WO2011066810A1 - 基于伪线的业务流量处理方法、设备和系统 - Google Patents

基于伪线的业务流量处理方法、设备和系统 Download PDF

Info

Publication number
WO2011066810A1
WO2011066810A1 PCT/CN2010/079475 CN2010079475W WO2011066810A1 WO 2011066810 A1 WO2011066810 A1 WO 2011066810A1 CN 2010079475 W CN2010079475 W CN 2010079475W WO 2011066810 A1 WO2011066810 A1 WO 2011066810A1
Authority
WO
WIPO (PCT)
Prior art keywords
pseudowire
state
local
aggregation group
traffic
Prior art date
Application number
PCT/CN2010/079475
Other languages
English (en)
French (fr)
Inventor
周鹏
石悌君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2012541314A priority Critical patent/JP5484590B2/ja
Priority to EP10834243.7A priority patent/EP2498454B1/en
Publication of WO2011066810A1 publication Critical patent/WO2011066810A1/zh
Priority to US13/486,818 priority patent/US20120236730A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/68Pseudowire emulation, e.g. IETF WG PWE3
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method, device, and system for processing traffic based on a pseudowire.
  • PWE3 Pseudo Wire Emulation Edge_to_Edge is a kind of simulation on the Packet Switch Network (PSN), such as Asynchronous Transport Mode (ATM).
  • PSN Packet Switch Network
  • ATM Asynchronous Transport Mode
  • the mechanism of key attributes of services such as Relay (Frame Relay; FR) and Ethernet (Ethernet).
  • FR Packet Relay
  • Ethernet Ethernet
  • PWE3 enables operators to migrate legacy services to PSNs to reduce network operating costs (Operating Expense; 0PEX).
  • the standby PW is defined in the PseudoWire (PW) redundancy.
  • PW PseudoWire
  • the PW redundancy has multiple scenarios.
  • the customer edge device Customer Edge: CE
  • the CE at one end is connected to the PE.
  • the CEs at both ends are connected to the PE.
  • the two PEs have multiple pseudo-wires (Multi-Session Pseudo Wire; MS-PW for short).
  • the hierarchical virtual private network service (Hierarchical Virtual Private LAN). Service; Abbreviation: HVPLS) Multi-tenant unit (Mul ti- Tenant Uni t; abbreviation: MTU) uses PW, for example: spoke PW connects PE.
  • PW for example: spoke PW connects PE.
  • one PW is the primary PW
  • the other PWs are the standby PWs.
  • the Internet Engineering Task Force defines the type-length of the tatus state of the Label Distribute Protocol (LDP) message.
  • the value (Type-Length-Value; for short: TLV) is used to pass the local state of the PW and introduce a new state: active/standby state, which is used to identify the active/standby state.
  • the PW selects which PW is used for the primary state according to the local state and the remote active/standby state. Only the PWs with active ends can forward traffic.
  • the PW When the PW is operationally up and selected to forward the PW used by the service flow, the PW is in an active state; when the PW is operational ration but is not selected as the PW used for forwarding the service flow, The PW is in the standby state.
  • When a PW is in the active state it can send and receive service data and operation management and maintenance (OAM) data.
  • OAM operation management and maintenance
  • the redundant PWs of a service can be used only in the active/standby mode. For example, only one of the primary PWs can forward traffic.
  • the backup PW cannot use load balancing to fully utilize network resources.
  • Applications such as Multi-Chassis Link Aggregation Group (MC-LAG) load sharing.
  • M-LAG Multi-Chassis Link Aggregation Group
  • the embodiment of the invention provides a method, a device and a system for processing a service flow based on a pseudowire, which solves the problem of long switching time in the existing PW redundancy technology and speeds up the switching time.
  • the embodiment of the invention provides a method for processing a service flow based on a pseudowire, which includes:
  • the embodiment of the present invention further provides a service line processing device based on a pseudowire, which includes: a first receiving module, configured to receive service traffic from a user edge device;
  • a pseudowire aggregation group module configured to determine a pseudowire aggregation group corresponding to the service traffic
  • a first sending module configured to forward, by using a local policy, the service traffic to a peer device by using a pseudowire in a sending state or an active state in the pseudowire aggregation group, where the pseudowire aggregation group includes the service traffic Corresponding one or more pseudowires.
  • the embodiment of the present invention further provides a pseudo-line-based service traffic processing system, including: a local device, configured to receive service traffic from a user edge device; determine a pseudowire aggregation group corresponding to the service traffic; The service traffic is forwarded to the peer device by using a pseudowire in the transmit state or the active state in the pseudowire aggregation group, where the pseudowire aggregation group includes one or more pseudowires corresponding to the service traffic;
  • the peer device is configured to receive, by the pseudowire in the receiving state or the active state, the service traffic from the local device, and forward the service traffic from the local device to the peer device.
  • User edge device is configured to receive, by the pseudowire in the receiving state or the active state, the service traffic from the local device, and forward the service traffic from the local device to the peer device.
  • the method, device, and system for processing the traffic based on the pseudowire may forward the service traffic to the peer device through the pseudowire in the corresponding pseudowire aggregation group in the sending state or the active state according to the local policy. It can improve the average convergence speed of service traffic and speed up the switching time when the pseudowire fails.
  • FIG. 1 is a flowchart of a first embodiment of a method for processing a service flow based on a pseudowire according to the present invention
  • FIG. 2 is a schematic diagram of a first embodiment of a method for processing a service flow based on a pseudowire according to the present invention
  • FIG. 4 is a schematic diagram of a third embodiment of a service line processing method based on a pseudowire according to the present invention
  • FIG. 5 is a schematic diagram of a method for processing a service line based on a pseudowire according to a fourth embodiment of the present invention
  • Schematic diagram FIG. 6 is a schematic diagram of a fifth embodiment of a service line processing method based on a pseudowire according to the present invention
  • FIG. 7 is a schematic structural diagram of an embodiment of a service line processing device based on a pseudowire according to the present invention
  • FIG. 1 is a flowchart of a first embodiment of a method for processing a service line based on a pseudowire according to the present invention.
  • the method for processing a service line based on a pseudowire includes:
  • Step 101 Receive service traffic from a user edge device.
  • Step 102 Determine a pseudowire aggregation group corresponding to the service traffic.
  • Step 103 Forward, according to the local policy, the service traffic to the peer device by using a pseudowire in the sending state or the active state in the pseudowire aggregation group, where the pseudowire aggregation group includes one or more corresponding to the service traffic. Pseudowire.
  • the local device such as the local provider edge device (PE)
  • the peer PE is connected to the peer PE through Metro Ethernet (Metro Etherne t; METRO for short), and the metro Ethernet network includes traffic corresponding to the traffic.
  • Pseudo-line aggregation group For example, multiple PWs corresponding to a service instance are aggregated into one PW aggregation group.
  • PW aggregation group For example, in the case of a point-to-point, a plurality of PWs corresponding to one AC (access circuit) are aggregated into one PW aggregation group; in the case of point-to-multipoint, multiple PWs corresponding to one VPLS instance are aggregated into A PW aggregation group.
  • the service instance corresponding to the service traffic may be determined first, and then the pseudowire aggregation group corresponding to the service instance is determined to be corresponding to the service traffic.
  • Pseudo-line aggregation group For example, in the case of point-to-point, the pseudowire aggregation group and the access circuit for transmitting traffic (Attach C i acucu; abbreviation: AC) can be set to a corresponding relationship, and the PE can transmit traffic according to the traffic.
  • the AC can determine the pseudowire aggregation group corresponding to the AC.
  • the local PE After receiving the service traffic sent by the AC, the local PE determines the pseudowire aggregation group corresponding to the service traffic, and may send the packet in the pseudowire aggregation group according to a certain local policy.
  • a forward line of a forward state or an active state may be forwarded to the peer PE, and then forwarded by the peer PE to the peer AC, where the AC includes a link between the PEs at both ends and the CE.
  • 2 is a schematic diagram of a first embodiment of a method for processing a service line based on a pseudowire according to the present invention. In FIG.
  • the pseudo-line aggregation group and the virtual private network service (VPLS) instance may be set to a corresponding relationship; the local PE receives the service.
  • the VPLS instance corresponding to the service traffic is determined, and the pseudowire aggregation group corresponding to the service traffic is determined according to the pseudowire aggregation group corresponding to the VPLS instance, and then the pseudowire aggregation group is in the sending state or the active state.
  • the line is forwarded to the peer PE.
  • the service traffic processing method further includes:
  • the local device PE_1 creates two pseudowires (PWs) corresponding to one service: PW 201 and PW 202, where the peer device of the PW 201 is the peer device of the PE_2 and the PW 202.
  • PW pseudowire
  • the PW 201 and the PW 202 are aggregated into a pseudowire (PW) aggregation group.
  • the local policy is a load balancing policy, and a load sharing relationship is formed between the pseudowires in the PW aggregation group 20.
  • the PE_1 can forward the traffic to the PW in the active state of the PW 201 and the PW 202 according to a certain load balancing policy.
  • the load balancing policy includes: hash, and Various strategies such as load sharing and random selection.
  • the specific determination method includes:
  • the method for determining the state of each pseudowire in the pseudowire aggregation group may specifically include the following situations:
  • Case 1 If the local state is a fault state: determining a state of all pseudowires in the pseudowire aggregation group as a fault state;
  • Each service has a local state, including an active state, an opera t iona 1 down state, and a standby state.
  • local policies such as: Multi-Chassis Link Aggregation Group (MC-LAG), Multi-Chassis Automatic Protection Switched (MC-APS), Link Aggregation Control Protocol (Link Aggregation Control Protocol; LACP), etc.
  • Local devices such as: The local PE can be set to the active state, the standby state, or the operational down state. Generally, when the AC is faulty, the local state is the opera t iona 1 down state. When the AC state is operating (opera t ional up), the local state may be s tandby. State, or it may be active.
  • the local state has no standby state.
  • the traffic can be sent and received from the PW.
  • the local state is the standby state, the traffic cannot be received from the PW, but the traffic can be received from the AC, and the peer state on the PW can be sent to the peer.
  • PW if the peer state is active, it can be sent to the PW. State, and the peer device sends an advertisement to the local device indicating the peer status.
  • the local device and the peer device have a relative concept. For example, if the base station gateway (CSG) is a local device, the remote site gateway (RSG) is the peer device of the CSG.
  • CSG base station gateway
  • RSG remote site gateway
  • the CSG is called the peer device of the RSG.
  • the notification sent by the local device to the peer device can be implemented by a notification message of the Target Label Distribute Protocol (T-LDP).
  • T-LDP Target Label Distribute Protocol
  • the RSG When the local state of the RSG is in the standby state, the RSG The peer CSG sends a T-LDP notification message indicating that the RSG is in the operational up state and the standby state.
  • the local state of the RSG is the active state, the RSG sends a T-LDP not if icat ion message to the CSG.
  • the RSG is in the operational up state and the active state.
  • the RSG sends a T-LDP notification message to the peer CSG indicating that the 1 ⁇ is 0 6 &01&1 down state.
  • the state of the PW from the local device to the peer device can be generated according to the local state and the received peer state.
  • the state of the PW may include but is not limited to the following: a fault state, a receiving state, a forwarding state, a resting state, and an active state. If the local state is The operational down state, regardless of the state of the peer, the PW is a fault state, as in case 1 above;
  • Example 2 If the local state is active, if the peer status is act ive In the state, the state of the PW is the active state, as in the case of the above-mentioned case 2; if the state of the peer is received in the standby state, the PW ⁇ state is the receiving state, and the above case 3;
  • Example 3 If the local state is the standby state, if the peer state is the active state, the PW state is the forwarding state, as in the case of the above four; if the peer state is received, the state of the PW is The resting state, as in case five above. If the PW is faulty, for example, the PW is used on the PW. For example, the bidirectional forwarding detection (Bidirectional Forwarding Detection (BFD) or the Multi-Protocol Label Switching (MPLS) is not detected. The fault state, as in case six above.
  • BFD Bidirectional Forwarding Detection
  • MPLS Multi-Protocol Label Switching
  • the PW in the active state can send and receive traffic; the PW in the resting state and the operational down state cannot send and receive traffic; the PW in the forwarding state can send but cannot receive traffic; the PW in the receiving state can receive but cannot send traffic.
  • the state of the PW in two directions may be different. For example, if the local state determined by the RSG is the active state, the CSG determines the local state. The status is sta nd by status. Then, the state of P W from R S G to C S G is the state of r e c e i V i n g , and the state of PW from CSG to RSG is the forwarding state.
  • the method in this embodiment may be a load balancing policy or a primary backup policy. If the local policy is a load balancing policy, the relationship between the pseudowires in the pseudowire aggregation group is load sharing. Relationship: If the local policy is the primary standby policy, the relationship between the pseudowires in the pseudowire aggregation group is the primary standby relationship.
  • the path for sending the service to the peer device and the service for receiving the peer device may be set to be the same; if single-ended switching is used, the The path through which the peer device sends the service and the service that receives the peer device are set to be different.
  • the specific method for the peer device to receive service traffic from the pseudowire may include:
  • An Incoming Labe Map (ILM) entry is created for each pseudo-line corresponding to the same service traffic, so that the peer device receives the service traffic from the pseudowire according to the inbound label mapping entry.
  • ILM Incoming Labe Map
  • All the pseudowires in the pseudowire aggregation group corresponding to the same service traffic are assigned the same inbound label mapping. For example, if there are multiple PWs in the PW aggregation group corresponding to one service traffic, the PW in the active state and the receive state can receive There are two implementations of the service traffic: First, each PW has different inbound labels. Each PW establishes an inbound label mapping entry to receive traffic sent to the PW. Second, all corresponding to the same service traffic. The PW allocates the same inbound label mapping entry, and all PWs share one ILM entry. The method of sharing one ILM entry for all the PWs corresponding to the same service traffic can reduce the occupation of the label resources and reduce the occupation of the forwarding table resources. Therefore, it is a preferred solution.
  • FIG. 3 is a schematic diagram of a second embodiment of a method for processing a service line based on a pseudowire according to the present invention.
  • the CSG and the RSG generate the local state, the peer state, and the state of the PW according to the above rules.
  • the local device receives traffic from the AC, according to the local policy, select a PW to send traffic from the PW that allows traffic to be sent, for example, from the PW of the active state and the forwarding state. If the local device receives traffic from the PW that allows traffic, for example, the active state and the PW (possibly multiple) of the rece iving state, the traffic is forwarded to the corresponding AC.
  • both the base station gateway (CSG) and the remote site gateway (RSG) belong to the PE, and the CSG.1 is used to transmit the service of the IP base station-1, and two PWs are established for the service: PW 301, PW 302, RSG-1 and RSG_2, PW 301, PW 302 are a PW aggregation group 30; CSG_2 is used to transmit the service of the IP base station_2, and two PWs are established for the service: PW 303, PW 304, respectively, to RSG_1 and RSG_ 2; Radio Network Controller (RNC) passes through two links: link 501, link 502 dual access to RSG_ 1 and RSG_2, link 501, link using LACP 502 bundle Tied as a logical link.
  • RNC Radio Network Controller
  • LACP is also used on links from RSG_1 and RSG_2 to RNC. Configure the same system ID (system ID) and different link IDs (link ID) so that RSG_1 and RSG.2 can negotiate with the RNC for operational up.
  • system ID system ID
  • link ID link ID
  • VLAN Virtual Local Area Network
  • LAG Link Aggregation Group
  • LAG Link Aggregation Group
  • the local policy can be a load sharing policy: On the AC side of CSG_1, when both link 501 and link 502 are operational up, PW 301 and PW 302 and link 501 and link 502 respectively form two between CSG-1 and RNC. Parallel paths, these two parallel paths can simultaneously undertake the IP base station-1 traffic forwarding task, achieve load sharing, and achieve the purpose of fully utilizing network resources. All the traffic of the IP base station-1 can be forwarded by the PW 301, and all the traffic of the IP base station-2 can be forwarded by the PW 304, and the services of the partial base stations are separately processed by the RSG_1 and the RSG_2, and the load is shared, and the link 501 and the link are utilized at the same time. 502.
  • Link 501 fault can be detected by LACP and other means, or ! and 1 ⁇ 0_1.
  • RNC When link 501 fails, RNC immediately switches traffic to link 502.
  • RSG_2 does not need any automatic protection switching. Protection Switched; Abbreviation: APS) protocol and announcement signaling can correctly forward traffic to CSG_1 and then forward to IP base station-1.
  • the RSG-1 may change the local state to an operational down state, and send a message to the peer CSG to advertise the corresponding PW state to an operational down state.
  • the RSG_1 must send a T-LDP failure notification message to the CSG and the CSG_1 processes the message and switches the PW of the acti ve state from the PW 301 to the PW 302 to correctly forward the traffic to the base station.
  • User data is discarded before this series of actions is completed. Therefore, compared with the prior art, the service traffic processing method of this embodiment can reduce the time required for service switching.
  • the CSG can also determine which active PW to use to transmit based on the user data flow to prevent traffic out of order.
  • the user data of the service is an IP stream
  • the VLAN priority ha sh to PW.
  • the 501 fails, all logical VLANs are faulty, and the related PWs need to be advertised.
  • CSG_1 and CSG_2 set the PW 301 and the PW 303 to the fault state respectively.
  • the traffic from the base station to the RNC must also go to the PW 302 and the PW 304 respectively.
  • the traffic can be divided into two cases.
  • the original base station to the RNC traffic passes through the PW 302.
  • path from CSG to RNC and the path from RNC to CSG can be the same or different, depending on the local policies of CSG and RNC.
  • the local policy may be a primary standby policy: As shown in FIG. 3, an MC-LAG is used between RSG_1 and RSG_2 to select a primary backup for a service, and notify CSG_1. Assume that RSG_1 is the primary and RSG_2 is the standby. If the local state of CSG_1 is active, then according to the rules, you can get: At CSG-1, PW 301 in the two PWs is in active state, PW 302 is in receiving state; in RSG - 1 terminal, PW 301 is in the active state; at the RSG-2 terminal, PW 302 is in the forwarding state.
  • CSG-1 transmits traffic from the PW 301 in the active state, and receives traffic from the PW 301 in the active state and the PW 302 in the receiving state on the RSG_2 side at the RSG-1 end.
  • the RNC directly switches to the link 502.
  • the RSG_2 is in the standby state, the traffic of the AC can be forwarded to the corresponding state because the PW 302 of the RSG_2 corresponding to the service is in the forwarding state.
  • the PW can be protected by a traffic engineering (Traffic Engineering, TE) fast reroute (FRR) or a Label Distribution Protocol (LDP) FRR technology. After the link or device in the METRO fails, the PW can be switched to the standby LSP tunnel through the TE FRR or LDP FRR. The PW state is unchanged.
  • the configuration method of the pseudowire can be:
  • the first local forwarding equivalence class (FEC) information is configured on one end of the pre-established pseudowire, and the peer device is specified, and the second local forwarding is configured on the other end of the pseudowire.
  • FEC equivalence class
  • the device at one end of the pseudowire initiates a pseudowire establishment request, where the pseudowire establishment request includes the first local forwarding equivalence class information;
  • the device at the other end of the pseudowire After receiving the pseudowire establishment request, the device at the other end of the pseudowire determines whether the first local forwarding equivalence class information matches the second local forwarding equivalence class information, and if yes, accepts The pseudowire establishment request is made, and the pseudowire is established.
  • RSG_1 uses the FEC 128 to configure the FEC information of the PW 301, including: a pseudowire identifier (PW ID) and an encapsulation type of the local AC, and specifies that the peer device (peer) of the RSG-1 is CSG_1.
  • RSG_2 also configures the PW ID and encapsulation type of the local AC for the PW 302, and specifies that the peer is CSG_1.
  • CSG_1 only configures the PW ID and encapsulation type of the local AC, but does not specify peer c.
  • CSG-1 receives the pseudowire establishment request of RSG-2 (for example, LDP MAPPING), CSG.1 parses the pseudowire establishment request.
  • RSG-2 for example, LDP MAPPING
  • FEC Forwarding equivalence class
  • the first local forwarding equivalence class information and the first peer forwarding equivalence class information are configured on one end of the pre-established pseudowire, and the second local forwarding equivalence class information is configured on the other end of the pseudowire.
  • the device at one end of the pseudowire initiates a pseudowire establishment request, where the pseudowire establishment request includes the first local forwarding equivalence class information and the first peer forwarding equivalence class information;
  • the device at the other end of the pseudowire After receiving the pseudowire establishment request, the device at the other end of the pseudowire determines whether the first peer forwarding equivalence class information matches the second local forwarding equivalence class information, and if so, A request is established by the pseudowire and the pseudowire is established.
  • CSG_1 may not configure the peer FEC information of the PW 301, but only configure one local FEC information, for example, configure the local FEC information when using the FEC 129: AC ID, global identifier (g loba l ID ), prefix ( Pref ix ).
  • the local FEC information and the peer FEC information (AC ID, g loba l ID, pref ix ) are configured on the RSG_1 and the RSG_2 to establish the PW:
  • One end of the peer FEC information is configured, for example, the RSG-1 first initiates a pseudowire.
  • CSG_1 matches the peer FEC information and the CSG_1 local FEC information in the pseudowire establishment request, and if the match, the PW is automatically created.
  • Each PW only needs to configure the peer FEC information on one end, and the configuration of the peer FEC information is reduced by an average of half.
  • the unconfigured end of the "autodiscover" peer is a semi-automatic discovery method as a whole.
  • the local device forwards the service traffic from the user edge device to the peer device through the pseudowire of the corresponding pseudowire aggregation group in the sending state or the active state according to the local policy, thereby improving the average convergence of the service traffic.
  • Speed speeding up the switchover time when the network is faulty.
  • the local policy is the load balancing policy
  • the load balancing between the member PWs in the PW aggregation group can be implemented to make full use of network resources.
  • Complex cross-frame protocols such as MC-LAG reduce network overhead.
  • the CSG passes the service traffic according to the load sharing policy.
  • the PW in the PW aggregation group is in the f 0 rwa rdi ng state or the acti ve state.
  • the PW is forwarded to the RSG.
  • the convergence time is short and the switching speed is fast.
  • the load balancing between the member PWs in the PW aggregation group can be realized.
  • Implement single-ended switching of services; no complex cross-frame protocol such as MC-LAG is required, which reduces network overhead.
  • FIG. 4 is a schematic diagram of a third embodiment of a method for processing a service flow based on a pseudowire according to the present invention.
  • a base station may use time division multiplexing (TDM), ATM link connection.
  • TDM time division multiplexing
  • a T-picture or an ATM connection may be used between the CSG, the RSG, and the RNC.
  • the physical interface may be a Synchronous Transmissive Module (STM) _n.
  • STM Synchronous Transmissive Module
  • An ATM, T-picture type PW is established between the CSG and the RSG.
  • Unlike Ethernet, in T-paint, ATM local strategy The sharing strategy cannot be adopted, but the primary and backup policies can be adopted, that is, MC-APS is used to select one of the two RSGs as the primary and the other as the standby.
  • the RSG sends a T-LDP notification message to the peer CSG indicating that the RSG is in the standby state. Assuming that the RSG is selected as the active, the RSG sends a T-LDP notificati on message to the opposite CSG to indicate that the RSG is ac. Ti ve state. After receiving the notification message of the RSG, if the local state of the CSG is ope rati ona 1 up, the PW state of the peer RSG is in the st andby state and is in the r ece ivi ng state, and the peer RSG is received. The PW state with the state of acti ve is the acti ve state.
  • the PW is in the standby state, and the PW is in the state of r ece i V i ng.
  • the PW is the acti ve state.
  • the PW is in the rest state when the status of the peer CSG is s tandby, and the PW is in the forwarding state when the state of the peer CSG is active.
  • the PW in the resting state cannot send and receive user texts.
  • the PW in the forwarding state can send but cannot receive user packets.
  • the CSG_1 end is in the active state
  • the CSG_2 end is in the active state
  • the RSG-1 end is in the active state
  • the RSG-2 end is in the s tandby state
  • the PW 401 is in the CSG-1 end state.
  • the state of the PW 402 at the CSG-1 end is a receiving state
  • the state of the PW 403 at the CSG-2 end is a forwarding state
  • the PW 404 is a state at the CSG-2 end state. Therefore, CSG_1 can select PW 401 to send traffic
  • CSG_2 can select PW 403 to send traffic. After receiving traffic from PW 401 and PW 403, RSG_1 forwards the traffic to link 601.
  • the link between the RSG and the RNC is considered as a link failure in any direction, and the RSG is
  • the CSG sends a T-LDP no tifi ca ti on message indicating the ope rati ona 1 down state; if the link between the RSG and the RNC is both in the normal direction, and the result selected according to the MC-APS protocol is the standby state, then ⁇ 2 0 sends a 1 1 _1 ⁇ ?
  • the RSG and the RNC are configured as one-way services, that is, single-ended switching, traffic of the two directions of the traffic flows in different directions, as shown in FIG. 4, the RSG is in accordance with the RSG to the RNC direction of the link 601 and the link 602.
  • the fault condition sends a T-LDP not if icat ion message to the CSG, indicating the status of the link: If the link is not faulty and is selected by the MC-APS as the primary, the operational up and active states are indicated; if the link is faulty, Then indicates the operational down state; if the link is not faulty and is selected as standby by the MC-APS, the Bay 1 J indicates the operating ional up and the s tandby state.
  • the traffic sent to the CSG is switched from the link 601 to the link 602 through the APS protocol, and the RSG_2 receives the RNC.
  • the PW 402 can be directly sent to the PW 402 because it is in the forwarding state on the RSG_2 side.
  • the CSG_1 can receive and process the traffic normally because the PW 402 is in the receiving state at the 80_1 end: CSG_1 forwards the traffic to the base station -1.
  • the traffic processing of the RNC to the base station _ 2 is similar.
  • the RSG_1 must send a T-LDP failure notification message to the CSG and the CSG_1 processes the message and switches the PW in the active state from the PW 401 to the PW 402 to correctly forward the traffic to the base station. User messages are discarded before this series of actions is completed.
  • the MC-APS For the traffic from the RNC to the CSG, the MC-APS needs to coordinate the active/standby relationship. This MC-APS can be similar to the reverse direction. It is responsible for the active/standby selection in both directions. The selection result in the two directions may be different. The processing of traffic from the RNC to the CSG direction is the same as that of the active and standby RNC to CSG traffic.
  • RSG and the RNC are configured for double-ended switching, that is, the switching needs to be completed by the sending and receiving ends.
  • the active/standby and the two-way switching are both double-ended switching.
