JP6767644B2 - 直流遮断器の試験装置 - Google Patents

直流遮断器の試験装置 Download PDF

Info

Publication number
JP6767644B2
JP6767644B2 JP2018556110A JP2018556110A JP6767644B2 JP 6767644 B2 JP6767644 B2 JP 6767644B2 JP 2018556110 A JP2018556110 A JP 2018556110A JP 2018556110 A JP2018556110 A JP 2018556110A JP 6767644 B2 JP6767644 B2 JP 6767644B2
Authority
JP
Japan
Prior art keywords
circuit breaker
circuit
current
voltage
voltage source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018556110A
Other languages
English (en)
Other versions
JPWO2018109889A1 (ja
Inventor
優平 橋本
優平 橋本
健作 宮崎
健作 宮崎
小山 博
博 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Energy Systems and Solutions Corp
Publication of JPWO2018109889A1 publication Critical patent/JPWO2018109889A1/ja
Application granted granted Critical
Publication of JP6767644B2 publication Critical patent/JP6767644B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3272Apparatus, systems or circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/333Testing of the switching capacity of high-voltage circuit-breakers ; Testing of breaking capacity or related variables, e.g. post arc current or transient recovery voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/333Testing of the switching capacity of high-voltage circuit-breakers ; Testing of breaking capacity or related variables, e.g. post arc current or transient recovery voltage
    • G01R31/3333Apparatus, systems or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

