WO2011066678A1 - 一种直流输电换流阀故障电流实验检测装置 - Google Patents

一种直流输电换流阀故障电流实验检测装置 Download PDF

Info

Publication number
WO2011066678A1
WO2011066678A1 PCT/CN2009/001507 CN2009001507W WO2011066678A1 WO 2011066678 A1 WO2011066678 A1 WO 2011066678A1 CN 2009001507 W CN2009001507 W CN 2009001507W WO 2011066678 A1 WO2011066678 A1 WO 2011066678A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
valve
voltage
isolation valve
loop
Prior art date
Application number
PCT/CN2009/001507
Other languages
English (en)
French (fr)
Inventor
查鲲鹏
高冲
温家良
张新刚
贺之渊
Original Assignee
中国电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院 filed Critical 中国电力科学研究院
Priority to US12/679,301 priority Critical patent/US8339153B2/en
Publication of WO2011066678A1 publication Critical patent/WO2011066678A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/263Circuits therefor for testing thyristors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/333Testing of the switching capacity of high-voltage circuit-breakers ; Testing of breaking capacity or related variables, e.g. post arc current or transient recovery voltage
    • G01R31/3333Apparatus, systems or circuits therefor
    • G01R31/3336Synthetic testing, i.e. with separate current and voltage generators simulating distance fault conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies

Definitions

  • the invention relates to a DC transmission converter valve detecting device, in particular to a fault current experiment detecting device for adapting a fault function of a converter valve.
  • the operation test of the converter valve is an important means to verify the design and manufacturing level of the HVDC converter valve and improve its reliability.
  • the fault current test is an important part of the operation test. Its main purpose is to verify whether the design of the maximum current, voltage and temperature stress caused by the short-circuit current of the converter valve is correct. It mainly includes the following two tests:
  • the synthetic test method is generally used in the world for the fault current test of the DC transmission converter valve.
  • the application number is 200810236505. 2 discloses a "synthesis method for the operation test of the high-voltage direct current transmission converter valve", which is taken from the power system. After the energy is passed, the current source is used to test the test valve. The independent voltage source and current source are used, which reduces the capacity of the test equipment and reduces the cost of the test equipment.
  • the same test method is carried out with ABB and Siemens. The same: Using a high-current loop 6-pulse rectifier bridge to provide the required fault current by simulating the bridge arm short circuit, the resonant high-voltage loop provides the required test voltage.
  • the test has a great impact on the power supply system, and requires
  • the power supply system has a very high short-circuit capacity, which is not conducive to the voltage stability of the power supply system, and easily affects the normal operation of the remaining loads in the power supply system.
  • the isolation valve used to isolate the high-voltage circuit and the high-current circuit will be subjected to the same test valve.
  • Fault current intensity which greatly reduces the safety and reliability of the test device Sex, in addition to electricity
  • the current peak and duration of the fault current provided by the force system are poorly adjustable and inflexible. Summary of the invention
  • the invention provides a device capable of performing a single-wave, multi-wave test sample valve fault current experiment. The solution is disconnected from the power system when the fault current is generated, and the voltage of the supplemental circuit and the resonant circuit parameter are utilized.
  • a DC transmission converter valve fault current experimental detection device comprising a high voltage small current loop and a low voltage large current loop, wherein the experimental detection device includes a fault current
  • the circuit, the fault circuit loop includes a resonant circuit, and the high voltage small current loop, the low voltage large current loop, and the fault current loop are respectively connected in series with the sample converter valve Vt.
  • the resonant circuit is provided with a switch between the sample converter valve Vt and the power system.
  • the high voltage small current loop includes a high voltage loop, a capacitor C, an inductor L1, an isolation valve V21, and an isolation valve V22; the high voltage loop, the inductor L1, and the sample converter valve Vt are connected in series, One end of the capacitor C is connected between the inductor L1 and the high voltage circuit, and the other end is connected between the sample converter valve Vt and the high voltage circuit, and the isolation valve V21 and the isolation valve V22 are connected in parallel to the inductor L1 and the sample.
  • the low-pressure high-current circuit includes an isolation valve V41 and a 6-pulse rectifier bridge, and the isolation valve V41, 6-pulse rectifier bridge and the sample converter valve Vt are sequentially connected in series to form a loop.
  • the fault current loop includes the same resonant tank, the resonant loop B, and the resonant tank (:, respectively, connected in series with the sample isolation valve Vt.
  • the resonant circuit A is composed of a complementary circuit, a switch S1, an inductor Lrl, an isolation valve V61, a sample isolation valve Vt and a capacitor C3 in series;
  • the resonant circuit B is supplemented by a complementary circuit
  • the switch S2, the inductor Lr2, the isolation valve V62, the sample isolation valve Vt and the capacitor C4 are connected in series;
  • the resonant circuit C is composed of a complementary circuit, a switch S3, an inductor Lr3, an isolation valve V63, a sample isolation valve Vt, and
  • the capacitor C5 is formed in series in series.
  • the invention firstly uses the current heating principle to heat the sample converter valve through the 6-pulse rectifier bridge of the high-voltage circuit and the high-current circuit to achieve the test before the fault current test of the IEC standard 60700-1.
  • Requirements that is, to allow the test product converter valve or the sample converter valve assembly to operate to achieve maximum continuous operation of the thyristor junction temperature, and then provide the required fault current by the fault current loop for experimentation, this solution avoids ABB, Siemens test plan
  • the power system connected to the 6-pulse rectifier bridge is required to provide the fault current, and a separate circuit is used to generate the fault current to prevent short-circuit shock to the power system.
  • the scheme consists of a plurality of identical, independent resonant circuits.
  • the multi-wave fault test of the sample converter valve is performed to increase the safety of the test device, and a set of reactor configurations is used to reduce the test device.
  • the volume and cost, the flexibility and adjustability of the fault current peak and duration can be achieved by adjusting the voltage of the complementary circuit.
  • Figure 1 is a schematic diagram of the circuit connection of the present invention
  • FIG. 2 is a schematic diagram of a single resonant circuit of the present invention
  • FIG. 3 is a triggering timing diagram of a single wave fault current test of the present invention
  • FIG. 4 is a timing diagram of a multi-wave fault current test triggering of the present invention.
  • the scheme mainly includes three parts: high-voltage small current loop, low-voltage high-current loop and fault current loop.
  • the high-voltage, low-voltage, high-current and small-current standards in each loop are all in accordance with IEC 60700-1. The standards are the same.
  • the fault current loop includes a plurality of resonant loops, each resonant loop and the high voltage small current loop and the low voltage large current loop are connected in series with the sample converter valve Vt, and the fault current is separately provided by the resonant loop, which can reduce the capacity of the test device, and the sample is commutated.
  • the voltage and current required for wide Vt are respectively composed of high-voltage small current loop and low-voltage high-current loop.
  • the voltage and current total capacity are smaller than one test device.
  • the independent fault current loop can reduce the impact on the system.
