WO2011067446A1 - Procedimiento de identificación de animales vacunados frente a brucella - Google Patents

Procedimiento de identificación de animales vacunados frente a brucella Download PDF

Info

Publication number
WO2011067446A1
WO2011067446A1 PCT/ES2010/070784 ES2010070784W WO2011067446A1 WO 2011067446 A1 WO2011067446 A1 WO 2011067446A1 ES 2010070784 W ES2010070784 W ES 2010070784W WO 2011067446 A1 WO2011067446 A1 WO 2011067446A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
gfp
identification
brucella
mammals
Prior art date
Application number
PCT/ES2010/070784
Other languages
English (en)
French (fr)
Inventor
María GRILLÓ DOLSET
Beatriz Amorena Zabalza
Damián DE ANDRÉS CARA
Edgardo Moreno Robles
Estebán CHAVES OLARTE
Caterina GUZMÁN VERRI
Carlos CHACÓN DIAZ
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universidad Pública de Navarra
Universidad Nacional De Costa Rica (Una)
Universidad De Costa Rica (Ucr)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universidad Pública de Navarra, Universidad Nacional De Costa Rica (Una), Universidad De Costa Rica (Ucr) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to CN2010800630275A priority Critical patent/CN102781468A/zh
Priority to MX2012006303A priority patent/MX2012006303A/es
Priority to EP10834263.5A priority patent/EP2508201A4/en
Publication of WO2011067446A1 publication Critical patent/WO2011067446A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/098Brucella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/23Assays involving biological materials from specific organisms or of a specific nature from bacteria from Brucella (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/43504Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from invertebrates
    • G01N2333/43595Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from invertebrates from coelenteratae, e.g. medusae