本発明の実施形態は、直流遮断器の遮断性能を検証するための試験装置に関する。
交流電力系統の落雷等による短絡事故からの系統保護を行うため、大容量の交流遮断器が用いられている。この交流遮断器の遮断試験法には、合成試験法と呼ばれる試験法が知られている(例えば、非特許文献1参照。)。この合成試験法は、試験対象となる交流遮断器に対して、事故電流相当の短絡電流を供給する電流源回路と、高周波電流を供給し回復電圧を印加するための電圧源回路とが、それぞれ並列に接続される試験装置を用いて行われる。
具体的には、次の(1)〜(4)の手順で交流遮断器の遮断試験を行う。
(1)電流源回路から事故電流相当の交流の短絡電流を交流遮断器に供給する。
(2)当該短絡電流の最終零値直前で電圧源回路から高周波電流を供給して、電流源回路及び電圧源回路の2回路から重畳電流を交流遮断器に流す。
(3)電流源回路を、短絡電流が最終零値となる時点で交流遮断器から遮断する。
(4)その後、高周波電流を交流遮断器により遮断し、当該交流遮断器の端子間に回復電圧を生じさせる。
ところで、直流系統の短絡事故から系統保護を行うため、直流遮断器が用いられている。直流遮断器は、短絡等による事故電流を遮断する。このような系統保護を確実に行うため、直流遮断器には、用いられる直流系統に応じて所定の遮断性能が要求される。
直流遮断器の遮断試験方法として、交流の短絡発電機からの短絡事故電流を整流器にて直流電流に整流させて、直流系統事故を模擬した短絡時の事故電流を供給する方法がある。
電気学会 電気規格調査会標準規格 交流遮断器 JEC-2300-1998
しかし、近年、直流遮断器の大容量化が進んでいる。そのため、従来の整流器を用いた試験方法では、大容量の整流器を設ける必要があり、試験設備の大型化や設備導入に莫大な投資を要するという問題がある。さらに、大容量の整流器を用いた試験方法では試験効率に問題がある。そのため、従来の整流器を用いた試験方法を採用することは困難であり、別の試験方法が求められる。
この点につき、交流遮断器の合成試験法に用いる試験装置を、直流遮断器の遮断性能試験に用いることが考えられる。しかし、この場合には、交流と直流の違いにより、上記のような手順で遮断性能試験をすることはできない。すなわち、上記の合成試験法では、直流遮断器に、直流系統の事故に相当する電流、電圧の両方を与えることができず、直流遮断器の遮断性能を検証することはできない。
本発明の実施形態に係る直流遮断器の試験装置は、上記のような課題を解決するためになされたものであり、直流遮断器の遮断性能を検証する直流遮断器の試験装置を提供することを目的とする。
上記の目的を達成するために、本実施形態の直流遮断器の試験装置は、直流電流を遮断する直流遮断器の試験装置において、前記直流遮断器に対して、事故電流相当の電流を供給する電流源回路と、前記直流遮断器に対して、回復電圧を供給する電圧源回路と、を備え、前記電圧源回路は、前記回復電圧を印加するための電圧源コンデンサと、前記電圧源コンデンサと直列接続された第1の抵抗と、を有し、前記第1の抵抗の抵抗値は、前記電圧源回路が前記直流遮断器に対して供給する電流が、前記事故電流相当の電流の1000分の1以下となる値であること、を特徴とする。
実施形態に係る直流遮断器の試験装置の構成を示す回路図である。 実施形態に係る直流遮断器の試験装置を用いた試験方法の短絡電流遮断を行う過程における電流波形図である。 実施形態に係る直流遮断器の試験装置を用いた試験方法の短絡電流遮断を行う過程における電圧波形図である。
[1.実施形態]
[1−1.全体構成]
以下では、図1〜図3を参照しつつ、本実施形態に係る直流遮断器の試験装置と、当該装置を用いた直流遮断器の試験方法について説明する。図1は、本実施形態に係る直流遮断器の試験装置の構成を示す回路図である。
直流遮断器の試験装置は、試験対象となる直流遮断器1の直流電流の遮断性能を試験する装置である。本試験装置は、直流系統の故障発生を模擬するため、後述する2つの電源回路を備える。直流系統としては、例えば、長距離送電や電力会社間などの直流送電系統や、ビルや大型商業施設などの直流配電、電気鉄道等の直流系統などが挙げられる。
直流遮断器1は、直流遮断器1内を流れる直流電流を遮断する遮断器である。直流遮断器1は、例えば、定格遮断電流が数kA〜数十kA、定格電圧が数十kV〜数百kVの直流遮断器1を対象とすることができる。直流遮断器1は、遮断部101と、エネルギー吸収部102とを備える。遮断部101とエネルギー吸収部102とは並列に設けられる。
遮断器101は、回路を流れる電流の遮断/投入を行うスイッチである。遮断部101としては、半導体を用いた半導体遮断部を含み構成される。この遮断部101には、半導体遮断部の他、機械的に遮断/投入を行う機械式の遮断部を含んでいても良い。
