WO2011065700A2 - 태양전지 및 그 제조방법 - Google Patents

태양전지 및 그 제조방법 Download PDF

Info

Publication number
WO2011065700A2
WO2011065700A2 PCT/KR2010/008142 KR2010008142W WO2011065700A2 WO 2011065700 A2 WO2011065700 A2 WO 2011065700A2 KR 2010008142 W KR2010008142 W KR 2010008142W WO 2011065700 A2 WO2011065700 A2 WO 2011065700A2
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
substrate
solar cell
type
polycrystalline semiconductor
Prior art date
Application number
PCT/KR2010/008142
Other languages
English (en)
French (fr)
Other versions
WO2011065700A3 (ko
Inventor
정종갑
이유진
이시우
김동제
Original Assignee
주식회사 티지솔라
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티지솔라 filed Critical 주식회사 티지솔라
Publication of WO2011065700A2 publication Critical patent/WO2011065700A2/ko
Publication of WO2011065700A3 publication Critical patent/WO2011065700A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

본 발명에서는 태양전지 및 그 제조방법이 개시된다. 본 발명에 따른 태양전지는 다수개의 단위셀 영역(a)과 단위셀 영역(a) 사이에 위치하는 다수개의 배선영역(b)을 포함하는 기판(100); 기판(100) 상의 단위셀 영역(a) 상에 형성되는 하부전극(200a); 기판(100) 상의 배선영역(b) 상에 형성되며 하부전극(200a)의 일측과 동일층으로 연결되는 하부연결전극(200b); 하부전극(200a) 상에 형성되며 비정질 광전소자 또는 다결정 광전소자 중 적어도 어느 하나를 포함하는 광전소자부(300a); 광전소자부(300a)와 동일층으로 일정 간격을 두고 하부연결전극(200b)의 가장자리부 상에 형성되는 더미광전소자(300b); 광전소자부(300a)와 더미광전소자(300b) 상에 형성되고 이웃하는 단위셀 영역(a)의 하부전극(200a)과 연결된 하부연결전극(200b)의 측면과 전기적으로 접속되는 상부전극(500); 및 기판(100) 상의 배선영역(b) 상에 위치하며 하부전극(200a) 및 광전소자부(300a)의 측면과 상부전극(500) 사이에 형성되는 측벽 절연층(400)을 포함하는 것을 특징으로 한다.

