WO2011068344A2 - 멤스 마이크로폰 및 그 제조방법 - Google Patents

멤스 마이크로폰 및 그 제조방법 Download PDF

Info

Publication number
WO2011068344A2
WO2011068344A2 PCT/KR2010/008507 KR2010008507W WO2011068344A2 WO 2011068344 A2 WO2011068344 A2 WO 2011068344A2 KR 2010008507 W KR2010008507 W KR 2010008507W WO 2011068344 A2 WO2011068344 A2 WO 2011068344A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
forming
sacrificial layer
substrate
mems microphone
Prior art date
Application number
PCT/KR2010/008507
Other languages
English (en)
French (fr)
Other versions
WO2011068344A3 (ko
WO2011068344A9 (ko
Inventor
김홍성
천인호
윤재민
Original Assignee
(주)세미로드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090117910A external-priority patent/KR101112120B1/ko
Priority claimed from KR1020100112754A external-priority patent/KR20120051355A/ko
Application filed by (주)세미로드 filed Critical (주)세미로드
Publication of WO2011068344A2 publication Critical patent/WO2011068344A2/ko
Publication of WO2011068344A9 publication Critical patent/WO2011068344A9/ko
Publication of WO2011068344A3 publication Critical patent/WO2011068344A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials

Definitions

  • the present invention relates to a MEMS (Micro-Electro Mechanical System, MEMS) microphone, and more specifically, ultra-thin surface mount technology (SMT) applicable silicon microphone manufactured by the surface micromachining method (surface micromachining) and It is about the manufacturing method.
  • MEMS Micro-Electro Mechanical System
  • SMT ultra-thin surface mount technology
  • MEMS Micro-Electro Mechanical System
  • the resistance type MEMS microphone uses the principle that the resistance value is changed by vibration, the resistance value is changed according to the change of the surrounding environment (temperature, humidity, dust, etc.), and thus there is a disadvantage in that it cannot maintain a constant frequency range.
  • Piezoelectric MEMS microphones use the piezo effect, which produces a potential difference across the diaphragm, so that the electrical signal changes depending on the pressure of the voice signal, but the low band and voice band frequency characteristics are uneven. This is extremely limited.
  • Condenser type MEMS microphones have air gaps between several micrometers and several tens of micrometers between two electrodes so that one metal plate of two metal plates can be used as a back plate and the other diaphragm can vibrate in response to an acoustic signal. Since the diaphragm vibrates according to the sound source, the capacitance changes between the fixed electrodes, the accumulated charge changes, and thus the current flows according to the stability and frequency characteristics of the converted sound range.
  • MEMS microphone since the diaphragm is made of polymer-based film, it is impossible to apply surface mount technology (SMT) for high-temperature production due to manufacturing cost reduction and precision of parts.
  • SMT surface mount technology
  • MEMS microphone has been mainly developed and produced as a condenser type because of the excellent frequency response characteristics in the voice band.
  • Figure 1 shows the structure of a conventional MEMS microphone.
  • a sacrificial layer 50 for forming a gap 40 between a fixed electrode 20 and a lower electrode 30 formed on an arbitrary substrate 10 is formed to have a predetermined thickness, and a sacrificial layer 50 is formed.
  • the voids 40 are completed.
  • an insulating film is used between the fixed electrode 20 and the lower electrode 30 to prevent disconnection between the electrodes, and electrode pads used as the electrodes are formed on the substrate 10 at predetermined intervals.
  • a condenser type MEMS microphone fabricates a fixed electrode 20 and a lower electrode 30 fixed to an upper portion of a substrate, and protects an upper portion with an insulator to form a rear acoustic chamber 60 under the substrate and then lower the substrate.
  • a condenser type MEMS microphone fabricates a fixed electrode 20 and a lower electrode 30 fixed to an upper portion of a substrate, and protects an upper portion with an insulator to form a rear acoustic chamber 60 under the substrate and then lower the substrate.
  • the fabrication process is completed by removing the sacrificial layer 50 between the lower electrodes 30 through the holes of the fixed electrode 20.
  • the conventional condenser-type microphone is required to have a semiconductor process in both the upper and lower portions of the substrate in order to configure the rear acoustic chamber, so that the manufacturing process is large, complicated, and the processing time is long, and the process yield is very low. There is a vulnerability.
  • the present invention overcomes and improves the complicated processability of the conventional condenser microphone, and is capable of shortening the manufacturing process and manufacturing time by integrating an acoustic chamber, which is usually located at the rear of the lower electrode, on the upper substrate, and manufacturing of a MEMS microphone and its manufacture. It is an object to provide a method.
  • the present invention is to form a hemispherical step using a thermal oxide film on the bottom surface of the acoustic chamber, to form a lower electrode plate on the upper side to smoothly discharge the air flow to the vibration of the vibration plate generated by the external sound,
  • An object of the present invention is to provide an ultra-thin MEMS microphone for an SMT having excellent frequency response characteristics by minimizing a gap between an upper diaphragm and a lower electrode plate by a step, and a method of manufacturing the same.
  • an object of the present invention is to provide a MEMS microphone which is firmly supported by a diaphragm and a method of manufacturing the same.
  • an object of the present invention is to provide a MEMS microphone and a method for manufacturing the same, which can receive sound pressure from both directions of the vibration plate up and down.
  • MEMS microphone the substrate; An acoustic chamber formed on top of the substrate; A plurality of support zones formed inside the acoustic chamber; An electrode plate formed on the bottom surface of the acoustic chamber; And a vibration plate supported by the plurality of supporting zones and formed above the electrode plate.
  • the substrate A plurality of first supports arranged in a circle at predetermined intervals on the substrate; An electrode plate formed on the substrate and surrounded by the plurality of first supports; And a vibration plate supported by the plurality of first supports and formed on an upper side of the electrode plate.
  • the substrate A plurality of first supports arranged in a circle at predetermined intervals on the substrate; A second support formed in a circle on the plurality of first supports; An electrode plate formed on the substrate and surrounded by the plurality of first and second supports; And a vibration plate supported by the second support and formed above the electrode plate.
  • the substrate A plurality of first supports arranged in a circle at predetermined intervals on the substrate; An electrode plate formed on the substrate and surrounded by the plurality of first supports and having a plurality of through holes; A diaphragm supported by the plurality of first supports and formed above the electrode plate; And an acoustic chamber formed at the center lower portion of the substrate, wherein the substrate has a plurality of through-holes connected to the through-holes of the electrode plate at a portion in contact with the electrode plate.
  • the substrate A plurality of first supports arranged in a circle at predetermined intervals on the substrate; A second support formed in a circle on the plurality of first supports; An electrode plate formed on the substrate and surrounded by the plurality of first and second supports and having a plurality of through holes; A vibration plate supported by the second support and formed above the electrode plate; And an acoustic chamber formed at the center lower portion of the substrate, wherein the substrate has a plurality of through-holes connected to the through-holes of the electrode plate at a portion in contact with the electrode plate.
  • the diaphragm in the MEMS microphone according to the invention of claim 1, 2 or 3, includes a plurality of through holes.
  • the microphone further includes a plurality of auxiliary supports formed between the plurality of support zones to support the diaphragm.
  • the acoustic chamber, the plurality of supports, and the plurality of auxiliary supports are integrally formed with the substrate by etching the substrate.
  • the substrate is made of a silicon material
  • the acoustic chamber, the plurality of supports, and the plurality of auxiliary supports include a nitride film formed on a surface thereof.
  • the plurality of supports and the plurality of auxiliary supports include an oxide film formed below the nitride film from above.
  • the acoustic chamber further includes a protrusion formed between the electrode plate and the bottom surface.
  • the protruding portion is an oxide film formed to protrude in a hemispherical shape from the center of the bottom surface of the acoustic chamber.
  • the diaphragm in the MEMS microphone according to the invention of claim 14, includes a plurality of first contact terminals protruding from an edge and integrally formed.
  • the electrode plate in the MEMS microphone according to the invention of claim 1, includes an integral second contact terminal extending from an edge.
  • the electrode plate is formed by joining a metal and a non-conductive film.
  • the diaphragm is provided with a protrusion in a region where a plurality of through holes are not formed in the lower surface of the diaphragm.
  • a method for manufacturing a MEMS microphone according to claim 20, comprising: forming an acoustic chamber and a plurality of support zones on an upper surface of a substrate; Forming an electrode plate at a center of a bottom surface of the acoustic chamber; Forming a sacrificial layer on an upper surface of the substrate and on the acoustic chamber; Removing a portion of the upper side of the sacrificial layer to form a diaphragm supported by the support zone above the electrode plate; And removing the sacrificial layer.
  • a method for manufacturing a MEMS microphone comprising: an electrode plate forming step of forming an electrode plate at a central portion on a substrate; A first support forming step of forming a plurality of first supports surrounding the electrode plate; Forming a sacrificial layer on the electrode plate and the plurality of first supports; A diaphragm forming step of forming a diaphragm supported by the plurality of first supports on the upper layer of the electrode plate after removing a portion of the upper side of the sacrificial layer; And a sacrificial layer removing step of removing the sacrificial layer.
  • a method for manufacturing a MEMS microphone comprising: an electrode plate forming step of forming an electrode plate at a central portion on a substrate; A first support forming step of forming a plurality of first supports surrounding the electrode plate; Forming a first sacrificial layer on the electrode plate and the plurality of first supports; Forming a second support on the plurality of first supports after removing the upper portion of the first sacrificial layer; Forming a second sacrificial layer on the first sacrificial layer and the second support; A diaphragm forming step of forming a diaphragm supported by the second support on the upper layer of the electrode plate after removing a portion of the upper side of the second sacrificial layer; And a sacrificial layer removing step of removing the first and second sacrificial layers.
  • a method for manufacturing a MEMS microphone comprising: drilling a plurality of holes in a central portion of an upper surface of a substrate; Forming an acoustic chamber in a central portion of a lower surface of the substrate so that the upper surface and the lower surface of the substrate are in fluid communication with the plurality of holes; An electrode plate forming step of forming an electrode plate at a central portion on the substrate; A first support base forming step of forming a plurality of first supports surrounding the electrode plate on the substrate; Forming a sacrificial layer on the electrode plate and the plurality of first supports; A diaphragm forming step of forming a diaphragm supported by the first supporter on the upper layer of the electrode plate after removing a portion of the upper side of the sacrificial layer; And a sacrificial layer removing step of removing the sacrificial layer.
  • a method for manufacturing a MEMS microphone comprising: drilling a plurality of holes in a central portion of an upper surface of a substrate; Forming an acoustic chamber in a central portion of a lower surface of the substrate so that the upper surface and the lower surface of the substrate are in fluid communication with the plurality of holes; An electrode plate forming step of forming an electrode plate at a central portion on the substrate; A first support base forming step of forming a plurality of first supports surrounding the electrode plate on the substrate; Forming a first sacrificial layer on the electrode plate and the plurality of first supports; Forming a second support on the plurality of first supports after removing the upper portion of the first sacrificial layer; Forming a second sacrificial layer on the first sacrificial layer and the second support; A diaphragm forming step of forming a diaphragm supported by the second support on the upper layer of the electrode plate after removing a portion of the upper side of the second sa
  • the forming of the said acoustic chamber and a plurality of support zones comprises: providing a plurality of auxiliary supports between the said plurality of support zones. To form more.
  • a method for manufacturing a MEMS microphone according to claim 28, wherein the method for manufacturing a MEMS microphone according to claim 27, wherein the forming of the electrode plate comprises: forming a hemispherical oxide film after removing the nitride film in the center of the acoustic chamber; And forming the electrode plate, which is a metal film, on the hemispherical oxide film.
  • the said diaphragm and the said electrode plate are metal films formed by the metal sputtering technique, Ti, Au, Cu, Al, Pt And TiN.
  • the MEMS microphone manufacturing method in the method according to claim 25, the MEMS microphone manufacturing method according to claim 25, In the step of forming the diaphragm, the nitride film on the upper surface of the plurality of support zones and the plurality of auxiliary supports are exposed. The upper portion of the sacrificial layer is removed.
  • the sacrificial layer is easily etched by an isotropic etching gas containing at least a poly-silicon-based plasma. It is a material.
  • the electrode plate forming step includes forming at least one of an oxide film and a nitride film on the substrate before forming the electrode plate. It further comprises the step of forming any one film.
  • a method for manufacturing a MEMS microphone according to claim 35 wherein in the method for manufacturing a MEMS microphone according to claim 21 or 23, the diaphragm forming step includes a top surface of the sacrificial layer coplanar with a top surface of the plurality of first supports. The sacrificial layer is removed until it is on.
  • a method for manufacturing a MEMS microphone according to claim 36 wherein the method for manufacturing a MEMS microphone according to claim 21 or 23, wherein the diaphragm forming step is performed on the sacrificial layer and the plurality of first supports before forming the diaphragm. Forming a film of at least one of an oxide film and a nitride film.
  • a method for manufacturing a MEMS microphone according to claim 37 wherein in the method for manufacturing a MEMS microphone according to claim 22 or 24, in the forming of the second support, an upper surface of the first sacrificial layer is formed on the plurality of first supports. The first sacrificial layer is removed until it is coplanar with the top surface.
  • the upper surface of the second sacrificial layer is the same plane as the upper surface of the second support. The second sacrificial layer is removed until it is over.
  • a method for manufacturing a MEMS microphone according to claim 39 wherein the method for manufacturing a MEMS microphone according to claim 22 or 24, wherein the diaphragm forming step is performed on the second sacrificial layer and the second support before forming the diaphragm. Forming a film of at least one of an oxide film and a nitride film.
  • a method for manufacturing a MEMS microphone according to claim 40 wherein the method for manufacturing a MEMS microphone according to claim 23 or 24 further includes forming an oxide film on the substrate before drilling the plurality of holes. Include.
  • the electrode plate forming step includes the inner circumferential surface of the plurality of holes and the sound before forming the electrode plate. Forming an oxide film in the chamber.
  • a method for manufacturing a MEMS microphone according to claim 42 wherein the electrode plate forming step includes forming an oxide film on the inner circumferential surfaces of the plurality of holes and the acoustic chamber after the method for manufacturing an MEMS microphone according to claim 41.
  • the method further includes the step of closing the hole with a filling material of the same material as the sacrificial layer.
  • both the sacrificial layer and the peeling material are removed.
  • a method for manufacturing a MEMS microphone according to claim 44 wherein the electrode plate forming step includes forming an oxide film on the inner circumferential surfaces of the plurality of holes and the acoustic chamber after the method for manufacturing the MEMS microphone according to claim 41.
  • the method may further include blocking the hole with a filling material having the same material as that of the first sacrificial layer or the second sacrificial layer.
  • the present invention it is possible to secure production yield and stability by forming a microphone having a single-sided structure that simplifies the structure of the complex semiconductor process and MEMS microphones applied to the upper and lower substrates.
  • the diaphragm can be firmly supported, there is an effect that the air flow generated by the vibration of the diaphragm can be smoothly discharged to the outside.
  • FIG. 1 is a cross-sectional view of a MEMS microphone according to the prior art.
  • FIG. 2 is a front view and a cross-sectional view of a MEMS microphone according to a first embodiment of the present invention.
  • FIG 3 is a flow chart of a method for manufacturing a MEMS microphone according to the first embodiment of the present invention.
  • FIG. 4 is a view illustrating the formation of a MEMS microphone according to the process of the manufacturing method of FIG. 3.
  • FIG. 5 is a front view and a cross-sectional view of a MEMS microphone according to a second embodiment of the present invention.
  • FIG. 6 are schematic views of the state where the MEMS microphone and the upper diaphragm of FIG. 2 are removed.
  • FIG. 7 are schematic views of a state where the MEMS microphone and the upper diaphragm of FIG. 5 are removed.
  • FIG. 8 is a schematic diagram of a vertical cross section of a sacrificial layer of the MEMS microphones of FIGS. 1 and 2.
  • FIG. 9 is a perspective view of a MEMS microphone according to a third embodiment of the present invention.
  • FIG. 10 is a view showing the internal structure of the MEMS microphone according to the third embodiment of the present invention.
  • FIG. 11 is a view showing a series of processes for manufacturing a MEMS microphone according to a third embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a series of processes for manufacturing a MEMS microphone according to a third embodiment of the present invention.
  • FIG. 13 is a flowchart of a method of manufacturing a MEMS microphone according to a third embodiment of the present invention.
  • FIG. 14 is a perspective view of a MEMS microphone according to a fourth embodiment of the present invention.
  • FIG. 15 is a view showing the internal structure of a MEMS microphone according to the fourth embodiment of the present invention.
  • 16 is a diagram illustrating a series of processes for manufacturing a MEMS microphone according to a fourth embodiment of the present invention.
  • FIG. 17 is a diagram illustrating a series of processes for manufacturing a MEMS microphone according to a fourth embodiment of the present invention.
  • FIG. 18 is a diagram illustrating a series of processes for manufacturing a MEMS microphone according to the fourth embodiment of the present invention.
  • FIG. 19 is a flowchart of a method of manufacturing a MEMS microphone according to a fourth embodiment of the present invention.
  • FIG. 20 is a perspective view of a MEMS microphone according to the fifth embodiment of the present invention.
  • 21 is a diagram showing the internal structure of a MEMS microphone according to the fifth embodiment of the present invention.
  • FIG. 22 is a diagram illustrating a series of processes for manufacturing a MEMS microphone according to the fifth embodiment of the present invention.
  • FIG. 23 is a view showing a series of processes for manufacturing a MEMS microphone according to the fifth embodiment of the present invention.
  • FIG. 24 is a diagram illustrating a series of processes for manufacturing a MEMS microphone according to the fifth embodiment of the present invention.
  • 25 is a diagram illustrating a series of processes for manufacturing a MEMS microphone according to the fifth embodiment of the present invention.
  • 26 is a flowchart of a method of manufacturing a MEMS microphone, according to the fifth embodiment of the present invention.
  • FIG. 27 is a perspective view of a MEMS microphone according to a sixth embodiment of the present invention.
  • FIG. 28 is a diagram showing the internal structure of a MEMS microphone according to the sixth embodiment of the present invention.
  • FIG. 29 is a vertical cross-sectional view and a partially enlarged view of FIG. 28.
  • FIG. 29 is a vertical cross-sectional view and a partially enlarged view of FIG. 28.
  • FIG. 30 is a view showing a series of processes for manufacturing a MEMS microphone according to a sixth embodiment of the present invention.
  • FIG. 31 is a diagram illustrating a series of processes for manufacturing a MEMS microphone according to the sixth embodiment of the present invention.
  • FIG. 32 is a diagram illustrating a series of processes for manufacturing a MEMS microphone according to the sixth embodiment of the present invention.
  • FIG 33 is a view showing a series of processes for manufacturing a MEMS microphone according to the sixth embodiment of the present invention.
  • FIG. 2A is a front view of a MEMS microphone projecting the upper diaphragm and the lower structure according to the first embodiment of the present invention
  • FIGS. 2B and 2C is a cut line.
  • a cross-sectional view taken along A1-A1 'and B1-B1' is shown.
  • the MEMS microphone 200 according to the first embodiment of the present invention includes a substrate 210; An acoustic chamber 220 formed on top of the substrate; A plurality of support zones 230 formed inside the acoustic chamber; An electrode plate 260 formed on the bottom surface of the acoustic chamber; And a diaphragm 270 supported by the plurality of supporting zones and formed above the electrode plate.
  • the microphone 200 may further include a plurality of auxiliary supports 240 formed between the plurality of supporting zones to support the diaphragm.
  • the diaphragm 270 and the electrode plate 260 are metal films formed of any one of Ti, Au, Cu, Al, Pt, and TiN.
  • the plurality of auxiliary supports 240 functions to prevent the diaphragm from sagging or sticking down by the vertical movement.
  • the acoustic chamber 220, the plurality of support zones 230, and the plurality of auxiliary supports 240 are formed integrally with the substrate by etching a substrate made of silicon, and the plurality of supports and the plurality of auxiliary supports are acoustic chambers 220. It is formed to have the same height.
  • Such etching is formed by silicon wet etching using TMAH or KOH or a silicon (Si) etching solution corresponding thereto, and by a MEMS technique having a fine step of 0.5 ⁇ m to several ⁇ m.
  • the acoustic chamber, the plurality of supports, and the plurality of auxiliary supports are formed with a nitride film 221 on the surface thereof, and the plurality of supports and the plurality of auxiliary supports are disposed below the nitride film 221 of the portion supporting the upper diaphragm 270.
  • An oxide film 211 is further provided. That is, the plurality of supports and the plurality of auxiliary supports have a double insulating film formed of Si0 2 and Si 3 N 4 on the upper and outer peripheral surfaces.
  • a plurality of well-known zones are designed and arranged to smoothly discharge and disperse the air flow generated as the diaphragm 270 is driven by the sound source, and the upper portion of the substrate 210 is wet etched to form an acoustic chamber inside the substrate. 220 is formed, the electrode plate 260 is formed on the inner bottom surface of the acoustic chamber.
  • the electrode plate 260 has a hemispherical oxide film 250 having a selective thickness on the center bottom surface of the acoustic chamber, which is the lower part of the electrode plate, in adjusting the distance from the diaphragm 270 to secure excellent frequency response characteristics. Grow).
  • the silicon sacrificial layers 410 and 420 that are higher than the heights of the plurality of supports are formed and then formed on the plurality of support zones.
  • the sacrificial layer 420 is removed through the surface processing technique to the same surface 411 as the nitride film layer.
  • the two sacrificial layers 410 and 420 separated by the solid lines are formed by one process and are not physically divided.
  • the solid line in FIG. 4 (d) is an imaginary line to help understand where the sacrificial layer should be removed to form the diaphragm.
  • the diaphragm 270 is driven by a sound source, and is formed of a metal material having a thickness of several thousand ⁇ m to several ⁇ m, and may be made of Ti, Au, Cu, Al, Pt, TiN, and a corresponding metal material. Depending on the nature, the size can be designed in ⁇ m.
  • the acoustic chamber 220 is formed by a wet etching of several micrometers to several tens of micrometers starting from the silicon substrate 210, and a solvent mixed etching solution is used for etching to improve an etching rate and an etching surface state.
  • An insulating film of Si0 2 or Si 3 N 4 is formed to insulate the silicon substrate, form the electrode plate, and block leakage current.
  • the protrusion 250 of the oxide film protruding in a hemispherical shape from the center of the bottom surface is formed, and the metal electrode plate 260 is formed on the upper side of the protrusion.
  • the protrusion 250 is a thermal oxide film grown to 1 ⁇ m to 3 ⁇ m or more in the center of the acoustic chamber in order to adjust the gap between the diaphragm and the electrode plate.
  • the protrusion 250 is manufactured in a hemispherical structure so that the acoustic chamber 220 can smoothly discharge the air flow due to the sound pressure generated by the vertical movement of the upper diaphragm 270.
  • the lower electrode plate 260 is also a metal film having a thickness of several thousand micrometers to several micrometers, and may be formed of Ti, Au, Cu, Al, Pt, TiN, or other equivalent metal materials.
  • the diaphragm 270 includes a plurality of first contact terminals 271 protruding from the edge and formed integrally, and the electrode plate 260 includes an integral second contact terminal 261 extending from the edge for power connection.
  • the plurality of support zones 230 may be formed to be adjacent to the electrode plate on the lower side.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a MEMS microphone according to the first embodiment of the present invention
  • FIG. 4 is a process chart of forming a MEMS microphone according to the process of the manufacturing method of FIG. 3.
  • FIG. 4A illustrates a process of removing a nitride film at a position where a lower electrode plate is to be formed
  • FIG. 4B illustrates an ellipsoidal step at a position where the nitride film is removed in FIG. 4 illustrates a process of forming a structure as a thermal oxide film
  • FIG. 4C illustrates a process of forming a lower electrode plate and an integrated electrode contact part on the thermal oxide film of FIG. 4B.
  • FIG. 4A illustrates a process of removing a nitride film at a position where a lower electrode plate is to be formed
  • FIG. 4B illustrates an ellipsoidal step at a position where the nitride film is removed
  • FIG. 4 illustrates
  • FIG. 4D illustrates a process of forming a sacrificial layer to cover the interior of the acoustic chamber and a plurality of supports to form the upper diaphragm
  • FIG. 4E illustrates an upper diaphragm.
  • the sacrificial layer is a process of removing the upper portion of the sacrificial layer so that the upper diaphragm and the plurality of supports are equally stepped by using the surface processing technology.
  • the MEMS microphone manufacturing method according to the first embodiment of the present invention, the manufacturing method, the step of forming an acoustic chamber and a plurality of support zones on the upper surface of the substrate (S100); Forming an electrode plate in the center of the bottom surface of the acoustic chamber (S110); Forming a sacrificial layer on the upper surface of the substrate and the acoustic chamber (S120); Forming a diaphragm supported by the support on the upper side of the electrode plate after removing a portion of the upper side of the sacrificial layer (S130); And removing the sacrificial layer (S140).
  • a plurality of auxiliary supports are further formed between the plurality of support zones, an oxide film is formed on the surface of the substrate, and after patterning the oxide film, an acoustic chamber, a plurality of support zones, and a plurality of auxiliary supports are formed by etching.
  • the nitride film is formed on the surfaces of the acoustic chamber, the plurality of support zones, and the plurality of auxiliary supports (S110).
  • step S100 a plurality of support zones and a plurality of auxiliary supports are formed inside the acoustic chamber, and are formed to have the same height of both supports.
  • step S110 after removing the nitride film in the center of the acoustic chamber, a hemispherical oxide film 250 is formed, and an electrode plate 260 which is a metal film is formed on the hemispherical oxide film.
  • step S120 the sacrificial layers 410 and 420 are formed to cover the plurality of support zones, the plurality of auxiliary supports, and the acoustic chambers with a thickness of more than 1 to 1.5 times the depth of the acoustic chamber 220.
  • step S130 the upper portion of the sacrificial layer is removed so that the nitride films on the upper surfaces of the plurality of support zones and the plurality of auxiliary supports are exposed, and the sacrificial layer is formed by at least an isotropic etching gas including a plasma of a poly-silicon series. It is formed of a material that is easily etched.
  • step S100 an oxide film 211 in the range of several thousand micrometers to several ⁇ m is formed on the upper surface of the silicon substrate 210, and then photoresist is patterned at regular intervals to form an acoustic chamber 220.
  • the silicon substrate 210 is wet etched to form an acoustic chamber 220, a plurality of support zones 230, and a plurality of auxiliary supports 203 having a depth of several ⁇ m.
  • the plurality of auxiliary supports 600 are formed to prevent sagging and sticking due to stress that may occur during driving of the diaphragms 270 and 310.
  • the surface of the acoustic chamber 220 is a solvent to maintain the roughness of the etched surface in the same state as the roughness of the existing substrate for the smooth flow of sound pressure generated by the vibration of the diaphragm (270, 310) It is preferable to etch by an etching solution mixed with wt%).
  • an additional nitride film 221 is formed to further protect the etched silicon surface, and the nitride film is also used as an etch stop layer when the sacrificial layer 210 is removed to secure an air gap of the acoustic chamber 220. Is utilized, and also blocks leakage current between the diaphragm and the electrode plate.
  • the nitride film 221 is removed after the photoresist patterning to form the hemispherical projecting oxide step 250 in the center of the etched acoustic chamber 220 in order to form the circular electrode plate 260 having a diameter of several ⁇ m.
  • the depth of the acoustic chamber 220 at the time of forming the oxide step 250 is primarily several ⁇ m in order to form the closest gap between the upper metal diaphragms 270 and 310 and the lower metal electrode plate 260 to improve acoustic sensitivity.
  • the proper depth of the acoustic chamber 220 is required, and the oxide step 250 formed on the lower side of the lower electrode plate 260 may be secondarily adjusted to form an air gap closest to each other to improve the excellent acoustical feeling.
  • the half arc oxide step 250 is formed of a thermal oxide, and in order to accurately secure the step difference of the lower electrode plate 260, the oxide step 250 is considered in consideration of a loss amount (about 45%) of the silicon substrate 210. It is desirable to set the growth thickness of. The thickness of the oxide step is also an important variable for smoothly discharging the sound pressure due to the vibrations of the diaphragms 270 and 310.
  • the electrode plate 260 is formed of a metal film after the formation of the oxide film step 250, and is formed through a photoresist process after sputtering a metal film having a thickness of several thousand micrometers to several micrometers formed of an insulating film. .
  • the electrode contact portion 261 for applying current in this process is integrated, and as a material thereof, Ti, Au, Cu, Al, Pt, TiN, and other equivalent materials can be applied. Electrode contacts can be further formed.
  • the oxide film step 250 has a sound pressure due to vibration of the diaphragm 270 and 310 having a linear structure, and the sound pressure vibrating by sound can be smoothly discharged along the linear structure by this structure.
  • sacrificial layers 410 and 420 are formed in the acoustic chamber 220, the support zone 230, and the auxiliary support 240.
  • the material of the sacrificial layer is a polymer-based and poly Si-based material is used to facilitate the subsequent removal process.
  • the surface processing technology (polishing, CMP) is applied in order to ensure that the steps of the plurality of supporting zones and the plurality of auxiliary supports are located at the same height, and at this time, the steps of the acoustic chamber 220 to ensure smooth processability of the process. It is desirable to apply an additional sacrificial layer 702 in the range of about 1 to 1.5 times.
  • the roughness of the surface 411 of the sacrificial layer should be at the same level as the existing surface of the substrate 210, because the bottom surface of the diaphragm 270, 310 is integrated with the sacrificial layer by the final result to maintain the roughness.
  • the vibration type of the diaphragm may change, which may affect the securing of excellent acoustic sensitivity by changing the vibration variation.
  • a diaphragm is formed by photoresist patterning, and the sacrificial layer exposed to the outside of the diaphragm is removed through isotropic etching.
  • the diaphragm 310 may include a through hole 320 in the diaphragm to increase the etching rate, thereby inducing faster etching.
  • FIG. 5A is a front view of the MEMS microphone in which the upper diaphragm and the lower structure according to the second embodiment of the present invention are projected, and each of FIGS. 5B and 5C is cut line A2-A2. A cross-sectional view taken along 'and B2-B2' is shown.
  • the MEMS microphone 300 according to the second embodiment of the present invention includes a plurality of diaphragms 270 on the upper portion of the MEMS microphone 200 according to the first embodiment. It is configured to replace the diaphragm 310 having a through hole 320.
  • the overlapping portion is omitted below, only the difference portion Explain.
  • the MEMS microphone 300 includes the diaphragm 310 having the through-hole 320 formed therein, so that the sacrificial layer 410 can be more smoothly removed from the integrated acoustic chamber 220.
  • One of the plurality of through holes 320 may be formed at the center of the diaphragm, and the other may be formed at the edge of the diaphragm. In this case, it is preferable that the plurality of supporting zones 230 are formed to be adjacent to the electrode plate 260 at the lower side.
  • the position of the through-holes is only the first embodiment, and the position of the through-holes 320 formed in the diaphragm 270 is not limited to the embodiment, and may be one or more in any position of the diaphragm depending on the required or required performance. Can be formed.
  • FIGS. 6A and 6B are schematic views of a state where the MEMS microphone and the upper diaphragm of FIG. 2 are removed, and each of FIGS. 7A and 7B shows the MEMS microphone and the upper portion of FIG. It is a schematic diagram of the state which removed the diaphragm, and FIG. 8 is a schematic diagram of a vertical cross section in the state where the MEMS microphone of FIGS. 1 and 2 formed the sacrificial layer.
  • a double insulating film (SiO 2 oxide film and Si 3 N 4 nitride film) is formed on the plurality of support zones and the plurality of auxiliary supports.
  • the silicon surface is formed by the acoustic etching of several um
  • the plurality of support zones and the plurality of auxiliary supports are formed in the form of pillars.
  • the electrode plate has an integral electrode contact portion formed of a metal on a hemispherical SiO 2 oxide film having a thickness of several um at a lower step.
  • the acoustic chamber includes a sacrificial layer. When the sacrificial layer is removed after the upper diaphragm is formed based on the photograph, the acoustic chamber is formed based on the solid line of the photograph.
  • the MEMS microphones 200 and 300 have a structure for supporting the upper metal diaphragms 270 and 310 that play a functional role of the acoustic chamber 220. According to the shape and shape has a superior advantage that can be produced by the semiconductor process only on top of the substrate to produce a MEMS microphone.
  • FIG. 9 is a perspective view of a MEMS microphone according to a third embodiment of the present invention
  • FIG. 10 is a view illustrating an internal structure of the MEMS microphone according to the third embodiment.
  • the third embodiment essentially includes a substrate 500, a plurality of first supports 710, an electrode plate 600, and a diaphragm 900.
  • the plurality of first supports 710 are arranged in a circle at predetermined intervals on the substrate 500.
  • the plurality of first supports 710 may function to firmly support the diaphragm 900 when the diaphragm 900 vibrates and moves up and down.
  • the plurality of first supports 710 are arranged at a predetermined interval therebetween, so that a flow of air generated when the diaphragm 900 to be described later vibrates can be smoothly discharged to the outside of the MEMS microphone. It is to make it possible.
  • At least one of the plurality of first supports 710 extends in a direction away from the center of the plurality of first supports 710, which stably supports the first contact terminal 910 to be described later. It is for.
  • the substrate 500 is preferably made of silicon.
  • the electrode plate 600 is formed of a material having good electrical conductivity such as Ti, Au, Cu, Al, Pt, and TiN, and has a thickness of about several hundred micrometers to several micrometers.
  • the electrode plate 600 is formed on the substrate 500 and is surrounded by the plurality of first supports 710.
  • the electrode plate 600 includes a second contact terminal 610 formed integrally with the electrode plate 600 and extending to an edge thereof. The second contact terminal 610 is for power connection and electrical signal detection.
  • the diaphragm 900 is a component that senses (drives) a sound source (sound pressure), and the diaphragm 900 is driven by the sound source.
  • the diaphragm 900 is formed of a metal material having a thickness of several hundreds of micrometers to several ⁇ m, and may be made of Ti, Au, Cu, Al, Pt, TiN, and a corresponding metal material. It may be designed in units of ⁇ m.
  • the diaphragm 900 is supported by the plurality of first supports 710 and is formed on the upper side of the electrode plate 600.
  • the diameter of the diaphragm 900 is preferably the same as the diameter of the outer peripheral surface of the plurality of first support 710, the diameter of any one of the outer diameter of the outer peripheral surface of the diaphragm 900 and the plurality of first support 710 is different It may be somewhat larger or smaller.
  • the diaphragm 900 has a first contact terminal 910 formed integrally with the diaphragm 900 and extending to an edge thereof.
  • the first contact terminal 910 is for connecting a power source, and the first contact terminal 910 includes at least one first supporter extending in a direction away from the center of the plurality of first supporters 710. 710 is tightly supported. Therefore, the first contact terminal 910 is not floating in the air like a cantilever, but the entire lower surface is supported, so that the durability of the first contact terminal 910 is excellent.
  • the diaphragm 900 may be formed only of a metal, but preferably, the diaphragm 900 is formed by bonding a metal and a non-conductive film.
  • the non-conductive film may be any of the oxide film 510 or the nitride film 520. Since the diaphragm 900 is a thin plate shape, it is likely to be insufficient in durability to withstand shock or repeated negative pressure for a long time if only the metal is formed. Therefore, when the diaphragm 900 is formed by joining a non-conductor film to metal, the increase in thickness is negligible compared to the diaphragm 900 made of metal, whereas the durability to withstand shock or sound pressure is remarkably improved. It is effective.
  • the bonding of the metal and the non-conductor film does not necessarily mean that the metal and the non-conductor film are formed by attaching a separate material, and the metal plate is doubled by applying a predetermined treatment (for example, an oxidation treatment or a nitriding treatment) to the metal plate.
  • a predetermined treatment for example, an oxidation treatment or a nitriding treatment
  • FIG. 9 illustrates a state in which the diaphragm 900 is formed on the plurality of first supports 710 of FIG. 10. Since the diaphragm 900 and the electrode plate 600 are spaced apart by a predetermined interval, they do not contact each other. As described above, the diaphragm 900 is formed in close contact with the plurality of first supports 710, so that the diaphragm 900 and the electrode plate 600 do not contact each other, the plurality of first supports 710 are not in contact with each other.
  • the diaphragm 900 has a plurality of through holes.
  • a flow of air generated when the diaphragm 900 is driven by the sound source may be smoothly discharged to the outside.
  • the flow of air may be maximized through the plurality of through holes formed in the diaphragm 900 and at predetermined intervals between the plurality of first supports 710.
  • the lower surface of the diaphragm 900 is preferably formed with a protrusion in a region where a plurality of through holes are not drilled.
  • the protrusion preferably takes the shape of a convex surface with a raised central portion. If such a convex surface is formed, it is more effective that air flows out through the plurality of through holes from the inside of the MEMS microphone to the outside.
  • a protrusion may be formed on the upper surface of the electrode plate 600.
  • the protrusion preferably takes the shape of a convex surface with a raised central portion. If such a convex surface is formed, it is possible to more smoothly escape the flow of air through the interval between the plurality of first support 710 from the inside of the MEMS microphone.
  • At least one of the oxide film 510 and the nitride film 520 is preferably interposed between the electrode plate 600 and the substrate 500. This is to insulate the silicon substrate 500 and cut off the leakage current of the electrode plate 600. Therefore, at least one of the oxide film 510 and the nitride film 520 serves as an insulating film.
  • the oxide film 510 may be SiO 2
  • the nitride film 520 may be Si 3 N 4.
  • an oxide film 510 is formed on the substrate 500, and a nitride film 520 is formed thereon.
  • the nitride film 520 may be formed first on the substrate 500, and the oxide film 510 may be formed thereon.
  • At least one of the oxide film 510 or the nitride film 520 is formed on the substrate 500, and then the electrode plate 600 is formed thereon.
  • a plurality of first supports 710 are formed to surround the electrode plate 600. Therefore, the electrode plate 600 and the plurality of first support bases 710 are positioned on the same plane. Therefore, at least one of the oxide film 510 and the nitride film 520 is interposed between the electrode and the substrate 500, that is, the oxide film 510 is interposed between the plurality of first supports 710 and the substrate 500. It is the same as that at least one of the nitride films 520 is interposed.
