WO2011068077A1 - ポリオレフィン成形体 - Google Patents

ポリオレフィン成形体 Download PDF

Info

Publication number
WO2011068077A1
WO2011068077A1 PCT/JP2010/071101 JP2010071101W WO2011068077A1 WO 2011068077 A1 WO2011068077 A1 WO 2011068077A1 JP 2010071101 W JP2010071101 W JP 2010071101W WO 2011068077 A1 WO2011068077 A1 WO 2011068077A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
unused
mass
recycled
hollow
Prior art date
Application number
PCT/JP2010/071101
Other languages
English (en)
French (fr)
Inventor
聖二 中村
俊一 松木
Original Assignee
株式会社東京アドバンスドテクノロジーズ
伊藤忠プラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東京アドバンスドテクノロジーズ, 伊藤忠プラスチックス株式会社 filed Critical 株式会社東京アドバンスドテクノロジーズ
Publication of WO2011068077A1 publication Critical patent/WO2011068077A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a polyolefin molded article comprising an unused polyolefin part, a used recycled polyolefin part and a space, for example, a hollow polyolefin fiber or a hollow polyolefin pellet.
  • the present invention also relates to a method for producing hollow polyolefin fibers and hollow polyolefin pellets.
  • fleece is made from a bottle made of polyethylene terephthalate.
  • Patent Document 1 discloses that a resin composition containing a recycled polyolefin resin and 1 to 120 parts by weight of fly ash with respect to 100 parts by weight of the resin is heated and mixed at 150 to 250 ° C. to plasticize the resin composition.
  • a technique is disclosed in which a product is obtained and subjected to injection molding to produce a saddle block having a substantially U-shaped or substantially U-shaped cross section.
  • Patent Document 2 discloses a railroad sleeper formed from a plastic composite material composed of 20 to 50% by weight of a polystyrene component and 50 to 80% by weight of a polyolefin component.
  • the polyolefin component used in the manufacture of this sleeper contains at least 75% by weight of high density polyethylene.
  • Patent Document 2 describes that the polyolefin component may be made of recycled polyolefin plastic.
  • Patent Document 3 a regenerated polyolefin material is used as a granular filler made of plastics used to maintain a fiber composition extending from a substrate in an artificial turf structure in a vertical state imitating natural turf.
  • Technology is disclosed.
  • plastic fragments discarded from plastic factories have a uniform composition, so they are being reused to some extent.
  • garbage collected from households hereinafter referred to as “household waste”.
  • the plastics included in (1) may not be reused due to the necessity of crushing, separation, and washing steps and the fact that the composition is not constant.
  • the development of further reuse technology is desired for plastics derived from household waste that is disposed of in large quantities.
  • the present inventors have regenerated polyolefin resin fibers that have been used for the purpose of improving the curing process of concrete and quality after curing, more specifically, for the purpose of improving plastic shrinkage cracking and improving the toughness of concrete products. I thought it would be possible to manufacture using plastics.
  • As raw materials for polyolefin resin fibers newly synthesized polyolefins (hereinafter sometimes referred to as “prime polyolefins”) and recycled products once used as products, Attempts were made to use mixtures with used recycled polyolefins consisting of polyolefins. And it was investigated whether the manufactured fiber had the physical property which can be used as a concrete reinforcement fiber.
  • recycled polyolefin produced from the disposal route of the manufacturing process such as debris and defective products cut during plastic molding at the factory is not yet available as a product. It has also become clear that the above-mentioned fibers and pellets cannot be obtained when the recycled polyolefin used is used. The present invention has been made based on such knowledge.
  • the present invention relates to a polyolefin molded article comprising a used recycled polyolefin part, an unused polyolefin part and a space.
  • used recycled polyolefin refers to used recycled plastic, most of which is polyolefin.
  • the raw material polyolefin used for the production of the above-mentioned polyolefin molded body is 10 to 90% by mass of the used recycled polyolefin when the blending ratio is 100% by mass of the total amount of the unused polyolefin and the used recycled polyolefin. It is preferable that the content is 20 to 50% by mass.
  • the unused polyolefin is preferably polyethylene and / or polypropylene.
  • the unused polyolefin is preferably a newly synthesized polyolefin, that is, a prime polyolefin.
  • a layer of used recycled polyolefin is present on the outside, a layer of unused polyolefin is present on the inside, and a hollow polyolefin fiber having a space in the center, and a used recycled polyolefin layer on the outside.
  • hollow polyolefin pellets in which an unused polyolefin layer is present on the inside and a space is formed in the center.
  • the polyolefin molded body according to the present invention includes those obtained by melting and molding the hollow polyolefin fiber or the hollow polyolefin pellet.
  • the present invention is a mixture containing an unused polyolefin and a used recycled polyolefin, and the used recycled polyolefin is 10 to 90 when the total amount of the unused polyolefin and the used recycled polyolefin is 100% by mass.
  • a step of melting a mixture in mass%, a step of extruding the melt to form an extrudate, a step of cooling the extrudate, a step of heating and stretching the extrudate to form a filament, and a step of cooling the filament It is related with the manufacturing method of the hollow polyolefin fiber characterized by including.
  • the present invention is a mixture containing an unused polyolefin and a used recycled polyolefin, and when the total amount of the unused polyolefin and the used recycled polyolefin is 100% by mass, Hollow polyolefin pellets comprising: melting a 90% by weight mixture, extruding the melt into an extrudate, cooling the extrudate, and cutting or chopping the extrudate. It relates to the manufacturing method.
  • the “used recycled polyolefin” is a polyolefin derived from plastics that have been once molded and used as a product and then recovered. “Used recycled polyolefin” does not include polyolefin generated from the disposal route of the manufacturing process, such as debris and defective products cut out during plastic molding at the factory.
  • “unused polyolefin” refers to a newly synthesized polyolefin or a polyolefin that has not been used as a product and is generated from a disposal route of a manufacturing process.
  • a polyolefin molded article having a small apparent density for example, a hollow polyolefin fiber or a hollow polyolefin pellet
  • a plastic molded body is produced using the hollow polyolefin fiber or hollow polyolefin pellet of the present invention, since there is a space inside, the apparent density is small, that is, if it is the same size, it is lighter than the conventional one
  • the present invention contributes to weight reduction of the plastic molded body.
  • the blending amount is specified by weight ratio
  • the amount of fiber added in volume increases, so the concrete curing process and curing Later quality is improved.
  • the amount of use in terms of weight is reduced as compared with the conventional case, so the cost is reduced.
  • the present invention broadens the use of used recycled polyolefin derived from household waste, thus increasing its reuse rate. This leads to a reduction in the amount of landfilled garbage, which in turn helps to preserve the global environment.
  • the blending ratio of prime polyolefin and used recycled polyolefin as raw material for polyolefin fibers (the horizontal axis indicates the mixing ratio of used recycled polyolefin (%)), and the polyolefin fibers manufactured using such raw materials It is a graph which shows the relationship with tensile strength.
  • the blending ratio of prime polyolefin and used recycled polyolefin as raw material for polyolefin fibers (the horizontal axis indicates the mixing ratio of used recycled polyolefin (%)), and the polyolefin fibers manufactured using such raw materials It is a graph which shows the relationship with breaking elongation (elongation).
  • FIG. 1 is a schematic cross-sectional view of an example of a molded article of the present invention
  • FIG. 2 is a schematic cross-sectional view of an example of a hollow polyolefin fiber of the present invention.
  • the unused polyolefin used by the inventors in the experiment differs from the used recycled polyolefin, that is, the used recycled polyolefin has a blackish tone, while the unused polyolefin is almost colorless and transparent. Therefore, the respective arrangements in the polyolefin molded body were clarified.
  • FIG. 1 which is a schematic cross-sectional view of the polyolefin molded body 100 of the present invention
  • a used recycled polyolefin 1 part an unused polyolefin 3 part, and a space 5 exist.
  • the space 5 exists mainly in the unused polyolefin 3 part.
  • the hollow polyolefin fiber 10 which is an example of the molded body of the present invention has a layer of used recycled polyolefin 1 on the outside and a layer of unused polyolefin 3 on the inside, as shown in FIG.
  • the central portion is a space 5.
  • the cross section of the hollow polyolefin pellet of the present invention is the same as that of the hollow polyolefin fiber.
  • the cross section of the hollow polyolefin fiber 10 does not have to be a perfect circle, and the inner periphery of the used recycled polyolefin 1 layer and the inner periphery of the unused polyolefin 3 layer are not necessarily true in the hollow polyolefin fiber 10. It doesn't have to be a circle.
  • the apparent density is the density of a molded body having no space portion made of a single polyolefin (only used recycled polyolefin or only unused polyolefin) as a raw material. That is, it is smaller than the true density.
  • the “apparent density” is a density measured even if the density measurement object has an open or closed space, and that space also constitutes the volume of the molded body. It is different from the bulk density.
  • the measurement conditions and measurement methods of the apparent density in this specification are as described in the examples.
  • the apparent density of the polyolefin molded product of the present invention varies depending on the blending ratio of the used recycled polyolefin and the unused polyolefin, but the used recycled polyolefin is used when the total amount of the used recycled polyolefin and the unused polyolefin is 100% by mass. When the polyolefin is 10 to 90% by mass, it is about 80 to 98% of the true density of the unused polyolefin.
  • the true density is about 0.92 g / ml
  • a polyolefin fiber is produced from a mixture of this and a used recycled polyolefin as a raw material
  • the ratio of the used recycled polyolefin is 10 to 90% by mass
  • the apparent density is about 0.77 to 0.90 g / ml.
  • the true density of low density polyethylene is 0.910 to 0.929 g / ml
  • the true density of medium density polyethylene is 0.930 to 0.941 g / ml
  • high The true density of the density polyethylene is 0.942 g / ml or more.
  • the apparent density is 0.77 to 0.00. It becomes about 90 g / ml.
  • the hollow polyolefin fibers and pellets produced using a mixture of unused polyolefin and used recycled polyolefin as raw materials have a slightly lower tensile strength than those produced only from unused polyolefin.
  • the tensile strength of polyolefin fibers and pellets made only from used recycled polyolefin is about 75 to 80% of the tensile strength of those made only from unused polyolefin. Therefore, in the hollow polyolefin fibers and pellets of the present invention, the tensile strength decreases as the blending ratio of the used recycled polyolefin increases, but the decrease rate is about 25% at the maximum.
  • the tensile strength of the hollow polyolefin fiber or pellet of the present invention is not a problem in normal use.
  • the hollow polyolefin fibers and pellets of the present invention tend to exhibit a larger Young's modulus than those produced from unused polyolefin alone.
  • the concept of “unused polyolefin” used in the production of the polyolefin molded article of the present invention includes a new polyolefin produced by polymerizing a monomer obtained from a petrochemical raw material, that is, a prime polyolefin.
  • a prime polyolefin a monomer obtained from a petrochemical raw material
  • the concept of polyolefin includes all polymerized monomers having an ethylenically unsaturated bond. Examples thereof include polyethylene, polypropylene, polybutylene, polystyrene and the like.
  • the kind of unused polyolefin is selected according to the form (whether it is a fiber, a pellet, or other than that) of the polyolefin molding of the present invention and the use, polyethylene and / or polypropylene are preferred.
  • polyethylene and / or polypropylene are preferred.
  • the “mainly” means about 90% by mass or more based on the total amount of unused polyolefin.
  • the “used recycled polyolefin” used in the production of the polyolefin molded body of the present invention is a polyolefin derived from plastics that are once molded and used as a product, and then recovered.