Definitions

  • the present invention is within the field of Preventive Medicine and Public Health, and refers both to the development and use of live vaccines of Brucella spp. genetically modified, such as the development and use of direct and indirect diagnostic techniques that allow the identification of animals that have been vaccinated from those suffering from infection by virulent strains of Brucella spp.
  • Brucellosis is a disease that is transmitted from animals to man.
  • Brucella infection causes abortions, infertility, decreased production and limitations in the trade of animals and derived products, which constitutes an Animal Health problem with economic repercussions.
  • the bacteria are transmitted from infected animals to humans, causing them a debilitating and often disabling disease, against which there are no vaccines and whose treatment requires high doses of antibiotics for prolonged periods, with frequent recurrences. Therefore, brucellosis constitutes a relevant Public Health problem. It has been shown that the prevalence of human brucellosis is directly related to the prevalence of animal brucellosis.
  • Walsh et al. (Walsh et al., 2000. Journal of General Virology, 81, 709-718) proposed the possible use of a GFP protein as a marker of a veterinary vaccine. However, they failed to express it conveniently in the Bovine Plague virus.
  • the authors of the present invention describe how a strain derived from B. abortus S19 (the prototype S19-GFPp vaccine), is able to express GFP stably, without altering the microbiological or biological characteristics (attenuation and efficacy). against infection in experimental animals) of the reference strain S19 and, in addition, it is capable of inducing the response of anti-GFP antibodies detectable by specific serological tests, which allow differentiating hosts that have been vaccinated from those infected by strains virulent of Brucella spp. They also describe a indirect ELISA method of serological diagnosis capable of specifically identifying animals that have been immunized with the new vaccine that expresses the GFP protein.
  • a first aspect of the invention relates to the use of a strain of Brucella spp. which stably expresses the Green Flourescent Protein (GFP) protein and is capable of provoking an immune response in the host comparable to that induced by the reference vaccine strains and also generates anti-GFP antibodies detectable by specific serological methods, in the preparation of a medicine or, alternatively, a strain of Brucella sp. which stably expresses the Green Flourescent Protein (GFP) protein and is capable of eliciting an immune response in the host comparable to that induced by the reference vaccine strains and also generates anti-GFP antibodies detectable by specific serological methods, to Its use as a medicine.
  • the medicament is a vaccine.
  • Another aspect of the invention relates to the use of a strain of Brucella spp. which stably expresses the Green Flourescent Protein (GFP) protein and is capable of provoking an immune response in the host comparable to that induced by the reference vaccine strains and also generates anti-GFP antibodies detectable by specific serological methods, in the preparation of a medicament for the prevention or treatment of brucellosis in a mammal or, alternatively, a strain of Brucella spp.
  • GFP Green Flourescent Protein
  • GFP Green Flourescent Protein
  • Brucella spp. any cellular organism that can be defined as taxonomically belonging to the super kingdom Bacteria, phylum Proteobacteria, Alphaproteobacteria class, Rhizobiales order, Brucellaceae family and Brucella genus.
  • "Mammalian” means any organism of the Eukaryota super kingdom, Metazoa kingdom, Chordata phylum, Craniata subphylum, Gnathostomata superclass and Mammalia class. Ruminant means any mammal belonging to the superorder Laurasiatheria, suborder Ruminantia. And bovine, sheep and goats are understood as any mammal that can be classified as belonging to the Bovidae family.
  • the green fluorescent protein GFP produced by the jellyfish Aequorea sp. is a protein that emits bioluminescence in the green zone of the visible spectrum.
  • GFP is also defined by a nucleotide or polynucleotide sequence, which constitutes the coding sequence of the GFP protein, and which would comprise various variants from:
  • nucleic acid molecules encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 1,
  • nucleic acid molecules whose complementary hybrid chain with the polynucleotide sequence of a) are nucleic acid molecules whose complementary hybrid chain with the polynucleotide sequence of a),
  • nucleic acid molecules whose sequence differs from a) and / or b) due to the degeneracy of the genetic code
  • nucleic acid molecules encoding a polypeptide comprising the amino acid sequence with an identity of at least 80%, 90%, 95%, 98% or 99% with SEQ ID NO: 1,
  • polypeptide encoded by said nucleic acids possesses the activity and structural characteristics of the GFP protein.
  • the strain of Brucella spp. It belongs to the species B. abortus.
  • the Brucella strain is a strain derived from the reference strain B. abortus S19 (OIE Terrestrial Manual, 2009 -chapter 2.4.3.-).
  • the Brucella strain belongs to species B. melitensis
  • the Brucella strain is a strain derived from the reference strain B. melitensis Rev 1 (OIE Terrestrial Manual, 2009 -chapter 2.7.2.-). "Brucella abortus S19" or "Brucella abortus bv. 1 str.
  • S19 is a spontaneously attenuated strain discovered by Dr. John Buck in 1923, which has been used worldwide since the early 1930s, as an effective vaccine to prevent Brucellosis in animals, and is considered internationally the reference vaccine for the control of bovine brucellosis (OIE Terrestrial Manual, 2009 -chapter 2.4.3.-).
  • the original planting lot can be obtained from the United States Department of Agriculture (USDA, National Veterinary Services Laboratories -NVSL-, 1800 Dayton Road, Ames, lowa 50010, United States of America) and the Reference Laboratory for OIE Brucellosis of the Veterinary Laboratories Agency (VLA; Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom).
  • the strain is also known as NCTC 8038 (http://www.broadinstitute.org/annotation/genome/brucella_group/GenomeDesc riptions.html) "Brucella melitensis Rev 1", “Brucella melitensis bv. 1 str. Rev.1” is a strain also known as BCCN V4a,
  • the Rev 1 strain has been used worldwide since the 1950s as the only effective vaccine to prevent brucellosis in small ruminants, and is considered internationally the reference vaccine for the control of ovine and caprine brucellosis (OIE Terrestrial Manual, 2009 -chapter 2.7.2.-). Revi's original planting lots can be obtained at the Laboratory of Reference for Brucellosis of the OIE of the AFSSA (94706 Maisons-Alfort, France) or in the European Pharmacopoeia (BP 907, 67029 France Cedex 1, France).
  • the mammal is a ruminant.
  • the mammal is a bovine, and even more preferably, belonging to the subfamily Bovinae or Caprinae.
  • composition of the invention comprising a strain of Brucella spp. which expresses the GFP protein and, preferably, a pharmaceutically acceptable carrier.
  • the Brucella strain belongs to the species B. abortus.
  • the Brucella strain is a strain derived from B. abortus S19.
  • the Brucella strain belongs to the species B. melitensis.
  • the Brucella strain is a strain derived from B. melitensis Rev 1.
  • the composition is a vaccine.
  • the composition of the invention further comprises an adjuvant.
  • the composition of the invention, comprising a strain of Brucella spp. which expresses the GFP protein also comprises another active ingredient.
  • composition of the invention can be formulated for administration to an animal, and more preferably to a mammal, including ruminants, in a variety of ways known in the state of the art, for use as an immunogen. These immunogens can also be used as vaccines in animals, and more particularly in mammals, or produce a response in the production of antibodies therein.
  • an immunologically effective amount of the strain of Brucella spp. it is mixed with a suitable physiologically acceptable transporter for administration to mammals including humans.
  • the composition of the invention can be found, but not limited to, in sterile aqueous solution or in biological fluids, such as serum. Aqueous solutions may be buffered or unbuffered and have additional active or inactive components.
  • Additional components include salts to modulate ionic strength, preservatives including, but not limited to, antimicrobial agents, antioxidants, chelants and the like, and nutrients including, but not limited to, glucose, dextrose, vitamins and minerals.
  • the active ingredient can be prepared for solid administration.
  • the active substance can be combined with various inert vehicles or excipients, including, but not limited to, binders such as microcrystalline cellulose, gum tragacanth or gelatin; excipients such as starch or lactose; dispersing agents such as alginic acid or corn starch; lubricants such as magnesium stearate, glidants such as colloidal silicon dioxide; sweetening agents such as sucrose or saccharin; or flavoring agents such as peppermint or methyl salicylate.
  • binders such as microcrystalline cellulose, gum tragacanth or gelatin
  • excipients such as starch or lactose
  • dispersing agents such as alginic acid or corn starch
  • lubricants such as magnesium stearate, glidants such as colloidal silicon dioxide
  • sweetening agents such as sucrose or saccharin
  • flavoring agents such as peppermint or methyl salicylate.
  • composition of the invention can be administered to an animal, including a mammal, preferably a ruminant, and even more preferably belonging to the Bovinae or Caprinae subfamilies, in a variety of ways, including, but not limited to, intraperitoneal, intravenous routes, intramuscular, subcutaneous, conjunctival, intracecal, intraventricular, oral, enteral, parenteral, intranasal or dermal.
  • the dosage to obtain a therapeutically effective amount depends on a variety of factors (such as age, weight, sex, physiological status - such as pregnancy or lactation -, tolerance, immune system status) of the animal, preferably mammal.
  • the term “therapeutically effective amount” refers to the amount of Brucella spp. which expresses the GFP protein stably, producing the desired effect (the generation of immunity and anti-GFP antibodies).
  • the "adjuvants” and “pharmaceutically acceptable vehicles” that They can be used in such compositions are the vehicles known to those skilled in the art.
  • the term “medication” refers to any substance used for prevention, diagnosis, relief, treatment or cure of diseases in humans and animals.
  • it refers to the composition comprising the strains of Brucella spp. that express the GFP protein stably, and that are capable of generating immunity against brucellosis and anti-GFP antibodies, or the composition comprising Brucella spp. that expresses the GFP protein stably, and that is capable of generating immunity against brucellosis and anti-GFP antibodies and a pharmaceutically acceptable carrier and / or additionally, an adjuvant.
  • the term medication therefore includes vaccines.
  • vaccine refers to an antigenic composition or preparation used to establish the immune system's response to a disease. They are prepared of antigens that once inside the organism provoke the response of the immune system, through the production of antibodies, and generate immunological memory producing permanent or transient immunity.
  • adjuvant refers to an agent, as long as it does not have an antigenic effect in itself, which can stimulate the immune system by increasing its response to the vaccine.
  • aluminum salts “aluminum phosphate” and “aluminum hydroxide” are the two adjuvants most commonly used in vaccines.
  • Other substances such as squalene, can also be used as adjuvants.
  • active ingredient means any component that potentially provide a pharmacological activity or other effect different in the diagnosis, cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body of man or other animals.
  • the term includes those components that promote a chemical change in the preparation of the drug and are present therein in a modified form intended to provide the specific activity or effect.
  • method of the invention relates to a method for the identification of mammals vaccinated with the strain or composition of the invention, hereafter "method of the invention", comprising:
  • the mammal is a ruminant.
  • the mammal is a bovine, sheep or goat, and even more preferably, belonging to the Bovinae or Caprinae subfamilies.
  • an "isolated biological sample” includes, but is not limited to, cells, tissues and / or biological fluids of a mammal, obtained by any method known to a person skilled in the art.
  • the isolated biological sample is a biological fluid, such as, without limitation, milk, semen, seminal fluid, vaginal exudates, conjunctival secretions, blood, plasma or blood serum. More preferably, the biological fluid is blood serum.
  • the isolated biological sample is cells found in blood, milk, semen, vaginal exudates or conjunctival secretions of the mammal. In another preferred embodiment, they are cells or tissues.
  • the detection of the presence of the gfp gene or the products of its expression, in the isolated mammalian biological sample is performed by the detection of antibodies against the GFP protein ( anti-GFP antibodies).
  • the detection of anti-GFP antibodies can be carried out by any method known in the state of the art for example, without being limited to, by immunoassay or immunohistochemistry.
  • the immunoassay is an enzyme-linked immunosorbent assay or ELISA.
  • An antigen or immunogen is a substance capable of producing an adaptive immune system response through lymphocyte activation.
  • the antigens are usually proteins or polysaccharides. Lipids and nucleic acids are antigenic only when combined with proteins and polysaccharides.
  • the term "antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, that is, molecules that contain an antigen binding site that specifically binds (immunoreacts) with the protein. (antigen) GFP.
  • IgM immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, that is, molecules that contain an antigen binding site that specifically binds (immunoreacts) with the protein. (antigen) GFP.
  • IgM immunoglobulin molecules
  • IgD immunoglobulin molecules
  • IgG immunoglobulin glycoprotein
  • IgA immunoglobulins
  • anti-GFP antibody refers to an antibody capable of reacting with the GFP protein, with a variant of the GFP protein or with a fragment thereof, as long as said variant or said fragment is functionally equivalent.
  • anti-GFP antibody refers to an immunoglobulin G (IgG).
  • immunoassay refers to any analytical technique that is based on the reaction of conjugation of an antibody with an antigen.
  • Examples of immunoassays known in the state of the art are, but are not limited to: immunoblot, enzyme-linked immunosorbent assay (ELISA), linear immunoassay (LIA), radioimmunoassay (RIA), immunofluorescence, x-map or protein or lipopolysaccharide chips (LPS)
  • the immunoassay is an enzyme-linked immunosorbent assay or ELISA (Enzyme-Linked ImmunoSorbent Assay).
  • the ELISA is based on the premise that an immunoreactive (antigen or antibody) can be immobilized on a solid support, then bringing that system into contact with a fluid phase containing the complementary reagent that can bind to a marker compound.
  • an immunoreactive antigen or antibody
  • the authors of the present invention describe a serological diagnostic method capable of identifying animals that have been vaccinated with the prototype of the new S19-GFPp vaccine and differentiating them from those infected by virulent strains of Brucella spp.
  • the ELISA is an indirect ELISA, and even more preferably comprises the following steps:
  • marker compound refers to a compound capable of giving rise to a chromogenic, fluorogenic, radioactive and / or chemiluminescent signal that allows the detection of the anti-GFP antibody.
  • the marker compound is selected from the list comprising radioisotopes, enzymes, fluorophores or any molecule capable of being conjugated with another molecule or detected and / or quantified directly. This marker compound may bind directly to the antibody or, indirectly, through another compound.
  • directly binding marker compounds are, without limitation, enzymes such as alkaline phosphatase or peroxidase, radioactive isotopes such as 32 P or 35 S, fluorochromes such as fluorescein, rhodamine or its derivatives, or metal particles, for direct detection. by colorimetry, autoradiography, fluorimetry, or metallography respectively.
  • enzymes such as alkaline phosphatase or peroxidase
  • radioactive isotopes such as 32 P or 35 S
  • fluorochromes such as fluorescein, rhodamine or its derivatives, or metal particles
  • the detection of the presence of the gfp gene or the products of its expression, in the isolated biological sample of the mammal is performed by ultraviolet illumination of said sample.
  • the detection of the presence of the gfp gene or the products of its expression, in the isolated biological sample of the mammal is performed by fluorescence microscopy.
  • the detection of the presence of the gfp gene or the products of its expression, in the isolated mammalian biological sample is performed by polymerase chain reaction (PCR).
  • kits for identification of mammals vaccinated with the strain or composition of the invention, which comprises the appropriate means for carrying out the method of the invention.
  • Said kit may contain all those reagents necessary to analyze the presence of the gfp gene, or the products of its expression, in the isolated mammalian biological sample by means of any of the methods described hereinabove as, for example, without being limited a, specific antibodies of the GFP protein, secondary antibodies or positive and / or negative controls.
  • the kit can also include, without any limitation, buffers, protein extraction solutions, agents to prevent contamination, inhibitors of protein degradation, etc.
  • the kit can also include, without any limitation, the use of buffers, polymerases, cofactors to obtain optimum activity from these, agents to prevent contamination, etc.
  • the kit can include all the supports and containers necessary for commissioning and optimization.
  • the kit further comprises instructions for carrying out the methods of the invention.
  • polynucleotide and “nucleic acid” are used interchangeably herein, referring to polymeric forms of nucleotides of any length, both ribonucleotides (RNA or RNA) and deoxyribonucleotides (DNA or DNA).
  • amino acid sequence amino acid sequence
  • peptide oligopeptide
  • polypeptide a polypeptide
  • protein a polymeric form of amino acids of any chemical or biochemically modified length.
  • Fig. 1 Growth of the new S19-GFPp vaccine and the parental strain S19 in triplicase soy agar plates illuminated with ultraviolet light in a "Rad Doc Gel” apparatus of Bio Rad and visualized with the appropriate filter (520DF30 nm, Bio Rad ) (A) or fluorescence microscope (B).
  • Fig. 2 PCR amplification of the ery region in the new S19-GFPp vaccine (lower molecular weight), compared to that of the virulent strain B. abortus 2308.
  • Fig. 3 Proportion of intracellular and extracellular bacteria in HeLa cells infected with the new S19-GFPp vaccine or with the S19 parental strain, one hour after infection. HeLa cells were infected with 200 CFU / cell and, 1 hour later, were fixed and labeled by double immunofluorescence with rhodamine and FITC, following previously described protocols (Chaves-Olarte et al., 2002. Cellular Microbiology 4 (10): 663 -675).
  • Fig. 4 Replication of the new S19-GFPp vaccine and the parental strain S19 in HeLa cells and in Raw macrophages 264.7, at 48 hours post-infection.
  • the cells were infected with 200 CFU / cell and the number of CFU / mL was determined, following previously described protocols (Chaves-Olarte et al., 2002. Cellular Microbiology 4 (10): 663-675; Celli et al., 2003 Journal of Experimental Medicine, 198 (4): 545-556).
  • Fig. 5 Splenic kinetics of the new S19-GFPp vaccine and the parental strain S19 in the murine model.
  • Groups of 30 mice were inoculated intraperitoneally with 1 x 10 5 CFU of the new S19-GFPp vaccine or the parental strain S19.
  • At 7, 14, 25, 40 and 60 days after infection 6 mice from each group were sacrificed to determine the number of CFU / spleen of each vaccine strain and construct the corresponding curves of splenic multiplication, following previously described protocols (Sangari et al., 1998. Vaccine, 1 6 (17): 1640-1 645).
  • Fig. 6 Protective assay in BALB / c mice immunized with the new S19-GFPp vaccine.
  • Groups of 6 mice were immunized, subcutaneously, with 1 x 10 5 CFU of the new S19-GFPp vaccine or the parental strain S19.
  • As a control a group of mice was inoculated with sterile PBS. After 60 days, all mice were experimentally infected, intraperitoneally, with 5x10 4 CFU of the virulent reference strain B. abortus 2308 and, 2 weeks later, were sacrificed to count the CFU number of 2308 per spleen. Animals vaccinated with S19-GFPp showed similar levels of protection to those shown by the S19 reference vaccine.
  • Fig. 8 Determination of the degree of purity and immunogenicity in mice of the recombinant GST-GFP protein obtained.
  • Fig. 9 Standard curves in the ELISA-GFP developed, using sera from mice (a) or sheep (b) previously immunized with the recombinant GST-GFP protein).
  • Fig. 10 Intensity of the antibody response against GFP in sera of mice inoculated with the new S19-GFPp vaccine or with the reference vaccine S19. The intensity of the reaction of each individual serum was calculated according to the percentage of positivity of the sample with respect to the control (D.O. of the positive serum / D.O. of the serum sample X 100). Each point represents the average of 10 sera from different mice.
  • the reference vaccine B. abortus S19 (obtained from the OIE Reference Laboratory for Brucellosis of the AFSSA, France) was genetically modified by electroporation with a plasmid encoding GFP.
  • the plasmid used was pBBR-2-gfp, derived from plasmid pBBRIMCS-2, which contains a kanamycin resistance insert (Kovach et al., 1995. Gene. Vol 1 66: 175-176) and an insert with the gene that encodes the GFP, under the control of the lac promoter. It is known that this plasmid generates GFP constitutively, without integrating into the Brucella chromosome (Celli et al., 2003. Journal heard Experimental Medicine, 198 (4): 545-556). 2.- Genetic and microbiological characterization of S19-GFPp.
  • plasmid pBBR-2-gfp allows the expression of GFP in Brucella in adequate proportions so that the new S19-GFPp vaccine can be identified with the naked eye after its isolation.
  • the expression of the GFP protein in Brucella does not alter the colonial size and phase of S19 in bacteriological cultures, nor its classical bacteriological characteristics.
  • the colonial size was determined by measuring the diameter of the colonies obtained on agar plates, after 3 days of incubation.
  • the colonial phase was determined by observing bacterial growths in an oblique illumination magnifying glass and staining by flood technique with a violet-oxalate crystal solution (Alton et al. 1988. Techniques for the brucellosis laboratories. In. INRA (Ed.), Paris, France; 1988, 190 pp).
  • the new strain obtained was analyzed microbiologically by standard techniques for the identification and typing of Brucella spp. Briefly, identification at the gender level was carried out by testing catalase, oxidase, urease and agglutination with acriflavin. The bacteriophage sensitivity test Tb, Wb, Iz and R / C was used to identify the species level.
  • abortus S19 preserving the characteristic deletion of 702 bp (base pairs) in the ery gene (low molecular weight band, Fig. 2) and that it allows to differentiate the S19 vaccine strain of virulent strains of B. abortus (higher molecular weight band, Fig. 2).
  • the new S19-GFPp vaccine has a capacity for adhesion and internalization in human HeLa epithelial cells practically identical to that of the reference vaccine (Fig. 3).
  • the new S19-GFPp vaccine has an attenuation in mice practically identical to that of the classic S19 vaccine (Fig. 5), indicating that the expression of the gfp gene used does not modify the splenic kinetics (multiplication capacity and persistence) of the classic parental vaccine.
  • the GST-GFP fusion protein was expressed in the E. coli XL1-Blue system with the plasmid pGEX-GFP, purified by affinity chromatography and its purity was determined by acrylamide gel electrophoresis (Fig. 8A).
  • mice were obtained in mice, following conventional immunization protocols. For this, an injection of 100 ⁇ g of GST-GFP protein was administered together with complete Freund's adjuvant, followed by 2 consecutive immunizations separated by a week with the GST-GFP protein together with incomplete Freund's adjuvant. Immunizations were performed for several weeks until the sera of animals immunized with GST-GFP showed precipitation bands in gel immunodiffusion against the purified GFP protein (Fig. 8B). These control antibodies showed no cross reactions with any Brucella antigen (results not shown).
  • control sera against GFP were obtained in sheep, following conventional immunization protocols. For this, an injection of 100 ⁇ g of GST-GFP protein was administered together with complete Freund's adjuvant, followed by 5 consecutive immunizations separated by two weeks with the GST-GFP protein together with incomplete Freund's adjuvant. Immunizations were carried out for two months until the sera of animals immunized with GST-GFP showed precipitation bands in gel immunodiffusion against the purified GFP protein (results not shown). These control antibodies showed no cross reactions with any Brucella antigen (results not shown).
  • the work carried out demonstrates that the GFP protein can be expressed in Brucella vaccine strains, without altering the biological properties of the parental strain and inducing in animals a clearly distinguishable serological response from that induced by other Brucella strains.
  • Antibodies generated against the GFP protein can be identified by the indirect ELISA assay against GFP developed in this patent.
  • the incorporation of the gfp gene in Brucella allows both visual identification (by ultraviolet illumination or fluorescence microscope) and molecular identification (by means of a PCR that amplifies the gfp gene; PCR-GFP) of the developed Brucella vaccine strains, a from both bacteriological cultures and tissue samples, exudates or animal fluids.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La presente invención se refiere al uso de una cepa de Brucella spp. que expresa la proteína Green Flourescent Protein (GFP) en la elaboración de medicamentos para la prevención de la brucelosis en mamíferos, a las vacunas frente a la brucelosis, y al método para la identificación de los mamíferos a los que se les ha administrado dichas vacunas. Preferiblemente, el método de la invención es un inmunoensayo, y aún más preferiblemente es un ensayo inmunoabsorbente ligado a enzimas (ELISA).

