WO2011065605A1 - Method and system for optimally operating a power plant boiler - Google Patents

Method and system for optimally operating a power plant boiler Download PDF

Info

Publication number
WO2011065605A1
WO2011065605A1 PCT/KR2009/007045 KR2009007045W WO2011065605A1 WO 2011065605 A1 WO2011065605 A1 WO 2011065605A1 KR 2009007045 W KR2009007045 W KR 2009007045W WO 2011065605 A1 WO2011065605 A1 WO 2011065605A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiler
power plant
high temperature
computer simulation
plant boiler
Prior art date
Application number
PCT/KR2009/007045
Other languages
French (fr)
Korean (ko)
Inventor
윤기봉
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Publication of WO2011065605A1 publication Critical patent/WO2011065605A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/38Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/42Applications, arrangements, or dispositions of alarm or automatic safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/02Applications of combustion-control devices, e.g. tangential-firing burners, tilting burners

Definitions

  • the present invention relates to a method of operating a power plant boiler and a system thereof.
  • a power plant is a device for converting fuel energy into electrical energy, and is generally composed of a boiler and a turbine.
  • a boiler is a device that generates steam by converting water into steam, and steam generated by the boiler generates electric energy by turning a turbine.
  • coal stored in a coal bunker 1 is supplied to a crusher 2 and crushed finely.
  • the crushed coal fuel is spark ignited in the tilting burner 3, and the flame of the tilting burner 3 is injected into the combustion chamber C inside the boiler 10.
  • the boiler tube is a tube installed inside the boiler 10 and is heated by the combustion gas of the combustion chamber C.
  • the boiler tube includes a preheater 4, a pelletizer 5, a superheater 6, and a reheater 7.
  • the preheater 4 which is heated by the combustion gas is installed below the boiler 10.
  • the preheater 4 is a device for preheating the water supply flowing into the boiler 10.
  • the water preheated in the preheater 4 flows into the coal mill 5.
  • the cinder 5 is a device for heating by using the remaining heat of the combustion gas discharged from the boiler 10 and is located between the rear passage 15 of the boiler 10 and the air preheater 8.
  • the coke machine 5 is connected to the superheater 6.
  • the superheater 6 generates heated steam by the hot combustion gas inside the boiler 10.
  • the superheated steam generated in the superheater 6 turns the high pressure turbine 20, and the steam which loses a predetermined amount of heat while turning the high pressure turbine 20 flows into the reheater 7 inside the boiler 10.
  • the reheater 7 is a device for reheating the steam passing through the high pressure turbine 20.
  • the steam reheated in the reheater 7 flows into the medium pressure turbine 25 and turns the medium pressure turbine 25.
  • the generator 30 is connected to the low pressure turbine 27 and generates electric energy by the rotation of the low pressure turbine 27.
  • air is supplied from the air supply 11, and is supplied to the combustion chamber C through the air duct 12.
  • the air preheater 8 is located between the air supply 11 and the air duct 12 and is also located between the rear passage 15 and the dust collector 40 of the boiler 10.
  • the tube of the conventional boiler is heated by the hot combustion gas of the combustion chamber (C), the heated steam turns the turbine to generate electrical energy.
  • the boiler tube is formed of a plurality of steel pipes, as shown in Figure 2, due to the high temperature environment inside the boiler is often the case that some of the steel pipes are broken during operation. During operation, if the steel pipe breaks, the entire system of the power plant is shut down, causing huge losses.
  • thermocouple or a thermal radiation thermometer
  • the thermocouple method requires an electrical connection to a sensor and is limited in use at high temperature conditions such as a boiler.
  • the thermal radiation thermometer does not need an electrical connection, but there is a limit that it is difficult to accurately measure the temperature because the radiation rate of the tube is not 1 and is influenced by the material, surface state, etc. of the tube.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to set an optimum operating condition such that the temperature distribution inside the power plant boiler has a uniform distribution.
  • a method of operating a power plant boiler according to the present invention for achieving the above object includes: receiving accumulated measured high temperature damage information of a boiler tube through a boiler tube or a sensor installed near the boiler tube; Receiving accumulated virtual high temperature damage information of the boiler tube through computer simulation; Correcting the computer simulation by comparing the measured high temperature damage information with the virtual high temperature damage information; And setting the boiler operating conditions such that the temperature inside the boiler has a uniform distribution through the corrected computer simulation.
  • the senor is characterized in that the degree of tissue change or deformation at high temperature or the degree of diffusion at high temperature as the sensing criterion of high temperature damage.
  • the computer simulation is characterized in that it includes computational fluid dynamics (CFD), finite element stress analysis (FEM) and coupled techniques.
  • CFD computational fluid dynamics
  • FEM finite element stress analysis
  • the correcting of the computer simulation may include correcting a constant of an analysis technique used for the computer simulation.
  • the setting of the boiler operating conditions may include calculating operating conditions in which the temperature inside the boiler has a uniform temperature distribution through a corrected computer simulation technique; And applying the calculated operating conditions to the power plant boiler.
  • the driving condition may include at least one of an inclination angle, a fuel injection amount, and an air amount of the tilting burner.
  • the operating system of the power plant boiler of the present invention for achieving the above object includes a sensor installed near the power plant boiler tube or boiler tube, and a computer simulation unit for computer simulation of the power plant boiler, the computer simulation unit is the sensor It is characterized by calculating the combustion conditions of the power plant boiler on the basis of the measured high temperature damage information.
  • the senor is characterized in that the degree of tissue change or deformation at high temperature or the degree of diffusion at high temperature as the sensing criterion of high temperature damage.
  • Computer simulations can be used to establish combustion conditions that ensure a uniform distribution of the internal temperature of power plant boilers.
  • FIG. 2 is a perspective view of a boiler tube according to the prior art
  • FIG. 3 is a flowchart for performing computer simulation according to a preferred embodiment of the present invention.
  • the computer simulation unit receives accumulated measured high temperature damage information of the boiler tube through a boiler tube or a sensor installed near the boiler tube.
  • high temperature damage means cumulative damage caused by the boiler tube being exposed to high temperature during operation. More preferably, it is expressed as ⁇ T (t) dt as the sum of the temperatures of the boiler tubes during the operation time. Where t is any operating time and T (t) is the temperature of the boiler tube at any operating time.
  • the boiler tube is a tube installed inside the boiler and heated by the combustion gas in the combustion chamber, and includes a preheater, a superheater, a reheater, and a coal cutter.
  • the sensor installed near the boiler tube or the boiler tube is a sensor based on sensing of temperature change or deformation at high temperature, or a sensor based on sensing temperature at high temperature.
  • the degree of tissue change or deformation at high temperature is defined as the deformation sensor based on the sensing criterion of high temperature damage.
  • a strain sensor installed near the boiler tube or boiler tube measures the degree of tissue deformation that occurs as the sensor is exposed to high temperatures, thereby measuring the average temperature of the environment in which the sensor is exposed.
  • a sensor in which the degree of diffusion at high temperature is the sensing criterion for high temperature damage is defined as a diffusion sensor.
  • the diffusion sensor installed in the boiler tube is formed by bonding two or more kinds of metals having different components to each other and forming a diffusion layer in a high temperature environment.
  • the metal is selected from at least one of Fe, C, Ni, CO, and Cr.
  • the metal component is not limited thereto, and may be appropriately selected in consideration of the diffusion speed and the size of the diffusion sensor.
  • the diffusion sensor is a sensor in which the formation rate of the diffusion layer varies according to the exposure temperature.
  • the total thickness of the diffusion layer varies according to the absolute value of the temperature at which the diffusion sensor is exposed, and the layer thicknesses of the diffusion layer vary according to the relative change of the exposed temperature. .
  • the first metal of the Fe component and the second metal of the C component are bonded to each other to form a diffusion sensor.
  • the senor can be manufactured in a small size of less than 10 cm 2, even if the sensor is installed near the boiler tube or boiler tube does not affect the thermal characteristics of the boiler tube.
  • a plurality of sensors are installed at predetermined intervals near the boiler tube or the boiler tube. It is desirable that the sensor be installed more in the boiler tube where the temperature fluctuates.
  • the number of boiler tubes may vary in the order of superheater> reheater> coalizer> preheater.
  • the mounting position of the sensor is preferably installed in a position to form a high temperature distribution by predicting the temperature distribution inside the boiler by performing a computer simulation technique to be described later.
  • Accumulated measured high temperature damage of the boiler tube is obtained from the collected sensors by measuring tissue deformation, degree of change or thickness of the diffusion layer, and resistance change of the diffusion layer.
  • Accumulated measured high temperature damage information is input to a computer simulation part.
  • the computer simulation unit receiving the accumulated measured high temperature damage information performs the computer simulation according to the flowchart of FIG. 3.
  • 3 is a flowchart for performing computer simulation according to a preferred embodiment of the present invention.
  • Computer simulation simulates a real-world power plant boiler to obtain virtual high temperature damage information based on a computer, and simulates under the same operating conditions as that of calculating actual high temperature damage information.
  • the analytical techniques used in computer simulations include computational fluid dynamics (CFD), finite element stress analysis (FEM), and linking techniques that connect them.
  • CFD computational fluid dynamics
  • FEM finite element stress analysis
  • CFD Computational fluid dynamics
  • the linkage technique is to correct the fluid temperature to metal temperature, and the metal temperature corrected by the linkage technique is substituted into the metal temperature condition of the finite element stress analysis (FEM).
  • FEM finite element stress analysis
  • Finite element stress analysis calculates virtual high temperature damage information of a boiler tube based on the metal temperature of the boiler tube.
  • the accumulated virtual high temperature damage information calculated through the computer simulation is compared with the measured high temperature damage information (300).
  • the accumulated measured high temperature damage information and the accumulated virtual high temperature damage information are compared to determine whether the accumulated virtual high temperature damage information is substantially the same as the accumulated measured high temperature damage information.
  • the analysis technique of the computer simulation is corrected (400).
  • calibrating the analysis technique of computational simulation includes calibrating the constants used in computational fluid dynamics (CFD), coupling techniques, and finite element stress analysis methods.
  • CFD computational fluid dynamics
  • coupling techniques coupling techniques
  • finite element stress analysis methods e.g., Monte Carlo simulations
  • Boiler operating conditions include especially combustion conditions.
  • Combustion conditions include the tilt angle of the tilting burner, the fuel injection amount and the air amount, and the like, and the combustion conditions are changed to obtain an optimum combustion condition with a uniform temperature distribution.
  • the inclination angle of the tilting burner can be set differently for each tilting burner, and the internal temperature distribution of the combustion chamber varies according to the inclination angle of each tilting burner.
  • the temperature distribution of the entire boiler varies according to the inclination angle of the tilting burner, the fuel injection amount and the air amount, and in particular, the inside of the boiler may have a uniform temperature distribution by adjusting the inclination angle of the tilting burner.
  • the combustion conditions at that time are stored (800).
  • the stored combustion conditions are applied to the actual power plant boiler, and set as the power plant boiler operating conditions.
  • the power plant is operated for a predetermined operating time under the combustion conditions set as described above.
  • a new diffusion sensor is attached to the boiler tube before the power plant is operated to operate the power plant for a predetermined time, and after the predetermined time elapses, the diffusion sensor is analyzed and analyzed.
  • the combustion conditions of the boiler can be readjusted.
  • the temperature information by the diffusion sensor or the deformation sensor the temperature information can be obtained even if the internal temperature of the power plant boiler is very high temperature, especially temperature can be measured even for boilers 1000 °C or more. Therefore, the configuration is more suitable for a high capacity power plant.
  • the computer simulation is corrected based on the high temperature damage information of the measured boiler tube so that the computer simulation matches the actual power plant boiler. In this way, the computer simulation can closely simulate the actual power plant boiler.
  • the present invention can be used for the operation of the power plant boiler, in particular can be used for the optimal operation of the thermal power plant.