  • the RSG is required to support the MC-APS and the RNC supports the APS. 1: 1 mode. If RSG and RNC are configured for single-ended switching, that is, switching only needs to be done at the receiving end, and the transmitting end is dual-transmitting, working in 1 + 1 mode.
  • the RSG sends a T-LDP not if icat ion message to the CSG according to the fault condition of the link 601, 602 from the RSG to the RNC direction, indicating the status of the link: if the link is not faulty and is selected and selected
  • the coordination protocol is selected for the main use (ie, the second half of the "selection and coordination protocol" later in this paragraph) indicates the active state; if the link fails, it indicates the operating state; if the link is not faulty and is selected
  • the coordination protocol is selected as standby to indicate the st andby state.
  • RSG_1 is selected to receive the traffic sent by the RNC
  • RSG_2 discards the traffic sent by the RNC (where the RNC is dual-issue); and it is assumed that RSG_2 is selected to receive the traffic sent by the CSG, and RSG_1 Sending the fault indication information to the RNC (eg, the indication information is all 1) causes the RNC not to receive traffic from the link 601.
  • RSG_1 sends a T-LDP notification message to the CSG to indicate the operational down state.
  • the RSG-2 senses the failure (can be advertised by RSG_1 with a mechanism like ICCP) and sends a T-LDP not ifi ti on message indication to the CSG. Operational up state and active state.
  • CSG1 switches traffic from PW401 to PW402, and CSG2 similarly switches from PW403 to PW404.
  • RSG_2 receives the traffic sent from the CSG and forwards it to the RNC over link 602.
  • RNC When the RNC to the RSG direction of the primary link 601 fails, for example: RNC is a two-way service, its processing is unchanged.
  • RSG_2 senses this failure (the selection and selection coordination protocol will re-select according to the failure, RSG_2 becomes new)
  • the traffic sent from the RNC is received and forwarded to the CSG through the PW 402.
  • the PW 402 since the PW 402 is in the forwarding state at the RSG_2 end, the traffic can be directly transmitted to the PW 402.
  • the PW 402 can receive and process the traffic normally because the CW_1 is in the receiving state: CSG_1 forwards the traffic to the base station_1.
  • the RNC is similar to the traffic processing of the base station _ 2, and the RSG _ 1 and the RSG _ 2 can distinguish the service according to the user identification information in the traffic received from the RNC, for example, the channel number of the STM-n, and different services associate different PWs. . Therefore, the traffic from the RNC to the base station does not require any APS protocol and announcement signaling between the RSG and the CSG. The traffic is forwarded to the CSG and forwarded to the base station. In the prior art, it is necessary for the RSG_1 to send a T-LDP failure notification message to the CSG and the CSG_1 processes the message and the PW of the acti ve state is
  • the traffic can be correctly forwarded to the base station.
  • the user 4 is discarded.
  • the CSG forwards the service traffic to the RSG through the PW in the corresponding PW aggregation group or the ac ti ve state according to the primary and backup policies, and the convergence time is short and the switching speed is fast; And can achieve single-ended switching.
  • FIG. 5 is a schematic diagram of a fourth embodiment of a method for processing a service flow based on a pseudowire according to the present invention.
  • the User Facing Provider Edge (UPE) on the user side replaces the CSG, and replaces the RSG with the provider side edge device (the ettech Facing Provider Edge; NPE) on the network side.
  • the digital subscriber line access multiplexer Digital Subscriber Line
  • DSLAM Downlink Access Multiplexer
  • SR Service Router
  • the two links from DSLAM to UPE_1 and UPE_2, and the two links from SR to NPE_1 and NPE_2 are AC.
  • the DSLAM after multiple traffic flows through the DSLAM, it is equivalent to one service traffic.
  • the DSLAM is dual-homed to UPE_1 and UPE_2, the services processed by UPE_1 and UPE_2 are equivalent to one user's service.
  • UPE-1 has a PW aggregation group, including: PW 701 and 702.
  • UPE-2 has a PW aggregation group, including: PW 703 and 1 ⁇ 704.
  • an MC-LAG is required between the two UPEs to determine the primary and backup. If the AC has no state change, and the original PW fails, an inter-chassis backup must be established between the UPEs (Inter-Chassis Backup; : ICB) PW or establish an ICB PW between NPEs to redirect traffic and provide redundancy protection.
  • Inter-Chassis Backup : ICB
  • ICB PW Inter-Chassis Backup
  • the UPE forwards the service traffic of the ACDSLAM to the NPE through the PW in the forwarding state or the active state in the corresponding PW aggregation group according to the local policy.
  • the convergence time is short and the switching speed is fast; and the member PW in the PW aggregation group can be implemented. Load sharing between them, making full use of network resources, and enabling single-ended switching.
  • FIG. 6 is a schematic diagram of a fifth embodiment of a method for processing a service line based on a pseudowire according to the present invention.
  • the CE device of the UPE_1 is a DSLAM_1
  • the CE device of the NPE_1 is an SR.
  • Two PWs are established between UPE_1 and NPE_1: PW 801 and PW 802.
  • the PW in Figure 6 can be in single-hop mode. In this case, the tunnels of the two PWs are different, and the physical link or intermediate device through which the tunnel passes is usually different.
  • the PW can also adopt multi-hop mode. For example: PW 801 and PW 802 pass through SPE_1 and SPE_2 devices respectively.
  • the connectivity of the PW is not faulty, for example, if the PW connectivity test such as BFD or MPLS 0AM does not detect a fault, the status of the two PWs is the same. This is because the local states of UPE_1 and NPE_1 are the same. According to the sharing policy, two PWs can form a PW aggregation group with load sharing.
  • UPE_1 or NPE_1 can use the primary and backup policies according to the local conditions, and only send packets from a PW in the active state or the forwarding state.
  • the active/standby state of the PW can also be notified to the peer device through a signaling message, thereby changing the path of the traffic from the peer device to the local device.
  • UPE_1 sets the priority of PW 801 to be higher than that of PW 802, and PW 801 and PW 802 work in active/standby mode.
  • UPE_1 sends a notification message to the peer end of PW 801.
  • NPE_1 To indicate that the PW 801 local state is the active state, and send a notification message to the peer end of the PW 802 to indicate that the local state of the PW 802 is in the standby state, and the SPE needs to forward the received notification message.
  • NPE_1 also performs a similar configuration: PW 801 is used as the primary, PW 802 is used as the backup, and the corresponding notification message is sent to UPE_1. After the configuration is complete, traffic is preferentially sent and received from the PW 801 path. If the primary and backup configurations of the UPE_1 and the NPE_1 are inconsistent, you can control the traffic of the two directions to pass through different PWs. For example, from UPE_1 to NPE_1 through PW 801 and from NPE_1 to UPE-1 through PW 802.
  • the UPE passes the ACDSLAM service traffic according to the sharing policy or the primary and backup policies.
  • the PW in the PW aggregation group is forwarded to the NPE in the for-wa r ng state or the acti ve state.
  • the convergence time is short and the switching speed is fast.
  • the sharing policy is adopted, the traffic distribution can be flexibly changed according to the network planning to implement the PW aggregation group.
  • the load balancing between the member PWs can make full use of the network resources.
  • the primary backup policy when the PW of the traffic passing through is faulty, the PW with the highest priority in the PW without connectivity faults can be automatically selected. Single-ended switching can be achieved.
  • the foregoing storage medium includes: a medium that can store a program code, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 7 is a schematic structural diagram of an embodiment of a pseudowire-based service traffic processing device according to the present invention.
  • the pseudowire-based service traffic processing device includes: a first receiving module 71, a pseudowire aggregation group module 72, and a A transmitting module 713.
  • the first receiving module 71 is configured to receive service traffic from the user edge device, and the pseudowire aggregation group module 72 is configured to determine a pseudowire aggregation group corresponding to the service traffic.
  • the policy the service traffic is forwarded to the peer device by using a pseudowire in the sending state or the active state in the pseudowire aggregation group, where the pseudowire aggregation group includes one or more pseudowires corresponding to the service traffic.
  • the pseudo-line-based service traffic processing device for example, the PE is divided into a local device and a peer device, and the first receiving module 71 of the local device receives the traffic from the user edge device, and the pseudowire
  • the aggregation group module 72 determines the pseudowire aggregation group corresponding to the service traffic, and the first sending module ⁇ 3 forwards the service traffic to the pair through the pseudowire in the transmission state or the active state in the pseudowire aggregation group according to the local policy. End device.
  • the local policy can be a load balancing policy or a primary and backup policy.
  • the relationship between the pseudowires in the pseudowire aggregation group corresponding to the service traffic is the load sharing relationship or the primary and backup relationship.
  • the type of each pseudowire and the type of AC can be: Ethernet mode, asynchronous transfer mode or time division multiplexing mode.
  • the pseudowire aggregation group module 72 may include: a service instance submodule 721 and a pseudowire aggregation. Group sub-module 722.
  • the service instance sub-module 721 is configured to determine a service instance corresponding to the service traffic
  • the pseudo-line aggregation group sub-module 722 is configured to determine, as the service flow, the pseudo-line aggregation group corresponding to the service instance. Pseudo-line aggregation group.
  • the pseudowire based traffic processing device may further include: a second receiving module 74 and a second transmitting module 75.
  • the second receiving module 74 is configured to receive the service traffic of the peer device by using a pseudowire in the receiving state or the active state in the pseudowire aggregation group.
  • the second sending module is configured to forward the service traffic of the peer device to the user edge device.
  • the pseudowire based traffic processing device needs to determine the status of each pseudowire in each pseudowire aggregation group, and thus may further include: an obtaining module 76 and a determining module 77.
  • the obtaining module 76 is configured to obtain a local state of the local device and a peer state of each peer device.
  • the determining module 77 is configured to determine, according to the local state and the peer state, a state of each pseudowire in the pseudowire aggregation group.
  • the determining module 77 may include any one of the following modules or the first determining submodule 771, according to different rules, to determine the state of all the pseudowires in the pseudowire aggregation group if the local state is a fault state. Is the fault state;
  • a second determining submodule 772 configured to: if the local state is an active state, and the state of the peer state is determined to be an active state;
  • a third determining sub-module 773 configured to: if the local state is an active state, and the state of the peer state is determined to be a receiving state;
  • a fourth determining sub-module 774 configured to: if the local state is a standby state, and the state of the peer state is determined to be a sending state;
  • a fifth determining sub-module 775 configured to: if the local state is a standby state, and the state of the peer state is determined to be a dormant state;
  • the sixth determining sub-module 776 is configured to determine a state of all the pseudowires in the pseudowire aggregation group as a fault state if any device or link at both ends of the pseudowire in the pseudowire aggregation group fails.
  • the pseudowire-based service traffic processing device may further set the path for sending the service to the peer device to the service that receives the peer device to be the same; or send the path to the peer device.
  • the service is set to be different from the path through which the service of the peer device is received.
  • the pseudowire aggregation group module determines the pseudowire aggregation group corresponding to the service traffic, and then the first sending module determines the state of the pseudowire according to each determining submodule.
  • the service traffic can be forwarded to the peer device through the pseudowire of the corresponding pseudowire aggregation group in the sending state or the active state according to the local policy, which can improve the average convergence speed of the service traffic and speed up the switching time when the network fails. With network resources, network overhead can be reduced.
  • FIG. 8 is a schematic structural diagram of an embodiment of a pseudowire-based service traffic processing system according to the present invention. As shown in FIG. 8, the pseudowire-based service traffic processing system includes: a local device 81 and a peer device 82.
  • the local device 81 is configured to receive service traffic from the user edge device, determine a pseudowire aggregation group corresponding to the service traffic, and send the service traffic to the sending state by using the pseudowire aggregation group according to a local policy.
  • the pseudowire of the active state is forwarded to the peer device 82, where the pseudowire aggregation group includes one or more pseudowires corresponding to the service traffic;
  • the peer device 82 is configured to use the pseudowire to aggregate the pseudo state in the receiving state or the active state.
  • the line receives the service traffic of the local device 81, and forwards the service traffic of the local device 81 to the user edge device connected to the peer device.
  • the local device 8 1 forwards the service traffic from the user edge device to the peer device 82 through the pseudo line in the sending state or the active state in the corresponding pseudowire aggregation group according to the local policy; the peer device 82 After the traffic of the local device 81 is received by the pseudowire in the receiving state or the active state in the pseudowire aggregation group, the service traffic of the local device 81 is forwarded to the user edge device connected to the peer device 82.
  • the structure of the local device 81 and the peer device 82 in this embodiment may adopt the structure of the pseudowire-based service flow processing device according to any of the above embodiments of the present invention.
  • the local device can forward the service traffic from the user edge device to the peer device through the pseudowire in the corresponding pseudowire aggregation group in the sending state or the active state according to the local policy, which can improve the average convergence of the service traffic. Speed, speed up the switching time when the network fails, and make full use of network resources, which can reduce network overhead.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

