WO2011067431A1 - Hormigón de ultra alta resistencia armado con fibras de acero - Google Patents

Hormigón de ultra alta resistencia armado con fibras de acero Download PDF

Info

Publication number
WO2011067431A1
WO2011067431A1 PCT/ES2010/000422 ES2010000422W WO2011067431A1 WO 2011067431 A1 WO2011067431 A1 WO 2011067431A1 ES 2010000422 W ES2010000422 W ES 2010000422W WO 2011067431 A1 WO2011067431 A1 WO 2011067431A1
Authority
WO
WIPO (PCT)
Prior art keywords
proportion
fibers
concrete
concrete according
sand
Prior art date
Application number
PCT/ES2010/000422
Other languages
English (en)
French (fr)
Inventor
Antonio Aguado De Cea
Climent Molins Borrell
Roser Valls
Nayara Klein
Original Assignee
Universitat Politècnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De Catalunya filed Critical Universitat Politècnica De Catalunya
Priority to EP10834250.2A priority Critical patent/EP2492254A4/en
Priority to BR112012009433A priority patent/BR112012009433A2/pt
Priority to MX2012004618A priority patent/MX2012004618A/es
Publication of WO2011067431A1 publication Critical patent/WO2011067431A1/es
Priority to MA34794A priority patent/MA33686B1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention falls within the field of ultra-high strength concrete reinforced by incorporating metal fibers in the mixture.
  • the concrete of the present invention finds a particular application, although not limited thereto, in the production of prefabricated facade panels for buildings made with highly industrialized procedures.
  • Ultra high strength concrete reinforced with the incorporation of steel fibers called UHPFRC by its acronym in English (ultra high performance fiber reinforced concrete), has been known since at least 1990.
  • the present invention provides a new concrete formulation, alternative to those known in the state of the art and specially adapted for application in buildings with prefabricated panels or panels.
  • the UHPFRC concrete of this invention aims to provide the following mechanical properties:
  • the materials used comprise two types of cement in a preferred embodiment: Portland gray cement from UNILAND and Portland gray cement from CEMENTOS MOLINS, in accordance with the following specifications:
  • REPLACEMENT SHEET (Rule 26) say compressive strength at 28 days, minimum 52.5 Mpa, with values of 58 MPa being usual,
  • PVA polyvinyl acetate
  • Fig. 1 shows the results of the concrete runoff test for the fresh state characterization of the UHPFRC concrete of this invention.
  • Fig. 2 shows the results of compressive strength of concretes manufactured in accordance with this invention.
  • Fig. 3 shows the tensile strength results of said concretes.
  • - natural calcium carbonate is made from selected calcite, with a high degree of purity, low iron oxide content and absence of heavy metals; OMYACARB -12 Cl is used, which is characterized by its wide range of particle sizes and its purity; the chemical composition of the raw material contributes 97% of CaC0 3 and the residue in the 100 micron sieve is less than or equal to 0.5% and the residue in the 45 micron sieve less than or equal to 10%; Production plant company L'Arboc (Tarragona - Spain);
  • the nanosilica is Rheomac VMA 350 (additive based on a dispersion of spherical nanoparticles of pure silica dioxide, free of
  • Table 1 is shown below which shows the adjustments in the initially planned dosages and some tests with PVA fibers for the preparation of the proposed concrete, according to the indicated specifications.
  • Table 2 is also included, which indicates adjustments in dosages and PVA fibers
  • REPLACEMENT SHEET (Rule 26) cement, which prevents water from being trapped between the cement starches that are initially formed.
  • the rest of the water and the superplasticizer additive can be added together with the nanosilica, which is liquid.
  • the whole set is mixed for 2 minutes.
  • the addition of water and superplasticizer in two stages provides more workability to the mixture, since those are free to act in the lubrication of the paste since at that time the cement flocs do not appear.
  • the fibers are added to the mixer, which are mixed together with the whole for another minute.
  • the runoff test has been carried out, according to the specifications of the UNE 83361: 2007 standard (AENOR 2007). This test responds to the need to verify if the concrete produced is really self-compacting. In addition, it allows to verify the homogeneity of the material through the existence of exudation and / or segregation of the mixture.
  • specimens have been made for the compression strength test of cylindrical specimens at the age of 24 hours, 7 and 28 days, according to the UNE 12390-3: 2003 standard (AENOR 2003).
  • Test specimens have also been prepared for the Barcelona tensile strength test at 7 days, according to PrUNE 83515: 2007 (AENOR 2007).
  • Table 4 shows the number of molded specimens for each concrete, while Figure 4 shows the molding of the specimens.
  • the tests carried out in the hardened state are intended to characterize the mechanical properties of the concrete in order to verify whether they are compatible with the required structural specifications of the material.
  • Table 3 details the number of specimens produced per concrete test.
  • the release agent has been applied by hand with a damp sponge or cloth. This has resulted in the formation of spots in the form of 'water' on the exposed face of the concrete
  • the release agent has been applied with a spray gun to achieve greater homogenization in the application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Hormigón de ultra alta resistencia armado con fibras de acero, comprende: al menos un cemento Portland de categoría CEM I en una proporción de 600-800 kg/m3, con una resistencia a la compresión a los 28 días, mínima de 52,5 Mpa; áridos en una proporción de 900-1300 kg/m3, fibras de refuerzo añadidas, comprendiendo al menos una fibra de acero, en una proporción de 150-210 kg/m3; cargas en una proporción de 25-45 kg/m3, incluyendo carbonato cálcico natural y nanosílice; y aditivo superplastificante a base de policarboxilatos en una proporción de 45-55 kg/m3; y agua potable para la mezcla en una proporción de 125- 160 kg/m3.