  • the electrode plate 600 may be formed first, and then, a plurality of first supports 710 may be formed to surround the electrode plate 600, but on the contrary, after the plurality of first supports 710 are formed, The electrode plate 600 may be formed therein.
  • the inner circumferential surfaces of the plurality of first supports 710 and the outer circumferential surfaces of the electrode plate 600 may be disposed to be spaced apart from each other by a predetermined interval for blocking the leakage current.
  • FIGS. 11 and 12 illustrate a series of processes for manufacturing a MEMS microphone according to a third exemplary embodiment of the present invention. A manufacturing process of the third embodiment will be described with reference to FIGS. 11 and 12.
  • an oxide film 510 is formed on the substrate 500, and a nitride film 520 is formed on the oxide film 510 to form a double insulating film.
  • a nitride film 520 is formed on the oxide film 510 to form a double insulating film.
  • the oxide film 510 and the nitride film 520 are formed in a thickness of several thousand micrometers to several micrometers.
  • an electrode plate 600 is formed on the insulating film.
  • a material for forming the electrode plate 600 is first coated on the insulating film.
  • the method of coating is usually a method of deposition (deposition) is used. After that patterning to the shape of the electrode plate 600 to be finally formed.
  • the electrode plate 600 is formed to a thickness of several hundred microns to several micrometers.
  • a plurality of first supports 710 are formed.
  • the material of the plurality of first supports 710 is generally the same material as the oxide film 510.
  • the plurality of first supports 710 are formed to have a thickness of several ⁇ m.
  • the electrode plate 600 is formed first, and then the first support 710 is formed. However, the first support 710 is formed first and the electrode plate 600 is formed. You may form after that.
  • the plurality of first supports 710 may be patterned after coating a material for forming the plurality of first supports 710 on the insulating film and the electrode plates 600.
  • the sacrificial layer 800 is formed on the substrate 500 on which the first support 710 and the electrode plate 600 are formed.
  • the sacrificial layer 800 is preferably made of polysilicon, and the sacrificial layer 800 is formed to have a thickness of several ⁇ m.
  • the sacrificial layer 800 should be removed from the final result of the MEMS microphone, and the present sacrificial layer 800 is required during the manufacturing process of the MEMS microphone. Since the first support 710 protrudes upward, the sacrificial layer 800 is formed higher at the portion of the first support 710.
  • FIG. 11D the sacrificial layer 800 is formed on the substrate 500 on which the first support 710 and the electrode plate 600 are formed.
  • the sacrificial layer 800 is preferably made of polysilicon, and the sacrificial layer 800 is formed to have a thickness of several ⁇ m.
  • the sacrificial layer 800 should be removed from the final result of the MEMS microphone, and the present sacrificial layer
  • the upper surface of the sacrificial layer 800 is formed higher in the portion of the first support 710 until the upper surface of the sacrificial layer 800 lies on the same plane as the upper surfaces of the plurality of first supports 710. Polish the sacrificial layer 800.
  • the material forming the diaphragm 900 is coated thereon while a portion of the upper side of the sacrificial layer 800 is removed.
  • the diaphragm 900 is supported by the some support layer 710 and the sacrificial layer 800 from which the upper part was removed.
  • FIG. 12B it can be seen that the diaphragm 900 has two layers.
  • the lower layer is a non-conducting film and the upper layer is a metal plate.
  • the metal plate is formed to a thickness of several hundred to thousands of kilowatts.
  • the diaphragm 900 may be formed by bonding a metal and a non-conductive film to each other.
  • the non-conductive film is at least one of the oxide film 510 and the nitride film 520.
  • the non-conductor film is formed to a thickness of several hundred to several thousand ⁇ .
  • patterning is performed in the shape of the diaphragm 900 to be finally formed. As shown in FIG. 12C, it is preferable to drill a plurality of through holes on the diaphragm 900.
  • the sacrificial layer 800 is removed.
  • the sacrificial layer 800 is removed by etching, and XeF 2 is used as the etching gas.
  • FIG. 13 is a flowchart of a method of manufacturing a MEMS microphone according to a third embodiment of the present invention.
  • an electrode plate 600 forming step of forming an electrode plate 600 at a central portion on the substrate 500 is performed (S200).
  • the first support 710 forming step of forming a plurality of first support 710 surrounding the electrode plate 600 is performed (S210).
  • a sacrificial layer 800 is formed on the electrode plate 600 and the plurality of first supports 710 to form a sacrificial layer 800 (S220).
  • the diaphragm 900 forming step of forming the diaphragm 900 supported by the plurality of first supports 710 on the upper layer of the electrode plate 600 is performed. (S230).
  • the sacrificial layer 800 is removed to remove the sacrificial layer 800 (S240).
  • the order of forming the electrode plate 600 and forming the first support 710 may be changed.
  • the forming of the diaphragm 900 may further include drilling a plurality of through holes on the diaphragm 900.
  • the forming of the electrode plate 600 may further include forming at least one of an oxide film 510 and a nitride film 520 on the substrate 500 before forming the electrode plate 600. have.
  • the sacrificial layer 800 may be removed until the top surface of the sacrificial layer 800 is coplanar with the top surfaces of the plurality of first supports 710.
  • the diaphragm 900 In the forming of the diaphragm 900, at least one of the oxide film 510 and the nitride film 520 is further formed on the sacrificial layer 800 and the plurality of first supports 710 before the diaphragm 900 is formed. It is preferable to further comprise the step of forming.
  • FIG. 14 is a perspective view of a MEMS microphone according to a fourth embodiment of the present invention
  • FIG. 15 is a diagram illustrating an internal structure of a MEMS microphone according to a fourth embodiment of the present invention.
  • the fourth embodiment is a MEMS microphone, further comprising a second support 720 in the MEMS microphone according to the third embodiment. Therefore, since the rest of the configuration except for the second support 720 is the same as or very similar to the third embodiment, a portion overlapping with the third embodiment will be omitted and the following description will focus on the difference.
  • the fourth embodiment essentially includes a substrate 500, a plurality of first supports 710, a second support 720, an electrode plate 600, and a diaphragm 900.
  • the plurality of first supports 710 are arranged in a circle at predetermined intervals on the substrate 500.
  • the plurality of first supports 710 may function to firmly support the diaphragm 900 when the diaphragm 900 vibrates and moves up and down.
  • the second support 720 which will be described later, the plurality of first supports 710 are strictly referred to as the first support. It may be said that the second support 720 is supported while being in contact with the lower surface of the second support 720.
  • FIG. 15 illustrates a state in which a second support 720 is formed on the plurality of first supports 710 illustrated in FIG. 10.
  • the second support 720 is formed in a circular shape on the plurality of first supports 710. Similar to the first support 710, the second support 720 includes a portion extending in a direction away from the center of the second support 720, and the first contact terminal 910 is extended on the extended portion. Is stably supported while being in close contact. Referring to FIG. 14, it can be seen more clearly that the first contact terminal 910 is stably supported. In the fourth embodiment, since the entire upper surface of the second support 720 is in close contact with the diaphragm 900, the diaphragm 900 is more stably supported than the third embodiment.
  • the diaphragm 900 since there is a predetermined gap between the plurality of first supports 710, a part of the edge of the lower surface of the diaphragm 900 is in close contact with the first support 710. Some are not in close contact with the first support 710. Therefore, there is a fear that the diaphragm 900 may be slightly distorted or distorted due to the non-adherent portion.
  • the third embodiment there is no problem in the bearing force of the diaphragm 900 by increasing the number of the plurality of first supports 710 or by using the diaphragm 900 resistant to impact or sound pressure.
  • the diaphragm 900, the plurality of first support 710 and the second support 720 is preferably the same diameter, but the diaphragm 900, the plurality of first support 710 and the second support 720 of the The diameter of either one may be somewhat larger or smaller than the diameter of the other two.
  • the diaphragm 900 and the electrode plate 600 are spaced apart from each other by a predetermined interval, and thus do not contact each other.
  • the thickness of the plurality of first supports 710 had to be thicker than the thickness of the electrode plate 600, in the fourth embodiment, the plurality of first supports 710 and the second support ( It is sufficient if the combined thickness 720 is greater than the thickness of the electrode plate 600. Therefore, in some cases, the thicknesses of the plurality of first supports 710 may be thinner than the thickness of the electrode plate 600 in the fourth embodiment.
  • the combined thickness of the plurality of first supports 710 and the second supports 720 is not much thicker than the thickness of the electrode plate 600, the electrode plate 600 does not contact the diaphragm 900. It is preferable that it is about thickness. When the distance between the diaphragm 900 and the electrode plate 600 is minimized, the frequency response characteristic of the MEMS microphone is excellent.
  • the electrode plate 600 may be formed first, and then, a plurality of first supports 710 may be formed to surround the electrode plate 600, but on the contrary, after the plurality of first supports 710 are formed, The electrode plate 600 may be formed therein.
  • the second support 720 is formed. That is, any one of the electrode plate 600 or the plurality of first supports 710 is formed first, and the other one is formed later, and then the second support 720 is formed.
  • the inner circumferential surfaces of the plurality of first supports 710 and the outer circumferential surfaces of the electrode plate 600 may be disposed to be spaced apart from each other by a predetermined interval for blocking the leakage current.
  • it is preferable that the inner circumferential surface of the second support 720 and the outer circumferential surface of the electrode plate 600 are also disposed to be spaced apart from each other by a predetermined interval to block the leakage current.
  • 16, 17 and 18 are views showing a series of processes for manufacturing a MEMS microphone according to a fourth embodiment of the present invention. A manufacturing process of the fourth embodiment will be described with reference to FIGS. 16, 17, and 18.
  • an oxide film 510 is formed on a substrate 500, and a nitride film 520 is formed on the oxide film 510 to form a double insulating film.
  • a nitride film 520 is formed on the oxide film 510 to form a double insulating film.
  • the oxide film 510 and the nitride film 520 are formed in a thickness of several thousand micrometers to several micrometers.
  • an electrode plate 600 is formed on the insulating film.
  • a material for forming the electrode plate 600 is first coated on the insulating film.
  • the method of coating is usually a method of deposition (deposition) is used. After that patterning to the shape of the electrode plate 600 to be finally formed.
  • the electrode plate 600 is formed to a thickness of several hundred microns to several micrometers.
  • a plurality of first supports 710 are formed.
  • the material of the plurality of first supports 710 is generally the same material as the oxide film 510.
  • the plurality of first supports 710 are formed to have a thickness of several ⁇ m.
  • the electrode plate 600 is formed first and the first support 710 is formed thereafter. However, the first support 710 is formed first and the electrode plate 600 is formed. You may form after that.
  • the plurality of first supports 710 may be patterned after coating a material for forming the plurality of first supports 710 on the insulating film and the electrode plates 600.
  • the first sacrificial layer 810 is formed on the substrate 500 on which the first support 710 and the electrode plate 600 are formed.
  • the first sacrificial layer 810 is preferably made of polysilicon, and the first sacrificial layer 810 is formed to have a thickness of several ⁇ m.
  • the first sacrificial layer 810 and the second sacrificial layer 820 to be described later should be removed from the final result of the MEMS microphone.
  • the first sacrificial layer 810 and the second sacrificial layer 820 to be described later will be removed. Is required during the manufacturing process of MEMS microphones.
  • the first sacrificial layer 810 is formed higher at the portion of the first support 710.
  • the first surface of the first sacrificial layer 810 is higher than the first support 710 until the top surface of the first sacrificial layer 810 is coplanar with the top surfaces of the plurality of first supports 710.
  • the first sacrificial layer 810 is polished.
  • the first sacrificial layer 810 is polished and the plurality of first supports 710 are exposed while the plurality of first supports 710 are exposed out of the first sacrificial side.
  • the second support 720 is formed thereon.
  • the second support 720 is patterned after coating the material for forming the second support 720 on the polished first sacrificial layer 810 and the plurality of first supports 710. Through this process, the state of FIG. 17A is obtained.
  • the second support 720 is formed to a thickness of thousands ⁇ .
  • a second sacrificial layer 820 is formed on the second support 720 and the polished first sacrificial layer 810.
  • the second sacrificial layer 820 is preferably made of polysilicon, and the second sacrificial layer 820 has a thickness of several ⁇ m. Since the second support 720 protrudes upward, the second sacrificial layer 820 is formed higher at the portion of the second support 720.
  • the second sacrificial layer 820 is formed higher on the second support 720 until the upper surface of the second sacrificial layer 820 is coplanar with the upper surface of the second support 720.
  • the second sacrificial layer 820 is polished.
  • the diaphragm 900 has two layers.
  • the lower layer is a non-conductive film and the upper layer is a metal plate.
  • the metal plate is formed to a thickness of several hundred to thousands of kilowatts.
  • the diaphragm 900 may be formed by bonding a metal and a non-conductive film to each other.
  • the non-conductive film is at least one of the oxide film 510 and the nitride film 520.
  • the non-conductive film is formed to a thickness of several hundred to thousands of kilowatts.
  • patterning is performed in the shape of the diaphragm 900 to be finally formed. As shown in FIG. 18B, it is preferable to drill a plurality of through holes on the diaphragm 900.
  • the first sacrificial layer 810 and the second sacrificial layer 820 are removed.
  • the sacrificial layer is removed by etching, and XeF 2 is used as the etching gas.
  • FIG. 19 is a flowchart of a method of manufacturing a MEMS microphone according to a fourth embodiment of the present invention.
  • an electrode plate 600 forming step of forming an electrode plate 600 at a central portion on the substrate 500 is performed (S300).
  • a step of forming a first support 710 forming a plurality of first supports 710 surrounding the electrode plate 600 is performed (S310).
  • a sacrificial layer forming step of forming a first sacrificial layer 810 on the electrode plate 600 and the plurality of first supports 710 is performed (S320).
  • a step of forming the second support 720 that forms the second support 720 on the plurality of first supports 710 is performed (S330).
  • a step of forming the second sacrificial layer 820, which forms the second sacrificial layer 820 on the first sacrificial layer 810 and the second support 720, is performed (S340).
  • the diaphragm 900 forming step of forming the diaphragm 900 supported by the second support 720 in the upper layer of the electrode plate 600 is performed. (S350).
  • the sacrificial layer removing step of removing the first and second sacrificial layers 41 and 42 is shown in operation S360.
  • the order of forming the electrode plate 600 and forming the first support 710 may be changed.
  • the forming of the diaphragm 900 may further include drilling a plurality of through holes on the diaphragm 900.
  • the forming of the electrode plate 600 may further include forming at least one of an oxide film 510 and a nitride film 520 on the substrate 500 before forming the electrode plate 600. have.
  • the forming of the second support 720 may remove the first sacrificial layer 810 until the top surface of the first sacrificial layer 810 is coplanar with the top surfaces of the plurality of first support 710. It is preferable.
  • the second sacrificial layer 820 may be removed until the top surface of the second sacrificial layer 820 is coplanar with the top surface of the second support 720.
  • the forming of the diaphragm 900 may include forming at least one of the oxide film 510 and the nitride film 520 on the second sacrificial layer 820 and the plurality of first supports 710 before forming the diaphragm 900. It is preferable to further include forming a film.
  • FIG. 20 is a perspective view of a MEMS microphone according to a fifth embodiment of the present invention
  • FIG. 21 is a diagram illustrating an internal structure of a MEMS microphone according to a fifth embodiment of the present invention.
  • the fifth embodiment essentially includes a substrate 500, a plurality of first supports 710, an electrode plate 600, a diaphragm 900, an acoustic chamber 550, where the electrode plate 600 is necessarily It has a plurality of through holes.
  • the plurality of first supports 710 are arranged in a circle at predetermined intervals on the substrate 500.
  • the plurality of first supports 710 may function to firmly support the diaphragm 900 when the diaphragm 900 vibrates and moves up and down.
  • the plurality of first supports 710 are arranged at a predetermined interval therebetween, so that a flow of air generated when the diaphragm 900 to be described later vibrates can be smoothly discharged to the outside of the MEMS microphone. It is to make it possible.
  • At least one of the plurality of first supports 710 extends in a direction away from the center of the plurality of first supports 710, which stably supports the first contact terminal 910 to be described later. It is for.
  • the substrate 500 is preferably made of silicon.
  • the substrate 500 of the fifth embodiment is different from the substrate 500 of the third or fourth embodiment. That is, the substrate 500 of the fifth embodiment has an acoustic chamber 550 in the lower center.
  • the diameter of the acoustic chamber 550 is preferably the same as the diameter of the electrode plate 600, the diameter of any one of the acoustic chamber 550 and the electrode plate 600 may be somewhat larger or smaller than the diameter of the other. .
  • the electrode plate 600 is surrounded by the plurality of first support bases 710 and has a plurality of through holes.
  • the substrate 500 has a plurality of through holes that are connected to the through holes of the electrode plate 600 at portions where the substrate 500 is in contact with the electrode plate 600. That is, since the plurality of through holes of the electrode plate 600 and the plurality of through holes of the substrate 500 are connected to each other, the flow of air generated by the driving of the diaphragm 900 is generated on the upper surface of the substrate 500. May exit toward the acoustic chamber 550.
  • the MEMS microphone of the fifth embodiment can be driven by the sound source in the upward direction of the diaphragm 900, and the substrate 500 Also, the MEMS microphone of the fifth embodiment can be driven by the sound source in the downward direction (acoustic chamber 550).
  • the diameter of the diaphragm 900 and the plurality of first supports 710 is preferably the same, but the diameter of any one of the diaphragm 900 and the plurality of first supports 710 may be somewhat larger or smaller than the diameter of the other one. have.
  • the diaphragm 900 and the electrode plate 600 are spaced apart from each other by a predetermined interval, and thus do not contact each other.
  • the frequency response characteristic of the MEMS microphone is excellent.
  • At least one of the oxide film 510 and the nitride film 520 is preferably interposed between the electrode plate 600 and the substrate 500. This is to insulate the silicon substrate 500 and cut off the leakage current of the electrode plate 600. Therefore, at least one of the oxide film 510 and the nitride film 520 serves as an insulating film.
  • the oxide film 510 may be SiO 2
  • the nitride film 520 may be Si 3 N 4.
  • an oxide film 510 is formed on the substrate 500, and a nitride film 520 is formed thereon.
  • the nitride film 520 may be formed first on the substrate 500, and the oxide film 510 may be formed thereon.
  • At least one of the oxide film 510 or the nitride film 520 is formed on the substrate 500, and then the electrode plate 600 is formed thereon.
  • a plurality of first supports 710 are formed to surround the electrode plate 600. Therefore, the electrode plate 600 and the plurality of first support bases 710 are positioned on the same plane. Therefore, at least one of the oxide film 510 and the nitride film 520 is interposed between the electrode and the substrate 500, that is, the oxide film 510 is interposed between the plurality of first supports 710 and the substrate 500. It is the same as that at least one of the nitride films 520 is interposed.
  • the electrode plate 600 may be formed first, and then, a plurality of first supports 710 may be formed to surround the electrode plate 600, but on the contrary, after the plurality of first supports 710 are formed, The electrode plate 600 may be formed therein.
  • the inner circumferential surfaces of the plurality of first supports 710 and the outer circumferential surfaces of the electrode plate 600 may be disposed to be spaced apart from each other by a predetermined interval for blocking the leakage current.
  • FIGS. 22, 23, 24, and 25 is a view showing a series of processes for manufacturing a MEMS microphone according to a fifth embodiment of the present invention. A manufacturing process of the fifth embodiment will be described with reference to FIGS. 22, 23, 24, and 25.
  • an oxide film 510 is formed on the substrate 500.
  • the nitride film 520 may be formed instead of the oxide film 510, and both the oxide film 510 and the nitride film 520 may be formed.
  • the oxide film 510 is formed to a thickness of several thousand micrometers to several micrometers.
  • FIG. 22C shows a state in which the oxide film 510 is finished until patterning.
  • the oxide film 510 is etched by a thickness of several ⁇ m.
  • a plurality of holes are drilled in the central portion of the upper surface of the substrate 500.
  • the hole of FIG. 22B and the hole of FIG. 22C are connected.
  • the hole drilled in the substrate 500 is preferably drilled deep enough to a depth of several to several tens of micrometers.
  • the portion of the substrate where the through-holes are formed has a strong mechanical strength such that there is no movement according to the acoustic signal. That is, it is fixed without displacement according to the acoustic signal, so that it does not generate noise or interference signal.
  • FIG. 22D shows a state in which the oxide film 510 is finished until patterning.
  • the oxide film 510 is etched by a thickness of several ⁇ m.
  • FIG. 22E shows the lower surface of the substrate 500 in the center portion of the lower surface of the substrate 500.
  • FIG. 22E shows the state after the acoustic chamber 550 is formed.
  • the etching should be sufficiently etched to a depth of several hundred ⁇ m to allow air to communicate between the top surface of the substrate 500 and the acoustic chamber 550.
  • an oxide film 530 is formed on the inner circumferential surface of the plurality of cylindrical holes formed from the electrode plate 600 to the acoustic chamber 550 and the acoustic chamber.
  • the upper and lower surfaces of the substrate 500 are now coated with an oxide film.
  • a plurality of holes are blocked with a filling material 830.
  • the upper surface of the substrate 500 and FIG. 23B show that a plurality of holes are blocked from both the upper surface and the lower surface of the substrate 500.
  • the filling material 830 is preferably made of the same material as the first sacrificial layer 810 and the second sacrificial layer 820.
  • the peeling material 830 covered on the upper surface of the substrate 500 is polished to expose the oxide film 510 beneath it.
  • the electrode plate 600 is formed at the center portion on the substrate 500.
  • a material for forming the electrode plate 600 is first coated on the insulating film.
  • the method of coating is usually a method of deposition (deposition) is used.
  • the electrode plate 600 is formed to a thickness of several hundreds of micrometers to several micrometers.
  • a plurality of first supports 710 are formed.
  • the material of the plurality of first supports 710 is generally the same material as the oxide film 510.
  • the plurality of first supports 710 are formed to have a thickness of several ⁇ m.
  • the electrode plate 600 is first formed, and then the first support 710 is formed. However, the first support 710 is formed first and the electrode plate ( 600) may be formed thereafter.
  • the plurality of first supports 710 may be patterned after coating a material for forming the plurality of first supports 710 on the insulating film and the electrode plates 600.
  • the sacrificial layer 800 is formed on the substrate 500 on which the first support 710 and the electrode plate 600 are formed.
  • the sacrificial layer 800 is preferably made of polysilicon, and the sacrificial layer 800 is formed to have a thickness of several ⁇ m.
  • the first sacrificial layer 800 should be removed from the final result of the MEMS microphone, and the present sacrificial layer 800 is required during the manufacturing process of the MEMS microphone. Since the first support 710 protrudes upward, the sacrificial layer 800 is formed higher at the portion of the first support 710.
  • the upper surface of the sacrificial layer 800 is formed higher in the portion of the first support 710 until the upper surface of the sacrificial layer 800 lies on the same plane as the upper surfaces of the plurality of first supports 710.
  • the sacrificial layer 800 is polished.
  • the material forming the diaphragm 900 is coated thereon while a portion of the upper side of the sacrificial layer 800 is removed.
  • the diaphragm 900 is supported by the first support base 710 and the sacrificial layer 800 from which the upper part was removed.
  • the diaphragm 900 has two layers.
  • the lower layer is a non-conducting film and the upper layer is a metal plate.
  • the metal plate is formed to a thickness of several thousand kPa.
  • the metal plate alone may serve as the diaphragm 900
  • the diaphragm 900 may be formed by bonding a metal and a non-conductive film to each other.
  • the non-conductive film is at least one of the oxide film 510 and the nitride film 520.
  • the non-conductor film is formed to a thickness of several hundred to several thousand ⁇ .
  • patterning is performed in the shape of the diaphragm 900 to be finally formed.
  • the sacrificial layer 800 is removed.
  • the filling material 830 is made of the same material as the sacrificial layer 800, the filling material blocking the plurality of holes through which the air communicates with the upper and lower surfaces of the substrate 500 in the process of removing the sacrificial layer by etching.
  • Ash 830 is also removed.
  • XeF 2 or the like is used as the etching gas.
  • 26 is a flowchart of a method of manufacturing a MEMS microphone, according to the fifth embodiment of the present invention.
  • a drilling step of drilling a plurality of holes in a central portion of the upper surface of the substrate 500 is performed (S400).
  • the acoustic chamber 550 is formed at the center of the lower surface of the substrate 500 so that the upper and lower surfaces of the substrate 500 may be in fluid communication through a plurality of holes (S410). ).
  • the electrode plate 600 forming step of forming the electrode plate 600 on the central portion on the substrate 500 is performed (S420).
  • a step of forming a first support 710 for forming a plurality of first supports 710 surrounding the electrode plate 600 on the substrate 500 is performed (S430).
  • a sacrificial layer 800 is formed on the electrode plate 600 and the plurality of first supports 710 to form the sacrificial layer 800 (S440).
  • the diaphragm 900 is formed to form the diaphragm 900 supported by the first support 700 in the upper layer of the electrode plate 600 (S450). ).
  • the sacrificial layer removing step of removing the sacrificial layer 800 is illustrated as being performed (S460). However, the order of forming the electrode plate 600 and forming the first support 710 may be changed.
  • FIG. 26 is a method of manufacturing a MEMS microphone according to a fifth embodiment of the present invention as a basic step, and the drilling may further include forming an oxide film 510 on the substrate 500 before drilling a plurality of holes. have.
  • the forming of the electrode plate 600 may further include forming an oxide film 510 on the inner circumferential surfaces of the plurality of holes and the acoustic chamber 550 before forming the electrode plate 600.
  • the plurality of holes are formed of the filling material 830 of the same material as the sacrificial layer 800. It may further comprise the step of blocking.
  • the sacrificial layer 800 may be removed until the top surface of the sacrificial layer 800 is coplanar with the top surface of the first support 710.
  • at least one of the oxide film 510 and the nitride film 520 is further formed on the sacrificial layer 800 and the plurality of first supports 710 before the diaphragm 900 is formed. It is preferable to further comprise the step of forming.
  • the sacrificial layer removing step it is preferable that both the sacrificial layer 800 and the filling material 830 are removed.
  • FIG. 27 is a perspective view of a MEMS microphone according to a sixth embodiment of the present invention
  • FIG. 28 is a view illustrating an internal structure of the MEMS microphone according to a sixth embodiment of the present invention
  • FIG. 29 is a vertical cross-sectional view of FIG. It is a partial enlarged view.
  • the sixth embodiment essentially includes a substrate 500, a plurality of first supports 710, a second support 720, an electrode plate 600, a diaphragm 900, and an acoustic chamber 550, where
  • the electrode plate 600 necessarily has a plurality of through holes
  • the substrate 500 has a plurality of through holes connected to the through hole of the electrode plate 600 at a portion contacting the electrode plate 600.
  • the plurality of first supports 710 are arranged in a circle at predetermined intervals on the substrate 500.
  • the plurality of first supports 710 may function to firmly support the diaphragm 900 when the diaphragm 900 vibrates and moves up and down.
  • the plurality of first supports 710 are arranged at a predetermined interval therebetween, so that a flow of air generated when the diaphragm 900 to be described later vibrates can be smoothly discharged to the outside of the MEMS microphone. It is to make it possible.
  • At least one of the plurality of first supports 710 extends in a direction away from the center of the plurality of first supports 710, which stably supports the first contact terminal 910 to be described later. It is for.
  • the second support 720 which will be described later, and thus, the plurality of first supports 710 are strictly described as follows. It may be said that the second support 720 is supported while being in contact with the lower surface of the second support 720.
  • the second support 720 is formed in a circular shape on the plurality of first supports 710. Similar to the first support 710, the second support 720 includes a portion extending in a direction away from the center of the second support 720, and the first contact terminal 910 is extended on the extended portion. Is stably supported while being in close contact. Referring to FIG. 27, it can be clearly seen that the first contact terminal 910 is stably supported. In the sixth embodiment, since the entire upper surface of the second support 720 is in close contact with the diaphragm 900, the diaphragm 900 is more stably supported than the third embodiment. The advantage that the sixth embodiment includes the second support 720 is as described in the fourth embodiment.
  • the substrate 500 is preferably made of silicon. However, the substrate 500 of the sixth embodiment is different from the substrate 500 of the third or fourth embodiment. That is, the substrate 500 of the sixth embodiment has an acoustic chamber 550 in the lower center.
  • the diameter of the acoustic chamber 550 is preferably the same as the diameter of the electrode plate 600, the diameter of any one of the acoustic chamber 550 and the electrode plate 600 may be somewhat larger or smaller than the diameter of the other. .
  • the acoustic chamber 550 is illustrated as having a cylindrical shape.
  • the acoustic chamber 550 does not necessarily have to have a cylindrical shape, and the diameter of the acoustic chamber 550 is increased toward the lower side of the substrate 500, or various shapes such as an elliptical column or a polygonal column. You can also take
  • the electrode plate 600 is surrounded by the plurality of first and second supports 710 and 720 and has a plurality of through holes.
  • the substrate 500 has a plurality of through holes that are connected to the through holes of the electrode plate 600 at portions where the substrate 500 is in contact with the electrode plate 600. That is, since the plurality of through holes of the electrode plate 600 and the plurality of through holes of the substrate 500 are connected to each other, the flow of air generated by the driving of the diaphragm 900 is generated on the upper surface of the substrate 500. May exit toward the acoustic chamber 550. In the enlarged view of the lower right of FIG.
  • a small hole and a slightly larger circular protrusion are shown, where the small hole is a through hole drilled in the center portion of the electrode plate 600 and the substrate 500, and the circular protrusion is a sound source. It is formed so that the flow of air generated when the diaphragm 900 is driven to smoothly escape.
  • a suitable depth of the through hole is several micrometers to several tens of micrometers.
  • the MEMS microphone of the sixth embodiment can be driven by the sound source in the upward direction of the diaphragm 900, and the substrate 500 Also, the MEMS microphone of the sixth embodiment can be driven by the sound source in the downward direction (acoustic chamber 550).
  • the diaphragm 900, the plurality of first support 710 and the second support 720 is preferably the same diameter, but the diaphragm 900, the plurality of first support 710 and the second support 720 of the The diameter of either one may be somewhat larger or smaller than the diameter of the other two.
  • the diaphragm 900 and the electrode plate 600 are spaced apart from each other by a predetermined interval, and thus do not contact each other.
  • the thickness of the plurality of first supports 710 had to be thicker than the thickness of the electrode plate 600, in the sixth embodiment, the plurality of first supports 710 and the second support ( It is sufficient if the combined thickness 720 is greater than the thickness of the electrode plate 600. Therefore, in the sixth embodiment, in some cases, the thickness of the plurality of first supports 710 may be thinner than the thickness of the electrode plate 600.
  • the combined thickness of the plurality of first supports 710 and the second supports 720 is not much thicker than the thickness of the electrode plate 600, the electrode plate 600 does not contact the diaphragm 900. It is preferable that it is about thickness. When the distance between the diaphragm 900 and the electrode plate 600 is minimized, the frequency response characteristic of the MEMS microphone is excellent.
  • At least one of the oxide film 510 and the nitride film 520 is preferably interposed between the electrode plate 600 and the substrate 500. This is to insulate the silicon substrate 500 and cut off the leakage current of the electrode plate 600. Therefore, at least one of the oxide film 510 and the nitride film 520 serves as an insulating film.
  • the oxide film 510 may be SiO 2
  • the nitride film 520 may be Si 3 N 4.
  • an oxide film 510 is formed on the substrate 500, and a nitride film 520 is formed thereon.
  • the nitride film 520 may be formed first on the substrate 500, and the oxide film 510 may be formed thereon.
  • At least one of the oxide film 510 or the nitride film 520 is formed on the substrate 500, and then the electrode plate 600 is formed thereon.
  • a plurality of first supports 710 are formed to surround the electrode plate 600. Therefore, the electrode plate 600 and the plurality of first support bases 710 are positioned on the same plane. Therefore, at least one of the oxide film 510 and the nitride film 520 is interposed between the electrode and the substrate 500, that is, the oxide film 510 is interposed between the plurality of first supports 710 and the substrate 500. It is the same as that at least one of the nitride films 520 is interposed.
  • the electrode plate 600 may be formed first, and then, a plurality of first supports 710 may be formed to surround the electrode plate 600, but on the contrary, after the plurality of first supports 710 are formed, The electrode plate 600 may be formed therein.
  • the second support 720 is formed. That is, any one of the electrode plate 600 or the plurality of first supports 710 is formed first, and the other one is formed later, and then the second support 720 is formed.
  • the inner circumferential surfaces of the plurality of first supports 710 and the outer circumferential surfaces of the electrode plate 600 may be disposed to be spaced apart from each other by a predetermined interval for blocking the leakage current.
  • it is preferable that the inner circumferential surface of the second support 720 and the outer circumferential surface of the electrode plate 600 are also disposed to be spaced apart from each other by a predetermined interval to block the leakage current.
  • the second support 720 may not be formed.
  • the electrode plate 600 may have a plurality of through holes without forming the second support 720.
  • the acoustic chamber 550 is formed under the center of the substrate 500.
  • FIGS. 30, 31, 32 and 33 are views showing a series of processes for manufacturing a MEMS microphone according to a sixth embodiment of the present invention.
  • a manufacturing process of the sixth embodiment will be described with reference to FIGS. 30, 31, 32, and 33.
  • FIGS. 30, 31, and 32 (a) are the same as FIGS. 22, 23, and 24 (a), respectively, and a fifth embodiment will be referred to.
  • the first sacrificial layer 810 is formed on the substrate 500 on which the first support 710 and the electrode plate 600 are formed.
  • the first sacrificial layer 810 is preferably made of polysilicon, and the first sacrificial layer 810 is formed to have a thickness of several ⁇ m.
  • the first sacrificial layer 810 and the second sacrificial layer 820 to be described later should be removed from the final result of the MEMS microphone.
  • the first sacrificial layer 810 and the second sacrificial layer 820 to be described later will be removed. Is required during the manufacturing process of MEMS microphones.
  • the first sacrificial layer 810 is formed higher at the portion of the first support 710.
  • the first sacrificial layer 810 is further placed on the first support 710 until the top surface of the first sacrificial layer 810 is coplanar with the top surfaces of the plurality of first support 710.
  • the first sacrificial layer 810 is formed to be polished.
  • the first sacrificial layer 810 is polished and the plurality of first supports 710 are exposed while the plurality of first supports 710 are exposed out of the first sacrificial side.
  • the second support 720 is formed thereon.
  • the second support 720 is patterned after coating the material for forming the second support 720 on the polished first sacrificial layer 810 and the plurality of first supports 710. Through this process, the state of FIG. 32 (d) is obtained.
  • the second support 720 is formed to a thickness of thousands ⁇ ⁇ several ⁇ m.
  • a second sacrificial layer 820 is formed on the second support 720 and the polished first sacrificial layer 810.
  • the second sacrificial layer 820 is preferably made of polysilicon, and the second sacrificial layer 820 has a thickness of several ⁇ m. Since the second support 720 protrudes upward, the second sacrificial layer 820 is formed higher at the portion of the second support 720.
  • the second sacrificial layer 820 is formed higher on the second support 720 until the top surface of the second sacrificial layer 820 is flush with the top surface of the second support 720.
  • the second sacrificial layer 820 is polished.
  • a material for forming the diaphragm 900 is coated thereon while a portion of the upper side of the second sacrificial layer 820 is removed.
  • the diaphragm 900 is supported by the 2nd support layer 720 and the 2nd sacrificial layer 820 from which the upper part was removed.
  • FIG. 33B it can be seen that the diaphragm 900 has two layers.
  • the lower layer is a non-conducting film and the upper layer is a metal plate.
  • the metal plate is formed to a thickness of thousands of kilowatts.
  • the diaphragm 900 may be formed by bonding a metal and a non-conductive film to each other.
  • the non-conductive film is at least one of the oxide film 510 and the nitride film 520.
  • the non-conductor film is formed to a thickness of several hundred to several thousand ⁇ .
  • the first sacrificial layer 810 and the second sacrificial layer 820 are removed.
  • the filling material 830 is made of the same material as the first sacrificial layer 810 and the second sacrificial layer 820, air may flow to the upper and lower surfaces of the substrate 500 in the process of removing the sacrificial layer by etching.
  • the peeling material 830 which blocked the some hole which communicates is also removed.
  • XeF 2 or the like is used as the etching gas.
  • S500 to S530 are the same as S400 to S430 of FIG. 26 illustrating a method of manufacturing the MEMS microphone according to the fifth embodiment.
  • a step of forming a first sacrificial layer 810 to form a first sacrificial layer 810 on the electrode plate 600 and the plurality of first supports 710 is performed (S540).
  • a step of forming the second support 720 that forms the second support 720 on the plurality of first supports 710 is performed (S550).
  • the diaphragm 900 forming step of forming the diaphragm 900 supported by the second support 720 in the upper layer of the electrode plate 600 is performed. (S570).
  • the sacrificial layer removing step of removing the first and second sacrificial layers 41 and 42 is performed (S580).
  • the order of forming the electrode plate 600 and forming the first support 710 may be changed.
  • the drilling may further include forming an oxide film 510 on the substrate 500 before drilling a plurality of holes.
  • the forming of the electrode plate 600 may further include forming an oxide film 510 on the inner circumferential surfaces of the plurality of holes and the acoustic chamber 550 before forming the electrode plate 600.
  • the oxide film 510 is formed on the inner circumferential surface of the plurality of holes and the acoustic chamber 550, and then the plurality of holes are formed in the first sacrificial layer 810 or the second sacrificial layer 820.
  • the forming of the second support 720 may remove the first sacrificial layer 810 until the top surface of the first sacrificial layer 810 is coplanar with the top surfaces of the plurality of first support 710. It is preferable.
  • the second sacrificial layer 820 may be removed until the top surface of the second sacrificial layer 820 is coplanar with the top surface of the second support 720.
  • the forming of the diaphragm 900 may include forming at least one of the oxide film 510 and the nitride film 520 on the second sacrificial layer 820 and the plurality of first supports 710 before forming the diaphragm 900. It is preferable to further include forming a film.
  • all of the first sacrificial layer 810, the second sacrificial layer 820, and the filling material 830 may be removed.