  • the fault current loop is connected between the sample converter valve and the power system, including the resonant circuit A, the resonant circuit B, and the resonant circuit C, wherein the complementary circuit, the switch S1, the inductor Lrl, the isolation valve V61, and the sample exchange flow width Vt
  • the capacitor C3 is connected in series to form a resonant circuit A; the complementary circuit, the switch S2, the inductor Lr2, the isolation valve V62, the sample converter valve Vt and the capacitor C4 are sequentially connected in series to form a resonant circuit B; the complementary circuit, the switch S3, the inductor Lr3, isolation valve V63, sample converter valve Vt and capacitor C5 are connected in series to form a resonant circuit C.
  • the complementary circuit is used to charge the capacitor C3, the capacitor C4 and the capacitor C5. Adjusting the voltage of the complementary circuit can change the discharge voltage of the capacitor C3, the capacitor C4 and the capacitor C5, thereby changing the peak value of the fault current required for the experiment.
  • the duration of the fault current can be varied by changing the parameters of the resonant tank.
  • the low-voltage large current circuit includes an isolation valve V41 and a 6-pulse rectifier bridge, wherein the isolation valve V41, the 6-pulse rectifier bridge and the sample-swapping wide Vt are sequentially connected in series to form a loop.
  • the high-voltage small-current circuit includes a high-voltage circuit, a capacitor (:, an inductor L1, an isolation valve V21, and an isolation valve V22, and the circuit connection is: a high-voltage circuit, an inductor L1, a sample converter valve Vt are connected in series, and one end of the capacitor C is connected to the inductor. Between L1 and the high-voltage circuit, the other end is connected between the sample converter valve Vt and the high-pressure circuit, and the isolation valve V21 and the isolation valve V22 are connected in parallel and connected in series between the inductor L1 and the sample converter valve Vt.
  • the capacitor C is energized, the voltage of the high voltage circuit is greater than the voltage of the compensation circuit in the fault current, and the voltage of the high voltage circuit can be adjusted according to the experimental situation and the condition of the sample valve Vt.
  • the isolation valve V41 in the low-voltage high-current circuit is triggered to start the high-current circuit, so that the test current-reducing valve Vt passes the current, and then the isolation valve V21/V22 is triggered to turn on the high-voltage small-current circuit, so that the test valve Vt is subjected to positive Reverse trip voltage, until stable, so that the current value of the sample converter valve Vt reaches 5000A, the voltage value reaches 14kV when the sample converter valve Vt is 5 thyristor stages, and the sample converter valve Vt is 6 thyristors When the stage reaches 16kV, after running to the steady state maximum junction temperature, the fault current test is started.
  • the C3, capacitors C4 and C5 are all punched to the appropriate voltage by the complementary circuit.
  • the voltage on the capacitor C is different according to the fault current duration and peak value required by the test (the capacitor C charging voltage range is 0-4kV). Then, the switch S1, the switch S2, and the switch S3 are turned off, thereby avoiding the impact on the system and ensuring the charging time.
  • the trigger isolation valve V61, the inductor Lrl and the capacitor C3 form a resonant circuit, and the capacitor C3 is discharged through the inductor Lrl, the isolation valve V61, and the sample converter valve Vt to generate a faulty sinusoidal half-wave current, this sine
  • the half-wave current is the single-wave fault current, which is the fault current required to test the sample valve Vt.
  • the single-wave fault current of the converter valve trigger timing first triggers the isolation valve V61, the fault current loop inductance Lrl and the capacitor C3 resonate to form a sinusoidal half-wave current through the sample converter valve Vt; Valve V21, so that capacitor C and inductor L1 form a resonant circuit, thereby making capacitor C
  • the voltage is reversed; then the isolation valve V22 is triggered to apply the voltage on the capacitor C to the sample converter valve Vt, and then the high voltage compensation circuit is controlled to change the voltage on the capacitor C from negative to forward voltage, and the isolation valve V21 is triggered.
  • the forward voltage can be applied to the sample converter valve Vt, which is the same as the forward voltage peak of the converter valve in the actual project. Since the voltage waveform on the converter valve after the single-wave fault is increased from the reverse voltage to the forward voltage in the actual working condition, the isolation valve V21 and the isolation valve V22 are triggered to make the voltage on the sample converter valve Vt. Consistent with reality.
  • the compensation loop voltage of the fault current part has continuous adjustability, and the amplitude of the sinusoidal half-wave current is adjusted by adjusting the charging voltage applied to the capacitor C3 by the complementary circuit.
  • the voltage on the capacitor C is changed from negative to forward voltage, and the isolation valve V21 is triggered, and the forward high voltage is applied to the sample converter valve Vt.
  • the first wave of the multi-wave fault current test is the same as the single-wave fault current test.
  • the capacitor C3 is charged, the switch S1 is opened, and the isolation valve V61 is triggered to pass the first fault to the sample converter valve Vt.
  • Current waveform, while C3 is charging, capacitor C4 and capacitor C5 are all charged to 4KV voltage.
  • Switch S2 and switch S3 are disconnected from switch SI-, and then switch isolation valve V62 and isolation valve V63 to test valve Vt.
  • each isolation valve of multi-wave fault current is as follows. First, the isolation valve V61 is triggered, and the fault current loop inductance Lrl and the capacitor C3 resonate to form a sinusoidal half-wave current through the sample converter valve Vt, and then the isolation valve V21 is triggered to make the capacitor C and the inductor L1 form a resonant circuit, thereby reversing the voltage on the capacitor C; then triggering the isolation valve V22, so that the voltage on the capacitor C is applied to the sample converter valve, and the actual operation of the converter valve Reverse voltage waveform is the same (actual engineering multiple-wave fault current after each wave
  • the sample converter valve ⁇ the negative voltage of the piano, after the third wave, the converter valve no longer withstands the voltage), and then the capacitor C voltage is changed to the forward high voltage through the high voltage circuit.
  • the isolation valve V62 and the isolation valve V63 repeat the first wave process, and sequentially trigger the isolation valve V62 and the isolation valve V63, so that the fault current waveform formed by the resonant circuit formed by the inductor Lr2 and the capacitor C4 and the capacitor Lr3 and the capacitor C5 is sequentially applied to the sample converter valve Vt.
  • the third wave of the high voltage circuit no longer injects current, that is, the capacitor C current is no longer reversed and does not trigger the isolation valve V21.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