Description

PROCEDIMIENTO DE IDENTIFICACIÓN DE ANIMALES VACUNADOS
FRENTE A BRUCELLA
La presente invención se encuentra dentro del campo de la Medicina Preventiva y Salud Pública, y se refiere tanto al desarrollo y utilización de vacunas vivas de Brucella spp. modificadas genéticamente, como al desarrollo y utilización de técnicas de diagnóstico directo e indirecto que permiten la identificación de animales que han sido vacunados de aquellos que padecen una infección por cepas virulentas de Brucella spp.
ESTADO DE LA TÉCNICA ANTERIOR
La brucelosis es una enfermedad que se transmite de los animales al hombre. En los animales, la infección por Brucella causa abortos, infertilidad, disminución de las producciones y limitaciones en el comercio de animales y productos derivados, lo que constituye un problema de Sanidad Animal con repercusiones económicas. Además, la bacteria se transmite de los animales infectados a los seres humanos, produciéndoles una enfermedad debilitante y a menudo invalidante, frente a la que no existen vacunas y cuyo tratamiento requiere de altas dosis de antibióticos durante periodos prolongados, con frecuentes recidivas. Por lo tanto, la brucelosis constituye un problema de Salud Pública relevante. Se ha demostrado que la prevalencia de la brucelosis humana está directamente relacionada con la prevalencia de la brucelosis animal. Por ello y en ausencia de vacunas para uso en humanos, la prevención de la enfermedad pasa necesariamente por el control de la infección en los animales. En la mayoría de los contextos socio-económicos, la única forma viable de controlar la brucelosis es mediante programas basados en la vacunación de los animales de producción, bien mediante programas de vacunación masiva o mediante programas de vacunación, diagnóstico y sacrificio de los animales infectados (Blasco 1997. Preventive Veterinary Medicine 31 : 275-283). Las vacunas de referencia contra la brucelosis animal son B. abortus S19 (lisa) para ganado vacuno y B. melitensis Revi (lisa) para ganado ovino y caprino (OIE Terrestrial Manual, 2009 -capítulos 2.4.3. y 2.7.2.-). Ambas son vacunas vivas atenuadas, libres de adyuvantes, con bajo coste de producción y adquisición, y altamente eficaces frente a las infecciones por cepas de campo en rumiantes (principal fuente de infección para los humanos). Sin embargo, presentan el inconveniente técnico de generar una respuesta inmune, tras la vacunación, indistinguible de la inducida tras la infección virulenta por cepas de campo. Para solucionar este problema, se han realizado numerosos esfuerzos científicos. Una de las estrategias ha sido el desarrollo de cepas rugosas (R) de Brucella que, al carecer de la cadena O del lipopolisacárido (LPS) -conocido factor de virulencia de Brucella y principal antígeno utilizado en los ensayos de diagnóstico serologico de la infección- ha permitido obtener cepas atenuadas utilizables como vacunas vivas, que no interfirieren significativamente en las pruebas de diagnóstico serologico. En este contexto, en los años 90, se desarrolló (mediante subcultivos) el mutante espontáneo con fenotipo R denominado B. abortus RB51 (Schurig et al., 1991 . Veterinary Microbiology, 28: 171 -188). La cepa RB51 se está utilizando actualmente en algunos países contra la brucelosis bovina, con resultados controvertidos. Tanto RB51 como una colección de mutantes R derivados de B. melitensis y genéticamente bien caracterizados en las distintas rutas de síntesis del lipopolisacárido (González et al., 2008. PloS One, 3 (7): e2760), reducen los problemas de interferencia en el diagnóstico serologico de la infección virulenta, al carecer de antígeno Ό". Sin embargo, se ha demostrado que las vacunas R no solucionan el problema, ya que la protección que confieren frente a las infecciones de campo es muy inferior a la de las vacunas de referencia B. abortus S19 y B. melitensis Revi (Moriyón et al., 2005. Veterinary Research, 35:1 -38; Barrio et al., 2009. Vaccine, 27: 1741 -1749). Por todo ello, se hace imprescindible disponer de vacunas derivadas B. abortus S19 y B. melitensis Revi modificadas genéticamente y de pruebas de diagnóstico asociadas que permitan diferenciar mediante diagnóstico directo e indirecto (serología) a los animales que han sido vacunados de aquellos que padecen la infección virulenta. Existe una gran variedad de proteínas fluorescentes GFP (Green Flourescent Protein), que se generan en cantidad y con intensidad de fluorescencia variables, según el sistema de expresión utilizado. Las proteínas GFP han sido ampliamente utilizada en Biología Molecular y Celular para mareaje genético y detección de microorganismos (incluyendo Brucella; Celli et al., 2003. Journal of Experimental Medicine, 198(4): 545-556) células, plásmidos, proteínas recombinantes y otros elementos con fines estrictamente científicos. Asimismo, se han desarrollado algunas pruebas inmunológicas tipo immunoblotting (Rajasekaran et al., 2008. Applied and Environmental Microbiology, 74(22): 7051 -7055) y ELISA sándwich para la detección y cuantificación de diversas proteínas GFP expresadas en microorganismos, células y tejidos (Cell Biolabs, Inc. ; Cell Signaling Technology, Inc.). También existen ensayos de diagnóstico molecular tipo PCR para identificar determinadas variantes del gen que codifican la proteína GFP en bacterias como E. coli (Clontech Laboratories) o Staphylococcus epidermidis (Franke et al., 2007. Journal of Microbiological Methods l : 123-132).
Walsh y colaboradores (Walsh et al., 2000. Journal of General Virology, 81 , 709-718) propusieron la posible utilización de una proteína GFP como marcador de una vacuna veterinaria. Sin embargo, no consiguieron expresarla convenientemente en el virus de la Peste Bovina.
DESCRIPCIÓN DE LA INVENCIÓN Los autores de la presente invención describen cómo una cepa derivada de B. abortus S19 (la vacuna prototipo S19-GFPp), es capaz de expresar la GFP de manera estable, sin alterar las características microbiológicas o biológicas (atenuación y eficacia frente a la infección en animales de experimentación) de la cepa S19 de referencia y, además, es capaz de inducir la respuesta de anticuerpos anti-GFP detectables mediante pruebas serológicas específicas, que permiten diferenciar los hospedadores que han sido vacunados de aquellos infectados por cepas virulentas de Brucella spp. También describen un método ELISA indirecto de diagnóstico serológico capaz de identificar específicamente a los animales que han sido inmunizados con la nueva vacuna que expresa la proteína GFP. Por lo tanto, un primer aspecto de la invención se refiere al uso de una cepa de Brucella spp. que expresa de forma estable la proteína Green Flourescent Protein (GFP) y que es capaz de provocar una respuesta inmune en el hospedador equiparable a la inducida por las cepas vacunales de referencia y además, genera anticuerpos anti-GFP detectables por métodos serológicos específicos, en la elaboración de un medicamento o, alternativamente, a una cepa de Brucella sp. que expresa de forma estable la proteína Green Flourescent Protein (GFP) y que es capaz de provocar una respuesta inmune en el hospedador equiparable a la inducida por las cepas vacunales de referencia y además, genera anticuerpos anti-GFP detectables por métodos serológicos específicos, para su uso como medicamento. En una realización preferida de este aspecto de la invención, el medicamento es una vacuna.
Otro aspecto de la invención se refiere al uso de una cepa de Brucella spp. que expresa de forma estable la proteína Green Flourescent Protein (GFP) y que es capaz de provocar una respuesta inmune en el hospedador equiparable a la inducida por las cepas vacunales de referencia y además, genera anticuerpos anti-GFP detectables por métodos serológicos específicos, en la elaboración de un medicamento para la prevención o el tratamiento de la brucelosis en un mamífero o, alternativamente, a una cepa de Brucella spp. que expresa de forma estable la proteína Green Flourescent Protein (GFP) y que es capaz de provocar una respuesta inmune en el hospedador equiparable a la inducida por las cepas vacunales de referencia y además, genera anticuerpos anti-GFP detectables por métodos serológicos específicos, para su uso en la prevención o el tratamiento de la brucelosis en un mamífero.
En esta memoria, se entiende por Brucella spp. cualquier organismo celular que puede ser definido como taxonómicamente perteneciente al superreino Bacteria, phylum Proteobactería, clase Alphaproteobactería, orden Rhizobiales, familia Brucellaceae y género Brucella. Se entiende por "mamífero" cualquier organismo del superreino Eukaryota, reino Metazoa, phylum Chordata, subphylum Craniata, superclase Gnathostomata y clase Mammalia. Se entiende por rumiante cualquier mamífero perteneciente al superorden Laurasiatheria, suborden Ruminantia. Y se entiende por bovino, ovino y caprino, cualquier mamífero que puede ser clasificado como perteneciente a la familia Bovidae La proteína verde fluorescente GFP producida por la medusa Aequorea sp. (A victoria, A. aequorea, A. forskalea) es una proteína que emite bioluminiscencia en la zona verde del espectro visible. En el contexto de la presente invención, GFP se define también por una secuencia de nucleótidos o polinucleótido, que constituye la secuencia codificante de la proteína GFP, y que comprendería diversas variantes procedentes de:
a) moléculas de ácido nucleico que codifican un polipéptido que comprende la secuencia aminoacídica de la SEQ ID NO: 1 ,
b) moléculas de ácido nucleico cuya cadena complementaria híbrida con la secuencia polinucleotídica de a),
c) moléculas de ácido nucleico cuya secuencia difiere de a) y/o b) debido a la degeneración del código genético,
d) moléculas de ácido nucleico que codifican un polipéptido que comprende la secuencia aminoacídica con una identidad de al menos un 80%, un 90%, un 95%, un 98% o un 99% con la SEQ ID NO: 1 ,
en las que el polipéptido codificado por dichos ácidos nucleicos posee la actividad y las características estructurales de la proteína GFP.
En otra realización preferida de la invención, la cepa de Brucella spp. pertenece a la especie B. abortus. En una realización aún más preferida de este aspecto de la invención, la cepa de Brucella es una cepa derivada de la cepa de referencia B. abortus S19 (OIE Terrestrial Manual, 2009 -capítulo 2.4.3.-). En otra realización preferida, la cepa de Brucella pertenece a la especie B. melitensis. En una realización aún más preferida de este aspecto de la invención, la cepa de Brucella es una cepa derivada de la cepa de referencia B. melitensis Rev 1 (OIE Terrestrial Manual, 2009 -capítulo 2.7.2.-). "Brucella abortus S19" ó "Brucella abortus bv. 1 str. S19" es una cepa espontáneamente atenuada descubierta por el Dr. John Buck en 1923, que se ha empleado en todo el mundo desde principios de 1930, como una vacuna efectiva para prevenir la brucelosis en los animales, y es considerada internacionalmente la vacuna de referencia para el control de la brucelosis bovina (OIE Terrestrial Manual, 2009 -capítulo 2.4.3.-). El lote de siembra original puede obtenerse en el Departamento de Agricultura de los Estados Unidos de América (USDA, National Veterinary Services Laboratories -NVSL-, 1800 Dayton Road, Ames, lowa 50010, United States of America) y en el Laboratorio de Referencia para Brucelosis de la OIE del Veterinary Laboratories Agency (VLA; Weybridge, New Haw, Addlestone, Surrey KT15 3NB, Reino Unido). La cepa también es conocida como NCTC 8038 (http://www.broadinstitute.org/annotation/genome/brucella_group/GenomeDesc riptions.html) "Brucella melitensis Rev 1 ", "Brucella melitensis bv. 1 str. Rev.1 " es una cepa también conocida como BCCN V4a,