  • a typical example is recycled plastics recovered from household waste and the like, melted and pelletized after being crushed, separated and washed.
  • Recycled plastics that have been recovered from household waste, etc., passed through crushing, separation, and washing steps, and then melted and pelletized have been found to be about 47% polyethylene, about 47% polypropylene, and about 5% polystyrene.
  • the other plastics have an almost constant composition of about 1% by mass. That is, about 99% by mass is polyolefin.
  • used recycled polyolefins since most of the used recycled plastics (usually 90% by mass or more) are polyolefins, they are referred to as “used recycled polyolefins”.
  • the density of the used recycled polyolefin is about 0.92 g / ml.
  • the portion other than the space of the polyolefin molded body of the present invention is mainly composed of polyolefins. That is, for example, 90% by mass or more of the raw materials are polyolefins. However, other thermoplastic resins having excellent affinity with polyolefins may coexist. Moreover, additives other than the space of the polyolefin molded body of the invention may coexist with additives such as plasticizers and ultraviolet absorbers that are usually added to plastics. Such additives may coexist in polyolefins recycled from raw materials supplied from the disposal route of the manufacturing process and used recycled polyolefins, but they can be used without separation and removal. May be.
  • the portion other than the space of the polyolefin molded body of the present invention is preferably composed only of unused polyolefin and used recycled polyolefin.
  • the amount of used recycled polyolefin is preferably 10 to 90% by mass
  • the content is more preferably 50% by mass, and particularly preferably 30 to 50% by mass.
  • the used recycled polyolefin is 30 to 50% by mass, a molded article having a particularly small apparent density, such as fibers and pellets, can be obtained.
  • the method for producing the hollow polyolefin fiber of the present invention is not particularly limited, but the following method is preferred. That is, (1) A mixture containing an unused polyolefin and a used recycled polyolefin, the used recycled polyolefin being 10 to 90% by mass when the total amount of the unused polyolefin and the used recycled polyolefin is 100% by mass. %, A step of melting the mixture, (2) a step of extruding the melt to obtain an extrudate, (3) a step of cooling the extrudate, and (4) heating and stretching the extrudate to obtain a filament. And (5) a method including cooling the filamentous material.
  • the unused polyolefin and the used recycled polyolefin as raw materials are charged into the melting tank 13 from the hopper 11.
  • the raw material polyolefin is heated to a temperature at which the raw material polyolefin melts to obtain the melt 12 (step (1)).
  • the raw material polyolefin is melted at a heater set temperature of preferably 220 to 260 ° C., more preferably about 230 to 250 ° C.
  • the temperature at the extrusion outlet of the molten raw material polyolefin is usually about 180 to 210 ° C, preferably 190 to 210 ° C.
  • step (2) When the raw material is melted, pressure is applied and the melt 12 of the polyolefin mixture is extruded to a desired thickness to obtain an extrudate 14 (step (2)). Next, the extrudate 14 is guided to the cooling water tank 15 and cooled (step (3)).
  • the temperature of the water in the water tank 15 is not specifically limited, For example, it is 25 degrees C or less, Preferably it is 22 degrees C or less, More preferably, it is about 19 degreeC.
  • the cooling may be performed in the air, that is, natural cooling.
  • the cooled extrudate 14 is guided to a roller 17 attached to a roller holding member 16, and drained and dried. Thereafter, the extrudate 14 is guided to the heating chamber 19 and heated, and is stretched by the stretching device 21 to become a filament (monofilament) 22 having a desired thickness (step (4)).
  • the temperature in this step is a temperature at which the extrudate becomes soft and can be stretched, and is usually about 160 to 170 ° C.
  • the tensile force at the time of stretching is such a value that a thread-like material (monofilament) 22 having a desired thickness is obtained and is not cut.
  • the filamentous material 22 is guided to a roller 24 attached to a roller holding member 23.
  • a heater is disposed inside the roller 24. Therefore, in this step, the filament 22 is not yet completely cured.
  • the filament 22 is preferably passed between a pair of embossing rollers 25, 25.
  • the surface of the filamentous material 22 is embossed.
  • the filament 22 is then guided to the cooling water tank 26 and cooled in the water tank 26 (step (5)).
  • the temperature of the water in the water tank 26 is not specifically limited, For example, it is 25 degrees C or less, Preferably it is 22 degrees C or less, More preferably, it is about 19 degreeC.
  • the cooling may be performed in the air, that is, natural cooling.
  • the filamentous material 22 that has exited the cooling water tank 26 is drained and dried, and is wound around a winder 27.
  • the method for producing the hollow polyolefin pellet of the present invention is not particularly limited, but the following method is preferred. That is, (1) A mixture containing an unused polyolefin and a used recycled polyolefin, the used recycled polyolefin being 10 to 90% by mass when the total amount of the unused polyolefin and the used recycled polyolefin is 100% by mass. % Melting the mixture, (2) extruding the melt into an extrudate, (3) cooling the extrudate, and (6) cutting or chopping the extrudate. It is.
  • Steps (1) and (2) are the same as in the method for producing a hollow polyolefin fiber, and are therefore omitted.
  • the extrudate 14 extruded in the step (2) is air-cooled (naturally cooled) (step (3)).
  • the extrudate 14 is cut or shredded with a cutting tool such as a scissors or a cutter (step (6)).
  • the cooling in the step (3) may be a temperature at which the extrudate does not adhere to the cutting tool when performing the step (6).
  • the cooling in the step (3) may be performed by water cooling.
  • Pellets 32 are obtained by cutting or chopping. Usually, after that, the obtained pellet 32 is led to the cooling water tank 33 with the draining trough 31 and cooled in the water tank 33. When the pellet 32 cools, the draining basket 31 is taken out from the water tank 33, and the pellet 32 is dried and packaged.
  • the unused polyolefin and the used recycled polyolefin are different in plasticity and curing temperature such as the melt flow rate and the like. It seems that a layer of used recycled polyolefin is formed on the outside and a layer of unused polyolefin is formed on the inside. Also, in the cooling stage, the outer used recycled polyolefin is first hardened to determine the thickness of the extrudate, and then the inner unused polyolefin is hardened. I think that the.
  • Example 1 Production of polyolefin fiber of the present invention and measurement of physical properties thereof
  • Raw material (1-1) Polyethylene as a prime polyolefin (manufactured by Shanghai Enka Chemical Co., Ltd .; true density: 0.92 g / ml) )
  • polypropylene manufactured by Shanghai Forka Chemical Industry Co., Ltd .; trade name: Jushin Nozomi; true density: 0.92 g / ml
  • a used recycled polyolefin one derived from household waste (true density: 0.91 to 0.92 g / ml) was prepared.
  • Prime Polypropylene manufactured by Shanghai Fortress Chemical Co., Ltd .; trade name: Yukino Koshina; true density: 0.92 g / ml
  • used recycled polyolefin true density: 0
  • composition of the above used recycled polyolefin was about 47% by mass of polyethylene, about 47% by mass of polypropylene, about 5% by mass of polystyrene, and about 1% by mass of other plastics.
  • the apparent density of the polyolefin fiber was measured by the method A (immersion method) defined in ISO1183-1.
  • the fiber used was cut to a length of about 45 mm.
  • the measurement temperature was 24 ° C. and the humidity was 54%.
  • Kerosene was used as the immersion liquid.
  • FIG. 5 shows the blending ratio (mixing rate: mass%) of used recycled polyolefin in the total amount of polyolefin, It is a graph which shows the relationship with an apparent density.
  • A is data when a mixture of polyethylene and polypropylene (1: 1; based on mass) is used as the prime polyolefin
  • B and C are data when only polypropylene is used as the prime polyolefin.
  • the apparent density was the smallest when the used recycled polyolefin content was 30 to 50% by mass.
  • FIG. 6 shows the blending ratio (mixing ratio: mass%) of used recycled polyolefin in the total amount of polyolefin and the tensile strength of polyolefin fiber. It is a graph which shows a relationship.
  • A is the data when a mixture of polyethylene and polypropylene (1: 1; mass basis) is used as the prime polyolefin
  • B and C are the data when only polypropylene is used as the prime polyolefin. .
  • the tensile strength decreased as the blending ratio of the used recycled polyolefin increased, but even when the used recycled polyolefin was 100% by mass, the tensile strength of 75 to It was about 80%, and was within an allowable range for the tensile strength of the monofilament.
  • FIG. 7 shows the blending ratio (mixing ratio: mass%) of used recycled polyolefin in the total amount of polyolefin and the breaking elongation of polyolefin fibers. It is a graph which shows the relationship with (elongation).
  • A is data when a mixture of polyethylene and polypropylene (1: 1 mass basis) is used as the prime polyolefin
  • B and C are data when only polypropylene is used as the prime polyolefin.
  • the breaking elongation decreased as the blending ratio of the used recycled polyolefin increased.
  • Example 2 Reproducibility of apparent density of polyolefin fiber of the present invention
  • the raw material described in (1-2) of Example 1 was used, and a mixture having a used recycled polyolefin content of 20% by mass and 30% by mass From the mixture, polyolefin fibers were produced by the method described in Example 1 (2). The density of these fibers was measured by the method described in Example 1 (3). The results are shown in Table 1.
  • Example 3 Young's modulus of polyolefin fiber of the present invention Using the raw materials described in (1-2) of Example 1, a mixture having a used recycled polyolefin content of 20% by mass and a mixture having 30% by mass Then, a polyolefin fiber was produced by the method described in Example 1 (2). For these fibers, the density was measured by the method described in Example 1 (3), and the tensile strength was measured by the method described in Example 1 (4). Furthermore, Young's modulus was measured based on JIS L1013. The results are shown in Table 2.
  • the Young's modulus of prime polypropylene is about 1,500 to 2,000 MPa, but there was not much change even when used recycled polyolefin was used in combination.
  • Example 4 Production of polyolefin pellets of the present invention and measurement of their density
  • Raw material Polypropylene manufactured by Shanghai Forka Chemical Co., Ltd .; trade name: Jinjing fortress
  • True density 0.92 g / Ml
  • what was derived from household waste (true density: 0.91 g / ml) was prepared as a used recycled polyolefin.
  • the composition of this used recycled polyolefin was about 47% by mass of polyethylene, about 47% by mass of polypropylene, about 5% by mass of polystyrene, and about 1% by mass of other plastics.
  • a mixture obtained by mixing prime polyolefin and used recycled polyolefin at a ratio such that the blending ratio of used recycled polyolefin was 20% by mass of the total was used as a raw material.
  • Example 5 Production of block from polyolefin fiber of the present invention
  • Example 1 was prepared from a mixture in which the raw material described in (1-2) of Example 1 was used and the used recycled polyolefin content was 20% by mass.
  • a polyolefin fiber was produced by the method described in (2). The fibers were cut to a length of about 4.5 cm, put into a cylindrical mold having a diameter of 10 cm and a height of 3 cm, and heated to melt the polyolefin at a temperature of about 240 ° C. Next, the mold was immersed in water at 19 ° C. to solidify the polyolefin.
  • the obtained polyolefin molded body was cut and the cross section thereof was observed. As shown in FIG. 1, there were a recycled polyolefin 1 part and an unused (prime) polyolefin 3 part, and mainly a primed polyolefin. There were spaces 5 in the three parts. *
  • the polyolefin molded body according to the present invention can be used in place of the conventional product in at least some of the fields where the polyolefin molded body is conventionally used.
  • the polyolefin molded body according to the present invention can replace conventional products in the field where the feature of low apparent density is utilized, that is, in the field where the weight is small if the volume is the same.
  • the hollow polyolefin fiber according to the present invention can be used as a reinforcing fiber for cement, mortar, or concrete.
  • the hollow polyolefin pellets according to the present invention can be used for the production of various plastic molded products such as waterproof sheets, concrete molds and separators by melting and molding the hollow polyolefin pellets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