一种直流输电换流阀故障电流实验检测装置 技术领域
本发明涉及一种直流输电换流阀检测装置, 具体涉及一种对换流阀适应故 障能力的故障电流实验检测装置。 背景技术
随着高压直流输电技术在电力系统中应用的逐步推广, 电力传输中的核心 部件——高压直流输电换流阀, 其工作的可靠性成为电力系统安全的关键。 对 换流阀进行的运行试验, 是验证高压直流输电换流阀设计和制造水平、 提高其 可靠性的重要手段。 故障电流试验作为运行试验的重要组成部分, 其主要目的 是验证换流阀承受短路电流引起的最大电流、 电压和温度应力作用的设计是否 正确的, 主要包括以下两种试验:
a)后加正压的单波次故障电流试验——抑制一个最大幅值的单波次故障电 流, 从最高温度开始的, 跟着闭锁发生的反向和正向电压, 包括任何甩负荷造 成的过电压;
b ) 无后加正压的多波次故障电流试验——在与单波次试验相同的条件下, 直到断路器跳闸前, 继续存在多波次故障电流, 但不再施加正向电压, 最后一 个故障电流波后不再施加电压。
目前国际上普遍采用合成试验方法来进行直流输电换流阀的故障电流试 验, 如申请号为 200810236505. 2中公开了 "一种高压直流输电换流阀运行试验 的合成方法", 从电力系统取能后, 再投入电流源对试品阀进行实验, 利用了独 立的电压源和电流源, 减少了试验设备的容量, 降低了试验设备的费用, 但和 ABB公司、西门子公司进行同样试验的方法一样: 利用大电流回路 6脉冲整流桥 通过模拟桥臂短路来提供所需的故障电流, 谐振高压回路提供所需的试验电压, 采用这种试验方法, 试验对供电系统的冲击很大, 同时要求供电系统具有非常 高的短路容量, 不利于供电系统的电压稳定, 容易影响该供电系统中其余负荷 的正常运行, 同时用于隔离高压回路和大电流回路的隔离阀将经受同试品阀相 同的故障电流强度, 这极大的降低了试验装置的安全行和可靠性, 此外通过电 力系统提供的故障电流的电流峰值和持续时间可调性差, 不灵活。 . 发明内容
为解决现有技术中: (1 ) 换流阀实验中产生的故障电流对电力系统的冲击 性问题, (2) 电力系统为容纳故障电流而需要高短路容量问题, (3 ) 电力系统 提供的故障电流的电流峰值和持续时间可调性差、 不灵活的问题。 本发明提供 一种可进行单波次、 多波次试品换阀故障电流实验的装置, 本方案在故障电流 产生时与电力系统断开连接, 并且利用调整补能回路的电压和谐振回路参数, 实现故障电流峰值和持续时间调整, 具体方案如下: 一种直流输电换流阀故障 电流实验检测装置, 包括高压小电流回路和低压大电流回路, 其特征在于, 所 述实验检测装置包括故障电流回路, 所述故障电路回路包括谐振回路, 所述高 压小电流回路、 低压大电流回路和故障电流回路分别与试品换流阀 Vt串接。
本发明的另一优选方式: 所述谐振回路在试品换流阀 Vt与电力系统之间安 装有开关。
本发明的另一优选方式: 所述高压小电流回路包括高压回路、 电容 C、 电感 Ll、 隔离阀 V21和隔离阀 V22; 所述高压回路、 电感 L1和试品换流阀 Vt依次串 接, 所述电容 C一端接在电感 L1与高压回路之间, 另一端接在试品换流阀 Vt 和高压回路之间, 所述隔离阀 V21、 隔离阀 V22并联后串接在电感 L1和试品换 流阀 Vt之间; 所述低压大电流回路包括隔离阀 V41和 6脉动整流桥, 所述隔离 阀 V41、 6脉动整流桥和试品换流阀 Vt依次串接组成回路。
本发明的另一优选方式: 所述故障电流回路包括分别与试品隔离阀 Vt串接 的相同谐振回路 、 谐振回路 B和谐振回路 (:。
本发明的另一优选方式: 所述谐振回路 A由补能回路、 开关 Sl、 电感 Lrl、 隔离阀 V61、试品隔离阀 Vt和电容 C3依次串接构成; 所述谐振回路 B由补能回 路、 开关 S2、 电感 Lr2、 隔离阀 V62、 试品隔离阀 Vt和电容 C4依次串接构成; 所述谐振回路 C由补能回路、 开关 S3、 电感 Lr3、 隔离阀 V63、 试品隔离阀 Vt 和电容 C5依次串接构成。
本发明首先通过高压回路和大电流回路的 6脉冲整流桥利用电流加热原理 对试品换流阀进行加热,以达到 IEC标准 60700-1的故障电流试验运行前的试验 要求, 即, 使试品换流阀或者试品换流阀组件运行达到最大持续运行晶闸管结 温, 而后由故障电流回路提供所需的故障电流进行实验, 本方案避免了 ABB, 西 门子试验方案中, 需要 6脉冲整流桥所接电力系统提供故障电流, 而采用单独 的电路产生故障电流, 防止了对电力系统的短路冲击。 本方案由多个同样的、 独立谐振电路组成, 通过开关控制, 对试品换流阀进行多波次故障试验, 增大 试验装置的安全性, 并且采用一组电抗器配置, 降低了试验装置的体积以及造 价, 利用调整补能回路的电压实现故障电流峰值和持续时间的灵活性、 可调性。 附图说明
图 1 是本发明电路连接原理图
图 2 是本发明单次谐振回路示意图
图 3 是本发明单波次故障电流试验触发时序图
图 4 是本发明多波次故障电流试验触发时序图 具体实施方式
如图 1 所示, 本方案主要包括高压小电流回路, 低压大电流回路和故障电 流回路三部分, 其中各回路中的高压、 低压、 大电流、 小电流标准全部与 IEC 的 60700-1 中的标准一致。 故障电流回路包括多个谐振回路, 各谐振回路与高 压小电流回路和低压大电流回路与试品换流阀 Vt串接, 由谐振回路单独提供故 障电流, 可以降低试验装置容量, 试品换流阔 Vt需要的电压、 电流分别用高压 小电流回路, 低压大电流回路构成, 比一个试验装置提供电压、 电流总容量要 小, 独立的故障电流回路可降低对系统的冲击。