エネルギー吸収部102は、所謂サージアブソーバ(以下、サージアブソーバ102ともいう)である。サージアブソーバ102は、サージアブソーバ102に印加される過渡的な高電圧のエネルギーの吸収を行う。サージアブソーバ102は、遮断部101遮断後の電圧の大きさを制限する。
直流遮断器1には、2つの異なる電源回路が並列に接続される。すなわち、本実施形態に係る試験装置は、直流遮断器1に対し、交流の電流を供給する電流源回路Aと、直流遮断器1に対し、回復電圧を印加する電圧源回路Bとを備え、これらの回路A、Bが直流遮断器1に対して並列に接続される。
[1−2.詳細構成]
(電流源回路)
電流源回路Aは、直流遮断器1に対して、交流の電流を供給する。電流源回路Aは、短絡発電機2、保護遮断器3、投入スイッチ4、リアクトル5、抵抗6、コンデンサ7、及び補助遮断器8を含み構成される。
短絡発電機2は、短絡電流を発生させる発電機である。短絡発電機2から発生される短絡電流は交流の電流である。この交流電流の周波数は、交流電流の1/4周期の時間が直流遮断器1の遮断時間以上となる周波数である。短絡発電機2で発生した短絡電流は、リアクトル5を介して直流遮断器1に対して出力される。
短絡発電機2と直流遮断器1との間には、保護遮断器3と投入スイッチ4とリアクトル5とが設けられている。投入スイッチ4は、短絡発電機2を試験回路に接続するための開閉器であり、直流遮断器1に対する短絡発電機2の接続と遮断を切り替える。保護遮断器3は、電流源回路Aを流れる交流の短絡電流の遮断を行う遮断器である。保護遮断器3は、この交流の短絡電流の電流零点で遮断を行う。
さらに電流源回路Aには、補助遮断器8と、サージ吸収部41とが設けられている。補助遮断器8は、短絡発電機2と接続されており、試験対象である直流遮断器1と短絡発電機2との接続と遮断を切り替える。補助遮断器8は、例えば機械式の遮断器である。補助遮断器8は、電流源回路Aにおいて、各機器のうち最も直流遮断器1側に設けられている。補助遮断器8が投入状態にあるときは、直流遮断器1に短絡発電機2から電流を供給可能であり、補助遮断器8が遮断状態にあるときは、電流源回路Aが直流遮断器1から切り離されており、短絡発電機2から電流は直流遮断器1に供給されない。但し、補助遮断器8が機械式遮断器である場合、補助遮断器8が開状態となった後も、所定時間電極間にアークが発生する。
サージ吸収部41は、補助遮断器8と接続されており、補助遮断器8で遮断された際に発生するサージを吸収する。サージ吸収部41は、前述の抵抗6とコンデンサ7とが直列接続されてなり、コンデンサ7が抵抗6を介してサージを吸収し、補助遮断器8による遮断をしやすくする。
(電圧源回路)
電圧源回路Bは、直流遮断器1に対して回復電圧を印加する。電圧源回路Bは、電圧源コンデンサ10、充電装置9、始動スイッチ11、抵抗12、抵抗13及びコンデンサ14を含み構成される。
電圧源コンデンサ10は、電圧源回路Bの電圧源となる直流コンデンサである。電圧源コンデンサ10は、始動スイッチ11が投入状態である場合に、抵抗12を介して直流遮断器1に対して回復電圧を印加する。電圧源コンデンサ10は、直流遮断器1が設けられる直流系統事故時の短絡電流の一部を供給する容量を有する。また、回復電圧は、他のコンデンサを過渡回復電圧の調整用として併用しても良い。
充電装置9は、電圧源コンデンサ10と並列接続され、電圧源コンデンサ10を充電する装置である。始動スイッチ11は、電圧源コンデンサ10からの電圧印加のオンとオフを切り替える機器である。
電圧源回路Bは、電圧源コンデンサ10を直流電圧源として、過渡回路(CR回路)を備える。すなわち、電圧源コンデンサ10に対して、抵抗12、抵抗13及びコンデンサ14が直列に接続されており、過渡回路を構成する。この過渡回路は、過渡現象を発生させて直流遮断器1に印加する電圧を調整する。
コンデンサ14は、電圧源コンデンサ10が供給する電圧を調整する電圧調整用コンデンサである。ここでは、コンデンサ14は、電圧源コンデンサ10と併用して直流系統事故時に直流遮断器1に印加される電圧を調整するコンデンサである。抵抗13は、過渡現象の調整用の抵抗である。
抵抗12は、電圧源回路Bから直流遮断器1に供給する電流及び電圧を調整する抵抗である。抵抗12の抵抗値は、電圧源回路Bが直流遮断器1に供給する電流値を、電流源回路Aが直流遮断器1に供給する事故電流相当の電流の1000分の1以下となる微小な電流値とする値である。例えば、直流遮断器1の定格電圧が50kV未満で、電圧源コンデンサ10の電圧が50kVとし、事故電流相当の電流を1kAとすると、電圧源回路Bから供給する電流は1A以下であり、抵抗12の抵抗値は50kΩとすることができる。このように、抵抗12は、数十kΩ以上の非常に大きな抵抗値を有しており、事故電流相当の電流に比べて電圧源回路Bから微少な電流しか直流遮断器1に供給しないので、電圧源コンデンサ10の電圧降下を抑制する。なお、抵抗12の抵抗値は、直流遮断器1に供給する回復電圧及び抵抗12の定格電力に基づいて決定しても良い。