Description

태양전지 및 그 제조방법
본 발명은 태양전지 및 그 제조방법에 관한 것이다. 보다 상세하게는 하부전극과 광전소자(반도체층)를 일괄적으로 패터닝(예를 들면, 레이저 스크라이빙) 하여 우수한 광전 변환 효율을 얻을 수 있는 태양전지 및 그 제조방법에 관한 것이다.
종래의 박막형 태양전지는 광전 변환 효율이 대략 10% 미만에 불과하여 실제 상용화가 되기에는 여러가지 어려움이 있었다. 이를 해결하기 위하여, 다수개의 광전소자를 전기적으로 직렬로 연결시켜 우수한 광전 변환 효율을 구현하는 기술이 개발되어 왔다.
도 1은 종래의 직렬 연결 방식의 태양전지의 구성을 나타내는 도면이다.
도 1을 참조하면, 종래의 태양전지는 다수개의 단위셀 영역(a’)과 단위셀 영역(a’) 사이에 위치하는 배선영역(b’)을 포함하는 기판(10)이 제공된다. 이때, 기판(10) 상의 단위셀 영역(a’)에서는 하부전극(11)이 형성되고, 하부전극(11) 상에는 반도체층이 적층된 광전소자(20)가 형성된다. 이어서, 광전소자(20) 상에는 상부전극(30)이 형성되어 하나의 태양전지 단위셀을 구성하는데, 상부전극(30)은 이웃하는 다른 단위셀(a’)의 하부전극(11) 상부와 배선영역(b’) 상에서 접속되어 전기적으로 직렬 방식으로 연결된다.
종래의 태양전지는 하부전극(11)을 레이저 스크라이빙 방식으로 제1 패턴한 후 광전소자(20)를 형성하고, 이어서 광전소자(20)만을 레이저 스크라이빙 방식으로 제2 패턴한 후 상부전극(30)을 형성하고, 이어서 상부전극(30)을 레이저 스크라이빙 방식으로 제3 패턴하여, 즉 최소 3번의 패턴 공정을 수행하여야 구현할 수 있었다. 이러한 제조 공정은 공정 시간과 공정 비용이 증가하여 태양전지의 제조 단가가 상승되고, 태양전지 단위셀 영역의 면적비가 감소되어(즉, 태양전지의 데드영역이 증가하여) 태양전지의 광전 변환 효율이 저하되는 문제점이 있었다.
또한, 종래의 태양전지는 배선영역(b')에서 태양전지 단위셀간의 연결이 이루어질 때, 광전소자(20)의 측면과 상부전극(30) 사이, 또는 하부전극(11) 사이에서 단락(short circuit: SC)이 일어날 수 있다. 이러한 단락 현상은 태양전지 내에서 불필요한 누설전류가 발생되어 태양전지의 광전 변환 효율이 저하되는 문제점이 있었다.
따라서, 본 발명은 상기와 같은 종래 기술의 제반 문제점을 해결하기 위하여 안출된 것으로서, 하부전극과 광전소자(반도체층)를 일괄적으로 패터닝(예를 들면, 레이저 스크라이빙) 하여 패턴 공정 수를 감소시킬 수는 태양전지 및 그 제조방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 단위셀 영역(태양전지 중 광전 변환이 일어나는 영역)의 면적을 증가시킬 수 있는 태양전지 및 그 제조방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 직렬 연결시 발생되는 단락 현상을 방지하고 광전 변환 효율을 향상시킬 수 있는 태양전지 및 그 제조방법을 제공하는데 또 다른 목적이 있다.
본 발명에 따르면, 하부전극과 광전소자(반도체층)를 일괄적으로 패터닝(예를 들면, 레이저 스크라이빙) 하여 패턴 공정 수, 패턴 공정 시간과 패턴 공정 비용을 감소시켜서 태양전지의 제조 단가를 낮출 수 있다.
또한, 본 발명에 따르면, 하부전극과 광전소자를 일괄적으로 패터닝함으로써 태양전지 단위셀 영역의 면적을 증가시켜 태양전지의 광전 변환 효율을 향상시킬 수 있다.
또한, 본 발명에 따르면, 하부전극과 광전소자의 측면에 별도의 절연층을 형성하여 직렬 연결시 발생되는 단락 현상을 방지하여 태양전지의 신뢰성과 광전 변환 효율을 향상시킬 수 있다.
도 1은 종래의 태양전지의 구성을 나타내는 도면이다.
도 2 내지 도 6은 본 발명의 일 실시예에 따른 태양전지의 제조 과정을 순차적으로 나타내는 도면이다.
도 7은 본 발명의 일 실시예에 따른 광전소자부의 구성을 나타내는 도면이다.
도 8은 본 발명의 일 실시예에 따른 다른 형태의 광전소자부의 구성을 나타내는 도면이다.
<도면의 주요 부분에 대한 부호의 설명>
100: 기판
200: 하부전도층
200a: 하부전극
200b: 하부연결전극
300: 반도체층(실리콘층)
300a: 광전소자부(광전소자)
300b: 더미광전소자
400: 측벽 절연층
500: 상부전도층(상부전극)