(http://www.broadinstitute.org/annotation/genome/brucella_group/GenomeDes criptions.html) espontáneamente atenuada y obtenida a partir de la cepa virulenta B. melitensis 6056, mediante mutaciones espontáneas sucesivas relacionadas con la dependencia a la estreptomicina y la posterior reversión a dicha dependencia (Herzberg and Elberg 1953. Journal of Bacteriology 66: 585-599; Herzberg and Elberg 1953. Journal of Bacteriology 66: 600-605.). La cepa Rev 1 se ha empleado en todo el mundo desde los años 50 como la única vacuna efectiva para prevenir la brucelosis en pequeños rumiantes, y es considerada internacionalmente la vacuna de referencia para el control de la brucelosis ovina y caprina (OIE Terrestrial Manual, 2009 -capítulo 2.7.2.-). Los lotes de siembra originales de Revi pueden obtenerse en el Laboratorio de Referencia para Brucelosis de la OIE del AFSSA (94706 Maisons-Alfort, Francia) o en la Farmacopea Europea (BP 907, 67029 Strasbourg Cedex 1 , Francia). En una realización preferida de la invención, el mamífero es un rumiante. En otra realización preferida de la invención, el mamífero es un bovino, y aún más preferiblemente, perteneciente a la subfamilia Bovinae o Caprinae.
Otro aspecto de la invención se refiere a una composición, de ahora en adelante "composición de la invención", que comprende una cepa de Brucella spp. que expresa la proteína GFP y, preferiblemente, un vehículo farmacéuticamente aceptable. En una realización preferida, la cepa de Brucella pertenece a la especie B. abortus. En una realización aún más preferida de este aspecto de la invención, la cepa de Brucella es una cepa derivada de B. abortus S19. En otra realización preferida, la cepa de Brucella pertenece a la especie B. melitensis. En una realización aún más preferida de este aspecto de la invención, la cepa de Brucella es una cepa derivada de B. melitensis Rev 1 . En otra realización preferida, la composición es una vacuna. En otra realización más preferida, la composición de la invención además comprende un adyuvante. En otra realización más preferida, la composición de la invención, que comprende una cepa de Brucella spp. que expresa la proteína GFP, además comprende otro principio activo.
La composición de la invención puede formularse para su administración a un animal, y más preferiblemente a un mamífero, incluyendo los rumiantes, en una variedad de formas conocidas en el estado de la técnica, para usarse como inmunógeno. Estos inmunógenos pueden también ser usados como vacunas en animales, y más particularmente en mamíferos, o producir una respuesta en la producción de anticuerpos en los mismos. Para la formulación de tales composiciones, una cantidad efectiva inmunológicamente de la cepa de Brucella spp. es mezclada con un transportador adecuado aceptable fisiológicamente para la administración a mamíferos incluyendo humanos. Así, la composición de la invención puede encontrarse, pero sin limitarse, en disolución acuosa estéril o en fluidos biológicos, tales como suero. Las disoluciones acuosas pueden estar tamponadas o no tamponadas y tener componentes activos o inactivos adicionales. Los componentes adicionales incluyen sales para modular la fuerza iónica, conservantes incluyendo, sin limitarse a, agentes antimicrobianos, antioxidantes, quelantes y similares, y nutrientes incluyendo, pero sin limitarse a, glucosa, dextrosa, vitaminas y minerales. Alternativamente, el principio activo puede prepararse para su administración en forma sólida. El principio activo puede combinarse con varios vehículos o excipientes inertes, incluyendo, sin limitarse a, aglutinantes tales como celulosa microcristalina, goma tragacanto o gelatina; excipientes tales como almidón o lactosa; agentes dispersantes tales como ácido algínico o almidón de maíz; lubricantes tales como estearato de magnesio, deslizantes tales como dióxido de silicio coloidal; agentes edulcorantes tales como sacarosa o sacarina; o agentes aromatizantes tales como menta o salicilato de metilo.
La composición de la invención puede administrarse a un animal, incluyendo un mamífero, preferiblemente a un rumiante, y aún más preferiblemente perteneciente a las subfamilias Bovinae o Caprinae, en una variedad de formas, incluyendo, sin limitarse a, las vías intraperitoneal, intravenosa, intramuscular, subcutánea, conjuntival, intracecal, intraventricular, oral, enteral, parenteral, intranasal o dérmica. La dosificación para obtener una cantidad terapéuticamente efectiva depende de una variedad de factores (como por ejemplo, la edad, peso, sexo, estado fisiológico -como gestación o lactancia-, tolerancia, estado del sistema inmune) del animal, preferiblemente mamífero. En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad de Brucella spp. que expresa la proteína GFP de manera estable, produciendo el efecto deseado (la generación de inmunidad y de anticuerpos anti-GFP). Los "adyuvantes" y "vehículos farmacéuticamente aceptables" que pueden ser utilizados en dichas composiciones son los vehículos conocidos por los técnicos en la materia.
En esta memoria, el término "medicamento" hace referencia a cualquier sustancia usada para prevención, diagnóstico, alivio, tratamiento o curación de enfermedades en los seres humanos y los animales. En el contexto de la presente invención se refiere a la composición que comprende las cepas de Brucella spp. que expresan la proteína GFP de manera estable, y que son capaces de generar inmunidad frente a la brucelosis y anticuerpos anti-GFP, o a la composición que comprende Brucella spp. que expresa la proteína GFP de manera estable, y que es capaz de generar inmunidad frente a la brucelosis y anticuerpos anti-GFP y un vehículo farmacéuticamente aceptable y/o adicionalmente, un adyuvante. El término medicamento incluye, por tanto, a las vacunas.
En el contexto de la presente invención el término "vacuna" se refiere a una composición o preparación antigénica empleada para establecer la respuesta del sistema inmune a una enfermedad. Son preparados de antígenos que una vez dentro del organismo provocan la respuesta del sistema inmunitario, mediante la producción de anticuerpos, y generan memoria inmunológica produciendo inmunidad permanente o transitoria.
En esta memoria, el término "adyuvante" se refiere a un agente, mientras no posea un efecto antigénico por si mismo, que puede estimular el sistema inmune incrementando su respuesta a la vacuna. Aunque sin limitarse a ellas, las sales de aluminio "fosfato de aluminio" e "hidróxido de aluminio" son los dos adyuvantes más comúnmente empleados en las vacunas. Otras sustancias, como por ejemplo el escualeno, también se pueden emplear como adyuvantes. Como se emplea aquí, el término "principio activo", "substancia activa", "substancia farmacéuticamente activa", "ingrediente activo" ó "ingrediente farmacéuticamente activo" significa cualquier componente que potencialmente proporcione una actividad farmacológica u otro efecto diferente en el diagnóstico, cura, mitigación, tratamiento, o prevención de una enfermedad, o que afecta a la estructura o función del cuerpo del hombre u otros animales. El término incluye aquellos componentes que promueven un cambio químico en la elaboración del fármaco y están presentes en el mismo de una forma modificada prevista que proporciona la actividad específica o el efecto.
Otro aspecto de la invención se refiere a un método para la identificación de mamíferos vacunados con la cepa o la composición de la invención, de ahora en adelante "método de la invención", que comprende:
a) obtener una muestra biológica aislada del mamífero,
b) detectar la presencia del gen gfp que codifica la proteína GFP, o de los productos de su expresión, en la muestra biológica aislada de mamífero.
En una realización preferida de este aspecto de la invención, el mamífero es un rumiante. En otra realización preferida de la invención, el mamífero es un bovino, ovino o caprino, y aún más preferiblemente, perteneciente a las subfamilias Bovinae o Caprinae.
Una "muestra biológica aislada" incluye, sin limitarse a, células, tejidos y/o fluidos biológicos de un mamífero, obtenidos mediante cualquier método conocido por un experto en la materia. En una realización preferida, la muestra biológica aislada es un fluido biológico, como por ejemplo, sin limitarse a, leche, semen, fluido seminal, exudados vaginales, secreciones conjuntivales, sangre, plasma o suero sanguíneo. Más preferiblemente, el fluido biológico es el suero sanguíneo. En otra realización preferida, la muestra biológica aislada son células que se encuentran en la sangre, leche, semen, exudados vaginales o secreciones conjuntivales del mamífero. En otra realización preferida, son células o tejidos. Múltiples métodos para la detección de la presencia del gen gfp, o de los productos de su expresión, en la muestra biológica aislada son conocidos en el estado del arte. En esta memoria, como "productos de la expresión del gen gfp" se incluyen, sin limitarse a, tanto la proteína GFP, como los anticuerpos anti- GFP generados por el sistema inmunitario del mamífero frente a dicha proteína o antígeno. Así, en otra realización preferida de este aspecto de la invención, la detección de la presencia del gen gfp o de los productos de su expresión, en la muestra biológica aislada de mamífero se realiza mediante la detección de los anticuerpos frente a la proteína GFP (anticuerpos anti-GFP). La detección de los anticuerpos anti-GFP puede realizarse por cualquier método conocido en el estado de la técnica por ejemplo, sin limitarse a, mediante inmunoensayo o inmunohistoquímica. En una realización más preferida, el inmunoensayo es un ensayo inmunoabsorbente ligado a enzimas o ELISA. Un antígeno o inmunógeno es una sustancia capaz de producir una respuesta del sistema inmune adaptativo mediante la activación de linfocitos. Los antígenos son usualmente proteínas o polisacáridos. Los lípidos y ácidos nucleicos son antigénicos únicamente cuando se combinan con proteínas y polisacáridos. El término "anticuerpo" tal como se emplea en esta memoria, se refiere a moléculas de inmunoglobulinas y porciones inmunológicamente activas de moléculas de inmunoglobulinas, es decir, moléculas que contienen un sitio de fijación de antígeno que se une específicamente (inmunorreacciona) con la proteína (antígeno) GFP. Hay cinco isotipos o clases principales de inmunoglobulinas: IgM, IgD, IgG, IgA e IgE.
El término "anticuerpo anti-GFP" se refiere a un anticuerpo capaz de reaccionar con la proteína GFP, con una variante de la proteína GFP o con un fragmento de las mismas, siempre y cuando dicha variante o dicho fragmento sea funcionalmente equivalente. Preferiblemente, el término anticuerpo anti-GFP se refiere a una inmunoglobulina G (IgG).
El término "inmunoensayo", tal y como se utiliza en la presente descripción se refiere a cualquier técnica analítica que se basa en la reacción de la conjugación de una anticuerpo con un antígeno. Ejemplos de inmunoensayos conocidos en el estado de la técnica son, pero sin limitarse: immunoblot, ensayo inmunoabsorbente ligado a enzimas (ELISA), inmunoensayo lineal (LIA), radioinmunoensayo (RIA), inmunofluoresecencia, x-map o chips de proteína o de lipopolisacárido (LPS). Como se ha dicho, en una realización preferida de este aspecto de la invención, el inmunoensayo es un ensayo inmunoabsorbente ligado a enzimas o ELISA (Enzyme-Linked ImmunoSorbent Assay). El ELISA se basa en la premisa de que un inmunorreactivo (antígeno o anticuerpo) puede ser inmovilizado en un soporte sólido, poniendo luego ese sistema en contacto con una fase fluida que contiene el reactivo complementario que puede unirse a un compuesto marcador. Existen diferentes tipos de ELISA: ELISA directo, ELISA indirecto o ELISA sándwich.