Abstract

본 발명은 벌크 미세가공(bulk micromachining) 기술을 이용하더라도 제조가 용이하고 제조 시간을 단축시킬 수 있으며, 높은 수율을 확보할 수 있고, 표면실장기술(SMT) 공정적용이 가능하여, 초박형 구성에 의한 다량의 생산이 가능한 멤스(MEMS) 마이크로폰 및 그 제조방법에 관한 것이다. 이를 위하여 본 발명에 따른 멤스(MEMS) 마이크로폰은 기판; 기판의 상단에 형성된 음향 챔버; 음향 챔버의 내부에 형성된 복수의 주지지대; 음향 챔버의 바닥면에 형성된 전극판; 및 복수의 주지지대에 의해 지지되고 전극판의 상측에 형성된 진동판를 포함하여 이루어진다.

Description

멤스 마이크로폰 및 그 제조방법
본 발명은 멤스(Micro-Electro Mechanical System, MEMS) 마이크로폰에 관한 것으로, 보다 상세하게는 표면 미세가공(surface micromachining) 방법으로 제작되는 초박형 고감도 표면실장 기술(Surface Mount Technology, SMT) 적용 가능한 실리콘 마이크로폰 및 그 제작 방법에 관한 것이다.
지금까지의 MEMS(Micro-Electro Mechanical System) 마이크로폰에 관련한 연구는 주로 저항형(resistance type), 압전형(piezo type), 콘덴서형(condenser type)으로 나뉘어져 왔다.
저항형 MEMS 마이크로폰은 진동에 의해서 저항값이 변화하는 원리를 이용한 것이므로, 주변 환경변화(온도, 습기, 먼지 등)에 따라 저항값이 변화하여 일정한 음역 주파수를 유지하지 못하는 단점이 있다.
압전형 MEMS 마이크로폰은 진동판 양단에 전위차가 발생되는 피에조 효과(piezo effect)를 이용하므로, 음성신호의 압력에 따른 전기적인 신호의 변화는 있지만 낮은 대역과 음성대역 주파수 특성이 불 균일하여 상용제품의 응용이 극히 제한적이다.
콘덴서형 MEMS 마이크로폰은 두 금속 평판 중 하나의 금속판을 고정전극(back plate)으로 하고 다른 한 개의 진동판을 음향신호에 반응하여 진동할 수 있도록 두 전극 사이의 수㎛ ~수십 ㎛ 대의 공극(air gap)을 가지는 구조이므로, 음원에 따라 진동판이 진동하게 되면 고정전극 사이에 정전용량이 변하게 되어, 축적전하가 변화하게 되고 이에 따라 전류가 흐르게 되는 방식으로 변환음역의 안정성과 주파수 특성이 우수한 장점이 있다.
아울러, 진동판의 재질이 폴리머(polymer) 계열의 필름이 사용되어 제조원가절감 및 부품의 정밀화에 따른 대량생산을 위한 고온조건의 표면실장기술(SMT:surface mount technology) 적용이 불가능하고, 벌크형 미세가공(bulk-type micromachining) 기술을 이용하여 긴 공정시간과 수율 저하 등의 단점이 있지만, 음성대역에서의 우수한 주파수 응답특성을 이유로 MEMS 마이크로폰은 콘덴서 형으로 주로 개발, 생산되어 왔다.
그러나, 마이크로폰의 소형화 및 자동화, 제조원가절감 등의 수요증가에 따라 표면실장화가 가능한 MEMS 마이크로폰의 제작이 절실한 상황이다.
도 1은 종래의 멤스(MEMS) 마이크로폰의 구조를 도시한 것이다. 도 1을 참조하면, 임의의 기판(10)에 형성된 고정전극(20)과 하부전극(30)사이에 공극(40)을 형성시키기 위한 희생층(50)이 일정두께로 형성되며 희생층(50) 제거공정이 모두 완료되면 공극(40)이 완성된다.
여기서, 고정전극(20)과 하부전극(30) 사이에는 각 전극간의 단선을 막기 위해 절연막이 사용되며, 각 전극으로 사용되는 전극 패드들이 기판(10)에 일정간격으로 형성된다.
일반적으로, 콘덴서형 MEMS 마이크로폰은 기판상부에 고정된 고정전극(20)와 하부전극(30)을 제작하고, 기판하부에 후방음향 챔버(60)을 형성하기 위하여 상부를 절연체로 보호한 후 기판하부를 수백 ㎛이상을 가공하게 되며, 동 가공 후 상부 희생층을 제거하는 공정을 거치게 된다. 이러한 후방음향 챔버(60)의 가공 후, 고정전극(20)의 홀을 통하여 하부전극(30) 사이의 희생층(50)을 제거하는 방법으로 제작공정을 마무리하게 된다.
상술한 바와 같이 종래의 콘덴서형 마이크로폰은 후방음향 챔버를 구성하기 위하여 기판의 상부 및 하부의 모두에 반도체 공정이 필수적으로 요구되므로 제조 공정이 많고, 복잡할 뿐만 아니라 공정시간도 길며 공정 수율이 현저히 낮다는 취약점이 있다.
본 발명은 종래의 콘덴서 마이크로폰의 복잡한 공정성을 극복, 개선하고 통상적으로 하부 전극의 후방에 존재하던 음향 챔버를 상부기판에 일체화시켜 제조 공정 및 제조시간을 단출시킬 수 있는 멤스(MEMS) 마이크로폰 및 그 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 음향 챔버의 바닥면에 열 산화막을 이용한 반구형 단차를 형성하고, 그 상측에 하부 전극판을 형성하여 외부음향에 의해 발생하는 진동판의 진동에 대한 공기흐름을 원활히 배출하도록 하며, 그 단차에 의해 상측의 진동판과 하측의 전극판과의 간격을 최소화함으로써 우수한 주파수 응답특성을 가지는 SMT용 초박형 멤스(MEMS) 마이크로폰 및 그 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 진동판이 견고하게 지지되는 멤스 마이크로폰 및 그 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 진동판의 윗 방향과 아래 방향의 양방향으로부터 음압을 입력받을 수 있는 멤스 마이크로폰 및 그 제조방법을 제공하는 것을 목적으로 한다.
청구항 1에 관한 발명인 멤스 마이크로폰은, 기판; 기판의 상단에 형성된 음향 챔버; 음향 챔버의 내부에 형성된 복수의 주지지대; 음향 챔버의 바닥면에 형성된 전극판; 및 복수의 주지지대에 의해 지지되고 전극판의 상측에 형성된 진동판을 포함한다.
청구항 2에 관한 발명인 멤스 마이크로폰은, 기판; 상기 기판 상에서 소정 간격을 두고 원형으로 배열된 복수의 제1 지지대; 상기 기판 상에 형성되며 상기 복수의 제1 지지대에 의하여 둘러싸여 있는 전극판; 및 상기 복수의 제1 지지대에 의하여 지지되고 상기 전극판의 상측에 형성된 진동판;을 포함한다.
청구항 3에 관한 발명인 멤스 마이크로폰은, 기판; 상기 기판 상에서 소정 간격을 두고 원형으로 배열된 복수의 제1 지지대; 상기 복수의 제1 지지대 상에 원형으로 형성된 제2 지지대; 상기 기판 상에 형성되며 상기 복수의 제1 지지대 및 상기 제2 지지대에 의하여 둘러싸여 있는 전극판; 및 상기 제2 지지대에 의하여 지지되고 상기 전극판의 상측에 형성된 진동판;을 포함한다.
청구항 4에 관한 발명인 멤스 마이크로폰은, 기판; 상기 기판 상에서 소정 간격을 두고 원형으로 배열된 복수의 제1 지지대; 상기 기판 상에 형성되고 상기 복수의 제1 지지대에 의하여 둘러싸여 있으며 복수의 관통홀을 갖는 전극판; 상기 복수의 제1 지지대에 의하여 지지되고 상기 전극판의 상측에 형성된 진동판; 및 상기 기판의 중앙 하부에 형성된 음향 챔버;를 포함하고, 상기 기판은 상기 전극판과 맞닿는 부위에 상기 전극판의 관통홀과 이어지는 복수의 관통홀이 뚫려있다.
청구항 5에 관한 발명인 멤스 마이크로폰은, 기판; 상기 기판 상에서 소정 간격을 두고 원형으로 배열된 복수의 제1 지지대; 상기 복수의 제1 지지대 상에 원형으로 형성된 제2 지지대; 상기 기판 상에 형성되고 상기 복수의 제1 지지대 및 상기 제2 지지대에 의하여 둘러싸여 있으며 복수의 관통홀을 갖는 전극판; 상기 제2 지지대에 의하여 지지되고 상기 전극판의 상측에 형성된 진동판; 및 상기 기판의 중앙 하부에 형성된 음향 챔버;를 포함하고, 상기 기판은 상기 전극판과 맞닿는 부위에 상기 전극판의 관통홀과 이어지는 복수의 관통홀이 뚫려있다.
청구항 6에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 1, 청구항 2 또는 청구항 3에 관한 발명인 멤스 마이크로폰에 있어서, 상기 진동판은 복수의 관통 홀을 구비한다.
청구항 7에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 1에 관한 발명인 멤스 마이크로폰에 있어서, 상기 마이크로폰은 상기 복수의 주지지대 사이에 형성되어 상기 진동판을 지지하는 복수의 보조지지대를 더 포함한다.
청구항 8에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 7에 관한 발명인 멤스 마이크로폰에 있어서, 상기 음향 챔버, 상기 복수의 지지대 및 상기 복수의 보조지지대는 상기 기판의 식각에 의해서 상기 기판과 일체형으로 형성된다.
청구항 9에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 1 내지 청구항 5에 관한 발명인 멤스 마이크로폰에 있어서, 상기 기판은 실리콘 재질로 이루어진다
청구항 10에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 8에 관한 발명인 멤스 마이크로폰에 있어서, 상기 음향 챔버, 상기 복수의 지지대 및 상기 복수의 보조지지대는 표면에 형성된 질화막을 포함한다.
청구항 11에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 10에 관한 발명인 멤스 마이크로폰에 있어서, 상기 복수의 지지대 및 상기 복수의 보조지지대는 상측에서 상기 질화막의 하부에 형성된 산화막을 포함한다.
청구항 12에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 1에 관한 발명인 멤스 마이크로폰에 있어서, 상기 음향 챔버는 상기 전극판과 상기 바닥면 사이에 형성된 돌출부를 더 포함한다.
청구항 13에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 12에 관한 발명인 멤스 마이크로폰에 있어서, 상기 돌출부는 상기 음향 챔버의 바닥면의 중심부에서 반구형으로 돌출되도록 형성된 산화막이다.
청구항 14에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 1에 관한 발명인 멤스 마이크로폰에 있어서, 상기 진동판은 가장자리에서 돌출되어 일체형으로 형성된 복수의 제1 접촉단자를 구비한다.
청구항 15에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 1에 관한 발명인 멤스 마이크로폰에 있어서, 상기 전극판은 가장자리에서 연장된 일체형의 제2 접촉단자를 구비한다.
청구항 16에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 1 내지 청구항 5에 관한 발명인 멤스 마이크로폰에 있어서, 상기 전극판과 기판 사이에 산화막과 질화막 중 적어도 어느 하나가 개재된다.
청구항 17에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 2 내지 청구항 5에 관한 발명인 멤스 마이크로폰에 있어서, 상기 복수의 제1 지지대와 상기 기판 사이에 산화막과 질화막 중 적어도 어느 하나가 개재된다.
청구항 18에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 1 내지 청구항 5에 관한 발명인 멤스 마이크로폰에 있어서, 상기 전극판은 금속과 비전도체막이 접합되어 형성된다.
청구항 19에 관한 발명인 멤스 마이크로폰에 있어서, 청구항 2 내지 청구항 5에 관한 발명인 멤스 마이크로폰에 있어서, 상기 진동판은 하면에서 복수의 관통홀이 뚫려있지 않은 영역에 돌출부가 형성된다.
청구항 20에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 기판 상면에 음향 챔버와 복수의 주지지대를 형성하는 단계; 상기 음향 챔버의 바닥면의 중심부에 전극판을 형성하는 단계; 상기 기판의 상면 및 상기 음향 챔버에 희생층을 형성하는 단계; 상기 희생층의 상측 일부를 제거한 후에 상기 전극판의 상측에서 상기 주지지대에 의하여 지지되는 진동판을 형성하는 단계; 및 상기 희생층을 제거하는 단계를 포함한다.
청구항 21에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 기판 상의 중앙 부위에 전극판을 형성하는 전극판 형성 단계; 상기 전극판을 둘러싸는 복수의 제1 지지대를 형성하는 제1 지지대 형성 단계; 상기 전극판 및 상기 복수의 제1 지지대 상에 희생층을 형성하는 희생층 형성 단계; 상기 희생층의 상측 일부를 제거한 후에 상기 전극판의 상층에서 상기 복수의 제1 지지대에 의하여 지지되는 진동판을 형성하는 진동판 형성 단계; 및 상기 희생층을 제거하는 희생층 제거 단계;를 포함한다.
청구항 22에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 기판 상의 중앙 부위에 전극판을 형성하는 전극판 형성 단계; 상기 전극판을 둘러싸는 복수의 제1 지지대를 형성하는 제1 지지대 형성 단계; 상기 전극판 및 상기 복수의 제1 지지대 상에 제1 희생층을 형성하는 제1 희생층 형성 단계; 상기 제1 희생층의 상측 일부를 제거한 후에 상기 복수의 제1 지지대 상에 제2 지지대를 형성하는 제2 지지대 형성 단계; 상기 제1 희생층 및 상기 제2 지지대 상에 제2 희생층을 형성하는 제2 희생층 형성 단계; 상기 제2 희생층의 상측 일부를 제거한 후에 상기 전극판의 상층에서 상기 제2 지지대에 의하여 지지되는 진동판을 형성하는 진동판 형성 단계; 및 상기 제1, 제2 희생층을 제거하는 희생층 제거 단계;를 포함한다.
청구항 23에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 기판 상면의 중앙 부위에 복수의 구멍을 뚫는 천공 단계; 상기 기판의 하면 중앙 부위에 음향 챔버를 형성하여 상기 기판의 상면과 하면이 상기 복수의 구멍을 통하여 유체 연통되도록 하는 음향 챔버 형성 단계; 상기 기판 상의 중앙 부위에 전극판을 형성하는 전극판 형성 단계; 상기 전극판을 둘러싸는 복수의 제1 지지대를 상기 기판 상에 형성하는 제1 지지대 형성 단계; 상기 전극판 및 상기 복수의 제1 지지대 상에 희생층을 형성하는 희생층 형성 단계; 상기 희생층의 상측 일부를 제거한 후에 상기 전극판의 상층에서 상기 제1 지지대에 의하여 지지되는 진동판을 형성하는 진동판 형성 단계; 및 상기 희생층을 제거하는 희생층 제거 단계;를 포함한다.
청구항 24에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 기판 상면의 중앙 부위에 복수의 구멍을 뚫는 천공 단계; 상기 기판의 하면 중앙 부위에 음향 챔버를 형성하여 상기 기판의 상면과 하면이 상기 복수의 구멍을 통하여 유체 연통되도록 하는 음향 챔버 형성 단계; 상기 기판 상의 중앙 부위에 전극판을 형성하는 전극판 형성 단계; 상기 전극판을 둘러싸는 복수의 제1 지지대를 상기 기판 상에 형성하는 제1 지지대 형성 단계; 상기 전극판 및 상기 복수의 제1 지지대 상에 제1 희생층을 형성하는 제1 희생층 형성 단계; 상기 제1 희생층의 상측 일부를 제거한 후에 상기 복수의 제1 지지대 상에 제2 지지대를 형성하는 제2 지지대 형성 단계; 상기 제1 희생층 및 상기 제2 지지대 상에 제2 희생층을 형성하는 제2 희생층 형성 단계; 상기 제2 희생층의 상측 일부를 제거한 후에 상기 전극판의 상층에서 상기 제2 지지대에 의하여 지지되는 진동판을 형성하는 진동판 형성 단계; 및 상기 제1, 제2 희생층을 제거하는 희생층 제거 단계;를 포함한다.
청구항 25에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 20 내지 청구항 22에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 진동판을 형성하는 단계에서는, 상기 진동판 상에 복수의 관통홀이 형성된다.
청구항 26에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 20에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 음향 챔버와 복수의 주지지대를 형성하는 단계는, 상기 복수의 주지지대 사이에 복수의 보조지지대를 더 형성한다.
청구항 27에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 26에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 음향 챔버와 복수의 주지지대를 형성하는 단계는, 상기 기판의 표면에 산화막을 형성하는 단계; 상기 산화막을 패터닝한 후 식각으로 상기 음향 챔버, 상기 복수의 주지지대 및 상기 복수의 보조지지대를 형성하는 단계; 및 상기 음향 챔버, 상기 복수의 주지지대 및 상기 복수의 보조지지대의 표면에 질화막을 형성하는 단계를 포함한다.
청구항 28에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 27에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 전극판을 형성하는 단계는, 상기 음향 챔버의 중심부의 질화막을 제거한 후 반구형상의 산화막을 형성하는 단계; 및 상기 반구형상의 산화막 위에 금속막인 상기 전극판을 형성하는 단계를 포함한다.
청구항 29에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 20에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 진동판 및 상기 전극판은 메탈 스퍼터링 기법에 의하여 형성된 금속막이며, Ti, Au, Cu, Al, Pt 및 TiN 중 어느 하나의 재질이다.
청구항 30에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 20에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 진동판 및 상기 전극판은 가장자리에 전원 공급을 위한 일체형의 접촉 단자를 형성한다.
청구항 31에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 25에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 음향 챔버와 복수의 주지지대를 형성하는 단계에서는, 상기 복수의 주지지대가 하측에서 상기 전극판과 인접하도록 형성된다.
청구항 32에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 25에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 진동판을 형성하는 단계에서는, 상기 복수의 주지지대 및 상기 복수의 보조지지대의 상면의 질화막이 노출되도록 상기 희생층의 상측 일부가 제거된다.
청구항 33에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 20에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 희생층은 적어도 폴리 실리콘(poly-silicon) 계열의 플라즈마를 포함한 등방성 에칭 가스에 의해 식각 처리가 용이한 재질이다.
청구항 34에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 21 또는 청구항 22에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 전극판 형성 단계는, 상기 전극판을 형성하기 전에 상기 기판 상에 산화막과 질화막 중 적어도 어느 하나의 막을 더 형성하는 단계를 더 포함한다.
청구항 35에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 21 또는 청구항 23에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 진동판 형성 단계는, 상기 희생층의 상면이 상기 복수의 제1 지지대의 상면과 동일 평면 상에 놓일 때까지 상기 희생층을 제거한다.
청구항 36에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 21 또는 청구항 23에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 진동판 형성 단계는, 상기 진동판을 형성하기 전에 상기 희생층 및 상기 복수의 제1 지지대 상에 산화막과 질화막 중 적어도 어느 하나의 막을 더 형성하는 단계를 포함한다.
청구항 37에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 22 또는 청구항 24에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 제2 지지대 형성 단계는, 상기 제1 희생층의 상면이 상기 복수의 제1 지지대의 상면과 동일 평면 상에 놓일 때까지 상기 제1 희생층을 제거한다.
청구항 38에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 22 또는 청구항 24에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 진동판 형성 단계는, 상기 제2 희생층의 상면이 상기 제2 지지대의 상면과 동일 평면 상에 놓일 때까지 상기 제2 희생층을 제거한다.
청구항 39에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 22 또는 청구항 24에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 진동판 형성 단계는, 상기 진동판을 형성하기 전에 상기 제2 희생층 및 상기 제2 지지대 상에 산화막과 질화막 중 적어도 어느 하나의 막을 더 형성하는 단계를 포함한다.
청구항 40에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 23 또는 청구항 24에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 천공 단계는, 상기 복수의 구멍을 뚫기 전에 상기 기판 상에 산화막을 형성하는 단계를 더 포함한다.
청구항 41에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 23 또는 청구항 24에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 전극판 형성 단계는, 상기 전극판을 형성하기 전에 상기 복수의 구멍의 내주면 및 상기 음향 챔버에 산화막을 형성하는 단계를 더 포함한다.
청구항 42에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 41에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 전극판 형성 단계는, 상기 복수의 구멍의 내주면 및 상기 음향 챔버에 산화막을 형성한 후에 상기 복수의 구멍을 상기 희생층과 동일한 재질의 필링재(filling material)로 막는 단계를 더 포함한다.
청구항 43에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 42에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 희생층 제거 단계는, 상기 희생층 및 상기 필링재가 모두 제거된다.
청구항 44에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 41에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 전극판 형성 단계는, 상기 복수의 구멍의 내주면 및 상기 음향 챔버에 산화막을 형성한 후에 상기 복수의 구멍을 상기 제1 희생층 또는 제2 희생층과 동일한 재질의 필링재로 막는 단계를 더 포함한다.
청구항 45에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 청구항 44에 관한 발명인 멤스 마이크로폰 제조방법에 있어서, 상기 희생층 제거 단계는, 상기 제1 희생층, 상기 제2 희생층 및 상기 필링재가 모두 제거된다.
본 발명에 따르면, 기판 상부 및 하부에 가해지는 복잡한 반도체 공정 및 멤스(MEMS) 마이크로폰의 구조를 단순화한 일면 구조의 마이크로폰을 형성함으로써 생산 수율향상과 안정성을 확보할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 공정의 용이성을 통한 동일 기판 내 근접배치가 가능하여 실리콘 기판 내 수 천개 내지 수만 개의 칩(chip) 배치가 가능하여 대량생산을 통한 적용 부품의 생산단가를 획기적으로 절감할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 기전 제품대비 일렉트릿(electret) 소재를 폴리머가 아닌 실리콘으로 대체함으로써 내구성 강화 및 우수한 감도특성을 가지는 SMD 부품화를 가능하게 할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 진동판이 견고하게 지지될 수 있고, 진동판의 진동에 의해 발생하는 공기흐름이 외부로 원활하게 배출될 수 있는 효과가 있다.
또한, 본 발명에 따르면, 진동판의 윗 방향과 아래 방향의 양방향으로부터 음압을 입력받을 수 있고, 진동판과 전극판과의 간격을 최소화함으로써 우수한 주파수 응답특성을 가질 수 있는 효과가 있다.
도 1은 종래기술에 따른 멤스(MEMS) 마이크로폰의 단면도이다.
도 2는 본 발명의 제1 실시예에 따른 멤스 마이크로폰의 정면도 및 단면도이다.