본 발명의 상기 목적은 다수개의 단위셀 영역과 상기 단위셀 영역 사이에 위치하는 다수개의 배선영역을 포함하는 기판; 상기 기판 상의 상기 단위셀 영역 상에 형성되는 하부전극; 상기 기판 상의 상기 배선영역 상에 형성되며 상기 하부전극의 일측과 동일층으로 연결되는 하부연결전극; 상기 하부전극 상에 형성되며 비정질 광전소자 또는 다결정 광전소자 중 적어도 어느 하나를 포함하는 광전소자부; 상기 광전소자부와 동일층으로 일정 간격을 두고 상기 하부연결전극의 가장자리부 상에 형성되는 더미광전소자; 상기 광전소자부와 상기 더미광전소자 상에 형성되고 이웃하는 단위셀 영역의 하부전극과 연결된 하부연결전극의 측면과 전기적으로 접속되는 상부전극; 및 상기 기판 상의 상기 배선영역 상에 위치하며 상기 하부전극 및 상기 광전소자부의 측면과 상기 상부전극 사이에 형성되는 측벽 절연층을 포함하는 것을 특징으로 하는 태양전지에 의해 달성된다.
또한, 본 발명의 상기 목적은 다수개의 단위셀 영역과 상기 단위셀 영역 사이에 위치하는 다수개의 배선영역을 포함하는 기판을 제공하는 단계; 상기 기판 상의 전면에 하부전도층과 반도체층을 순차적으로 형성하는 단계; 상기 기판 상의 상기 배선영역 상의 상기 하부전도층과 상기 반도체층을 일괄적으로 제1 패터닝하는 단계; 상기 기판 상의 상기 배선영역 상에 상기 패터닝된 하부전도층과 상기 패터닝된 반도체층의 측면과 접하는 측벽 절연층을 형성하는 단계; 상기 기판 상의 전면에 상부전도층을 형성하는 단계; 및 상기 기판 상의 상기 배선영역 상의 상기 상부전도층과 상기 패터닝된 반도체층을 일괄적으로 제2 패터닝하는 단계를 포함하는 것을 특징으로 하는 태양전지의 제조방법에 의해서도 달성된다.
본 발명의 상기 목적과 기술적 구성 및 그에 따른 작용 효과에 관한 자세한 사항은 본 발명의 바람직한 실시예를 도시하고 있는 도면을 참조한 이하 상세한 설명에 의해보다 명확하게 이해될 것이다.
[본 발명의 바람직한 실시예]
본 명세서에 있어서, 태양전지 단위셀 영역(a) 이란 태양전지에서 광전소자(반도체층)가 위치하여 광전 변환이 이루어지는 영역을 의미한다.
또한, 본 명세서에 있어서, 태양전지 배선영역(b) 이란 단위셀 영역(a) 사이에 위치하며 태양전지 단위셀간을 분리함과 동시에 전기적으로 연결(예를 들면, 직렬 연결 방식) 하는 기능을 수행하는 영역을 의미하며, 실질적으로 광전 변환이 일어나지 않는 데드영역으로 이해될 수 있다.
이하의 본 발명의 일 실시예에 따른 상세한 설명에서는, 반도체층의 소재로서 가장 일반적으로 사용되는 실리콘(Si)을 일례로 설명하지만, 본 발명이 이에 한정되는 것은 아니며, 태양전지에 적용 가능한 반도체 특성을 갖는 공지된 물질을 제한 없이 사용할 수 있다.
도 2 내지 도 6은 본 발명의 일 실시예에 따른 태양전지의 제조 과정을 순차적으로 나타내는 도면이다.
먼저, 도 2를 참조하면, 다수개의 단위셀 영역(a)과 단위셀 영역(a) 사이에 위치하는 다수개의 배선영역(b)을 포함하는 기판(100)을 제공할 수 있다. 기판(100)의 재질은 투명한 유리 기판을 사용할 수 있으나, 이에 한정되는 것은 아니며 태양전지가 빛을 수광하는 방향에 따라 유리, 플라스틱과 같은 투명 재질 또는 실리콘, 금속[예를 들면, SUS(Stainless Steel)]과 같은 불투명 재질을 모두 사용할 수 있다.
이때, 도시되지는 않았지만, 기판(100)의 표면은 텍스쳐링(texturing)이 수행될 수 있다. 본 발명에서 텍스쳐링은 태양전지의 기판 표면에 입사되는 빛이 반사되어 광학적으로 손실됨으로써 광전 변환 효율이 저하되는 현상을 방지하지 위한 것이다. 즉, 텍스쳐링이란 기판의 표면을 거칠게 만드는 것으로, 기판 표면에 요철 패턴(미도시 함)을 형성하는 것을 말한다. 예를 들면, 텍스쳐링으로 기판의 표면이 거칠어지면 표면에서 한번 반사된 빛이 태양전지 방향으로 재반사될 수 있으므로 빛이 손실되는 것을 감소시킬 수 있고, 광 포획량이 증가되어 태양전지의 광전 변환 효율을 향상시킬 수 있다.
이때, 대표적인 텍스쳐링 방법으로는 샌드 블래스팅 방법을 사용할 수 있다. 본 발명에서 샌드 블래스팅은 식각 입자를 압축 공기로 분사하여 식각하는 건식 블래스팅과 액체와 함께 식각 입자를 분사하여 식각하는 습식 블래스팅을 모두 포함하는 것이다. 한편, 본 발명의 샌드 블래스팅에 사용되는 식각 입자는 모래, 작은 금속과 같이 물리적 충격으로 기판에 요철을 형성시킬 수 있는 입자를 제한 없이 사용할 수 있다.
이어서, 기판(100) 상에는 반사 방지층(미도시)을 형성할 수 있다. 반사 방지층은 기판(100)을 통하여 입사된 태양광이 광전소자에 흡수되지 못하고 바로 외부로 반사됨으로써, 태양전지의 효율을 저하시키는 현상을 방지하는 역할을 한다. 반사 방지층의 소재는 실리콘 산화물(SiOx), 실리콘 질화물(SiNx)일 수 있으나 반드시 이에 한정되지 않는다.