基于伪线的业务流量处理方法、 设备和系统 本申请要求于 2009年 12月 4日提交中国专利局、 申请号为 CN 200910252928.8, 发明名称为 "基于伪线的业务流量处理方法、 设备和系 统" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明实施例涉及通信技术领域, 特别涉及一种基于伪线的业务流量处 理方法、 设备和系统。
背景技术
端到端伪线仿真 (Pseudo Wire Emulation Edge_to_Edge; 简称: PWE3 ) 是一种在包交换网络 (Packet Switch Network; 简称: PSN )上仿真如异步 传输模式 ( Asynchronous Transport Mode;简称: ATM )、†贞中继 ( Frame Relay; 简称: FR) 、 以太网 (Ethernet )等业务的关键属性的机制。 PWE3可以使运 营商把传统业务迁移到 PSN上, 以降低网络运营成本( Operating Expense; 简称: 0PEX) 。
为了保证业务的高可用性, 网络的不同层次都需要支持冗余, 如果正在 使用的网络节点、 链路、 通道等资源发生故障, 可以切换到其他冗余的可用 资源上, 以保证网络能继续提供月良务。 在伪线 (PseudoWire; 简称: PW ) 冗 余中定义了备用 PW, 当主用 PW发生故障时使用备用 PW保护主用 PW。 PW冗余有 多种场景, 例如: 两端用户边缘设备(Customer Edge; 简称: CE )双归接入 提供者边缘设备(Provider Edge; 简称: PE ) ; —端 CE双归接入 PE, 另外一 端 CE单归接入 PE;两端 CE单归接入到 PE,两个 PE间有多段伪线(Multi-Session Pseudo Wire; 简称: MS-PW ) ; 层级虚拟专网服务(Hierarchical Virtual Private LAN service; 简称: HVPLS)中多租户单元(Mul t i— Tenant Uni t; 简 称: MTU)用 PW, 例如: spoke PW连接 PE。 这些 PW冗余场景中, 一个 PW为主 PW, 其他 PW为备用 PW。 为了使 PW连接的两端 PE同步切换, 互联网工程任务组 ( the Internet Engineering Task Force; 简称: IETF ) 定义了标签分发协议 ( Label Distribute Protocol; 简称: LDP ) 消息的 s tatus状态的类型 -长度 -值 (Type-Length-Value; 简称: TLV )用于传递 PW的本地状态, 并且引入一个 新的状态: active/standby状态, 用于标识主用 /备用状态。 PE才艮据本地状态 和远端的主用 /备用状态选择哪个 PW为主用, 只有两端都为主用 (active)状 态的 PW才能转发流量。 当 PW为正常运行(operational up)且被选择为转发 业务流使用的 PW时, 该 PW为主用 (active)状态; 当 PW为 operat ional up但 未被选择为转发业务流使用的 PW时, 该 PW为 standby状态。 当某个 PW为 active 状态时, 可以收发业务数据和操作管理维护( Operation Administration and Maintenance; 简称: 0AM)数据; 当 PW为备用 ( standby )状态时不能发送业 务数据, 但可以收发 0 AM数据。
一个业务对应的冗余 PW仅能用作主备方式, 举例来说, 仅其中一个主用 PW能转发流量, 备用 PW不能负载分担充分利用网络资源, CE双归不能采用负 载分担方式与之配合应用, 比如跨框链路聚合组(Multi-Chassis Link Aggregation Group ; 简称: MC-LAG ) 负载分担。
现有的 PW冗余技术, 切换时间长。 发明内容
本发明实施例提供一种基于伪线的业务流量处理方法、 设备和系统, 用 以解决现有 PW冗余技术中切换时间长的问题, 加快切换时间。
本发明实施例提供一种基于伪线的业务流量处理方法, 包括:
接收来自用户边缘设备的业务流量;
确定所述业务流量对应的伪线聚合组;
按照本地策略, 将所述业务流量通过所述伪线聚合组内处于发送状态或 活动状态的伪线转发到对端设备, 所述伪线聚合组包括所述业务流量对应的 一个以上伪线。
本发明实施例又提供一种基于伪线的业务流量处理设备, 包括: 第一接收模块, 用于接收来自用户边缘设备的业务流量;
伪线聚合组模块, 用于确定所述业务流量对应的伪线聚合组;
第一发送模块, 用于按照本地策略, 将所述业务流量通过所述伪线聚合 组内处于发送状态或活动状态的伪线转发到对端设备, 所述伪线聚合组包括 所述业务流量对应的一个以上伪线。
本发明实施例再提供一种基于伪线的业务流量处理系统, 包括: 本地设备, 用于接收来自用户边缘设备的业务流量; 确定所述业务流量 对应的伪线聚合组; 按照本地策略, 将所述业务流量通过所述伪线聚合组内 处于发送状态或活动状态的伪线转发到对端设备, 所述伪线聚合组包括所述 业务流量对应的一个以上伪线;
对端设备, 用于通过所述伪线聚合组内处于接收状态或活动状态的伪线 接收来自所述本地设备的业务流量, 将来自所述本地设备的业务流量转发到 所述对端设备连接的用户边缘设备。
本发明实施例提供的基于伪线的业务流量处理方法、 设备和系统, 按照 本地策略, 可以将业务流量通过对应的伪线聚合组内处于发送状态或活动状 态的伪线转发到对端设备, 可以提高业务流量的平均收敛速度, 加快伪线发 生故障时的切换时间。 附图说明
图 1为本发明基于伪线的业务流量处理方法第一实施例的流程图; 图 2为本发明基于伪线的业务流量处理方法第一实施例的一种示意图; 图 3为本发明基于伪线的业务流量处理方法第二实施例的示意图; 图 4为本发明基于伪线的业务流量处理方法第三实施例的示意图; 图 5为本发明基于伪线的业务流量处理方法第四实施例的示意图; 图 6为本发明基于伪线的业务流量处理方法第五实施例的示意图; 图 7为本发明基于伪线的业务流量处理设备实施例的结构示意图; 图 8为本发明基于伪线的业务流量处理系统实施例的结构示意图。 具体实施方式
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 图 1为本发明基于伪线的业务流量处理方法第一实施例的流程图, 如图 1 所示, 该基于伪线的业务流量处理方法包括:
步骤 101、 接收来自用户边缘设备的业务流量;
步骤 102、 确定所述业务流量对应的伪线聚合组;
步骤 103、按照本地策略, 将所述业务流量通过所述伪线聚合组内处于发 送状态或活动状态的伪线转发到对端设备, 所述伪线聚合组包括所述业务流 量对应的一个以上伪线。
在 PW冗余技术中, 本地设备, 例如本地提供者边缘设备( PE ) , 通过城 域以太网 (Me t ro Etherne t ; 简称: METRO )与对端 PE连接, 城域以太网包括 业务流量对应的伪线聚合组。 举例来说, 将一个业务实例对应的多条 PW聚合 为一个 PW聚合组。 例如, 在点到点的情形下, 将一个 AC (接入电路)对应的 多条 PW聚合为一个 PW聚合组; 在点到多点的情形下, 将一个 VPLS实例对应的 多条 PW聚合为一个 PW聚合组。
本地 PE接收到来自用户边缘设备(CE ) 的业务流量后, 举例来说, 可以 先确定该业务流量对应的业务实例, 然后将该业务实例对应的伪线聚合组, 确定为该业务流量对应的伪线聚合组。 例如: 在点到点的情况下, 可以将伪 线聚合组与发送业务流量的接入电路(At tachment C i rcu i t ; 简称: AC )设 置为——对应的关系, PE可以根据发送业务流量的 AC可以确定该 AC对应的伪 线聚合组。 本地 PE接收到 AC发送的业务流量后, 确定该业务流量对应的伪线 聚合组后, 可以按照某种本地策略, 通过该伪线聚合组内的处于发送 (forwarding)状态或活动 (active)状态的伪线, 可以将该业务流量转发 到对端 PE, 再由对端 PE转发到对端的 AC, 其中 AC包括两端的 PE与 CE之间的链 路, 图 2为本发明基于伪线的业务流量处理方法第一实施例的一种示意图, 在 图 2中,如果 PE_1为本地 PE,则 CE_1与 PE_1、 PE_4之间的网络为本地的 AC, CE_2 与 PE_2、 PE_3之间的网络为对端的 AC。 再例如, 在点到多点的情况下, 也可 以将伪线聚合组和虚拟专网月良务(Virtual Private LAN service; 简称: VPLS) 实例设置为——对应的关系; 本地 PE接收到业务流量后, 先确定该业务流量 对应的 VPLS实例, 再根据 VPLS实例对应的伪线聚合组, 确定该业务流量对应 的伪线聚合组, 然后通过伪线聚合组内处于发送状态或活动状态的伪线转发 到对端 PE。
进一步地, 如果该伪线聚合组内的伪线接收对端设备发送的业务, 则该 业务流量处理方法还包括:
通过所述伪线聚合组内处于接收状态或活动状态的伪线接收所述对端设 备发来的业务流量;
将所述对端设备的业务流量转发到所述用户边缘设备。
具体地, 如图 2所示, 在 METRO中, 本地设备 PE_1对应一个业务创建两个 伪线 (PW): PW 201和 PW 202, 其中 PW 201的对端设备为 PE_2, PW 202的对端 设备为 PE_3。 在 PE_1上, PW 201和 PW 202聚合为一个伪线 ( PW )聚合组 20, 假设本地策略为负载分担策略, PW聚合组 20内各个伪线之间形成负载分担关 系。 例如: 当 PE_1收到来自 CE_1的流量后, 可以按照某种负载分担策略把流 量转发到 PW 201和 PW 202中处于 active状态的 PW上, 其中, 负载分担策略包 括:哈希 (hash) 、 逐包负载分担、 随机选取等多种策略。
参考图 1, 在步骤 103之前, 需要确定每个伪线聚合组内各个伪线的状态, 举例来说, 具体的确定方法包括:
获取本地设备的本地状态和各个对端设备的对端状态;
根据所述本地状态和对端状态,确定所述伪线聚合组内各个伪线的状态。 举例来说, 根据本地状态和对端状态: 确定伪线聚合组内各个伪线的状 态的方法具体可以包括以下几种情况:
情况一、 若所述本地状态为故障状态: 将所述伪线聚合组内所有伪线的 状态确定为故障状态;
情况二 若所述本地状态为活动状态: 且所述对端状态为活动状态, 将 所述伪线聚 设备与 會 Ha〗 1 线的^ 态确定为活 动^ 态;
情况三 若所述本地状态为活动状态: 且所述对端状态为备用状态, 将 所述伪线聚 设备与 會 Ha〗 线的状态确定为接 收状态;
情况四 若所述本地状态为备用状态: 且所述对端状态为活动状态, 将 所述伪线聚 议 HI曰 I
送状态;
情况五 若所述本地状态为备用状态: 且所述对端状态为备用状态, 将 所述伪线聚 雄 眠状态;
情况六、 若所述伪线聚合组内的伪线两端的任一设备或链路发生故障, 则将所述伪线聚合组内所有伪线的状态确定为故障状态。
每个业务有一个本地状态, 包括活动( active )状态、故障( opera t iona 1 down)状态和备用 (standby)状态。 根据本地策略例如: 跨框链路聚合组 (Multi-Chassis Link Aggregation Group ; 简称: MC-LAG ) 、 跨框自动保 护切换(Multi-Chassis Automatic Protection Switched; 简称: MC-APS ) , 链路聚合控制协议(Link Aggregation Control Protocol; 简称: LACP)等, 本地设备例如: 本地 PE可以 4巴本地状态设置成 active状态、 standby状态或 operational down状态。 通常, 当 AC故障时, 本地状态为 opera t iona 1 down 状态, 当 AC状态为正常运行(opera t ional up)时,该本地状态可能是 s tandby 状态, 也可能是 active状态。 举例来说, 如果不采用跨框主备选择协议(如 MC-LAG ), 本地状态没有 standby状态。 本地状态为 act ive状态时, 可以从 PW 收发流量; 而本地状态为 standby状态时, 不能从 PW接收流量, 但可以从 AC 接收流量, 并根据该 PW上的对端状态决定是否能发送到该 PW, 如果对端状态 为 act ive状态则可以发送到该 PW。 态, 并且对端设备向本地设备发送一个通告, 表明对端状态。 其中, 本地设 备和对端设备一个相对的概念, 例如: 如果基站网关 (Cell Site Gateway; 简称: CSG)为本地设备, 远端站点网关(Remote Site Gateway; 简称: RSG ) 为 CSG的对端设备; 而如果 RSG为本地设备, 则称 CSG为 RSG的对端设备。 本地 设备向对端设备发送的通告可以通过目标标签分发协议 (Target Label Distribute Protocol; 简称: T- LDP ) 的通知(notification) 消息来实现, 例如: 当 RSG的本地状态为 standby状态时, RSG向对端的 CSG发送一个 T-LDP 的 notif ication消息指明 RSG为正常运行 ( operational up)和 standby状态; 当 RSG的本地状态为 active状态时, RSG向 CSG发送一个 T- LDP的 not if icat ion 消息指明 RSG为 operational up和 act ive状态; 当 RSG的本地状态为故障 ( operational down ) 时, RSG向对端 CSG发送一个 T- LDP的 notification消息 指明1^为0 6 & 01&1 down状态。