Abstract

The present invention relates to a method for optimally operating a power plant boiler and, in particular, to a method for providing a uniform temperature distribution within a power plant boiler, said method comprising the steps of: receiving input of actual cumulative thermal damage information about a boiler tube, via a sensor installed on the boiler tube or near the boiler tube; receiving input of virtual cumulative thermal damage information about the boiler tube, via a computer simulation; comparing the actual thermal damage information to the virtual thermal damage information to correct the computer simulation; and setting boiler operating conditions using the corrected computer simulation so that the temperature within the boiler has uniform distribution.

Description

발전소 보일러의 최적 운전 방법 및 그 시스템Optimal operating method of power plant boiler and its system
본 발명은 발전소 보일러의 운전방법 및 그 시스템에 관한 것이다. The present invention relates to a method of operating a power plant boiler and a system thereof.
일반적으로 발전소는 연료 에너지를 전기 에너지로 바꾸는 장치로서, 크게 보일러(boiler)와 터빈(turbine)으로 구성된다. 보일러는 물을 증기로 바꿔서 증기를 생성하는 장치이며, 보일러를 통해 발생되는 증기가 터빈(Turbine)을 돌려 전기에너지를 발생시킨다. In general, a power plant is a device for converting fuel energy into electrical energy, and is generally composed of a boiler and a turbine. A boiler is a device that generates steam by converting water into steam, and steam generated by the boiler generates electric energy by turning a turbine.
도 1은 종래의 발전소를 도시한 것으로서, 도 1을 참조하면, 콜벙커(coal bunker)(1)에 저장된 석탄은 마쇄기(2)로 공급되어 잘게 파쇄된다. 파쇄된 석탄 연료는 틸팅 버너(tilting burner)(3)에서 불꽃 점화되며, 틸팅버너(3)의 불꽃은 보일러(10) 내부의 연소실(C)로 분사된다. 1 illustrates a conventional power plant, referring to FIG. 1, coal stored in a coal bunker 1 is supplied to a crusher 2 and crushed finely. The crushed coal fuel is spark ignited in the tilting burner 3, and the flame of the tilting burner 3 is injected into the combustion chamber C inside the boiler 10.
보일러 튜브는 보일러(10) 내부에 설치되어 연소실(C)의 연소가스에 의해 가열되는 관으로서, 예열기(4), 절탄기(5), 과열기(6), 재열기(7)를 포함한다.The boiler tube is a tube installed inside the boiler 10 and is heated by the combustion gas of the combustion chamber C. The boiler tube includes a preheater 4, a pelletizer 5, a superheater 6, and a reheater 7.
보일러(10) 내부의 하측에는 연소 가스에 의해 가열되는 예열기(4)가 설치된다. 예열기(4)는 보일러(10)로 유입되는 급수를 예열하는 장치이다. The preheater 4 which is heated by the combustion gas is installed below the boiler 10. The preheater 4 is a device for preheating the water supply flowing into the boiler 10.
예열기(4)에서 예열된 급수는 절탄기(5)로 유입된다. 절탄기(5)는 보일러(10)에서 배출되는 연소가스의 남은 열을 이용하여 가열하는 장치로서 보일러(10)의 후통로(15)와 공기 예열기(8) 사이에 위치한다. The water preheated in the preheater 4 flows into the coal mill 5. The cinder 5 is a device for heating by using the remaining heat of the combustion gas discharged from the boiler 10 and is located between the rear passage 15 of the boiler 10 and the air preheater 8.
절탄기(5)는 과열기(6)에 연결된다. 과열기(6)는 보일러(10) 내부의 고온의 연소가스에 의해 가열 증기를 생성한다. The coke machine 5 is connected to the superheater 6. The superheater 6 generates heated steam by the hot combustion gas inside the boiler 10.
과열기(6)에서 생성된 과열 증기는 고압 터빈(20)을 돌리며, 고압 터빈(20)을 돌리면서 소정의 열량을 손실하게 된 증기는 보일러(10) 내부의 재열기(7)로 유입된다. The superheated steam generated in the superheater 6 turns the high pressure turbine 20, and the steam which loses a predetermined amount of heat while turning the high pressure turbine 20 flows into the reheater 7 inside the boiler 10.
재열기(7)는 고압 터빈(20)을 통과한 증기를 재가열하는 장치이다. 재열기(7)에서 재가열된 증기는 중압 터빈(25)으로 유입되어 중압 터빈(25)을 돌린다. 중압 터빈(25)을 돌린 증기는 중압 터빈(25)을 빠져 나와 저압 터빈(27)에 유입되어 저압 터빈(27)을 돌리게 된다. The reheater 7 is a device for reheating the steam passing through the high pressure turbine 20. The steam reheated in the reheater 7 flows into the medium pressure turbine 25 and turns the medium pressure turbine 25. The steam which turned the medium pressure turbine 25 exits the medium pressure turbine 25, flows into the low pressure turbine 27, and turns the low pressure turbine 27. As shown in FIG.
발전기(30)는 저압 터빈(27)과 연결되며, 저압 터빈(27)의 회전으로 전기 에너지를 발생시키게 된다. The generator 30 is connected to the low pressure turbine 27 and generates electric energy by the rotation of the low pressure turbine 27.
한편, 보일러(10)의 후통로(15)를 통과한 연소 가스는 집진기(40)에서 분진등이 제거된다. On the other hand, the combustion gas passing through the back passage 15 of the boiler 10 is dust is removed from the dust collector (40).
또한, 에어는 에어 공급기(11)에서 공급되며, 에어 덕트(12)를 통해 연소실(C)로 공급된다.In addition, air is supplied from the air supply 11, and is supplied to the combustion chamber C through the air duct 12.
에어 예열기(8)는 에어 공급기(11)와 에어 덕트(12) 사이에 위치하며, 또한 보일러(10)의 후통로(15)와 집진기(40) 사이에 위치한다. The air preheater 8 is located between the air supply 11 and the air duct 12 and is also located between the rear passage 15 and the dust collector 40 of the boiler 10.
이와 같이 종래의 보일러의 튜브는 연소실(C)의 고온 연소 가스에 의해 가열되며, 가열된 스팀이 터빈을 돌려 전기에너지를 발생하게 된다. Thus, the tube of the conventional boiler is heated by the hot combustion gas of the combustion chamber (C), the heated steam turns the turbine to generate electrical energy.
한편, 보일러 튜브는 도 2 와 같이 복수개의 강관으로 형성되는데, 보일러 내부의 고온 환경으로 인해 운전 도중 강관 중 일부가 파손되는 사례가 종종 발생한다. 운전 도중, 강관이 파손되는 경우에는 발전소 전체 시스템의 가동이 중단되어 엄청난 손실을 발생시키게 된다. On the other hand, the boiler tube is formed of a plurality of steel pipes, as shown in Figure 2, due to the high temperature environment inside the boiler is often the case that some of the steel pipes are broken during operation. During operation, if the steel pipe breaks, the entire system of the power plant is shut down, causing huge losses.