도 3은 본 발명의 제1 실시예에 따른 멤스 마이크로폰 제조방법의 순서도이다.
도 4는 도 3의 제조방법의 공정에 따른 멤스 마이크로폰의 형성도이다.
도 5는 본 발명의 제2 실시예에 따른 멤스 마이크로폰의 정면도 및 단면도이다.
도 6의 (a) 및 (b) 각각은 도 2의 멤스 마이크로폰 및 상부의 진동판을 제거한 상태의 개략도이다.
도 7의 (a) 및 (b) 각각은 도 5의 멤스 마이크로폰 및 상부의 진동판을 제거한 상태의 개략도이다.
도 8은 도 1 및 도 2의 멤스 마이크로폰의 희생층을 형성한 상태의 수직 단면의 개략도이다.
도 9는 본 발명의 제3 실시예에 따른 멤스 마이크로폰의 사시도이다.
도 10은 본 발명의 제3 실시예에 따른 멤스 마이크로폰의 내부 구조를 나타낸 도면이다.
도 11은 본 발명의 제3 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다.
도 12는 본 발명의 제3 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다.
도 13은 본 발명의 제3 실시예에 따른 따른 멤스 마이크로폰을 제조하는 방법의 순서도이다.
도 14는 본 발명의 제4 실시예에 따른 멤스 마이크로폰의 사시도이다.
도 15는 본 발명의 제4 실시예에 따른 멤스 마이크로폰의 내부 구조를 나타낸 도면이다.
도 16은 본 발명의 제4 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다.
도 17은 본 발명의 제4 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다.
도 18은 본 발명의 제4 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다.
도 19은 본 발명의 제4 실시예에 따른 따른 멤스 마이크로폰을 제조하는 방법의 순서도이다.
도 20은 본 발명의 제5 실시예에 따른 멤스 마이크로폰의 사시도이다.
도 21은 본 발명의 제5 실시예에 따른 멤스 마이크로폰의 내부 구조를 나타낸 도면이다.
도 22는 본 발명의 제5 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다.
도 23는 본 발명의 제5 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다.
도 24는 본 발명의 제5 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다.
도 25는 본 발명의 제5 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다.
도 26은 본 발명의 제5 실시예에 따른 따른 멤스 마이크로폰을 제조하는 방법의 순서도이다.
도 27은 본 발명의 제6 실시예에 따른 멤스 마이크로폰의 사시도이다.
도 28은 본 발명의 제6 실시예에 따른 멤스 마이크로폰의 내부 구조를 나타낸 도면이다.
도 29는 도 28의 수직방향 단면도 및 부분 확대도이다.
도 30은 본 발명의 제6 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다.
도 31는 본 발명의 제6 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다.
도 32는 본 발명의 제6 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다.
도 33은 본 발명의 제6 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다.
도 34는 본 발명의 제6 실시예에 따른 따른 멤스 마이크로폰을 제조하는 방법의 순서도이다.
이하 본 발명의 실시예에 대하여 첨부한 도면을 참조하여 상세하게 설명하기로 한다. 다만, 첨부된 도면은 본 발명의 내용을 보다 쉽게 개시하기 위하여 설명되는 것일 뿐, 본 발명의 범위가 첨부된 도면의 범위로 한정되는 것이 아님은 이 기술분야의 통상의 지식을 가진 자라면 용이하게 알 수 있을 것이다. 또한, 본 발명을 설명함에 있어, 관련된 공지구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략하며, 단수로 기재된 용어도 복수의 개념을 포함할 수 있다. 본 발명의 장점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
<제1 실시예>
도 2의 (a)는 본 발명의 제1 실시예에 따른 상부의 진동판 및 하부의 구조를 투영한 멤스(MEMS) 마이크로폰의 정면도이고, 도 2의 (b) 및 (c)의 각각은 절단선 A1-A1' 및 B1-B1'를 따라 절취한 단면도를 도시한 것이다.
도 2의 (a) 내지 (c)를 참조하면, 본 발명의 제1 실시예에 따른 멤스 마이크로폰(200)은 기판(210); 기판의 상단에 형성된 음향 챔버(220); 음향 챔버의 내부에 형성된 복수의 주지지대(230); 음향 챔버의 바닥면에 형성된 전극판(260); 및 복수의 주지지대에 의해 지지되고 전극판의 상측에 형성된 진동판(270)을 포함하여 이루어진다.
마이크로폰(200)은 복수의 주지지대 사이에 형성되어 진동판을 지지하는 복수의 보조지지대(240)를 더 포함하는 것이 바람직하다. 진동판(270) 및 전극판(260)은 Ti, Au, Cu, Al, Pt 및 TiN 중 어느 하나의 재질로 형성된 금속막이다. 복수의 보조 지지대(240)는 진동판이 상하 운동에 의하여 아래로의 처짐 또는 밀착현상(sticking)을 방지하는 기능을 한다.
음향 챔버(220), 복수의 주지지대(230) 및 복수의 보조지지대(240)는 실리콘 재질의 기판을 식각하여 기판과 일체형으로 형성되며, 복수의 지지대 및 복수의 보조지지대는 음향 챔버(220) 내에서 높이가 동일하도록 형성된다. 이와 같은 식각은 TMAH 또는 KOH 또는 이에 이에 상응하는 실리콘(Si) 식각 수용액을 이용한 실리콘 습식 에칭에 의해 형성하고, 0.5㎛~수 ㎛ 의 미세 단차를 가지는 멤스 기술에 의하여 이루어진다.
음향 챔버, 복수의 지지대 및 복수의 보조지지대는 표면에 질화막(221)이 형성되어 있으며, 복수의 지지대 및 복수의 보조지지대는 상측의 진동판(270)을 지지하는 부분의 질화막(221)의 하측에 산화막(211)을 더 구비하고 있다. 즉, 복수의 지지대 및 복수의 보조지지대는 상부 및 외주면에 Si02 및 Si3N4로 형성된 이중의 절연막을 구비한다.
진동판(270)이 음원에 의하여 구동함에 따라 발생하는 공기 흐름이 원활히 배출 및 분산될 수 있도록 복수의 주지지대가 설계 및 배치되며, 기판(210)의 상부가 습식 식각되어 기판의 내부에 음향 챔버(220)가 형성되며, 그 음향 챔버의 내부 바닥면에 전극판(260)이 형성된다. 이 경우에 전극판(260)은 우수한 주파수 응답 특성을 확보하기 위하여 진동판(270)과의 간격을 조정함에 있어 전극판의 하부인 음향 챔버의 중앙 바닥면에 선택적인 두께로 반구 형태의 산화막(250)을 성장시킨다.
또한, 도 4의 (d) 및 (e)를 참조하면, 진동판(270)을 형성을 위하여 복수의 지지대의 높이보다 상향된 실리콘 희생층(410,420)을 형성한 후 복수의 주지지대의 상부에 형성된 질화막층과 동일한 면(411)까지 표면가공기술을 통하여 희생층(420)을 제거한다. 여기서, 도 4의 (d)에서 실선에 의하여 구분되는 두개의 희생층(410, 420)은 한번의 공정에 의하여 형성되는 것이며, 물리적으로 구분되어 있지는 않다. 도 4(d)에서 실선은 진동판의 형성을 위하여 희생층이 제거되어야하는 위치에 대한 이해를 돕기 위한 가상의 선이다.
진동판(270)은 음원에 의해 구동하며, 천Å~ 수 ㎛ 두께의 금속 재질로 형성되며, Ti, Au, Cu, Al, Pt, TiN 및 이에 상응하는 금속 재질로 구성될 수 있고, 노출 음원의 성격에 따라 그 크기를 ㎛ 단위로 설계될 수 있다.
음향 챔버(220)는 실리콘 기판(210)을 기점으로 수 ㎛ ~ 수십 ㎛의 습식식각에 의해 형성되며, 식각에는 식각율 및 식각표면 상태를 개선하기 위하여 솔벤트(solvent) 혼합 식각 용액이 사용되며, 실리콘 기판 간의 절연 및 전극판의 형성 및 누설전류 차단을 위한 Si02 혹은 Si3N4의 절연막을 형성한다.
음향 챔버(220)에는 바닥면의 중심부에서 반구형으로 돌출된 산화막의 돌출부(250)가 형성되어 있고, 돌출부의 상측에 금속 전극판(260)이 형성되어 있다.
즉, 돌출부(250)는 진동판과 전극판의 간격을 조정하기 위하여 음향 챔버 내부의 중앙에 1㎛ 내지 3㎛ 이상으로 성장된 열 산화막이다. 돌출부(250)는 음향 챔버(220)가 상측의 진동판(270)의 상하 운동에 의해 발생하는 음압에 의한 공기흐름을 원활히 배출하는 역할을 할 수 있도록 반구형 구조로 제작형성된다. 또한, 하측의 전극판(260)도 천Å~ 수 ㎛ 두께의 금속막이며, Ti, Au, Cu, Al, Pt, TiN 및 이외 이에 상응하는 금속 재질로 형성되는 것이 가능하다.
진동판(270)은 가장자리에서 돌출되어 일체형으로 형성된 복수의 제1 접촉단자(271)를 구비하고, 전극판(260)은 가장자리에서 전원 연결을 위하여 연장된 일체형 제2 접촉단자(261)를 구비하여 외부 음원(음압)을 감지(구동)한다.
복수의 주지지대(230)는 하측에서 전극판과 인접하도록 형성되는 것이 가능하다.
<제1 실시예의 제조과정>
도 3는 본 발명의 제1 실시예에 따른 멤스 마이크로폰 제조방법의 순서도이고, 도 4는 도 3의 제조방법의 공정에 따른 멤스 마이크로폰의 형성 과정도이다. 도 4의 (a)는 하부의 전극판의 형성될 위치의 질화막이 제거되는 과정을 도시한 것이고, 도 4의 (b)는 도 4의 (a)에서 질화막이 제거된 위치에 타원체형의 단차 구조물을 열 산화막으로 형성하는 과정을 도시한 것이고, 도 4의 (c)는 도 4의 (b)의 열산화막 위에 하부 전극판 및 일체형 전극 접촉부를 형성하는 과정을 도시한 것이다. 도 4의 (d)는 상부의 진동판을 형성하기 위하여 음향 챔버의 내부 및 복수의 지지대를 덮도록 희생층을 형성하는 과정을 도시한 것이고, 도 4의 (e)는 상부의 진동판을 형성하기 위하여 희생층을 표면가공기술을 이용하여 상부의 진동판 및 복수의 지지대가 동일하게 단차지도록 희생층의 상부를 제거하는 과정을 도시한 것이다.
도 3 내지 도 4를 참조하면, 본 발명의 제1 실시예에 따른 멤스 마이크로폰 제조 방법은 제조방법은, 기판 상면에 음향 챔버와 복수의 주지지대를 형성하는 단계(S100); 음향 챔버의 바닥면의 중심부에 전극판을 형성하는 단계(S110); 기판의 상면 및 음향 챔버에 희생층을 형성하는 단계(S120); 희생층의 상측 일부를 제거한 후에 전극판의 상측에서 주지지대에 의하여 지지되는 진동판을 형성하는 단계(S130); 및 희생층을 제거하는 단계(S140)을 포함하여 수행된다.
S100 단계에서는, 복수의 주지지대 사이에 복수의 보조지지대를 더 형성하고, 기판의 표면에 산화막을 형성하고, 산화막을 패터닝한 후 식각으로 음향 챔버, 복수의 주지지대 및 복수의 보조지지대를 형성하고, 음향 챔버, 복수의 주지지대 및 복수의 보조지지대의 표면에 질화막을 형성한다(S110).
S100 단계에서는, 복수의 주지지대 및 복수의 보조지지대는 음향 챔버의 내부에 형성되며, 양 지지대의 높이가 동일하도록 형성된다.
S110 단계에서는, 음향 챔버의 중심부의 질화막을 제거한 후 반구형상의 산화막(250)을 형성하고, 반구형상의 산화막 위에 금속막인 전극판(260)을 형성한다.
S120 단계에서는, 희생층(410, 420)이 음향 챔버(220) 깊이의 1 배 초과 내지 1.5배 이하의 두께로 복수의 주지지대, 복수의 보조지지대 및 음향 챔버를 커버하도록 형성된다.
S130 단계에서는, 복수의 주지지대 및 복수의 보조지지대의 상면의 질화막이 노출되도록 희생층의 상측 일부가 제거되며, 희생층은 적어도 폴리 실리콘(poly-silicon) 계열의 플라즈마를 포함한 등방성 에칭 가스에 의해 식각 처리가 용이한 재질로 형성된다.
S100 단계에서는 실리콘 기판(210)의 상면에 수 천Å~ 수 ㎛ 대의 산화막(211)이 형성되고, 그리고 나서 음향 챔버(220)를 형성하기 위하여 일정간격 한 간격을 가지고 포토 레지스터 패터닝하여, 산화막(211)을 식각한 후에, 실리콘 기판(210)을 습식 식각하여 수 ㎛ 깊이의 음향 챔버(220)와 복수의 주지지대(230) 및 복수의 보조지지대(203)를 형성한다. 여기서 복수의 보조지지대(600)는 진동판(270, 310)의 구동 중 발생할 수 있는 스트레스에 의한 처짐 및 밀착현상 (sticking) 현상을 방지하기 위하여 형성된다.
이때, 음향 챔버(220) 내의 표면은 진동판(270, 310)의 진동에 의하여 발생되는 음압의 원활한 흐름을 위하여 식각된 표면의 거칠기를 기존 기판의 거칠기와 동일한 상태로 유지하기 위하여 소정의 솔벤트(solvent wt %)를 혼합한 식각 용액에 의하여 식각되는 것이 바람직하다.
이후 식각된 실리콘 표면을 추가 보호하기 위하여 질화막(221)을 추가로 형성하며, 질화막은 최종적으로 음향 챔버(220)의 공극(air gap) 확보를 위한 희생층(210) 제거 시 식각 정지층으로도 활용되고, 또한 진동판 및 전극판 간의 누설전류를 차단한다.
수 ㎛ 지름의 원형 전극판(260)을 구성하기 위하여 식각된 음향 챔버(220)의 중앙부에 반구형으로 돌출된 산화막 단차(250)을 형성하기 위하여 포토 레지스터 패터닝 후에 질화막(221)를 제거한다
산화막 단차(250) 형성시에 음향 챔버(220)의 깊이는 음향감도 향상을 위하여 상부의 금속 진동판(270,310))과 하부의 금속 전극판(260) 간의 최 근접한 간격을 형성하기 위하여 1차로 수 ㎛ 대의 적정한 음향 챔버(220)의 깊이를 요구하며,하부 전극판(260)의 하측에 형성된 산화막 단차(250)를 2차로 조정하여 최대 근접한 공극을 구성하여 우수한 음향감도 향상시킬 수 있다
반호 산화막 단차(250)는 산화막(thermal oxide)으로 형성되며, 하부 전극판(260)의 단차를 정확하게 확보하기 위해서는 실리콘 기판(210)의 소실양(약45%)을 고려하여 산화막 단차(250)의 성장 두께를 설정하는 것이 바람직하다. 산화막 단차의 두께는 진동판(270,310)의 진동에 의한 음압을 원활히 배출하기 위한 중요한 변수이기도 하다.
전극판(260)은 산화막 단차(250)의 형성 후 금속막으로 형성되는데, 절연막 (thermal oxide)으로 형성된 수 천Å~ 수 ㎛ 두께의 금속막을 스퍼터링 (sputtering) 한 후 포토 레지스터 공정을 통하여 생성된다. 이 과정에서의 전류인가를 위한 전극 접촉부(261)는 일체화되어 있으며, 그 재료로 Ti, Au, Cu, Al, Pt, TiN 외 이에 상응하는 재질을 적용 할 수 있고, 원활한 전극패드 운영을 위하여 보조 전극 접촉부를 추가로 형성할 수 있다.
산화막 단차(250)는 진동판(270, 310)의 진동에 의한 음압이 선형구조를 가지는 것을 알 수 있으며, 이 구조에 의해 음향에 의해 진동하는 음압이 선형구조를 따라 원활히 배출될 수 있다.
진동판을 형성하기 위하여, 음향 챔버(220)의 내부, 주지지대(230) 및 보조지지대(240)의 내부에 희생층(410,420)을 형성한다. 이때, 희생층의 소재는 폴리머(polymer) 계열 및 폴리 실리콘(Poly Si) 계열의 소재가 사용되어 이후의 제거 과정을 원활하게 수행하게 한다.
또한, 복수의 주지지대 및 복수의 보조지지대의 단차가 동일 높이에 위치하게 하기 위하여 표면 가공기술을(polishing, CMP)를 적용하며, 이때 동공정의 원활한 공정성 확보를 위하여 음향 챔버(220)의 단차의 약 1배~1.5배 범위의 추가 희생층(702)를 적용하는 것이 바람직하다
희생층의 표면(411)의 거칠기는 기판(210)의 기존 표면과 동일한 수준이여야 하며, 그 이유는 최종 결과물에 의하여 진동판(270,310)의 하단 면이 희생층과 집적되어 거칠기 정도가 그대로 유지될 경우 진동판의 진동유형이 변화할 수 있으며, 이는 진동변이 변화에 의해 우수한 음향감도 확보에 영향을 미칠 수 있다.
이후 메탈 스퍼터링(metal sputtering) 기법에 의한 금속막 형성 후 포토 레지스터 패터닝에 의하여 진동판이 형성되며, 진동판의 외부에 노출된 희생층은 등방성 식각을 통하여 제거된다. 이 경우에 진동판(310)은 진동판 내 관통홀(320)을 구비함으로써 식각율을 증가시켜 보다 신속한 식각을 유도할 수 있다.
<제2 실시예>
도 5의 (a)는 본 발명의 제2 실시예에 따른 상부의 진동판 및 하부의 구조를 투영한 멤스 마이크로폰의 정면도이고, 도 5의 (b) 및 (c)의 각각은 절단선 A2-A2' 및 B2-B2'를 따라 절취한 단면도를 도시한 것이다.
도 5의 (a) 내지 (c)를 참조하면, 본 발명의 제2 실시예에 따른 멤스 마이크로폰(300)은 제1 실시예에 따른 멤스 마이크로폰(200)의 상부의 진동판(270)을 복수의 관통홀(320)을 구비하는 진동판(310)으로 대체하여 구성된다.
복수의 관통홀(320)을 구비하는 진동판(310)을 제외하고는 본 발명의 제1 실시예에 따른 멤스 마이크로폰(200)의 구성과 동일하므로, 이하에서는 중복되는 부분은 생략하고, 차이부분만을 설명한다.
멤스 마이크로폰(300)은 관통홀(320)이 형성된 진동판(310)을 구비함으로써, 일체화된 음향 챔버(220)로부터 희생층(410)을 보다 원활하게 제거할 수 있다.
멤스 마이크로폰(300)은 복수의 관통홀(320) 가운데 하나는 진동판의 중심부에 형성하고, 나머지는 진동판의 가장자리에 형성하는 것이 가능하다. 이 경우에 복수의 주지지대(230)는 하측에서 전극판(260)과 인접하도록 형성되는 것이 바람직하다. 관통홀의 위치는 제1 실시예에 불과한 것이며, 진동판(270)에 형성되는 관통홀(320)의 위치는 실시예에 한정되지 않으며, 필요 또는 요구성능에 따라 한개 또는 복수개로 진동판의 임의의 위치에 형성될 수 있다.
도 6의 (a) 및 (b)의 각각은 도 2의 멤스 마이크로폰 및 상부의 진동판을 제거한 상태의 개략도이고, 도 7의 (a) 및 (b)의 각각은 도 5의 멤스 마이크로폰 및 상부의 진동판을 제거한 상태의 개략도이고, 도 8은 도 1 및 도 2의 멤스 마이크로폰이 희생층을 형성한 상태의 수직 단면의 개략도이다.
도 6의 (b) 및 도 7의 (b)에서 보여지는 바와 같이, 복수의 주지지대 및 복수의 보조지지대의 상부에는 이중 절연막(SiO2 산화막 및 Si3N4 질화막)이 형성되어 있음을 알 수 있다. 또한, 실리콘 면은 습식 에칭에 의해 수 um의 음향 챔버가 형성되어 있고, 복수의 주지지대 및 복수의 보조지지대는 기둥의 형태로 형성되어 있음을 알 수 있다. 또한, 전극판은 하부 단차에 수 um 두께의 반구형 SiO2 산화막 위에 금속으로 형성되어 있는 일체형 전극 접촉부를 구비하고 있다.
도 8에서 보여지는 이중 절연막(SiO2 산화막 + Si3N4 질화막) 중 Si3N4 질화막의 경우 격층이 발생하지 않은 것으로 보이며, 이는 매우 얇은 두께로 성장되어 있기 때문이다. 음향 챔버에는 희생층이 포함되어 있으며, 사진을 기준으로 상부 진동판이 형성된 후에 희생층을 제거하게 되면 사진의 실선을 기준으로 음향 챔버가 형성된다.
상술한 바와 같이, 본 발명의 제1 및 제2 실시예에 따른 멤스 마이크로폰(200, 300)은 음향 챔버(220)의 기능적인 역할을 상부의 금속 진동판(270, 310)을 지지하는 지지대의 구조와 형태에 따라 단지 기판의 상부에만 반도체 공정을 수행하여 멤스 마이크로폰을 제작할 수 있는 우수한 장점이 있다.
<제3 실시예>
도 9는 본 발명의 제3 실시예에 따른 멤스 마이크로폰의 사시도이고, 도 10은 제3 실시예에 따른 멤스 마이크로폰의 내부 구조를 나타낸 도면이다.
제3 실시예는 기판(500), 복수의 제1 지지대(710), 전극판(600), 진동판(900)을 필수적으로 포함하고 있다.
도 10을 참조하면, 복수의 제1 지지대(710)는 기판(500) 상에서 소정 간격을 두고 원형으로 배열되어 있다. 복수의 제1 지지대(710)는 진동판(900)이 진동하여 상하로 운동을 할 때 견고하게 진동판(900)을 지지하는 기능을 수행한다. 복수의 제1 지지대(710)가 상호 간에 소정의 간격을 둔 채로 배열되어 있는 것은, 이후에 설명할 진동판(900)이 진동하게 될 때 발생하는 공기의 흐름이 멤스 마이크로폰의 외부로 원활하게 배출될 수 있도록 하기 위한 것이다. 그리고 복수의 제1 지지대(710) 중 적어도 어느 하나는 복수의 제1 지지대(710)의 중심에서 멀어지는 방향으로 길게 연장되어 있는데, 이는 이후에 설명할 제1 접촉 단자(910)를 안정적으로 지지하기 위한 것이다.
기판(500)은 실리콘 재질인 것이 바람직하다.
전극판(600)은 Ti, Au, Cu, Al, Pt 및 TiN 등의 전기전도도가 좋은 재질로 형성된 막이며 두께는 수백Å~ 수㎛ 정도이다. 전극판(600)은 기판(500) 상에 형성되며 복수의 제1 지지대(710)에 의하여 둘러싸여 있다. 그리고 전극판(600)은 전극판(600)과 일체로 형성되어 가장자리로 연장된 제2 접촉 단자(610)를 구비한다. 이 제2 접촉 단자(610)는 전원 연결 및 전기적 신호 검출을 위한 것이다.
진동판(900)은 음원(음압)을 감지(구동)하는 구성요소이며, 진동판(900)은 음원에 의해 구동한다. 진동판(900)은 수백Å~ 수㎛ 두께의 금속 재질로 형성되며, Ti, Au, Cu, Al, Pt, TiN 및 이에 상응하는 금속 재질로 구성될 수 있고, 노출 음원의 성격에 따라 그 크기를 ㎛ 단위로 설계할 수도 있다. 진동판(900)은 복수의 제1 지지대(710)에 의하여 지지되며, 전극판(600)의 상측에 형성된다.
진동판(900)의 직경은 복수의 제1 지지대(710)의 외주면의 직경과 동일한 것이 바람직하나, 진동판(900)과 복수의 제1 지지대(710)의 외주면 중 어느 하나의 직경이 다른 하나의 직경보다 다소 크거나 작을 수도 있다.
진동판(900)은 진동판(900)과 일체로 형성되어 가장자리로 연장된 제1 접촉 단자(910)를 구비한다. 이 제1 접촉 단자(910)는 전원 연결을 위한 것이며, 제1 접촉 단자(910)는, 복수의 제1 지지대(710) 중 중심에서 멀어지는 방향으로 길게 연장되어 있는 적어도 어느 하나의 제1 지지대(710) 상에 밀착하여 지지된다. 따라서, 제1 접촉 단자(910)는 외팔보처럼 공중에 떠 있는 상태로 있는 것이 아니라, 하면 전체가 지지되므로 제1 접촉 단자(910)의 내구성은 우수하게 된다.
진동판(900)은 금속으로만 형성될 수도 있으나, 금속과 비전도체막이 접합되어 형성되는 것이 바람직하다. 여기서, 비전도체막은 산화막(510) 또는 질화막(520) 중에 어떤 것을 택해도 무방하다. 진동판(900)은 얇은 판상이므로 금속으로만 형성하게 되면 충격이나 반복적으로 작용되는 음압을 오랫동안 견딜 수 있는 내구성이 부족하게 되는 경향이 있다. 따라서 금속에 비전도체막을 접합하여 진동판(900)을 형성하게 되면, 기존의 금속 재질의 진동판(900)에 비하여 두께의 증가는 무시할 수 있을 정도인 것에 반해, 충격이나 음압을 견디는 내구성을 현저하게 향상되는 효과가 있다. 여기서 금속과 비전도체막을 접합한다는 것은 반드시 별도의 재질인 금속과 비전도체막을 붙여서 형성한다는 것만을 의미하는 것은 아니고, 금속판에 소정의 처리(예컨대, 산화처리 또는 질화처리)를 가하여 금속판을 이중구조로 만드는 것도 포함하는 개념이다.
도 9는 도 10의 복수의 제1 지지대(710) 상에 진동판(900)이 형성된 상태를 나타내고 있다. 진동판(900)과 전극판(600)은 소정 간격 이격되어 있으므로, 서로 접촉하지 않는다. 이미 설명했듯이, 진동판(900)은 복수의 제1 지지대(710) 상에 밀착하여 형성되어 있으므로, 진동판(900)과 전극판(600)이 서로 접촉하지 않기 위해서는, 복수의 제1 지지대(710)의 두께가 전극판(600)의 두께보다는 두껍게 된다. 다만, 복수의 제1 지지대(710)의 두께는, 단순히 전극판(600)의 두께보다 훨씬 두꺼운 것보다는, 전극판(600)이 진동판(900)에 접촉하지 않을 정도 두께인 것이 바람직하다. 이렇게 진동판(900)과 전극판(600)과의 간격이 최소화되면, 멤스 마이크로폰의 주파수 응답특성이 우수해지는 효과가 있다. 도 9에서는 진동판(900)이 복수의 관통홀을 구비하고 있는 것을 볼 수 있다. 이와 같이 진동판(900)이 복수의 관통홀을 구비하게 되면, 음원에 의하여 진동판(900)이 구동할 때 발생하는 공기의 흐름이 외부로 원활하게 배출될 수 있다. 앞서 설명한 것처럼 복수의 제1 지지대(710) 사이에도 소정 간격 및 진동판(900)에 형성된 복수의 관통홀을 통하여 공기의 흐름이 외부로 배출되는 것을 극대화 할 수 있다.
진동판(900)의 하면에는 복수의 관통홀이 뚫려 있지 않은 영역에 돌출부가 형성되어 있는 것이 바람직하다. 돌출부는 중앙부위가 솟은 볼록면의 형상을 취하는 것이 바람직하다. 이러한 볼록면이 형성되어 있으면, 멤스 마이크로폰의 내부에서 외부로 복수의 관통홀을 통하여 공기의 흐름이 빠져나가는 것이 더 원활하게 되는 효과가 있다.
진동판(900) 외에도 전극판(600)의 상면에 돌출부가 형성될 수도 있다. 돌출부는 중앙부위가 솟은 볼록면의 형상을 취하는 것이 바람직하다. 이러한 볼록면이 형성되어 있으면, 멤스 마이크로폰의 내부에서 외부로 복수의 제1 지지대(710) 사이의 간격을 통하여 공기의 흐름이 빠져나가는 것이 더 원활하게 되는 효과가 있다.