[1−3.試験方法]
本実施形態の試験方法は、半導体遮断器を含む直流遮断器の、直流系統の短絡事故電流の遮断性能を検証するための方法であり、上記実施形態の試験装置を用いて行う。当該試験方法を図2及び図3を用いて説明する。図2は、本試験方法の短絡電流遮断を行う過程における電流波形図である。図3は、本試験方法の短絡電流遮断を行う過程における電圧波形図である。
試験開始時には、直流遮断器1が試験装置に接続され、保護遮断器3及び補助遮断器8は閉路状態、投入スイッチ4及び始動スイッチ11は開路状態、短絡発電機2は予め所定の電圧での励磁状態、電圧源コンデンサ10は充電装置9によって予め所定の電圧まで充電された状態にあるとする。
まず、図2に示すように、時刻Aにおいて投入スイッチ4を閉路し、短絡発電機2から直流遮断器1の遮断部101に交流電流を供給する。この交流電流は、時刻Aにおいては0Aであり、その後上昇する。この交流電流は、リアクトル5によりその大きさが調整されている。なお、短絡発電機2によりリアクトル5には、エネルギーが蓄積される。
次に、時刻Aから時刻Bまでの任意の時刻において、始動スイッチ11を投入する。この始動スイッチ11の投入タイミングは、直流遮断器1の遮断部101による電流遮断以前に行えば良く、当該電流遮断と同時又はその直前を含む。ここでは、図3に示すように、始動スイッチ11の投入タイミングは、時刻Aである。
始動スイッチ11を投入すると、電圧源コンデンサ10と抵抗12によって決まる直流電流が遮断部101に供給される。すなわち、始動スイッチ11の投入により電圧源回路Bが直流遮断器に接続され、短絡発電機2からの交流電流に電圧源回路Bからの直流電流が重畳される。但し、電圧源回路Bから供給する直流電流は、電流源回路Aから供給する交流電流に対して1000分の1以下、好ましくは10000分の1以下であり、微小な電流である。この重畳された電流15は、図2に示すように、遮断部101に供給されて上昇していく。
また、始動スイッチ11が投入されたことで、電圧源回路Bが直流遮断器1に接続され、これによって直流遮断器1に電圧が印加される。電圧源回路Bの主電源が電圧源コンデンサ10であるため、電圧源コンデンサ10の電圧はその放電により下降していく。但し、本実施形態では、抵抗12が数十kΩ程度の非常に大きな抵抗値であるので、図3に示すように、電圧源コンデンサ10の電圧降下は非常に緩やかである。換言すれば、電圧源コンデンサ10の電圧は、予め充電された電圧値を維持する。
重畳された電流15となった後、当該電流15が事故電流相当以上となる時刻Bで、遮断部101及び補助遮断器8を開路して電流裁断し、電流15を遮断する。本実施形態では、事故電流相当の電流に達した時点で電流15を遮断する。
この遮断により、リアクトル5による過渡電圧が直流遮断器1の極間に印加される。すなわち、補助遮断器8が機械的遮断器であるため、補助遮断器8の接点間が開離しても接点間にアーク放電が発生するため、リアクトル5により過渡電圧が直流遮断器1の極間に印加される。この過渡電圧は、サージアブソーバ102が過電圧を吸収する。この吸収動作は、図2に示すように、サージアブソーバ電流16となって現れる。つまり、サージアブソーバ電流16が流れる間は、補助遮断器8でアーク放電が存続する。
なお、リアクトル5による過渡電圧は、コンデンサ14にも印加される。但し、過渡電圧分のエネルギーの大部分は、サージアブソーバ102により吸収される。
時刻Cでサージアブソーバ102による過電圧の吸収動作が終了すると、電流源回路Aは補助遮断器8により直流遮断器1から切り離される。時刻C以降は、図3に示すように、直流遮断器1に、電圧源回路Bの電圧源コンデンサ10、抵抗12、抵抗13及びコンデンサ14によって決まる電圧が直流遮断器1の極間に印加される電圧17となって印加される。時刻Cにおける電圧源コンデンサ10の電圧は、直流系統の事故による電流遮断時に直流遮断器1に印加される電圧相当の電圧又はそれ以上である。
以上のように、直流遮断器1に事故電流相当未満の電流を供給する段階であって、電流遮断よりも前に、電圧源回路Bを直流遮断器1に接続することにより、直流遮断器1に対し、電流供給と電圧印加の両方を行うようにした。これにより、電流遮断時において、直流遮断器1に、直流系統の事故による事故電流相当の電流と、当該事故に伴い印加される相当の電圧である所定の回復電圧とを与えることができるので、直流遮断器1の遮断性能を検証することができる。