반사 반지층의 형성 방법으로는 저압 화학기상 증착법(Low Pressure Chemical Vapor Deposition: LPCVD) 및 플라즈마 화학기상 증착법(Plasma Enhanced Chemical Vapor Deposition: PECVD) 등을 포함할 수 있다.
이어서, 기판(100) 상부 전면에 전도성 재질의 하부전도층(200)을 형성할 수 있다. 하부전도층(200)의 소재는 접촉 저항이 낮으면서 투명한 성질을 갖는 투명전극(transparent conductive oxide: TCO)을 사용할 수 있다. 투명전극은 일례로 AZO(ZnO:Al), ITO(Indium-Tin-Oxide), GZO(ZnO:Ga), BZO(ZnO:B) 및 FTO(SnO2:F) 중 어느 하나일 수 있다.
하부전도층(200)의 형성 방법으로는 열 증착법(Thermal Evaporation), 전자빔 증착법(E-beam Evaporation), 스퍼터링(sputtering)과 같은 물리기상 증착법(Physical Vapor Deposition: PVD) 및 LPCVD, PECVD, 금속유기 화학기상 증착법(Metal Organic Chemical Vapor Deposition: MOCVD)과 같은 화학기상 증착법(Chemical Vapor Deposition: CVD)을 포함할 수 있다.
이어서, 하부전도층(200)의 상부 전면에 p 형과 n 형의 반도체층이 적층되거나 p 형, i형, n 형의 반도체층이 적층될 수 있다. 본 발명의 일 실시예에서는, 일례로 p 형, i 형, n 형의 반도체층을 순서대로 형성할 수 있는데, 반도체층의 재질은 통상적으로 사용되는 실리콘일 수 있으며 이하에서는 실리콘층(300)으로 설명한다. 실리콘층(300)은 PECVD 또는 LPCVD와 같은 화학기상 증착법으로 형성할 수 있는데, 이후 공정에 의하여 단위셀 영역(a)에서는 광을 수광하여 전력을 생산할 수 있는 광전소자의 기능을 수행할 수 있다. 이에 관하여는 도 7 및 도 8을 참조한 이하의 상세한 설명을 통해 자세히 알아보기로 한다.
다음으로, 도 3을 참조하면, 하부전도층(200)과 실리콘층(300)을 배선영역(b)에서 일괄적으로 제1 패터닝(10)하여 서로 분리(절연)된 일정한 단위 패턴을 형성할 수 있다.
이러한 제1 패터닝(10)은 레이저 광원을 이용한 식각 방법인 레이저 스크라이빙법(laser scribing)을 사용하여 수행될 수 있다. 레이저는 IR-ns(Infrared ray-nanosecond) 또는 IR-ps(Infrared ray-picosecond) 레이저를 사용할 수 있다. 레이저 조사에 의하여 하부전도층(200)이 블로우-업(blow-up)될 때 실리콘층(300)이 팝핑(popping) 메커니즘을 통해 동시에 패터닝 할 수 있다. 다만, 본 발명에서 제1 패터닝(10) 방법이 레이저 스크라이빙법으로 한정되는 것은 아니다.
이하에서는, 태양전지의 구동 회로와 등가적으로 설명하기 위하여, 패터닝된 하부전도층(200)을 단위셀 영역(a) 상에서는 하부전극(200a)으로 배선영역(b) 상에서는 하부연결전극(200b)으로 구분하여 설명한다. 이와 동일한 원리로, 패터닝된 실리콘층(300)을 단위셀 영역(a) 상에서는 광전소자부(300a)로 배선영역(b) 상에서는 더미광전소자(300b)로 구분하여 설명한다.
광전소자부(300a)는 광을 수광하여 발생한 전자(electron)와 정공(hole)이 하부전극(200a)과 이후 형성될 패터닝된 상부전도층(500)인 상부전극(500)으로 이동하면서 광기전력(전력)을 생산하나, 더미광전소자(300b)는 이후 공정(도 6 참조)에 의해 광전소자부(300a)와 분리되어 실질적으로 전력을 생산하지 못하게 된다. 또한, 하부연결전극(200b)은 광전소자부(300a)에서 생성된 전기 에너지를 다른 단위셀의 상부전극(500)과 양호하게 접속시켜 직렬 연결 방식의 태양전지를 구현하는 기능을 수행할 수 있다.
다음으로, 도 4를 참조하면, 광전소자부(300a)와 하부전극(200a)의 측면과 배선영역(b) 상에는 측벽 절연층(400)이 형성될 수 있다. 측벽 절연층(400)은 실리콘 질화막(SiNx) 또는 실리콘 산화막(SiOx) 중 어느 하나이거나 이들의 적층막일 수 있다. 이러한 측벽 절연층(400)에 의하여 태양전지 단위셀간의 양호한 전기적 절연 특성을 얻을 수 있다.
측벽 절연층(400)의 형성 방법은 노즐로 구성된 헤드를 통하여 잉크를 분사하는 잉크젯 프린팅법(ink jet printing)을 사용할 수 있다. 다만, 본 발명에서 측벽 절연층(400)의 형성 방법이 잉크젯 프린팅법으로 한정되는 것은 아니다.