Description

Hormigón de ultra alta resistencia armado con fibras de acero
La presente invención se inscribe en el campo de los hormigones de ultra alta resistencia reforzados por incorporación de fibras metálicas en la mezcla. El hormigón de la presente invención encuentra una aplicación particular, aunque no está limitado a la misma, en la producción de plafones prefabricados de fachadas para edificaciones realizadas con procedimientos altamente industrializados.
Antecedentes de la invención
Se conocen, al menos desde 1990, hormigones de ultra alta resistencia armados con la incorporación entre otras de fibras de acero, denominados UHPFRC por sus siglas en inglés (ultra high performance fibre reinforced concret).
En las patentes US 6478867, US6080234, FR2633922, DE3734327, EP934915 y EP1984310 se describen diversos ejemplos de composiciones de hormigones de alta resistencia y de ultra alta resistencia con participación de fibras de acero, en general en combinación con otras fibras, en particular fibras orgánicas, para su aplicación en edificios y estructuras viarias proporcionando unas buenas propiedades mecánicas y una elevada resistencia al impacto.
La presente invención aporta una nueva formulación de hormigón, alternativa a las conocidas en el estado de la técnica y especialmente adaptada para su aplicación en edificios con plafones o paneles de fachada prefabricados.
Breve exposición de la invención
El hormigón UHPFRC de esta invención se plantea como objetivo proporcionar las siguientes propiedades mecánicas:
Resistencia a flexo-tracción fct, fl, k = 30 N/mm2
Resistencia a la tracción fct, k = 10 N/mm2
Resistencia a la compresión fck = 100 N/mm2
Se ha previsto la utilización de fibras metálicas de 13 mm de longitud y 0,2 mm de diámetro con una participación en el total del volumen del hormigón de un 2%.
Los materiales utilizados comprenden en una realización preferida dos tipos de cemento: cemento gris Portland de procedencia de la firma UNILAND y cemento gris Portland de la firma CEMENTOS MOLINS, conforme a las siguientes especificaciones:
• cemento Portland de UNILAND: cemento Portland gris.
· cemento Portland de CEMENTOS MOLINS: es un cemento Portland gris de categoría CEM I y de resistencia a la compresión muy alta 52,5 R, es
HOJA DE REEMPLAZO (Regla 26) decir resistencia a la compresión a los 28 días, mínima 52,5 Mpa, siendo habituales valores de 58 MPa,
aunque es factible utilizar únicamente el segundo de dichos cementos.
El resto de los materiales utilizados en la mezcla para la formación de este hormigón son:
- áridos: dos tipos de arena:
- arena caliza beige 0-1 mm de tamaño de grano; y
- arena de sílice de 0-7 mm de tamaño grano;
fibras de refuerzo añadidas:
- una fibra de acero OL 13/0,20, y
- tres tipos de fibras de PVA (acetato de polivinilo) las cuales son REC (S) 100x12, REC 15x8 y REC 15x12;
cargas: carbonato cálcico natural y nanosílice;
aditivo su perplastifi cante a base de policarboxilatos
- agua potable para la mezcla
Breve descripción de los dibujos
La Fig. 1 muestra los resultados del ensayo de escurrimiento del hormigón para la caracterización en estado fresco del hormigón UHPFRC de esta invención.
La Fig. 2 muestra los resultados de resistencia a compresión de los hormigones fabricados conforme a esta invención.
La Fig. 3 muestra los resultados de resistencia a tracción de dichos hormigones.
Descripción detallada de un ejemplo de realización preferido
Los materiales componentes del hormigón referidos anteriormente se obtienen de diversos proveedores:
- los cementos de las firmas CEMENTOS MOLINS y UNILAND;
- el carbonato cálcico natural está fabricado a partir de calcita seleccionada, con alto grado de pureza, bajo contenido de óxido de hierro y ausencia de metales pesados; se utiliza el OMYACARB -12 Cl que se caracteriza por su amplia gama de tamaño de partículas y por su pureza; la composición química de la materia prima aporta un 97% de CaC03 y el residuo al tamiz de 100 mieras es menor o igual al 0,5 % y el residuo al tamiz de 45 mieras menor o igual al 10%; Planta de producción empresa L'Arboc (Tarragona - España);
- la nanosílice es Rheomac VMA 350 (aditivo basado en una dispersión de nanopartículas esféricas no aglomeradas de dióxido de sílice puro, libre de
HOJA DE REEMPLAZO (Regla 26) cloruros y de elevadísima finura) suministrada por BASF;
- el aditivo superplastificante reductor del agua de alta actividad basado en policarbosilatos (apto para hormigones prefabricados);
- es el Glenium ACE 425, suministrado por BASF;
- las fibras de acero OL 13/0,20 han sido suministradas por la firma N.V.
BEKAERT;
- las fibras de PVA han sido suministradas a modo de muestras por la firma nipona KURARAY;
- el agua ha sido tomada de la red de agua potable de Martorell (Barcelona - España).