特に、抵抗12を非常に大きな抵抗値としているので、直流遮断器1の遮断部101の開路時刻である時刻Bより以前に電圧源回路Bを直流遮断器1に接続しても、電圧源回路Bから直流遮断器1にはほとんど電流は流れない。そのため、電圧源コンデンサ10の電圧を維持することができ、安定した回復電圧を供給することができる。これにより、電流遮断性能と電流遮断後の耐圧性能とを1度の試験で検証することができる。
[試験方法の変形例]
上記の試験方法では、始動スイッチ11の投入タイミングを直流遮断器1による電流遮断よりも前とし、当該遮断よりも前に電圧源回路Bを直流遮断器1に接続するようにしたが、電流遮断時に、事故電流相当の電流と、事故電流遮断に伴う電圧相当の所定の回復電圧とが直流遮断器1に与えられれば良く、電圧源回路Bの直流遮断器1への接続タイミングを当該遮断と同時としても良い。このようにしても電流遮断時に、事故電流相当の電流と、事故電流遮断に伴う電圧相当の所定の回復電圧を与えることができる。
[1−4.効果]
(1)本実施形態の直流遮断器の試験装置は、直流電流を遮断する直流遮断器の試験装置において、直流遮断器1に対して、事故電流相当の電流を供給する電流源回路Aと、直流遮断器1に対して、回復電圧を供給する電圧源回路Bと、を備え、電圧源回路Bは、回復電圧を印加するための電圧源コンデンサ10と、電圧源コンデンサ10と直列接続された第1の抵抗12と、を有するようにした。
これにより、電流源回路Aによって直流遮断器1の電流遮断性能を試験でき、電圧源回路Bに抵抗12を設けたことにより、直流遮断器1に対して安定した回復電圧を印加することができるので、耐圧性能を試験できる。従って、本実施形態によれば、直流遮断器1の電流遮断性能及び電流遮断後の耐圧性能を試験することができる。よって、本実施形態によれば、直流遮断器の遮断性能を検証する直流遮断器の試験装置を提供することができる。
(2)抵抗12の抵抗値は、電圧源回路Bが直流遮断器1に対して供給する電流が、事故電流相当の電流の1000分の1以下となる値とした。これにより、電圧源コンデンサ10の電圧降下を抑えることができ、電流遮断後に安定して高い回復電圧を供給できる。そのため、信頼性の高い試験を行うことができる。
(3)電流源回路Bは、直流遮断器1に接続され、交流電流を発生させる短絡発電機2と、短絡発電機2と直流遮断器1との間に接続され、電流の遮断及び投入を行う投入スイッチ4と、短絡発電機2と直流遮断器1との間に接続されたリアクトル5と、リアクトル5と直流遮断器1との間に接続された機械式の補助遮断器8と、を有するようにした。
これにより、事故電流相当の電流を直流遮断器1に供給することができる。すなわち、直流遮断器1が設けられる直流系統の事故を模擬でき、直流遮断器1の遮断性能を検証することができる。また、この電流源回路Bとしては、一般的な交流遮断器の大電力試験設備の電流源回路と同じ設備を用いることができる。従って、交流遮断器の合成試験法で用いる既存の試験装置で直流遮断器1の遮断試験を行うので、設備投資や設備配置の敷地などを別途準備する必要がない。また、高額で大型化する大容量の直流発電機や整流器を導入する必要がない。従って、安価に直流遮断器1の試験装置が得られ、経済的な利点を得ることができる。
(4)電圧源回路Bは、抵抗12と直列接続された抵抗13と、抵抗13と直列接続されたコンデンサ14と、を有するようにした。これにより、直流遮断器1に供給する回復電圧を調整することができる。
[2.その他の実施形態]
本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
他の実施形態としては、上記の遮断瞬時の試験方法や遮断後の試験方法を、作業員によれず、制御部を設けて実現しても良い。すなわち、制御部は、シーケンス管理するためのプログラムが記憶された記録媒体を有するコンピュータであり、当該プログラムを実行することで、各回路A、Bのそれぞれの機器に所定のタイミングで接続又は遮断の指令を出力するようにしても良い。
サージアブソーバ102は、直流遮断器1の内部に設けたが、遮断部101と並列に設けるのであれば、直流遮断器1の外部に設けるようにしても良い。
1 直流遮断器
101 遮断部
102 サージアブソーバ
A 電流源回路
2 短絡発電機
3 保護遮断器
4 投入スイッチ
5 リアクトル
6 抵抗
7 コンデンサ
8 補助遮断器
41 サージ吸収部
B 電圧源回路
9 充電装置
10 電圧源コンデンサ
11 始動スイッチ
12 抵抗
13 抵抗
14 コンデンサ
15 電流
16 サージアブソーバ電流
17 回復電圧
18 電圧源コンデンサ電圧