如果本地设备收到对端设备的 not if ica t ion消息, 才艮据本地状态和收到 的对端状态可以生成从该本地设备到该对端设备之间的 PW的状态。 其中, PW 的状态可以包括但不限于下面几种: 故障( fault )状态、 接收( receiving ) 状态、 发送 ( forwarding )状态、 休眠 ( resting )状态和活动 ( active )状 示例一、 如果本地状态是故障 (operational down)状态, 无论对端状 态是什么, 该 PW都为故障 (fault )状态, 如上述的情况一;
示例二、如果本地状态是活动( active )状态, 若收到对端状态为 act ive 状态, 则 PW的状态为 active状态, 如上述的情况二; 若接收到对端状态为 standby^ 态, 则该 PW^ 态为 receiving^ 态, 上述的情况三; 。
示例三、如果本地状态为 standby状态,若接收到对端状态为 act ive状态, 则 PW的状态为 forwarding状态, 如上述的情况四; 若接收到对端状态为 standby状态, 则 PW的状态为 resting状态, 如上述的情况五。 发出现故障, 例如: 在 PW上使用例如: 双向转发检测双向转发检测 (Bidirectional Forwarding Detection; 简称: BFD )或者多协议标签交换 (Multiple Protocol Label Switching; 简称: MPLS ) 0AM检测 PW不通, 则 PW处于 fault状态, 如上述的情况六。
其中, 处于 active状态的 PW可以收发流量; 处于 resting状态、 operational down状态的 PW不能收发流量; 处于 forwarding状态的 PW可以发 送但不能接收流量;处于 receiving状态的 PW可以接收但不能发送流量。另夕卜, 由于一个 PW两端设备确定的本地状态和对端状态不一定相同, 所以一个 PW两 个方向的状态可以不一样,例如:如果 RSG确定的本地状态为 active状态, CSG 确定的本地状态为 s t a nd by状态。则从 R S G到 C S G的 P W的状态为 r e c e i V i n g状态, 而从 CSG到 RSG的 PW的状态为 forwarding状态。
进一步地, 采用本实施例中的方法, 本地策略可以为负载分担策略或主 备用策略; 若所述本地策略为负载分担策略, 所述伪线聚合组内各个伪线之 间的关系为负载分担关系; 若所述本地策略为主备用策略, 则所述伪线聚合 组内各个伪线之间的关系为主备用关系。
另外, 如果采用双端倒换, 举例来说, 可以将向所述对端设备发送业务 与接收所述对端设备的业务所经的路径设置为相同; 如果采用单端倒换, 可 以将向所述对端设备发送业务与接收所述对端设备的业务所经的路径设置为 不同。
另外, 举例来说, 在本地设备通过伪线向对端设备发送业务流量时, 使 对端设备从伪线接收业务流量的具体方法可以包括:
为同一业务流量对应的每个伪线分别建立一个入标签映射 ( Incoming Labe l Map; 简称: ILM )表项, 使对端设备根据所述入标签映射表项从所述 伪线接收业务流量; 或
为同一个业务流量对应的伪线聚合组内所有伪线分配相同的入标签映射 例如: 如果一个业务流量对应的 PW聚合组中有多个 PW, 处于 act ive状态 和 rece iving状态的 PW可以接收该业务流量, 有两种实现方式: 一是每个 PW 的入标签不同, 每个 PW建立一个入标签映射表项用以接收发送到该 PW的业务 流量; 二是为同一业务流量对应的所有 PW分配相同的入标签映射表项, 所有 PW共用一个 ILM表项。 其中, 同一业务流量对应的所有 PW共用一个 ILM表项的 方法可以减少标签资源的占用, 还可以减少转发表资源的占用, 因此为优选 方案。
图 3为本发明基于伪线的业务流量处理方法第二实施例的示意图, 如图 3 所示, 在本发明基于伪线的业务流量处理方法第一实施例的基础上, 在以太 网中, CSG和 RSG才艮据上述规则生成本地状态、 对端状态和 PW的状态。
如果本地设备从 AC接收到流量, 根据本地策略, 在允许发送流量的 PW, 例如: 从 act ive状态和 forwarding状态的 PW中选择一个 PW发送流量。 如果本 地设备从允许接收流量的 PW, 例如: act ive状态和 rece iving状态的 PW (可能 有多个) 中收到流量后, 将流量转发到对应的 AC。
如图 3所示, 基站网关 (CSG )和远端站点网关 (RSG )都属于 PE, CSG.1 用于传送 IP基站 - 1的业务, 对该业务建立两个 PW: PW 301、 PW 302 , 分别到 RSG- 1和 RSG_2, PW 301、 PW 302为一个 PW聚合组 30; CSG_2用于传送 IP基站 _2 的业务, 对该业务建立两个 PW: PW 303、 PW 304 , 分别到 RSG_ 1和 RSG_ 2 ; 无 线网络控制器(Radio Network Cont rol ler; 简称: RNC )通过两个链路: 链 路 501、 链路 502双归接入到 RSG_ 1和 RSG_2, 使用 LACP将链路 501、 链路 502捆 绑为一个逻辑链路。 在从 RSG_1和 RSG_2到 RNC的链路上也使用 LACP。 配置相同 的系统标识(system ID)和不同的链路标识(link ID) , 使 RSG_1、 RSG.2 可以和 RNC协商正常运行(operational up) 。 对每个 PW, 对应的 RSG关联到 该链路聚合组(Link Aggregation Group ; 简称: LAG) 的某个虚拟局域网 (Virtual Local Area Network; 简称: VLAN ) , 该 VLAN (图中未示)和 LAG 一起构成了一个逻辑上的 AC。
本地策略可以为负载分担策略: 在 CSG_1的 AC侧, 链路 501、 链路 502都 operational up时, PW 301和 PW 302分别和链路 501、 链路 502构成 CSG—1和 RNC 之间的两个并行通路, 这两个并行通路可以同时承担该 IP基站 - 1业务流量转 发任务, 实现负载分担, 达到充分利用网络资源的目的。 也可以将 IP基站 -1 的全部流量用 PW 301转发, 将 IP基站 -2的全部流量用 PW 304转发, 采用 RSG_1 和 RSG_2分别处理部分基站的业务, 负荷分担, 同时利用链路 501和链路 502。 例如: 通过 LACP和其他手段, 或者! 和1^0_1都可以检测到链路501故障, 当 链路 501故障时, RNC立即把流量全部切换到链路 502, RSG_2不需要任何自动 保护切换 ( Automatic Protection Switched; 简称: APS )协议和通告信令 就可以正确地将流量转发到 CSG_1,再转发到 IP基站 -1。在本实施例中, RSG-1 可以将该本地状态改变为 operational down状态, 并发送消息给对端 CSG通告 对应的 PW状态为 operational down状态。而在现有技术中,必须等 RSG_1向 CSG 发送一个 T-LDP的故障通知消息并且 CSG _ 1处理该消息并将 a c t i ve状态的 PW从 PW 301切换到 PW 302之后才能正确把流量转发到基站, 在这一系列动作完成 之前, 用户数据被丟弃。 因此, 与现有技术相比, 本实施例的业务流量处理 方法可以降低业务切换需要的时间。 采用负载分担策略时, CSG还可以根据用 户数据流来决定使用哪个 active的 PW发送, 防止流量乱序。 例如: 如果业务 的用户数据是 IP流, 根据 IP的五元组〈源 IP地址, 目的 IP地址, 源端口号, 目 的端口号, IP协议号〉进行 hash (哈希)运算, 或者如果不同业务有不同 VLAN 优先级, 则才艮据 VLAN优先级 ha s h到 PW。 而当 501故障时, 所有的逻辑 VLAN都故障, 相关的 PW都需要通告。 CSG_1 和 CSG_2分别将 PW 301和 PW 303设置成故障状态, 从基站到 RNC的流量也必须 分别走 PW 302和 PW 304, 可以分为两种情况, 一是原来的基站到 RNC的流量经 过 PW 302和 PW 304, 在链路 501故障时没有任何影响, 不会出现丟包; 二是原 来基站到 RNC的流量经过 PW 301和 PW 303, 在链路 501故障时, 需要等待切换 过程(例如: 对于 CSG_1, PW是从 PW 301切换到 PW 302; 对于 CSG_2 , PW是从 PW 303切换到 PW 304 ) 完成后, 流量才正常传输, 这种情况会出现一段时间 丟包, 丟包时间和现有技术相同。 但从总体上看, 平均丟包时间减少, 可收 敛速度加快。 另外, 本发明实施例不需要复杂的 MC-LAG技术即可实现通过标 准 LACP把 RNC双归接入到 RSG。
此外, 从 CSG到 RNC的路径和从 RNC到 CSG的路径可以相同也可以不同, 取 决于 CSG和 RNC的本地策略。
进一步地, 本地策略可以为主备用策略: 如图 3所示, RSG_1和 RSG_2之间 采用 MC-LAG对某个业务进行主用备用的选择, 并通知 CSG_1。 假设 RSG_1为主 用, RSG_2为备用, 假设 CSG_1的本地状态为 active状态, 则按照规则, 可以 得到: 在 CSG—1端, 两个 PW中 PW 301是 active状态, PW 302是 receiving状态; 在 RSG—1端, PW 301是 active状态; 在 RSG—2端, PW 302为 forwarding状态。 CSG—1从 active状态的 PW 301发送流量, 在 RSG—1端从 act ive状态的 PW 301和 在 RSG_2端从 receiving状态的 PW 302接收流量。 当处于主用的 RSG_1与 RNC间 链路 501故障后, RNC直接切换到链路 502, 虽然 RSG_2处于备用,但由于业务对 应的 RSG_2端的 PW 302为 forwarding状态, 仍可以将 AC的流量转发到对应的 PW 302。
另外, 可以用流量工程(Traffic Engineering; 简称: TE)快速重路由 ( Fast Reroute; 简称: FRR ) 或者标签分发协议 ( Label Distribution Protocol; 简称: LDP ) FRR技术保护 PW。 当网络 METRO中的链路或设备出现故 障后, 可以通过 TE FRR或者 LDP FRR将 PW切换到备用 LSP隧道, PW的状态不变。 此外, 举例来说, 伪线的配置方法可以为:
方法一、 在预建立的伪线的一端配置第一本地转发等价类 (Forwarding Equivalence Class; 简称: FEC)信息, 并指定对端设备, 在所述伪线的另 一端配置第二本地转发等价类信息;
所述伪线的一端的设备发起伪线建立请求, 所述伪线建立请求包括所述 第一本地转发等价类信息;
所述伪线的另一端的设备接收到所述伪线建立请求后, 判断所述第一本 地转发等价类信息与所述第二本地转发等价类信息是否匹配, 如果是, 则接 受所述伪线建立请求, 并建立所述伪线。
例如: 采用转发等价类信息 FEC 128配置伪线:
参考图 3, 假设 RSG_1采用 FEC 128配置 PW 301的 FEC信息, 包括: 本地 AC 的伪线标识 (PW ID) 与封装类型 (encapsulation type ) , 并指定 RSG—1的 对端设备(peer)为 CSG_1; RSG_2也为 PW 302配置本地 AC的 PW ID和封装类型, 并指定 peer为 CSG_1。 但 CSG_1仅配置本地 AC的 PW ID和封装类型, 但不指定 peerc 当 CSG—1收到 RSG—2的伪线建立请求(例如: LDP MAPPING ) 时, CSG.1 解析伪线建立请求中的转发等价类 (FEC)信息, 由于采用 FEC 128, 仅需要 对比伪线建立请求中携带的伪线标识 (PW ID)与封装类型 (encapsulation type )是否和 CSG_1的本地 FEC信息匹配, 如果匹配则自动建立 PW, 不匹配则 不建立。 因此, CSG_1上只需要配置 PW 301和 PW 302的本地 AC的 PW ID和封装 类型, 但不指定 peer。
方法二、 在预建立的伪线的一端配置第一本地转发等价类信息和第一对 端转发等价类信息, 在所述伪线的另一端配置第二本地转发等价类信息; 所述伪线的一端的设备发起伪线建立请求, 所述伪线建立请求包括所述 第一本地转发等价类信息和所述第一对端转发等价类信息;
所述伪线的另一端的设备接收到所述伪线建立请求后, 判断所述第一对 端转发等价类信息与所述第二本地转发等价类信息是否匹配, 如果是, 则接 受所述伪线建立请求, 并建立所述伪线。
例如: 采用 FEC 129配置伪线:
参考图 3, CSG_ 1可以不配置 PW 301的对端 FEC信息,而仅配置一个本地 FEC 信息,例如:采用 FEC 129时配置本地 FEC信息: AC ID,全球标识(g loba l ID )、 前缀( pref i x )。而在 RSG_ 1和 RSG_2上配置本地 FEC信息和对端 FEC信息( AC ID、 g loba l ID、 pref ix ) , 即可建立 PW: 配置对端 FEC信息的一端, 例如 RSG—1 首先发起伪线建立请求, CSG_ 1收到伪线建立请求后, 根据伪线建立请求中的 对端 FEC信息和 CSG_ 1本地 FEC信息进行匹配,如果匹配则自动创建该 PW。其中, 每个 PW只需要在一端配置对端 FEC信息即可, 对端 FEC信息配置平均减少了一 半。 未配置的一端 "自动发现" 对端, 整体上是一个半自动发现的方法。
本实施例中, 本地设备按照本地策略, 将来自用户边缘设备的业务流量, 通过对应的伪线聚合组内处于发送状态或活动状态的伪线转发到对端设备, 可以提高业务流量的平均收敛速度, 加快网络发生故障时的切换时间; 当本 地策略是负载分担策略时,还可以实现 PW聚合组内的成员 PW之间的负载分担, 充分利用网络资源; 可以实现业务单端倒换; 不需要 MC-LAG等复杂的跨框协 议, 从而降低了网络开销。
本实施例中, 在以太网中, CSG按照负载分担策略将业务流量通过对应的