Se incluye a continuación la Tabla 1 que muestra los ajustes en las dosificaciones inicialmente previstas y unas pruebas con fibras de PVA para preparación del hormigón propuesto, conforme a las especificaciones indicadas.
Tabla 1
Figure imgf000004_0001
Se incluye también la Tabla 2, que indica ajustes en las dosificaciones y fibras de PVA
HOJA DE REEMPLAZO (Regla 26) Tabla 2
Figure imgf000005_0001
En lo que concierne a la producción antes de iniciar la producción de hormigones se ha mojado la amasadora y ha sido puesta en movimiento por algunos segundos. Ello se ha hecho para intentar tener unas mismas condiciones entre la primera prueba y las restantes. El orden de vertido de los materiales en la amasadora se muestra en la Tabla 3.
Tabla 3
Materiales Tiempo de amasado
1 Arena
2 Cemento 2 minutos, en seco
3 carga / cuarzo
4 n Agua y 14 Superplastificante 3 minutos
5 ' Agua, II Superplastificante con la Nanosílice 2 minutos
6 Fibras 1 minuto
Como se observa en dicha Tabla 2, en primer lugar se añaden los materiales secos, empezando por los más gruesos a los más finos, que son la arena, el cemento y la carga (filler). Estos materiales se mezclan en seco durante 2 minutos. A continuación se añade la mitad del agua y del aditivo superplastificante, seguido de 3 minutos amasado. Ese procedimiento se justifica por la necesidad de dispersar las partículas de
HOJA DE REEMPLAZO (Regla 26) cemento, lo que evita que el agua quede atrapada entre los fóculos de cemento que se forman inicialmente.
Pasado ese tiempo, se puede añadir el resto del agua y del aditivo superplastificante juntamente con la nanosílice, la cual es líquida. Todo el conjunto se mezcla durante 2 minutos. La adición del agua y superplastificante en dos etapas aporta más trabajabilidad a la mezcla, puesto que esos están libres para actuar en la lubricación de la pasta ya que en ese momento no aparecen los flóculos de cemento. Por último, se añaden las fibras a la amasadora, las cuales son mezclan junto al conjunto por otro minuto.
En la producción de los hormigones con fibras de acero, los materiales granulares se han sido vertidos a la amasadora de modo automatizado, puesto que la instalación ofrece esa opción. No obstante, dado que no son grandes cantidades y para una mayor precisión, el agua, el aditivo superplastificante y la nanosílice se han adicionado manualmente, para que fuera posible controlar las cuantidades adicionadas en base en la visualización de la trabajabilidad de la mezcla. Las fibras se han vertido directamente a la cinta transportadora. Ello evita el contacto directo del trabajador con las fibras y evita accidentes. Eso es fundamental a la seguridad porque esas fibras actúan como agujas, y pinchan la piel cuando entra en contacto con esta, aunque se esté utilizando guantes
En cuanto a la caracterización en estado fresco se ha realizado el ensayo de escurrimiento, según las especificaciones de la normativa UNE 83361 : 2007 (AENOR 2007). Ese ensayo responde a la necesidad de verificar si el hormigón producido realmente es autocom pactante. Además, permite comprobar la homogeneidad del material a través de la existencia de exudación y/o segregación de la mezcla.
Los resultados se muestran en la Fig. 1.
En cuanto a la caracterización en estado endurecido se han realizado probetas para el ensayo de resistencia a compresión de probetas cilindricas a la edad de 24 horas, 7 y 28 días, según la normativa UNE 12390-3: 2003 (AENOR 2003). También se han preparado probetas para el ensayo Barcelona de resistencia a tracción a los 7 días, según la normativa PrUNE 83515: 2007 (AENOR 2007). En la Tabla 4 se muestra el número de probetas moldeadas, para cada hormigón, mientras que en la figura 4 se muestra el moldeo de las probetas. Los ensayos realizados en estado endurecido pretenden caracterizar las propiedades mecánicas del hormigón en aras a verificar si son compatibles con las especificaciones estructurales exigidas del material.
En la Tabla 3 se detallan el número de probetas producidas por prueba de hormigón.
HOJA DE REEMPLAZO (Regla 26) Tabla 3
Figure imgf000007_0001
En cuanto a las pruebas de hormigonado con elementos constructivos se han realizado con encofrados de acero y sellado de juntas con silicona neutra.
Se han utilizado dos tipos de desencofrantes (que actúan como retardantes de fraguado) de forma indistinta y por separado, sin ninguna repercusión especial durante en desencofrado:
- Pierii Aquarol TT
- 31 -Pieri LM 5
El desencofrante se ha aplicado a mano con una esponja o paño húmedo. Esto ha dado lugar a la formación de manchas en forma de 'aguas' en la cara vista del hormigón
El desencofrante se ha aplicado con pistola de aspersión para conseguir una mayor homogeneización en la aplicación.
HOJA DE REEMPLAZO (Regla 26)