이를 해결하기 위해, 종래 보일러 튜브의 실시간 온도를 측정하여 이상 유무를 판단하는 방법이 개시된 바 있다. 그러나 그와 같은 종래 기술은 열전대(thermocouple)나 열방사 온도계(thermal radiation thermometer)를 이용하는 방법으로서, 열전대 방법은 센서에 전기적 접속이 필요하여 보일러와 같은 고온 조건에서는 사용에 한계가 있다. 또한, 열방사 온도계는 전기적 접속이 필요 없으나, 튜브의 복사율이 1이 아니고 튜브의 재질, 표면 상태 등에 영향을 받아 정확한 온도 측정이 어렵다는 한계가 있다. In order to solve this problem, a method of determining an abnormality by measuring a real-time temperature of a conventional boiler tube has been disclosed. However, such a conventional technique uses a thermocouple or a thermal radiation thermometer, and the thermocouple method requires an electrical connection to a sensor and is limited in use at high temperature conditions such as a boiler. In addition, the thermal radiation thermometer does not need an electrical connection, but there is a limit that it is difficult to accurately measure the temperature because the radiation rate of the tube is not 1 and is influenced by the material, surface state, etc. of the tube.
따라서, 종래 기술에 의해서는 발전소 보일러의 내부의 온도 분포를 알 수 없어 고온 파손의 정확한 원인 규명이 어렵고, 보일러 내부의 균일한 온도 분포를 갖도록 운전조건을 변경하는데에도 한계가 있다. Therefore, according to the prior art, it is difficult to determine the exact cause of the high temperature breakage because the temperature distribution inside the power plant boiler is not known, and there is a limit to changing the operating conditions to have a uniform temperature distribution inside the boiler.
본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 특히 발전소 보일러 내부의 온도 분포가 균일한 분포를 갖도록 하는 최적 운전 조건을 설정하는 것을 목적으로 한다. The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to set an optimum operating condition such that the temperature distribution inside the power plant boiler has a uniform distribution.
전술한 목적을 달성하기 위한 본 발명의 발전소 보일러의 운전 방법는, 보일러 튜브 또는 보일러 튜브 근처에 설치된 센서를 통해 보일러 튜브의 누적된 실측 고온 손상 정보를 입력받는 단계와; 전산 모사를 통해 보일러 튜브의 누적된 가상 고온 손상 정보를 입력받는 단계와; 상기 실측 고온 손상 정보와 상기 가상 고온 손상 정보를 비교하여 전산 모사를 보정하는 단계와; 상기 보정된 전산 모사를 통해 보일러 내부의 온도가 균일한 분포를 갖도록 보일러 운전 조건을 설정하는 단계를 포함한다. A method of operating a power plant boiler according to the present invention for achieving the above object includes: receiving accumulated measured high temperature damage information of a boiler tube through a boiler tube or a sensor installed near the boiler tube; Receiving accumulated virtual high temperature damage information of the boiler tube through computer simulation; Correcting the computer simulation by comparing the measured high temperature damage information with the virtual high temperature damage information; And setting the boiler operating conditions such that the temperature inside the boiler has a uniform distribution through the corrected computer simulation.
또한, 상기 센서는 고온에서의 조직 변화 또는 변형 정도 또는 고온에서의 확산 정도를 고온 손상의 센싱 기준으로 하는 것을 특징으로 한다. In addition, the sensor is characterized in that the degree of tissue change or deformation at high temperature or the degree of diffusion at high temperature as the sensing criterion of high temperature damage.
또한, 상기 전산 모사는 전산유체역학(CFD), 유한요소응력해석법(FEM) 및 연계기법을 포함하는 것을 특징으로 한다. In addition, the computer simulation is characterized in that it includes computational fluid dynamics (CFD), finite element stress analysis (FEM) and coupled techniques.
또한, 상기 전산 모사를 보정하는 단계는 상기 전산 모사에 이용되는 해석기법의 상수를 보정하는 것을 포함하는 것을 특징으로 한다. In addition, the correcting of the computer simulation may include correcting a constant of an analysis technique used for the computer simulation.
또한, 보일러 운전 조건을 설정하는 단계는, 보정된 전산 모사 기법을 통해 보일러 내부의 온도가 균일한 온도 분포를 갖는 운전 조건을 계산하는 단계와; 계산된 운전조건을 발전소 보일러에 적용하는 단계를 포함하는 것을 특징으로 한다. In addition, the setting of the boiler operating conditions may include calculating operating conditions in which the temperature inside the boiler has a uniform temperature distribution through a corrected computer simulation technique; And applying the calculated operating conditions to the power plant boiler.
또한, 상기 운전 조건은 틸팅 버너의 경사각, 연료 주입량, 에어량 중 적어도 1개를 포함하는 것을 특징으로 한다. The driving condition may include at least one of an inclination angle, a fuel injection amount, and an air amount of the tilting burner.
한편, 전술한 목적을 달성하기 위한 본 발명의 발전소 보일러의 운전시스템은 발전소 보일러 튜브 또는 보일러 튜브의 근처에 설치된 센서와, 상기 발전소 보일러를 전산 모사하는 전산 모사부를 포함하되, 상기 전산 모사부는 상기 센서의 실측 고온 손상 정보에 근거하여 발전소 보일러의 연소 조건을 계산하는 것을 특징으로 한다. On the other hand, the operating system of the power plant boiler of the present invention for achieving the above object includes a sensor installed near the power plant boiler tube or boiler tube, and a computer simulation unit for computer simulation of the power plant boiler, the computer simulation unit is the sensor It is characterized by calculating the combustion conditions of the power plant boiler on the basis of the measured high temperature damage information.
또한, 상기 센서는 고온에서의 조직 변화 또는 변형 정도 또는 고온에서의 확산 정도를 고온 손상의 센싱 기준으로 하는 것을 특징으로 한다. In addition, the sensor is characterized in that the degree of tissue change or deformation at high temperature or the degree of diffusion at high temperature as the sensing criterion of high temperature damage.
이상에서 설명한 바와 같은 본 발명의 발전소 보일러의 운전 방법에 따르면, 다음과 같은 효과가 있다.According to the operating method of the power plant boiler of the present invention as described above, there are the following effects.
전산 모사를 통해 발전소 보일러의 내부 온도가 균일한 분포를 갖도록 하는 연소 조건을 설정할 수 있다. Computer simulations can be used to establish combustion conditions that ensure a uniform distribution of the internal temperature of power plant boilers.
발전소 보일러의 실측 고온 손상 정보를 이용하여, 전산 모사가 실제 발전소 보일러의 운전 조건과 실질적으로 동일한 조건에서 이루어진다. Using actual high temperature damage information of the power plant boiler, computer simulations are performed under substantially the same conditions as the actual power plant boiler operating conditions.
확산 센서를 이용하므로, 고온의 보일러 내부 환경에서도 고온 손상 정보를 얻을 수 있다. By using a diffusion sensor, high temperature damage information can be obtained even in a high temperature environment inside a boiler.
도 1은 종래 기술에 따른 발전소 운전 흐름도1 is a flow chart of a plant operation according to the prior art
도 2는 종래 기술에 따른 보일러 튜브의 사시도2 is a perspective view of a boiler tube according to the prior art
도 3은 본 발명의 바람직한 실시예에 따른 전산 모사 수행 흐름도3 is a flowchart for performing computer simulation according to a preferred embodiment of the present invention.
** 도면의 주요 부분에 대한 부호의 설명 **** Description of symbols for the main parts of the drawing **
1 : 콜벙커 2 : 마쇄기1: call bunker 2: grinding machine
