.
  • anion B is the radical of an aromatic di- or tricarboxylic acid with> 1 aromatic ring systems or a derivative of said compounds.
  • the anion B forms the linker in the resulting OMOF structure.
  • the reaction preferably takes place in aprotic-polar suspending agents, preferably in ketones or carboxylic acid amides, more preferably in acetone, DEF or. DMF.
  • the reaction is preferably carried out in suspension.
  • all oxygen-containing compounds are suitable as oxide source, in particular water, hydroxide (eg Zn 3 (OH) 3 BDC, Zn 3 (OH) 2 (BDC) 2 ), hydrogen peroxide or nitrate (eg ZnNO 3 ).
  • the oxide source may also be part of the compound MB X used , for example as water of crystallization.
  • reaction temperature depends on the oxide source used. If nitrate is used as oxide source, reaction temperatures of> 80 ° C are to be preferred; reaction temperatures> 100 ° C are required when using water or hydroxide.
  • the reaction takes place under control of the water content, wherein the water content during the entire reaction is typically kept below 0.8 mol / l.
  • measures are taken which prevent the exceeding of a maximum water concentration, which results from the introduced water and the water of reaction, as well as from the reaction volume.
  • This is preferably done by presenting a sufficient volume of dry suspension agent in an amount that the water released is diluted so that it does not exceed a maximum concentration of 0.8 mol / 1.
  • This amount is expediently 1.3 to 1.7 liters of dry suspension medium for 1 mol of water introduced or reaction water.
  • the reaction water is removed from the reaction volume by distillation, such as azeotropic distillation using a suitable entrainer, preferably toluene or benzene, or by using a drying agent by adsorption, or bound by chemical reaction.
  • a suitable entrainer preferably toluene or benzene
  • a drying agent by adsorption, or bound by chemical reaction.
  • the OMOF compounds obtainable by the preparation processes according to the invention comprise all OMOFs possible by the variation of knots and linkers, preferably all Compounds having a linker B containing at least one aromatic ring system and / or at least one side group attached to the linker.
  • the process according to the invention is particularly advantageous for OMOFs with linkers B having more than one aromatic ring system and / or non-linear structure of the linker B.
  • the solvent consumption can be significantly reduced, even in the case of sparingly soluble metal salts, in contrast to known processes, since the amount of solvent is not determined by the solubility of the salt used but by the maximum permitted concentration of water.
  • DEF volumes of about 10 liters per mole of linker are required in the case of the synthesis of IRMOF-1 and up to 940 liters in the case of the synthesis of the non-interpenetrated IRMOF-12 and IRMOF-14.
  • Figure 2 shows the section of the crystal lattice of the BDC-OMOF's (MOF-5 or IRMOF-1) called zinc oxo terephthalate.
  • the Z114O nodes are tethered into a cubic, porous network.
  • the powder diffractometric measurement yielded the diffractogram of the pure phase MOF-5.
  • the specific surface area measured by a one-point method was 2989 m 2 / g.
  • Combination of ICP-AES and elemental analysis resulted in the following composition of the product:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 3 shows a detail of the crystal lattice of BPDC-OMOF (IRMOF-10).
  • the ZrLiO nodes are connected by 4,4'-biphenyldicarboxylic acid to form a cubic, porous network.
  • Example 2 the preparation of an aqueous solution of the sodium salt was carried out in the first step. To this was dissolved 1.33 g (5.49 mmol) of crystalline acid in 55 ml of 0.1 M NaOH. This solution was added at room temperature to a solution of 1.44 g (5.49 mmol) of Zn (NO 3 ) 2 -4H 2 O in 20 ml of water. The resulting suspension was stirred for a further 0.5 h. The solid was then filtered off, washed with pure water and dried in air at 100 ° C for several hours. The water content of the solid thus prepared, measured by the Karl Fischer method, was 2.4%, corresponding to a composition ZnBPDC 0.41H 2 O. The yield based on this composition was 1.53 g (4.89 mmol, 89%). ,
  • the powder diffraction pattern recorded by the product contained the most prominent reflections of BPDC-OMOF, with some of the interpenetrated form of the BPDC-OMOF characteristic reflexes entirely absent. List of abbreviations :
  • MOF metal-organic framework
  • Metal-organic framework Metal-organic framework
  • OMOF oxide-based metal-organic framwork
  • IRMOF isoreticular metal-organic framework (division of Yag

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un procédé de production de composés structuraux organométalliques à base d'oxyde, appelés OMOF, de la formule générale M4OBx (M = métal divalent, x ≤ 3). Les composés OMOF sont construits dans un réseau uniforme qui présente une distribution définie de la grosseur des pores. Le volume spécifique de pores élevé et la grande surface équivalente qui en résulte font de ces composés d'excellents matériaux entre autres pour des réservoirs de gaz, pour la catalyse en chimie industrielle ou comme matériau de séparation, par exemple dans la chromatographie en phase gazeuse ou en phase liquide. Les composés selon l'invention sont produits de telle manière qu'un composé MBx avec x ≤ 1, M étant un cation de métal et l'anion B étant le reste d'acide d'un acide présentant quatre atomes donneurs, est mis en suspension dans un liquide non aqueux et est amené à réagir avec une source d'oxyde, la réaction étant guidée sous contrôle de la teneur en eau.
PCT/EP2009/066732 2009-12-09 2009-12-09 Procédé de production de matériaux structuraux organométalliques à base d'oxyde par intégration d'oxyde avec contrôle de la teneur en eau WO2011069541A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/066732 WO2011069541A1 (fr) 2009-12-09 2009-12-09 Procédé de production de matériaux structuraux organométalliques à base d'oxyde par intégration d'oxyde avec contrôle de la teneur en eau