PW聚合组内处于 f 0 rwa r d i ng状态或 a c t i ve状态的 PW转发到 RSG, 收敛时间短, 切换速度快; 并且可以实现 PW聚合组内的成员 PW之间的负载分担, 充分利用 网络资源, 实现业务单端倒换; 不需要 MC-LAG等复杂的跨框协议, 降低了网 络开销。
图 4为本发明基于伪线的业务流量处理方法第三实施例的示意图,在本实 施例中, 基站可以采用时分复用 ( Time Divi s ion Mul t i plex; 简称: TDM ) 、 ATM链路连接 CSG, RSG和 RNC之间也可以采用 T画、 ATM连接, 物理接口可以是 同步传输模式 ( Synchronous Transmi s s ion Module ; 简称: STM ) _n。 CSG 和 RSG之间建立 ATM、 T画类型的 PW。 与以太网不同, 在 T画、 ATM中, 本地策略 不能采用分担策略, 但可以采用主备用策略, 即采用 MC-APS在两个 RSG中选择 一个作为主用, 另外一个作为备用。
如果 RSG被选择为备用, RSG向对端 CSG发送 T-LDP的 notification消息指 明 RSG为 standby状态; 假设 RSG被选择为 act ive, RSG向对端 CSG发送 T- LDP的 notificati on消息指明 RSG为 ac t i ve状态。 CSG收到 RSG的通知消息后,如果 CSG 的本地状态是 ope r a t i ona 1 up, 则收到对端 RSG的状态为 s t andby状态的 PW状 态为 r ece i v i ng状态, 而收到对端 RSG的状态为 a c t i ve状态的 PW状态为 a c t i ve 状态。同理,如果 RSG的本地状态为 active状态,收到对端 CSG的状态为 standby 状态则 PW为 r ece i V i ng状态, 收到对端 CSG的状态为 a c t i ve状态则 PW为 a c t i ve 状态; 如果 RSG的本地状态为 standby状态, 收到对端 CSG的状态为 s tandby状 态则 P W为 r e s t i n g状态, 收到对端 C S G的状态为 a c t i v e状态则 P W为 f o r w a r d i n g 状态。 处于 resting状态的 PW不能收发用户 文, 处于 forwarding状态的 PW 可以发送但不能接收用户报文。 假设图 4中, CSG_1端为 active状态, CSG_2 端为 active状态, 且 RSG-1端为 act ive状态, RSG-2端为 s tandby状态, 则可以 得到: PW 401在 CSG— 1端的状态为 act ive状态, PW 402在 CSG—1端的状态为 receiving状态, PW 403在 CSG—2端的状态为 forwarding状态, PW 404为在 CSG— 2 端的状态 resting状态。 因此, CSG_1可以选择 PW 401发送业务流量, CSG_2 可以选择 PW 403发送业务流量。 RSG_1从 PW 401、 PW 403收到业务流量后转发 到链路 601。
如果 RSG和 RNC配置为双向业务, 即双端倒换时, 业务流量的两个方向的 流量走相同的路由, 则 RSG和 RNC间的链路无论哪个方向发生故障都认定为链 路故障, RSG向 CSG发送 T- LDP的 no t i f i ca t i on消息指示 ope r a t i ona 1 down状 态; 如果 RSG和 RNC间的链路两个方向都正常, 且根据 MC-APS协议选择的结果 是 standby状态,则!^0向 80发送11_1^?的1(^11" &1101消息指示0 6^1101&1 up和 standby状态; 如果 RSG和 RNC间的链路两个方向都正常, 且根据 MC-APS 协议选择的结果是 a c t i ve状态, 则向 CSG发送 T-LDP的 no t i f i ca t i on消息指示 operational up和 active状态。 和其他实施例一样。
如果 RSG和 RNC配置为单向业务, 即单端倒换, 业务流量的两个方向的流 量走不同的路由, 则: 如图 4所示, RSG根据链路 601、 链路 602的 RSG到 RNC方 向的故障情况给 CSG发送 T-LDP的 not if icat ion消息, 指示链路的状态: 如果 链路无故障且被 MC-APS选择为主用, 则指示 operational up和 active状态; 如果链路故障, 则指示 operational down状态; 如果链路无故障且被 MC-APS 选择为备用, 贝1 J指示 operat ional up和 s tandby^ 态。
当 RSG到 RNC方向的主用的链路 601发生故障例如: RNC检测到 RNC到 RSG_1 的光纤故障后, 通过 APS协议把发送到 CSG的流量从链路 601切换到链路 602, RSG_2收到 RNC的流量后, 由于 PW 402在 RSG_2端处于 forwarding状态, 可以直 接把流量发送到 PW 402上。 CSG_1收到 PW 402的流量后, 由于 PW 402在 80_1 端处于 receiving状态, 可以接收并正常处理流量: CSG_1将流量转发到基站 - 1。 RNC到基站 _ 2的流量处理类似, 在 RSG_ 1和 RSG_ 2上可以 居从 RNC收到的 流量中的用户标识信息, 比如 STM-n的通道号区分业务, 不同的业务关联不同 的 PW。 因此, RNC到基站的流量不需要任何 RSG与 CSG之间的 APS协议和通告信 令就能正确地把流量转发到 CSG, 再转发到基站。 而在现有技术中, 必须等 RSG_1向 CSG发送一个 T-LDP的故障通知消息并且 CSG_1处理该消息并将 active 状态的 PW从 PW 401切换到 PW 402之后, 才能正确将流量转发到基站, 在这一 系列动作完成之前, 用户报文被丟弃。
对 RNC到 CSG方向的流量, 需要 MC-APS协调主备关系, 这个 MC-APS可以和 反方向的是类似机制, 负责两个方向的主备选择, 两个方向的选择结果可能 不同。 RNC到 CSG方向的流量的处理和主备的 RNC到 CSG方向的流量的处理情况 是一样的。
如果 RSG和 RNC配置为双端倒换, 也就是说倒换需要发送和接收两端协商 完成, 前面说的主备, 双向倒换都是双端倒换, 需要 RSG支持 MC-APS且 RNC支 持 APS, 工作于 1: 1模式。 如果 RSG和 RNC配置为单端倒换, 也就是说倒换只需要在接收端完成, 发 送端是双发, 工作于 1 + 1模式。
如图 4所示, RSG根据链路 601、 602的 RSG到 RNC方向的故障情况给 CSG发送 T-LDP的 not if icat ion消息, 指示链路的状态: 如果链路无故障且被选收选择 协调协议选择为主用 (即本段后面的 "选收选择协调协议" 的后半部分)则 指示 active状态; 如果链路故障则指示 operat ional down状态; 如果链路无 故障且被选收选择协调协议选择为备用则指示 s t andby状态。 RSG间需要一个 简单的选收选择协调协议:假设选择 RSG_1接收 RNC发送的流量, RSG_2丟弃 RNC 发送来的流量(其中, RNC是双发); 同时假设选择 RSG_2接收 CSG发送的流量, 而 RSG_1向 RNC发送故障指示信息 (例如: 指示信息全为 1 )使 RNC不从该链路 601接收流量。
当 RSG到 RNC方向的主用的链路 601发生故障。 RSG_1会向 CSG发送 T-LDP的 notification消息指示 operational down状态, RSG— 2感知到此故障 (可以用 类似 ICCP等机制由 RSG_ 1通告 )后向 CSG发送 T-LDP的 not i f i ca t i on消息指示 operational up状态和 act ive状态。 CSG1接收并处理上面的 T-LDP的 notification消息后把流量从 PW401切换到 PW402, CSG2类似从 PW403切换到 PW404。 RSG_ 2接收从 CSG发来的流量并通过链路 602转发到 RNC。
当 RNC到 RSG方向的主用的链路 601发生故障例如: RNC因为是双向业务, 其处理不变. RSG_2感知到此故障(选收选择协调协议会根据该故障重新做选 择, RSG_2成为新的主用设备)后, 接收从 RNC发来的流量, 并通过 PW 402转 发到 CSG。 这里, 因为 PW 402在 RSG_2端处于 forwarding状态, 可以直接把流 量发送到 PW 402上。 CSG_1收到 PW 402的流量后, 由于 PW 402在 CSG_1端处于 receiving状态, 可以接收并正常处理流量: CSG_1将流量转发到基站 _1。 RNC 到基站 _ 2的流量处理类似,在 RSG _ 1和 RSG _ 2上可以根据从 RNC收到的流量中的 用户标识信息, 例如 STM-n的通道号区分业务, 不同的业务关联不同的 PW。 因 此, RNC到基站的流量不需要任何 RSG与 CSG之间的 APS协议和通告信令就能正 确地把流量转发到 CSG, 再转发到基站。 而在现有技术中, 必须等 RSG_1向 CSG 发送一个 T-LDP的故障通知消息并且 CSG _ 1处理该消息并将 a c t i ve状态的 PW从
PW 401切换到 PW 402之后, 才能正确将流量转发到基站, 在这一系列动作完 成之前, 用户 4艮文被丟弃。
本实施例在 T丽、 ATM中, CSG按照主备用策略将业务流量通过对应的 PW 聚合组内处于 f orwa r d i ng状态或 ac t i ve状态的 PW转发到 RSG, 收敛时间短, 切 换速度快; 并且可以实现单端倒换。
图 5为本发明基于伪线的业务流量处理方法第四实施例的示意图, 如图 5 所示, 在本发明基于伪线的业务流量处理方法第二、 第三实施例的基础上, 以靠近用户侧的提供者边缘设备(User Facing Provider Edge; 简称: UPE ) 代替 CSG, 以靠近网络侧的提供者边缘设备 ( etwork Facing Provider Edge; 简称: NPE)代替 RSG, 数字用户线接入复用器 (Digital Subscriber Line
Access Multiplexer; 简称: DSLAM)代替基站,业务路由器( Service Router; 简称: SR)代替 RNC为例, 其中, DSLAM双归到两个 UPE: UPE—1和 UPE_2。 UPE 端与 NPE端的 PW建立、 转发规则可以参照上述实施例中的描述。 本实施例中,
DSLAM到 UPE_1和 UPE_2的两个链路、 SR到 NPE_1和 NPE_2的两个链路都是 AC。
在本实施例中, 多个流量经过 DSLAM后相当于一个业务流量, DSLAM双归 到 UPE_1和 UPE_2后, UPE_1和 UPE_2上处理的也相当于一个用户的业务, 此时,
UPE— 1上有一个 PW聚合组, 包括: PW 701和 702, UPE— 2上有一个 PW聚合组, 包括: PW 703和1^ 704。
在现有技术中, 两个 UPE之间需要 MC-LAG确定主用、 备用, 如果 AC没有状 态变化, 而原来的 PW发生故障则必须通过在 UPE间建立框间备份 ( Inter-Chassis Backup; 简称: ICB) PW或在 NPE间建立 ICB PW来重定向流 量,提供冗余保护。而在本实施例中,只要 DSLAM的两个链路中没有同时故障, 当前使用的 PW故障后不需要 ICB PW流量也能快速收敛到其他可用 PW上。 如图 5 所示, 假设 NPE_1端的 PW 701和 PW 703都是 act ive状态, SR到 DSLAM的流量从 PW 701传送, 而 PW 701出现故障, 则 SR到 DSLAM的流量该从 PW 703传送。
本实施例, UPE按照本地策略将 ACDSLAM的业务流量通过对应的 PW聚合组 内处于 forwarding状态或 active状态的 PW转发到 NPE, 收敛时间短, 切换速度 快; 并且可以实现 PW聚合组内的成员 PW之间的负载分担, 充分利用网络资源, 并且可以实现单端倒换。
图 6为本发明基于伪线的业务流量处理方法第五实施例的示意图, 如图 6 所示, UPE_1的 CE设备为 DSLAM_1, NPE_1的 CE设备为 SR。 UPE_1和 NPE_1之间建 立两个 PW: PW 801和 PW 802。 图 6中的 PW可以采用单跳方式, 此时两个 PW的隧 道不同, 隧道经过的物理链路或中间设备通常也不同。 PW也可以采用多跳方 式, 例如: PW 801、 PW 802分别经过 SPE_1和 SPE_2设备。
如果 PW的连通性没有故障, 例如: BFD或 MPLS 0AM等 PW连通性检测没有发 现故障, 则两个 PW的状态一致, 这是由于 UPE_1和 NPE_1各自的本地状态都相 同。 根据分担策略, 两个 PW可以形成负载分担的 PW聚合组。
进一步地, UPE_1或 NPE_1可以根据本地情况采用主备用策略, 仅从某个 处于 active状态或者 forwarding状态的 PW上发送报文。 还可以将 PW的主备状 态通过信令消息通知对端设备, 从而改变对端设备到本地设备方向的流量的 路径。 例如: UPE_1设定 PW 801的优先级高于 PW 802,并且 PW 801和 PW 802采 用主备的工作方式, 当 UPE_1的本地状态 active状态时, UPE_1向 PW 801的对 端发送通知 ( notification ) 消息, 以指示 PW 801本地状态为 active状态, 同时向 PW 802的对端发送通知消息,以指示 PW 802的本地状态为 standby状态, SPE需要转发收到的通知消息。 NPE_1也做类似配置: PW 801为主用, PW 802 为备用, 并发送对应的通知消息到 UPE_1。 配置完成后, 流量优先从 PW 801 路径上进行收发。 如果 UPE_1和 NPE_1设置的主备不一致, 则可以控制两个方 向的流量分别经过不同的 PW, 例如: 从 UPE_1到 NPE_1经过 PW 801, 从 NPE_1 到 UPE-1经过 PW 802。