Claims

REIVINDICACIONES
1. - Hormigón de ultra alta resistencia armado con fibras de acero, comprendiendo por m3 de mezcla final:
• al menos un cemento Portland de categoría CEM I en una proporción de 600- 800 kg/m3, con una resistencia a la compresión a los 28 días, mínima de 52,5
Mpa;
• áridos en una proporción de 900-1300 kg/m3,
• fibras de refuerzo añadidas, comprendiendo al menos una fibra de acero, en una proporción de 150-210 kg/m3
· cargas en una proporción de 25-45 kg/m3, incluyendo carbonato cálcico natural y nanosílice; y
• aditivo superplastificante a base de policarboxilatos en una proporción de 45-55 kg/m3;;y
agua potable para la mezcla en una proporción de 125- 160 kg/m3.
2. - Hormigón según la reivindicación 1 , caracterizado porque dichos áridos comprenden dos tipos de arena, arena caliza y arena de sílice.
3. - Hormigón según la reivindicación 1 , caracterizado porque se utiliza un cemento gris o un cemento blanco, o una mezcla de los mismos que aporta la proporción de cemento indicada.
4. - Hormigón según la reivindicación 1 , en donde dicha arena caliza es arena beige de 0-1 mm de tamaño promedio de grano.
5. - Hormigón según la reivindicación 1 , en donde dicha arena de sílice es de 0-7 mm de tamaño promedio de grano.
6.- Hormigón según la reivindicación 1 , en donde dichas fibras de refuerzo añadidas son al menos una fibra metálica de acero OL 13/0,20.
7.- Hormigón según la reivindicación 6, caracterizado porque dichas fibras metálicas son de 13 mm de longitud y 0,2 mm de diámetro con una participación en el total del volumen del hormigón de un 2%..
8.- Hormigón según la reivindicación 6, caracterizado porque dichas fibras de refuerzo comprenden además de dicha fibra de acero, tres tipos de fibras de PVA
(acetato de polivinilo) las cuales son REC (S) 100x12, REC 15x8 y REC 15x12.
9.- Hormigón según la reivindicación 8, caracterizado porque dichas fibras d
PVA participan en el hormigón en las siguientes proporciones:
- Fibras de PVA 12/0,10 5-14 kg/m3
HOJA DE REEMPLAZO (Regla 26) Fibras de PVA 8/0,04 4-8 kg/m3
Fibras de PVA 12/0,04 4-8 kg/m3
HOJA DE REEMPLAZO (Regla 26)
PCT/ES2010/000422 2009-10-20 2010-10-15 Hormigón de ultra alta resistencia armado con fibras de acero WO2011067431A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10834250.2A EP2492254A4 (en) 2009-10-20 2010-10-15 Ultra-high-strength concrete reinforced with steel fibres
BR112012009433A BR112012009433A2 (pt) 2009-10-20 2010-10-15 concreto armado de ultra-alta resistência com fibras de aço
MX2012004618A MX2012004618A (es) 2009-10-20 2010-10-15 Hormigon de ultra alta resistencia armado con fibras de acero.
MA34794A MA33686B1 (fr) 2009-10-20 2012-04-20 Béton à ultra haute résistance armé avec des fibres d'acier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200902042A ES2360003B1 (es) 2009-10-20 2009-10-20 Hormigon de ultra alta resistencia armado con fibras de acero
ESP200902042 2009-10-20

Publications (1)

Publication Number Publication Date
WO2011067431A1 true WO2011067431A1 (es) 2011-06-09

Family

ID=44009693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000422 WO2011067431A1 (es) 2009-10-20 2010-10-15 Hormigón de ultra alta resistencia armado con fibras de acero

Country Status (6)