다음으로, 도 5를 참조하면, 기판(100)의 상부 전면에 전도성 재질인 상부전도층(500)을 형성할 수 있다. 상부전도층(500)의 소재는 빛을 수광하는 방향에 따라 투명 또는 불투명한 전도성 재질을 제한 없이 사용할 수 있다. 예를 들면, 투명 전도성 소재인 투명전극(TCO)이나 전도성 소재인 구리(Cu), 알루미늄(Al), 티타늄(Ti), 은(Ag) 등의 금속 및 이들의 합금을 사용할 수 있다. 또한, 상부전도층(500)은 투명전극과 금속막을 적층시킨 적층막 구조로 형성할 수도 있다. 상부전도층(500)의 형성 방법으로는 스퍼터링과 같은 물리기상 증착법 및 LPCVD, PECVD, MOCVD와 같은 화학기상 증착법 등을 포함할 수 있다.
다음으로, 도 6을 참조하면, 상부전도층(500)과 패턴된 실리콘층(300)을 배선영역(b)에서 일괄적으로 제2 패터닝(20)하여 패터닝된 상부전도층(500)인 상부전극(500)과 더미광전소자(300b)를 각각 형성할 수 있다.
이러한 제2 패터닝(20)은 레이저 광원을 이용한 식각 방법인 레이저 스크라이빙법(laser scribing)을 이용하여 수행될 수 있다. 다만, 본 발명에서 제2 패터닝(20) 방법이 레이저 스크라이빙법으로 한정되는 것은 아니다.
보다 상세하게 설명하면, 더미광전소자(300b)는 광전소자부(200a)와 동일층으로 일정 간격을 두고 하부연결전극(200b)의 가장자리부 상에 형성될 수 있다. 상부전극(500)은 단위셀 영역(a) 상에서는 광전소자부(300a)의 전극의 기능을 수행할 수 있으며, 배선영역(b) 상에서는 광전소자부(300a)와 이웃하는 다른 광전소자부(300a)를 연결하는(즉, 태양전지 단위셀간을 직렬로 연결하는) 배선의 기능을 수행할 수 있다. 이때, 본 발명에서는 상부전극(500)을 통하여 단위셀 영역(a)의 광전소자부(300a)의 상부면과 배선영역(b)의 하부연결전극(200b)의 측면이 전기적으로 연결된다.
이상에서 설명된 본 발명의 일 실시예에 따른 태양전지는 총 2회의 패턴 공정(10, 20)만을 수행함으로써, 최소 3회의 패턴 공정을 수행하는 종래기술에 비하여 패턴 공정 수, 패턴 공정 시간과 패턴 공정 비용을 감소시켜서 태양전지의 제조 단가를 낮출 수 있다. 또한, 본 발명의 태양전지는 하부전도층(200)과 실리콘층(300)을 일괄적으로 패턴하기 때문에 상대적으로 단위셀 영역(a)의 면적이 증가하여(즉, 데드영역(b)의 면적이 감소하여), 우수한 광전 변환 효율을 얻을 수 있다. 또한, 본 발명의 태양전지는 광전소자부(300a)와 하부전극(200a)의 측면에 별도의 측벽 절연층(400)을 형성하여 태양전지 단위셀간의 직렬 연결시 발생되는 단락 현상을 방지하여 태양전지의 신뢰성과 광전 변환 효율을 향상시킬 수 있다.
본 발명의 일 실시예에 의한 광전소자부(300a)는 비정질 광전소자 또는 다결정 광전소자 중 적어도 어느 하나를 포함할 수 있다.
도 7은 본 발명의 일 실시예에 따른 광전소자부의 상세한 구성을 나타내는 도면이다.
도 7을 참조하면, 기판(100)의 단위셀 영열(a) 상에 형성된 광전소자부(300a)는 다결정 광전소자일 수 있다. 보다 상세하게 설명하면, 도시 되지는 않았지만, 기판(100) 상의 하부전극(200a) 상에는 제1 비정질 실리콘층을 형성하고, 이어서 제1 비정질 실리콘층 상에는 제2 비정질 실리콘층을 형성하고, 이어서 제2 비정질 실리콘층 상에는 제3 비정질 실리콘층을 형성하여 하나의 광전소자를 구성할 수 있다. 이때, 제1, 제2, 제3 비정질 실리콘층의 형성 방법으로는 PECVD 또는 LPCVD와 같은 CVD 방법을 이용하여 형성할 수 있다.
이어서, 제1, 제2, 제3 비정질 실리콘층을 고온 열처리하여 결정화하는 과정을 수행할 수 있다. 즉, 제1 비정질 실리콘층은 제1 다결정 실리콘층(311)으로, 제2 비정질 실리콘층은 제2 다결정 실리콘층(312)으로, 제3 비정질 실리콘층은 제3 다결정 실리콘층(313)으로 각각 결정화할 수 있다. 결국, 제1, 제2, 제3 다결정 실리콘층(311, 312, 313)으로 구성되는 다결정 광전소자부(300a)가 형성될 수 있다.
제1, 제2, 제3 비정질 실리콘층의 결정화 방법은 SPC(Solid Phase Crystallization), ELA(Excimer Laser Annealing), SLS(Sequential Lateral Solidification), MIC(Metal Induced Crystallization), 및 MILC(Metal Induced Lateral Crystallization) 중 어느 하나의 방법을 사용할 수 있다. 이와 같은 비정질 실리콘의 결정화 방법은 공지의 기술이므로 이에 대한 상세한 설명은 본 명세서에서는 생략하기로 한다.