전극판(600)과 기판(500) 사이에는 산화막(510)과 질화막(520) 중 적어도 어느 하나가 개재되는 것이 바람직하다. 이는 실리콘 기판(500)의 절연 및 전극판(600)의 누설전류차단을 취한 것이다. 따라서, 산화막(510)과 질화막(520) 중 적어도 어느 하나가 절연막의 역할을 하게 되는 것이다. 여기서, 산화막(510)은 SiO2를 택할 수 있고, 질화막(520)은 Si3N4가 될 수 있다. 기판(500) 상에 전극판(600)을 형성하기 전에 기판(500) 상에 산화막(510)을 형성하고, 그 위에 질화막(520)을 형성한다. 다만, 기판(500) 상에 질화막(520)을 먼저 형성하고, 그 위에 산화막(510)을 형성할 수도 있다. 이렇게 기판(500) 상에 산화막(510) 또는 질화막(520) 중 적어도 어느 하나가 형성된 다음, 전극판(600)이 그 위에 형성된다. 그리고 산화막(510) 또는 질화막(520) 중 적어도 어느 하나가 형성된 다음, 전극판(600)을 둘러싸도록 복수의 제1 지지대(710)가 형성된다. 따라서, 전극판(600)과 복수의 제1 지지대(710)는 동일 평면 상에 위치하게 된다. 그러므로, 전극과 기판(500) 사이에 산화막(510)과 질화막(520) 중 적어도 어느 하나가 개재된다는 것은 다시 말해서, 복수의 제1 지지대(710)와 기판(500) 사이에 산화막(510)과 질화막(520) 중 적어도 어느 하나가 개재된다는 것과 동일하다.
전극판(600)을 먼저 형성하고, 그 다음에, 전극판(600)을 둘러싸도록 복수의 제1 지지대(710)를 형성할 수도 있으나, 반대로 복수의 제1 지지대(710)를 형성한 후에 그 내부에 전극판(600)을 형성할 수도 있다. 그리고, 복수의 제1 지지대(710)의 내주면과 전극판(600)의 외주면은 소정 간격 이격된 채로 배치되는 것이 누설 전류의 차단을 위하여 바람직하다.
<제3 실시예의 제조과정>
도 11 및 도 12는 본 발명의 제3 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다. 도 11 및 도 12를 참조하여 제3 실시예의 제조 과정에 대하여 설명하도록 한다.
도 11의 (a)에서와 같이, 기판(500) 상에 산화막(510)을 형성하고 산화막(510) 상에 질화막(520)이 형성하여, 이중 절연막을 형성한다. 다만, 반드시 이중 절연막을 형성해야 하는 것은 아니고, 산화막(510) 또는 질화막(520) 중 어느 하나의 막을 기판(500)상에 형성할 수도 있다. 여기서, 산화막(510), 질화막(520)은 천Å~ 수㎛ 두께로 형성한다.
다음으로, 도 11의 (b)에서와 같이, 절연막 상에 전극판(600)을 형성한다. 도 11의 (b)에 도시된 것과 같이, 절연막 상의 중앙 부위에만 전극판(600)이 형성되게 하기 위해서는, 먼저 절연막 상에 전극판(600)을 형성하기 위한 재료를 코팅하게 된다. 여기서 코팅의 방식은 통상적으로 증착(deposition)의 방식이 사용된다. 이후 최종적으로 형성되어야 할 전극판(600)의 형상으로 패터닝을 한다. 여기서, 전극판(600)은 수백Å~ 수㎛의 두께로 형성한다. 도 11의 (c)에 도시된 것과 같이, 복수의 제1 지지대(710)를 형성한다. 복수의 제1 지지대(710)의 재료는 산화막(510)과 같은 재질인 것이 일반적이다. 복수의 제1 지지대(710)는 수 ㎛의 두께로 형성한다.
도 11의 (b) 및 (c)에서는 전극판(600)을 먼저 형성하고 이후 제1 지지대(710)를 형성하는 것으로 나타나 있으나, 제1 지지대(710)를 먼저 형성하고 전극판(600)을 그 이후에 형성해도 무방하다.
복수의 제1 지지대(710)도 전극판(600)을 형성하는 것과 마찬가지로 복수의 제1 지지대(710)를 형성하기 위한 재료를 절연막 및 전극판(600) 상에 코팅한 후에 패터닝을 하게 된다.
다음으로, 도 11의 (d)에서와 같이, 제1 지지대(710)와 전극판(600)이 형성되어 있는 기판(500) 상에 희생층(800)을 형성한다. 여기서, 희생층(800)은 폴리 실리콘(poly silicon) 재질인 것이 바람직하며, 여기서, 희생층(800)은 수 ㎛의 두께로 형성한다. 희생층(800)은 최종 결과물인 멤스 마이크로폰에서는 제거되어야 하며, 본 희생층(800)은 멤스 마이크로폰의 제작 공정 중에서 필요한 것이다. 제1 지지대(710)가 위쪽 방향으로 돌출되어 있기 때문에, 제1 지지대(710) 부분에서 희생층(800)이 더 높게 형성된다. 다음으로, 도 12의 (a)에서와 같이, 희생층(800)의 상면이 복수의 제1 지지대(710)의 상면과 동일 평면 상에 놓일 때까지 제1 지지대(710) 부분에 더 높게 형성되어 있는 희생층(800)을 폴리싱(polishing)한다.
다음으로, 도 12의 (b)에서와 같이, 희생층(800)의 상측 일부가 제거된 상태에서 그 위에 진동판(900)을 형성하는 재료를 코팅한다. 이 상태에서는, 진동판(900)이 복수의 제1 지지대(710) 및 상측 일부가 제거된 희생층(800)에 의하여 지지되어 있다. 다만, 도 12의 (b)에서는 진동판(900)이 두 개의 층으로 되어 있는 것을 알 수 있다. 아래 층은 비전도체막이며, 위층은 금속판이다. 여기서 금속판은 수백~수천Å의 두께로 형성한다. 금속판 단독으로 진동판(900)의 역할을 수행할 수도 있으나, 이처럼 진동판(900)은 금속과 비전도체막이 접합되어 형성되는 것이 바람직하다. 여기서 비전도체막은 앞서 살펴본 것과 같이 산화막(510)과 질화막(520) 중 적어도 어느 하나의 막이다. 여기서 비전도체막은 수백~수천 Å의 두께로 형성한다.
다음으로, 도 12의 (c)에서와 같이, 최종적으로 형성되어야 할 진동판(900)의 형상으로 패터닝을 한다. 도 12의 (c)에서와 같이, 진동판(900) 상에 복수의 관통 홀을 뚫는 것이 바람직하다.
다음으로, 도 12의 (d)에서와 같이, 희생층(800)을 제거한다. 에칭으로 희생층(800)을 제거하게 되며, 에칭가스로는 XeF2 등이 사용된다.
도 13은 본 발명의 제3 실시예에 따른 따른 멤스 마이크로폰을 제조하는 방법의 순서도이다.
본 순서도에서는 기판(500) 상의 중앙 부위에 전극판(600)을 형성하는 전극판(600) 형성 단계를 수행한다(S200).
다음으로, 전극판(600)을 둘러싸는 복수의 제1 지지대(710)를 형성하는 제1 지지대(710) 형성 단계를 수행한다(S210).
다음으로, 전극판(600) 및 복수의 제1 지지대(710) 상에 희생층(800)을 형성하는 희생층(800) 형성 단계를 수행한다(S220).
다음으로, 희생층(800)의 상측 일부를 제거한 후에 전극판(600)의 상층에서 복수의 제1 지지대(710)에 의하여 지지되는 진동판(900)을 형성하는 진동판(900) 형성 단계를 수행한다(S230).
다음으로, 희생층(800)을 제거하는 희생층(800) 제거 단계를 수행하는 것으로 도시되어 있다(S240). 다만, 전극판(600) 형성 단계와 제1 지지대(710) 형성단계의 순서는 바뀌어도 무방하다.
도 13의 제3 실시예에 따른 멤스 마이크로폰 제조 방법을 기본적인 단계로 하여, 진동판(900) 형성 단계는 진동판(900) 상에 복수의 관통 홀을 뚫는 단계를 더 포함할 수 있다. 또한, 전극판(600) 형성 단계는, 전극판(600)을 형성하기 전에 기판(500) 상에 산화막(510)과 질화막(520) 중 적어도 어느 하나의 막을 더 형성하는 단계를 더 포함할 수 있다. 또한, 진동판(900) 형성 단계는, 희생층(800)의 상면이 복수의 제1 지지대(710)의 상면과 동일 평면 상에 놓일 때까지 희생층(800)을 제거하는 것이 바람직하다. 또한, 진동판(900) 형성 단계는, 진동판(900)을 형성하기 전에 희생층(800) 및 복수의 제1 지지대(710) 상에 산화막(510)과 질화막(520) 중 적어도 어느 하나의 막을 더 형성하는 단계를 더 포함하는 것이 바람직하다.
<제4 실시예>
도 14는 본 발명의 제4 실시예에 따른 멤스 마이크로폰의 사시도이고, 도 15는 본 발명의 제4 실시예에 따른 멤스 마이크로폰의 내부 구조를 나타낸 도면이다.
제4 실시예는 제3 실시예에 따른 멤스 마이크로폰에 있어서, 제2 지지대(720)를 더 구비하는 멤스 마이크로폰이다. 따라서, 제2 지지대(720)를 제외한 나머지 구성이 제3 실시예와 동일하거나 매우 흡사하므로, 이하에서는 제3 실시예와 중복되는 부분은 생략하고, 차이가 나는 부분을 위주로 설명하도록 한다.
제4 실시예는 기판(500), 복수의 제1 지지대(710), 제2 지지대(720), 전극판 (600), 진동판(900)을 필수적으로 포함하고 있다.
도 10을 참조하면, 복수의 제1 지지대(710)는 기판(500) 상에서 소정 간격을 두고 원형으로 배열되어 있다. 복수의 제1 지지대(710)는 진동판(900)이 진동하여 상하로 운동을 할 때 견고하게 진동판(900)을 지지하는 기능을 수행한다. 다만, 제4 실시예에서 진동판(900)과 직접적으로 접촉하면서 진동판(900)을 지지하는 것은 이후에 설명할 제2 지지대(720)이므로, 복수의 제1 지지대(710)는 엄밀하게 말하면, 제2 지지대(720)의 하면과 접촉하면서 제2 지지대(720)를 지지한다고 말할 수 있다.
도 15는 도 10에 도시된 복수의 제1 지지대(710) 상에 제2 지지대(720)가 형성된 상태를 나타낸다. 제2 지지대(720)는 복수의 제1 지지대(710) 상에 원형으로 형성되어 있다. 제2 지지대(720)도 제1 지지대(710)와 마찬가지로 제2 지지대(720)의 중심에서 멀어지는 방향으로 길게 연장되어 있는 부분을 포함하고 있으며, 이 연장된 부분 상에 제1 접촉 단자(910)가 밀착된 채로 안정적으로 지지된다. 도 14를 참조하면 제1 접촉 단자(910)가 안정적으로 지지되는 것을 더욱 명확하게 알 수 있다. 제4 실시예에서는 제2 지지대(720)의 상면의 전체가 진동판(900)과 밀착되어 있으므로, 제3 실시예에 비하여 진동판(900)이 더욱 안정적으로 지지되는 장점이 있다. 더욱 구체적으로 설명하면, 제3 실시예에서는 복수의 제1 지지대(710) 사이에 소정 간격이 있기 때문에, 진동판(900)의 하면의 가장자리의 일부는 제1 지지대(710)와 밀착되어 있으나, 나머지 일부는 제1 지지대(710)에 밀착되어 있지 않게 된다. 따라서, 이 밀착되어 있지 않은 부분 때문에 진동판(900)이 조금이나마 쳐지거나 일그러질 수 있는 우려가 있다. 다만, 제3 실시예에서는 복수의 제1 지지대(710)의 개수를 늘리거나, 충격이나 음압에 강한 진동판(900)을 사용하는 것에 의하여 진동판(900)의 지지력에 문제가 없게 된다. 그러나, 제4 실시예에서는 제2 지지대(720)의 존재로 인하여 제3 실시예에서 발생할 수도 있는 문제의 여지를 제거할 수 있는 장점이 있다.
진동판(900), 복수의 제1 지지대(710) 및 제2 지지대(720)의 직경은 모두 동일한 것이 바람직하나, 진동판(900), 복수의 제1 지지대(710) 및 제2 지지대(720) 중 어느 하나의 직경이 나머지 둘의 직경보다 다소 크거나 작을 수도 있다.
제3 실시예와 마찬가지로, 제4 실시예에서도 진동판(900)과 전극판(600)은 소정 간격 이격되어 있으므로, 서로 접촉하지 않는다. 그러나, 제3 실시예에서 복수의 제1 지지대(710)의 두께가 전극판(600)의 두께보다 두꺼워야만 했던 것과는 달리, 제4 실시예에서는 복수의 제1 지지대(710)와 제2 지지대(720)를 합친 두께가 전극판(600)의 두께보다 두꺼우면 족하다. 따라서, 제4 실시예에서 경우에 따라서는, 복수의 제1 지지대(710)의 두께가 전극판(600)의 두께보다 얇을 수도 있다. 다만, 복수의 제1 지지대(710)와 제2 지지대(720)를 합친 두께는, 단순히 전극판(600)의 두께보다 훨씬 두꺼운 것보다는, 전극판(600)이 진동판(900)에 접촉하지 않을 정도 두께인 것이 바람직하다. 이렇게 진동판(900)과 전극판(600)과의 간격이 최소화되면, 멤스 마이크로폰의 주파수 응답특성이 우수해지는 효과가 있다.
전극판(600)을 먼저 형성하고, 그 다음에, 전극판(600)을 둘러싸도록 복수의 제1 지지대(710)를 형성할 수도 있으나, 반대로 복수의 제1 지지대(710)를 형성한 후에 그 내부에 전극판(600)을 형성할 수도 있다. 그 다음으로, 제2 지지대(720)를 형성하게 된다. 즉, 전극판(600) 또는 복수의 제1 지지대(710) 중 어느 하나를 먼저 형성하고, 다른 하나를 나중에 형성한 다음, 제2 지지대(720)를 형성하게 된다. 그리고, 복수의 제1 지지대(710)의 내주면과 전극판(600)의 외주면은 소정 간격 이격된 채로 배치되는 것이 누설 전류의 차단을 위하여 바람직하다. 또한 제2 지지대(720)의 내주면과 전극판(600)의 외주면도 소정 간격 이격된 채로 배치되는 것이 누설 전류의 차단을 위하여 바람직하다.
<제4 실시예의 제조과정>
도 16, 도 17 및 도 18은 본 발명의 제4 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다. 도 16, 도 17 및 도 18을 참조하여 제4 실시예의 제조과정에 대하여 설명하도록 한다.
도 16의 (a)에서와 같이, 기판(500) 상에 산화막(510)을 형성하고 산화막(510) 상에 질화막(520)이 형성하여, 이중 절연막을 형성한다. 다만, 반드시 이중 절연막을 형성해야 하는 것은 아니고, 산화막(510) 또는 질화막(520) 중 어느 하나의 막을 기판(500)상에 형성할 수도 있다. 여기서, 산화막(510), 질화막(520)은 천Å~ 수㎛ 두께로 형성한다.
다음으로, 도 16의 (b)에서와 같이, 절연막 상에 전극판(600)을 형성한다. 도 16의 (b)에 도시된 것과 같이, 절연막 상의 중앙 부위에만 전극판(600)이 형성되게 하기 위해서는, 먼저 절연막 상에 전극판(600)을 형성하기 위한 재료를 코팅하게 된다. 여기서 코팅의 방식은 통상적으로 증착(deposition)의 방식이 사용된다. 이후 최종적으로 형성되어야 할 전극판(600)의 형상으로 패터닝을 한다. 여기서, 전극판(600)은 수백Å~ 수㎛의 두께로 형성한다. 도 16의 (c)에 도시된 것과 같이, 복수의 제1 지지대(710)를 형성한다. 복수의 제1 지지대(710)의 재료는 산화막(510)과 같은 재질인 것이 일반적이다. 복수의 제1 지지대(710)는 수 ㎛의 두께로 형성한다.
도 16의 (b) 및 (c)에서는 전극판(600)을 먼저 형성하고 이후 제1 지지대(710)를 형성하는 것으로 나타나 있으나, 제1 지지대(710)를 먼저 형성하고 전극판(600)을 그 이후에 형성해도 무방하다.
복수의 제1 지지대(710)도 전극판(600)을 형성하는 것과 마찬가지로 복수의 제1 지지대(710)를 형성하기 위한 재료를 절연막 및 전극판(600) 상에 코팅한 후에 패터닝을 하게 된다.
다음으로, 도 16의 (d)에서와 같이, 제1 지지대(710)와 전극판(600)이 형성되어 있는 기판(500) 상에 제1 희생층(810)을 형성한다. 여기서, 제1 희생층(810)은 폴리 실리콘(poly silicon) 재질인 것이 바람직하며, 제1 희생층(810)은 수㎛의 두께로 형성한다. 제1 희생층(810) 및 이후에 설명할 제2 희생층(820)은 최종 결과물인 멤스 마이크로폰에서는 제거되어야 하며, 본 제1 희생층(810) 및 이후에 설명할 제2 희생층(820)은 멤스 마이크로폰의 제작 공정 중에서 필요한 것이다. 제1 지지대(710)가 위쪽 방향으로 돌출되어 있기 때문에, 제1 지지대(710) 부분에서 제1 희생층(810)이 더 높게 형성된다. 다음으로, 도 16(e)에서와 같이, 제1 희생층(810)의 상면이 복수의 제1 지지대(710)의 상면과 동일 평면 상에 놓일 때까지 제1 지지대(710) 부분에 더 높게 형성되어 있는 제1 희생층(810)을 폴리싱(polishing)한다.
다음으로, 도 17의 (a)와 같이, 제1 희생층(810)을 폴리싱하여 제1 희생측 밖으로, 복수의 제1 지지대(710)가 노출된 상태에서, 복수의 제1 지지대(710) 상에 제2 지지대(720)를 형성한다. 제2 지지대(720)는, 제2 지지대(720)를 형성하기 위한 재료를 폴리싱된 제1 희생층(810)과 복수의 제1 지지대(710) 상에 코팅한 후에 패터닝을 하게 된다. 이러한 과정을 통하여 도 17(a)의 상태가 된다. 제2 지지대(720)는 수천Å의 두께로 형성한다.
다음으로, 도 17의 (b)에서와 같이, 제2 지지대(720) 및 폴리싱된 제1 희생층(810) 상에 제2 희생층(820)을 형성한다. 여기서, 제2 희생층(820)은 폴리 실리콘(poly silicon) 재질인 것이 바람직하며, 제2 희생층(820)은 수㎛의 두께로 형성한다. 제2 지지대(720)가 위쪽 방향으로 돌출되어 있기 때문에, 제2 지지대(720) 부분에서 제2 희생층(820)이 더 높게 형성된다. 다음으로, 도 17의 (c)에서와 같이, 제2 희생층(820)의 상면이 제2 지지대(720)의 상면과 동일 평면 상에 놓일 때까지 제2 지지대(720) 부분에 더 높게 형성되어 있는 제2 희생층(820)을 폴리싱(polishing)한다.
다음으로, 도 18의 (a)에서와 같이, 제2 희생층(820)의 상측 일부가 제거된 상태에서 그 위에 진동판(900)을 형성하는 재료를 코팅한다. 이 상태에서는, 진동판(900)이 제2 지지대(720) 및 상측 일부가 제거된 제2 희생층(820)에 의하여 지지되어 있다. 다만, 도 18의 (a)에서는 진동판(900)이 두 개의 층으로 되어 있는 것을 알 수 있다. 아래층은 비전도체막이며, 위층은 금속판이다. 여기서, 금속판은 수백~수천Å의 두께로 형성한다. 금속판 단독으로 진동판(900)의 역할을 수행할 수도 있으나, 이처럼 진동판(900)은 금속과 비전도체막이 접합되어 형성되는 것이 바람직하다. 여기서 비전도체막은 앞서 살펴본 것과 같이 산화막(510)과 질화막(520) 중 적어도 어느 하나의 막이다. 여기서 비전도체막은 수백~수천Å의 두께로 형성한다.
다음으로, 도 18의 (b)에서와 같이, 최종적으로 형성되어야 할 진동판(900)의 형상으로 패터닝을 한다. 도 18의 (b)에서와 같이, 진동판(900) 상에 복수의 관통 홀을 뚫는 것이 바람직하다.
다음으로, 도 12의 (d)에서와 같이, 제1 희생층(810) 및 제2 희생층(820)을 제거한다. 에칭으로 희생층을 제거하게 되며, 에칭가스로는 XeF2등이 사용된다.
도 19는 본 발명의 제4 실시예에 따른 따른 멤스 마이크로폰을 제조하는 방법의 순서도이다.
본 순서도에서는 기판(500) 상의 중앙 부위에 전극판(600)을 형성하는 전극판(600) 형성 단계를 수행한다(S300).
다음으로, 전극판(600)을 둘러싸는 복수의 제1 지지대(710)를 형성하는 제1 지지대(710) 형성 단계를 수행한다(S310).
다음으로, 전극판(600) 및 복수의 제1 지지대(710) 상에 제1 희생층(810)을 형성하는 희생층 형성 단계를 수행한다(S320).
다음으로, 제1 희생층(810)의 상측 일부를 제거한 후에 복수의 제1 지지대(710) 상에 제2 지지대(720)를 형성하는 제2 지지대(720) 형성 단계를 수행한다(S330).
다음으로, 제1 희생층(810) 및 제2 지지대(720) 상에 제2 희생층(820)을 형성하는 제2 희생층(820) 형성 단계를 수행한다(S340).
다음으로, 제2 희생층(820)의 상측 일부를 제거한 후에 전극판(600)의 상층에서 제2 지지대(720)에 의하여 지지되는 진동판(900)을 형성하는 진동판(900) 형성 단계를 수행한다(S350).
다음으로, 제1, 제2 희생층(41, 42)을 제거하는 희생층 제거 단계를 수행하는 것으로 도시되어 있다(S360). 다만, 여기서 전극판(600) 형성 단계와 제1 지지대(710) 형성단계의 순서는 바뀌어도 무방하다.
도 19의 본 발명의 제4 실시예에 따른 멤스 마이크로폰 제조 방법을 기본적인 단계로 하여, 진동판(900) 형성 단계는 진동판(900) 상에 복수의 관통 홀을 뚫는 단계를 더 포함할 수 있다. 또한, 전극판(600) 형성 단계는, 전극판(600)을 형성하기 전에 기판(500) 상에 산화막(510)과 질화막(520) 중 적어도 어느 하나의 막을 더 형성하는 단계를 더 포함할 수 있다. 또한, 제2 지지대(720) 형성 단계는, 제1 희생층(810)의 상면이 복수의 제1 지지대(710)의 상면과 동일 평면 상에 놓일 때까지 제1 희생층(810)을 제거하는 것이 바람직하다. 또한, 진동판(900) 형성 단계는, 제2 희생층(820)의 상면이 제2 지지대(720)의 상면과 동일 평면 상에 놓일 때까지 제2 희생층(820)을 제거하는 것이 바람직하다. 또한, 진동판(900) 형성 단계는, 진동판(900)을 형성하기 전에 제2 희생층(820) 및 복수의 제1 지지대(710) 상에 산화막(510)과 질화막(520) 중 적어도 어느 하나의 막을 더 형성하는 단계를 더 포함하는 것이 바람직하다.
<제5 실시예>
도 20은 본 발명의 제5 실시예에 따른 멤스 마이크로폰의 사시도이고, 도 21은 본 발명의 제5 실시예에 따른 멤스 마이크로폰의 내부 구조를 나타낸 도면이다.
제5 실시예를 설명함에 있어서, 제3 실시예 또는 제4 실시예와 중복되는 부분은 간단히 설명하며, 제3 실시예 또는 제4 실시예와 차이가 나는 부분을 위주로 설명하도록 한다.
제5 실시예는 기판(500), 복수의 제1 지지대(710), 전극판(600), 진동판(900), 음향 챔버(550)를 필수적으로 포함하고 있고, 여기서 전극판(600)은 반드시 복수의 관통홀을 가지고 있다.
도 21을 참조하면, 복수의 제1 지지대(710)는 기판(500) 상에서 소정 간격을 두고 원형으로 배열되어 있다. 복수의 제1 지지대(710)는 진동판(900)이 진동하여 상하로 운동을 할 때 견고하게 진동판(900)을 지지하는 기능을 수행한다. 복수의 제1 지지대(710)가 상호 간에 소정의 간격을 둔 채로 배열되어 있는 것은, 이후에 설명할 진동판(900)이 진동하게 될 때 발생하는 공기의 흐름이 멤스 마이크로폰의 외부로 원활하게 배출될 수 있도록 하기 위한 것이다. 그리고 복수의 제1 지지대(710) 중 적어도 어느 하나는 복수의 제1 지지대(710)의 중심에서 멀어지는 방향으로 길게 연장되어 있는데, 이는 이후에 설명할 제1 접촉 단자(910)를 안정적으로 지지하기 위한 것이다.
도 20을 참조하면, 기판(500)은 실리콘 재질인 것이 바람직하다. 다만, 제5 실시예의 기판(500)은 제3 실시예 또는 제4 실시예의 기판(500)과는 차이가 있다. 즉, 제5 실시예의 기판(500)은 중앙 하부에 음향 챔버(550)를 갖고 있다. 또한 음향 챔버(550)의 직경은 전극판(600)의 직경과 동일한 것이 바람직하나, 음향 챔버(550)와 전극판(600) 중 어느 하나의 직경이 다른 하나의 직경보다 다소 크거나 작을 수도 있다.
또한, 전극판(600)은 복수의 제1 지지대(710)에 의하여 둘러싸여 있으며, 복수의 관통홀을 갖고 있는 것을 알 수 있다. 또한, 기판(500)은 전극판(600)과 맞닿는 부위에서 전극판(600)의 관통홀과 이어지는 복수의 관통홀이 뚤려 있다. 즉, 전극판(600)의 복수의 관통홀과 기판(500)의 복수의 관통홀은 서로 연결되어 있게 되므로 진동판(900)이 구동하는 것에 의하여 발생하는 공기의 흐름이 기판(500)의 상면에서 음향 챔버(550)쪽으로 빠져 나갈 수 있다.
제5 실시예에서는 기판(500)의 상면과 하면이 관통홀을 통하여 공기가 연통되기 때문에, 진동판(900)의 윗방향에 있는 음원에 의해서도 제5 실시예의 멤스 마이크로폰이 구동 가능하고, 기판(500)의 아래 방향(음향 챔버(550))에 있는 음원에 의해서도 제5 실시예의 멤스 마이크로폰이 구동 가능한 장점이 있다.
진동판(900), 복수의 제1 지지대(710)의 직경은 동일한 것이 바람직하나, 진동판(900), 복수의 제1 지지대(710) 중 어느 하나의 직경이 나머지 하나의 직경보다 다소 크거나 작을 수도 있다.
제3 실시예와 마찬가지로, 제5 실시예에서도 진동판(900)과 전극판(600)은 소정 간격 이격되어 있으므로, 서로 접촉하지 않는다. 이렇게 진동판(900)과 전극판(600)과의 간격이 최소화되면, 멤스 마이크로폰의 주파수 응답특성이 우수해지는 효과가 있다.
전극판(600)과 기판(500) 사이에는 산화막(510)과 질화막(520) 중 적어도 어느 하나가 개재되는 것이 바람직하다. 이는 실리콘 기판(500)의 절연 및 전극판(600)의 누설전류차단을 취한 것이다. 따라서 산화막(510)과 질화막(520) 중 적어도 어느 하나가 절연막의 역할을 하게 되는 것이다. 여기서, 산화막(510)은 SiO2를 택할 수 있고, 질화막(520)은 Si3N4가 될 수 있다. 기판(500) 상에 전극판(600)을 형성하기 전에 기판(500) 상에 산화막(510)을 형성하고, 그 위에 질화막(520)을 형성한다. 다만, 기판(500) 상에 질화막(520)을 먼저 형성하고, 그 위에 산화막(510)을 형성할 수도 있다. 이렇게 기판(500) 상에 산화막(510) 또는 질화막(520) 중 적어도 어느 하나가 형성된 다음, 전극판(600)이 그 위에 형성된다. 그리고, 산화막(510) 또는 질화막(520) 중 적어도 어느 하나가 형성된 다음, 전극판(600)을 둘러싸도록 복수의 제1 지지대(710)가 형성된다. 따라서, 전극판(600)과 복수의 제1 지지대(710)는 동일 평면 상에 위치하게 된다. 그러므로, 전극과 기판(500) 사이에 산화막(510)과 질화막(520) 중 적어도 어느 하나가 개재된다는 것은 다시 말해서, 복수의 제1 지지대(710)와 기판(500) 사이에 산화막(510)과 질화막(520) 중 적어도 어느 하나가 개재된다는 것과 동일하다.