故障电流回路连接在试品换流阀与电力系统之间, 包括谐振回路 A、谐振回 路 B和谐振回路 C, 其中补能回路、 开关 Sl、 电感 Lrl、 隔离阀 V61、 试品换流 阔 Vt和电容 C3依次串接组成谐振电路 A; 补能回路、 开关 S2、 电感 Lr2、 隔离 阀 V62、试品换流阀 Vt和电容 C4依次串接组成谐振电路 B;补能回路、开关 S3、 电感 Lr3、 隔离阀 V63、 试品换流阀 Vt和电容 C5依次串接组成谐振电路 C。 补 能回路用于对电容 C3、 电容 C4和电容 C5充电, 调整补能回路的电压可以改变 电容 C3、 电容 C4和电容 C5的放电电压, 进而改变实验所需的故障电流峰值, 通过改变谐振回路的参数可以改变故障电流的持续时间。
低庄大电流回路包括隔离阀 V41和 6脉动整流桥, 其中隔离阀 V41、 6脉动 整流桥和试品换流阔 Vt依次串接组成回路。
高压小电流回路包括高压回路、电容(:、电感 Ll、隔离阀 V21和隔离阀 V22, 其电路连接为: 高压回路、 电感 Ll、 试品换流阀 Vt依次串接, 电容 C一端连接 在电感 L1与高压回路之间, 另一端连接在试品换流阀 Vt和高压回路之间, 隔 离阀 V21、隔离阀 V22并联后串接在电感 L1和试品换流阀 Vt之间。高压回路对 电容 C进行补能, 高压回路补能电压大于故障电流中补能回路的电压, 而且高 压回路的电压可以视实验情况及试品换流阀 Vt的情况进行调整。
本方案具体工作过程如下- 首先对试品换流阀 Vt加热进行稳态试验, 以达到 IEC标准 60700-1的故障 电流试验运行前的试验要求 (使换流阀或者换流阀组件运行达到最大持续运行 晶闸管结温)。 首先触发低压大电流回路中的隔离阀 V41启动大电流回路, 使试 品换流阀 Vt上通过电流, 然后触发隔离阀 V21/V22接通高压小电流回路, 使试 品换流阀 Vt承受正反向跳变电压, 直至稳定, 使试品换流阀 Vt上电流值达到 5000A, 电压值在试品换流阀 Vt为 5个晶闸管级时达到 14kV,试品换流阀 Vt为 6个晶闸管级时达到 16kV,运行至稳态最大结温后, 开始进行故障电流试验。 进 行故障电流试验之前用补能回路将 C3、 电容 C4和 C5均冲压至合适电压, 根据 试验要求的故障电流持续时间和峰值的不同, 电容 C上电压不同(电容 C充电电 压范围为 0-4kV),然后断开开关 S1、开关 S2和开关 S3,从而避免对系统的冲击, 并保证充电时间。
如图 1、 2所示, 触发隔离阀 V61, 电感 Lrl与电容 C3构成谐振回路, 电容 C3通过电感 Lrl、 隔离阀 V61、 试品换流阀 Vt放电, 产生一个故障正弦半波电 流, 这个正弦半波电流即为单波次故障电流, 也就是试验试品换流阀 Vt所需的 故障电流, 以上完成一次单波次的故障电流实验。
如图 3所示, 单波次故障电流的换流阀触发时序, 首先触发隔离阀 V61,故 障电流回路电感 Lrl和电容 C3谐振形成一个正弦半波电流通过试品换流阀 Vt; 然后触发隔离阀 V21, 使电容 C和电感 L1构成一个谐振回路, 从而使电容 C上 的电压反向; 然后触发隔离阀 V22, 使电容 C上电压加在试品换流阀 Vt上,之后 控制高压补能回路将电容 C上电压从负变为正向电压, 同时触发隔离阀 V21使 正向电压可以加在试品换流阀 Vt上, 与实际工程中换流阀承受的正向电压峰值 相同。 由于实际工况中在单次波故障后换流阀上承受的电压波形为从反向电压 上升为正向电压, 触发隔离阀 V21和隔离阀 V22是为了使试品换流阀 Vt上的电 压与实际一致。
根据试验要求的故障电流持续时间和峰值的不同, 故障电流部分的补能回 路电压具有连续可调性, 通过调节补能回路加在电容 C3上的充电电压来调节正 弦半波电流幅值, 通过调节谐振回路参数, 调节谐振回路的半波振荡周期,在试 品换流阀 Vt上通过的电流过零时刻,触发隔离阀 V22,将高压回路的负向高电压 施加在试品换流阀 Vt上, 在高压补能回路将电容 C上电压从负变为正向电压, 同时触发隔离阀 V21, 将正向高压加与试品换流阀 Vt上。
如图 4所示, 多波次故障电流试验第一波次同单次波故障电流试验一样, 电容 C3充电, 断开开关 Sl, 触发隔离阀 V61对试品换流阀 Vt通过第一个故障 电流波形, 在 C3充电的同时, 电容 C4、 电容 C5均一同充电至 4KV电压, 开关 S2、 开关 S3同开关 SI—同断开, 依次触发隔离阀 V62、 隔离阀 V63对试品换流 阀 Vt上通过第二个、 第三个故障电流, 在第一个故障电流波次和第二个故障电 流波次后的注入高压回路半波正弦电流, 在电流过零后, 触发隔离阀 V22, 使电 容反向电压完全加于试品换流阀 Vt上, 然后通过高压回路补能电路将电容 C电 压反向, 可完成三周波故障电流试验。 因为在测试过程中电容 C3、 电容 C4和电 容 C5充电完成后, 就断开开关 Sl、 开关 S2和开关 S3与电力系统隔离, 因此试 验产生的故障电流不会对电力系统产生影响, 解决了电力系统需要高容量, 易 冲击的问题。
多波次故障电流的各隔离阀触发时序如下, 首先触发隔离阀 V61,故障电流 回路电感 Lrl和电容 C3谐振形成一个正弦半波电流通过试品换流阀 Vt,然后触 发隔离阀 V21, 使电容 C和电感 L1构成一个谐振回路, 从而使电容 C上的电压 反向; 然后触发隔离阀 V22, 使电容 C上的电压加在试品换流阀上, 与实际工程 中换流阀上承受的反向电压波形相同 (实际工程多次波故障电流在每个波次后 试品换流阀 ^:琴负 电压, 第三个波次后换流阀上不再承受电压), .然后通 过高压回路补能电路将电容 C 电压变为正向高压。 然后重复第一个波次过程, 依次触发隔离阀 V62、 隔离阀 V63, 使电感 Lr2和电容 C4以及电容 Lr3和电容 C5构成的谐振回路形成的故障电流波形依次加在试品换流阀 Vt上,但第三个波 次高压回路不再注入电流, 即电容 C电流不再反向不触发隔离阀 V21。