 主として家庭ゴミに由来する使用済み再生ポリオレフィンの使用を目的とする。 使用済み再生ポリオレフィンと未使用ポリオレフィンとを使用して、使用済み再生ポリオレフィン部分、未使用ポリオレフィンか部分及び空間からなるポリオレフィン成形体、例えば、外側に使用済み再生ポリオレフィンの層、内側に未使用ポリオレフィンの層が存在し、中央部は空間となっている中空ポリオレフィン繊維や中空ポリオレフィンペレットを製造する。前記中空ポリオレフィン繊維や中空ポリオレフィンペレットの製造方法は、未使用ポリオレフィンと使用済み再生ポリオレフィンとを含む混合物であって、未使用ポリオレフィンと使用済み再生ポリオレフィンとの合計量を100質量%としたときに使用済み再生ポリオレフィンが10乃至90質量%である混合物を溶融させる工程、その溶融物を押出して押出物とする工程、押出物を冷却する工程等を含む。

Description

ポリオレフィン成形体
 本発明は、未使用ポリオレフィン部分、使用済み再生ポリオレフィン部分及び空間からなるポリオレフィン成形体、例えば、中空ポリオレフィン繊維や中空ポリオレフィンペレットに関する。また、本発明は、中空ポリオレフィン繊維及び中空ポリオレフィンペレットの製造方法に関する。
 地球環境保全や資源の有効利用の観点から、廃棄されたプラスチック類のマテリアル・リサイクルが検討されている。例えばポリエチレンテレフタレート製のボトルからは、フリースが作られている。
 また、ポリオレフィン系プラスチック類の再利用に関しても、種々提案されている。例えば特許文献1には、再生ポリオレフィン樹脂と当該樹脂100重量部に対して1~120重量部のフライアッシュとを含む樹脂組成物を、150~250℃にて加熱混合し、可塑化した樹脂組成物を得、それを射出成形に供して、断面が略コの字状又は略ヘの字状の畦ブロックを製造する技術が開示されている。
 特許文献2には、20~50重量%のポリスチレン成分及び50~80重量%のポリオレフィン成分からなるプラスチック複合材料から形成された線路用の枕木が開示されている。この枕木の製造に使用されるポリオレフィン成分には、少なくとも75重量%の高密度ポリエチレンが含有されている。特許文献2には、このポリオレフィン成分が再生ポリオレフィンプラスチックからなるものでもよい旨が記載されている。
 特許文献3には、人工芝構造において、天然芝に模して基板から伸びる繊維組成物を垂直な状態に維持するために使用されるプラスチックス製の粒状充填材に、再生ポリオレフィン材料を使用する技術が開示されている。
 上記のごとく、廃棄されたプラスチック類のマテリアル・リサイクルのための技術が開発され、提案されている。しかし、現実には、プラスチック工場から廃棄されるプラスチック断片については、その組成が一定しているので、再利用もある程度は進んでいるが、家庭から回収されたゴミ(以下、「家庭ゴミ」ということがある)に含まれるプラスチック類は、破砕、分離、洗浄の工程が必要であることや、組成が一定しない等の理由により、再利用は進んでいない。特に大量に廃棄される家庭ゴミに由来するプラスチック類について、さらなる再利用技術の開発が望まれている。
特開2008-023855号公報 特表2002-535524号公報 特開2005-194778号公報
 本発明者らは、従来よりコンクリートの硬化過程及び硬化後の品質改善、より具体的には、プラスチック収縮ひび割れの改善やコンクリート製品のタフネス改善を目的として使用されているポリオレフィン樹脂製繊維を、再生プラスチック類を使用して製造することが出来ないかと考えた。そして、ポリオレフィン樹脂製繊維の原料として、新たに合成されたポリオレフィン(以下、「プライムのポリオレフィン」ということがある)と、一旦製品として使用されたプラスチック類からの再生品であって、大部分がポリオレフィン類からなる使用済み再生ポリオレフィンとの混合物の使用を試みた。そして、製造された繊維について、コンクリート補強繊維として使用できる物性を有しているか否かを検討した。
 上記検討の際、上記混合物から製造された繊維が、プライムのポリオレフィンとも使用済み再生ポリオレフィンとも異なる、それらよりも小さい見掛け密度を示すことを知見した。そして、このような現象が生じる原因について研究を重ねたところ、プライムのポリオレフィンと使用済み再生ポリオレフィンからなる混合物を溶融させ、押出し、延伸して繊維を製造すると、外側に使用済み再生ポリオレフィンの層、内側にプライムのポリオレフィンの層が存在し、中央部は空間となっている中空ポリオレフィン繊維が得られることが明らかとなった。また、押出後に延伸を行わずに切断すると、中空ポリオレフィンペレットが得られることが明らかとなった。さらに、このようにして製造された中空ポリオレフィン繊維や中空ポリオレフィンペレットを再溶融して成形体を製造すると、使用済み再生ポリオレフィン部分、未使用ポリオレフィン部分及び空間からなる成形体が得られることが明らかとなった。
 ここで、使用済み再生ポリオレフィンの代わりに、工場でのプラスチック類の成形加工の際に切り取られた破片や不良品等の製造工程の廃棄ルートから発生するポリオレフィンを再生してなる、製品としては未使用の再生ポリオレフィンを使用すると、上記のような繊維やペレットは得られないことも明らかとなった。本発明は、このような知見に基づいて為されたものである。
 すなわち本発明は、使用済み再生ポリオレフィン部分、未使用ポリオレフィン部分及び空間からなるポリオレフィン成形体に関する。ここで、「使用済み再生ポリオレフィン」とは、使用済み再生プラスチックであって、その大部分がポリオレフィンであるものをいう。
 上記ポリオレフィン成形体の製造に用いる原料ポリオレフィンは、その配合割合が、未使用ポリオレフィンと使用済み再生ポリオレフィンとの合計量を100質量%としたときに、使用済み再生ポリオレフィンの量が10乃至90質量%であることが好ましく、20乃至50質量%であることがさらに好ましい。
 未使用ポリオレフィンは、ポリエチレン及び/又はポリプロピレンであることが好ましい。また、未使用ポリオレフィンは、新たに合成されたポリオレフィン、すなわちプライムのポリオレフィンであることが好ましい。
 本発明に係るポリオレフィン成形体の例として、外側に使用済み再生ポリオレフィンの層、内側に未使用ポリオレフィンの層が存在し、中央部は空間となっている中空ポリオレフィン繊維及び外側に使用済み再生ポリオレフィンの層、内側に未使用ポリオレフィンの層が存在し、中央部は空間となっている中空ポリオレフィンペレットが挙げられる。
 また、本発明に係るポリオレフィン成形体には、上記中空ポリオレフィン繊維又は上記中空ポリオレフィンペレットを溶融して成形したものも包含される。
 さらに、本発明は、未使用ポリオレフィンと使用済み再生ポリオレフィンとを含む混合物であって、未使用ポリオレフィンと使用済み再生ポリオレフィンとの合計量を100質量%としたときに使用済み再生ポリオレフィンが10乃至90質量%である混合物を溶融させる工程、その溶融物を押出して押出物とする工程、押出物を冷却する工程、押出物を加熱し、延伸して糸状物とする工程及び糸状物を冷却する工程を含むことを特徴とする中空ポリオレフィン繊維の製造方法に関する。
 加えて、本発明は、未使用ポリオレフィンと使用済み再生ポリオレフィンとを含む混合物であって、未使用ポリオレフィンと使用済み再生ポリオレフィンとの合計量を100質量%としたときに使用済み再生ポリオレフィンが10乃至90質量%である混合物を溶融させる工程、その溶融物を押出して押出物とする工程、押出物を冷却する工程、及び押出物を切断又は細断する工程を含むことを特徴とする中空ポリオレフィンペレットの製造方法に関する。
 本発明において、「使用済み再生ポリオレフィン」とは、一旦成形加工され、製品として使用された後、回収されたプラスチック類に由来するポリオレフィンである。「使用済み再生ポリオレフィン」には、工場でのプラスチック類の成形加工の際に切り取られた破片や不良品等の、製造工程の廃棄ルートから発生するポリオレフィンは、含まれない。一方、「未使用のポリオレフィン」とは、新たに合成されたポリオレフィンや、製造工程の廃棄ルートから発生する、製品として使用された履歴のないポリオレフィンをいう。
 本発明により、見掛け密度が小さいポリオレフィン成形体、例えば中空ポリオレフィン繊維や中空ポリオレフィンペレットが得られる。また、本発明の中空ポリオレフィン繊維や中空ポリオレフィンペレットを使用してプラスチック成形体を製造すると、内部に空間を有するため、見掛け密度が小さい、すなわち同じ大きさであれば従来のものよりも軽いものが得られるので、本発明はプラスチック成形体の軽量化に寄与する。