Los autores de la presente invención describen un método de diagnóstico serológico capaz de identificar a los animales que han sido vacunados con el prototipo de nueva vacuna S19-GFPp y diferenciarlos de los infectados por cepas virulentas de Brucella spp.
En una realización aún más preferida, el ELISA es un ELISA indirecto, y aún más preferiblemente comprende los siguientes pasos:
(a) recubrir un soporte sólido con al menos la proteína GFP, una variante de dicha proteína, o un fragmento de la misma;
(b) incubar el soporte recubierto del paso anterior con una muestra biológica obtenida del mamífero en condiciones que permitan la formación de un inmunocomplejo de los anticuerpos frente a, al menos, el antígeno GFP, con sus variantes o sus fragmentos; y
(c) incubar con un anticuerpo secundario, que reconoce a los anticuerpos frente al antígeno GFP, conjugado o unido a un compuesto marcador. El término "compuesto marcador", tal y como se utiliza en la presente descripción, se refiere a un compuesto capaz de dar lugar a una señal cromogénica, fluorogénica, radiactiva y/o quimioluminiscente que permita la detección del anticuerpo anti-GFP. El compuesto marcador se selecciona de la lista que comprende radioisótopos, enzimas, fluoróforos o cualquier molécula susceptible de ser conjugada con otra molécula o detectada y/o cuantificada de forma directa. Este compuesto marcador puede unirse directamente al anticuerpo o, indirectamente, a través de otro compuesto. Algunos ejemplos de compuestos marcadores que se unen directamente son, sin limitarse a, enzimas como la fosfatasa alcalina o la peroxidasa, isótopos radiactivos como 32P o 35S, fluorocromos como fluoresceína, rodamina o sus derivados, o partículas metálicas, para su detección directa mediante colorimetría, auto- radiografía, fluorimetría, o metalografía respectivamente. En otra realización preferida, la detección de la presencia del gen gfp o de los productos de su expresión, en la muestra biológica aislada del mamífero se realiza por iluminación ultravioleta de dicha muestra. En otra realización más preferida, la detección de la presencia del gen gfp o de los productos de su expresión, en la muestra biológica aislada del mamífero se realiza por microscopía de fluorescencia.
En otra realización preferida, la detección de la presencia del gen gfp o de los productos de su expresión, en la muestra biológica aislada de mamífero se realiza mediante la reacción en cadena de la polimerasa (PCR).
Otro aspecto de la invención se refiere a un "kit" de identificación de mamíferos vacunados con la cepa o la composición de la invención, que comprende los medios adecuados para llevar a cabo el método de la invención. Dicho kit puede contener todos aquellos reactivos necesarios para analizar la presencia del gen gfp, o de los productos de su expresión, en la muestra biológica aislada de mamífero por medio de cualquiera de los métodos descritos anteriormente en este documento como, por ejemplo, sin limitarse a, anticuerpos específicos de la proteína GFP, anticuerpos secundarios o controles positivos y/o negativos. El kit además puede incluir, sin ningún tipo de limitación, tampones, soluciones de extracción de proteínas, agentes para prevenir la contaminación, inhibidores de la degradación de las proteínas, etc. En el caso de la detección por técnicas que impliquen la reacción en cadena de la polimerasa (PCR) puede contener, pero sin limitarse, cebadores, sondas y todos aquellos reactivos necesarios para determinar la presencia del gen gfp, o de sus productos de expresión. El kit además puede incluir, sin ningún tipo de limitación, el uso de tampones, polimerasas, cofactores para obtener una actividad óptima de éstas, agentes para prevenir la contaminación, etc. Por otro lado el kit puede incluir todos los soportes y recipientes necesarios para su puesta en marcha y optimización. Preferiblemente, el kit comprende además las instrucciones para llevar a cabo los métodos de la invención. Los términos "polinucleótido" y "ácido nucleico" se usan aquí de manera intercambiable, refiriéndose a formas poliméricas de nucleótidos de cualquier longitud, tanto ribonucleótidos (ARN ó RNA) como desoxirribonucleótidos (ADN ó DNA). Los términos "secuencia aminoacídica", "péptido", "oligopéptido", "polipéptido" y "proteína" se usan aquí de manera intercambiable, y se refieren a una forma polimérica de aminoácidos de cualquier longitud química o bioquímicamente modificados. A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. DESCRIPCIÓN DE LAS FIGURAS
Fig. 1. Crecimiento de la nueva vacuna S19-GFPp y de la cepa parental S19 en placas de agar tripticasa soja iluminadas con luz ultravioleta en un aparato "Gel Doc" de Bio Rad y visualizadas con el filtro adecuado (520DF30 nm, Bio Rad) (A) o en microscopio de fluorescencia (B).
Fig. 2. Amplificación por PCR de la región ery en la nueva vacuna S19- GFPp (menor peso molecular), en comparación con la de la cepa virulenta B. abortus 2308.
Fig. 3. Proporción de bacterias intracelulares y extracelulares en células HeLa infectadas con la nueva vacuna S19-GFPp o con la cepa parental S19, una hora después de la infección. Las células HeLa se infectaron con 200 UFC/célula y, 1 hora después, se fijaron y marcaron por doble inmunofluorescencia con rodamina y FITC, siguiendo protocolos anteriormente descritos (Chaves-Olarte et al., 2002. Cellular Microbiology 4(10): 663-675).
Fig. 4. Replicación de la nueva vacuna S19-GFPp y de la cepa parental S19 en células HeLa y en macrófagos Raw 264.7, a las 48 horas postinfección. Las células se infectaron con 200 UFC/célula y se determinó el número de UFC/mL, siguiendo protocolos anteriormente descritos (Chaves- Olarte et al., 2002. Cellular Microbiology 4(10): 663-675; Celli et al., 2003. Journal of Experimental Medicine, 198(4): 545-556).
Fig. 5. Cinética esplénica de la nueva vacuna S19-GFPp y de la cepa parental S19 en el modelo murino. Grupos de 30 ratones fueron inoculados por vía intraperitoneal con 1 x105 UFC de la nueva vacuna S19-GFPp o de la cepa parental S19. A los 7, 14, 25, 40 y 60 días después de la infección, 6 ratones de cada grupo fueron sacrificados para determinar el número de UFC/bazo de cada cepa vacunal y construir las correspondientes curvas de multiplicación esplénica, siguiendo protocolos anteriormente descritos (Sangari et al., 1998. Vaccine, 1 6(17): 1640-1 645).
Fig. 6. Ensayo de protección en ratones BALB/c inmunizados con la nueva vacuna S19-GFPp. Grupos de 6 ratones fueron inmunizados, por vía subcutánea, con 1 x105 UFC de la nueva vacuna S19-GFPp o de la cepa parental S19. Como control, se inoculó un grupo de ratones con PBS estéril. Después de 60 días, todos los ratones fueron infectados experimentalmente, por vía intraperitoneal, con 5x104 UFC de la cepa virulenta de referencia B. abortus 2308 y, 2 semanas después, fueron sacrificados para recuento del número de UFC de 2308 por bazo. Los animales vacunados con S19-GFPp mostraron niveles de protección similares a los mostrados por la vacuna de referencia S19. Fig. 7. Respuesta de anticuerpos contra LPS de Brucella en ratones inmunizados con la nueva vacuna S19-GFPp y la cepa parental S19. Se obtuvieron muestras de sueros en ratones no inmunizados (controles) y en ratones inmunizados por vía intraperitoneal, con 1 x105 UFC de la nueva vacuna S19-GFPp o de la cepa parental S19, a los 7, 14, 25 y 60 días después de la inmunización. Estos sueros se diluyeron 1 /200 en PBS y se midió su Densidad Óptica (D.O.) a 405 nm en un ELISA indirecto contra LPS utilizado habitualmente para el diagnóstico de la brucelosis animal. Cada punto de la gráfica representa el promedio de 5 sueros de ratones diferentes. Todos los animales desarrollaron anticuerpos frente al LPS de Brucella.
Fig. 8. Determinación del grado de pureza e inmunogenicidad en ratones de la proteína GST-GFP recombinante obtenida. A) La proteína recombinante GST-GFP purificada por afinidad, mostró una sola banda en SDS-PAGE. B) La proteína GST-GFP usada como inmunógeno en ratones indujo anticuerpos anti-GFP. La reacción de inmunodifusión se realizó con diluciones seriadas (pocilios 2 a 32) de suero monoespecífico contra 10 μg/30 μ\- de GFP (pocilio G) y, como control, se utilizó PBS solo (pocilio -). Las bandas de precipitación muestran que el suero inmune anti-GFP obtenido en ratones presentó un título de 1 /1 6.
Fig. 9. Curvas estándar en el ELISA-GFP desarrollado, utilizando sueros de ratones (a) o de ovejas (b) previamente inmunizados con la proteína recombinante GST-GFP).
Fig. 10. Intensidad de la respuesta de anticuerpos contra GFP en sueros de ratones inoculados con la nueva vacuna S19-GFPp o con la vacuna de referencia S19. La intensidad de la reacción de cada suero individual se calculó de acuerdo al porcentaje de positividad de la muestra con respecto al control (D.O. del suero positivo/ D.O. del suero muestra X 100). Cada punto representa el promedio de 10 sueros de ratones diferentes. EJEMPLOS
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores. 1.- Desarrollo de un prototipo de vacuna fluorescente derivada de B. abortus S19 (S19-GFPp).
La vacuna de referencia B. abortus S19 (obtenida del Laboratorio de Referencia para Brucelosis de la OIE del AFSSA, Francia) se modificó genéticamente, mediante electroporación con un plásmido que codifica la GFP. El plásmido utilizado fue pBBR-2-gfp, derivado del plásmido pBBRIMCS-2, que contiene un inserto de resistencia a kanamicina (Kovach et al., 1995. Gene. Vol 1 66: 175-176) y un inserto con el gen que codifica la GFP, bajo el control del promotor lac. Se sabe que este plásmido genera GFP constitutivamente, sin integrarse en el cromosoma de Brucella (Celli et al., 2003. Journal oí Experimental Medicine, 198(4): 545-556). 2.- Caracterización genética y microbiológica de S19-GFPp.
2.1. Se comprobó que las bacterias S19-GFPp emiten fluorescencia detectable mediante iluminación directa de los cultivos con luz ultravioleta y posterior visualización de los mismos con un filtro adecuado (Fig. 1 A) o mediante observación de tejidos o exudados infectados en microscopio de fluorescencia (Fig. 1 B). Por lo tanto, el plásmido pBBR-2-gfp permite la expresión de GFP en Brucella en proporciones adecuadas para que la nueva vacuna S19-GFPp pueda ser identificada a simple vista tras su aislamiento.