3: 틸팅 버너 4: 예열기3: tilting burner 4: preheater
5 : 절탄기 6 : 과열기5: cutting machine 6: superheater
7 : 재열기 8 : 공기 예열기7: reheater 8: air preheater
10 : 보일러 11 : 에어 공급기10 boiler 11 air supply
12 : 에어 덕트 20 : 고압 터빈12 air duct 20 high pressure turbine
25 : 중압 터빈 27 : 저압 터빈25 medium pressure turbine 27 low pressure turbine
30 : 발전기 40 : 집진기30: generator 40: dust collector
50 : 강관50: steel pipe
이하, 본 발명의 바람직한 실시예를 첨부도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
참고적으로, 이하에서 설명될 본 발명의 구성들 중 종래기술과 동일한 구성에 대해서는 전술한 종래기술을 참조하기로 하고 별도의 상세한 설명은 생략한다.For reference, among the configurations of the present invention to be described below, the same configuration as the prior art will be referred to the above-described prior art, and a detailed description thereof will be omitted.
우선, 전산 모사부는 보일러 튜브 또는 보일러 튜브 근처에 설치된 센서를 통해 보일러 튜브의 누적된 실측 고온 손상 정보를 입력받는다. 여기서 고온 손상은 운전 시간 동안 보일러 튜브가 고온에 노출되어 입게 되는 누적 손상을 의미한다. 보다 바람직하게는 운전 시간 동안의 보일러 튜브의 온도의 합으로서, ΣT(t)dt로 표현할 수 있다. 여기서, t는 임의의 운전 시간이며, T(t)는 임의의 운전 시간에서의 보일러 튜브의 온도이다. First, the computer simulation unit receives accumulated measured high temperature damage information of the boiler tube through a boiler tube or a sensor installed near the boiler tube. Here, high temperature damage means cumulative damage caused by the boiler tube being exposed to high temperature during operation. More preferably, it is expressed as ΣT (t) dt as the sum of the temperatures of the boiler tubes during the operation time. Where t is any operating time and T (t) is the temperature of the boiler tube at any operating time.
보일러 튜브는 보일러 내부에 설치되어 연소실의 연소가스에 의해 가열되는 관으로서, 예열기, 과열기, 재열기, 절탄기를 포함한다.The boiler tube is a tube installed inside the boiler and heated by the combustion gas in the combustion chamber, and includes a preheater, a superheater, a reheater, and a coal cutter.
보일러 튜브 또는 보일러 튜브 근처에 설치된 센서는 고온에서의 조직 변화 또는 변형 정도를 고온 손상의 센싱 기준으로 하는 센서이거나 고온에서의 확산 정도를 고온 손상의 센싱 기준으로 하는 센서이다.The sensor installed near the boiler tube or the boiler tube is a sensor based on sensing of temperature change or deformation at high temperature, or a sensor based on sensing temperature at high temperature.
본 실시예에서, 고온에서의 조직 변화 또는 변형 정도를 고온 손상의 센싱 기준으로 센서를 변형 센서로 정의한다. In the present embodiment, the degree of tissue change or deformation at high temperature is defined as the deformation sensor based on the sensing criterion of high temperature damage.
보일러 튜브 또는 보일러 튜브 근처에 설치된 변형 센서는 센서가 고온에 노출됨에 따라 발생되는 조직 변형의 정도를 측정하여 센서가 노출된 환경의 평균 온도를 측정한다. A strain sensor installed near the boiler tube or boiler tube measures the degree of tissue deformation that occurs as the sensor is exposed to high temperatures, thereby measuring the average temperature of the environment in which the sensor is exposed.
본 실시예에서, 고온에서의 확산 정도를 고온 손상의 센싱 기준으로 하는 센서를 확산 센서로 정의한다. In this embodiment, a sensor in which the degree of diffusion at high temperature is the sensing criterion for high temperature damage is defined as a diffusion sensor.
보일러 튜브에 설치되는 확산 센서는 성분이 다른 2종 이상의 금속을 서로 접합하여 구성되며, 고온의 환경에서 확산층이 형성되는 센서이다. 금속은 Fe, C, Ni, CO, Cr 중에서 적어도 1 개 이상 선택된다. 다만, 금속의 성분은 이에 한정되지 않고, 확산 속도 및 확산 센서의 크기 등을 고려하여 적절히 선택될 수 있다. The diffusion sensor installed in the boiler tube is formed by bonding two or more kinds of metals having different components to each other and forming a diffusion layer in a high temperature environment. The metal is selected from at least one of Fe, C, Ni, CO, and Cr. However, the metal component is not limited thereto, and may be appropriately selected in consideration of the diffusion speed and the size of the diffusion sensor.
확산 센서는 노출 온도에 따라 확산층의 형성 속도가 달라지는 센서로서, 확산 센서가 노출된 온도의 절대값에 따라 확산층의 총 두께가 달라지며, 노출된 온도의 상대적인 변화에 따라 확산층을 이루는 층 두께들이 달라진다. The diffusion sensor is a sensor in which the formation rate of the diffusion layer varies according to the exposure temperature. The total thickness of the diffusion layer varies according to the absolute value of the temperature at which the diffusion sensor is exposed, and the layer thicknesses of the diffusion layer vary according to the relative change of the exposed temperature. .
바람직한 실시예로서, Fe성분의 제 1 금속과 C성분의 제 2 금속을 양쪽에서 접합하여 확산 센서를 구성한다. In a preferred embodiment, the first metal of the Fe component and the second metal of the C component are bonded to each other to form a diffusion sensor.
위와 같은 센서는 별도의 전기적 접속(전선)이 필요 없기 때문에, 발전소 보일러와 같은 고온의 환경에서 온도 정보를 얻는데 유리하다. Since such a sensor does not require a separate electrical connection (wire), it is advantageous to obtain temperature information in a high temperature environment such as a power plant boiler.
또한, 센서는 10 ㎠이하의 작은 크기로도 제작이 가능하므로, 센서를 보일러 튜브 또는 보일러 튜브 근처에 설치하더라도 보일러 튜브의 열적 특성에 영향을 주지 않는다.In addition, the sensor can be manufactured in a small size of less than 10 cm 2, even if the sensor is installed near the boiler tube or boiler tube does not affect the thermal characteristics of the boiler tube.
센서는 보일러 튜브 또는 보일러 튜브 근처에 소정의 간격으로 복수 개 설치된다. 센서는 온도 변화가 심한 보일러 튜브에 더 많이 설치되는것이 바람직하다. 예를 들어, 보일러 튜브 중 과열기>재열기>절탄기>예열기 순으로 개수를 달리할 수 있다. 특히, 센서의 부착 위치는 후술하는 전산 모사 기법의 수행을 통해 보일러 내부의 온도 분포를 예측하여, 고온의 분포를 형성하는 위치에 보다 많이 설치함이 바람직하다. A plurality of sensors are installed at predetermined intervals near the boiler tube or the boiler tube. It is desirable that the sensor be installed more in the boiler tube where the temperature fluctuates. For example, the number of boiler tubes may vary in the order of superheater> reheater> coalizer> preheater. In particular, the mounting position of the sensor is preferably installed in a position to form a high temperature distribution by predicting the temperature distribution inside the boiler by performing a computer simulation technique to be described later.
보일러를 소정 시간 동안 운전한 이후에, 발전소 보일러의 운전을 잠시 중단하고 보일러 튜브에 설치된 센서를 수거한다. After operating the boiler for a predetermined time, the operation of the power plant boiler is temporarily stopped and the sensors installed in the boiler tube are collected.