 本発明の繊維やペレットを使用すると、その配合量が重量比で特定されている用途、例えばコンクリートの補強繊維の用途においては、体積換算の繊維添加量が増加するため、コンクリートの硬化過程及び硬化後の品質が改善される。また、その配合量が容積比で特定されている用途では、従来に比べて重量換算の使用量が減少するため、コストが低減される。
 本発明により、家庭ゴミに由来する使用済み再生ポリオレフィンの用途が広がり、よって、その再利用率が高まる。これは、埋め立てられるゴミの減量につながり、ひいては地球環境の保全に役立つ。
本発明の成形体の一例における断面模式図である。 本発明の中空ポリオレフィン繊維の一例における断面模式図である。 本発明の中空ポリオレフィン繊維の製造過程の一例を示す模式図である。 本発明の中空ポリオレフィンペレットの製造過程の一例を示す模式図である。 ポリオレフィン繊維原料としてのプライムのポリオレフィンと使用済み再生ポリオレフィンとの配合比率(横軸には、使用済み再生ポリオレフィン混入率(%)を表示)と、そのような原料を使用して製造したポリオレフィン繊維の見掛け密度との関係を示すグラフである。 ポリオレフィン繊維原料としてのプライムのポリオレフィンと使用済み再生ポリオレフィンとの配合比率(横軸には、使用済み再生ポリオレフィン混入率(%)を表示)と、そのような原料を使用して製造したポリオレフィン繊維の引張強度との関係を示すグラフである。 ポリオレフィン繊維原料としてのプライムのポリオレフィンと使用済み再生ポリオレフィンとの配合比率(横軸には、使用済み再生ポリオレフィン混入率(%)を表示)と、そのような原料を使用して製造したポリオレフィン繊維の破断伸度(伸び)との関係を示すグラフである。
 先ず、図面を参照しながら本発明のポリオレフィン成形体を説明する。図1は、本発明の成形体の一例における断面模式図であり、図2は、本発明の中空ポリオレフィン繊維の一例における断面模式図である。本発明者らが実験に使用した未使用ポリオレフィンと使用済み再生ポリオレフィンとは、色調が異なる、すなわち、使用済み再生ポリオレフィンは黒みがかった色調であり、一方、未使用ポリオレフィンは、ほぼ無色透明であるため、ポリオレフィン成形体中におけるそれぞれの配置が明らかとなった。
 本発明のポリオレフィン成形体100は、その断面模式図である図1に示すように、使用済み再生ポリオレフィン1の部分と、未使用ポリオレフィン3の部分と、空間5とが存在する。空間5は、主として未使用ポリオレフィン3部分中に存在する。また、本発明の成形体の一例である中空ポリオレフィン繊維10は、その断面模式図である図2に示すように、外側に使用済み再生ポリオレフィン1の層、内側に未使用ポリオレフィン3の層が存在し、中央部は空間5となっている。本発明の中空ポリオレフィンペレットも、その断面は中空ポリオレフィン繊維と同様である。
 なお、中空ポリオレフィン繊維10の断面は、真円である必要はなく、また、中空ポリオレフィン繊維10において、使用済み再生ポリオレフィン1の層の内周や未使用ポリオレフィン3の層の内周も、必ずしも真円でなくてもよい。
 本発明のポリオレフィン成形体は、空間部分を有するため、その見掛け密度は、原料である単一のポリオレフィン(使用済み再生ポリオレフィンのみ又は未使用ポリオレフィンのみ)からなる空間部分を有さない成形体の密度、すなわち真密度よりも小さい。ここで、「見掛け密度」とは、密度の測定対象が開放された又は閉鎖された空間を有していても、その空間も成形体の体積を構成するとして測定される密度である。嵩密度とは異なる。なお、本明細書における見掛け密度の測定条件や測定方法は、実施例に記載のとおりである。
 本発明のポリオレフィン成形体の見掛け密度は、使用済み再生ポリオレフィンと未使用ポリオレフィンとの配合比率によって異なるが、使用済み再生ポリオレフィンと未使用ポリオレフィンとの合計量を100質量%としたときに使用済み再生ポリオレフィンが10乃至90質量%である場合、未使用ポリオレフィンの真密度の80乃至98%程度である。
 例えば、未使用ポリオレフィンが高分子量のアイソタクチック・ポリプロピレンである場合、その真密度は約0.92g/mlであるが、これと使用済み再生ポリオレフィンとの混合物を原料としてポリオレフィン繊維を製造すると、使用済み再生ポリオレフィンの割合が10乃至90質量%の場合、その見掛け密度は0.77乃至0.90g/ml程度となる。また、未使用ポリオレフィンがポリエチレンである場合、JISによると、低密度ポリエチレンの真密度は0.910乃至0.929g/ml、中密度ポリエチレンの真密度は0.930乃至0.941g/ml、高密度ポリエチレンの真密度は0.942g/ml以上である。例えば、未使用の低密度ポリエチレンと使用済み再生ポリオレフィンとの混合物を原料としてポリオレフィン繊維を製造すると、使用済み再生ポリオレフィンの割合が10乃至90質量%の場合、その見掛け密度は0.77乃至0.90g/ml程度となる。
 未使用ポリオレフィンと使用済み再生ポリオレフィンとの混合物を原料として製造された中空ポリオレフィン繊維やペレットは、未使用ポリオレフィンのみから製造されたものと比べて、引張強度は若干低下している。使用済み再生ポリオレフィンのみから製造されたポリオレフィン繊維やペレットの引張強度は、未使用ポリオレフィンのみから製造されたものの引張強度の75乃至80%程度である。従って、本発明の中空ポリオレフィン繊維やペレットでは、使用済み再生ポリオレフィンの配合比率の上昇に伴って引張強度が低下するが、その低下率は最大でも25%程度である。そして、本発明の中空ポリオレフィン繊維やペレットの引張強度は、通常の用途においては問題のないものである。
 一方、本発明の中空ポリオレフィン繊維やペレットは、未使用ポリオレフィンのみから製造されたものと比べて、より大きなヤング率を示す傾向にある。
 本発明のポリオレフィン成形体の製造に使用される「未使用ポリオレフィン」の概念には、石油化学系原料から得られたモノマーを重合して製造された、新品のポリオレフィン、すなわちプライムのポリオレフィンが包含されるのはもちろんのこと、工場でのプラスチック類の成形加工の際に切り取られた破片や不良品等の、製造工程の廃棄ルートから供給された原料から再生されたポリオレフィンも包含される。プラスチック製品として使用された履歴がなければよい。ポリオレフィンの概念には、エチレン性不飽和結合を有するモノマーを重合したものすべてが包含される。その例を挙げると、ポリエチレン、ポリプロピレン、ポリブチレン、ポリスチレン等である。未使用ポリオレフィンの種類は、本発明のポリオレフィン成形体の形態(繊維であるか、ペレットであるか、それら以外であるか)や用途に応じて選択されるが、ポリエチレン及び/又はポリプロピレンが好ましい。また、例えば強度が要求される用途では、未使用ポリオレフィンとして、主としてプライムのポリオレフィンを使用することが好ましい。なお、「主として」とは、未使用ポリオレフィン全量中の約90質量%以上をいう。
 本発明のポリオレフィン成形体の製造に使用される「使用済み再生ポリオレフィン」は、一旦成形加工され、商品として使用された後、回収されたプラスチック類に由来するポリオレフィンである。その代表例は、家庭ゴミ等から回収され、破砕、分離、洗浄の工程を経た後、溶融され、ペレット化された再生プラスチック類である。
 家庭ゴミ等から回収され、破砕、分離、洗浄の工程を経た後、溶融され、ペレット化された再生プラスチック類は、経験上、ポリエチレン約47質量%、ポリプロピレン約47質量%、ポリスチレン約5質量%、その他のプラスチックス約1質量%というほぼ一定の組成を有している。すなわち、その約99質量%がポリオレフィンである。本明細書においては、このような使用済み再生プラスチック類の大部分(通常は90質量%以上)がポリオレフィンであることから、「使用済み再生ポリオレフィン」と称している。使用済み再生ポリオレフィンの密度は、約0.92g/mlである。
 本発明のポリオレフィン成形体の空間以外の部分は、主としてポリオレフィン類からなる。すなわち、例えば原料の90質量%以上がポリオレフィン類である。但し、ポリオレフィン類との親和性に優れる他の熱可塑性樹脂が共存していてもよい。また、発明のポリオレフィン成形体の空間以外の部分には、通常プラスチック類に添加される可塑剤や紫外線吸収剤等の添加剤が共存していてもよい。製造工程の廃棄ルートから供給された原料から再生されたポリオレフィンや、使用済み再生ポリオレフィンには、このような添加剤が共存している場合があるが、それらを分離、除去することなく、使用してもよい。なお、本発明のポリオレフィン成形体の空間以外の部分は、好ましくは未使用ポリオレフィン及び使用済み再生ポリオレフィンのみからなる。