Claims

1、 一种直流输电换流阀故障电流实验检测装置, 包括高压小电流回路和低 压大电流回路, 其特征在于, 所述实验检测装置包括故障电流回路, 所述故障 电路回路包括谐振回路, 所述高压小电流回路、 低压大电流回路和故障电流回 路分别与试品换流阀 vt串接。
2、 如权利要求 1所述的实验检测装置, 其特征在于: 所述谐振回路在试品
换流阀 Vt与电力系统之间安装有开关。
3、 如权利要求 2所述的实验检测装置, 其特征在于: 所述高压小电流回路 包括高压回路、 电容 (、 电感 Ll、 隔离阀 V21和隔离阀 V22; 所述高压回路、 电 感 L1和试品换流阀 Vt依次串接,所述电容 C一端接在电感 L1与高压回路之间,
另一端接在试品换流阀 Vt和高压回路之间, 所述隔离阀 V21、 隔离阀 V22并联 后串接在电感 L1和试品换流阀 Vt之间;
所述低压大电流回路包括隔离阀 V41和 6脉动整流桥, 所述隔离阀 V41、 6 脉动整流桥和试品换流阀 Vt依次串接组成回路。
4、 如权利要求 3所述的实验检测装置, 其特征在于, 所述谐振回路包括相 同且独立的谐振回路 A、 谐振回路 B和谐振回路 (:。
5、 如^ ί利要求 4所述的实验检测装置, 其特征在于, 所述谐振回路 Α由补 能回路、 开关 Sl、 电感 Lrl、 隔离阀 V61、 试品隔离阀 Vt和电容 C3依次串接构 成;
所述谐振回路 B由补能回路、 开关 S2、 电感 Lr2、 隔离阀 V62、 试品隔离阀 Vt和电容 C4依次串接构成;
所述谐振回路 C由补能回路、 开关 S3、 电感 Lr3、 隔离阀 V63、 试品隔离 阀 Vt和电容 C5依次串接构成。
PCT/CN2009/001507 2009-12-04 2009-12-18 一种直流输电换流阀故障电流实验检测装置 WO2011066678A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/679,301 US8339153B2 (en) 2009-12-04 2009-12-18 Fault current test equipment of direct current thyristor valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102413313A CN101706541B (zh) 2009-12-04 2009-12-04 一种直流输电换流阀故障电流实验检测装置
CN200910241331.3 2009-12-04

Publications (1)

Publication Number Publication Date
WO2011066678A1 true WO2011066678A1 (zh) 2011-06-09

Family

ID=42376780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001507 WO2011066678A1 (zh) 2009-12-04 2009-12-18 一种直流输电换流阀故障电流实验检测装置

Country Status (3)

Country Link
US (1) US8339153B2 (zh)
CN (1) CN101706541B (zh)
WO (1) WO2011066678A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645399A (zh) * 2013-11-30 2014-03-19 许继电气股份有限公司 一种换流阀子模块自动测试系统及其晶闸管测试电路
CN109557391A (zh) * 2018-11-21 2019-04-02 中电普瑞电力工程有限公司 柔性直流换流阀故障模拟机构以及系统