수거한 센서로부터 조직 변형, 변화의 정도 또는 확산층의 두께, 확산층의 저항 변화를 측정하여, 보일러 튜브의 누적된 실측 고온 손상을 얻는다. Accumulated measured high temperature damage of the boiler tube is obtained from the collected sensors by measuring tissue deformation, degree of change or thickness of the diffusion layer, and resistance change of the diffusion layer.
누적된 실측 고온 손상 정보는 전산 모사부에 입력된다.Accumulated measured high temperature damage information is input to a computer simulation part.
누적된 실측 고온 손상 정보를 입력받은 전산 모사부는 도 3의 흐름도에 따라 전산 모사를 수행한다. 도 3은 본 발명의 바람직한 실시예에 따른 전산 모사 수행 흐름도이다. The computer simulation unit receiving the accumulated measured high temperature damage information performs the computer simulation according to the flowchart of FIG. 3. 3 is a flowchart for performing computer simulation according to a preferred embodiment of the present invention.
우선, 전산 모사를 수행한다(100). 전산 모사를 수행하여 보일러 튜브의 가상 고온 손상 정보를 계산한다(200). First, computer simulation is performed (100). Computation simulation is performed to calculate virtual high temperature damage information of the boiler tube (200).
전산 모사는 컴퓨터를 기반으로 하여 가상 고온 손상 정보를 얻기 위한 실제 발전소 보일러를 모사하는 것으로서, 실측 고온 손상 정보를 산출하는 운전 조건과 동일한 운전 조건에서 모사한다.Computer simulation simulates a real-world power plant boiler to obtain virtual high temperature damage information based on a computer, and simulates under the same operating conditions as that of calculating actual high temperature damage information.
전산 모사에 이용되는 해석기법은 전산유체역학(CFD), 유한요소응력해석법(FEM) 및 이 둘을 연결하는 연계기법을 포함한다. The analytical techniques used in computer simulations include computational fluid dynamics (CFD), finite element stress analysis (FEM), and linking techniques that connect them.
전산유체역학(CFD)은 연소실의 연소 가스의 흐름을 해석하며, 전산유체역학(CFD)를 통해 보일러 튜브 근처에서의 유체 온도 분포를 계산한다. Computational fluid dynamics (CFD) analyzes the flow of combustion gases in a combustion chamber and computes fluid temperature distribution near the boiler tube through computational fluid dynamics (CFD).
한편, 보일러 튜브 근처의 유체 온도와 보일러 튜브의 금속 온도 사이에는 소정의 차이가 존재한다. 따라서 양자 간의 온도 차이를 연계기법을 이용하여 보정한다. 연계기법은 유체 온도를 금속 온도로 보정하기 위한 것이며, 연계기법에 의해 보정된 금속온도는 유한요소응력해석법(FEM)의 금속 온도 조건으로 대입된다. On the other hand, there is a certain difference between the fluid temperature near the boiler tube and the metal temperature of the boiler tube. Therefore, the temperature difference between the two is corrected using the linkage technique. The linkage technique is to correct the fluid temperature to metal temperature, and the metal temperature corrected by the linkage technique is substituted into the metal temperature condition of the finite element stress analysis (FEM).
유한요소응력해석법(FEM)은 보일러 튜브의 금속 온도를 기반으로 하여, 보일러 튜브의 가상 고온 손상 정보를 계산한다. Finite element stress analysis (FEM) calculates virtual high temperature damage information of a boiler tube based on the metal temperature of the boiler tube.
위와 같이 전산유체역학(CFD), 연계기법 및 유한요소응력해석법(FEM)을 이용한 전산 모사를 통해 보일러 튜브가 고온 조건에서 경험하게 되는 누적된 가상 고온 손상 정보를 계산한다. Computational simulation using CFD, coupling technique, and finite element stress analysis (FEM) is used to calculate the accumulated virtual high temperature damage information experienced by the boiler tube at high temperature.
전산모사를 통해 계산된 누적된 가상 고온 손상 정보는 실측 고온 손상 정보와 비교된다(300). 누적된 실측 고온 손상 정보와 누적된 가상 고온 손상 정보를 비교하여, 누적된 가상 고온 손상 정보가 누적된 실측 고온 손상 정보와 실질적으로 동일한지를 판단한다.The accumulated virtual high temperature damage information calculated through the computer simulation is compared with the measured high temperature damage information (300). The accumulated measured high temperature damage information and the accumulated virtual high temperature damage information are compared to determine whether the accumulated virtual high temperature damage information is substantially the same as the accumulated measured high temperature damage information.
만약, 가상 고온 손상 정보가 실측 고온 손상 정보와 동일하지 않으면, 전산 모사의 해석 기법을 보정한다(400). 여기서, 전산 모사의 해석 기법을 보정하는 것은 전산 모사에 이용되는 전산유체역학(CFD), 연계기법 및 유한요소응력해석법에 사용된 상수를 보정하는 것을 포함한다. 특히 연계기법의 상수를 보정함으로써, 전산 모사가 실제 발전소 보일러를 실질적으로 동일하게 모사하도록 한다. 보정된 전산 모사 기법으로 전산 모사하여 가상 고온 손상 정보를 다시 계산한다. 이러한 과정은, 전산 모사 기법이 실제 발전소 보일러에 가깝게 구현하도록 하기 위한 것이다. If the virtual high temperature damage information is not the same as the measured high temperature damage information, the analysis technique of the computer simulation is corrected (400). Here, calibrating the analysis technique of computational simulation includes calibrating the constants used in computational fluid dynamics (CFD), coupling techniques, and finite element stress analysis methods. In particular, by correcting the constants of the linkage technique, computer simulations simulate the actual power plant boilers substantially the same. Compute the simulated high temperature damage information by computer simulation with the corrected computer simulation method. This process is intended to bring the computer simulation technique closer to the actual power plant boiler.
가상 고온 손상 정보가 실측 고온 손상 정보와 동일하다고 판단되면, 보정된 전산 모사를 통해 전산 모사를 수행한다(500).If it is determined that the virtual high temperature damage information is the same as the measured high temperature damage information, computer simulation is performed through the corrected computer simulation (500).
전산 모사의 수행 결과, 보일러 내부의 온도 분포가 균일한지를 판단한다(600).As a result of the computer simulation, it is determined whether the temperature distribution inside the boiler is uniform (600).
보일러 내부의 온도가 균일한 온도 분포를 이루지 않으면, 운전 조건을 변경하고(700), 전산 모사를 재수행한다. If the temperature inside the boiler does not form a uniform temperature distribution, the operating conditions are changed (700), and computer simulation is performed again.
보일러 운전 조건은 특히 연소 조건을 포함한다.Boiler operating conditions include especially combustion conditions.
연소 조건은 틸팅 버너의 경사각, 연료 주입량 및 에어량 등을 포함하며, 연소 조건을 변경하여 균일한 온도 분포를 갖는 최적의 연소 조건을 얻는다. Combustion conditions include the tilt angle of the tilting burner, the fuel injection amount and the air amount, and the like, and the combustion conditions are changed to obtain an optimum combustion condition with a uniform temperature distribution.