2.2. Se comprobó que la expresión de la proteína GFP en Brucella no altera el tamaño y fase coloniales de S19 en cultivos bacteriológicos, ni sus características bacteriológicas clásicas. Para ello, el tamaño colonial se determinó midiendo el diámetro de las colonias obtenidas en placas de agar, tras 3 días de incubación. Paralelamente, la fase colonial se determinó mediante observación de los crecimientos bacterianos en una lupa de iluminación oblicua y tinción por la técnica de inundación con una solución de cristal violeta-oxalato (Alton et al. 1988. Techniques for the brucellosis laboratories. In. INRA (Ed.), París, France; 1988, 190 pp). Además, la nueva cepa obtenida se analizó microbiológicamente mediante las técnicas estándar para la identificación y tipificación de Brucella spp. Brevemente, la identificación al nivel de género se llevó a cabo mediante las pruebas de catalasa, oxidasa, ureasa y aglutinación con acriflavina. Para la identificación al nivel de especie se utilizó la prueba de sensibilidad a los bacteriófagos Tb, Wb, Iz y R/C. Finalmente, para la tipificación al nivel de biovariedad se utilizaron las pruebas de aglutinación con los sueros monoespecíficos anti-A y anti-M y de crecimiento en placas de agar y de agar suplementado con un 10% de suero bovino estéril (agar-S; Seromed, Biochrom) conteniendo las concentraciones estándar de colorantes (20 μg/mL de tionina, 20 μg/mL de fucsina y 100 μg/mL de safranina; Panreac), antibióticos (5 UI/mL de penicilina; Sigma) y eritritol (1 mg/mL; Merck). Las placas conteniendo agar y agar-S (placas control), sin o con las distintas concentraciones de todos estos productos, se incubaron durante 2-4 días a 37QC en atmósfera aerobia y, en paralelo, en atmósfera con un 10% de C02 (Alton et al. 1988. Techniques for the brucellosis laboratories. In. INRA (Ed.), París, France; 1988, 190 pp). 2.3. Se comprobó que tanto la incorporación como la actividad del plásmido portador del gen gfp en la cepa S19-GFPp es estable tras su actividad in vitro e in vivo. Para ello, se realizaron subcultivos seriados de la cepa S19-GFPp en placas de agar y, tras varios pases seriados, se realizaron recuentos bacterianos en placas de agar y agar suplementado con kanamicina (antibiótico utilizado como marcador del plásmido). Como resultado, se observó que el número de UFC en ambos medios de cultivo era similar y que todas las CFU de S19-GFPp conservaban la fluorescencia, indicando que la incorporación y actividad del plásmido GFP en B. abortus S19 es estable tras doce subcultivos in vitro. Esta misma comprobación se realizó tras el aislamiento de la bacteria a partir de cuatro pases sucesivos en cultivos celulares y tres pases sucesivos en tejidos de ratones previamente inoculados con S19-GFPp (ver los estudios de caracterización biológica presentados más abajo), indicando que la incorporación y actividad del plásmido GFP en B. abortus S19 es estable también tras la actividad bacteriana in vivo, en cultivos celulares y animales de experimentación (ratones). Los plásmidos que codifican la proteína GFP permanecieron estables en B. abortus S19, después de congelar en 50% glicerol a -80QC ó -20QC, demostrando que todas las colonias que se recuperaron emitían fluorescencia tras la descongelación. 2.4. Se comprobó que la cepa S19-GFPp mantiene el genotipo clásico de B. abortus S19, conservando la característica deleción de 702 pb (pares de base) en el gen ery (banda de bajo peso molecular, Fig. 2) y que permite diferenciar la cepa vacunal S19 de las cepas virulentas de B. abortus (banda de mayor peso molecular, Fig. 2). 3.- Caracterización biológica de S19-GFPp en modelos celulares y animales (ratones) ampliamente utilizados en brucelosis experimental.
3.1. En modelos celulares se comprobó que:
3.1.1 - la nueva vacuna S19-GFPp posee una capacidad de adherencia e internalización en células epiteliales humanas HeLa prácticamente idéntica a la de la vacuna de referencia (Fig. 3).
3.1.2 - la capacidad de replicación de la nueva vacuna S19-GFPp en células HeLa y en macrófagos es prácticamente idéntica a la cepa parental S19 (Fig. 4).
3.2. En modelos animales se comprobó que:
3.2.1 - la nueva vacuna S19-GFPp posee una atenuación en ratones prácticamente idéntica a la de la vacuna clásica S19 (Fig. 5), indicando que la expresión del gen gfp utilizado no modifica la cinética esplénica (capacidad de multiplicación y persistencia) de la vacuna clásica parental.
3.2.2 - la nueva vacuna S19-GFPp confiere una protección prácticamente idéntica a la conferida por la vacuna clásica parental en el modelo murino (Fig. 6), indicando que la expresión de GFP no disminuye la eficacia de la vacuna clásica parental S19.
3.2.3 - la respuesta de anticuerpos contra el antígeno LPS de B. abortus inducida por la nueva vacuna S19-GFPp, medida por un ELISA indirecto convencional contra LPS (Marín et al., 1999. Clinical & Diagnostic Laboratory Immunology 6(2): 269-272), es semejante a la generada por la vacuna clásica S19 (Fig. 7). Lo que demuestra que la nueva vacuna S19-GFPp conserva intactas sus propiedades inmunogénicas.
3.2.4 - la GFP expresada en la cepa vacunal de Brucella S19-GFPp es altamente inmunogénica en animales. Todos los ratones inmunizados con S19- GFPp desarrollan anticuerpos específicos contra la GFP, durante al menos 90 días después de la vacunación, con positividad de aproximadamente el 40% (estadísticamente superior a la mostrada por el control positivo) en el prototipo de ELISA-GFP descrito en esta memoria. 4.- Diseño y estandarización de un ELISA indirecto para detectar los anticuerpos generados por S19-GFPp en los ratones inmunizados (ELISA- GFP). 4.1. En primer lugar, se expresó y purificó la proteína GFP recombinante (GST- GFP), de acuerdo con protocolos descritos previamente (Harlow y Lañe 1988. Antibodies: a laboratory manual. 1 st. ed. Cold Spring Harbor, Laboratory, N. Y. pp. 179-179). Brevemente, la proteína de fusión GST-GFP se expresó en el sistema E. coli XL1 -Blue con el plásmido pGEX-GFP, se purificó mediante cromatografía de afinidad y su pureza se determinó mediante electroforesis en gel de acrilamida (Fig. 8A).
4.2. A continuación, se obtuvieron sueros control contra GFP en ratones, siguiendo los protocolos de inmunización convencionales. Para ello, se administró una inyección de 100 μg de proteína GST-GFP junto con adyuvante de Freund completo, seguida de 2 inmunizaciones consecutivas separadas por una semana con la proteína GST-GFP junto con adyuvante de Freund incompleto. Las inmunizaciones se realizaron durante varias semanas hasta comprobar que los sueros de los animales inmunizados con GST-GFP mostraban bandas de precipitación en inmunodifusion en gel contra la proteína purificada GFP (Fig. 8B). Estos anticuerpos control, no mostraron reacciones cruzadas con ningún antígeno de Brucella (resultados no mostrados).
Adicionalmente, se obtuvieron sueros control contra GFP en ovinos, siguiendo los protocolos de inmunización convencionales. Para ello, se administró una inyección de 100 μg de proteína GST-GFP junto con adyuvante de Freund completo, seguida de 5 inmunizaciones consecutivas separadas por dos semanas con la proteína GST-GFP junto con adyuvante de Freund incompleto. Las inmunizaciones se realizaron durante dos meses hasta comprobar que los sueros de los animales inmunizados con GST-GFP mostraban bandas de precipitación en inmunodifusion en gel contra la proteína purificada GFP (resultados no mostrados). Estos anticuerpos control, no mostraron reacciones cruzadas con ningún antígeno de Brucella (resultados no mostrados).
4.3. Para la estandarización del ELISA indirecto capaz de detectar específicamente anticuerpos contra la proteína GFP (ELISA-GFP) en sueros de ovejas y en suero de los ratones vacunados con la nueva vacuna S19-GFPp, se procedió de la siguiente manera:
4.3.1. Recubrimiento de las placas de 96 pocilios Immunolon II (Nunc Co.) con 1 μg de GST-GFP por pocilio, contenidos en un volumen de 100 L/pocillo de una solución tampón de 0.01 % de Tween 20 en PBS
(PBST, de Sigma). Las placas se cubrieron con plástico adherente (Sigma) y se incubaron a 37QC durante 2 horas bajo agitación, seguido de otra incubación a 4QC durante 15 horas sin agitación. Por último, se agregó un 30% de glicerol en cada pocilio, las placas se taparon con plástico adherente y se congelaron a -20QC hasta su uso.
4.3.2. Para establecer la curva patrón con sueros de ratones, las placas descritas en el punto 4.3.1 . se dejaron descongelar a temperatura ambiente y se lavaron 4 veces con una solución con 0.01 % Tween y 0.1 % de albúmina bovina deslipidada en PBS (PBST-BSA). A continuación, se agregaron 100 μί/ροοΝΙο, por triplicado, de diluciones comprendidas entre 1 /300 y 1 /60000 del suero inmune anti-GFP de ratones descrito en el punto 4.2. Como controles negativos, se utilizaron sueros convencionales de ratones libres de Brucella y como blanco, PBS. Las placas se incubaron, durante 1 hora, a 25QC, en agitación; se lavaron 4 veces con PBST-BSA; se agregó un conjugado (obtenido en conejo) unido a peroxidasa (HRP) contra la IgG (H+L) de ratón; por segunda vez, se incubaron (1 hora, a 25QC, en agitación) y se lavaron (4 veces) como se ha descrito anteriormente; y, por último, se agregó sustrato para peroxidasa ABTS (Sigma). La lectura de la D.O. generada en cada pocilio, se realizó a 405 nm de longitud de onda, en un lector de
ELISA y se estableció la curva estándar como se muestra en la Fig. 9.a. 4.3.3. Para establecer la curva patrón con sueros de ovejas, las placas descritas en el punto 4.3.1 . se dejaron descongelar a temperatura ambiente y se lavaron 4 veces con una solución con 0.01 % Tween y 0.1 % de albúmina bovina deslipidada en PBS (PBST-BSA). A continuación, se agregaron 1 00 μΙ_/ροοΝΙο, por triplicado, de diluciones comprendidas entre 1 /59 y 1 /1 28000 del suero inmune anti-GFP de oveja descrito en el punto 4.X. Como controles negativos, se utilizaron sueros convencionales de ovejas libres de Brucella y como blanco, PBS. Las placas se incubaron, durante 1 hora, a 37QC, en agitación ; se lavaron 4 veces con PBST; se agregó Proteína G peroxidasa (Sigma) en una dilución 1 :2000 en PBS pH 7.2; por segunda vez, se incubaron (1 hora, a 25QC, en agitación) y se lavaron (4 veces) como se ha descrito anteriormente; y, por último, se agregó sustrato para peroxidasa ABTS (Sigma). La lectura de la D.O. generada en cada pocilio, se realizó a 405 nm de longitud de onda, en un lector de ELISA y se estableció la curva estándar como se muestra en la Fig. 9.b.
4.3.4. Para determinar la intensidad de la respuesta de anticuerpos contra GFP inducida en los ratones inoculados con la nueva vacuna, se utilizaron sueros "problema" de ratones inoculados (1 x1 05 U FC/ratón, vía intraperitoneal) con la nueva vacuna S19-GFPp o con una de la cepa parental S1 9 no marcada, y los animales fueron sangrados periódicamente, entre las 3 y 14 semanas post-inmunización (Fig. 1 0). Como controles positivos se utilizaron los sueros descritos en el punto 4.2. y como controles negativos, los descritos en el punto 4.3.2. Todos estos sueros se diluyeron en proporción 1 /200 en PBST y el ELISA-GFP se llevó a cabo de la siguiente manera: las placas descritas en el punto 4.3.1 . se lavaron tal como se describe en el punto 4.3.2. ; a continuación, se añadieron 1 00 L/pocillo de los sueros descritos anteriormente (diluidos 1 /200) ó 1 00 L/pocillo de PBS, como blanco de la reacción ; y, por último, las placas se procesaron como se describe en el punto 4.3.2. El porcentaje de positividad de cada suero individual se calculó con respecto a la densidad óptica (D.O.405=0,9) del suero control positivo (100% positividad) y del blanco (0% positividad). Todos los animales inoculados con S19-GFPp presentaron una intensa reacción serológica contra GFP (alrededor del 40% positividad ; Fig. 10) mientras que los animales inoculados con la cepa S19 se comportaron como los libres de
Brucella (controles negativos) no reaccionando contra la proteína GFP (Fig. 10).
En conclusión, los trabajos realizados demuestran que la proteína GFP puede expresarse en cepas vacunales de Brucella, sin alterar las propiedades biológicas de la cepa parental e induciendo en los animales una respuesta serológica claramente distinguible de la inducida por otras cepas de Brucella. Los anticuerpos generados frente a la proteína GFP pueden identificarse mediante el ensayo ELISA indirecto contra GFP desarrollado en esta patente. Además, la incorporación del gen gfp en Brucella permite tanto la identificación visual (mediante iluminación ultravioleta o microscopio de fluorescencia) como la identificación molecular (mediante una PCR que amplifica el gen gfp; PCR- GFP) de las cepas vacunales de Brucella desarrolladas, a partir tanto de cultivos bacteriológicos como de muestras de tejidos, exudados o fluidos animales.