한편, 상기에서는 제1, 제2, 제3 비정질 실리콘층을 모두 형성한 후에 이들 층을 동시에 결정화시키는 것으로 설명하고 있으나 반드시 이에 한정되는 것은 아니다. 예를 들어, 하나의 비정질 실리콘층 마다 결정화 공정을 별도로 진행할 수 있으며, 또한 두 개의 비정질 실리콘층은 동시에 결정화 공정을 진행하고 나머지 하나의 비정질 실리콘층은 별도로 결정화 공정을 진행할 수도 있다.
이러한 다결정 광전소자는 광이 수광되어 발생되는 광기전력으로 전력을 생산할 수 있는 p 형, i 형, n 형의 다결정 실리콘층이 순서대로 적층된 p-i-n 다이오드의 구조일 수 있다. 여기서 i 형은 불순물이 도핑되지 않은 진성(intrinsic)을 의미한다. 또한, n 형 또는 p 형 도핑은 비정질 실리콘층 형성시에 불순물을 인시츄(in situ) 방식으로 도핑하는 것이 바람직하다. P 형 도핑시 불순물로서는 보론(B)을 n 형 도핑시 불순물로서는 인(P) 또는 비소(As)를 사용하는 것이 일반적이나, 이에 한정되는 것은 아니며 공지된 기술을 제한 없이 사용할 수 있다.
한편, 다결정 광전소자는 p, i, n 형 이외에도 p+, i, n+ 형, n, i, p 형(특히, n+, i, p+), p, n, n 형(특히, p+, p-, n+) 또는 n, n, p형(특히, n+, n-, p+)의 실리콘층으로 형성될 수 있다. 여기서, +와 -의 의미는 도핑 농도의 상대적인 차이를 나타내며 +가 -보다 고농도의 도핑 농도를 가짐을 의미한다. 예를 들어, n+가 n- 보다 하이 도핑되어 있음을 의미한다. + 또는 -의 표시가 없는 경우에는 도핑 농도의 특별한 제한이 없음을 의미한다. 또한, p와 n 형 사이에 위치하는 반도체층은 광 흡수층(예를 들면, i 형)의 기능을 한다.
또한, 도시되지는 않았지만 다결정 실리콘층(311, 312, 313)의 성질을 보다 향상시키기 위하여 결함 제거 공정을 추가로 진행할 수 있다. 본 발명에서는 다결정 실리콘층을 고온 열처리하거나 수소 플라즈마 처리하여 다결정 실리콘층 내에 존재하는 결함(예를 들어, 불순물 및 댕글링 본드 등)을 제거할 수 있다.
한편, 도 6의 태양전지에 도 7의 광전소자부(300a)가 적용된다면, 본 발명에서는, 태양전지의 임의의 단위셀의 제1 다결정 실리콘층(311)과 하부전극(200a)이 연결되고, 하부전극(200a)은 하부연결전극(200b)과 연결되고, 하부연결전극(200b)은 상부전극(500)과 연결되고, 상부전극(500)은 상기 임의의 단위셀의 인접셀의 제3 다결정 실리콘층(313)과 연결되는 단위셀간의 전기적 연결 관계가 구현된다. 따라서, 광전소자부(300a)가 p, i, n 형 다결정 실리콘층이 적층된 구조를 갖는다면, 단위셀간에 p 형 다결정 실리콘층과 n 형 다결정 실리콘층이 전기적으로 직접 연결되는 직렬 연결 방식의 태양전지를 구현할 수 있게 된다.
도 8은 본 발명의 일 실시예에 따른 다른 형태의 광전소자부의 상세한 구성을 나타내는 도면이다.
도 8을 참조하면, 이상에서 설명된 제1, 제2, 제3 다결정 실리콘층(311, 312, 313)으로 구성된 다결정 광전소자(310) 상에 다른 광전소자가 더 형성될 수 있는데, 이러한 다른 광전소자는 비정질 실리콘층인 상부 제1, 제2, 제3 비정질 실리콘층(321, 322, 323)이 적층된 비정질 광전소자(320)일 수 있다. 이와 같이, 본 발명의 일 실시예에서는 광전소자(310, 320)가 탠덤 구조로 형성된 광전소자부(300a)를 구현할 수 있다. 한편, 이러한 탠덤 구조는 광전소자가 삼중 이상으로 적층된 다중 접합 구조를 포괄적으로 의미할 수 있다.
한편, 도시되어 있지 않지만, 다결정 광전소자(310)와 비정질 광전소자(320) 사이에는 투명 전도체인 연결층(미도시)이 추가로 형성될 수 있다. 상기 연결층은 다결정 광전소자(310)와 비정질 광전소자(320) 사이에 오믹 접촉(ohmic contact)이 이루어지게 하여, 그 결과 태양전지의 광전 변환 효율을 향상시키는 역할을 할 수 있다. 상기 연결층은 ZnO에 Al이 소량 첨가된 AZO(ZnO:Al)인 것이 바람직하나 반드시 이에 한정되지 않으며 통상적인 ITO, ZnO, IZO, FTO(SnO2:F), BZO 등과 같은 투명 전도성 소재를 특별한 제한 없이 사용할 수 있다.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.