틸팅버너의 경사각이 상향일 경우에는 연소실의 온도가 올라가고, 틸팅버너의 경사각이 하향일 경우에는 연소실의 온도가 내려간다. When the tilt angle of the tilting burner is upward, the temperature of the combustion chamber is increased. When the tilt angle of the tilting burner is downward, the temperature of the combustion chamber is lowered.
또한 연료 주입량이 많으면 연소실의 온도가 올라가고, 연료 주입량이 적으면 연소실의 온도가 내려간다. 에어량도 같은 논리이다. In addition, when the fuel injection amount is large, the temperature of the combustion chamber increases, and when the fuel injection amount is small, the temperature of the combustion chamber decreases. The same amount of air is used.
특히, 틸팅버너의 경사각은 각각의 틸팅버너마다 달리 설정할 수 있으며, 각각의 틸팅버너의 경사각에 따라 연소실의 내부 온도 분포가 달라지게 된다. In particular, the inclination angle of the tilting burner can be set differently for each tilting burner, and the internal temperature distribution of the combustion chamber varies according to the inclination angle of each tilting burner.
즉, 틸팅버너의 경사각, 연료 주입량 및 에어량에 따라 전체 보일러의 온도 분포가 달라지게 되며, 특히 틸팅버너의 경사각을 조절하여 보일러 내부가 균일한 온도 분포를 갖도록 할 수 있다. That is, the temperature distribution of the entire boiler varies according to the inclination angle of the tilting burner, the fuel injection amount and the air amount, and in particular, the inside of the boiler may have a uniform temperature distribution by adjusting the inclination angle of the tilting burner.
전산 모사의 수행결과 보일러 내부의 온도 분포가 균일한 분포를 갖게 되는 것으로 판단되면, 그 때의 연소 조건을 기억한다(800).If it is determined that the temperature distribution inside the boiler has a uniform distribution as a result of the computer simulation, the combustion conditions at that time are stored (800).
그 다음으로, 기억된 연소 조건을 실제 발전소 보일러에 적용하여, 발전소 보일러 운전 조건으로 설정한다. Then, the stored combustion conditions are applied to the actual power plant boiler, and set as the power plant boiler operating conditions.
위와 같이 설정된 연소 조건으로 발전소를 소정의 운전 시간 동안 가동한다. The power plant is operated for a predetermined operating time under the combustion conditions set as described above.
한편, 설정된 연소 조건이 최적의 연소 조건인지 여부를 검증하기 위해서, 발전소를 운전하기 전에 보일러 튜브에 신규의 확산 센서를 부착하여 소정 시간 동안 발전소를 운전하고, 소정 시간 경과 후 확산 센서를 분석하여 발전소 보일러의 연소 조건을 재조정할 수 있다. Meanwhile, in order to verify whether the set combustion condition is an optimum combustion condition, a new diffusion sensor is attached to the boiler tube before the power plant is operated to operate the power plant for a predetermined time, and after the predetermined time elapses, the diffusion sensor is analyzed and analyzed. The combustion conditions of the boiler can be readjusted.
이와 같은 구성에 의하면 다음과 같은 이점이 있다. According to such a configuration, there are the following advantages.
확산 센서 또는 변형 센서를 이용하기 때문에, 발전소 보일러의 고온의 환경에서도 보일러 튜브가 받게 되는 온도 정보를 얻을 수 있다. 이로 인해, 보일러 튜브의 고온 파손이 일어날 것으로 예측되는 지점을 정확하게 알아낼 수 있으며, 실제 발전소 보일러 내부의 온도 분포를 알 수 있다. By using a diffusion sensor or a deformation sensor, it is possible to obtain temperature information that a boiler tube receives even in a high temperature environment of a power plant boiler. This makes it possible to pinpoint the point at which hot breakage of the boiler tube is expected to occur and to know the temperature distribution inside the actual power plant boiler.
또한, 확산 센서 또는 변형 센서에 의한 온도 정보에 근거하므로, 발전소 보일러의 내부 온도가 초고온이더라도 온도 정보를 얻을 수 있으며, 특히 1000℃이상의 보일러에 대해서도 온도 측정이 가능하게 된다. 따라서, 고용량의 발전소에 보다 적합한 구성이 된다. In addition, since the temperature information by the diffusion sensor or the deformation sensor, the temperature information can be obtained even if the internal temperature of the power plant boiler is very high temperature, especially temperature can be measured even for boilers 1000 ℃ or more. Therefore, the configuration is more suitable for a high capacity power plant.
또한, 전산 모사가 실제의 발전소 보일러와 부합하도록, 전산 모사는 실측된 보일러 튜브의 고온 손상 정보를 바탕으로 보정된다. 이로써, 전산 모사는 실제 발전소 보일러를 근접되게 모사하는 것이 가능하다. In addition, the computer simulation is corrected based on the high temperature damage information of the measured boiler tube so that the computer simulation matches the actual power plant boiler. In this way, the computer simulation can closely simulate the actual power plant boiler.
실제와 가까운 전산 모사를 통해, 발전소 보일러의 내부 온도가 균일한 분포를 갖는 운전 조건을 구할 수 있다. 특히, 전산 모사의 연소 조건을 변경하면서, 균일한 분포가 되는 연소 조건을 쉽게 구할 수 있게 된다. Closer to real-world computer simulations, it is possible to obtain operating conditions in which the internal temperature of a power plant boiler is uniform. In particular, it is possible to easily obtain the combustion conditions with a uniform distribution while changing the combustion conditions of the computer simulation.
전산 모사에 의해 예측된 연소 조건은 실제 발전소 보일러의 연소 조건으로 설정되기 때문에, 실제 발전소 보일러에서도 균일한 온도 분포를 형성하게 된다. Since the combustion conditions predicted by the computer simulation are set to the combustion conditions of the actual power plant boiler, a uniform temperature distribution is formed even in the actual power plant boiler.
이로써, 보일러 내부의 온도가 불균일함으로써 발생하는 파손을 방지할 수 있을 뿐만 아니라, 전산 모사가 실제 보일러 내부의 온도 분포에 근거하므로, 보일러 튜브의 정확한 파손 예측이 가능하게 된다. This not only prevents damage caused by non-uniform temperature inside the boiler, but also computerized simulation based on the actual temperature distribution inside the boiler, thereby making it possible to accurately predict the failure of the boiler tube.
전술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 변경 또는 변형하여 실시할 수 있음은 해당기술분야의 당업자라면 자명하다 할 것이다. As described above, although described with reference to a preferred embodiment of the present invention, the present invention can be variously modified or modified without departing from the spirit and scope of the present invention described in the claims Those skilled in the art will appreciate.
본 발명은 발전소 보일러의 운전에 이용될 수 있으며, 특히 화력발전소의 최적 운전에 이용될 수 있다. The present invention can be used for the operation of the power plant boiler, in particular can be used for the optimal operation of the thermal power plant.