 本発明のポリオレフィン成形体においては、未使用ポリオレフィンと使用済み再生ポリオレフィンとの合計量を100質量%としたときに、使用済み再生ポリオレフィンの量が10乃至90質量%であることが好ましく、20乃至50質量%であることがさらに好ましく、30乃至50質量%であることが特に好ましい。使用済み再生ポリオレフィンが30乃至50質量%であると、特に見掛け密度の小さい成形体、例えば繊維やペレットが得られる。
 本発明の中空ポリオレフィン繊維の製造方法は特に限定されないが、次の方法が好ましい。すなわち、(1)未使用ポリオレフィンと使用済み再生ポリオレフィンとを含む混合物であって、未使用ポリオレフィンと使用済み再生ポリオレフィンとの合計量を100質量%としたときに使用済み再生ポリオレフィンが10乃至90質量%である混合物を溶融させる工程、(2)その溶融物を押出して押出物とする工程、(3)押出物を冷却する工程、(4)押出物を加熱し、延伸して糸状物とする工程、及び(5)糸状物を冷却する工程を含む方法である。
 図3を参照しながら、中空ポリオレフィン繊維の製造方法の一例を説明する。原料である未使用ポリオレフィンと使用済み再生ポリオレフィンは、ホッパー11から溶融槽13に装入される。溶融槽13において、原料ポリオレフィンが溶融する温度まで、原料ポリオレフィンを加熱し、溶融物12を得る(工程(1))。原料ポリオレフィンの溶融は、ヒータの設定温度を好ましくは220乃至260℃、さらに好ましくは230ないし250℃程度として行う。溶融した原料ポリオレフィンの押出出口における温度は、通常は約180乃至210℃、好ましくは190乃至210℃である。
 原料が溶融したら、圧力をかけ、ポリオレフィン混合物の溶融物12を、所望の太さとなるように押出し、押出物14を得る(工程(2))。次いで、押出物14を冷却水槽15に導き、冷却する(工程(3))。水槽15中の水の温度は、特に限定されないが、例えば25℃以下、好ましくは22℃以下、より好ましくは19℃前後である。なお、冷却は、空気中で行う、すなわち自然冷却でもよい。
 冷却された押出物14は、ローラ保持部材16に取り付けられたローラ17に導かれ、水切り及び乾燥がなされる。その後、押出物14は、加温室19に導かれて加温され、延伸装置21によって延伸され、所望の太さの糸状物(モノフィラメント)22となる(工程(4))。この工程における温度は、押出物が軟化し、延伸が可能となる温度であり、通常は160乃至170℃程度である。延伸時の引張力は、目的とする太さの糸状物(モノフィラメント)22が得られ且つ切断しないような力とする。
 糸状物22は、ローラ保持部材23に取り付けられたローラ24に導かれる。ローラ24の内部には、ヒータが配置されている。したがって、この工程では、糸状物22はまだ完全には硬化しない。
 次いで、糸状物22は、好ましくは一対のエンボス・ローラ25,25の間を通される。ここで、糸状物22表面にエンボス加工がなされる。糸状物22は、その後、冷却水槽26に導かれ、水槽26中において冷却される(工程(5))。水槽26中の水の温度は、特に限定されないが、例えば25℃以下、好ましくは22℃以下、より好ましくは19℃前後である。なお、冷却は、空気中で行う、すなわち自然冷却でもよい。冷却水槽26を出た糸状物22は、水切り及び乾燥がなされ、巻取機27に巻き取られる。
 本発明の中空ポリオレフィンペレットの製造方法は特に限定されないが、次の方法が好ましい。すなわち、(1)未使用ポリオレフィンと使用済み再生ポリオレフィンとを含む混合物であって、未使用ポリオレフィンと使用済み再生ポリオレフィンとの合計量を100質量%としたときに使用済み再生ポリオレフィンが10乃至90質量%である混合物を溶融させる工程、(2)その溶融物を押出して押出物とする工程、(3)押出物を冷却する工程、及び(6)押出物を切断又は細断する工程を含む方法である。
 図4を参照しながら、中空ポリオレフィンペレットの製造方法の一例を説明する。工程(1)及び(2)は、中空ポリオレフィン繊維の製造方法と同様であるので省略する。工程(2)で押し出された押出物14は、空冷(自然冷却)される(工程(3))。次いで、押出物14は、鋏やカッター等の切断具にて切断又は細断される(工程(6))。工程(3)における冷却は、工程(6)を実施するに当たって、押出物が切断具に付着しない程度の温度となればよい。工程(3)の冷却を、水冷によって行ってもよい。
 切断又は細断により、ペレット32が得られる。通常は、この後、得られたペレット32を水切り籠31付き冷却水槽33に導き、水槽33中において冷却する。ペレット32が冷えたら、水槽33から水切り籠31を取り出し、ペレット32を乾燥し、袋詰めする。
 上記した中空ポリオレフィン繊維の製造方法及び中空ポリオレフィンペレットの製造方法において、未使用ポリオレフィンと使用済み再生ポリオレフィンとは、そのメルト・フロー・レート等の塑性や硬化温度が異なるものと思われ、そのために、外側に使用済み再生ポリオレフィンの層、内側に未使用ポリオレフィンの層が形成されるものと思われる。また、冷却段階では、先ず外側の使用済み再生ポリオレフィンが固まって押出物の太さが決定され、その後に内側の未使用ポリオレフィンが固まるが、その際に容積不足となるために、中空となるものと思われる。
 中空ポリオレフィン繊維や中空ポリオレフィンペレットとは異なる、型成形された本発明のポリオレフィン成形体においても、上記したような未使用ポリオレフィンと使用済み再生ポリオレフィンとの性質の相違のために、両者は十分には混じり合わず、かつ、両者の界面に空間が生じるものと考えられる。
 以下に、実施例により、本発明を具体的に説明する。但し、本発明は、以下の実施例に記載された態様に限定されるわけではない。
(実施例1)本発明のポリオレフィン繊維の製造及びその物性値の測定
(1)原料
(1-1)プライムのポリオレフィンとして、ポリエチレン(上海塞科化工有限公司製;真密度:0.92g/ml)とポリプロピレン(上海塞科化工有限公司製;商品名:塞科聚丙希;真密度:0.92g/ml)との1:1(質量基準)混合物を用意した。また、使用済み再生ポリオレフィンとして、家庭ゴミに由来するもの(真密度:0.91~0.92g/ml)を用意した。プライムのポリオレフィンのみ、使用済み再生ポリオレフィンのみ、及びプライムのポリオレフィンと使用済み再生ポリオレフィンとを所定比率で混合した混合物を、原料として使用した。
(1-2)プライムのポリプロピレン(上海塞科化工有限公司製;商品名:塞科聚丙希;真密度:0.92g/ml)と、家庭ゴミに由来する使用済み再生ポリオレフィン(真密度:0.91~0.92g/ml)とを、それぞれ単体で及び所定比率の混合物として、原料として使用した。
 なお、上記の使用済み再生ポリオレフィンの組成は、ポリエチレン約47質量%、ポリプロピレン約47質量%、ポリスチレン約5質量%、その他のプラスチックス約1質量%であった。
(2)ポリオレフィン繊維の製造
 原料ポリオレフィンを、溶融槽の設定温度240℃で溶融させ、射出成形によって押出した。なお、原料ポリオレフィン押出物の温度(出口温度)は、非接触型温度計で測定したところ、190~210℃であった。得られた押出物を19~21℃の水で冷却した。水切り後、押出物を160乃至170℃に加温して延伸し、繊維とした。繊維の太さは、その断面積が0.32乃至0.39mmであった。
 得られた繊維を切断し、その断面を顕微鏡で観察したところ、プライムのポリオレフィンと使用済み再生ポリオレフィンとの混合物から製造された繊維は、図2に示すように、中空で内側にプライムのポリオレフィン3の層があり、外側に使用済み再生ポリオレフィン1の層があるという構造であった。一方、プライムのポリオレフィンのみから製造された繊維と使用済み再生ポリオレフィンのみから製造された繊維は、中実の構造であった。 
(3)繊維の見掛け密度の測定
 ポリオレフィン繊維の見掛け密度を、ISO1183-1に規定する方法A(液浸法)にて測定した。繊維は、長さ約45mmに切断したものを使用した。測定温度は24℃、湿度は54%であった。浸せき液として、灯油を使用した。
(4)引張強度の測定