Claims (4)

  1. 直流電流を遮断する直流遮断器の試験装置において、
    前記直流遮断器に対して、事故電流相当の電流を供給する電流源回路と、
    前記直流遮断器に対して、回復電圧を供給する電圧源回路と、
    を備え、
    前記電圧源回路は、
    前記回復電圧を印加するための電圧源コンデンサと、
    前記電圧源コンデンサと直列接続された第1の抵抗と、
    を有し、
    前記第1の抵抗の抵抗値は、前記電圧源回路が前記直流遮断器に対して供給する電流が、前記事故電流相当の電流の1000分の1以下となる値であること、
    を特徴とする直流遮断器の試験装置。
  2. 前記電流源回路は、
    前記直流遮断器に接続され、交流電流を発生させる短絡発電機と、
    前記短絡発電機と前記直流遮断器との間に接続され、電流の遮断及び投入を行う投入開閉部と、
    前記短絡発電機と前記直流遮断器との間に接続されたリアクトルと、
    前記リアクトルと前記直流遮断器との間に接続された機械式遮断器と、
    を有すること、
    を特徴とする請求項1に記載の直流遮断器の試験装置。
  3. 前記電圧源回路は、
    前記第1の抵抗と直列接続された第2の抵抗と、
    前記第2の抵抗と直列接続されたコンデンサと、
    前記直流遮断器に対する前記電圧源コンデンサの接続と遮断を切り替えるスイッチと、
    を有すること、
    を特徴とする請求項3に記載の直流遮断器の試験装置。
  4. 前記投入開閉部、前記機械式遮断器、及び前記スイッチを制御する制御部を備え、
    前記制御部は、
    前記投入開閉部及び前記機械式遮断器に、前記短絡発電機を前記直流遮断器に接続させ、
    前記スイッチに、前記直流遮断器の遮断以前に前記電圧源コンデンサを前記直流遮断器に接続させ、
    前記直流遮断器の遮断と同時に前記投入開閉部及び前記機械式遮断器を遮断させること、
    を特徴とする請求項4に記載の直流遮断器の試験装置。
JP2018556110A 2016-12-15 2016-12-15 直流遮断器の試験装置 Active JP6767644B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087348 WO2018109889A1 (ja) 2016-12-15 2016-12-15 直流遮断器の試験装置