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/066732 WO2011069541A1 (fr) 2009-12-09 2009-12-09 Procédé de production de matériaux structuraux organométalliques à base d'oxyde par intégration d'oxyde avec contrôle de la teneur en eau

Publications (1)

Publication Number Publication Date
WO2011069541A1 true WO2011069541A1 (fr) 2011-06-16

Family

ID=42272642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/066732 WO2011069541A1 (fr) 2009-12-09 2009-12-09 Procédé de production de matériaux structuraux organométalliques à base d'oxyde par intégration d'oxyde avec contrôle de la teneur en eau

Country Status (1)

Country Link
WO (1) WO2011069541A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112773896A (zh) * 2021-01-13 2021-05-11 中国人民解放军陆军军医大学第一附属医院 MOFs基纳米复合物的制备方法及其应用
CN114957700A (zh) * 2022-07-14 2022-08-30 之江实验室 一种用于氯离子传感的金属有机框架材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030004364A1 (en) * 2001-04-30 2003-01-02 Yaghi Omar M. Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage
WO2004101575A2 (fr) * 2003-05-09 2004-11-25 The Regents Of The University Of Michigan Mise en oeuvre d'une strategie visant a obtenir des niveaux extraordinaires de superficie et de porosite dans des cristaux
WO2007090864A1 (fr) * 2006-02-10 2007-08-16 Basf Se Procede de fabrication d'un materiau de chassis organique poreux
FR2929278A1 (fr) * 2008-04-01 2009-10-02 Centre Nat Rech Scient Solide hybride cristallin poreux pour l'adsorption et la liberation de gaz a interet biologique.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030004364A1 (en) * 2001-04-30 2003-01-02 Yaghi Omar M. Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage
WO2004101575A2 (fr) * 2003-05-09 2004-11-25 The Regents Of The University Of Michigan Mise en oeuvre d'une strategie visant a obtenir des niveaux extraordinaires de superficie et de porosite dans des cristaux
WO2007090864A1 (fr) * 2006-02-10 2007-08-16 Basf Se Procede de fabrication d'un materiau de chassis organique poreux
FR2929278A1 (fr) * 2008-04-01 2009-10-02 Centre Nat Rech Scient Solide hybride cristallin poreux pour l'adsorption et la liberation de gaz a interet biologique.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112773896A (zh) * 2021-01-13 2021-05-11 中国人民解放军陆军军医大学第一附属医院 MOFs基纳米复合物的制备方法及其应用
CN112773896B (zh) * 2021-01-13 2022-06-07 中国人民解放军陆军军医大学第一附属医院 MOFs基纳米复合物的制备方法及其应用
CN114957700A (zh) * 2022-07-14 2022-08-30 之江实验室 一种用于氯离子传感的金属有机框架材料及其制备方法

Similar Documents

Publication Publication Date Title
US9205419B2 (en) Large pore metal organic frameworks
Ermer et al. Synthesis of the novel MOF hcp UiO-66 employing ionic liquids as a linker precursor
Wang et al. Dialing in catalytic sites on metal organic framework nodes: MIL-53 (Al) and MIL-68 (Al) probed with methanol dehydration catalysis
DE102011007661A1 (de) Verfahren zur Wasserstoffgewinnung durch katalytische Zersetzung von Ameisensäure
WO2018204602A1 (fr) Structures organométalliques, leur synthèse et leur utilisation
WO2018141649A1 (fr) Catalyseurs de méthanation au nickel dopés par le manganèse
US20160024120A1 (en) Azolium Metal-Organic Frameworks
Cepeda et al. Structural diversity of coordination compounds derived from double-chelating and planar diazinedicarboxylate ligands
WO2011069541A1 (fr) Procédé de production de matériaux structuraux organométalliques à base d'oxyde par intégration d'oxyde avec contrôle de la teneur en eau
EP0299922A2 (fr) Procédé de préparation de sels métalliques d'esters d'acides phosphoriques et phosphoniques
US10518257B2 (en) Metal organic frameworks, their synthesis and use
US5932746A (en) Vanadium catalysts and their precursors
EP2456555A1 (fr) Procédé d'oxydation du méthane
EP2429981A2 (fr) Procédé de production de matériaux structuraux organométalliques à base d'oxyde par méthode inverse
DE69107922T2 (de) Vierkernige Mangan-Komplexe.
EP3350151B1 (fr) Procédé de fabrication de réseaux organométalliques
DE102008007551A1 (de) Metallorganische Gerüstverbindungen auf Basis von Triptycen
Zheng et al. A new 3D POMOF built upon Keggin clusters and flexible n-heterocycle carboxylate ligands for catalytic and antimicrobial properties
DE3134747A1 (de) Verfahren zur herstellung von aethanol
JP4870182B2 (ja) ペンタエリトリトール誘導体を用いた配位高分子およびその製造方法
DE102005058206B4 (de) N-heterozyklische Carbenkomplexe des Platins und des Palladiums und deren Verwendung
CN113667134A (zh) 一种稳定金属有机骨架材料低成本快速通用绿色制备方法
Srinivasan et al. Synthesis, characterization and thermal studies of magnesium (II) complexes of ortho and para-aminobenzoic acids
WO2021186087A1 (fr) Iodure de triméthylplatine(iv)
DE112019007923T5 (de) Neue metallorganische Gerüstverbindungen und ihre Verwendung zur Einkapselung von Fluoreszenzfarbstoffen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09768061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09768061

Country of ref document: EP

Kind code of ref document: A1