本实施例, UPE按照分担策略或主备用策略将 ACDSLAM的业务流量通过对 应的 PW聚合组内处于 f o r wa r d i ng状态或 a c t i ve状态的 PW转发到 NPE,收敛时间 短, 切换速度快; 采用分担策略时, 可以根据网络规划灵活改变流量分布, 实现 PW聚合组内的成员 PW之间的负载分担, 充分利用网络资源; 采用主备用 策略时, 当流量经过的 PW发生连通性故障时, 可以自动选择没有连通性故障 的 PW中优先级最高的 PW为主用; 还可以实现单端倒换。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
图 7为本发明基于伪线的业务流量处理设备实施例的结构示意图, 如图 7 所示, 该基于伪线的业务流量处理设备包括: 第一接收模块 71、 伪线聚合组 模块 72和第一发送模块 7 3。
其中, 第一接收模块 71, 用于接收来自用户边缘设备的业务流量; 伪线聚合组模块 72, 用于确定所述业务流量对应的伪线聚合组; 第一发送模块 73, 用于按照本地策略, 将所述业务流量通过所述伪线聚 合组内处于发送状态或活动状态的伪线转发到对端设备, 所述伪线聚合组包 括所述业务流量对应的一个以上伪线。
具体地, 在 PW冗余技术中, 基于伪线的业务流量处理设备例如: PE分为 本地设备和对端设备, 本地设备的第一接收模块 71接收来自到用户边缘设备 业务流量后, 伪线聚合组模块 72确定该业务流量对应的伪线聚合组, 第一发 送模块 Ί 3按照本地策略, 可以将通过该伪线聚合组内处于发送状态或活动状 态的伪线将该业务流量转发到对端设备。 其中, 本地策略可以为负载分担策 略或主备用策略, 业务流量对应的伪线聚合组内各个伪线之间的关系为负载 分担关系或主备用关系; 伪线聚合组的类型、 伪线聚合组的各个伪线的类型 和 AC的类型可以为: 以太网模式、 异步传输模式或时分复用模式等。
进一步地, 伪线聚合组模块 72可以包括: 业务实例子模块 721和伪线聚合 组子模块 722。
其中, 业务实例子模块 721, 用于确定所述业务流量对应的业务实例; 伪线聚合组子模块 722, 用于将所述业务实例对应的伪线聚合组, 确定为 所述业务流量对应的伪线聚合组。
再进一步地, 该基于伪线的业务流量处理设备还可以包括: 第二接收模 块 74和第二发送模块 75。
其中, 第二接收模块 74, 用于通过所述伪线聚合组内处于接收状态或活 动状态的伪线接收所述对端设备的业务流量;
第二发送模块 75, 用于将所述对端设备的业务流量转发到所述用户边缘 设备。
进一步地, 该基于伪线的业务流量处理设备需要确定每个伪线聚合组内 各个伪线的状态, 因此还可以包括: 获取模块 76和确定模块 77。
其中, 获取模块 76, 用于获取本地设备的本地状态和各个对端设备的对 端状态;
确定模块 77, 用于根据所述本地状态和对端状态, 确定所述伪线聚合组 内各个伪线的状态。
其中, 根据不同的规则, 确定模块 77可以包括以下模块的任意一个或者 第一确定子模块 771, 用于若所述本地状态为故障状态, 将所述伪线聚合 组内所有伪线的状态确定为故障状态;
第二确定子模块 772, 用于若所述本地状态为活动状态, 且所述对端状态 的状态确定为活动状态;
第三确定子模块 773, 用于若所述本地状态为活动状态, 且所述对端状态 的状态确定为接收状态; 第四确定子模块 774, 用于若所述本地状态为备用状态, 且所述对端状态 的状态确定为发送状态;
第五确定子模块 775, 用于若所述本地状态为备用状态, 且所述对端状态 的状态确定为休眠状态;
第六确定子模块 776,用于若所述伪线聚合组内的伪线两端的任一设备或 链路发生故障, 则将所述伪线聚合组内所有伪线的状态确定为故障状态。
确定伪线状态的具体方法, 可以参照本发明基于伪线的业务流量处理方 法第一实施例中的情况一到情况六及其相关描述。
再进一步地, 该基于伪线的业务流量处理设备还可以将向所述对端设备 发送业务与接收所述对端设备的业务所经的路径设置为相同; 或将向所述对 端设备发送业务与接收所述对端设备的业务所经的路径设置为不同。
本实施例第一接收模块到接收来自用户边缘设备的业务流量后, 伪线聚 合组模块确定该业务流量对应的伪线聚合组, 然后第一发送模块根据各个确 定子模块确定的伪线的状态, 可以按照本地策略将业务流量通过对应的伪线 聚合组内处于发送状态或活动状态的伪线转发到对端设备, 可以提高业务流 量的平均收敛速度, 加快网络发生故障时的切换时间, 充分利用网络资源, 可以降低网络开销。
图 8为本发明基于伪线的业务流量处理系统实施例的结构示意图, 如图 8 所示, 该基于伪线的业务流量处理系统包括: 本地设备 81和对端设备 82。
其中, 本地设备 81, 用于接收来自用户边缘设备的业务流量; 确定所述 业务流量对应的伪线聚合组; 按照本地策略, 将所述业务流量通过所述伪线 聚合组内处于发送状态或活动状态的伪线转发到对端设备 82, 所述伪线聚合 组包括所述业务流量对应的一个以上伪线;
对端设备 82, 用于通过所述伪线聚合组内处于接收状态或活动状态的伪 线接收本地设备 81的业务流量, 将本地设备 81的业务流量转发所述对端设备 连接的用户边缘设备。
具体地, 本地设备 8 1按照本地策略, 将来自用户边缘设备的业务流量转 发到通过对应的伪线聚合组内处于发送状态或活动状态的伪线, 转发到对端 设备 82 ; 对端设备 82通过该伪线聚合组内处于接收状态或活动状态的伪线接 收本地设备 81的业务流量后, 将本地设备 81的业务流量转发对端设备 82连接 的用户边缘设备。 本实施例中的本地设备 81和对端设备 82的结构可以采用本 发明上述各个实施例中的任意一种基于伪线的业务流量处理设备的结构。
上述实施例中, 本地设备按照本地策略, 可以将来自用户边缘设备的业 务流量通过对应的伪线聚合组内处于发送状态或活动状态的伪线转发到对端 设备, 可以提高业务流量的平均收敛速度, 加快网络发生故障时的切换时间, 充分利用网络资源, 可以降低网络开销。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种基于伪线的业务流量处理方法, 其特征在于, 包括:
接收来自用户边缘设备的业务流量;
确定所述业务流量对应的伪线聚合组;
按照本地策略, 将所述业务流量通过所述伪线聚合组内处于发送状态或 活动状态的伪线转发到对端设备, 所述伪线聚合组包括所述业务流量对应的 一个以上伪线。
2、 根据权利要求 1所述的基于伪线的业务流量处理方法, 其特征在于, 所述确定所述业务流量对应的伪线聚合组, 包括:
确定所述业务流量对应的业务实例;
将所述业务实例对应的伪线聚合组, 确定为所述业务流量对应的伪线聚 合组。
3、根据权利要求 1或 2所述的基于伪线的业务流量处理方法,其特征在于, 还包括:
通过所述伪线聚合组内处于接收状态或活动状态的伪线接收所述对端设 备的业务流量;
将所述对端设备的业务流量转发到所述用户边缘设备。
4、根据权利要求 1或 2所述的基于伪线的业务流量处理方法,其特征在于, 所述按照本地策略, 将所述业务流量通过所述伪线聚合组内处于发送状态或 活动状态的伪线转发到对端设备之前, 包括:
获取本地设备的本地状态和各个对端设备的对端状态;
根据所述本地状态和对端状态,确定所述伪线聚合组内各个伪线的状态。
5、 根据权利要求 4所述的基于伪线的业务流量处理方法, 其特征在于, 所述根据所述本地状态和对端状态,确定所述伪线聚合组内各个伪线的状态, 包括: 若所述本地状态为故障状态, 将所述伪线聚合组内所有伪线的状态确定 为故障状态; 或
若所述本地状态为活动状态, 且所述对端状态为活动状态, 将所述伪线 或
若所述本地状态为活动状态, 且所述对端状态为备用状态, 将所述伪线 或
若所述本地状态为备用状态, 且所述对端状态为活动状态, 将所述伪线 或
若所述本地状态为备用状态, 且所述对端状态为备用状态, 将所述伪线 或
若所述伪线聚合组内的伪线两端的任一设备或链路发生故障, 则将所述 伪线聚合组内所有伪线的状态确定为故障状态。
6、 根据权利要求 1、 2或 5所述的基于伪线的业务流量处理方法, 其特征 在于, 还包括:
为同一业务流量对应的每个伪线分别建立一个入标签映射表项, 使对端 设备根据所述入标签映射表项从所述伪线接收业务流量; 或
为同一业务流量对应的伪线聚合组内所有伪线分配相同的入标签映射表
7、 根据权利要求 1、 2或 5所述的基于伪线的业务流量处理方法, 其特征 在于, 所述伪线的配置方法为:
在预建立的伪线的一端配置第一本地转发等价类信息,并指定对端设备, 在所述伪线的另一端配置第二本地转发等价类信息; 所述伪线的一端的设备发起伪线建立请求, 所述伪线建立请求包括所述 第一本地转发等价类信息;
所述伪线的另一端的设备接收到所述伪线建立请求后, 判断所述第一本 地转发等价类信息与所述第二本地转发等价类信息是否匹配, 如果是, 则接 受所述伪线建立请求, 并建立所述伪线。
8、 根据权利要求 1、 2或 5所述的基于伪线的业务流量处理方法, 其特征 在于, 所述伪线的配置方法为:
在预建立的伪线的一端配置第一本地转发等价类信息和第一对端转发等 价类信息, 在所述伪线的另一端配置第二本地转发等价类信息;
所述伪线的一端的设备发起伪线建立请求, 所述伪线建立请求包括所述 第一本地转发等价类信息和所述第一对端转发等价类信息;
所述伪线的另一端的设备接收到所述伪线建立请求后, 判断所述第一对 端转发等价类信息与所述第二本地转发等价类信息是否匹配, 如果是, 则接 受所述伪线建立请求, 并建立所述伪线。
9、 一种基于伪线的业务流量处理设备, 其特征在于, 包括:
第一接收模块, 用于接收来自用户边缘设备的业务流量;
伪线聚合组模块, 用于确定所述业务流量对应的伪线聚合组;
第一发送模块, 用于按照本地策略, 将所述业务流量通过所述伪线聚合 组内处于发送状态或活动状态的伪线转发到对端设备, 所述伪线聚合组包括 所述业务流量对应的一个以上伪线。
10、 根据权利要求 9所述的基于伪线的业务流量处理设备, 其特征在于, 所述伪线聚合组模块包括:
业务实例子模块, 用于确定所述业务流量对应的业务实例;
伪线聚合组子模块, 用于将所述业务实例对应的伪线聚合组, 确定为所 述业务流量对应的伪线聚合组。
11、根据权利要求 9或 10所述的基于伪线的业务流量处理设备, 其特征在 于, 还包括:
第二接收模块, 用于通过所述伪线聚合组内处于接收状态或活动状态的 伪线接收所述对端设备的业务流量;
第二发送模块, 用于将所述对端设备的业务流量转发到所述用户边缘设 备。
12、根据权利要求 9或 10所述的基于伪线的业务流量处理设备, 其特征在 于, 还包括:
获取模块, 用于获取本地设备的本地状态和各个对端设备的对端状态; 确定模块, 用于根据所述本地状态和对端状态, 确定所述伪线聚合组内 各个伪线的状态。
1 3、根据权利要求 12所述的基于伪线的业务流量处理设备, 其特征在于, 所述确定模块包括以下模块的任意一个或者多个:
第一确定子模块, 用于若所述本地状态为故障状态, 将所述伪线聚合组 内所有伪线的状态确定为故障状态;
第二确定子模块, 用于若所述本地状态为活动状态, 且所述对端状态为 状态确定为活动状态;
第三确定子模块, 用于若所述本地状态为活动状态, 且所述对端状态为 状态确定为接收状态;
第四确定子模块, 用于若所述本地状态为备用状态, 且所述对端状态为 状态确定为发送状态;
第五确定子模块, 用于若所述本地状态为备用状态, 且所述对端状态为 备用状态, 将所述伪线聚合
状态确定为休眠状态; 第六确定子模块, 用于若所述伪线聚合组内的伪线两端的任一设备或链 路发生故障, 则将所述伪线聚合组内所有伪线的状态确定为故障状态。
14、 一种基于伪线的业务流量处理系统, 其特征在于, 包括:
本地设备, 用于接收来自用户边缘设备的业务流量; 确定所述业务流量 对应的伪线聚合组; 按照本地策略, 将所述业务流量通过所述伪线聚合组内 处于发送状态或活动状态的伪线转发到对端设备, 所述伪线聚合组包括所述 业务流量对应的一个以上伪线; 对端设备, 用于通过所述伪线聚合组内处于接收状态或活动状态的伪 线接收来自所述本地设备的业务流量, 将来自所述本地设备的业务流量转 发到所述对端设备连接的用户边缘设备。
PCT/CN2010/079475 2009-12-04 2010-12-06 基于伪线的业务流量处理方法、设备和系统 WO2011066810A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012541314A JP5484590B2 (ja) 2009-12-04 2010-12-06 擬似ワイヤに基づいてサービストラヒックを処理するための方法、デバイスおよびシステム
EP10834243.7A EP2498454B1 (en) 2009-12-04 2010-12-06 Method, device and system for processing service traffic based on pseudo wires
US13/486,818 US20120236730A1 (en) 2009-12-04 2012-06-01 Method, device and system for processing service traffic based on pseudo wires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102529288A CN101710877B (zh) 2009-12-04 2009-12-04 基于伪线的业务流量处理方法、设备和系统
CN200910252928.8 2009-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/486,818 Continuation US20120236730A1 (en) 2009-12-04 2012-06-01 Method, device and system for processing service traffic based on pseudo wires