Country Link
EP (1) EP2492254A4 (es)
BR (1) BR112012009433A2 (es)
ES (1) ES2360003B1 (es)
MA (1) MA33686B1 (es)
MX (1) MX2012004618A (es)
WO (1) WO2011067431A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2543649A1 (de) * 2011-07-06 2013-01-09 Thomas Teichmann Ultrahochfester Beton
CN105294006A (zh) * 2015-10-23 2016-02-03 上海建工集团股份有限公司 一种具有高工作性的c100~c120级超高强混凝土
CN113149574A (zh) * 2021-06-03 2021-07-23 郑州大学 一种耐高温水泥基复合材料及其制备方法
CN113213853A (zh) * 2021-06-24 2021-08-06 郑州大学 一种高耐久性水泥基复合材料及其制备方法
CN113264738A (zh) * 2021-06-24 2021-08-17 郑州大学 一种高性能水泥基复合材料及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120261861A1 (en) * 2010-06-28 2012-10-18 Bracegirdle P E Nano-Steel Reinforcing Fibers in Concrete, Asphalt and Plastic Compositions and the Associated Method of Fabrication
CZ304478B6 (cs) * 2012-12-17 2014-05-21 ÄŚeskĂ© vysokĂ© uÄŤenĂ­ technickĂ© v Praze - fakulta stavebnĂ­ Drátkobeton ultravysokých pevností
EP2837609A1 (en) 2013-08-12 2015-02-18 Rigas Tehniska Universitate Ultra-high performance nano-modified concrete composition with borosilicate glass lamp waste powder
ITAN20130227A1 (it) * 2013-12-02 2015-06-03 Valeria Corinaldesi Composizione di calcestruzzi con alta resistenza a trazione
FR3033325B1 (fr) * 2015-03-05 2017-04-14 Agence Nat Pour La Gestion Des Dechets Radioactifs Beton a hautes performances, autoplacant et a haute durabilite, utile notamment pour la fabrication de conteneurs d'entreposage et/ou de stockage de dechets radioactifs
AT16500U1 (de) * 2018-03-20 2019-11-15 Kirchdorfer Fertigteilholding Gmbh Faserbetonstahlfaser
CN110606717B (zh) * 2019-11-01 2022-03-18 江苏苏博特新材料股份有限公司 一种混凝土增强外加剂及其在超高强混凝土中的应用
CN112266218A (zh) * 2020-11-06 2021-01-26 北京众和聚源混凝土有限公司 一种高强混凝土及其制备方法
CN113896478A (zh) * 2021-10-29 2022-01-07 山东城际轨道交通科技股份有限公司 一种超高强度混凝土及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3734327A1 (de) 1987-10-10 1989-04-27 Hochtief Ag Hoch Tiefbauten Durchschusssicheres plattenfoermiges bauteil
FR2633922A1 (fr) 1988-07-08 1990-01-12 Screg Routes & Travaux Beton compacte renforce de fibres et son utilisation
ES2076129B1 (es) * 1992-05-08 1996-06-16 Bekaert Sa Nv Hormigon reforzado con fibras de acero de alta resistencia a la flexion.
EP0934915A1 (fr) 1998-02-06 1999-08-11 Entreprise Quillery & Cie Béton très haute performance, autonivelant, son procédé de preparation et son utilisation
US6080234A (en) 1995-01-25 2000-06-27 Lafarge Materiaux De Specialites Composite concrete
US6478867B1 (en) 1997-11-27 2002-11-12 Bouygues Travaux Publics Metal fibre concrete, cementitious matrix and pre-mixes for preparing matrix and concrete