전극판(600)을 먼저 형성하고, 그 다음에, 전극판(600)을 둘러싸도록 복수의 제1 지지대(710)를 형성할 수도 있으나, 반대로 복수의 제1 지지대(710)를 형성한 후에 그 내부에 전극판(600)을 형성할 수도 있다. 그리고, 복수의 제1 지지대(710)의 내주면과 전극판(600)의 외주면은 소정 간격 이격된 채로 배치되는 것이 누설 전류의 차단을 위하여 바람직하다.
<제5 실시예의 제조과정>
도 22, 도 23, 도 24 및 도 25는 본 발명의 제5 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다. 도 22, 도 23, 도 24 및 도 25를 참조하여 제5 실시예의 제조과정에 대하여 설명하도록 한다.
도 22의 (a)에서와 같이, 기판(500) 상에 산화막(510)을 형성한다. 다만, 산화막(510) 대신 질화막(520)을 형성할 수도 있고, 산화막(510) 및 질화막(520)이 모두 형성될 수도 있다. 산화막(510)은 천 Å~ 수 ㎛ 두께로 형성한다.
다음으로, 산화막(510)을 에칭하여 패터닝한다. 도 22의 (c)는 산화막(510)의 패터닝까지 마무리가 된 상태를 나타낸다. 여기서 산화막(510)을 수 ㎛의 두께만큼 에칭하게 된다.
다음으로, 도 22의 (c)와 같이, 기판(500)의 상면의 중앙 부위에 복수의 구멍을 뚫는다. 도 22의 (b)의 구멍과 도 22의 (c)의 구멍은 연결된다. 기판(500)에 뚫는 구멍은 수 ㎛~ 수십 ㎛의 깊이로 충분히 깊게 뚫는 것이 바람직하다. 관통홀이 생긴 기판부분은 음향 신호에 따라 움직임이 없을 정도의 강한 기계적 강도를 갖는다. 즉 음향 신호에 따라 변위가 없이 고정되어 있어 잡음 또는 간섭신호를 발생시키지 아니한다.
다음으로, 도 22의 (d)에서와 같이 기판(500) 하면에 산화막(510)을 에칭하여 패터닝한다. 도 22의 (d)는 산화막(510)의 패터닝까지 마무리가 된 상태를 나타낸다. 여기서 산화막(510)을 수㎛의 두께만큼 에칭하게 된다.
다음으로, 도 22의 (e)에서와 같이, 기판(500)의 하면을 깊게 에칭을 하여 기판(500) 하면의 중앙 부위에 음향 챔버(550)를 형성한다. 도 22의 (e)는 음향 챔버(550)를 형성한 후의 상태를 나타낸다. 여기서 에칭은 수백 ㎛의 깊이로 충분히 에칭을 하여 기판(500)의 상면과 음향 챔버(550) 사이에 공기가 연통할 수 있도록 해야 한다.
다음으로, 도 23의 (a)에서와 같이, 전극판(600)으로부터 음향 챔버(550)까지 뚫려 있는 원기둥 형상의 복수의 구멍의 내주면 및 음향 챔버에 산화막(530)을 형성한다. 이제 기판(500)의 상면과 하면 모두 산화막으로 코팅된 상태가 된다.
다음으로, 도 23의 (b)에서와 같이 필링재(filling material, 830)로 복수의 구멍을 막는다. 기판(500)의 상면과 도 23(b)는 복수의 구멍이 기판(500)의 상면과 하면으로부터 모두 막혀 있는 것을 도시하고 있다. 이 공정에서는 복수의 구멍 뿐만이 아니라 부수적으로 기판(500)의 상면과 하면도 필링재(830)로 코팅되게 된다. 여기서 필링재(830)는 제1 희생층(810) 및 제2 희생층(820)과 동일한 재질인 것이 바람직하다.
다음으로, 도 23의 (c)에서와 같이, 기판(500)의 상면에 덮혀있는 필링재(830)를 폴리싱하여 그 아래에 있는 산화막(510)이 노출되게 만든다.
다음으로, 도 23의 (d)에서와 같이 전극판(600)을 기판(500) 상의 중앙 부위에 형성한다. 도 23의 (d)에 도시된 것과 같이, 절연막 상의 중앙 부위에만 전극판(600)이 형성되게 하기 위해서는, 먼저 절연막 상에 전극판(600)을 형성하기 위한 재료를 코팅하게 된다. 여기서, 코팅의 방식은 통상적으로 증착(deposition)의 방식이 사용된다. 이후 최종적으로 형성되어야 할 전극판(600)의 형상으로 패터닝을 한다. 여기서, 전극판(600)은 수백 Å~ 수 ㎛의 두께로 형성한다. 도 24의 (a)에 도시된 것과 같이, 복수의 제1 지지대(710)를 형성한다. 복수의 제1 지지대(710)의 재료는 산화막(510)과 같은 재질인 것이 일반적이다. 복수의 제1 지지대(710)는 수㎛의 두께로 형성한다.
도 23의 (d) 및 도 24의 (a)에서는 전극판(600)을 먼저 형성하고 이후 제1 지지대(710)를 형성하는 것으로 나타나 있으나, 제1 지지대(710)를 먼저 형성하고 전극판(600)을 그 이후에 형성해도 무방하다.
복수의 제1 지지대(710)도 전극판(600)을 형성하는 것과 마찬가지로 복수의 제1 지지대(710)를 형성하기 위한 재료를 절연막 및 전극판(600) 상에 코팅한 후에 패터닝을 하게 된다.
다음으로, 도 24의 (b)에서와 같이, 제1 지지대(710)와 전극판(600)이 형성되어 있는 기판(500) 상에 희생층(800)을 형성한다. 여기서, 희생층(800)은 폴리 실리콘(poly silicon) 재질인 것이 바람직하며, 희생층(800)은 수 ㎛의 두께로 형성한다. 제1 희생층(800)은 최종 결과물인 멤스 마이크로폰에서는 제거되어야 하며, 본 희생층(800)은 멤스 마이크로폰의 제작공정 중에서 필요한 것이다. 제1 지지대(710)가 위쪽 방향으로 돌출되어 있기 때문에, 제1 지지대(710) 부분에서 희생층(800)이 더 높게 형성된다. 다음으로, 도 24의 (c)에서와 같이, 희생층(800)의 상면이 복수의 제1 지지대(710)의 상면과 동일 평면 상에 놓일 때까지 제1 지지대(710) 부분에 더 높게 형성되어 있는 희생층(800)을 폴리싱한다.
다음으로, 도 25의 (b)에서와 같이, 희생층(800)의 상측 일부가 제거된 상태에서 그 위에 진동판(900)을 형성하는 재료를 코팅한다. 이 상태에서는, 진동판(900)이 제1 지지대(710) 및 상측 일부가 제거된 희생층(800)에 의하여 지지되어 있다. 다만, 도 25의 (b)에서는 진동판(900)이 두 개의 층으로 되어 있는 것을 알 수 있다. 아래 층은 비전도체막이며, 위층은 금속판이다. 여기서 금속판은 수천 Å의 두께로 형성한다. 금속판 단독으로 진동판(900)의 역할을 수행할 수도 있으나, 이처럼 진동판(900)은 금속과 비전도체막이 접합되어 형성되는 것이 바람직하다. 여기서 비전도체막은 앞서 살펴본 것과 같이 산화막(510)과 질화막(520) 중 적어도 어느 하나의 막이다. 여기서 비전도체막은 수백~수천 Å 의 두께로 형성한다.
다음으로, 도 25의 (c)에서와 같이, 최종적으로 형성되어야 할 진동판(900)의 형상으로 패터닝을 한다.
다음으로, 도 25의 (d)에서와 같이, 희생층(800)을 제거한다. 이미 설명한대로 필링재(830)는 희생층(800)과 동일한 재질이기 때문에, 에칭으로 희생층을 제거하는 과정에서 기판(500)의 상면과 하면으로 공기가 연통하게 하는 복수의 구멍을 막고 있던 필링재(830)도 제거된다. 여기서, 에칭가스로는 XeF2 등이 사용된다.
도 26은 본 발명의 제5 실시예에 따른 따른 멤스 마이크로폰을 제조하는 방법의 순서도이다.
본 순서도에서는 기판(500) 상면의 중앙 부위에 복수의 구멍을 뚫는 천공 단계를 수행한다(S400).
다음으로, 기판(500)의 하면 중앙 부위에 음향 챔버(550)를 형성하여 기판(500)의 상면과 하면이 복수의 구멍을 통하여 유체 연통되도록 하는 음향 챔버(550) 형성 단계를 수행한다(S410).
다음으로, 기판(500) 상의 중앙 부위에 전극판(600)을 형성하는 전극판(600) 형성 단계를 수행한다(S420).
다음으로, 전극판(600)을 둘러싸는 복수의 제1 지지대(710)를 기판(500) 상에 형성하는 제1 지지대(710) 형성 단계를 수행한다(S430).
다음으로, 전극판(600) 및 복수의 제1 지지대(710) 상에 희생층(800)을 형성하는 희생층(800) 형성 단계를 수행한다(S440).
다음으로, 희생층(800)의 상측 일부를 제거한 후에 전극판(600)의 상층에서 제1 지지대(700)에 의하여 지지되는 진동판(900)을 형성하는 진동판(900) 형성 단계를 수행한다(S450).
다음으로, 희생층(800)을 제거하는 희생층 제거 단계를 수행하는 것으로 도시되어 있다(S460). 다만, 전극판(600) 형성 단계와 제1 지지대(710) 형성단계의 순서는 바뀌어도 무방하다.
도 26은 본 발명의 제5 실시예에 따른 멤스 마이크로폰 제조방법을 기본적인 단계로 하여, 천공 단계는 복수의 구멍을 뚫기 전에 기판(500) 상에 산화막(510)을 형성하는 단계를 더 포함할 수 있다. 그리고, 전극판(600) 형성 단계는 전극판(600)을 형성하기 전에 복수의 구멍의 내주면 및 음향 챔버(550)에 산화막(510)을 형성하는 단계를 더 포함할 수 있다. 또한, 전극판(600) 형성 단계는, 복수의 구멍의 내주면 및 음향 챔버(550)에 산화막(510)을 형성한 후에 복수의 구멍을 희생층(800)과 동일한 재질의 필링재(830)로 막는 단계를 더 포함할 수 있다. 또한, 진동판(900) 형성 단계는, 희생층(800)의 상면이 제1 지지대(710)의 상면과 동일 평면 상에 놓일 때까지 희생층(800)을 제거하는 것이 바람직하다. 또한, 진동판(900) 형성 단계는, 진동판(900)을 형성하기 전에 희생층(800) 및 복수의 제1 지지대(710) 상에 산화막(510)과 질화막(520) 중 적어도 어느 하나의 막을 더 형성하는 단계를 더 포함하는 것이 바람직하다. 또한, 희생층 제거 단계는, 희생층(800) 및 필링재(830)가 모두 제거되는 것이 바람직하다.
<제6 실시예>
도 27은 본 발명의 제6 실시예에 따른 멤스 마이크로폰의 사시도이고, 도 28은 본 발명의 제6 실시예에 따른 멤스 마이크로폰의 내부 구조를 나타낸 도면이고, 도 29는 도 28의 수직방향 단면도 및 부분 확대도이다.
제6 실시예를 설명함에 있어서, 제3 실시예 또는 제4 실시예와 중복되는 부분은 간단히 설명하며, 제3 실시예 또는 제4 실시예와 차이가 나는 부분을 위주로 설명하도록 한다.
제6 실시예는 기판(500), 복수의 제1 지지대(710), 제2 지지대(720), 전극판(600), 진동판(900), 음향 챔버(550)를 필수적으로 포함하고 있고, 여기서 전극판(600)은 반드시 복수의 관통홀을 가지고 있으며, 기판(500)은 반드시 전극판(600)과 맞닿는 부위에 전극판(600)의 관통홀과 이어지는 복수의 관통홀이 뚫려있다.
도 28을 참조하면, 복수의 제1 지지대(710)는 기판(500) 상에서 소정 간격을 두고 원형으로 배열되어 있다. 복수의 제1 지지대(710)는 진동판(900)이 진동하여 상하로 운동을 할 때 견고하게 진동판(900)을 지지하는 기능을 수행한다. 복수의 제1 지지대(710)가 상호 간에 소정의 간격을 둔 채로 배열되어 있는 것은, 이후에 설명할 진동판(900)이 진동하게 될 때 발생하는 공기의 흐름이 멤스 마이크로폰의 외부로 원활하게 배출될 수 있도록 하기 위한 것이다. 그리고 복수의 제1 지지대(710) 중 적어도 어느 하나는 복수의 제1 지지대(710)의 중심에서 멀어지는 방향으로 길게 연장되어 있는데, 이는 이후에 설명할 제1 접촉 단자(910)를 안정적으로 지지하기 위한 것이다. 다만, 제6 실시예에서 진동판(900)과 직접적으로 접촉하면서 진동판(900)을 지지하는 것은 이후에 설명할 제2 지지대(720)이므로, 복수의 제1 지지대(710)는 엄밀하게 말하면, 제2 지지대(720)의 하면과 접촉하면서 제2 지지대(720)를 지지한다고 말할 수 있다.
도 28을 참조하면, 제2 지지대(720)는 복수의 제1 지지대(710) 상에 원형으로 형성되어 있는 것을 알 수 있다. 제2 지지대(720)도 제1 지지대(710)와 마찬가지로 제2 지지대(720)의 중심에서 멀어지는 방향으로 길게 연장되어 있는 부분을 포함하고 있으며, 이 연장된 부분 상에 제1 접촉 단자(910)가 밀착된 채로 안정적으로 지지된다. 도 27을 참조하면, 제1 접촉 단자(910)가 안정적으로 지지되는 것을 더욱 명확하게 알 수 있다. 제6 실시예에서는 제2 지지대(720)의 상면의 전체가 진동판(900)과 밀착되어 있으므로, 제3 실시예에 비하여 진동판(900)이 더욱 안정적으로 지지되는 장점이 있다. 본 제6 실시예가, 제2 지지대(720)를 포함하기 때문에 갖는 장점은 제4 실시예에서 설명한 바와 같다.
기판(500)은 실리콘 재질인 것이 바람직하다. 다만, 제6 실시예의 기판(500)은 제3 실시예 또는 제4 실시예의 기판(500)과는 차이가 있다. 즉, 제6 실시예의 기판(500)은 중앙 하부에 음향 챔버(550)를 갖고 있다. 또한 음향 챔버(550)의 직경은 전극판(600)의 직경과 동일한 것이 바람직하나, 음향 챔버(550)와 전극판(600) 중 어느 하나의 직경이 다른 하나의 직경보다 다소 크거나 작을 수도 있다. 도 29에서는, 음향 챔버(550)는 원기둥 형상을 취하는 것으로 도시되어 있으나, 반드시 원기둥 형상을 취할 필요는 없고, 기판(500)의 하방으로 갈수록 직경이 넓어지거나, 타원 기둥 또는 다각 기둥 등의 여러가지 형상을 취할 수도 있다.
도 29를 참조하면, 전극판(600)이 복수의 제1 지지대(710)와 제2 지지대(720)에 의하여 둘러싸여 있으며, 또한, 복수의 관통홀을 갖고 있는 것을 알 수 있다. 또한, 기판(500)은 전극판(600)과 맞닿는 부위에서 전극판(600)의 관통홀과 이어지는 복수의 관통홀이 뚤려 있다. 즉, 전극판(600)의 복수의 관통홀과 기판(500)의 복수의 관통홀은 서로 연결되어 있게 되므로 진동판(900)이 구동하는 것에 의하여 발생하는 공기의 흐름이 기판(500)의 상면에서 음향 챔버(550)쪽으로 빠져 나갈 수 있다. 도 29의 오른쪽 하단의 확대도에서 작은 구멍과 그보다 약간 큰 원형의 돌출부가 보이는데, 여기서 작은 구멍이 전극판(600) 및 기판(500)의 중앙 부위에 뚫려 있는 관통홀이고, 원형의 돌출부는 음원에 의하여 진동판(900)이 구동할 때 발생하는 공기의 흐름이 원활하게 빠져나갈 수 있도록 형성되어 있는 것이다. 관통홀의 깊이는 수㎛ ~ 수십㎛가 적당하다
제6 실시예에서는 기판(500)의 상면과 하면이 관통홀을 통하여 공기가 연통되기 때문에, 진동판(900)의 윗방향에 있는 음원에 의해서도 제6 실시예의 멤스 마이크로폰이 구동 가능하고, 기판(500)의 아래 방향(음향 챔버(550))에 있는 음원에 의해서도 제6 실시예의 멤스 마이크로폰이 구동 가능한 장점이 있다.
진동판(900), 복수의 제1 지지대(710) 및 제2 지지대(720)의 직경은 모두 동일한 것이 바람직하나, 진동판(900), 복수의 제1 지지대(710) 및 제2 지지대(720) 중 어느 하나의 직경이 나머지 둘의 직경보다 다소 크거나 작을 수도 있다.
제3 실시예와 마찬가지로, 제6 실시예에서도 진동판(900)과 전극판(600)은 소정 간격 이격되어 있으므로, 서로 접촉하지 않는다. 그러나, 제3 실시예에서 복수의 제1 지지대(710)의 두께가 전극판(600)의 두께보다 두꺼워야만 했던 것과는 달리, 제6 실시예에서는 복수의 제1 지지대(710)와 제2 지지대(720)를 합친 두께가 전극판(600)의 두께보다 두꺼우면 족하다. 따라서, 제6 실시예에서 경우에 따라서는, 복수의 제1 지지대(710)의 두께가 전극판(600)의 두께보다 얇을 수도 있다. 다만, 복수의 제1 지지대(710)와 제2 지지대(720)를 합친 두께는, 단순히 전극판(600)의 두께보다 훨씬 두꺼운 것보다는, 전극판(600)이 진동판(900)에 접촉하지 않을 정도 두께인 것이 바람직하다. 이렇게 진동판(900)과 전극판(600)과의 간격이 최소화되면, 멤스 마이크로폰의 주파수 응답특성이 우수해지는 효과가 있다.
전극판(600)과 기판(500) 사이에는 산화막(510)과 질화막(520) 중 적어도 어느 하나가 개재되는 것이 바람직하다. 이는 실리콘 기판(500)의 절연 및 전극판(600)의 누설전류차단을 취한 것이다. 따라서 산화막(510)과 질화막(520) 중 적어도 어느 하나가 절연막의 역할을 하게 되는 것이다. 여기서, 산화막(510)은 SiO2를 택할 수 있고, 질화막(520)은 Si3N4가 될 수 있다. 기판(500) 상에 전극판(600)을 형성하기 전에 기판(500) 상에 산화막(510)을 형성하고, 그 위에 질화막(520)을 형성한다. 다만, 기판(500) 상에 질화막(520)을 먼저 형성하고, 그 위에 산화막(510)을 형성할 수도 있다. 이렇게 기판(500) 상에 산화막(510) 또는 질화막(520) 중 적어도 어느 하나가 형성된 다음, 전극판(600)이 그 위에 형성된다. 그리고, 산화막(510) 또는 질화막(520) 중 적어도 어느 하나가 형성된 다음, 전극판(600)을 둘러싸도록 복수의 제1 지지대(710)가 형성된다. 따라서, 전극판(600)과 복수의 제1 지지대(710)는 동일 평면 상에 위치하게 된다. 그러므로, 전극과 기판(500) 사이에 산화막(510)과 질화막(520) 중 적어도 어느 하나가 개재된다는 것은 다시 말해서, 복수의 제1 지지대(710)와 기판(500) 사이에 산화막(510)과 질화막(520) 중 적어도 어느 하나가 개재된다는 것과 동일하다.
전극판(600)을 먼저 형성하고, 그 다음에, 전극판(600)을 둘러싸도록 복수의 제1 지지대(710)를 형성할 수도 있으나, 반대로 복수의 제1 지지대(710)를 형성한 후에 그 내부에 전극판(600)을 형성할 수도 있다. 그 다음으로, 제2 지지대(720)를 형성하게 된다. 즉, 전극판(600) 또는 복수의 제1 지지대(710) 중 어느 하나를 먼저 형성하고, 다른 하나를 나중에 형성한 다음, 제2 지지대(720)를 형성하게 된다. 그리고, 복수의 제1 지지대(710)의 내주면과 전극판(600)의 외주면은 소정 간격 이격된 채로 배치되는 것이 누설 전류의 차단을 위하여 바람직하다. 또한 제2 지지대(720)의 내주면과 전극판(600)의 외주면도 소정 간격 이격된 채로 배치되는 것이 누설 전류의 차단을 위하여 바람직하다.
한편, 제6 실시예에서 제2 지지대(720)를 형성하지 않도록 구성할 수도 있는데, 이 경우는 제2 지지대(720)를 형성하지 않고, 전극판(600)이 복수의 관통홀을 갖도록 하고, 기판(500)의 중앙 하부에 음향 챔버(550)를 형성한다는 점에서 제3 실시예와 차이점이 있다.
<제6 실시예의 제조과정>
도 30, 도 31, 도 32 및 도 33은 본 발명의 제6 실시예에 따른 멤스 마이크로폰을 제조하는 일련의 과정을 나타낸 도면이다. 도 30, 도 31, 도 32 및 도 33을 참조하여 제6 실시예의 제조과정에 대하여 설명하도록 한다. 여기서, 도 30, 도 31, 도 32의 (a)는 각각 도 22, 도 23, 도 24의 (a)와 동일하므로, 제5 실시예를 참조하기로 한다.
다음으로, 도 32의 (b)에서와 같이, 제1 지지대(710)와 전극판(600)이 형성되어 있는 기판(500) 상에 제1 희생층(810)을 형성한다. 여기서, 제1 희생층(810)은 폴리 실리콘(poly silicon) 재질인 것이 바람직하며, 제1 희생층(810)은 수 ㎛의 두께로 형성한다. 제1 희생층(810) 및 이후에 설명할 제2 희생층(820)은 최종 결과물인 멤스 마이크로폰에서는 제거되어야 하며, 본 제1 희생층(810) 및 이후에 설명할 제2 희생층(820)은 멤스 마이크로폰의 제작 공정 중에서 필요한 것이다. 제1 지지대(710)가 위쪽 방향으로 돌출되어 있기 때문에, 제1 지지대(710) 부분에서 제1 희생층(810)이 더 높게 형성된다. 다음으로, 도 32의 (c)에서와 같이, 제1 희생층(810)의 상면이 복수의 제1 지지대(710)의 상면과 동일 평면 상에 놓일 때까지 제1 지지대(710) 부분에 더 높게 형성되어 있는 제1 희생층(810)을 폴리싱(polishing)한다.
다음으로, 도 32의 (d)와 같이, 제1 희생층(810)을 폴리싱하여 제1 희생측 밖으로, 복수의 제1 지지대(710)가 노출된 상태에서, 복수의 제1 지지대(710) 상에 제2 지지대(720)를 형성한다. 제2 지지대(720)는, 제2 지지대(720)를 형성하기 위한 재료를 폴리싱된 제1 희생층(810)과 복수의 제1 지지대(710) 상에 코팅한 후에 패터닝을 하게 된다. 이러한 과정을 통하여 도 32의 (d)의 상태가 된다. 제2 지지대(720)는 수천Å~ 수㎛의 두께로 형성한다.
다음으로, 도 32의 (e)에서와 같이, 제2 지지대(720) 및 폴리싱된 제1 희생층(810) 상에 제2 희생층(820)을 형성한다. 여기서, 제2 희생층(820)은 폴리 실리콘(poly silicon) 재질인 것이 바람직하며, 제2 희생층(820)은 수㎛의 두께로 형성한다. 제2 지지대(720)가 위쪽 방향으로 돌출되어 있기 때문에, 제2 지지대(720) 부분에서 제2 희생층(820)이 더 높게 형성된다. 다음으로, 도 26의 (a)에서와 같이, 제2 희생층(820)의 상면이 제2 지지대(720)의 상면과 동일 평면 상에 놓일 때까지 제2 지지대(720) 부분에 더 높게 형성되어 있는 제2 희생층(820)을 폴리싱한다.
다음으로, 도 33의 (b)에서와 같이, 제2 희생층(820)의 상측 일부가 제거된 상태에서 그 위에 진동판(900)을 형성하는 재료를 코팅한다. 이 상태에서는, 진동판(900)이 제2 지지대(720) 및 상측 일부가 제거된 제2 희생층(820)에 의하여 지지되어 있다. 다만, 도 33의 (b)에서는 진동판(900)이 두 개의 층으로 되어 있는 것을 알 수 있다. 아래 층은 비전도체막이며, 위층은 금속판이다. 여기서 금속판은 수천Å의 두께로 형성한다. 금속판 단독으로 진동판(900)의 역할을 수행할 수도 있으나, 이처럼 진동판(900)은 금속과 비전도체막이 접합되어 형성되는 것이 바람직하다. 여기서 비전도체막은 앞서 살펴본 것과 같이 산화막(510)과 질화막(520) 중 적어도 어느 하나의 막이다. 여기서 비전도체막은 수백~수천 Å 의 두께로 형성한다.
다음으로, 도 33의 (c)에서와 같이, 최종적으로 형성되어야 할 진동판(900)의 형상으로 패터닝을 한다.
다음으로, 도 33의 (d)에서와 같이, 제1 희생층(810) 및 제2 희생층(820)을 제거한다. 이미 설명한대로 필링재(830)는 제1 희생층(810) 및 제2 희생층(820)과 동일한 재질이기 때문에, 에칭으로 희생층을 제거하는 과정에서 기판(500)의 상면과 하면으로 공기가 연통하게 하는 복수의 구멍을 막고 있던 필링재(830)도 제거된다. 여기서, 에칭가스로는 XeF2 등이 사용된다.
도 34는 본 발명의 제6 실시예에 따른 따른 멤스 마이크로폰을 제조하는 방법의 순서도이다.
본 순서도에서, S500~S530은 제5 실시예에 따른 멤스 마이크로폰을 제조하는 방법을 나타낸 도 26의 S400~S430과 동일하므로 도 26을 참조하기로 한다.
다음으로, 전극판(600) 및 복수의 제1 지지대(710) 상에 제1 희생층(810)을 형성하는 제1 희생층(810) 형성 단계를 수행한다(S540).
다음으로, 제1 희생층(810)의 상측 일부를 제거한 후에 복수의 제1 지지대(710) 상에 제2 지지대(720)를 형성하는 제2 지지대(720) 형성 단계를 수행한다(S550).
다음으로, 제1 희생층(810) 및 제2 지지대(720) 상에 제2 희생층(820)을 형성하는 제2 희생층(820) 형성 단계를 수행한다(S560).
다음으로, 제2 희생층(820)의 상측 일부를 제거한 후에 전극판(600)의 상층에서 제2 지지대(720)에 의하여 지지되는 진동판(900)을 형성하는 진동판(900) 형성 단계를 수행한다(S570).
다음으로, 제1, 제2 희생층(41, 42)을 제거하는 희생층 제거 단계를 수행하는 것으로 도시되어 있다(S580). 다만, 전극판(600) 형성 단계와 제1 지지대(710) 형성단계의 순서는 바뀌어도 무방하다.
도 34는 본 발명의 제6 실시예에 따른 멤스 마이크로폰 제조방법을 기본적인 단계로 하여, 천공 단계는 복수의 구멍을 뚫기 전에 기판(500) 상에 산화막(510)을 형성하는 단계를 더 포함할 수 있다. 그리고, 전극판(600) 형성 단계는 전극판(600)을 형성하기 전에 복수의 구멍의 내주면 및 음향 챔버(550)에 산화막(510)을 형성하는 단계를 더 포함할 수 있다. 또한, 전극판(600) 형성 단계는, 복수의 구멍의 내주면 및 음향 챔버(550)에 산화막(510)을 형성한 후에 복수의 구멍을 제1 희생층(810) 또는 제2 희생층(820)과 동일한 재질의 필링재(830)(filling material)로 막는 단계를 더 포함할 수 있다. 또한, 제2 지지대(720) 형성 단계는, 제1 희생층(810)의 상면이 복수의 제1 지지대(710)의 상면과 동일 평면 상에 놓일 때까지 제1 희생층(810)을 제거하는 것이 바람직하다. 또한, 진동판(900) 형성 단계는, 제2 희생층(820)의 상면이 제2 지지대(720)의 상면과 동일 평면 상에 놓일 때까지 제2 희생층(820)을 제거하는 것이 바람직하다. 또한, 진동판(900) 형성 단계는, 진동판(900)을 형성하기 전에 제2 희생층(820) 및 복수의 제1 지지대(710) 상에 산화막(510)과 질화막(520) 중 적어도 어느 하나의 막을 더 형성하는 단계를 더 포함하는 것이 바람직하다. 또한, 희생층 제거 단계는, 제1 희생층(810), 제2 희생층(820) 및 필링재(830)가 모두 제거되는 것이 바람직하다.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (45)