 一定単位で作製した繊維の中から無作為に約10mを三本切り取り、それぞれ一本1mに切りそろえ、さらにその中から10本を無作為に取り出して引張強度測定用試験片を作製した。JIS L1013(化学繊維フィラメント糸試験方法)に基づいて引張強度を測定した。
(5)破断伸度(伸び)の測定
 (4)引張強度の測定と同様の方法で、JIS L1013に基づいて破断伸度を測定した。
(6)結果
(6-1)使用済み再生ポリオレフィンの配合率の、見掛け密度に与える影響
 図5は、ポリオレフィン全量中における使用済み再生ポリオレフィンの配合割合(混入率;質量%)と、ポリオレフィン繊維の見掛け密度との関係を示すグラフである。Aは、プライムのポリオレフィンとして、ポリエチレンとポリプロピレンとの混合物(1:1;質量基準)を用いた場合のデータであり、B及びCは、プライムのポリオレフィンとしてポリプロピレンのみを用いた場合のデータである。図5から明らかなように、使用済み再生ポリオレフィン配合率が30乃至50質量%の場合に、見掛け密度が最も小さくなった。
(6-2)使用済み再生ポリオレフィンの配合率の、引張強度に与える影響
 図6は、ポリオレフィン全量中における使用済み再生ポリオレフィンの配合割合(混入率;質量%)と、ポリオレフィン繊維の引張強度との関係を示すグラフである。Aは、プライムのポリオレフィンとして、ポリエチレンとポリプロピレンとの混合物(1:1;質量基準)を用いた場合のデータであり、B及びCは、プライムのポリオレフィンとしてポリプロピレンのみを用いた場合のデータである。図6から明らかなように、使用済み再生ポリオレフィンの配合割合が上昇するに従って引張強度が小さくなったが、使用済み再生ポリオレフィン100質量%の場合でも、プライムのポリオレフィンのみの場合の引張強度の75乃至80%程度であり、モノフィラメントの引張強度として許容できる範囲内であった。
(6-3)使用済み再生ポリオレフィンの配合率の、破断伸度に与える影響
 図7は、ポリオレフィン全量中における使用済み再生ポリオレフィンの配合割合(混入率;質量%)と、ポリオレフィン繊維の破断伸度(伸び)との関係を示すグラフである。Aは、プライムのポリオレフィンとして、ポリエチレンとポリプロピレンとの混合物(1:1質量基準)を用いた場合のデータであり、B及びCは、プライムのポリオレフィンとしてポリプロピレンのみを用いた場合のデータである。図7から明らかなように、使用済み再生ポリオレフィンの配合割合が上昇するに従って破断伸度が小さくなった。
(実施例2)本発明のポリオレフィン繊維の見掛け密度の再現性
 実施例1の(1-2)に記載した原料を使用し、使用済み再生ポリオレフィン配合率が20質量%である混合物と30質量%である混合物から、実施例1の(2)に記載した方法でポリオレフィン繊維を製造した。それらの繊維について、実施例1の(3)に記載の方法で密度を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、プライムのポリプロピレンと使用済み再生ポリオレフィンとの混合物であって、使用済み再生ポリオレフィンの配合比率が20質量%又は30質量%である混合物を原料として使用すると、得られるポリオレフィン繊維の見掛け密度(平均値)は、それぞれ、ポリプロピレンの密度(0.92g/ml)の約97.5%及び96.6%であった。
(実施例3)本発明のポリオレフィン繊維のヤング率
 実施例1の(1-2)に記載した原料を使用し、使用済み再生ポリオレフィン配合率が20質量%である混合物と30質量%である混合物から、実施例1の(2)に記載した方法でポリオレフィン繊維を製造した。それらの繊維について、実施例1の(3)に記載の方法で密度を測定し、また、実施例1の(4)に記載の方法で引張強度を測定した。さらに、JIS L1013に基づいてヤング率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 プライムのポリプロピレンのヤング率は1,500乃至2,000MPa程度であるが、使用済み再生ポリオレフィンを併用しても、あまり変化はなかった。
(実施例4)本発明のポリオレフィンペレットの製造及びその密度の測定
(1)原料
 プライムのポリオレフィンとして、ポリプロピレン(上海塞科化工有限公司製;商品名:塞科聚丙希;真密度:0.92g/ml)を用意した。また、使用済み再生ポリオレフィンとして、家庭ゴミに由来するもの(真密度:0.91g/ml)を用意した。この使用済み再生ポリオレフィンの組成は、ポリエチレン約47質量%、ポリプロピレン約47質量%、ポリスチレン約5質量%、その他のプラスチックス約1質量%であった。プライムのポリオレフィンと使用済み再生ポリオレフィンとを、使用済み再生ポリオレフィンの配合割合が全体の20質量%となるような割合で混合した混合物を、原料として使用した。
(2)ポリオレフィンペレットの製造
 原料ポリオレフィンを、溶融槽の設定温度240℃で溶融させ、射出成形によって押出した。なお、原料ポリオレフィン押出物の温度(出口温度)は、非接触型温度計で測定したところ、190~210℃であった。得られた押出物を長さが約2~3mmとなるように切断し、得られたペレットを19~21℃の水で冷却した。ペレットの断面積は、7.0~8.0mmであった。
 得られたペレットを観察したところ、図2に示すように、中空で内側にプライムのポリオレフィン3の層があり、外側に使用済み再生ポリオレフィン1の層があるという構造であった。
(3)ペレットの密度の測定
(3-1)真密度の測定
 ポリオレフィンペレットの密度を、ISO1183-1に規定する方法B(ピクノメータ法)にて測定した。測定温度は23℃、湿度は54%であった。浸せき液として、灯油を使用した。この方法では、真空処理によって中空円筒形のペレット中の空気が除去されるため、真密度が測定されることとなる。真密度の測定値は、0.909g/mlであった。
(3-2)見掛け密度の測定(その1)
 ポリオレフィンペレットの密度を、ISO1183-1に規定する方法A(液浸法)にて測定した。測定温度は23℃、湿度は54%であった。浸せき液として、ポリオレフィンに対する親和性が低い蒸留水を使用した。この方法では、ポリオレフィンと蒸留水とは親和性が低いので、中空円筒形のペレットの中空部分に蒸留水はほとんど浸入せず、よって正しい見掛け密度が測定されることとなる。この方法での見掛け密度の測定値は、0.858g/mlであった。これは、次に説明する(3-2)の測定値の約0.95倍であった。
(3-3)見掛け密度の測定(その2)
 ポリオレフィンペレットの密度を、浸せき液として、ポリオレフィンに対してある程度の親和性を示す灯油を使用したこと以外は、(3-2)と同様の方法、条件にて測定した。浸せき液として灯油を使用しているため、中空円筒形のペレットの中空部分に、灯油がある程度は浸入したものと思われる。したがって、この方法では、正しい見掛け密度よりもやや大きな値が測定されることとなる。この方法で測定された見掛け密度の測定値は、0.899g/mlであった。これは、(3-2)の測定値の約1.05倍であった。
(実施例5)本発明のポリオレフィン繊維からのブロックの製造
 実施例1の(1-2)に記載した原料を使用し、使用済み再生ポリオレフィン配合率が20質量%である混合物から、実施例1の(2)に記載した方法でポリオレフィン繊維を製造した。それらの繊維を約4.5cm長さに切断し、直径が10cm、高さが3cmの円筒形の型に入れ、ポリオレフィンの温度が約240℃となるように加熱して溶融させた。次いで、型ごと19℃の水に浸漬し、ポリオレフィンを固化させた。
 得られたポリオレフィン成形体を切断し、その断面を観察したところ、図1に示すように、再生ポリオレフィン1の部分と未使用(プライムの)ポリオレフィン3の部分とがあり、且つ、主としてプライムのポリオレフィン3部分中に、空間5が存在するものであった。 
 本発明に係るポリオレフィン成形体は、従来ポリオレフィン成形体が使用されていた分野中の少なくとも一部の分野において、従来品に代わって使用され得る。特に、本発明に係るポリオレフィン成形体は、その見掛け密度が小さいという特徴が生かされる分野、即ち、同じ容積であれば重量が小さいことにメリットがある分野において、従来品を代替できる。具体的には、本発明に係る中空のポリオレフィン繊維は、セメント、モルタル、コンクリートの補強繊維として使用することが出来る。また、本発明に係る中空のポリオレフィンペレットは、それを溶融させ、成形することにより、各種プラスチック成型品、例えば防水シート、コンクリート用型枠及びセパレーター等の製造に使用することが出来る。