WO2007088271A1 (fr) * 2006-01-31 2007-08-09 Eiffage Tp Utilisation de betons hautes performances dans la fabrication ou la protection d'elements de structure resistants a des conditions extremes de temperature

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2708263B1 (fr) * 1993-07-01 1995-10-20 Bouygues Sa Composition de béton de fibres métalliques pour mouler un élément en béton, éléments obtenus et procédé de cure thermique.
FR2707625B1 (fr) * 1993-07-01 1995-10-13 Bouygues Sa Mélange pour béton et bétons obtenus.
FR2804952B1 (fr) * 2000-02-11 2002-07-26 Rhodia Chimie Sa Composition de beton ultra haute performance resistant au feu
EP1413563A4 (en) * 2001-05-29 2010-01-13 Taiheiyo Cement Corp HYDRAULIC COMPOSITION
ITMI20012480A1 (it) * 2001-11-23 2003-05-23 Italcementi Spa Calcestruzzi ad alte prestazioni non contenenti materiali di aggiuntaad attivita' idraulica latente
FR2850965B1 (fr) * 2003-02-06 2005-04-22 Bouygues Travaux Publics Compositions cimentaires durcissables et applications aux ecrans radiologiques et aux conteneurs de dechets radioactifs
FR2866330B1 (fr) * 2004-02-13 2006-08-18 Eiffage Tp Beton ultra haute performance et autoplacant, son procede de preparation et son utilisation.
EP1958926A1 (en) * 2007-01-24 2008-08-20 Lafarge New concrete composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3734327A1 (de) 1987-10-10 1989-04-27 Hochtief Ag Hoch Tiefbauten Durchschusssicheres plattenfoermiges bauteil
FR2633922A1 (fr) 1988-07-08 1990-01-12 Screg Routes & Travaux Beton compacte renforce de fibres et son utilisation
ES2076129B1 (es) * 1992-05-08 1996-06-16 Bekaert Sa Nv Hormigon reforzado con fibras de acero de alta resistencia a la flexion.
US6080234A (en) 1995-01-25 2000-06-27 Lafarge Materiaux De Specialites Composite concrete
US6478867B1 (en) 1997-11-27 2002-11-12 Bouygues Travaux Publics Metal fibre concrete, cementitious matrix and pre-mixes for preparing matrix and concrete
EP0934915A1 (fr) 1998-02-06 1999-08-11 Entreprise Quillery & Cie Béton très haute performance, autonivelant, son procédé de preparation et son utilisation
WO2007088271A1 (fr) * 2006-01-31 2007-08-09 Eiffage Tp Utilisation de betons hautes performances dans la fabrication ou la protection d'elements de structure resistants a des conditions extremes de temperature
EP1984310A1 (fr) 2006-01-31 2008-10-29 Eiffage Tp Utilisation de betons hautes performances dans la fabrication ou la protection d'elements de structure resistants a des conditions extremes de temperature