Claims (8)

  1. 보일러 튜브 또는 보일러 튜브 근처에 설치된 센서를 통해 보일러 튜브의 누적된 실측 고온 손상 정보를 입력받는 단계와;Receiving accumulated measured high temperature damage information of the boiler tube through a boiler tube or a sensor installed near the boiler tube;
    전산 모사를 통해 보일러 튜브의 누적된 가상 고온 손상 정보를 입력받는 단계와;Receiving accumulated virtual high temperature damage information of the boiler tube through computer simulation;
    상기 실측 고온 손상 정보와 상기 가상 고온 손상 정보를 비교하여 전산 모사를 보정하는 단계와;Correcting the computer simulation by comparing the measured high temperature damage information with the virtual high temperature damage information;
    상기 보정된 전산 모사를 통해 보일러 내부의 온도가 균일한 분포를 갖도록 보일러 운전 조건을 설정하는 단계Setting a boiler operating condition such that the temperature inside the boiler has a uniform distribution through the corrected computer simulation
    를 포함하는 것을 특징으로 하는 발전소 보일러 최적 운전 방법Power plant boiler optimal operating method comprising a
  2. 제 1 항에 있어서, The method of claim 1,
    상기 센서는 고온에서의 조직 변화 또는 변형 정도 또는 고온에서의 확산 정도를 고온 손상의 센싱 기준으로 하는 것을 특징으로 하는 발전소 보일러 최적 운전 방법The sensor is the optimal operating method of the power plant boiler, characterized in that the degree of tissue change or deformation at high temperature or the degree of diffusion at high temperature as the sensing criteria of high temperature damage.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 전산 모사는 전산유체역학(CFD), 유한요소응력해석법(FEM) 및 연계기법을 포함하는 것을 특징으로 하는 발전소 보일러 최적 운전 방법The computational simulation method of the power plant boiler, characterized in that it includes computational fluid dynamics (CFD), finite element stress analysis (FEM) and linkage techniques
  4. 제 1 항에 있어서,The method of claim 1,
    상기 전산 모사를 보정하는 단계는 상기 전산 모사에 이용되는 해석기법의 상수를 보정하는 것을 포함하는 것을 특징으로 하는 발전소 보일러 최적 운전 방법 Compensating the computational simulation is the optimal operating method of a power plant boiler, characterized in that for correcting the constants of the analysis method used for the computational simulation
  5. 제 1 항에 있어서,The method of claim 1,
    보일러 운전 조건을 설정하는 단계는,Setting the boiler operating conditions,
    보정된 전산 모사 기법을 통해 보일러 내부의 온도가 균일한 온도 분포를 갖는 운전 조건을 계산하는 단계와;Calculating operating conditions in which the temperature inside the boiler has a uniform temperature distribution through a corrected computer simulation technique;
    계산된 운전조건을 발전소 보일러에 적용하는 단계를 포함하는 것을 특징으로 하는 발전소 보일러 최적 운전 방법Optimal operating method of the power plant boiler comprising the step of applying the calculated operating conditions to the power plant boiler
  6. 제 5 항에 있어서,The method of claim 5,
    상기 운전 조건은 틸팅 버너의 경사각, 연료 주입량, 에어량 중 적어도 1개를 포함하는 것을 특징으로 하는 발전소 보일러 최적 운전 방법The operating condition is an optimal power plant boiler operating method comprising at least one of the tilt angle of the tilting burner, fuel injection amount, air amount
  7. 발전소 보일러의 운전 시스템에 있어서,In the operating system of the power plant boiler,
    발전소 보일러 튜브 또는 보일러 튜브의 근처에 설치된 센서와,Sensor installed near the power plant boiler tube or boiler tube,
    상기 발전소 보일러를 전산 모사하는 전산 모사부를 포함하되,Comprising a computer simulation unit for computer simulation of the power plant boiler,
    상기 전산 모사부는 상기 센서의 실측 고온 손상 정보에 근거하여 발전소 보일러의 연소 조건을 계산하는 것을 특징으로 하는 발전소 보일러의 운전 시스템.The computer simulation unit calculates a combustion condition of a power plant boiler based on measured high temperature damage information of the sensor.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 센서는 고온에서의 조직 변화 또는 변형 정도 또는 고온에서의 확산 정도를 고온 손상의 센싱 기준으로 하는 것을 특징으로 하는 발전소 보일러의 운전 시스템.The sensor is the operating system of the power plant boiler, characterized in that the degree of tissue change or deformation at high temperature or the degree of diffusion at high temperature as the sensing criteria of high temperature damage.
PCT/KR2009/007045 2009-11-25 2009-11-27 Method and system for optimally operating a power plant boiler WO2011065605A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090114550A KR101074358B1 (en) 2009-11-25 2009-11-25 The optimally operating process and the system for the bolier of the plant
KR10-2009-0114550 2009-11-25