  1. 기판;
    상기 기판의 상단에 형성된 음향 챔버;
    상기 음향 챔버의 내부에 형성된 복수의 주지지대;
    상기 음향 챔버의 바닥면에 형성된 전극판; 및
    상기 복수의 주지지대에 의해 지지되고 상기 전극판의 상측에 형성된 진동판
    을 포함하는, 멤스(Micro-Electro Mechanical System, MEMS) 마이크로폰.
  2. 기판;
    상기 기판 상에서 소정 간격을 두고 원형으로 배열된 복수의 제1 지지대;
    상기 기판 상에 형성되며 상기 복수의 제1 지지대에 의하여 둘러싸여 있는 전극판; 및
    상기 복수의 제1 지지대에 의하여 지지되고 상기 전극판의 상측에 형성된 진동판;
    을 포함하는, 멤스 마이크로폰.
  3. 기판;
    상기 기판 상에서 소정 간격을 두고 원형으로 배열된 복수의 제1 지지대;
    상기 복수의 제1 지지대 상에 원형으로 형성된 제2 지지대;
    상기 기판 상에 형성되며 상기 복수의 제1 지지대 및 상기 제2 지지대에 의하여 둘러싸여 있는 전극판; 및
    상기 제2 지지대에 의하여 지지되고 상기 전극판의 상측에 형성된 진동판;
    을 포함하는, 멤스 마이크로폰.
  4. 기판;
    상기 기판 상에서 소정 간격을 두고 원형으로 배열된 복수의 제1 지지대;
    상기 기판 상에 형성되고 상기 복수의 제1 지지대에 의하여 둘러싸여 있으며 복수의 관통홀을 갖는 전극판;
    상기 복수의 제1 지지대에 의하여 지지되고 상기 전극판의 상측에 형성된 진동판; 및
    상기 기판의 중앙 하부에 형성된 음향 챔버;
    를 포함하고,
    상기 기판은 상기 전극판과 맞닿는 부위에 상기 전극판의 관통홀과 이어지는 복수의 관통홀이 뚫려있는, 멤스 마이크로폰.
  5. 기판;
    상기 기판 상에서 소정 간격을 두고 원형으로 배열된 복수의 제1 지지대;
    상기 복수의 제1 지지대 상에 원형으로 형성된 제2 지지대;
    상기 기판 상에 형성되고 상기 복수의 제1 지지대 및 상기 제2 지지대에 의하여 둘러싸여 있으며 복수의 관통홀을 갖는 전극판;
    상기 제2 지지대에 의하여 지지되고 상기 전극판의 상측에 형성된 진동판; 및
    상기 기판의 중앙 하부에 형성된 음향 챔버;
    를 포함하고,
    상기 기판은 상기 전극판과 맞닿는 부위에 상기 전극판의 관통홀과 이어지는 복수의 관통홀이 뚫려있는, 멤스 마이크로폰.
  6. 제1항, 제2항 또는 제3항 중 어느 한 항에 있어서,
    상기 진동판은 복수의 관통 홀을 구비하는, 멤스 마이크로폰.
  7. 제1항에 있어서,
    상기 마이크로폰은 상기 복수의 주지지대 사이에 형성되어 상기 진동판을 지지하는 복수의 보조지지대를 더 포함하는, 멤스 마이크로폰.
  8. 제7항에 있어서,
    상기 음향 챔버, 상기 복수의 지지대 및 상기 복수의 보조지지대는 상기 기판의 식각에 의해서 상기 기판과 일체형으로 형성된, 멤스 마이크로폰.
  9. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 기판은 실리콘 재질로 이루어지는, 멤스 마이크로폰.
  10. 제8항에 있어서,
    상기 음향 챔버, 상기 복수의 지지대 및 상기 복수의 보조지지대는 표면에 형성된 질화막을 포함하는, 마이크로폰.
  11. 제10항에 있어서,
    상기 복수의 지지대 및 상기 복수의 보조지지대는 상측에서 상기 질화막의 하부에 형성된 산화막을 포함하는, 멤스 마이크로폰.
  12. 제1항에 있어서,
    상기 음향 챔버는 상기 전극판과 상기 바닥면 사이에 형성된 돌출부를 더 포함하는, 멤스 마이크로폰.
  13. 제12항에 있어서,
    상기 돌출부는 상기 음향 챔버의 바닥면의 중심부에서 반구형으로 돌출되도록 형성된 산화막인, 멤스 마이크로폰.
  14. 제1항에 있어서,
    상기 진동판은 가장자리에서 돌출되어 일체형으로 형성된 복수의 제1 접촉단자를 구비하는, 멤스 마이크로폰.
  15. 제1항에 있어서,
    상기 전극판은 가장자리에서 연장된 일체형의 제2 접촉단자를 구비하는 멤스 마이크로폰.
  16. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 전극판과 기판 사이에 산화막과 질화막 중 적어도 어느 하나가 개재된, 멤스 마이크로폰.
  17. 제2항 내지 제5항 중 어느 한 항에 있어서,
    상기 복수의 제1 지지대와 상기 기판 사이에 산화막과 질화막 중 적어도 어느 하나가 개재된,
    멤스 마이크로폰.
  18. 제1항 내지 제5항 중 어느 한 항에 있어서
    상기 전극판은 금속과 비전도체막이 접합되어 형성된, 멤스 마이크로폰.
  19. 제2항 내지 제5항 중 어느 한 항에 있어서,
    상기 진동판은 하면에서 복수의 관통홀이 뚫려있지 않은 영역에 돌출부가 형성된, 멤스 마이크로폰.
  20. 기판 상면에 음향 챔버와 복수의 주지지대를 형성하는 단계;
    상기 음향 챔버의 바닥면의 중심부에 전극판을 형성하는 단계;
    상기 기판의 상면 및 상기 음향 챔버에 희생층을 형성하는 단계;
    상기 희생층의 상측 일부를 제거한 후에 상기 전극판의 상측에서 상기 주지지대에 의하여 지지되는 진동판을 형성하는 단계; 및
    상기 희생층을 제거하는 단계
    을 포함하는, 멤스 마이크로폰 제조방법.
  21. 기판 상의 중앙 부위에 전극판을 형성하는 전극판 형성 단계;
    상기 전극판을 둘러싸는 복수의 제1 지지대를 형성하는 제1 지지대 형성 단계;
    상기 전극판 및 상기 복수의 제1 지지대 상에 희생층을 형성하는 희생층 형성 단계;
    상기 희생층의 상측 일부를 제거한 후에 상기 전극판의 상층에서 상기 복수의 제1 지지대에 의하여 지지되는 진동판을 형성하는 진동판 형성 단계; 및
    상기 희생층을 제거하는 희생층 제거 단계;
    를 포함하는, 멤스 마이크로폰 제조방법.
  22. 기판 상의 중앙 부위에 전극판을 형성하는 전극판 형성 단계;
    상기 전극판을 둘러싸는 복수의 제1 지지대를 형성하는 제1 지지대 형성 단계;
    상기 전극판 및 상기 복수의 제1 지지대 상에 제1 희생층을 형성하는 제1 희생층 형성 단계;
    상기 제1 희생층의 상측 일부를 제거한 후에 상기 복수의 제1 지지대 상에 제2 지지대를 형성하는 제2 지지대 형성 단계;
    상기 제1 희생층 및 상기 제2 지지대 상에 제2 희생층을 형성하는 제2 희생층 형성 단계;
    상기 제2 희생층의 상측 일부를 제거한 후에 상기 전극판의 상층에서 상기 제2 지지대에 의하여 지지되는 진동판을 형성하는 진동판 형성 단계; 및
    상기 제1, 제2 희생층을 제거하는 희생층 제거 단계;
    를 포함하는, 멤스 마이크로폰 제조방법.
  23. 기판 상면의 중앙 부위에 복수의 구멍을 뚫는 천공 단계;
    상기 기판의 하면 중앙 부위에 음향 챔버를 형성하여 상기 기판의 상면과 하면이 상기 복수의 구멍을 통하여 유체 연통되도록 하는 음향 챔버 형성 단계;
    상기 기판 상의 중앙 부위에 전극판을 형성하는 전극판 형성 단계;
    상기 전극판을 둘러싸는 복수의 제1 지지대를 상기 기판 상에 형성하는 제1 지지대 형성 단계;
    상기 전극판 및 상기 복수의 제1 지지대 상에 희생층을 형성하는 희생층 형성 단계;
    상기 희생층의 상측 일부를 제거한 후에 상기 전극판의 상층에서 상기 제1 지지대에 의하여 지지되는 진동판을 형성하는 진동판 형성 단계; 및
    상기 희생층을 제거하는 희생층 제거 단계;
    를 포함하는, 멤스 마이크로폰 제조방법.
  24. 기판 상면의 중앙 부위에 복수의 구멍을 뚫는 천공 단계;
    상기 기판의 하면 중앙 부위에 음향 챔버를 형성하여 상기 기판의 상면과 하면이 상기 복수의 구멍을 통하여 유체 연통되도록 하는 음향 챔버 형성 단계;
    상기 기판 상의 중앙 부위에 전극판을 형성하는 전극판 형성 단계;
    상기 전극판을 둘러싸는 복수의 제1 지지대를 상기 기판 상에 형성하는 제1 지지대 형성 단계;
    상기 전극판 및 상기 복수의 제1 지지대 상에 제1 희생층을 형성하는 제1 희생층 형성 단계;
    상기 제1 희생층의 상측 일부를 제거한 후에 상기 복수의 제1 지지대 상에 제2 지지대를 형성하는 제2 지지대 형성 단계;
    상기 제1 희생층 및 상기 제2 지지대 상에 제2 희생층을 형성하는 제2 희생층 형성 단계;
    상기 제2 희생층의 상측 일부를 제거한 후에 상기 전극판의 상층에서 상기 제2 지지대에 의하여 지지되는 진동판을 형성하는 진동판 형성 단계; 및
    상기 제1, 제2 희생층을 제거하는 희생층 제거 단계;
    를 포함하는, 멤스 마이크로폰 제조방법.
  25. 제20항 내지 제22항 중 어느 한 항에 있어서,
    상기 진동판을 형성하는 단계에서는,
    상기 진동판 상에 복수의 관통홀이 형성되는, 멤스 마이크로폰 제조방법.
  26. 제20항에 있어서,
    상기 음향 챔버와 복수의 주지지대를 형성하는 단계는,
    상기 복수의 주지지대 사이에 복수의 보조지지대를 더 형성하는, 멤스 마이크로폰 제조방법.
  27. 제26항에 있어서,
    상기 음향 챔버와 복수의 주지지대를 형성하는 단계는,
    상기 기판의 표면에 산화막을 형성하는 단계;
    상기 산화막을 패터닝한 후 식각으로 상기 음향 챔버, 상기 복수의 주지지대 및 상기 복수의 보조지지대를 형성하는 단계; 및
    상기 음향 챔버, 상기 복수의 주지지대 및 상기 복수의 보조지지대의 표면에 질화막을 형성하는 단계
    을 포함하는, 멤스 마이크로폰 제조방법.
  28. 제27항에 있어서,
    상기 전극판을 형성하는 단계는,
    상기 음향 챔버의 중심부의 질화막을 제거한 후 반구형상의 산화막을 형성하는 단계; 및
    상기 반구형상의 산화막 위에 금속막인 상기 전극판을 형성하는 단계
    를 포함하는, 멤스 마이크로폰 제조방법.
  29. 제20항에 있어서,
    상기 진동판 및 상기 전극판은 메탈 스퍼터링 기법에 의하여 형성된 금속막이며, Ti, Au, Cu, Al, Pt 및 TiN 중 어느 하나의 재질인, 멤스 마이크로폰 제조방법.
  30. 제20항에 있어서,
    상기 진동판 및 상기 전극판은 가장자리에 전원 공급을 위한 일체형의 접촉 단자를 형성하는, 멤스 마이크로폰 제조방법.
  31. 제25항에 있어서,
    상기 음향 챔버와 복수의 주지지대를 형성하는 단계에서는,
    상기 복수의 주지지대가 하측에서 상기 전극판과 인접하도록 형성되는, 멤스 마이크로폰 제조방법.
  32. 제25항에 있어서,
    상기 진동판을 형성하는 단계에서는,
    상기 복수의 주지지대 및 상기 복수의 보조지지대의 상면의 질화막이 노출되도록 상기 희생층의 상측 일부가 제거되는, 멤스 마이크로폰 제조방법.
  33. 제20항에 있어서,
    상기 희생층은 적어도 폴리 실리콘(poly-silicon) 계열의 플라즈마를 포함한 등방성 에칭 가스에 의해 식각 처리가 용이한 재질인, 멤스 마이크로폰 제조방법.
  34. 제21항 또는 제22항에 있어서,
    상기 전극판 형성 단계는,
    상기 전극판을 형성하기 전에 상기 기판 상에 산화막과 질화막 중 적어도 어느 하나의 막을 더 형성하는 단계를 더 포함하는,
    멤스 마이크로폰 제조방법.
  35. 제21항 또는 제23항에 있어서,
    상기 진동판 형성 단계는,
    상기 희생층의 상면이 상기 복수의 제1 지지대의 상면과 동일 평면 상에 놓일 때까지 상기 희생층을 제거하는, 멤스 마이크로폰 제조방법.
  36. 제21항 또는 제23항에 있어서,
    상기 진동판 형성 단계는,
    상기 진동판을 형성하기 전에 상기 희생층 및 상기 복수의 제1 지지대 상에 산화막과 질화막 중 적어도 어느 하나의 막을 더 형성하는 단계를 포함하는,
    멤스 마이크로폰 제조방법.
  37. 제22항 또는 제24항에 있어서,
    상기 제2 지지대 형성 단계는,
    상기 제1 희생층의 상면이 상기 복수의 제1 지지대의 상면과 동일 평면 상에 놓일 때까지 상기 제1 희생층을 제거하는, 멤스 마이크로폰 제조방법.
  38. 제22항 또는 제24항에 있어서,
    상기 진동판 형성 단계는,
    상기 제2 희생층의 상면이 상기 제2 지지대의 상면과 동일 평면 상에 놓일 때까지 상기 제2 희생층을 제거하는, 멤스 마이크로폰 제조방법.
  39. 제22항 또는 제24항에 있어서,
    상기 진동판 형성 단계는,
    상기 진동판을 형성하기 전에 상기 제2 희생층 및 상기 제2 지지대 상에 산화막과 질화막 중 적어도 어느 하나의 막을 더 형성하는 단계를 포함하는,
    멤스 마이크로폰 제조방법.
  40. 제23항 또는 제24항에 있어서,
    상기 천공 단계는,
    상기 복수의 구멍을 뚫기 전에 상기 기판 상에 산화막을 형성하는 단계를 더 포함하는,
    멤스 마이크로폰 제조방법.
  41. 제23항 또는 제24항에 있어서,
    상기 전극판 형성 단계는,
    상기 전극판을 형성하기 전에 상기 복수의 구멍의 내주면 및 상기 음향 챔버에 산화막을 형성하는 단계를 더 포함하는,
    멤스 마이크로폰 제조방법.
  42. 제41항에 있어서,
    상기 전극판 형성 단계는,
    상기 복수의 구멍의 내주면 및 상기 음향 챔버에 산화막을 형성한 후에 상기 복수의 구멍을 상기 희생층과 동일한 재질의 필링재(filling material)로 막는 단계를 더 포함하는,
    멤스 마이크로폰 제조방법.
  43. 제42항에 있어서
    상기 희생층 제거 단계는,
    상기 희생층 및 상기 필링재가 모두 제거되는, 멤스 마이크로폰 제조방법.
  44. 제41항에 있어서,
    상기 전극판 형성 단계는,
    상기 복수의 구멍의 내주면 및 상기 음향 챔버에 산화막을 형성한 후에 상기 복수의 구멍을 상기 제1 희생층 또는 제2 희생층과 동일한 재질의 필링재(filling material)로 막는 단계를 더 포함하는,
    멤스 마이크로폰 제조방법.
  45. 제44항에 있어서
    상기 희생층 제거 단계는,
    상기 제1 희생층, 상기 제2 희생층 및 상기 필링재가 모두 제거되는, 멤스 마이크로폰 제조방법.
PCT/KR2010/008507 2009-12-01 2010-11-30 멤스 마이크로폰 및 그 제조방법 WO2011068344A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0117910 2009-12-01
KR1020090117910A KR101112120B1 (ko) 2009-12-01 2009-12-01 멤스 마이크로폰 및 그 제조방법
KR1020100112754A KR20120051355A (ko) 2010-11-12 2010-11-12 멤스 마이크로폰 및 그 제조방법
KR10-2010-0112754 2010-11-12