Claims (10)

  1. 使用済み再生ポリオレフィン部分、未使用ポリオレフィン部分及び空間からなるポリオレフィン成形体。
  2. 原料ポリオレフィンの配合割合が、未使用ポリオレフィンと使用済み再生ポリオレフィンとの合計量を100質量%としたときに使用済み再生ポリオレフィンの量が10乃至90質量%である、請求項1に記載のポリオレフィン成形体。
  3. 原料ポリオレフィンの配合割合が、未使用ポリオレフィンと使用済み再生ポリオレフィンとの合計量を100質量%としたときに使用済み再生ポリオレフィンの量が20乃至50質量%である、請求項1に記載のポリオレフィン成形体。
  4. 未使用ポリオレフィン部分が、ポリエチレン及び/又はポリプロピレンである、請求項1乃至3のいずれか一項に記載のポリオレフィン成形体。
  5. 未使用ポリオレフィンが新たに合成されたポリオレフィンである、請求項1乃至4のいずれか一項に記載のポリオレフィン成形体。
  6. ポリオレフィン成形体が、外側に使用済み再生ポリオレフィンの層、内側に未使用ポリオレフィンの層が存在し、中央部は空間となっている中空ポリオレフィン繊維である、請求項1乃至5のいずれか一項に記載のポリオレフィン成形体。 
  7. ポリオレフィン成形体が、外側に使用済み再生ポリオレフィンの層、内側に未使用ポリオレフィンの層が存在し、中央部は空間となっている中空ポリオレフィンペレットである、請求項1乃至5のいずれか一項に記載のポリオレフィン成形体。 
  8. ポリオレフィン成形体が、請求項6に記載の中空ポリオレフィン繊維又は請求項7に記載の中空ポリオレフィンペレットを溶融して成形したものである、請求項1乃至5のいずれか一項に記載のポリオレフィン成形体。
  9. 未使用ポリオレフィンと使用済み再生ポリオレフィンとを含む混合物であって、未使用ポリオレフィンと使用済み再生ポリオレフィンとの合計量を100質量%としたときに未使用再生ポリオレフィンが10乃至90質量%である混合物を溶融させる工程、その溶融物を押出して押出物とする工程、押出物を冷却する工程、押出物を加熱し、延伸して糸状物とする工程及び糸状物を冷却する工程を含むことを特徴とする中空ポリオレフィン繊維の製造方法。
  10. 未使用ポリオレフィンと使用済み再生ポリオレフィンとを含む混合物であって、未使用ポリオレフィンと使用済み再生ポリオレフィンとの合計量を100質量%としたときに使用済み再生ポリオレフィンが10乃至90質量%である混合物を溶融させる工程、その溶融物を押出して押出物とする工程、押出物を冷却する工程、及び押出物を切断又は細断する工程を含むことを特徴とする中空ポリオレフィンペレットの製造方法。
PCT/JP2010/071101 2009-12-03 2010-11-26 ポリオレフィン成形体 WO2011068077A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009275091A JP2011116019A (ja) 2009-12-03 2009-12-03 ポリオレフィン成形体
JP2009-275091 2009-12-03