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937058B (zh) * 2010-08-30 2013-07-24 中国西电电气股份有限公司 一种换流阀运行试验多波次故障电流试验装置及试验方法
CN101937057B (zh) * 2010-08-30 2012-10-10 中国西电电气股份有限公司 一种直流输电工程用换流阀运行试验合成回路
CN101937059B (zh) * 2010-08-30 2013-02-13 中国西电电气股份有限公司 一种换流阀运行试验单波次故障电流试验装置及试验方法
CN101944762B (zh) * 2010-08-30 2013-01-09 中国西电电气股份有限公司 一种换流阀运行试验用可控恒压快速连续充电电压源
CN101980035B (zh) * 2010-09-10 2014-03-12 中国电力科学研究院 一种换流阀用晶闸管承受最严酷电流应力的试验设计与分析方法
CN101975915B (zh) * 2010-09-20 2013-12-18 中国电力科学研究院 一种新型直流换流阀晶闸管电流断续保护试验方法
CN102486517B (zh) * 2010-12-01 2015-11-25 中国电力科学研究院 冲击电压复合的高压直流输电换流阀故障电流试验方法
CN102486500B (zh) * 2010-12-01 2014-10-01 中国电力科学研究院 冲击电压复合的高压直流输电换流阀故障电流试验装置
CN102486515B (zh) * 2010-12-01 2015-04-29 中国电力科学研究院 一种高压直流输电换流阀故障电流复合试验方法
CN102129034B (zh) * 2011-02-11 2014-07-23 中国电力科学研究院 一种柔性直流输电mmc阀的故障电流运行试验方法
CN102175942B (zh) * 2011-02-11 2014-07-02 中国电力科学研究院 一种柔性直流输电mmc高压子模块的稳态运行试验方法
KR101326327B1 (ko) * 2012-05-22 2013-11-11 명지대학교 산학협력단 사이리스터 밸브의 합성 시험 장치
CN103124063B (zh) * 2012-07-13 2015-05-13 中电普瑞科技有限公司 一种压比可变的避雷器过压保护装置和实现方法
CN103018663B (zh) * 2012-11-19 2014-12-31 国网智能电网研究院 一种柔性直流输电mmc阀的过电流关断试验方法及系统
CN103063888B (zh) * 2012-12-13 2015-03-25 国网智能电网研究院 一种mmc阀过流关断试验的触发时序系统及其试验方法
CN103163405A (zh) * 2013-02-20 2013-06-19 国网智能电网研究院 一种mmc阀稳态运行试验装置辅助阀电容器的参数设计方法
CN103176117B (zh) * 2013-02-27 2016-01-20 国网智能电网研究院 一种基于半波法的大功率晶闸管关断特性测试装置
CN104422849A (zh) * 2013-09-09 2015-03-18 南京南瑞继保电气有限公司 一种短路模拟试验电路及其试验方法
CN103838934B (zh) * 2014-03-19 2017-01-25 国家电网公司 一种全关断过程的晶闸管宏模型及其实现方法
CN104977480B (zh) * 2014-04-02 2017-12-26 国家电网公司 一种高压直流输电换流阀故障电流试验装置及其试验方法
CN103941124A (zh) * 2014-04-17 2014-07-23 许继电气股份有限公司 一种直流输电换流阀饱和电抗器饱和特性测试方法
CN103941141B (zh) 2014-04-29 2017-06-13 华为技术有限公司 一种漏电流检测电路、直流高压系统、检测方法和装置
EP2975420A1 (en) * 2014-07-18 2016-01-20 Alstom Technology Ltd Synthetic test circuit
WO2016009081A1 (en) * 2014-07-18 2016-01-21 Alstom Technology Ltd Synthetic test circuit
EP3183589A1 (en) * 2014-08-19 2017-06-28 General Electric Technology GmbH Synthetic test circuit
WO2016034523A1 (en) * 2014-09-02 2016-03-10 Alstom Technology Ltd Synthetic test circuit
WO2016046047A1 (en) * 2014-09-22 2016-03-31 Alstom Technology Ltd Synthetic test circuit
CN105137212B (zh) * 2015-06-11 2016-08-24 中国西电电气股份有限公司 一种高速电力电子开关实现换流阀极线间短路试验的方法
CN105006987A (zh) * 2015-07-29 2015-10-28 浙江大学 一种mmc子模块电容值的选取方法
CN105467308B (zh) * 2015-11-18 2018-02-23 中国西电电气股份有限公司 一种柔性直流输电工程电压源换流器阀短路电流试验方法
CN105372586B (zh) * 2015-11-18 2018-02-23 中国西电电气股份有限公司 一种柔性直流输电电压源换流器阀运行试验装置
CN105467307B (zh) * 2015-11-18 2018-02-23 中国西电电气股份有限公司 柔性直流输电工程电压源换流器阀igbt过电流关断试验装置
CN105223499B (zh) * 2015-11-18 2018-07-31 中国西电电气股份有限公司 柔性直流输电工程电压源换流器阀igbt过电流关断的试验方法
CN105823945B (zh) * 2016-04-13 2018-10-23 国网福建省电力有限公司 一种真双极柔性直流无源逆变试验装置及试验方法
KR101923690B1 (ko) * 2016-11-11 2018-11-29 엘에스산전 주식회사 전력보상장치의 서브모듈성능시험을 위한 합성시험회로 및 그 시험방법
CN106932669B (zh) * 2017-01-23 2019-09-17 特变电工新疆新能源股份有限公司 柔性直流输电系统中阀段短路试验装置及试验方法
CN107179498A (zh) * 2017-01-25 2017-09-19 全球能源互联网研究院 一种用于柔性直流输电mmc阀的检验电路及方法
CN108802461B (zh) * 2017-04-28 2020-12-18 南京理工大学 一种用于直流和瞬态过程测试的高压分压器装置
CN111273096B (zh) * 2018-12-04 2021-11-23 西安高压电器研究院有限责任公司 一种晶闸管阀的电气试验装置及其电源装置
CN110676808B (zh) * 2019-09-17 2021-12-03 深圳市晶扬电子有限公司 可控硅故障自测试方法、电路、连接器及电器设备
JP7294036B2 (ja) * 2019-09-30 2023-06-20 三菱電機株式会社 半導体試験装置、半導体装置の試験方法および半導体装置の製造方法
CN112824917A (zh) * 2019-11-20 2021-05-21 西安高压电器研究院有限责任公司 高压直流断路器的性能检测系统
CN110927551B (zh) * 2019-12-03 2023-02-03 西安西电电力系统有限公司 晶闸管换流阀组件短路电流试验回路
CN111551844B (zh) * 2020-05-06 2021-04-06 中国南方电网有限责任公司超高压输电公司检修试验中心 一种柔性直流换流阀型式试验装置及方法
CN112630677B (zh) * 2020-12-08 2022-02-22 清华大学 验证高压直流输电混合换流器功能的测试回路及测试方法
CN114137380B (zh) * 2021-11-23 2024-04-30 西安西电电力系统有限公司 一种晶闸管在高温状态下开通关断特性的测试回路及方法
CN116736100B (zh) * 2023-06-15 2024-04-02 国网智能电网研究院有限公司 一种可控换相换流阀单阀大电流关断试验装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185178A (ja) * 1984-03-05 1985-09-20 Hitachi Ltd 遮断器の合成遮断試験回路
CN1050465A (zh) * 1989-09-20 1991-04-03 株式会社日立制作所 电路开关的综合等效试验电路
JPH05113470A (ja) * 1991-10-21 1993-05-07 Nissin Electric Co Ltd 遮断器用短絡試験装置
EP1347304A2 (de) * 2002-03-22 2003-09-24 Ernst Slamecka Verfahren zum Prüfen von Hochspannungs-Leistungsschaltern
CN1493004A (zh) * 2001-02-21 2004-04-28 ABB�ɷ����޹�˾ 高压直流晶体闸流管阀的测试电路
CN1834670A (zh) * 2006-03-17 2006-09-20 中国电力科学研究院 晶闸管阀过电流试验装置
CN101446614A (zh) * 2008-12-19 2009-06-03 中国电力科学研究院 一种直流输电换流阀故障电流试验方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1943646C3 (de) * 1969-08-28 1978-04-13 Brown, Boveri & Cie Ag, 6800 Mannheim Regelanordnung zur Vermeidung der bei einem Lastabwurf einer Hochspannungs-Gleichstrom-Übertragungsanlage auftretenden netzfrequenten Spannungsüberhöhung
JPS52155320A (en) * 1976-06-18 1977-12-23 Hitachi Ltd Thyristor failure detector for power converter
US4745513A (en) * 1986-09-15 1988-05-17 General Electric Company Protection of GTO converters by emitter switching