Publications (2)

Publication Number Publication Date
JPWO2018109889A1 JPWO2018109889A1 (ja) 2019-10-24
JP6767644B2 true JP6767644B2 (ja) 2020-10-14

Family

ID=62558458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018556110A Active JP6767644B2 (ja) 2016-12-15 2016-12-15 直流遮断器の試験装置

Country Status (4)

Country Link
EP (1) EP3557268B1 (ja)
JP (1) JP6767644B2 (ja)
CN (1) CN110073229B (ja)
WO (1) WO2018109889A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110703087B (zh) * 2019-09-20 2024-05-03 国网辽宁省电力有限公司电力科学研究院 一种大容量试验系统预期trv检测装置及方法
CN111610439B (zh) * 2020-04-23 2023-04-18 国网安徽省电力有限公司电力科学研究院 高压断路器短路开断能力评估及选相开断控制方法
CN111579975B (zh) * 2020-05-08 2022-12-23 国网安徽省电力有限公司电力科学研究院 一种用于高压交流断路器遮断容量校核的方法
CN112630640B (zh) * 2020-12-09 2022-02-22 西安交通大学 一种两电平电压源的直流断路器合成试验回路及方法
CN114895178B (zh) * 2022-05-17 2023-06-30 安徽一天电气技术股份有限公司 一种断路器试验系统及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757267A (en) * 1980-09-24 1982-04-06 Hitachi Ltd Combined equivalent testing apparatus for dc breaker
JPS59120871A (ja) * 1982-12-27 1984-07-12 Toshiba Corp しや断器のしや断接点試験回路
JPS60185177A (ja) * 1984-03-05 1985-09-20 Hitachi Ltd 遮断器の合成試験回路
JP2000304835A (ja) * 1999-04-22 2000-11-02 Meidensha Corp しゃ断器の試験装置
JP2004245722A (ja) * 2003-02-14 2004-09-02 Meidensha Corp ワイル合成試験における重畳電流調整方法
CN101937058B (zh) * 2010-08-30 2013-07-24 中国西电电气股份有限公司 一种换流阀运行试验多波次故障电流试验装置及试验方法
CN102288905B (zh) * 2011-06-27 2014-07-02 中国西电电气股份有限公司 一种用于高压交流断路器的合成关合试验线路
JP2015056389A (ja) * 2013-09-13 2015-03-23 株式会社東芝 直流遮断器の試験装置及びその試験方法
JP2015059891A (ja) * 2013-09-20 2015-03-30 株式会社東芝 直流遮断器の試験装置及び直流遮断器の試験装置による試験方法

Also Published As

Publication number Publication date
EP3557268A1 (en) 2019-10-23
JPWO2018109889A1 (ja) 2019-10-24
EP3557268A4 (en) 2020-08-19
CN110073229A (zh) 2019-07-30
CN110073229B (zh) 2021-04-09
WO2018109889A1 (ja) 2018-06-21
EP3557268B1 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
JP6767644B2 (ja) 直流遮断器の試験装置
JP6645758B2 (ja) 直流遮断器の試験方法
US20230275417A1 (en) Dc circuit breaker with an alternating commutating circuit
Davidson et al. A new ultra-fast HVDC Circuit breaker for meshed DC networks
WO2015037223A1 (ja) 直流遮断器の試験装置及びその試験方法
Belda et al. Full-power test of HVDC circuit-breakers with AC short-circuit generators operated at low power frequency
Cwikowski et al. Analysis and simulation of the proactive hybrid circuit breaker
WO2015040862A1 (ja) 直流遮断器の試験装置及び直流遮断器の試験装置による試験方法
Smeets et al. Design of test-circuits for HVDC circuit breakers
Almalki et al. Capacitor bank switching transient analysis using frequency dependent network equivalents
Meddeb et al. Impact of distributed generation on the protection system in Tunisian distribution network
Palazzo et al. New requirements for the application of generator circuit-breakers
JPH03202793A (ja) 遮断器の試験装置
WO2018042516A1 (ja) 機械式開閉器の試験方法及びその試験装置
JP2016213123A (ja) 直流遮断器の試験装置及びその試験方法
Jovcic et al. Modelling and Comparison of Common Functionalities of HVDC Circuit Breakers
Bhatta et al. Detecting High-Impedance Fault with Z-Source Circuit Breakers in Smart Grids
Manduley et al. Effect of the surge arrester configuration in MMC-HVDC systems under DC and converter fault conditions
CN114062909B (zh) 一种用于触发间隙开关的直流大电流通流试验回路
Chen et al. The power plant arrester configuration and modeling of insulation coordination
CN111856180B (zh) 用于抗高压隔离开关分合闸电磁干扰试验的装置及方法
US3038116A (en) Circuit-breaker testing arrangement
Lin et al. Hardware-in-the-loop implementation of a hybrid circuit breaker controller for MMC-based HVDC systems
Song et al. Simulation of the transient characteristics in HVDC scheme during the operation of MRTB
WO2018146748A1 (ja) 直流遮断器の試験装置及び試験方法

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20190520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200820

R150 Certificate of patent or registration of utility model

Ref document number: 6767644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150