Claims

REIVINDICACIONES
Uso de una cepa de Brucella spp. que expresa la proteína Green Flourescent Protein (GFP) en la elaboración de un medicamento.
Uso de una cepa de Brucella spp. según la reivindicación 1 , en la elaboración de un medicamento para la prevención de la brucelosis en mamíferos.
Uso de una cepa de Brucella spp. según cualquiera de las reivindicaciones 1 -2, donde la cepa de Brucella pertenece a la especie B. abortus.
Uso de una cepa de Brucella spp. según la reivindicación 3, donde la cepa de Brucella es una cepa derivada de la cepa de referencia B. abortus S19.
Uso de una cepa de Brucella spp. según cualquiera de las reivindicaciones 1 -2, donde la cepa de Brucella pertenece a la especie B. melitensis.
Uso de una cepa de Brucella spp. según la reivindicación 5, donde la cepa de Brucella es una cepa derivada de la cepa de referencia B. melitensis Rev 1 .
Uso de una cepa de Brucella spp. según cualquiera de las reivindicaciones 2-6, donde el mamífero es un rumiante.
8. Uso de una cepa de Brucella spp. según la reivindicación 7, donde el rumiante pertenece a la subfamilia Bovinae.
9. Uso de una cepa de Brucella spp. según la reivindicación 7, donde el rumiante pertenece a la subfamilia Caprinae.
10. Composición que comprende una cepa de Brucella spp. que expresa la proteína Green Flourescent Protein (GFP) según cualquiera de las reivindicaciones 1 -9.
1 1 . Composición según la reivindicación anterior que además comprende un vehículo farmacéuticamente aceptable.
12. Composición según cualquiera de las reivindicaciones 10-1 1 , que es una vacuna.
13. Composición según cualquiera de las reivindicaciones 10-12, que además comprende un adyuvante.
14. Composición según cualquiera de las reivindicaciones 10-12, que adicionalmente comprende otro principio activo. 15. Método para la identificación de mamíferos tratados con la composición según cualquiera de las reivindicaciones 10-14, que comprende:
a. obtener una muestra biológica aislada del mamífero,
b. detectar la presencia del gen gfp, o de los productos de su expresión, en la muestra biológica aislada del mamífero.
1 6. Método para la identificación de mamíferos tratados según la reivindicación anterior, donde la muestra biológica aislada del mamífero es un fluido biológico.
17. Método para la identificación de mamíferos tratados según reivindicación 15, donde la muestra biológica aislada del mamífero células o tejidos.
18. Método para la identificación de mamíferos tratados según cualquiera de las reivindicaciones 15-17, donde la detección de los productos de expresión del gen gfp en la muestra biológica aislada de mamífero se realiza mediante la detección de los anticuerpos anti-GFP.
19. Método para la identificación de mamíferos tratados según la reivindicación 18, donde la detección de los anticuerpos anti-GFP se realiza mediante inmunoensayo. 20. Método para la identificación de mamíferos tratados con la cepa o la composición según la reivindicación 19, donde el inmunoensayo es un ensayo inmunoabsorbente ligado a enzimas (ELISA).
21 . Método para la identificación de mamíferos tratados con la cepa o la composición según la reivindicación 20, donde el ELISA es un ELISA indirecto.
22. Método para la identificación de mamíferos tratados con la cepa o la composición según cualquiera de las reivindicaciones 15-17, donde la detección del gen gfp, o de los productos de su expresión, se realiza por luz ultravioleta.
23. Método para la identificación de mamíferos tratados con la cepa o la composición según cualquiera de las reivindicaciones 15-17 y 22, donde la detección del gen gfp, o de los productos de su expresión, se realiza por microscopía de fluorescencia.
24. Método para la identificación de mamíferos tratados con la cepa o la composición según cualquiera de las reivindicaciones 15-17, donde la detección del gen gfp, o de los productos de su expresión, se realiza mediante la reacción en cadena de la polimerasa.
25. Kit de identificación de mamíferos tratados con la cepa o la composición según cualquiera de las reivindicaciones 1 -14, que comprende los medios adecuados para llevar a cabo un método de identificación según cualquiera de las reivindicaciones 15-24.
26. Kit de identificación según la reivindicación anterior, que comprende los medios adecuados para detectar los anticuerpos anti-GFP.
27. Kit de identificación según cualquiera de las reivindicaciones 25-26, que comprende los cebadores de secuencia SEQ ID NO: 2 y SEO ID NO: 3.
PCT/ES2010/070784 2009-12-03 2010-11-29 Procedimiento de identificación de animales vacunados frente a brucella WO2011067446A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800630275A CN102781468A (zh) 2009-12-03 2010-11-29 用于鉴别接种对抗布鲁氏菌的疫苗的动物的方法
MX2012006303A MX2012006303A (es) 2009-12-03 2010-11-29 Procedimiento de identificacion de animales vacunados frente a brucella.
EP10834263.5A EP2508201A4 (en) 2009-12-03 2010-11-29 METHOD FOR IDENTIFYING ANIMALS VACCINATED AGAINST BRUCELLA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200931101A ES2372187B8 (es) 2009-12-03 2009-12-03 Procedimiento de identificación de animales vacunados frente a brucella.
ESP200931101 2009-12-03