Publications (1)

Publication Number Publication Date
WO2011066810A1 true WO2011066810A1 (zh) 2011-06-09

Family

ID=42403638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079475 WO2011066810A1 (zh) 2009-12-04 2010-12-06 基于伪线的业务流量处理方法、设备和系统

Country Status (5)

Country Link
US (1) US20120236730A1 (zh)
EP (1) EP2498454B1 (zh)
JP (1) JP5484590B2 (zh)
CN (1) CN101710877B (zh)
WO (1) WO2011066810A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871810A4 (en) * 2012-08-16 2015-07-15 Zte Corp MESSAGE PROCEDURE, DEVICE AND SYSTEM
JP5794748B2 (ja) * 2012-06-29 2015-10-14 アライドテレシスホールディングス株式会社 スイッチ、送信方法、プログラム、記録媒体
JP5826381B2 (ja) * 2012-04-27 2015-12-02 アライドテレシスホールディングス株式会社 スイッチ、送信方法、プログラム、記録媒体
US20160036625A1 (en) * 2013-04-09 2016-02-04 Huawei Technologies Co., Ltd. Method and device for protecting service reliability and network virtualization system

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710877B (zh) * 2009-12-04 2012-02-15 华为技术有限公司 基于伪线的业务流量处理方法、设备和系统
CN101877677B (zh) * 2010-06-25 2014-08-13 中兴通讯股份有限公司 一种多协议标签交换业务隧道切换的方法及系统
US9059940B2 (en) * 2010-08-04 2015-06-16 Alcatel Lucent System and method for transport control protocol in a multi-chassis domain
WO2012105051A1 (ja) 2011-02-04 2012-08-09 富士通株式会社 通信システム、通信方法及び通信装置
EP2677702A4 (en) * 2011-04-27 2014-06-11 Huawei Tech Co Ltd METHOD AND DEVICE FOR LASER COMPENSATION
CN102263668A (zh) * 2011-08-25 2011-11-30 福建星网锐捷网络有限公司 Mpls网络中单向伪线路的实现方法、系统及装置
CN103178971B (zh) * 2011-12-20 2015-12-16 华为技术有限公司 Pon保护方法及装置
CN102571426B (zh) * 2011-12-29 2015-05-20 杭州华三通信技术有限公司 一种双归保护方法和装置
CN102547819B (zh) * 2012-01-06 2014-07-30 华为技术有限公司 1+1场景下解决双份流问题的方法
CN102611577A (zh) * 2012-03-02 2012-07-25 中兴通讯股份有限公司 一种基于ldp会话的pw保护方法、装置及系统
US20130308617A1 (en) * 2012-05-16 2013-11-21 International Business Machines Corporation Continuous Virtual Private Local Area Network (LAN) Service (VPLS) Over Wireline and Wireless Networks
CN102739533A (zh) * 2012-06-25 2012-10-17 中兴通讯股份有限公司 一种实现l3 vpn快速切换的方法和pe
US20140146664A1 (en) 2012-11-26 2014-05-29 Level 3 Communications, Llc Apparatus, system and method for packet switching
CN103905571B (zh) * 2012-12-26 2018-01-12 中国电信股份有限公司 用于更新地址信息的方法、装置和系统
US9042369B2 (en) * 2013-03-13 2015-05-26 Alcatel Lucent System and method for reflecting FEC route information
CN103249091B (zh) 2013-04-08 2016-03-02 华为技术有限公司 一种HQoS控制方法、RSG及HQoS控制系统
CN105207792A (zh) * 2014-05-30 2015-12-30 中国电信股份有限公司 非联动的伪线网关保护系统及其伪线网关保护方法
CN106992929A (zh) * 2016-01-21 2017-07-28 中兴通讯股份有限公司 一种伪线业务转发方法及装置
US9900229B2 (en) * 2016-01-29 2018-02-20 Microsoft Technology Licensing, Llc Network-connectivity detection
CN107819681A (zh) * 2016-09-12 2018-03-20 中兴通讯股份有限公司 伪线分载转发方法及边缘路由器
EP3512164B1 (en) 2016-09-30 2020-12-02 Huawei Technologies Co., Ltd. Pseudo wire load sharing method and apparatus
CN108809792B (zh) * 2017-04-26 2020-09-08 南京中兴新软件有限责任公司 一种报文数据控制的方法及装置
US11438279B2 (en) * 2018-07-23 2022-09-06 Pure Storage, Inc. Non-disruptive conversion of a clustered service from single-chassis to multi-chassis
CN111211957B (zh) * 2018-11-21 2021-10-01 华为技术有限公司 通信方法和装置
US10680964B1 (en) * 2018-11-26 2020-06-09 Mellanox Technologies Tlv Ltd. Rate limiting in a multi-chassis environment by exchanging information between peer network elements
US11368394B2 (en) * 2019-04-26 2022-06-21 Hewlett Packard Enterprise Development Lp Using labels in a virtualized device environment
WO2022003899A1 (ja) * 2020-07-02 2022-01-06 日本電信電話株式会社 伝送システムおよび伝送システムの中継方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572666A (zh) * 2009-06-05 2009-11-04 杭州华三通信技术有限公司 虚拟专用局域网服务网络中流量切换的方法和装置
CN101710877A (zh) * 2009-12-04 2010-05-19 华为技术有限公司 基于伪线的业务流量处理方法、设备和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007047479A2 (en) * 2005-10-12 2007-04-26 Hammerhead Systems Control plane to data plane binding
US8880699B2 (en) * 2005-10-20 2014-11-04 Fujitsu Limited Mapping services to a transport mechanism
US7724651B2 (en) * 2007-01-31 2010-05-25 Alcatel Lucent Redundant far-end pseudo-wire connectivity
CN100566299C (zh) * 2007-02-15 2009-12-02 杭州华三通讯技术有限公司 多协议标签交换业务分类处理方法及网络设备
US7746769B2 (en) * 2007-03-26 2010-06-29 Alcatel Lucent Management of redundant and multi-segment pseudo-wire
US8009558B2 (en) * 2007-04-12 2011-08-30 Cisco Technology, Inc. Pseudowire load balancing
US8780699B1 (en) * 2009-10-12 2014-07-15 Juniper Networks, Inc. Handling switchover of multi-homed connections in VPLS networks
US8705526B1 (en) * 2010-12-03 2014-04-22 Juniper Networks, Inc. Extending VPLS support for CE lag multi-homing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572666A (zh) * 2009-06-05 2009-11-04 杭州华三通信技术有限公司 虚拟专用局域网服务网络中流量切换的方法和装置
CN101710877A (zh) * 2009-12-04 2010-05-19 华为技术有限公司 基于伪线的业务流量处理方法、设备和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NETWORK WORKING GROUP, PREFERENTIAL FORWARDING STATUS BIT DEFINITION: DRAFT-IETF-PWE3-REDUNDANCY-BIT-01.TXT, 30 September 2008 (2008-09-30), XP015058822 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5826381B2 (ja) * 2012-04-27 2015-12-02 アライドテレシスホールディングス株式会社 スイッチ、送信方法、プログラム、記録媒体
JP5794748B2 (ja) * 2012-06-29 2015-10-14 アライドテレシスホールディングス株式会社 スイッチ、送信方法、プログラム、記録媒体
EP2871810A4 (en) * 2012-08-16 2015-07-15 Zte Corp MESSAGE PROCEDURE, DEVICE AND SYSTEM
US9647878B2 (en) 2012-08-16 2017-05-09 Zte Corporation Announcement method, device and system
US20160036625A1 (en) * 2013-04-09 2016-02-04 Huawei Technologies Co., Ltd. Method and device for protecting service reliability and network virtualization system
US9853856B2 (en) * 2013-04-09 2017-12-26 Huawei Technologies Co., Ltd. Method and device for protecting service reliability and network virtualization system

Also Published As

Publication number Publication date
JP2013513259A (ja) 2013-04-18
CN101710877B (zh) 2012-02-15
CN101710877A (zh) 2010-05-19
EP2498454B1 (en) 2018-05-23
US20120236730A1 (en) 2012-09-20
EP2498454A1 (en) 2012-09-12
JP5484590B2 (ja) 2014-05-07
EP2498454A4 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
WO2011066810A1 (zh) 基于伪线的业务流量处理方法、设备和系统
US10003531B2 (en) Method for establishing tunnel, method for allocating label, device and network system
US9769067B2 (en) Multiprotocol label switching traffic engineering tunnel establishing method and device
JP4899959B2 (ja) Vpn装置
ES2363410T3 (es) Método, dispositivo y sistema para la conmutación de tráfico en ingeniería de tráfico de conmutación multiprotocolo por etiqueta.
US7269135B2 (en) Methods and systems for providing redundant connectivity across a network using a tunneling protocol
US7283465B2 (en) Hierarchical virtual private LAN service protection scheme
KR101498320B1 (ko) 멀티포인트 및 루트형 멀티포인트 보호 스위칭
EP2314022B1 (en) Establishing pseudowires in packet switching networks
US20100023632A1 (en) Method and system for negotiating the bidirectional forwarding detection session discriminator of pseudo wire
Raj et al. A survey of IP and multiprotocol label switching fast reroute schemes
WO2006007769A1 (fr) Reflecteur d'etiquette de pseudo-circuit, appareil de peripherie, reseau prive virtuel a deux couches, et procede de fourniture d'un service de pseudo-circuit
WO2008148296A1 (fr) Procédé de détection des anomalies, système de communication et routeur de commutation d'étiquettes
WO2012159489A1 (zh) 一种伪线双归网络的切换方法、系统和双归属运营商设备
WO2012130034A1 (zh) 一种vpls快速重路由方法和设备
WO2018113294A1 (zh) 一种转发报文的方法、设备及系统
WO2012024952A1 (zh) 一种基于点到多点业务的路径切换方法及系统
WO2011144088A2 (zh) 一种业务保护方法及接入设备
WO2017124685A1 (zh) 一种业务转发方法及装置
WO2011050665A1 (zh) 一种实现端口快速重路由的方法及装置
WO2012013060A1 (zh) 通过伪线传输业务的方法及装置
WO2014026584A1 (zh) Trill网络互联方法、系统及设备
CN115499368A (zh) 路径保护方法及装置
WO2012016392A1 (zh) 多段伪线共享带宽的方法及系统、提供商边缘节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834243

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1348/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012541314

Country of ref document: JP

Ref document number: 2010834243

Country of ref document: EP