Publications (1)

Publication Number Publication Date
WO2011065605A1 true WO2011065605A1 (en) 2011-06-03

Family

ID=44066707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007045 WO2011065605A1 (en) 2009-11-25 2009-11-27 Method and system for optimally operating a power plant boiler

Country Status (2)

Country Link
KR (1) KR101074358B1 (en)
WO (1) WO2011065605A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197314A (en) * 2014-08-05 2014-12-10 广东省粤电集团有限公司珠海发电厂 Four corner tangential boiler combustion control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101630164B1 (en) * 2015-01-30 2016-06-14 두산중공업 주식회사 Apparatus and method for boiler temperature calculation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282288A (en) * 1997-04-07 1998-10-23 Hitachi Ltd Method and device for measuring reactor output
KR19990016753A (en) * 1997-08-19 1999-03-15 윤종용 Calculation method of heating rate per unit time for turbine temperature
JP2003303020A (en) * 2002-04-12 2003-10-24 Toshiba Corp Plant monitoring and diagnostic system
KR20060069547A (en) * 2004-12-17 2006-06-21 두산중공업 주식회사 Apparaus for monitoring and diagnosing the real-time operating performance of a thermoelectric power plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282288A (en) * 1997-04-07 1998-10-23 Hitachi Ltd Method and device for measuring reactor output
KR19990016753A (en) * 1997-08-19 1999-03-15 윤종용 Calculation method of heating rate per unit time for turbine temperature
JP2003303020A (en) * 2002-04-12 2003-10-24 Toshiba Corp Plant monitoring and diagnostic system
KR20060069547A (en) * 2004-12-17 2006-06-21 두산중공업 주식회사 Apparaus for monitoring and diagnosing the real-time operating performance of a thermoelectric power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197314A (en) * 2014-08-05 2014-12-10 广东省粤电集团有限公司珠海发电厂 Four corner tangential boiler combustion control method

Also Published As

Publication number Publication date
KR20110057923A (en) 2011-06-01
KR101074358B1 (en) 2011-10-17

Similar Documents

Publication Publication Date Title
CN106247308B (en) Boiler scaling condition monitoring based on furnace exit temperature and control method
CN101806626A (en) Online monitoring method for flue gas temperature of hearth outlet of power station boiler
JPS6038522A (en) Soot blower system
CN103267684B (en) A kind of station boiler pressure restraining element life consumption acquisition methods and system
JP4466232B2 (en) Boiler deterioration diagnosis method, apparatus, system, and recording medium recording program
CN110779674B (en) Experimental device and experimental method for determining ventilation thermal resistance of roadway in mine fire period
WO2011065605A1 (en) Method and system for optimally operating a power plant boiler
KR20160021674A (en) Simulation Apparatus for Boiler Tube
CN103728339B (en) A kind of real-time identification method for average heat resistance of heat-exchange equipment on thermal power boiler side
CN113358692A (en) Arrangement method for measuring points of outer wall temperature of high-temperature heated surface of boiler and temperature detection system
CN106501015B (en) A kind of multitubular bundles integrated form radiant tube combustion experimental system and method
JP4869620B2 (en) Hot stove blower system
WO2019088368A1 (en) System and method for predicting wear of power-generating boiler tube
CN211475901U (en) Boiler exhaust gas temperature monitoring system considering flue gas velocity
CN105423273A (en) Spectroscopic boiler anti-coking system and control method
CN212361985U (en) Coal fired boiler high temperature area smoke temperature testing arrangement based on short-term off-line measured data
WO2019078414A1 (en) Device for evaluating combustion of fuel for fluidized bed boiler and fuel combustion evaluation method using same
JP7142545B2 (en) Boiler tube leak diagnostic system and boiler tube leak diagnostic method
CN112629685A (en) Device and method for measuring temperature in boiler heating surface pipe
Farrell et al. Crack growth monitoring on industrial plant using established electrical resistance scanner technology
CN105674237A (en) Real-time measuring method for smoke temperature fields of hearth outlet and horizontal flue of power station boiler
CN106871957B (en) A kind of measurement method of pulverized-coal fired boiler slag position and slag amount
JP7392687B2 (en) Boiler fuel preheating device and preheating method
Minet et al. Dynamic data reconciliation of regenerative heat exchangers coupled to a blast furnace
WO2020045944A1 (en) Gas heater and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851702

Country of ref document: EP

Kind code of ref document: A1