Claims (10)

  1. 다수개의 단위셀 영역과 상기 단위셀 영역 사이에 위치하는 다수개의 배선영역을 포함하는 기판;
    상기 기판 상의 상기 단위셀 영역 상에 형성되는 하부전극;
    상기 기판 상의 상기 배선영역 상에 형성되며 상기 하부전극의 일측과 동일층으로 연결되는 하부연결전극;
    상기 하부전극 상에 형성되며 비정질 광전소자 또는 다결정 광전소자 중 적어도 어느 하나를 포함하는 광전소자부;
    상기 광전소자부와 동일층으로 일정 간격을 두고 상기 하부연결전극의 가장자리부 상에 형성되는 더미광전소자;
    상기 광전소자부와 상기 더미광전소자 상에 형성되고 이웃하는 단위셀 영역의 하부전극과 연결된 하부연결전극의 측면과 전기적으로 접속되는 상부전극; 및
    상기 기판 상의 상기 배선영역 상에 위치하며 상기 하부전극 및 상기 광전소자부의 측면과 상기 상부전극 사이에 형성되는 측벽 절연층
    을 포함하는 것을 특징으로 하는 태양전지.
  2. 제1항에 있어서,
    상기 하부전극과 상기 광전소자부는 일괄적으로 패턴된 것을 특징으로 하는 태양전지.
  3. 제1항에 있어서,
    상기 측벽 절연층은 실리콘 질화막(SiNx) 또는 실리콘 산화막(SiOx) 중 어느 하나이거나 이들의 적층막인 것을 특징으로 하는 태양전지.
  4. 제1항에 있어서,
    상기 광전소자부는,
    상기 하부전극 상에 형성되는 제1 다결정 반도체층;
    상기 제1 다결정 반도체층 상에 형성되는 제2 다결정 반도체층; 및
    상기 제2 다결정 반도체층 상에 형성되는 제3 다결정 반도체층
    을 포함하는 것을 특징으로 하는 태양전지.
  5. 제1항에 있어서,
    상기 광전소자부는,
    상기 하부전극 상에 형성되는 제1 다결정 반도체층;
    상기 제1 다결정 반도체층 상에 형성되는 제2 다결정 반도체층;
    상기 제2 다결정 반도체층 상에 형성되는 제3 다결정 반도체층;
    상기 제3 다결정 반도체층 상에 형성되는 제1 비정질 반도체층;
    상기 제1 비정질 반도체층 상에 형성되는 제2 비정질 반도체층; 및
    상기 제2 비정질 반도체층 상에 형성되는 제3 비정질 반도체층
    을 포함하는 것을 특징으로 하는 태양전지.
  6. 제4항 또는 제5항에 있어서,
    상기 제1 다결정 반도체층, 상기 제2 다결정 반도체층 및 상기 제3 다결정 반도체층은 각각 p 형, i 형, n 형 다결정 반도체층이거나, 각각 n 형, i 형, p 형 다결정 반도체층인 것을 특징으로 하는 태양전지.
  7. 제5항에 있어서,
    상기 제1 비정질 반도체층, 상기 제2 비정질 반도체층 및 상기 제3 비정질 반도체층은 각각 p 형, i 형, n 형 비정질 반도체층이거나, 각각 n 형, i 형, p 형 비정질 반도체층인 것을 특징으로 하는 태양전지.
  8. 제4항 또는 제5항에 있어서,
    상기 다결정 반도체층은 SPC(Solid Phase Crystallization), ELA(Excimer Laser Annealing), SLS(Sequential Lateral Solidification), MIC(Metal Induced Crystallization), 및 MILC(Metal Induced Lateral Crystallization) 중 어느 하나의 방법으로 결정화된 것을 특징으로 하는 태양전지.
  9. 다수개의 단위셀 영역과 상기 단위셀 영역 사이에 위치하는 다수개의 배선영역을 포함하는 기판을 제공하는 단계;
    상기 기판 상의 전면에 하부전도층과 반도체층을 순차적으로 형성하는 단계;
    상기 기판 상의 상기 배선영역 상의 상기 하부전도층과 상기 반도체층을 일괄적으로 제1 패터닝하는 단계;
    상기 기판 상의 상기 배선영역 상에 상기 패터닝된 하부전도층과 상기 패터닝된 반도체층의 측면과 접하는 측벽 절연층을 형성하는 단계;
    상기 기판 상의 전면에 상부전도층을 형성하는 단계; 및
    상기 기판 상의 상기 배선영역 상의 상기 상부전도층과 상기 패터닝된 반도체층을 일괄적으로 제2 패터닝하는 단계
    를 포함하는 것을 특징으로 하는 태양전지의 제조방법.
  10. 제9항에 있어서,
    상기 제1 및 상기 제2 패터닝은 레이저 스크라이빙(laser scribing)을 이용하여 수행되는 것을 특징으로 하는 태양전지의 제조방법.
PCT/KR2010/008142 2009-11-30 2010-11-18 태양전지 및 그 제조방법 WO2011065700A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0116668 2009-11-30
KR1020090116668A KR101047170B1 (ko) 2009-11-30 2009-11-30 태양전지 및 그 제조방법