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185178A (ja) * 1984-03-05 1985-09-20 Hitachi Ltd 遮断器の合成遮断試験回路
CN1050465A (zh) * 1989-09-20 1991-04-03 株式会社日立制作所 电路开关的综合等效试验电路
JPH05113470A (ja) * 1991-10-21 1993-05-07 Nissin Electric Co Ltd 遮断器用短絡試験装置
CN1493004A (zh) * 2001-02-21 2004-04-28 ABB�ɷ����޹�˾ 高压直流晶体闸流管阀的测试电路
EP1347304A2 (de) * 2002-03-22 2003-09-24 Ernst Slamecka Verfahren zum Prüfen von Hochspannungs-Leistungsschaltern
CN1834670A (zh) * 2006-03-17 2006-09-20 中国电力科学研究院 晶闸管阀过电流试验装置
CN101446614A (zh) * 2008-12-19 2009-06-03 中国电力科学研究院 一种直流输电换流阀故障电流试验方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645399A (zh) * 2013-11-30 2014-03-19 许继电气股份有限公司 一种换流阀子模块自动测试系统及其晶闸管测试电路
CN103645399B (zh) * 2013-11-30 2016-04-20 许继电气股份有限公司 一种换流阀子模块自动测试系统及其晶闸管测试电路
CN109557391A (zh) * 2018-11-21 2019-04-02 中电普瑞电力工程有限公司 柔性直流换流阀故障模拟机构以及系统
CN109557391B (zh) * 2018-11-21 2021-12-10 中电普瑞电力工程有限公司 柔性直流换流阀故障模拟机构以及系统

Also Published As

Publication number Publication date
US8339153B2 (en) 2012-12-25
US20110273200A1 (en) 2011-11-10
CN101706541B (zh) 2012-12-26
CN101706541A (zh) 2010-05-12

Similar Documents

Publication Publication Date Title
WO2011066678A1 (zh) 一种直流输电换流阀故障电流实验检测装置
US9041426B2 (en) Default current test method of impulse voltage mixed high voltage direct current converter valve
CN105807214B (zh) 一种高压直流断路器分断试验装置及其试验方法
CN101446614B (zh) 一种直流输电换流阀故障电流试验方法
DK2332229T3 (en) TESTING INSTALLATION FOR WIND ENERGY INSTALLATIONS
Ok et al. Design of a high-efficiency 40-kV, 150-A, 3-kHz solid-state pulsed power modulator
CN110286320B (zh) 具有保护功能的直流断路器半导体组件关断能力测试回路
KR101899031B1 (ko) 테스트 장치
Chen et al. Indirect input-series output-parallel DC–DC full bridge converter system based on asymmetric pulsewidth modulation control strategy
CN102486515B (zh) 一种高压直流输电换流阀故障电流复合试验方法
CN201724990U (zh) 一种直流输电换流阀故障电流实验检测装置
CN103018663B (zh) 一种柔性直流输电mmc阀的过电流关断试验方法及系统
JP6767644B2 (ja) 直流遮断器の試験装置
CN111562494B (zh) 一种测试换流阀开通关断特性的试验电路、方法
CN111505411B (zh) 一种双有源桥dc/dc变换模块的运行试验装置及方法
CN109031106B (zh) 一种混合式直流断路器开断试验装置
CN201138362Y (zh) 高压直流输电换流阀故障电流试验装置
CN106483408B (zh) 一种高功率直流电器设备检测方法
CN201903609U (zh) 冲击电压复合的高压直流输电换流阀故障电流试验装置
CN207424145U (zh) 一种直流输电换流阀短路试验系统
Bedran et al. Type tests of the ITER switching network unit components and protective make switches
CN105467307A (zh) 柔性直流输电工程电压源换流器阀igbt过电流关断试验装置
CN212723223U (zh) 一种用于直流断路器主支路短时电流耐受试验的试验回路
CN110428999B (zh) 一种多断口真空断路器电压分布的外加磁场控制系统
KR20170122005A (ko) 차단기 시험장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12679301

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851778

Country of ref document: EP

Kind code of ref document: A1