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2492254A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2543649A1 (de) * 2011-07-06 2013-01-09 Thomas Teichmann Ultrahochfester Beton
CN105294006A (zh) * 2015-10-23 2016-02-03 上海建工集团股份有限公司 一种具有高工作性的c100~c120级超高强混凝土
CN113149574A (zh) * 2021-06-03 2021-07-23 郑州大学 一种耐高温水泥基复合材料及其制备方法
CN113213853A (zh) * 2021-06-24 2021-08-06 郑州大学 一种高耐久性水泥基复合材料及其制备方法
CN113264738A (zh) * 2021-06-24 2021-08-17 郑州大学 一种高性能水泥基复合材料及其制备方法

Also Published As

Publication number Publication date
EP2492254A4 (en) 2017-05-31
ES2360003A1 (es) 2011-05-31
MA33686B1 (fr) 2012-10-01
BR112012009433A2 (pt) 2019-09-24
MX2012004618A (es) 2012-05-08
ES2360003B1 (es) 2012-04-13
EP2492254A1 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
WO2011067431A1 (es) Hormigón de ultra alta resistencia armado con fibras de acero
JP5106860B2 (ja) 超高性能の自己充填性コンクリート、その製造方法およびその使用
US8080104B2 (en) Filling material for reinforcing joint and construction method of filling reinforcing joint
JP6732404B2 (ja) 繊維補強セメント複合材及びその製造方法
JP4709677B2 (ja) プレミクス高靭性ポリマーセメントモルタル材料及び高靭性ポリマーセメントモルタル
JP7395633B2 (ja) ポリマーセメントモルタル
KR20120055119A (ko) 초고성능 섬유보강 콘크리트 및 이의 제조방법
RU2396233C1 (ru) Композиция для изготовления дисперсно-армированного пенобетона
AL-Ridha The influence of size of lightweight aggregate on the mechanical properties of self-compacting concrete with and without steel fiber
Udhayan et al. Experimental Study of Self compacting self curing concrete
JP5440905B2 (ja) 超早強セメント組成物、及びその製造方法
RU2610488C1 (ru) Высокопрочный бетон
JP5378754B2 (ja) ポリマーセメント組成物
Salam Effect of steel fiber and silica fume on hardened concrete compressive and flexural strength
RU2482086C1 (ru) Бетонная смесь
Oztekin et al. Effect of micro fiber content on workability of self-compacting concrete
JP5731848B2 (ja) 高強度ペースト組成物
JP2005281036A (ja) ポリマーセメント系タイル目地用モルタル及びその製造方法
CN109369116A (zh) 一种自密实混凝土及其制备方法
Barisua et al. The mechanical properties of roller compacted concrete blended with micro silica
Fawzi et al. Effect of incorporating ammonia solution on Some Mechanical Properties of Concrete
WO2019190334A1 (es) Mortero geopolimérico y procedimiento para la obtención de dicho mortero a partir de relaves mineros sin adición de cemento portland
US8435342B2 (en) Concrete composition
KR101464184B1 (ko) 고침투성 실란계 아크릴에멀젼 수지가 함침된 골재가 배합된 초속경 콘크리트
RATHISH et al. Mechanical characteristics of fiber reinforced self compacting mortars

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834250

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/004618

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010834250

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012009433

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012009433

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120420