Publications (2)

Publication Number Publication Date
WO2011065700A2 true WO2011065700A2 (ko) 2011-06-03
WO2011065700A3 WO2011065700A3 (ko) 2011-11-03

Family

ID=44067060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008142 WO2011065700A2 (ko) 2009-11-30 2010-11-18 태양전지 및 그 제조방법

Country Status (3)

Country Link
KR (1) KR101047170B1 (ko)
TW (1) TW201131791A (ko)
WO (1) WO2011065700A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014152556A1 (en) * 2013-03-15 2014-09-25 First Solar, Inc. Photovoltaic device interconnection and method of manufacturing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101044680B1 (ko) * 2010-03-24 2011-06-28 주식회사 티지솔라 태양전지 및 그 제조방법
KR101326951B1 (ko) 2011-10-25 2013-11-13 엘지이노텍 주식회사 태양전지 및 이의 제조방법
KR101283113B1 (ko) 2011-12-09 2013-07-05 엘지이노텍 주식회사 태양전지 모듈 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101384A (ja) * 2003-09-26 2005-04-14 Sanyo Electric Co Ltd 光起電力装置及びその製造方法
JP2006222416A (ja) * 2005-01-14 2006-08-24 Semiconductor Energy Lab Co Ltd 太陽電池の作製方法
US20090014052A1 (en) * 2005-10-07 2009-01-15 Borden Peter G Module having an improved thin film solar cell interconnect

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4425296B2 (ja) * 2007-07-09 2010-03-03 三洋電機株式会社 光起電力装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101384A (ja) * 2003-09-26 2005-04-14 Sanyo Electric Co Ltd 光起電力装置及びその製造方法
JP2006222416A (ja) * 2005-01-14 2006-08-24 Semiconductor Energy Lab Co Ltd 太陽電池の作製方法
US20090014052A1 (en) * 2005-10-07 2009-01-15 Borden Peter G Module having an improved thin film solar cell interconnect

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014152556A1 (en) * 2013-03-15 2014-09-25 First Solar, Inc. Photovoltaic device interconnection and method of manufacturing

Also Published As

Publication number Publication date
TW201131791A (en) 2011-09-16
KR101047170B1 (ko) 2011-07-07
WO2011065700A3 (ko) 2011-11-03
KR20110060162A (ko) 2011-06-08

Similar Documents

Publication Publication Date Title
WO2010021477A2 (ko) 태양전지모듈 및 그 제조방법
WO2009107955A2 (en) Solar cell and method for manufacturing the same
WO2010101350A2 (en) Solar cell and method of manufacturing the same
WO2011071227A1 (en) Solar cell module
WO2012043921A1 (en) Semiconductor devices and methods for manufacturing the same
WO2010150943A1 (en) Solar cell and method of manufacturing the same
WO2010110510A1 (en) Solar cell and fabrication method thereof
WO2009128679A2 (en) Solar cell, method of forming emitter layer of solar cell, and method of manufacturing solar cell
WO2011004950A1 (en) Solar cell module having interconnector and method of fabricating the same
WO2016186317A1 (ko) 페로브스카이트 태양 전지 모듈
WO2010013956A2 (en) Solar cell, method of manufacturing the same, and solar cell module
US20120298168A1 (en) Thin-film photovoltaic cell having an etchant-resistant electrode and an integrated bypass diode and a panel incorporating the same
WO2010137927A4 (ko) 후면접합 구조의 태양전지 및 그 제조방법
WO2012093845A2 (ko) 태양전지 및 이의 제조 방법
WO2011065700A2 (ko) 태양전지 및 그 제조방법
KR101011228B1 (ko) 태양전지 및 그 제조방법
WO2011129503A1 (en) Solar cell and method for manufacturing the same
KR101011222B1 (ko) 태양전지 및 그 제조방법
WO2011071226A1 (en) Solar cell module
WO2011014023A2 (ko) 삼중 접합 탠덤형 태양전지 및 그 제조방법
KR20110015998A (ko) 태양 전지 및 그 제조 방법
WO2012091254A1 (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법
KR101542209B1 (ko) 태양전지 및 그 제조방법
WO2010123292A2 (ko) 태양전지 및 그 제조방법
WO2010114278A2 (ko) 플렉서블 기판 및 이를 이용한 태양전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833512

Country of ref document: EP

Kind code of ref document: A2