Publications (1)

Publication Number Publication Date
WO2011068077A1 true WO2011068077A1 (ja) 2011-06-09

Family

ID=44114924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071101 WO2011068077A1 (ja) 2009-12-03 2010-11-26 ポリオレフィン成形体

Country Status (3)

Country Link
JP (1) JP2011116019A (ja)
TW (1) TW201136729A (ja)
WO (1) WO2011068077A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161874A (zh) * 2022-06-29 2022-10-11 西安工程大学 一种再生料制备纳米纤维材料的工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344726B1 (ko) 2011-10-25 2013-12-24 박종순 에폭시계 발포수지를 이용한 고강도 경량화 폴리머 알로이 제조방법
US20240010823A1 (en) * 2020-11-26 2024-01-11 Basell Poliolefine Italia S.R.L. Polyolefin compositions obtained from recycled polyolefins
KR102513582B1 (ko) * 2021-10-19 2023-03-24 주식회사 효산화이버 콘크리트 보강용 복합 수지 파이버 제조 방법 및 그 복합 수지 파이버
KR102623732B1 (ko) * 2021-11-22 2024-01-12 에쓰대시오일 주식회사 내크리프성이 향상된 폴리올레핀계 모노필라멘트 원사, 이의 제조방법 및 이에 의해 제조된 성형품

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290428A (ja) * 1995-04-25 1996-11-05 Toyoda Spinning & Weaving Co Ltd ガラス繊維配合熱可塑性樹脂回収材を用いる成形方法
JP2002220729A (ja) * 2001-01-23 2002-08-09 Mitsubishi Rayon Co Ltd ポリオレフィン系繊維及びその製造方法
JP2007283576A (ja) * 2006-04-14 2007-11-01 Kaneka Corp 廃発泡ポリオレフィン系樹脂成形体の加圧減容品を利用した発泡ポリオレフィン系樹脂成型体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290428A (ja) * 1995-04-25 1996-11-05 Toyoda Spinning & Weaving Co Ltd ガラス繊維配合熱可塑性樹脂回収材を用いる成形方法
JP2002220729A (ja) * 2001-01-23 2002-08-09 Mitsubishi Rayon Co Ltd ポリオレフィン系繊維及びその製造方法
JP2007283576A (ja) * 2006-04-14 2007-11-01 Kaneka Corp 廃発泡ポリオレフィン系樹脂成形体の加圧減容品を利用した発泡ポリオレフィン系樹脂成型体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161874A (zh) * 2022-06-29 2022-10-11 西安工程大学 一种再生料制备纳米纤维材料的工艺
CN115161874B (zh) * 2022-06-29 2024-05-07 西安工程大学 一种再生料制备纳米纤维材料的工艺

Also Published As

Publication number Publication date
TW201136729A (en) 2011-11-01
JP2011116019A (ja) 2011-06-16

Similar Documents

Publication Publication Date Title
Schirmeister et al. 3D printing of high density polyethylene by fused filament fabrication
US5298214A (en) Method of deriving polystyrene and polyolefin plastics composite from recycled plastics
Turku et al. Characterization of wood plastic composites manufactured from recycled plastic blends
US4549920A (en) Method for impregnating filaments with thermoplastic
JP2833694B2 (ja) 熱成形用繊維強化ペレット構造物
WO2011068077A1 (ja) ポリオレフィン成形体
EP2121818B1 (en) Method of recycling plastic
Kuzmanović et al. Relationship between the processing, structure, and properties of microfibrillar composites
Kraiem et al. Effect of low content reed (Phragmite australis) fibers on the mechanical properties of recycled HDPE composites
Ding et al. The effects of extrusion parameters and blend composition on the mechanical, rheological and thermal properties of LDPE/PS/PMMA ternary polymer blends
Najafi et al. Effect of thermomechanical degradation of polypropylene on mechanical properties of wood-polypropylene composites
JP2019155634A (ja) 複合材中間材料の製造方法
US20210246243A1 (en) Thermoplastic composition comprising a microwave-depolymerisation sensitising compound
EP0170245B1 (en) Pellets of fibre-reinforced compositions and methods for producing such pellets
JP6333674B2 (ja) リサイクルポリオレフィンを含有する熱可塑性樹脂組成物の再生方法
NL2016845B1 (en) Fibre-reinforced plastic objects
JP2017148997A (ja) 樹脂組成物成形機および樹脂組成物の成形方法
Dumitrescu et al. Reuse of pet waste as thermoplastic composites
JP4125942B2 (ja) プラスチック廃棄物を利用した混合材料及びその製造装置並びにその製造方法
TWI773573B (zh) 熱塑性聚酯彈性體複合纖維及其製造方法以及織物
Pielichowska Polyoxymethylene processing
Umor et al. Mechanical properties of wood dust and recycled polymers blends composition in injection moulding
KR101432008B1 (ko) 2종 이상의 수지, 유리장섬유, ldpe 및 고무계수지를 포함하는 조성물
Santi et al. Films of post-consumer polypropylene composites for the support layer in synthetic paper
Szpieg et al. Recycled polypropylene aimed as composites precursor material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834527

Country of ref document: EP

Kind code of ref document: A1