Publications (3)

Publication Number Publication Date
WO2011068344A2 true WO2011068344A2 (ko) 2011-06-09
WO2011068344A9 WO2011068344A9 (ko) 2011-09-29
WO2011068344A3 WO2011068344A3 (ko) 2011-11-17

Family

ID=44115410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008507 WO2011068344A2 (ko) 2009-12-01 2010-11-30 멤스 마이크로폰 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2011068344A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105188004A (zh) * 2014-06-23 2015-12-23 钰太芯微电子科技(上海)有限公司 数字驻极体麦克风的连接结构及数字驻极体麦克风
CN111757226A (zh) * 2020-06-19 2020-10-09 歌尔微电子有限公司 Mems芯片及其制作方法、mems麦克风
CN111762753A (zh) * 2019-04-01 2020-10-13 台湾积体电路制造股份有限公司 微机电系统装置及其形成方法
WO2023087647A1 (zh) * 2021-11-16 2023-05-25 无锡华润上华科技有限公司 Mems麦克风及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776019A (en) * 1986-05-31 1988-10-04 Horiba, Ltd. Diaphragm for use in condenser microphone type detector
KR20090029362A (ko) * 2007-09-18 2009-03-23 (주) 알에프세미 커패시터형 실리콘 멤스 마이크로폰
KR20090054885A (ko) * 2007-11-27 2009-06-01 한국전자통신연구원 멤스 마이크로폰 및 그 제조 방법
KR20090060475A (ko) * 2007-12-10 2009-06-15 (주) 알에프세미 커패시터형 실리콘 멤스 마이크로폰

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776019A (en) * 1986-05-31 1988-10-04 Horiba, Ltd. Diaphragm for use in condenser microphone type detector
KR20090029362A (ko) * 2007-09-18 2009-03-23 (주) 알에프세미 커패시터형 실리콘 멤스 마이크로폰
KR20090054885A (ko) * 2007-11-27 2009-06-01 한국전자통신연구원 멤스 마이크로폰 및 그 제조 방법
KR20090060475A (ko) * 2007-12-10 2009-06-15 (주) 알에프세미 커패시터형 실리콘 멤스 마이크로폰

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105188004A (zh) * 2014-06-23 2015-12-23 钰太芯微电子科技(上海)有限公司 数字驻极体麦克风的连接结构及数字驻极体麦克风
CN105188004B (zh) * 2014-06-23 2018-06-12 钰太芯微电子科技(上海)有限公司 数字驻极体麦克风的连接结构及数字驻极体麦克风
CN111762753A (zh) * 2019-04-01 2020-10-13 台湾积体电路制造股份有限公司 微机电系统装置及其形成方法
CN111762753B (zh) * 2019-04-01 2024-04-12 台湾积体电路制造股份有限公司 微机电系统装置及其形成方法
CN111757226A (zh) * 2020-06-19 2020-10-09 歌尔微电子有限公司 Mems芯片及其制作方法、mems麦克风
WO2023087647A1 (zh) * 2021-11-16 2023-05-25 无锡华润上华科技有限公司 Mems麦克风及其制造方法

Also Published As

Publication number Publication date
WO2011068344A3 (ko) 2011-11-17
WO2011068344A9 (ko) 2011-09-29

Similar Documents

Publication Publication Date Title
WO2011055885A1 (ko) 멤스 마이크로폰 및 그 제조방법
WO2021054759A1 (en) Display module and electronic device including the same
WO2017188798A1 (ko) 액체 렌즈를 포함하는 카메라 모듈, 이를 포함하는 광학 기기, 및 액체 렌즈를 포함하는 카메라 모듈의 제조 방법
JP4137158B2 (ja) エレクトレットコンデンサーマイクロフォン
WO2017078328A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2014196724A1 (ko) 벽걸이형 플렉시블 디스플레이
WO2011068344A9 (ko) 멤스 마이크로폰 및 그 제조방법
WO2017003096A1 (ko) 디바이스들 간의 연결 설립 방법
WO2010036051A2 (en) Structure and manufacture method for multi-row lead frame and semiconductor package
WO2013168898A1 (en) Voice coil motor
WO2020145718A1 (ko) 디스플레이용 기판
WO2018124560A1 (en) Earphone
WO2011068282A1 (ko) 멤스 마이크로폰 및 그 제조방법
WO2017171388A1 (ko) 카메라 모듈 및 이를 포함하는 광학 기기
WO2020145637A1 (ko) 촬상 렌즈
WO2011081288A2 (ko) 멤스 마이크로폰 및 그 제조방법
WO2019231239A1 (ko) 렌즈 구동 장치, 및 카메라 장치, 및 이를 포함하는 광학 기기
WO2016111583A1 (ko) 마이크로폰
WO2020085873A1 (ko) 카메라, 및 이를 구비하는 단말기
WO2013094873A1 (ko) 박막 전지 모듈, 박막 전지 패키지, 박막 전지 패키지 제조 장치 및 박막 전지 패키지 제조 방법
KR101601140B1 (ko) 마이크로폰 및 그 제조 방법
WO2020171397A1 (en) Flexible flat cable and method of producing the same
WO2019182308A1 (ko) 카메라 모듈 및 이를 포함하는 광학 기기
WO2020197348A1 (ko) 렌즈 배럴 및 이를 포함하는 카메라 모듈
WO2014178572A1 (ko) 멤스 자계 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834759

Country of ref document: EP

Kind code of ref document: A2