Publications (1)

Publication Number Publication Date
WO2011067446A1 true WO2011067446A1 (es) 2011-06-09

Family

ID=44114638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070784 WO2011067446A1 (es) 2009-12-03 2010-11-29 Procedimiento de identificación de animales vacunados frente a brucella

Country Status (7)

Country Link
EP (1) EP2508201A4 (es)
CN (1) CN102781468A (es)
CR (1) CR20120301A (es)
ES (1) ES2372187B8 (es)
MX (1) MX2012006303A (es)
PE (1) PE20121648A1 (es)
WO (1) WO2011067446A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111796091A (zh) * 2020-07-20 2020-10-20 天康生物股份有限公司 用于区分动物感染布氏杆菌或布氏杆菌菌影疫苗的试剂盒

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3713598A1 (en) 2017-11-24 2020-09-30 Consejo Superior de Investigaciones Cientificas (CSIC) <smallcaps/> brucella a modifiedvaccine strain for the treatment of brucellosis
CN110863031A (zh) * 2019-09-29 2020-03-06 安徽医科大学第一附属医院 一种检测布鲁菌病治疗效果的标志物及其应用
WO2022271201A2 (en) * 2021-01-07 2022-12-29 International Advantage, Inc. Ace2 and tmprss2 gene expression as predictive markers of covid-19 severity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054508A2 (en) * 2002-12-12 2004-07-01 Walter Reed Army Institute Of Research Department Of The Army Immunogenic compositions including rough phenotype brucella host strains and complementation dna fragments
CN101240290A (zh) * 2008-02-29 2008-08-13 杭州师范大学 一种含绿色荧光蛋白基因的植物转基因表达载体及其构建方法和应用
US20100226942A1 (en) * 2008-10-30 2010-09-09 Schurig Gerhardt G Producing an immune response for reducing the risk of developing brucellosis

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101586120B (zh) * 2009-07-15 2011-06-15 中国农业科学院哈尔滨兽医研究所 狂犬病病毒Flury-LEP疫苗株反向遗传操作系统及LEP绿色荧光蛋白重组病毒载体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054508A2 (en) * 2002-12-12 2004-07-01 Walter Reed Army Institute Of Research Department Of The Army Immunogenic compositions including rough phenotype brucella host strains and complementation dna fragments
CN101240290A (zh) * 2008-02-29 2008-08-13 杭州师范大学 一种含绿色荧光蛋白基因的植物转基因表达载体及其构建方法和应用
US20100226942A1 (en) * 2008-10-30 2010-09-09 Schurig Gerhardt G Producing an immune response for reducing the risk of developing brucellosis

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
ALTON ET AL.: "Techniques for the brucellosis laboratories", 1988, pages: 190
BARRIO ET AL., VACCINE, vol. 27, 2009, pages 1741 - 1749
BLASCO, PREVENTIVE VETERINARY MEDICINE, vol. 31, 1997, pages 275 - 283
CELLI ET AL., JOURNAL OF EXPERIMENTAL MEDICINE, vol. 198, no. 4, 2003, pages 545 - 556
CHAVES-OLARTE ET AL., CELLULAR MICROBIOLOGY, vol. 4, no. 10, 2002, pages 663 - 675
COLEMAN JR. ET AL.: "mRNA-targeted fluorescent in situ hybridization (FISH) of Gram-negativebacteria without template amplification or tyramide signal amplification", JOURNAL OF MICROBIOLOGICAL METHODS, vol. 71, no. 3, 2007, pages 246 - 255, XP022363791 *
COMERCI D. ET AL.: "Vector development for the expression of foreign proteins in the vaccine strain Brucella abortus S19", INFECTION AND IMMUNITY, vol. 66, no. 8, 1998, pages 3862 - 3866, XP008153308 *
FRANKE ET AL., JOURNAL OF MICROBIOLOGICAL METHODS, vol. 71, 2007, pages 123 - 132
GONZALEZ ET AL., PLOS ONE, vol. 3, no. 7, 2008, pages E2760
HARLOW; LANE: "Antibodies: a laboratory manual.", 1988, COLD SPRING HARBOR LABORATORY, pages: 179 - 179
HERZBERG; ELBERG, JOURNAL OF BACTERIOLOGY, vol. 66, 1953, pages 585 - 599
HERZBERG; ELBERG, JOURNAL OF BACTERIOLOGY, vol. 66, 1953, pages 600 - 605
KHOLER S. ET AL.: "Constitutive and inducible expression of green fluorescent protein in Brucella suis", INFECTION AND IMMUNITY, vol. 67, no. 12, 1999, pages 6695 - 6697, XP008153302 *
KOVACH ET AL., GENE, vol. 166, 1995, pages 175 - 176
MARIN ET AL., CLINICAL & DIAGNOSTIC LABORATORY IMMUNOLOGY, vol. 6, no. 2, 1999, pages 269 - 272
MORIY6N ET AL., VETERINARY RESEARCH, vol. 35, 2005, pages 1 - 38
RAJASEKARAN ET AL., APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 74, no. 22, 2008, pages 7051 - 7055
RAJASEKARAN P. ET AL.: "Brucella abortus strain RB51 leucine auxotroph as an environmentally safe vaccine for plasmid maintenance and antigen overexpression", APPLIED AND ENVIROMENTAL MICROBIOLOGY, vol. 72, no. 22, 2008, pages 7051 - 7055, XP008153315 *
SANGARI ET AL., VACCINE, vol. 16, no. 17, 1998, pages 1640 - 1645
SCHURIG ET AL., VETERINARY MICROBIOLOGY, vol. 28, 1991, pages 171 - 188
See also references of EP2508201A4 *
SELEEM M. ET AL.: "Improved expression vector for Brucella species", BIOTECHNIQUES, vol. 37, no. 4, 2004, pages 740 - 744, XP001537452 *
WALSH ET AL., JOURNAL OF GENERAL VIROLOGY, vol. 81, 2000, pages 709 - 718

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111796091A (zh) * 2020-07-20 2020-10-20 天康生物股份有限公司 用于区分动物感染布氏杆菌或布氏杆菌菌影疫苗的试剂盒

Also Published As

Publication number Publication date
MX2012006303A (es) 2012-09-07
EP2508201A1 (en) 2012-10-10
EP2508201A4 (en) 2013-08-07
CN102781468A (zh) 2012-11-14
ES2372187B8 (es) 2013-04-29
CR20120301A (es) 2013-02-27
PE20121648A1 (es) 2012-12-24
ES2372187B1 (es) 2012-11-26
ES2372187A1 (es) 2012-01-17

Similar Documents

Publication Publication Date Title
Turnbull et al. Development of antibodies to protective antigen and lethal factor components of anthrax toxin in humans and guinea pigs and their relevance to protective immunity
Lannergård et al. The hypervariable region of Streptococcus pyogenes M protein escapes antibody attack by antigenic variation and weak immunogenicity
ES2714383T3 (es) Vacuna TB contra la tuberculosis para impedir la reactivación
Park et al. Active and passive intranasal immunizations with streptococcal surface protein C5a peptidase prevent infection of murine nasal mucosa-associated lymphoid tissue, a functional homologue of human tonsils
US10004793B2 (en) M.tuberculosis vaccines
Jacques et al. Immunological responses and protective efficacy against Brucella melitensis induced by bp26 and omp31 B. melitensis Rev. 1 deletion mutants in sheep
US9125853B2 (en) Treatment or prevention of infection
US9597386B2 (en) Outer membrane proteins of Histophilus somni and methods thereof
Díaz et al. Immune response and serum bactericidal activity against Brucella ovis elicited using a short immunization schedule with the polymeric antigen BLSOmp31 in rams
Clow et al. PilVax, a novel Lactococcus lactis‐based mucosal vaccine platform, stimulates systemic and mucosal immune responses to Staphylococcus aureus
ES2372187B1 (es) Procedimiento de identificación de animales vacunados frente a brucella.
US10519199B2 (en) Vaccine composition comprising recombinant protein for preventing swine Mycoplasma infection
Sharma et al. Immune response characterization and vaccine potential of a recombinant chimera comprising B-cell epitope of Aeromonas hydrophila outer membrane protein C and LTB
CA2906771A1 (en) Compositions and methods for treating fungal and bacterial pathogens
KR20170137867A (ko) 보르데텔라 퍼투시스 면역원성 백신 조성물
US20100119549A1 (en) Chlamydial antigens as reagents for diagnosis and treatment of chlamydial infection and disease
WO2012131128A1 (es) Método diva de diferenciación de animales vacunados frente a la brucelosis
Bulashev et al. Immunogenicity and antigenicity of Brucella recombinant outer membrane proteins.
Kolybo et al. Immunobiology of diphtheria. Recent approaches for the prevention, diagnosis, and treatment of disease
Chacón-Díaz et al. The use of green fluorescent protein as a marker for Brucella vaccines
ES2358804T3 (es) Polipéptidos de campylobacter jejuni ubicados en superficie.
Nollens et al. Evaluation of anti-Erysipelothrix rhusiopathiae IgG response in bottlenose dolphins Tursiops truncatus to a commercial pig vaccine
Pang et al. Identification of novel immunogenic proteins of V ibrio alginolyticus by immunoproteomic methodologies
WO2014144222A2 (en) Compositions and methods of treating fungal and bacterial pathogens
KR20160099223A (ko) 마이코플라스마 하이오뉴모니애 박테린 백신 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063027.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/006303

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 000760-2012

Country of ref document: PE

Ref document number: CR2012-000301

Country of ref document: CR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010834263

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012013264

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: CR2014-000062

Country of ref document: CR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012013264

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112012013264

Country of ref document: BR